WO2022143350A1 - 信道状态信息上报方法、资源配置方法、通信节点及存储介质 - Google Patents

信道状态信息上报方法、资源配置方法、通信节点及存储介质 Download PDF

Info

Publication number
WO2022143350A1
WO2022143350A1 PCT/CN2021/140556 CN2021140556W WO2022143350A1 WO 2022143350 A1 WO2022143350 A1 WO 2022143350A1 CN 2021140556 W CN2021140556 W CN 2021140556W WO 2022143350 A1 WO2022143350 A1 WO 2022143350A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
signal measurement
resource
resources
measurement resources
Prior art date
Application number
PCT/CN2021/140556
Other languages
English (en)
French (fr)
Inventor
邹敏强
蒋创新
张淑娟
吴昊
鲁照华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022143350A1 publication Critical patent/WO2022143350A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the present application relates to the field of wireless communication networks, for example, to a method for reporting channel state information, a method for configuring resources, a communication node and a storage medium.
  • the base station side can flexibly configure information such as the number of reference signal measurement resources and measurement methods, and the terminal (User Equipment, UE) measures the channel state information (Channel State Information, CSI) of these reference signal measurement resources. , and select the one with the best channel quality among them, and report the CSI of the reference signal measurement resource to the base station side.
  • the UE measures all the Channel Measurement Reference signals (CMRs) according to the beams transmitted by each TRP to obtain the corresponding CSI and report.
  • CMRs Channel Measurement Reference signals
  • the terminal ignores the possible interference between the CMRs corresponding to the beams transmitted by different TRPs, which will result in inaccurate CSI measurement and low reliability of the reported CSI, which will ultimately affect the decision-making and communication quality at the base station side.
  • the present application provides a channel state information reporting method, a resource configuration method, a communication node and a storage medium, so as to improve the accuracy of CSI measurement and reporting.
  • An embodiment of the present application provides a method for reporting channel state information, including:
  • Receive measurement resource configuration signaling where the measurement resource configuration signaling is used to indicate M reference signal measurement resources and pairing information of the reference signal measurement resources, M>1; report the channel state information according to the pairing information.
  • the embodiment of the present application provides a resource configuration method, including:
  • the embodiment of the present application also provides a communication node, including:
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the program is executed by a processor, the above-mentioned channel state information reporting method or resource configuration method is implemented.
  • FIG. 1 is a schematic diagram of communication between a TRP and a terminal provided by an embodiment
  • FIG. 2 is a flowchart of a method for reporting channel state information provided by an embodiment
  • FIG. 3 is a schematic diagram of a relative sequence of reference signal measurement resources according to an embodiment
  • FIG. 4 is a schematic diagram of a relative sequence of reference signal measurement resources provided by another embodiment
  • FIG. 5 is a schematic diagram of a relative sequence of reference signal measurement resources according to still another embodiment
  • FIG. 6 is a schematic diagram of a relative sequence of reference signal measurement resources provided by another embodiment
  • FIG. 7 is a schematic diagram of a relative sequence of reference signal measurement resources according to another embodiment.
  • FIG. 8 is a schematic diagram of a channel measurement reference signal resource configuration according to an embodiment
  • FIG. 9 is a schematic diagram of a reference signal measurement resource configuration with a second type of non-zero power added according to an embodiment
  • FIG. 10 is a flowchart of a resource configuration method provided by an embodiment
  • FIG. 11 is a schematic structural diagram of an apparatus for reporting channel state information according to an embodiment
  • FIG. 12 is a schematic structural diagram of a resource configuration apparatus according to an embodiment
  • FIG. 13 is a schematic diagram of a hardware structure of a communication node according to an embodiment.
  • CSI can be channel quality indicator (Channel Quality Indicator, CQI), precoding matrix indicator (Precoding Matrix Indicator, PMI), channel state information reference signal resource indicator (Channel State Information-Reference Signal Resource Indicator, CRI), synchronization signal/physical The broadcast channel (Synchronization Signal/Physical Broadcast Channel, SS/PBCH) block resource indicator (SS/PBCH Block Resource Indicator, SSBRI), layer indicator (Layer Indicator, LI), rank indicator (Rank Indicator, RI) and other components.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • CRI Channel State Information-Reference Signal Resource Indicator
  • SS/PBCH Synchrom Broadcast Channel
  • SS/PBCH Block Resource Indicator SS/PBCH Block Resource Indicator
  • layer indicator Layer Indicator, LI
  • rank indicator Rank Indicator, RI
  • FIG. 1 is a schematic diagram of communication between a TRP and a terminal according to an embodiment.
  • the base station side can flexibly configure the number and measurement methods of CMR resources.
  • the TRP may transmit one or more CMR resources to the UE through the beam.
  • the TRP can also configure one or more CSI reporting feedback settings (CSI-ReportConfig) and one or more CSI resource settings (CSI-ResourceConfig) for the UE, and one CSI reporting feedback setting can be linked to up to three CSI resource settings.
  • the UE measures and reports CSI according to these CMRs.
  • the base station side can configure one or more channel state information reference signal (Channel State Information-Reference Signal, CSI-RS) resources for the UE for useful channel measurement, and configure one or more channel state information interference measurements (Channel State Information Interference) Measurement, CSI-IM) resources are used for interference measurement, wherein CSI-RS resources and CSI-IM resources are in a one-to-one correspondence.
  • CSI-RS Channel State Information-Reference Signal
  • CSI-IM Channel State Information Interference Measurement
  • the UE reports CSI according to the measurement of the CSI-RS resource, including RI, PMI, CQI, etc.; in the case of multiple CSI-RS resources, usually multiple CSI-RS
  • the resources are precoded, each CSI-RS resource represents a precoding matrix, and the precoding information for CSI-RS can be determined by the base station side, for example, by traversing the Discrete Fourier Transform (DFT) in the full space
  • DFT Discrete Fourier Transform
  • the beamforming vector is determined, or estimated based on the measurement of the Sounding Reference Signal (Sounding Reference Signal, SRS).
  • the UE measures multiple CSI-RS resources and selects a CSI-RS resource with the best channel quality, reports the CRI indicating the CSI-RS resource, and feeds back RI, PMI, CQI, etc. according to the measurement of the CSI-RS resource CSI. If the base station side sets for the UE one CSI-RS resource for useful channel measurement and one or more CSI-RS resources for interference measurement, the useful channel measurement is associated with all interference measurement resources.
  • each CSI-RS antenna port corresponds to the interference layer, and the channel matrix measured by the UE on multiple antenna ports of each CSI-RS interference measurement resource is the interference channel matrix , the UE can calculate the covariance matrix, null space, etc. of the interference channel through the matrix, so as to calculate and feed back the optimal precoding matrix and CQI under the interference channel.
  • a method for reporting channel state information is provided.
  • the UE considers the relationship between the reference signal measurement resources according to the pairing relationship between the reference signal measurement resources corresponding to the beams transmitted by different TRPs. interference between them, thereby improving the accuracy of CSI measurement and reporting.
  • FIG. 2 is a flowchart of a method for reporting channel state information provided by an embodiment. As shown in FIG. 2 , the method provided by this embodiment includes step 110 and step 120 .
  • step 110 measurement resource configuration signaling is received, where the measurement resource configuration signaling is used to indicate M reference signal measurement resources and pairing information of the reference signal measurement resources, where M>1.
  • the pairing information is used to indicate a pairing relationship between reference signal measurement resources, that is, to indicate which reference signal measurement resources have interference between them.
  • the pairing information may be the number, number, and/or arrangement position in the buffer of the M reference signal measurement resources for which interference exists, and the UE may consider this in the process of measuring the CSI of one reference signal measurement resource.
  • the interference caused by the paired reference signal measurement resource improves the measurement accuracy.
  • the pairing information may also include CSI reporting feedback settings or CSI resource settings corresponding to the M reference signal measurement resources, to instruct the UE to report CSI in different CSI reporting feedback settings for each reference signal measurement resource, or to use The CSI of the resource pair with interference is combined and reported in one CSI reporting feedback setting.
  • step 120 the channel state information is reported according to the pairing information.
  • the interference caused by another reference signal measurement resource paired with it may be considered to improve the measurement accuracy. It is also possible to report the CSI in different CSI reporting and feedback settings for each reference signal measurement resource, or combine the CSI of the resource pair with interference to report in one CSI reporting and feedback setting.
  • each reference signal measurement resource corresponds to at least one group identifier, respectively.
  • the base station side may configure at least one group identifier (GroupID) for each CMR resource through radio resource control (Radio Resource Control, RRC) signaling, which is used to indicate whether the CMR is used for pairing.
  • GroupID group identifier
  • RRC Radio Resource Control
  • Multiple different grouping identifiers can be configured for CMR resources that can be paired with or not paired with other CMR resources.
  • each reference signal measurement resource corresponds to a group identifier.
  • the beams sent by TRP1 are denoted as beam1, beam2, beam3, and beam4, and the corresponding CMR resources are denoted as CMR1, CMR2, CMR3, and CMR4.
  • the beams sent by TRP2 are denoted as beam5, beam6, beam7, and beam8, and the corresponding CMR resources are denoted as CMR5, CMR6, CMR7, and CMR8.
  • [beam3, beam5], [beam4, beam6] constitute two sets of paired beam pairs, and beam1, beam2, beam7, and beam8 are not paired.
  • the CMR resources in the CSI reporting feedback setting are ⁇ CMR3, CMR5, CMR4, CMR6, CMR1, CMR2, CMR7, CMR8 ⁇ .
  • Table 1 is a mapping table between reference signal measurement resources and group identifiers.
  • CMR3 and CMR5 can correspond to the same group ID, and the GroupID is 0;
  • CMR4 and CMR6 can correspond to the same group ID, and the GroupID is 1; there is no pairing relationship between CMR1, CMR2, CMR7, and CMR8.
  • the corresponding group identifiers are 2, 3, 4, and 5, respectively.
  • the base stations associated with [CMR3, CMR5] and [CMR4, CMR6] are Multi Transmission Receiving Points (MTRP), while the base stations associated with CMR1, CMR2, CMR7, and CMR8 are Single Transmission Receiving Points (Single Transmission Receiving Points, STRP).
  • MTRP Multi Transmission Receiving Points
  • STRP Single Transmission Receiving Points
  • Table 1 Mapping table of reference signal measurement resources and group identification
  • each reference signal measurement resource may also correspond to multiple group identifiers.
  • the base station side configures two GroupIDs for the CMR resource.
  • beam3 of TRP1 can be paired with beam5 of TRP2 or not, so CMR3 can correspond to two GroupIDs.
  • Table 2 is another mapping table between reference signal measurement resources and group identifiers. As shown in Table 2, CMR3 can correspond to two GroupIDs, one GroupID is 0, indicating that CMR3 is paired with CMR5, [CMR3, CMR5] is associated with the base station is MTRP; the other GroupID is 2, indicating that CMR3 is not associated with other CMR resources Paired, CMR3 is associated with STRP.
  • Table 2 Mapping table of reference signal measurement resources and group identification
  • the reference signal measurement resources with the same group identifier have a pairing relationship.
  • the base station side configures the same grouping identifier for the paired CMR resources, and configures a separate grouping identifier for the reference signal measurement resources that do not have a pairing relationship, so that the UE can accurately obtain the pairing information of the CMR resources, and clearly exists Interfering CMR resources.
  • the sequence is not considered, that is, the group identifiers are from small to large, and may be allocated to the CMR resources associated with MTRP first, and then allocated to the CMR resources associated with MTRP.
  • CMR resource associated with STRP in the process of configuring group identifiers for the CMR resources associated with STRP and the CMR resources associated with MTRP.
  • the measurement resource configuration signaling includes the number N of resource pairs with a pairing relationship, where N ⁇ M/2.
  • the beams sent by TRP1 are denoted as beam1, beam2, beam3, and beam4, and the corresponding CMR resources are denoted as CMR1, CMR2, CMR3, and CMR4.
  • the beams sent by TRP2 are denoted as beam5, beam6, beam7, and beam8, and the corresponding CMR resources are denoted as CMR5, CMR6, CMR7, and CMR8.
  • [beam3, beam5], [beam4, beam6] constitute two sets of paired beam pairs, and beam1, beam2, beam7, and beam8 are not paired.
  • other predefined sequences and pairing rules can also be used. CMR resource pairing at the corresponding location.
  • the reference signal measurement resources with a pairing relationship support being associated with a single transmission and receiving node; in the setting of the high frequency band, the reference signal measurement resources with a pairing relationship do not support being associated with a single transmission and reception node. node.
  • the reference signal measurement resources with a pairing relationship are supported to be associated with the STRP, that is, one CMR resource may be paired with other CMR resources, or may not be paired, such as CMR3 in Table 2;
  • reference signal measurement resources with a pairing relationship do not support association with STRP, that is, a CMR resource cannot be associated with MTRP and STRP at the same time.
  • the reference signal measurement resources having a pairing relationship among the M reference signal measurement resources satisfy a predefined relative order relationship.
  • the predefined relative order relationship includes: reference signal measurement resources with a pairing relationship are adjacent, and reference signal measurement resources with a pairing relationship are located at the front end, the back end, the middle or the front end in the reference signal measurement resource configuration. two sides; or, the reference signal measurement resources with the pairing relationship are located before, after, in the middle or on both sides of the unpaired reference signal measurement resources; correspondingly, the position of the CMR resources with the pairing relationship in the buffer is in the buffer left, right, middle, or both sides of a CMR resource, or left, right, middle, or both sides of an unpaired CMR resource.
  • the predefined relative order relationship includes:
  • Reference signal measurement resources with a pairing relationship are adjacent, and located in the reference signal measurement resource configuration or in front of, behind, in the middle or on both sides of unpaired reference signal measurement resources in the M reference signal measurement resources.
  • FIG. 3 is a schematic diagram of a relative sequence of reference signal measurement resources according to an embodiment.
  • the paired CMR resources are stored on the left side of the buffer in the order from right to left, and the unpaired CMR resources are stored in the order from left to right Stored on the right side of the buffer.
  • the CMR resources shown in the shaded areas represent the paired CMR resources.
  • [beam3, beam5], [beam4, beam6] constitute two pairs of beam pairs, beam1, beam2, beam7, beam8 are not paired, then CMR3, CMR5, CMR4, CMR6 are stored in order from the middle of the buffer to the left; CMR1 , CMR2, CMR7, CMR8 are sequentially stored from the middle of the buffer to the right.
  • the UE takes the first 4 CMRs from front to back in the CMR resources and performs pairwise pairing to obtain ⁇ [CMR6, CMR4], [CMR5, CMR3] ⁇ associated MTRP, the rest
  • the CMR resources ⁇ CMR1, CMR2, CMR7, CMR8 ⁇ associated with STRP.
  • FIG. 4 is a schematic diagram of a relative sequence of reference signal measurement resources according to another embodiment.
  • the UE when the UE receives the beams of TRP1 and TRP2, it can also store the paired CMR resources on the left side of the buffer in order from left to right, and store the unpaired CMR resources in the order from left to right. The order to the right is stored on the right side of the buffer.
  • the paired CMR resources may also be stored in the right side of the buffer in order, and the unpaired CMR resources may be stored in the left side of the buffer in order.
  • FIG. 5 is a schematic diagram of a relative sequence of reference signal measurement resources according to still another embodiment.
  • the UE can symmetrically store the paired CMR resources on both sides of the buffer, and store the unpaired CMR resources in the middle of the buffer.
  • the CMR resources shown in the shaded areas represent the paired CMR resources.
  • [beam3, beam5], [beam4, beam6] constitute two pairs of beam pairs, beam1, beam2, beam7, beam8 are not paired, then CMR3 and CMR5 are stored in the first and last bits of the buffer, CMR4, CMR6 are stored in the second and penultimate bits of the buffer; CMR1, CMR2, CMR7, CMR8 are stored in the middle of the buffer.
  • FIG. 6 is a schematic diagram of a relative sequence of reference signal measurement resources according to yet another embodiment.
  • the paired CMR resources can also be symmetrically stored in the middle of the buffer, and the unpaired CMR resources can be stored on both sides of the buffer.
  • FIG. 7 is a schematic diagram of a relative sequence of reference signal measurement resources according to another embodiment.
  • the CMR resource may be stored on the left and right sides of the buffer at the same time.
  • the CMR resources shown in the shaded area represent the paired CMR resources, which are stored on the left side of the buffer, and the CMR resources described in the unshaded area are stored on the right side of the buffer.
  • the CMR3 resource is associated with both STRP and MTRP.
  • the CMR resources in the CSI reporting and feedback settings are ⁇ CMR6, CMR4, CMR5, CMR3, CMR3, CMR1, CMR2, CMR7, CMR8 ⁇ , and CMR3 is stored in the cache at the same time. both sides of the device.
  • the UE can pair the first 4 CMR resources in sequence from front to back in the CMR resources to obtain ⁇ [CMR6, CMR4], [CMR5, CMR3] ⁇ associated MTRP, and the rest CMR resources ⁇ CMR3, CMR1, CMR2, CMR7, CMR8 ⁇ are associated with STRP, and CMR3 is associated with both STRP and MTRP.
  • it also includes:
  • Step 130 In setting the high frequency band, the number of CRI bits is determined according to the number M of reference signal measurement resources and the number N of resource pairs having a pairing relationship.
  • each reference signal measurement resource is only associated with STRP or only associated with MTRP.
  • the UE is based on two transmission configuration instructions.
  • TCI Transmission Configuration Indicator
  • the CSI includes one CRI, which is used to indicate one resource among M reference signal measurement resources, or is used to indicate one resource pair among N resource pairs with a pairing relationship; the CRI occupies at least one resource pair. bits.
  • the CSI includes one CRI, which is used to indicate one resource among M-2N unpaired reference signal measurement resources, or is used to indicate one resource pair among N resource pairs with a pairing relationship; the CRI takes at least bits.
  • the CSI includes two CRIs, the first CRI is used to indicate one resource in M reference signal measurement resources, and the second CRI is used to indicate one resource in N resource pairs with a pairing relationship Yes; both CRIs together occupy at least bits.
  • the CSI includes two CRIs, the first CRI is used to indicate one resource in M-2N unpaired reference signal measurement resources, and the second CRI is used to indicate N resources with a pairing relationship A resource pair in a pair; both CRIs together occupy at least bits.
  • it also includes:
  • Step 140 In setting the low frequency band, determine the number of CRI bits according to the number M of reference signal measurement resources.
  • the UE measures M reference signal measurement resources transmitted by the two TRPs according to the two TCIs, and determines the CSI according to M. and the number of CRI bits.
  • the CSI includes one CRI, which is used to indicate one resource or a resource pair among M reference signal measurement resources; the CRI occupies at least one resource bits.
  • the CSI includes two CRIs, the first CRI is used to indicate one resource in M reference signal measurement resources, and the second CRI is used to indicate one resource in M resource pairs with a pairing relationship Yes; both CRIs together occupy at least bits.
  • the value of N may be smaller than the number of resource pairs that actually have a pairing relationship.
  • some CMR resources with interference will be ignored by the UE.
  • reference signal measurement resources with a pairing relationship correspond to the same CSI reporting feedback setting, or the same reference signal measurement resource configuration, or the same reference signal measurement resource set.
  • the UE stores the reference signal measurement resources with a pairing relationship in the same CSI reporting feedback setting for reporting.
  • reference signal measurement resources with a pairing relationship correspond to different CSI reporting feedback settings, or different reference signal measurement resource settings, or different reference signal measurement resource sets.
  • the UE stores the reference signal measurement resources with a pairing relationship in two CSI reporting feedback settings for reporting.
  • the ID of the CMR resource of the other TRP is configured by configuring the CMR resource set for the CSI reporting feedback of one TRP to explicitly indicate that there is interference between the two CMR resources.
  • the beams sent by TRP1 are beam1, beam2, beam3, and beam4, and the corresponding CMR resources are CMR1, CMR2, CMR3, and CMR4; the beams sent by TRP2 are beam5, beam6, beam7, and beam8, and the corresponding CMR resources are CMR5, CMR6, CMR7, CMR8, where [beam3, beam5], [beam4, beam6] are two paired beam pairs. beam1, beam2, beam7, and beam8 are not paired.
  • N 2
  • CMR5 and CMR6 are respectively associated with CMR3 and CMR4 of TRP1.
  • each CSI reporting feedback setting or in each reference signal measurement resource setting, or in each reference signal measurement resource set, it is satisfied that: the first N reference signal measurement resources are in one-to-one correspondence and have a pairing relationship; or, the last N reference signal measurement resources are in one-to-one correspondence and have a pairing relationship.
  • FIG. 8 is a schematic diagram of a channel measurement reference signal resource configuration according to an embodiment. As shown in Figure 8, the pairing relationship of CMR resources in TRP1 and TRP2 can be established at the report setting level (Report Setting Level), or at the resource setting level (Resource Setting Level), or at the resource collection level ( Resource Set Level).
  • Report Setting Level Report Setting Level
  • Resource Setting Level Resource Setting Level
  • Resource Set Level Resource Set Level
  • the following CMR resources ⁇ CMR1, CMR2, [CMR3, CMR5], [CMR4, CMR6] ⁇ can be obtained in the CSI reporting feedback setting of TRP1.
  • the interference resources of TRP2 to TRP1 are obtained as CMR5 and CMR6.
  • the following CMR resources ⁇ [CMR5, CMR3], [CMR6, CMR4], CMR7, CMR8 ⁇ can be obtained.
  • the interference resources of TRP1 to TRP2 are obtained as CMR3 and CMR4.
  • the first reference signal measurement resource is used for channel measurement
  • the second reference signal measurement resource is a second type of channel state information reference signal with non-zero power, for interference measurements.
  • the UE places the two sets of CMRs associated with the MTRP in two CSI reporting feedback settings for reporting.
  • the configuration of the second type of channel state information reference signal is additionally added to the two CSI reporting and feedback settings to implicitly indicate that another CMR belongs to interference.
  • the first reference signal measurement resource with non-zero power is traditional CSI-RS, which is used to measure the interference of other users in the cell where the UE is located;
  • the second type of reference signal measurement resource with non-zero power added is the second type Channel state information reference signal CSI-RS*, used to measure interference from another TRP.
  • FIG. 9 is a schematic diagram of a reference signal measurement resource configuration for increasing the second type of non-zero power provided by an embodiment.
  • the first CSI reporting and feedback setting includes CMR resources, CSI-RS resources and CSI-IM resources, which are respectively used for channel measurement, intra-cell interference measurement and inter-cell interference measurement.
  • CMR resources CMR resources
  • CSI-RS resources CMR resources
  • CSI-IM resources which are respectively used for channel measurement, intra-cell interference measurement and inter-cell interference measurement.
  • Port the interference measurement between ports
  • the second CSI reporting and feedback setting additionally configure CSI-RS* to measure the interference between ports.
  • the beams sent by TRP1 are beam1, beam2, beam3, and beam4, and the corresponding CMR resources are CMR1, CMR2, CMR3, and CMR4.
  • the beams sent by TRP2 are beam5, beam6, beam7, and beam8, and the corresponding CMR resources are CMR5, CMR6, CMR7, and CMR8.
  • [beam3, beam5], [beam4, beam6] are two sets of paired beam pairs. beam1, beam2, beam7, and beam8 are not paired.
  • the additionally configured CSI-RS* can be used by the UE to measure the inter-port interference caused by CMR5 and CMR6 in TRP2 to CMR3 and CMR4 in TRP1.
  • the additionally configured CSI-RS* can be used by the UE to measure the inter-port interference caused by CMR3 and CMR4 in TRP1 to CMR5 and CMR6 in TRP2.
  • the number of channel state information processing units (CSI Processing Units, CPUs) occupied by the M reference signal measurement resources is pN+qM or pN+q(M-2N), where p is each paired The number of CPUs occupied by the resource pair of the relationship; q is the number of CPUs occupied by each reference signal measurement resource.
  • the low frequency band FR1 there is a Quasi-Colocation (QCL) type D, that is, there are reference signal measurement resources that can be paired or unpaired, and the reference signal measurement resources occupy the total number of CPUs is pN+qM;
  • QCL-typeD that is, there is no reference signal measurement resource that can be paired or unpaired, and the number of CPUs occupied by the reference signal measurement resources is pN+q( M-2N), where p is the number of CPUs occupied by each pair of paired reference signal measurement resources, q is the number of CPUs occupied by unpaired reference signal measurement resources, and N is the number of resource pairs with a pairing relationship, M is the number of all reference signal measurement resources.
  • a resource configuration method is also provided.
  • the base station side pairs the reference signal measurement resources, and indicates the pairing information of the reference signal measurement resources to the UE through measurement resource configuration signaling, so that the UE is in the process of measuring CSI.
  • the interference between the reference signal measurement resources is considered, thereby improving the accuracy of CSI measurement and reporting.
  • FIG. 10 is a flowchart of a resource configuration method provided by an embodiment. As shown in FIG. 10 , the method provided by this embodiment includes step 210 and step 220 . For technical details not described in detail in this embodiment, reference may be made to any of the above-mentioned embodiments.
  • step 210 M reference signal measurement resources and pairing information of the reference signal measurement resources are determined.
  • step 220 measurement resource configuration signaling is sent, where the measurement resource configuration signaling is used to indicate M reference signal measurement resources and pairing information of the reference signal measurement resources, and M>1 sends measurement resource configuration signaling.
  • each reference signal measurement resource corresponds to at least one group identifier, respectively.
  • the reference signal measurement resources with the same group identifier have a pairing relationship.
  • the measurement resource configuration signaling includes the number N of resource pairs with a pairing relationship, where N ⁇ M/2.
  • the reference signal measurement resources with a pairing relationship support being associated with a single transmission and receiving node; in the setting of the high frequency band, the reference signal measurement resources with a pairing relationship do not support being associated with a single transmission and reception node. node.
  • the reference signal measurement resources having a pairing relationship among the M reference signal measurement resources satisfy a predefined relative order relationship.
  • the predefined relative order relationship includes:
  • the reference signal measurement resources with a pairing relationship are arranged before or after, in the middle or on both sides of the unpaired reference signal measurement resources among the M reference signal measurement resources.
  • the predefined relative order relationship includes:
  • Reference signal measurement resources with a pairing relationship are adjacent, and located in the reference signal measurement resource configuration or in front of, behind, in the middle or on both sides of unpaired reference signal measurement resources in the M reference signal measurement resources.
  • the number of CRI bits is determined according to the number M of reference signal measurement resources and the number N of resource pairs with a pairing relationship.
  • the channel state information includes one CRI, which is used to indicate one resource among M reference signal measurement resources, or is used to indicate one resource pair among N resource pairs with a pairing relationship; the CRI occupies at least one resource pair. bits.
  • the channel state information includes a CRI, which is used to indicate one resource in M-2N unpaired reference signal measurement resources, or is used to indicate one resource in N resource pairs with a pairing relationship. Yes; the CRI occupies at least bits.
  • the channel state information includes two CRIs, the first CRI is used to indicate one resource in M reference signal measurement resources, and the second CRI is used to indicate N resource pairs with a pairing relationship. a resource pair of ; the two CRIs together occupy at least bits.
  • the channel state information includes two CRIs, the first CRI is used to indicate one resource among M-2N unpaired reference signal measurement resources, and the second CRI is used to indicate N paired reference signal measurement resources.
  • it also includes:
  • Step 240 In setting the low frequency band, the number of CRI bits is determined according to the number M of reference signal measurement resources.
  • the channel state information includes a CRI, which is used to indicate one resource or a resource pair among the M reference signal measurement resources; the CRI occupies at least one resource bits.
  • the channel state information includes two CRIs, the first CRI is used to indicate one resource in M reference signal measurement resources, and the second CRI is used to indicate M resource pairs with a pairing relationship. a resource pair of ; the two CRIs together occupy at least bits.
  • reference signal measurement resources with a pairing relationship correspond to the same CSI reporting feedback setting, or the same reference signal measurement resource configuration, or the same reference signal measurement resource set.
  • reference signal measurement resources with a pairing relationship correspond to different CSI reporting feedback settings, or different reference signal measurement resource settings, or different reference signal measurement resource sets.
  • each CSI reporting feedback setting or in each reference signal measurement resource setting, or in each reference signal measurement resource set, it is satisfied that: the first N reference signal measurement resources are in one-to-one correspondence and have a pairing relationship; or, the last N reference signal measurement resources are in one-to-one correspondence and have a pairing relationship.
  • the first reference signal measurement resource is used for channel measurement
  • the second reference signal measurement resource is a second type of channel state information reference signal with non-zero power, for interference measurements.
  • the number of channel state information processing units occupied by the M reference signal measurement resources is pN+qM or pN+q(M-2N), where p is the occupation of each resource pair with a pairing relationship.
  • the number of CPUs; q is the number of CPUs occupied by each reference signal measurement resource.
  • FIG. 11 is a schematic structural diagram of an apparatus for reporting channel state information according to an embodiment.
  • the device for reporting channel state information includes: a signaling accepting module 310 and a reporting module 320 .
  • the signaling accepting module 310 is configured to receive measurement resource configuration signaling, where the measurement resource configuration signaling is used to indicate the M reference signal measurement resources and the pairing information of the reference signal measurement resources, M>1; the reporting module 320 is set to The channel state information is reported according to the pairing information.
  • the interference between the reference signal measurement resources is considered, thereby improving the CSI measurement. and reporting accuracy.
  • each reference signal measurement resource corresponds to at least one group identifier, respectively.
  • the reference signal measurement resources with the same group identifier have a pairing relationship.
  • the measurement resource configuration signaling includes the number N of resource pairs with a pairing relationship, where N ⁇ M/2.
  • one reference signal measurement resource when setting the low frequency band, one reference signal measurement resource exists in one or more resource pairs; when setting the high frequency band, one reference signal measurement resource cannot exist in multiple resource pairs.
  • the reference signal measurement resources having a pairing relationship among the M reference signal measurement resources satisfy a predefined relative order relationship.
  • the predefined relative order relationship includes:
  • the reference signal measurement resources with a pairing relationship are arranged before or after, in the middle or on both sides of the unpaired reference signal measurement resources among the M reference signal measurement resources.
  • the predefined relative order relationship includes:
  • Reference signal measurement resources with a pairing relationship are adjacent, and located in the reference signal measurement resource configuration or in front of, behind, in the middle or on both sides of unpaired reference signal measurement resources in the M reference signal measurement resources.
  • it also includes:
  • the first bit number determination module is configured to determine the number of CRI bits according to the number M of reference signal measurement resources and the number N of resource pairs having a pairing relationship when the high frequency band is set.
  • the channel state information includes one CRI, which is used to indicate one resource among M reference signal measurement resources, or is used to indicate one resource pair among N resource pairs with a pairing relationship; the CRI occupies at least one resource pair. bits.
  • the channel state information includes a CRI, which is used to indicate one resource among M-2N unpaired reference signal measurement resources, or is used to indicate one resource pair among N resource pairs with a pairing relationship;
  • the CRI occupies at least bits.
  • the channel state information includes two CRIs, the first CRI is used to indicate one resource in the M reference signal measurement resources, and the second CRI is used to indicate one of the N resource pairs with a pairing relationship.
  • Resource pair; two CRIs together occupy at least bits.
  • the channel state information includes two CRIs, the first CRI is used to indicate one resource among M-2N unpaired reference signal measurement resources, and the second CRI is used to indicate N paired reference signal measurement resources.
  • it also includes:
  • the second number of bits determining module is configured to determine the number of bits of the CRI according to the number M of reference signal measurement resources when the low frequency band is set.
  • the channel state information includes a CRI, which is used to indicate one resource or a resource pair among M reference signal measurement resources; the CRI occupies at least one resource bits.
  • the channel state information includes two CRIs, the first CRI is used to indicate one resource in M reference signal measurement resources, and the second CRI is used to indicate M resource pairs with a pairing relationship. a resource pair of ; the two CRIs together occupy at least bits.
  • reference signal measurement resources with a pairing relationship correspond to the same CSI reporting feedback setting, or the same reference signal measurement resource configuration, or the same reference signal measurement resource set. In an embodiment, reference signal measurement resources with a pairing relationship correspond to different CSI reporting feedback settings, or different reference signal measurement resource settings, or different reference signal measurement resource sets.
  • each CSI reporting feedback setting or in each reference signal measurement resource setting, or in each reference signal measurement resource set, it is satisfied that: the first N reference signal measurement resources are in one-to-one correspondence and have a pairing relationship; or, the last N reference signal measurement resources are in one-to-one correspondence and have a pairing relationship.
  • the first reference signal measurement resource is used for channel measurement
  • the second reference signal measurement resource is a second type of channel state information reference signal with non-zero power, for interference measurements.
  • the number of channel state information processing units occupied by the M reference signal measurement resources is pN+qM or pN+q(M-2N), where p is the CPU occupied by each resource pair with a pairing relationship The number of ; q is the number of CPUs occupied by each reference signal measurement resource.
  • the device for reporting channel state information proposed in this embodiment and the method for reporting channel state information proposed in the above-mentioned embodiments belong to the same concept.
  • FIG. 12 is a schematic structural diagram of a resource configuration apparatus according to an embodiment. As shown in FIG. 12 , the apparatus includes: a pairing module 410 and a signaling sending module 420 .
  • the pairing module 410 is configured to determine M reference signal measurement resources and pairing information of the reference signal measurement resources; the signaling sending module 420 is configured to send measurement resource configuration signaling, where the measurement resource configuration signaling is used to indicate M reference signal measurement resources For the pairing information of the signal measurement resource and the reference signal measurement resource, M>1.
  • the device for reporting channel state information in this embodiment by pairing the reference signal measurement resources, and indicating the pairing information of the reference signal measurement resources through measurement resource configuration signaling, enables the UE to measure the CSI according to the beams transmitted by different TRPs.
  • the pairing relationship between the corresponding reference signal measurement resources takes into account the interference between the reference signal measurement resources, thereby improving the accuracy of CSI measurement and reporting.
  • each reference signal measurement resource corresponds to at least one group identifier, respectively.
  • the reference signal measurement resources with the same group identification have a pairing relationship.
  • the measurement resource configuration signaling includes the number N of resource pairs with a pairing relationship, where N ⁇ M/2.
  • one reference signal measurement resource when setting the low frequency band, one reference signal measurement resource exists in one or more resource pairs; when setting the high frequency band, one reference signal measurement resource cannot exist in multiple resource pairs.
  • the reference signal measurement resources having a pairing relationship among the M reference signal measurement resources satisfy a predefined relative order relationship.
  • the predefined relative order relationship includes:
  • the reference signal measurement resources with a pairing relationship are arranged before or after, in the middle or on both sides of the unpaired reference signal measurement resources among the M reference signal measurement resources.
  • the predefined relative order relationship includes:
  • Reference signal measurement resources with a pairing relationship are adjacent, and located in the reference signal measurement resource configuration or in front of, behind, in the middle or on both sides of unpaired reference signal measurement resources in the M reference signal measurement resources.
  • the number of CRI bits is determined according to the number M of reference signal measurement resources and the number N of resource pairs with a pairing relationship.
  • the channel state information includes one CRI, which is used to indicate one resource among M reference signal measurement resources, or is used to indicate one resource pair among N resource pairs with a pairing relationship; the CRI occupies at least one resource pair. bits.
  • the channel state information includes a CRI, which is used to indicate one resource in M-2N unpaired reference signal measurement resources, or is used to indicate one resource in N resource pairs with a pairing relationship. Yes; the CRI occupies at least bits.
  • the channel state information includes two CRIs, the first CRI is used to indicate one resource in the M reference signal measurement resources, and the second CRI is used to indicate one of the N resource pairs with a pairing relationship.
  • Resource pair; two CRIs together occupy at least bits.
  • the channel state information includes two CRIs, the first CRI is used to indicate one resource among M-2N unpaired reference signal measurement resources, and the second CRI is used to indicate N paired reference signal measurement resources.
  • the number of CRI bits is determined according to the number M of reference signal measurement resources.
  • the channel state information includes a CRI, which is used to indicate one resource or a resource pair among the M reference signal measurement resources; the CRI occupies at least one resource bits.
  • the channel state information includes two CRIs, the first CRI is used to indicate one resource in M reference signal measurement resources, and the second CRI is used to indicate M resource pairs with a pairing relationship. a resource pair of ; the two CRIs together occupy at least bits.
  • reference signal measurement resources with a pairing relationship correspond to the same CSI reporting feedback setting, or the same reference signal measurement resource configuration, or the same reference signal measurement resource set. In an embodiment, reference signal measurement resources with a pairing relationship correspond to different CSI reporting feedback settings, or different reference signal measurement resource settings, or different reference signal measurement resource sets.
  • each CSI reporting feedback setting or in each reference signal measurement resource setting, or in each reference signal measurement resource set, it is satisfied that: the first N reference signal measurement resources are in one-to-one correspondence and have a pairing relationship; or, the last N reference signal measurement resources are in one-to-one correspondence and have a pairing relationship.
  • the first reference signal measurement resource is used for channel measurement
  • the second reference signal measurement resource is a second type of channel state information reference signal with non-zero power, for interference measurements.
  • the number of channel state information processing units occupied by the M reference signal measurement resources is pN+qM or pN+q(M-2N), where p is the occupation of each resource pair with a pairing relationship.
  • the number of CPUs; q is the number of CPUs occupied by each reference signal measurement resource.
  • the resource configuration device proposed in this embodiment belongs to the same concept as the resource configuration method proposed in the above-mentioned embodiment.
  • FIG. 13 is a schematic diagram of the hardware structure of a communication node provided by an embodiment.
  • the communication node provided by the present application includes a memory 52, a processor 51, and a memory 52, a processor 51, and a memory 52 and a processor that can run on the processor.
  • a computer program When the processor 51 executes the program, the above-mentioned channel state information reporting method or resource configuration method is implemented.
  • the communication node may also include a memory 52; the processor 51 in the communication node may be one or more, one processor 51 is taken as an example in FIG. 13; the memory 52 is used to store one or more programs; the one or more Each program is executed by the one or more processors 51, so that the one or more processors 51 implement the method for reporting channel state information or the method for configuring resources as described in the embodiments of the present application.
  • the communication node further includes: a communication device 53 , an input device 54 and an output device 55 .
  • the processor 51 , the memory 52 , the communication device 53 , the input device 54 and the output device 55 in the communication node may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 13 .
  • the input device 54 may be used to receive input numerical or character information, and to generate key signal input related to user settings and function control of the communication node.
  • the output device 55 may include a display device such as a display screen.
  • the communication device 53 may include a receiver and a transmitter.
  • the communication device 53 is configured to transmit and receive information according to the control of the processor 51 .
  • the memory 52 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the channel state information reporting method described in the embodiments of the present application (for example, channel state information reporting The signaling sending module 310 and the reporting module 320 in the device).
  • the memory 52 may include a stored program area and a stored data area, wherein the stored program area may store an operating system, an application program required for at least one function; the stored data area may store data created according to use of the communication node, and the like.
  • memory 52 may include high speed random access memory, and may also include nonvolatile memory, such as at least one magnetic disk storage device, flash memory device, or other nonvolatile solid state storage device.
  • memory 52 may include memory located remotely from processor 51, which may be connected to the communication node through a network.
  • networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • An embodiment of the present application further provides a storage medium, where a computer program is stored in the storage medium, and when the computer program is executed by a processor, the method for reporting channel state information or the method for resource configuration described in any one of the embodiments of the present application is implemented.
  • the method for reporting channel state information includes: receiving measurement resource configuration signaling, where the measurement resource configuration signaling is used to indicate M reference signal measurement resources and pairing information of the reference signal measurement resources, M>1; according to the pairing information reporting the channel state information.
  • the resource configuration method includes: determining M reference signal measurement resources and pairing information of the reference signal measurement resources; sending measurement resource configuration signaling, where the measurement resource configuration signaling is used to indicate the M reference signal measurement resources and the reference signal measurement resources Resource pairing information, M>1.
  • the computer storage medium of the embodiments of the present application may adopt any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or any combination of the above.
  • Examples (non-exhaustive list) of computer readable storage media include: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read only memory (Read Only Memory) Memory, ROM), erasable programmable read only memory (Erasable Programmable Read Only Memory, EPROM), flash memory, optical fiber, portable CD-ROM, optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in connection with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a propagated data signal in baseband or as part of a carrier wave, with computer-readable program code embodied thereon. Such propagated data signals may take a variety of forms including, but not limited to, electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any suitable medium, including but not limited to: wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • suitable medium including but not limited to: wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • Computer program code for carrying out the operations of the present application may be written in one or more programming languages, including object-oriented programming languages, such as Java, Smalltalk, C++, and conventional A procedural programming language, such as the "C" language or similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any kind of network, including a Local Area Network (LAN) or Wide Area Network (WAN), or may be connected to an external computer (eg, use an internet service provider to connect via the internet).
  • LAN Local Area Network
  • WAN Wide Area Network
  • user terminal encompasses any suitable type of wireless user equipment, such as a mobile telephone, portable data processing device, portable web browser or vehicle mounted mobile station.
  • the various embodiments of the present application may be implemented in hardware or special purpose circuits, software, logic, or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the application is not so limited.
  • Embodiments of the present application may be implemented by the execution of computer program instructions by a data processor of a mobile device, eg in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages source or object code.
  • ISA Instruction Set Architecture
  • the block diagrams of any logic flow in the figures of the present application may represent program steps, or may represent interconnected logic circuits, modules and functions, or may represent a combination of program steps and logic circuits, modules and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable for the local technical environment and may be implemented using any suitable data storage technology, such as, but not limited to, Read-Only Memory (ROM), Random Access Memory (RAM), optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disk (CD), etc.
  • Computer readable media may include non-transitory storage media.
  • Data processors may be any suitable for the local technical environment Type, such as but not limited to general-purpose computer, special-purpose computer, microprocessor, digital signal processor (Digital Signal Processing, DSP), application specific integrated circuit (Application Specific Integrated Circuit, ASIC), programmable logic device (Field-Programmable Gate Array , FPGA) and processors based on multi-core processor architectures.
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • processors based on multi-core processor architectures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公开一种信道状态信息上报方法、资源配置方法、通信节点及存储介质。该信道状态信息上报方法包括:接收测量资源配置信令,所述测量资源配置信令用于指示M个参考信号测量资源以及参考信号测量资源的配对信息,M>1;根据所述配对信息上报信道状态信息。

Description

信道状态信息上报方法、资源配置方法、通信节点及存储介质 技术领域
本申请涉及无线通信网络领域,例如涉及一种信道状态信息上报方法、资源配置方法、通信节点及存储介质。
背景技术
无线通信系统中,基站侧可以灵活配置参考信号测量资源的个数和测量方式等信息,由终端(User Equipment,UE)对这些参考信号测量资源的信道状态信息(Channel State Information,CSI)进行测量,并从中挑选出信道质量最好的一个,向基站侧上报该参考信号测量资源的CSI。在基站侧有多个传输接收节点(Transmission Receive Point,TRP)的情况下,UE根据每个TRP发射的波束对所有的信道测量参考信号(Channel Measurement Reference signal,CMR)进行测量,得到相应的CSI并上报。终端在测量过程中,忽略了不同TRP发射的波束所对应的CMR之间可能存在干扰,会造成CSI测量不准确,上报的CSI可靠性低,最终影响基站侧的决策和通信质量。
发明内容
本申请提供一种信道状态信息上报方法、资源配置方法、通信节点及存储介质,以提高CSI测量和上报的准确性。
本申请实施例提供一种信道状态信息上报方法,包括:
接收测量资源配置信令,所述测量资源配置信令用于指示M个参考信号测量资源以及参考信号测量资源的配对信息,M>1;根据所述配对信息上报所述信道状态信息。
本申请实施例提供一种资源配置方法,包括:
确定M个参考信号测量资源以及参考信号测量资源的配对信息;发送测量资源配置信令,所述测量资源配置信令用于指示M个参考信号测量资源以及参考信号测量资源的配对信息,M>1。
本申请实施例还提供了一种通信节点,包括:
存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述的信道状态信息上报方法或资源配置方法。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该程序被处理器执行时实现上述的信道状态信息上报方法或资源配置方法。
附图说明
图1为一实施例提供的一种TRP和终端通信的示意图;
图2为一实施例提供的一种信道状态信息上报方法的流程图;
图3为一实施例提供的一种参考信号测量资源相对顺序的示意图;
图4为另一实施例提供的一种参考信号测量资源相对顺序的示意图;
图5为再一实施例提供的一种参考信号测量资源相对顺序的示意图;
图6为又一实施例提供的一种参考信号测量资源相对顺序的示意图;
图7为又一实施例提供的一种参考信号测量资源相对顺序的示意图;
图8为一实施例提供的一种信道测量参考信号资源配置的示意图;
图9为一实施例提供的一种增加第二类非零功率的参考信号测量资源配置的示意图;
图10为一实施例提供的一种资源配置方法的流程图;
图11为一实施例提供的一种信道状态信息上报装置的结构示意图;
图12为一实施例提供的一种资源配置装置的结构示意图;
图13为一实施例提供的一种通信节点的硬件结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。此处所描述的具体实施例仅仅用于解释本申请。为了便于描述,附图中仅示出了与本申请相关的部分。
在新空口(New Radio,NR)版本Release15中,由基站(例如下一代基站(next generation NodeB,gNB)或TRP)控制的时间和频率资源可用于UE上报CSI。CSI可由信道质量指示(Channel Quality Indicator,CQI)、预编码矩阵指示符(Precoding Matrix Indicator,PMI)、信道状态信息参考信号资源指示(Channel State Information-Referece Signal Resource Indicator,CRI)、同步信号/物理广播信道(Synchronization Signal/Physical Broadcast Channel,SS/PBCH)块资源指示(SS/PBCH Block Resource Indicator,SSBRI)、层指示(Layer Indicator,LI)、秩指示(Rank Indicator,RI)等组成。
图1为一实施例提供的一种TRP和终端通信的示意图。基站侧可以灵活配置CMR资源的个数和测量方式等。如图1所示,TRP可通过波束向UE发送一个或多个CMR资源。此外,TRP还可以给UE配置一个或多个CSI上报反馈设置(CSI-ReportConfig)以及一个或多个CSI资源设置(CSI-ResourceConfig),一个CSI上报反馈设置最多可链接到三个CSI资源设置。UE根据这些CMR测量CSI并上报。
基站侧可以为UE配置一个或多个信道状态信息参考信号(Channel State Information-Referece Signal,CSI-RS)资源用于有用信道测量,并配置一个或多个信道状态信息干扰测量(Channel State Information Interference Measurement,CSI-IM)资源用于干扰测量,其中CSI-RS资源和CSI-IM资源是一一对应关系。在CSI-RS资源为一个的情况下,UE根据对该CSI-RS资源的测量上报CSI,包括RI、PMI、CQI等;在CSI-RS资源为多个的情况下,通常多个CSI-RS资源经过预编码,每个CSI-RS资源代表一个预编码矩阵,用于CSI-RS的预编码信息可由基站侧确定,例如通过遍历全空间内的离散傅里叶变换(Discrete Fourier Transform,DFT)波束成形矢量确定,或者根据对探测参考信号(Sounding Reference Signal,SRS)的测量进行推算。UE测量多个CSI-RS资源并从中挑选出信道质量最好的一个CSI-RS资源,上报指示该CSI-RS资源的CRI,并根据对该CSI-RS资源的测量反馈RI、PMI、CQI等CSI。如果基站侧为UE设置一个CSI-RS资源用于有用信道测量、一个或多个CSI-RS资源用于干扰测量,则该有用信道的测量关联于所有的干扰测量资源。在CSI-RS干扰测量资源中,每个CSI-RS天线端口对应于干扰的一层,UE在每个CSI-RS干扰测量资源的多个天线端口上测量到的信道矩阵,即为干扰信道矩阵,UE可通过该矩阵计算干扰信道的协方差阵、零空间等,以用于计算和反馈干扰信道下最优的预编码矩阵和CQI。
在本申请实施例中,提供一种信道状态信息上报方法,UE在测量CSI的过程中,根据不同TRP发射的波束所对应的参考信号测量资源之间的配对关系,考虑了参考信号测量资源之间的干扰,从而提高CSI测量和上报的准确性。
图2为一实施例提供的一种信道状态信息上报方法的流程图,如图2所示,本实施例提供的方法包括步骤110和步骤120。
在步骤110中,接收测量资源配置信令,所述测量资源配置信令用于指示M个参考信号测量资源以及参考信号测量资源的配对信息,M>1。
本实施例中,配对信息用于指示参考信号测量资源之间的配对关系,即指示哪些参考信号测量资源之间存在干扰。例如,配对信息可以是M个参考信号测量资源中存在干扰的资源对的数量、编号和/或在缓存中的排列位置等,UE 据此在测量一个参考信号测量资源的CSI的过程中可以考虑与其配对的另一个参考信号测量资源造成的干扰,提高测量的准确性。此外,配对信息中还可以包含M个参考信号测量资源对应的CSI上报反馈设置或CSI资源设置,以指示UE针对每个参考信号测量资源,在不同的CSI上报反馈设置中上报CSI,或者是将存在干扰的资源对的CSI合并在一个CSI上报反馈设置中上报。
在步骤120中,根据所述配对信息上报所述信道状态信息。
本实施例中,UE在测量一个参考信号测量资源的CSI时可以考虑与其配对的另一个参考信号测量资源造成的干扰,提高测量的准确性。还可以针对每个参考信号测量资源,在不同的CSI上报反馈设置中上报CSI,或者是将存在干扰的资源对的CSI合并在一个CSI上报反馈设置中上报。
在一实施例中,每个参考信号测量资源分别对应于至少一个分组标识。
本实施例中,基站侧可以通过无线资源控制(Radio Resource Control,RRC)信令给每个CMR资源配置至少一个分组标识(GroupID),用于指示该CMR是否用于配对。对于既可以与其他CMR资源配对、也可以不配对的CMR资源可以配置多个不同的分组标识。
一种示例中,每个参考信号测量资源对应于一个分组标识。例如,TRP1发送的波束记为beam1、beam2、beam3、beam4,对应的CMR资源记为CMR1、CMR2、CMR3、CMR4。TRP2发送的波束记为beam5、beam6、beam7、beam8,对应的CMR资源记为CMR5、CMR6、CMR7、CMR8。其中[beam3,beam5],[beam4,beam6]构成两组配对的波束对,beam1、beam2、beam7、beam8没有进行波束配对。这种情况下,CSI上报反馈设置中的CMR资源为{CMR3,CMR5,CMR4,CMR6,CMR1,CMR2,CMR7,CMR8}。
表1为一种参考信号测量资源与分组标识的映射表。如表1所示,CMR3和CMR5可以对应于相同的分组标识,GroupID为0;CMR4和CMR6可以对应于相同的分组标识,GroupID为1;CMR1、CMR2、CMR7、CMR8之间不存在配对关系,对应的分组标识分别为2、3、4、5。[CMR3,CMR5]和[CMR4,CMR6]关联的基站是多传输接收点(Multi Transmission Receiving Point,MTRP),而CMR1、CMR2、CMR7、CMR8关联的基站是单传输接收点(Single Transmission Receiving Point,STRP)。
表1 参考信号测量资源与分组标识的映射表
Figure PCTCN2021140556-appb-000001
Figure PCTCN2021140556-appb-000002
一种示例中,每个参考信号测量资源也可以对应于多个分组标识。例如,一个CMR资源既关联了STRP,又关联了MTRP,则基站侧为该CMR资源配置两个GroupID。例如TRP1的beam3,既可以和TRP2的beam5配对,又可以不配对,则CMR3可对应于两个GroupID。
表2为另一种参考信号测量资源与分组标识的映射表。如表2所示,CMR3可对应于两个GroupID,一个GroupID为0,表示CMR3与CMR5配对,[CMR3,CMR5]关联的是基站是MTRP;另一个GroupID为2,表示CMR3不与其他CMR资源配对,CMR3关联了STRP。
表2 参考信号测量资源与分组标识的映射表
Figure PCTCN2021140556-appb-000003
在一实施例中,具有相同分组标识的参考信号测量资源具有配对关系。
本实施例中,基站侧通过给配对的CMR资源配置相同的分组标识,给不具有配对关系的参考信号测量资源配置一个单独的分组标识,使UE可以准确地获得CMR资源的配对信息,明确存在干扰的CMR资源。
本实施例在为关联STRP的CMR资源以及关联MTRP的CMR资源配置分组标识的过程中,不考虑先后顺序,即分组标识由小到大,可以是先分配给关联MTRP的CMR资源,再分配给关联STRP的CMR资源。
在一实施例中,所述测量资源配置信令包括具有配对关系的资源对的数量N,N≤M/2。
本实施例中,基站侧通过RRC配置一个参数N用于指示具有配对关系的资源对的数量,如果没有需要配对的CMR资源,则N=0。
例如,TRP1发送的波束记为beam1、beam2、beam3、beam4,对应的CMR资源记为CMR1、CMR2、CMR3、CMR4。TRP2发送的波束记为beam5、beam6、beam7、beam8,对应的CMR资源记为CMR5、CMR6、CMR7、CMR8。其中 [beam3,beam5],[beam4,beam6]构成两组配对的波束对,beam1、beam2、beam7、beam8没有进行波束配对。这种情况下,CSI上报反馈设置中的CMR资源为{CMR3,CMR5,CMR4,CMR6,CMR1,CMR2,CMR7,CMR8},N=2。UE根据N=2,可以在需要上报CSI的CMR资源中从前往后,依次取4个CMR资源并且按顺序两两配对。
在一些实施例中,在N=2的情况下,也可以按照从后往前的顺序依次取4个CMR资源并且按顺序两两配对,当然也可以按照其他预定义的顺序以及配对规则,将相应位置的CMR资源配对。
在一实施例中,在设定低频波段,具有配对关系的参考信号测量资源支持关联于单传输接收节点;在设定高频波段,具有配对关系的参考信号测量资源不支持关联于单传输接收节点。
本实施例中,在设定低频波段,具有配对关系的参考信号测量资源支持关联于STRP,即,一个CMR资源既可以与其他CMR资源配对,也可以不配对,例如表2中的CMR3;在设定高频波段,具有配对关系的参考信号测量资源不支持关联于STRP,即,一个CMR资源不能同时关联于MTRP和STRP。
在一实施例中,M个参考信号测量资源中具有配对关系的参考信号测量资源满足预定义的相对顺序关系。
本实施例中,预定义的相对顺序关系包括:具有配对关系的参考信号测量资源是相邻的,且具有配对关系的参考信号测量资源位于参考信号测量资源配置中的前端、后端、中间或者两边;或者,具有配对关系的参考信号测量资源位于未配对的参考信号测量资源的之前、之后、中间或者两侧;相应的,具有配对关系的CMR资源在缓存器中的位置,是处于缓存器的左侧、右侧、中间或者两侧,或者是位于未配对的CMR资源的左侧、右侧、中间或者两侧。
在一实施例中,预定义的相对顺序关系包括:
具有配对关系的参考信号测量资源是相邻的,且位于参考信号测量资源配置中或者M个参考信号测量资源中未配对的参考信号测量资源的前面或者后面或者中间或者两侧。
图3为一实施例提供的一种参考信号测量资源相对顺序的示意图。本实施例中,UE在接收到TRP1和TRP2的波束的情况下,将配对的CMR资源按照从右往左的顺序存储在缓存器的左侧,将未配对CMR资源按照从左往右的顺序存储在缓存器的右侧。如图3所示,阴影区域所示的CMR资源表示已配对的CMR资源。[beam3,beam5],[beam4,beam6]构成两组配对的波束对,beam1、beam2、beam7、beam8没有进行波束配对,则CMR3、CMR5、CMR4、CMR6 从缓存器的中间向左依次存储;CMR1、CMR2、CMR7、CMR8从缓存器的中间向右依次存储。
在图3的基础上,N=2,则UE在CMR资源中从前往后依次取前4个CMR并进行两两配对,得到{[CMR6,CMR4],[CMR5,CMR3]}关联MTRP,其余的CMR资源{CMR1,CMR2,CMR7,CMR8}关联STRP。
图4为另一实施例提供的一种参考信号测量资源相对顺序的示意图。如图4所示,UE在接收到TRP1和TRP2的波束的情况下,也可以将配对的CMR资源按照从左往右的顺序依次存储在缓存器的左侧,将未配对CMR资源按照从左往右的顺序存储在缓存器的右侧。
在一些实施例中,也可以将配对的CMR资源按照顺序存储在缓存器的右侧,将未配对CMR资源按照顺序存储在缓存器的左侧。
图5为再一实施例提供的一种参考信号测量资源相对顺序的示意图。本实施例中,UE可以将配对的CMR资源对称存储在缓存器的两侧,将未配对CMR资源存储在缓存器的中间。如图5所示,阴影区域所示的CMR资源表示已配对的CMR资源。例如,[beam3,beam5],[beam4,beam6]构成两组配对的波束对,beam1、beam2、beam7、beam8没有进行波束配对,则CMR3和CMR5存储在缓存器的第一位和最后一位,CMR4、CMR6存储在缓存器的第二位和倒数第二位;CMR1、CMR2、CMR7、CMR8存储在缓存器的中间。
图6为又一实施例提供的一种参考信号测量资源相对顺序的示意图。如图6所示,UE在接收到TRP1和TRP2的波束的情况下,也可以将配对的CMR资源对称存储在缓存器的中间,将未配对CMR资源存储在缓存器的两侧。
图7为又一实施例提供的一种参考信号测量资源相对顺序的示意图。本实施例中,一个CMR资源既关联了STRP,又关联了MTRP,则可将该CMR资源同时存储在缓冲器的左右两侧。如图7所示,阴影区域所示的CMR资源表示已配对的CMR资源,存储在缓存器的左侧,无阴影区域所述的CMR资源存储在缓存器的右侧。CMR3资源既关联了STRP,又关联了MTRP,这种情况下CSI上报反馈设置中的CMR资源为{CMR6,CMR4,CMR5,CMR3,CMR3,CMR1,CMR2,CMR7,CMR8},CMR3同时存储在缓存器的两侧。在此基础上,UE根据N=2,可在CMR资源中从前往后,依次取前4个CMR资源两两配对,得到{[CMR6,CMR4],[CMR5,CMR3]}关联MTRP,其余的CMR资源{CMR3,CMR1,CMR2,CMR7,CMR8}关联STRP,CMR3既关联了STRP,又关联了MTRP。
在一实施例中,还包括:
步骤130:在设定高频波段,根据参考信号测量资源的数量M和具有配对关系的资源对的数量N确定CRI的比特个数。
本实施例中,对于设定高频波段频率范围2(Frequency Range 2,FR2),每个参考信号测量资源仅关联于STRP或仅关联于MTRP,这种情况下,UE根据两个传输配置指示(Transmission Configuration Indicator,TCI)测量两个TRP发射的M个参考信号测量资源以及资源配置信令,从而确定具有配对关系的资源对的数量N,根据M和N确定CSI,以及CRI的比特个数。
在一实施例中,CSI中包含一个CRI,用于指示M个参考信号测量资源中的一个资源,或者用于指示N个具有配对关系的资源对中的一个资源对;该CRI占用至少
Figure PCTCN2021140556-appb-000004
个比特。
在一实施例中,CSI中包含一个CRI,用于指示M-2N个未配对的参考信号测量资源中的一个资源,或者用于指示N个具有配对关系的资源对中的一个资源对;该CRI占用至少
Figure PCTCN2021140556-appb-000005
个比特。
在一实施例中,CSI中包含两个CRI,第一个CRI用于指示M个参考信号测量资源中的一个资源,第二个CRI用于指示N个具有配对关系的资源对中的一个资源对;两个CRI共占用至少
Figure PCTCN2021140556-appb-000006
个比特。
在一实施例中,CSI中包含两个CRI,第一个CRI用于指示M-2N个未配对的参考信号测量资源中的一个资源,第二个CRI用于指示N个具有配对关系的资源对中的一个资源对;两个CRI共占用至少
Figure PCTCN2021140556-appb-000007
个比特。
在一实施例中,还包括:
步骤140:在设定低频波段,根据参考信号测量资源的数量M确定CRI的比特个数。
本实施例中,对于设定低频波段FR1,可能存在参考信号测量资源既关联于STRP又关联于MTRP,UE根据两个TCI测量两个TRP发射的M个参考信号测量资源,并根据M确定CSI以及CRI的比特个数。
在一实施例中,CSI中包含一个CRI,用于指示M个参考信号测量资源中的一个资源,或者一个资源对;该CRI占用至少
Figure PCTCN2021140556-appb-000008
个比特。
在一实施例中,CSI中包含两个CRI,第一个CRI用于指示M个参考信号测量资源中的一个资源,第二个CRI用于指示M个具有配对关系的资源对中的一个资源对;两个CRI共占用至少
Figure PCTCN2021140556-appb-000009
个比特。
在一实施例中,N的数值可以小于实际具有配对关系的资源对的数量,在这种情况下,部分存在干扰的CMR资源会被UE忽略。例如,在[beam3,beam5], [beam4,beam6]构成两组配对的波束对的情况下,将N配置为1,则在TRP1的CSI上报反馈设置中得到如下CMR资源{CMR1,CMR2,[CMR3,CMR5],CMR4},此时得到TRP2对TRP1的干扰资源为CMR5。由于N=1,TRP2对TRP1的干扰资源CMR6被忽略。同理,在TRP2的CSI上报反馈设置中得到如下CMR资源{[CMR5,CMR3],CMR6,CMR7,CMR8},得到TRP1对TRP2的干扰资源为CMR3,由于N=1,TRP2对TRP1的干扰资源CMR4被忽略。
在一实施例中,具有配对关系的参考信号测量资源对应于相同的CSI上报反馈设置,或者相同的参考信号测量资源配置,或者相同的参考信号测量资源集合。
本实施例中,UE将具有配对关系的参考信号测量资源存储在同一个CSI上报反馈设置中进行上报。
在一实施例中,具有配对关系的参考信号测量资源对应于不同的CSI上报反馈设置,或者不同的参考信号测量资源设置,或者不同的参考信号测量资源集合。
本实施例中,UE将具有配对关系的参考信号测量资源存储在两个CSI上报反馈设置中进行上报。在基站侧,通过将一个TRP的CSI上报反馈设置的CMR资源配置另一个TRP的CMR资源的ID,以显性指示两个CMR资源存在干扰。此外,还可以再配置参数N用于表示CSI上报反馈设置中CMR资源的配对的个数,如果没有配对的CMR资源,则N=0。
例如,TRP1发送的波束为beam1、beam2、beam3、beam4,对应的CMR资源为CMR1、CMR2、CMR3、CMR4;TRP2发送的波束为beam5、beam6、beam7、beam8,对应的CMR资源为CMR5、CMR6、CMR7、CMR8,其中[beam3,beam5],[beam4,beam6]是两组配对的波束对。beam1、beam2、beam7、beam8没有进行波束配对。在TRP1的CSI上报反馈设置中,N=2,并且将CMR5、CMR6分别与TRP1的CMR3、CMR4建立关联关系。
在一实施例中,在每个CSI上报反馈设置中,或者在每个参考信号测量资源设置中,或者在每个参考信号测量资源集合中,满足:前N个参考信号测量资源一一对应且具有配对关系;或者,后N个参考信号测量资源一一对应且具有配对关系。
图8为一实施例提供的一种信道测量参考信号资源配置的示意图。如图8所示,TRP1和TRP2中CMR资源的配对关系,可以在报告设置级别(Report Setting Level)上建立,也可以在资源设置级别(Resource Setting Level)上建立,也可以在资源集合级别(Resource Set Level)上建立。
在报告设置级别上建立,即把report setting2上指示CMR5和CMR6的ID,分别配在report setting1上指示CMR3和CMR4的ID下面,从而建立[CMR3,CMR5]和[CMR4,CMR6]的关联关系。
在资源设置级别上建立,即把resource setting2上指示CMR5和CMR6的ID,分别配在resource setting1上指示CMR3和CMR4的下面,从而建立[CMR3,CMR5]和[CMR4,CMR6]的关联关系。
在资源集合级别上建立,即把resource set2上指示CMR5和CMR6的ID,分别配在resource set1上指示CMR3和CMR4的下面,从而建立[CMR3,CMR5]和[CMR4,CMR6]的关联关系。
在此基础上,在TRP1的CSI上报反馈设置中可以得到如下CMR资源{CMR1,CMR2,[CMR3,CMR5],[CMR4,CMR6]}。从而得到TRP2对TRP1的干扰资源为CMR5和CMR6。
类似地,在TRP2的CSI上报反馈设置中可以得到如下CMR资源{[CMR5,CMR3],[CMR6,CMR4],CMR7,CMR8}。从而得到TRP1对TRP2的干扰资源为CMR3和CMR4。
在一实施例中,具有配对关系的两个参考信号测量资源中,第一个参考信号测量资源用于信道测量,第二个参考信号测量资源是非零功率的第二类信道状态信息参考信号,用于干扰测量。
本实施例中,UE将关联于MTRP的两组CMR分别放在两个CSI上报反馈设置中进行上报。在基站侧,通过在两个CSI上报反馈设置中分别额外增加第二类信道状态信息参考信号的配置,用于隐性指示另一个CMR属于干扰。其中,第一个非零功率的参考信号测量资源是传统的CSI-RS,用于测量UE所处小区内其他用户的干扰;增加的第二类非零功率的参考信号测量资源是第二类信道状态信息参考信号CSI-RS*,用于测量来自另一个TRP的干扰。
图9为一实施例提供的一种增加第二类非零功率的参考信号测量资源配置的示意图。如图9所示,在第一种CSI上报反馈设置中包括CMR资源、CSI-RS资源和CSI-IM资源,分别用于信道测量、小区内的干扰测量以及小区间的干扰测量。在MTRP的场景下,在存在波束配对的情况下,还存在端口(Port)间的干扰测量,即一个TRP的CMR资源会对另一个TRP的信道测量造成干扰。在第二种CSI上报反馈设置中,额外配置CSI-RS*用于测量port间的干扰。假设TRP1发送的波束为beam1、beam2、beam3、beam4,对应的CMR资源为CMR1、CMR2、CMR3、CMR4。TRP2发送的波束为beam5、beam6、beam7、beam8,对应的CMR资源为CMR5、CMR6、CMR7、CMR8。其中[beam3,beam5],[beam4, beam6]是两组配对的波束对。beam1、beam2、beam7、beam8没有进行波束配对。在TRP1的CSI上报反馈设置中,额外配置的CSI-RS*可供UE测量到TRP2中CMR5和CMR6对TRP1中CMR3和CMR4造成的port间干扰。同理,在TRP2的CSI上报反馈设置中,额外配置的CSI-RS*可供UE测量到TRP1中CMR3和CMR4对TRP2中CMR5和CMR6造成的port间干扰。
在一实施例中,M个参考信号测量资源共占用信道状态信息处理单元(CSI Processing Unit,CPU)的个数为pN+qM或pN+q(M-2N),其中p为每个具有配对关系的资源对占用的CPU的个数;q为每个参考信号测量资源占用的CPU的个数。
本实施例中,对于低频波段FR1,存在准共址(Quasi-Colocation,QCL)typeD,即存在既可以进行配对,也可以不配对的参考信号测量资源,参考信号测量资源共占用CPU的个数为pN+qM;对于高频波段FR2,不存在QCL-typeD,即不存在既可以进行配对,也可以不配对的参考信号测量资源,参考信号测量资源共占用CPU的个数为pN+q(M-2N),其中p为每组已配对参考信号测量资源对占用的CPU的个数,q为未配对参考信号测量资源占用的CPU的个数,N为具有配对关系的资源对的数量,M为全部参考信号测量资源数量。
在本申请实施例中,还提供一种资源配置方法,基站侧对参考信号测量资源进行配对,并通过测量资源配置信令向UE指示参考信号测量资源的配对信息,使UE在测量CSI的过程中,根据不同TRP发射的波束所对应的参考信号测量资源之间的配对关系,考虑了参考信号测量资源之间的干扰,从而提高CSI测量和上报的准确性。
图10为一实施例提供的一种资源配置方法的流程图,如图10所示,本实施例提供的方法包括步骤210和步骤220。未在本实施例中详尽描述的技术细节可参见上述任意实施例。
在步骤210中,确定M个参考信号测量资源以及参考信号测量资源的配对信息。
在步骤220中,发送测量资源配置信令,所述测量资源配置信令用于指示M个参考信号测量资源以及参考信号测量资源的配对信息,M>1发送测量资源配置信令。
在一实施例中,每个参考信号测量资源分别对应于至少一个分组标识。
在一实施例中,具有相同分组标识的参考信号测量资源具有配对关系。
在一实施例中,所述测量资源配置信令包括具有配对关系的资源对的数量N, N≤M/2。
在一实施例中,在设定低频波段,具有配对关系的参考信号测量资源支持关联于单传输接收节点;在设定高频波段,具有配对关系的参考信号测量资源不支持关联于单传输接收节点。
在一实施例中,M个参考信号测量资源中具有配对关系的参考信号测量资源满足预定义的相对顺序关系。在一实施例中,预定义的相对顺序关系包括:
具有配对关系的参考信号测量资源排列在M个参考信号测量资源中未配对的参考信号测量资源之前或者之后或者中间或者两侧。
在一实施例中,所述预定义的相对顺序关系包括:
具有配对关系的参考信号测量资源是相邻的,且位于参考信号测量资源配置中或者M个参考信号测量资源中未配对的参考信号测量资源的前面或者后面或者中间或者两侧。
在一实施例中,在设定高频波段,CRI的比特个数根据参考信号测量资源的数量M和具有配对关系的资源对的数量N确定。
在一实施例中,信道状态信息包含一个CRI,用于指示M个参考信号测量资源中的一个资源,或者用于指示N个具有配对关系的资源对中的一个资源对;所述CRI占用至少
Figure PCTCN2021140556-appb-000010
个比特。
在一实施例中,所述信道状态信息包含一个CRI,用于指示M-2N个未配对的参考信号测量资源中的一个资源,或者用于指示N个具有配对关系的资源对中的一个资源对;所述CRI占用至少
Figure PCTCN2021140556-appb-000011
个比特。
在一实施例中,所述信道状态信息包含两个CRI,第一个CRI用于指示M个参考信号测量资源中的一个资源,第二个CRI用于指示N个具有配对关系的资源对中的一个资源对;两个CRI共占用至少
Figure PCTCN2021140556-appb-000012
个比特。
在一实施例中,所述信道状态信息包含两个CRI,第一个CRI用于指示M-2N个未配对的参考信号测量资源中的一个资源,第二个CRI用于指示N个具有配对关系的资源对中的一个资源对;两个CRI共占用至少
Figure PCTCN2021140556-appb-000013
个比特。
在一实施例中,还包括:
步骤240:在设定低频波段,CRI的比特个数根据参考信号测量资源的数量M确定。
在一实施例中,信道状态信息包含一个CRI,用于指示M个参考信号测量资源中的一个资源,或者一个资源对;所述CRI占用至少
Figure PCTCN2021140556-appb-000014
个 比特。
在一实施例中,所述信道状态信息包含两个CRI,第一个CRI用于指示M个参考信号测量资源中的一个资源,第二个CRI用于指示M个具有配对关系的资源对中的一个资源对;两个CRI共占用至少
Figure PCTCN2021140556-appb-000015
个比特。
在一实施例中,具有配对关系的参考信号测量资源对应于相同的CSI上报反馈设置,或者相同的参考信号测量资源配置,或者相同的参考信号测量资源集合。
在一实施例中,具有配对关系的参考信号测量资源对应于不同的CSI上报反馈设置,或者不同的参考信号测量资源设置,或者不同的参考信号测量资源集合。
在一实施例中,在每个CSI上报反馈设置中,或者在每个参考信号测量资源设置中,或者在每个参考信号测量资源集合中,满足:前N个参考信号测量资源一一对应且具有配对关系;或者,后N个参考信号测量资源一一对应且具有配对关系。
在一实施例中,具有配对关系的两个参考信号测量资源中,第一个参考信号测量资源用于信道测量,第二个参考信号测量资源是非零功率的第二类信道状态信息参考信号,用于干扰测量。
在一实施例中,所述M个参考信号测量资源共占用信道状态信息处理单元的个数为pN+qM或pN+q(M-2N),其中p为每个具有配对关系的资源对占用的CPU的个数;q为每个参考信号测量资源占用的CPU的个数。
本申请实施例还提供一种信道状态信息上报装置。图11为一实施例提供的一种信道状态信息上报装置的结构示意图。如图11所示,所述信道状态信息上报装置包括:信令接受模块310和上报模块320。
信令接受模块310,设置为接收测量资源配置信令,所述测量资源配置信令用于指示M个参考信号测量资源以及参考信号测量资源的配对信息,M>1;上报模块320,设置为根据所述配对信息上报所述信道状态信息。
本实施例的信道状态信息上报装置,测量CSI的过程中,根据不同TRP发射的波束所对应的参考信号测量资源之间的配对关系,考虑了参考信号测量资源之间的干扰,从而提高CSI测量和上报的准确性。
在一实施例中,每个参考信号测量资源分别对应于至少一个分组标识。
在一实施例中,具有相同分组标识的参考信号测量资源具有配对关系。
在一实施例中,所述测量资源配置信令包括具有配对关系的资源对的数量N,N≤M/2。
在一实施例中,在设定低频波段,一个参考信号测量资源存在于一个或多个资源对;在设定高频波段,一个参考信号测量资源不能存在于多个资源对。
在一实施例中,M个参考信号测量资源中具有配对关系的参考信号测量资源满足预定义的相对顺序关系。
在一实施例中,预定义的相对顺序关系包括:
具有配对关系的参考信号测量资源排列在M个参考信号测量资源中未配对的参考信号测量资源之前或者之后或者中间或者两侧。
在一实施例中,所述预定义的相对顺序关系包括:
具有配对关系的参考信号测量资源是相邻的,且位于参考信号测量资源配置中或者M个参考信号测量资源中未配对的参考信号测量资源的前面或者后面或者中间或者两侧。
在一实施例中,还包括:
第一比特个数确定模块,设置为在设定高频波段,根据参考信号测量资源的数量M和具有配对关系的资源对的数量N确定CRI的比特个数。
在一实施例中,信道状态信息包含一个CRI,用于指示M个参考信号测量资源中的一个资源,或者用于指示N个具有配对关系的资源对中的一个资源对;所述CRI占用至少
Figure PCTCN2021140556-appb-000016
个比特。
在一实施例中,信道状态信息包含一个CRI,用于指示M-2N个未配对的参考信号测量资源中的一个资源,或者用于指示N个具有配对关系的资源对中的一个资源对;所述CRI占用至少
Figure PCTCN2021140556-appb-000017
个比特。
在一实施例中,信道状态信息包含两个CRI,第一个CRI用于指示M个参考信号测量资源中的一个资源,第二个CRI用于指示N个具有配对关系的资源对中的一个资源对;两个CRI共占用至少
Figure PCTCN2021140556-appb-000018
个比特。
在一实施例中,所述信道状态信息包含两个CRI,第一个CRI用于指示M-2N个未配对的参考信号测量资源中的一个资源,第二个CRI用于指示N个具有配对关系的资源对中的一个资源对;两个CRI共占用至少
Figure PCTCN2021140556-appb-000019
个比特。
在一实施例中,还包括:
第二比特个数确定模块,设置为在设定低频波段,根据参考信号测量资源的数量M确定CRI的比特个数。
在一实施例中,所述信道状态信息包含一个CRI,用于指示M个参考信号测量资源中的一个资源,或者一个资源对;所述CRI占用至少
Figure PCTCN2021140556-appb-000020
个比特。
在一实施例中,所述信道状态信息包含两个CRI,第一个CRI用于指示M个参考信号测量资源中的一个资源,第二个CRI用于指示M个具有配对关系的资源对中的一个资源对;两个CRI共占用至少
Figure PCTCN2021140556-appb-000021
个比特。
在一实施例中,具有配对关系的参考信号测量资源对应于相同的CSI上报反馈设置,或者相同的参考信号测量资源配置,或者相同的参考信号测量资源集合。在一实施例中,具有配对关系的参考信号测量资源对应于不同的CSI上报反馈设置,或者不同的参考信号测量资源设置,或者不同的参考信号测量资源集合。
在一实施例中,在每个CSI上报反馈设置中,或者在每个参考信号测量资源设置中,或者在每个参考信号测量资源集合中,满足:前N个参考信号测量资源一一对应且具有配对关系;或者,后N个参考信号测量资源一一对应且具有配对关系。
在一实施例中,具有配对关系的两个参考信号测量资源中,第一个参考信号测量资源用于信道测量,第二个参考信号测量资源是非零功率的第二类信道状态信息参考信号,用于干扰测量。
在一实施例中,M个参考信号测量资源共占用信道状态信息处理单元的个数为pN+qM或pN+q(M-2N),其中p为每个具有配对关系的资源对占用的CPU的个数;q为每个参考信号测量资源占用的CPU的个数。
本实施例提出的信道状态信息上报装置与上述实施例提出的信道状态信息上报方法属于同一构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例,并且本实施例具备与执行信道状态信息上报方法相同的效果。
本申请实施例还提供一种资源配置装置。图12为一实施例提供的一种资源配置装置的结构示意图。如图12所示,所述装置包括:配对模块410和信令发送模块420。
配对模块410,设置为确定M个参考信号测量资源以及参考信号测量资源的配对信息;信令发送模块420,设置为发送测量资源配置信令,所述测量资源配置信令用于指示M个参考信号测量资源以及参考信号测量资源的配对信息,M>1。
本实施例的信道状态信息上报装置,通过对参考信号测量资源进行配对, 并通过测量资源配置信令指示参考信号测量资源的配对信息,使UE在测量CSI的过程中,根据不同TRP发射的波束所对应的参考信号测量资源之间的配对关系,考虑了参考信号测量资源之间的干扰,从而提高CSI测量和上报的准确性。
在一实施例中,每个参考信号测量资源分别对应于至少一个分组标识。
在一实施例中,具有相同分组标识的参考信号测量资源具有配对关系。
在一实施例中,所述测量资源配置信令包括具有配对关系的资源对的数量N,N≤M/2。
在一实施例中,在设定低频波段,一个参考信号测量资源存在于一个或多个资源对;在设定高频波段,一个参考信号测量资源不能存在于多个资源对。
在一实施例中,M个参考信号测量资源中具有配对关系的参考信号测量资源满足预定义的相对顺序关系。
在一实施例中,预定义的相对顺序关系包括:
具有配对关系的参考信号测量资源排列在M个参考信号测量资源中未配对的参考信号测量资源之前或者之后或者中间或者两侧。
在一实施例中,预定义的相对顺序关系包括:
具有配对关系的参考信号测量资源是相邻的,且位于参考信号测量资源配置中或者M个参考信号测量资源中未配对的参考信号测量资源的前面或者后面或者中间或者两侧。
在一实施例中,在设定高频波段,CRI的比特个数根据参考信号测量资源的数量M和具有配对关系的资源对的数量N确定。
在一实施例中,信道状态信息包含一个CRI,用于指示M个参考信号测量资源中的一个资源,或者用于指示N个具有配对关系的资源对中的一个资源对;所述CRI占用至少
Figure PCTCN2021140556-appb-000022
个比特。
在一实施例中,所述信道状态信息包含一个CRI,用于指示M-2N个未配对的参考信号测量资源中的一个资源,或者用于指示N个具有配对关系的资源对中的一个资源对;所述CRI占用至少
Figure PCTCN2021140556-appb-000023
个比特。
在一实施例中,信道状态信息包含两个CRI,第一个CRI用于指示M个参考信号测量资源中的一个资源,第二个CRI用于指示N个具有配对关系的资源对中的一个资源对;两个CRI共占用至少
Figure PCTCN2021140556-appb-000024
个比特。
在一实施例中,信道状态信息包含两个CRI,第一个CRI用于指示M-2N个未配对的参考信号测量资源中的一个资源,第二个CRI用于指示N个具有配对关系的资源对中的一个资源对;两个CRI共占用至少
Figure PCTCN2021140556-appb-000025
个比 特。
在一实施例中,在设定低频波段,CRI的比特个数根据参考信号测量资源的数量M确定。
在一实施例中,信道状态信息包含一个CRI,用于指示M个参考信号测量资源中的一个资源,或者一个资源对;所述CRI占用至少
Figure PCTCN2021140556-appb-000026
个比特。
在一实施例中,所述信道状态信息包含两个CRI,第一个CRI用于指示M个参考信号测量资源中的一个资源,第二个CRI用于指示M个具有配对关系的资源对中的一个资源对;两个CRI共占用至少
Figure PCTCN2021140556-appb-000027
个比特。
在一实施例中,具有配对关系的参考信号测量资源对应于相同的CSI上报反馈设置,或者相同的参考信号测量资源配置,或者相同的参考信号测量资源集合。在一实施例中,具有配对关系的参考信号测量资源对应于不同的CSI上报反馈设置,或者不同的参考信号测量资源设置,或者不同的参考信号测量资源集合。
在一实施例中,在每个CSI上报反馈设置中,或者在每个参考信号测量资源设置中,或者在每个参考信号测量资源集合中,满足:前N个参考信号测量资源一一对应且具有配对关系;或者,后N个参考信号测量资源一一对应且具有配对关系。
在一实施例中,具有配对关系的两个参考信号测量资源中,第一个参考信号测量资源用于信道测量,第二个参考信号测量资源是非零功率的第二类信道状态信息参考信号,用于干扰测量。
在一实施例中,所述M个参考信号测量资源共占用信道状态信息处理单元的个数为pN+qM或pN+q(M-2N),其中p为每个具有配对关系的资源对占用的CPU的个数;q为每个参考信号测量资源占用的CPU的个数。
本实施例提出的资源配置装置与上述实施例提出的资源配置方法属于同一构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例,并且本实施例具备与执行资源配置方法相同的效果。
本申请实施例还提供了一种通信节点,通信节点可以为终端,也可以为基站侧。图13为一实施例提供的一种通信节点的硬件结构示意图,如图13所示,本申请提供的通信节点,包括存储器52、处理器51以及存储在存储器上并可在处理器上运行的计算机程序,处理器51执行所述程序时实现上述的信道状态信息上报方法或资源配置方法。
通信节点还可以包括存储器52;该通信节点中的处理器51可以是一个或多个,图13中以一个处理器51为例;存储器52用于存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器51执行,使得所述一个或多个处理器51实现如本申请实施例中所述的信道状态信息上报方法或资源配置方法。
通信节点还包括:通信装置53、输入装置54和输出装置55。
通信节点中的处理器51、存储器52、通信装置53、输入装置54和输出装置55可以通过总线或其他方式连接,图13中以通过总线连接为例。
输入装置54可用于接收输入的数字或字符信息,以及产生与通信节点的用户设置以及功能控制有关的按键信号输入。输出装置55可包括显示屏等显示设备。
通信装置53可以包括接收器和发送器。通信装置53设置为根据处理器51的控制进行信息收发通信。
存储器52作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例所述信道状态信息上报方法对应的程序指令/模块(例如,信道状态信息上报装置中的信令发送模块310和上报模块320)。存储器52可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据通信节点的使用所创建的数据等。此外,存储器52可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器52可包括相对于处理器51远程设置的存储器,这些远程存储器可以通过网络连接至通信节点。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中任一所述的信道状态信息上报方法或资源配置方法。
该信道状态信息上报方法,包括:接收测量资源配置信令,所述测量资源配置信令用于指示M个参考信号测量资源以及参考信号测量资源的配对信息,M>1;根据所述配对信息上报所述信道状态信息。
该资源配置方法,包括:确定M个参考信号测量资源以及参考信号测量资源的配对信息;发送测量资源配置信令,所述测量资源配置信令用于指示M个参考信号测量资源以及参考信号测量资源的配对信息,M>1。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质 的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是,但不限于:电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、可擦式可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、闪存、光纤、便携式CD-ROM、光存储器件、磁存储器件、或者上述的任意合适的组合。计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于:电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、无线电频率(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络,包括局域网(Local Area Network,LAN)或广域网(Wide Area Network,WAN),连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
以上所述,仅为本申请的示例性实施例而已。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申 请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (24)

  1. 一种信道状态信息上报方法,包括:
    接收测量资源配置信令,所述测量资源配置信令用于指示M个参考信号测量资源以及参考信号测量资源的配对信息,M>1;
    根据所述配对信息上报信道状态信息。
  2. 根据权利要求1所述的方法,其中,每个参考信号测量资源对应于至少一个分组标识。
  3. 根据权利要求2所述的方法,其中,具有相同分组标识的参考信号测量资源具有配对关系。
  4. 根据权利要求1所述的方法,其中,所述测量资源配置信令包括具有配对关系的资源对的数量N,N≤M/2。
  5. 根据权利要求1所述的方法,其中,在设定低频波段,具有配对关系的参考信号测量资源支持关联于单传输接收节点;
    在设定高频波段,具有配对关系的参考信号测量资源不支持关联于单传输接收节点。
  6. 根据权利要求1所述的方法,其中,所述M个参考信号测量资源中具有配对关系的参考信号测量资源满足预定义的相对顺序关系。
  7. 根据权利要求6所述的方法,其中,所述预定义的相对顺序关系包括:
    具有配对关系的参考信号测量资源排列在所述M个参考信号测量资源中未配对的参考信号测量资源之前或者之后或者中间或者两侧。
  8. 根据权利要求6所述的方法,其中,所述预定义的相对顺序关系包括:
    具有配对关系的参考信号测量资源是相邻的,且位于参考信号测量资源配置中或者所述M个参考信号测量资源中未配对的参考信号测量资源的前面或者后面或者中间或者两侧。
  9. 根据权利要求1或6所述的方法,还包括:
    在设定高频波段,根据参考信号测量资源的数量M和具有配对关系的资源对的数量N确定信道状态信息参考信号资源指示CRI的比特个数,N≤M/2。
  10. 根据权利要求9所述的方法,其中,所述信道状态信息包含一个CRI,用于指示所述M个参考信号测量资源中的一个资源,或者用于指示N个具有配对关系的资源对中的一个资源对;
    所述CRI占用至少
    Figure PCTCN2021140556-appb-100001
    个比特。
  11. 根据权利要求9所述的方法,其中,所述信道状态信息包含一个CRI,用于指示M-2N个未配对的参考信号测量资源中的一个资源,或者用于指示N个具有配对关系的资源对中的一个资源对;
    所述CRI占用至少
    Figure PCTCN2021140556-appb-100002
    个比特。
  12. 根据权利要求9所述的方法,其中,所述信道状态信息包含两个CRI,第一个CRI用于指示所述M个参考信号测量资源中的一个资源,第二个CRI用于指示N个具有配对关系的资源对中的一个资源对;
    两个CRI共占用至少
    Figure PCTCN2021140556-appb-100003
    个比特。
  13. 根据权利要求9所述的方法,其中,所述信道状态信息包含两个CRI,第一个CRI用于指示M-2N个未配对的参考信号测量资源中的一个资源,第二个CRI用于指示N个具有配对关系的资源对中的一个资源对;
    两个CRI共占用至少
    Figure PCTCN2021140556-appb-100004
    个比特。
  14. 根据权利要求1或6所述的方法,还包括:
    在设定低频波段,根据参考信号测量资源的数量M确定CRI的比特个数。
  15. 根据权利要求14所述的方法,其中,所述信道状态信息包含一个CRI,用于指示所述M个参考信号测量资源中的一个资源,或者一个资源对;
    所述CRI占用至少
    Figure PCTCN2021140556-appb-100005
    个比特。
  16. 根据权利要求14所述的方法,其中,所述信道状态信息包含两个CRI,第一个CRI用于指示M个参考信号测量资源中的一个资源,第二个CRI用于指示M个具有配对关系的资源对中的一个资源对;
    两个CRI共占用至少
    Figure PCTCN2021140556-appb-100006
    个比特。
  17. 根据权利要求1所述的方法,其中,具有配对关系的参考信号测量资源对应于相同的信道状态信息上报反馈设置,或者相同的参考信号测量资源配置,或者相同的参考信号测量资源集合。
  18. 根据权利要求1所述的方法,其中,具有配对关系的参考信号测量资源对应于不同的信道状态信息上报反馈设置,或者不同的参考信号测量资源设置,或者不同的参考信号测量资源集合。
  19. 根据权利要求18所述的方法,其中,在每个信道状态信息上报反馈设置中,或者在每个参考信号测量资源设置中,或者在每个参考信号测量资源集合中,满足:
    前N个参考信号测量资源一一对应且具有配对关系;或者,
    后N个参考信号测量资源一一对应且具有配对关系;
    其中,N≤M/2。
  20. 根据权利要求1所述的方法,其中,具有配对关系的两个参考信号测量资源中,第一个参考信号测量资源用于信道测量,第二个参考信号测量资源是非零功率的第二类信道状态信息参考信号,用于干扰测量。
  21. 根据权利要求4所述的方法,其中,所述M个参考信号测量资源共占用信道状态信息处理单元CPU的个数为pN+qM或pN+q(M-2N),其中,p为每个具有配对关系的资源对占用的CPU的个数;q为每个参考信号测量资源占用的CPU的个数。
  22. 一种资源配置方法,包括:
    确定M个参考信号测量资源以及参考信号测量资源的配对信息;
    发送测量资源配置信令,所述测量资源配置信令用于指示所述M个参考信号测量资源以及所述参考信号测量资源的配对信息,M>1。
  23. 一种通信节点,包括存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现如权利要求1-21中任一项所述的信道状态信息上报方法或如权利要求22所述的资源配置方法。
  24. 一种计算机可读存储介质,存储有计算机程序,其中,所述程序被处理器执行时实现如权利要求1-21中任一项所述的信道状态信息上报方法或如权利要求22中所述的资源配置方法。
PCT/CN2021/140556 2020-12-31 2021-12-22 信道状态信息上报方法、资源配置方法、通信节点及存储介质 WO2022143350A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011627028.XA CN112822714A (zh) 2020-12-31 2020-12-31 信道状态信息上报、资源配置方法、通信节点及存储介质
CN202011627028.X 2020-12-31

Publications (1)

Publication Number Publication Date
WO2022143350A1 true WO2022143350A1 (zh) 2022-07-07

Family

ID=75854868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140556 WO2022143350A1 (zh) 2020-12-31 2021-12-22 信道状态信息上报方法、资源配置方法、通信节点及存储介质

Country Status (2)

Country Link
CN (1) CN112822714A (zh)
WO (1) WO2022143350A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112822714A (zh) * 2020-12-31 2021-05-18 中兴通讯股份有限公司 信道状态信息上报、资源配置方法、通信节点及存储介质
CN115603785A (zh) * 2021-07-07 2023-01-13 中兴通讯股份有限公司(Cn) 数据传输方法、设备和存储介质
CN117693903A (zh) * 2021-08-06 2024-03-12 苹果公司 用于单下行链路控制信息(dci)多传输和接收点(trp)操作的信道状态信息(csi)增强
CN115733532A (zh) * 2021-08-31 2023-03-03 华为技术有限公司 一种通信方法及装置
WO2023173384A1 (zh) * 2022-03-17 2023-09-21 北京小米移动软件有限公司 信息配置方法、装置、设备及存储介质
CN114830716A (zh) * 2022-03-18 2022-07-29 北京小米移动软件有限公司 上报方法、装置、设备及存储介质
WO2024016285A1 (zh) * 2022-07-21 2024-01-25 北京小米移动软件有限公司 信道测量资源的配置方法、装置、设备及存储介质
CN117675142A (zh) * 2022-08-26 2024-03-08 中兴通讯股份有限公司 一种信道状态信息处理方法、装置、通信节点及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104081813A (zh) * 2012-01-30 2014-10-01 华为技术有限公司 无线通信测量和csi反馈的系统和方法
CN105471552A (zh) * 2014-06-13 2016-04-06 北京三星通信技术研究有限公司 一种数据传输方法和设备
US20190215044A1 (en) * 2015-10-23 2019-07-11 Samsung Electronics Co., Ltd. Method and device for transmitting and receiving channel state information in mobile communication system
EP3738337A1 (en) * 2018-01-11 2020-11-18 Sharp Kabushiki Kaisha User equipments, base stations and methods
CN112822714A (zh) * 2020-12-31 2021-05-18 中兴通讯股份有限公司 信道状态信息上报、资源配置方法、通信节点及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104081813A (zh) * 2012-01-30 2014-10-01 华为技术有限公司 无线通信测量和csi反馈的系统和方法
CN105471552A (zh) * 2014-06-13 2016-04-06 北京三星通信技术研究有限公司 一种数据传输方法和设备
US20190215044A1 (en) * 2015-10-23 2019-07-11 Samsung Electronics Co., Ltd. Method and device for transmitting and receiving channel state information in mobile communication system
EP3738337A1 (en) * 2018-01-11 2020-11-18 Sharp Kabushiki Kaisha User equipments, base stations and methods
CN112822714A (zh) * 2020-12-31 2021-05-18 中兴通讯股份有限公司 信道状态信息上报、资源配置方法、通信节点及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Summary of remaining issues of beam measurement, reporting and indication", 3GPP DRAFT; R1-1800100, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Vancouver, Canada; 20180122 - 20180126, 13 January 2018 (2018-01-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 13, XP051384596 *
ZTE, SANECHIPS: "Remaining details on CSI measurement", 3GPP DRAFT; R1-1800108 REMAINING DETAILS ON CSI MEASUREMENT, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Vancouver, Canada; 20180122 - 20180126, 13 January 2018 (2018-01-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051384603 *

Also Published As

Publication number Publication date
CN112822714A (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
WO2022143350A1 (zh) 信道状态信息上报方法、资源配置方法、通信节点及存储介质
US11283503B2 (en) Communication method and communications apparatus
US11139945B2 (en) Communication method, terminal, and network device for determining a beam for an uplink channel
US9730099B2 (en) Method, device, and system for measuring channel state information
US20160337881A1 (en) Beam selection method and apparatus and communication system
US20220060266A1 (en) Channel measurement method and apparatus
WO2019137172A1 (zh) 确定波束、信号质量测量方法及通信装置
US20230327732A1 (en) Interference measurement method, user equipment and network side device
TWI757390B (zh) 波束選擇方法、裝置及系統
US11564213B2 (en) Communication method and communications apparatus
WO2021008492A1 (zh) 一种切换方法以及通信装置
US11705941B2 (en) Quasi-co-location indication method and apparatus
WO2018202137A1 (zh) 一种通信方法及装置
WO2022048497A1 (zh) 信道状态信息发送方法、信道状态信息接收方法、信令信息传输方法、节点和介质
WO2022077387A1 (zh) 一种通信方法及通信装置
WO2017193884A1 (zh) 参考信号发送方法、检测方法、基站和移动台
WO2022012393A1 (zh) 一种csi测量上报方法、终端及网络侧设备
WO2023133707A1 (zh) 信息上报、信息接收方法、装置、设备及存储介质
US20220263543A1 (en) Method and apparatus for feeding back layer information, method and apparatus for receiving layer information, communication node and medium
WO2022237389A1 (zh) 信道状态信息传输方法、装置和存储介质
WO2024027473A1 (zh) 信息上报方法、装置、通信节点及存储介质
RU2779433C2 (ru) Способ связи и устройство связи
WO2024016285A1 (zh) 信道测量资源的配置方法、装置、设备及存储介质
WO2023279880A1 (zh) 数据传输方法、设备和存储介质
WO2024007112A1 (zh) 通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 13/11/2023)