WO2022048497A1 - 信道状态信息发送方法、信道状态信息接收方法、信令信息传输方法、节点和介质 - Google Patents

信道状态信息发送方法、信道状态信息接收方法、信令信息传输方法、节点和介质 Download PDF

Info

Publication number
WO2022048497A1
WO2022048497A1 PCT/CN2021/114918 CN2021114918W WO2022048497A1 WO 2022048497 A1 WO2022048497 A1 WO 2022048497A1 CN 2021114918 W CN2021114918 W CN 2021114918W WO 2022048497 A1 WO2022048497 A1 WO 2022048497A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
measurement reference
downlink measurement
resources
channel state
Prior art date
Application number
PCT/CN2021/114918
Other languages
English (en)
French (fr)
Inventor
张淑娟
陈艺戬
鲁照华
何震
郁光辉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US18/024,598 priority Critical patent/US20240120978A1/en
Priority to KR1020237011442A priority patent/KR20230058714A/ko
Priority to EP21863562.1A priority patent/EP4210249A1/en
Publication of WO2022048497A1 publication Critical patent/WO2022048497A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • the present application relates to the field of communication technologies, for example, to a method for sending channel state information, a method for receiving channel state information, a method for transmitting signaling information, a node and a medium.
  • the channel quality estimation in the MIMO scenario is mainly based on the uplink reference signal sent by the terminal, and the base station obtains channel information based on the uplink reference signal, such as a channel quality indicator (Channel Quality Indicator, CQI), to complete the channel quality estimation.
  • CQI Channel Quality Indicator
  • the present application provides a method for transmitting channel state information, a method for receiving channel state information, a method for transmitting signaling information, a node and a medium, and a method for channel measurement using multiple downlink measurement reference signal resources by the first communication node, effectively solving distributed MIMO Among them, the technical problem of inconsistent uplink and downlink interference when estimating channel state information based only on the uplink measurement reference signal improves the accuracy of channel state estimation in distributed transmission.
  • the present application provides a method for sending channel state information, which is applied to a first communication node, including:
  • M is a positive integer greater than 1
  • determine a set of channel state information according to the M downlink measurement reference signal resources and send the set of channel state information.
  • the present application also provides a signaling information transmission method, including:
  • the signaling information includes a Q set of configuration values of the same type of parameter corresponding to a downlink measurement reference signal resource, where Q is a positive integer greater than or equal to 1.
  • Q sets of configuration values of the same type of parameters are configured for a downlink measurement reference signal resource, which improves the flexibility of resource configuration and meets the requirement of flexible configuration of multi-user (MU) transmission under distributed MIMO.
  • the present application also provides a method for receiving channel state information, which is applied to a second communication node, including:
  • Send M downlink measurement reference signal resources where M is a positive integer greater than 1; receive a set of channel state information sent by the first communication node; wherein, the set of channel state information is the first communication node according to the M determined by downlink measurement reference signal resources.
  • the present application also provides a first communication node, including:
  • One or more processors wherein the one or more processors, when executed, implement the method as described in the first aspect or the second aspect of the present application.
  • the present application also provides a second communication node, including:
  • One or more processors wherein the one or more processors, when executed, implement the method as described in the second or third aspect of the present application.
  • the present application further provides a storage medium, where a computer program is stored in the storage medium, and when the computer program is executed by a processor, any one of the methods described in the embodiments of the present application is implemented.
  • FIG. 1 is a schematic flowchart of a method for sending channel state information provided by the present application
  • FIG. 2 is a schematic flowchart of a method for receiving channel state information provided by the present application
  • FIG. 3 is a schematic flowchart of a signaling information transmission method provided by the present application.
  • 3a is a schematic diagram of a scenario of channel state information transmission provided by the application.
  • 3b is a schematic diagram of another scenario of channel state information transmission provided by the application.
  • FIG. 4 is a schematic structural diagram of a channel state information sending apparatus provided by the present application.
  • FIG. 5 is a schematic structural diagram of a channel state information receiving apparatus provided by the present application.
  • FIG. 6 is a schematic structural diagram of a signaling information transmission device provided by the present application.
  • FIG. 7 is a schematic structural diagram of a first communication node provided by the present application.
  • FIG. 8 is a schematic structural diagram of a second communication node provided by the present application.
  • FIG. 1 is a schematic flowchart of a method for sending channel state information provided by the present application.
  • the first communication node uses multiple downlink measurement reference signal resources to perform channel measurement, thereby effectively solving the problem of uplink and downlink interference in distributed MIMO when channel state information estimation is performed only by the uplink measurement reference signal.
  • Inconsistent technical problems improve the accuracy of channel state estimation in distributed transmission; and consider how multiple first communication nodes share downlink measurement reference signals, and consider the power allocation and scheduling characteristics of distributed transmission, so that the channel state The measurement is more accurate, the measurement reference signal load is smaller, and the MU scheduling strategy for distributed transmission is flexibly adapted.
  • the method may be performed by a channel state information sending device, which may be implemented by software and/or hardware, and integrated on a first communication node, where the first communication node includes but is not limited to: a user terminal (User Equipment, UE).
  • UE User Equipment
  • a method for sending channel state information includes the following steps:
  • Each of the M downlink measurement reference signal resources may be a measurement reference signal resource sent by a sending node or a group of sending nodes of the second communication node, where the second communication node includes one or more sending nodes .
  • One downlink measurement reference signal resource includes one or more downlink measurement reference signal ports.
  • the content of the downlink measurement reference signal is not limited here.
  • the downlink measurement reference signal resources include but are not limited to channel state information reference signal (Channel State Information Reference Signal, CSI-RS) resources and/or synchronization signal blocks (Synchronization signal blocks) Signal Block, SSB) resource.
  • CSI-RS Channel State Information Reference Signal
  • SSB synchronization signal blocks
  • a set of channel state information includes at least one of the following: Reference Signal Receiving Power (RSRP), Signal to Interference plus Noise Ratio (SINR), Reference Signal Receiving Quality (Reference Signal Receiving Quality, RSRQ), CQI, Rank Indicator (RI), and Precoding Matrix Indicator (PMI).
  • RSRP Reference Signal Receiving Power
  • SINR Signal to Interference plus Noise Ratio
  • RSRQ Reference Signal Receiving Quality
  • CQI CQI
  • Rank Indicator Rank Indicator
  • PMI Precoding Matrix Indicator
  • one sending node of the second communication node may correspond to one downlink measurement reference signal resource; or a group of sending nodes of the second communication node may correspond to one CSI-RS resource.
  • the present application can determine the transmission mode of the Physical Downlink Shared Channel (PDSCH) based on the downlink measurement reference signal, and then determine a set of channel state information according to the transmission mode.
  • PDSCH Physical Downlink Shared Channel
  • the present application can also determine the PDSCH transmission module according to downlink measurement reference signal resources and M pieces of power information, and then obtain the set of channel state information.
  • This embodiment does not limit the determination strategy, and those skilled in the art can determine it according to the actual situation.
  • this step may send a set of channel state information.
  • a set of channel state information is sent to the second communication node or a central processing unit (Central Processing Unit, CPU).
  • CPU Central Processing Unit
  • the present application provides a method for transmitting channel state information, which effectively determines a set of channel state information by using M downlink measurement reference signal resources, and effectively solves the problem of up and down when estimating channel state information estimation only based on uplink measurement reference signals in distributed MIMO.
  • This improves the accuracy of channel state estimation in distributed transmission, considers how multiple first communication nodes share downlink measurement reference signals, and considers the power allocation and scheduling characteristics of distributed transmission.
  • the channel state measurement is more accurate, the measurement reference signal load is smaller, and the MU scheduling strategy for distributed transmission is flexibly adapted.
  • a set of channel state information is determined according to the M downlink measurement reference signal resources, including:
  • the PDSCH transmission mode is obtained according to the M downlink measurement reference signal resources, the M precoding matrices, and an RI value; the set of channel state information is determined according to the PDSCH transmission mode.
  • the M precoding matrices may be precoding matrices corresponding to the M downlink measurement reference signal resources.
  • the present application can first determine the PDSCH transmission mode based on M downlink measurement reference signal resources, M precoding matrices, and an RI value, and then determine a set of channel state information based on the determined transmission mode, which is not limited to the transmission based on PDSCH. Mode is the means by which a set of channel state information is determined.
  • the transmission mode of PDSCH can represent the mapping relationship between layer data and port numbers.
  • the transmission mode of the PDSCH satisfies one of the following formulas:
  • the channel state information is further obtained according to M pieces of power information, and each of the M pieces of power information corresponds to one downlink measurement reference signal resource among the M pieces of downlink measurement reference signal resources.
  • the power information can be the power difference between the EPRE of the PDSCH and the EPRE of a downlink measurement reference signal resource; or, the power difference between a downlink measurement reference signal resource and the synchronization signal; or, the EPRE corresponding to some ports of the PDSCH and a The power difference between the EPREs of the downlink measurement reference signal resource.
  • the one downlink measurement reference signal resource is one downlink measurement reference signal resource among the M downlink measurement reference signal resources.
  • determining a set of channel state information it may also be determined according to M pieces of power information and M pieces of downlink measurement reference signal resources.
  • a set of channel state information is determined according to the M downlink measurement reference signal resources, including:
  • a set of channel state information is obtained according to the M pieces of downlink measurement reference signal resources and the M pieces of power information; wherein, each power information in the M pieces of power information corresponds to one downlink among the M pieces of downlink measurement reference signal resources Measurement reference signal resources.
  • a set of channel state information is obtained according to the M downlink measurement reference signal resources and the M pieces of power information, including:
  • EPRE Energy
  • each of the M pieces of power information includes at least one of the following:
  • the power difference between the EPRE of the PDSCH and the EPRE of a downlink measurement reference signal resource; the power difference between a downlink measurement reference signal resource and the synchronization signal; the difference between the EPRE corresponding to some ports of the PDSCH and the EPRE of a downlink measurement reference signal resource The power difference between the two, wherein some ports of the PDSCH correspond to the antenna ports of the one downlink measurement reference signal resource; wherein, the one downlink measurement reference signal resource is one of the M downlink measurement reference signal resources.
  • Measurement reference signal resources, each of the M pieces of power information respectively corresponds to one downlink measurement reference signal resource in the M pieces of downlink measurement reference signal resources, and the M pieces of power information are included in the received first signal. order information or determined according to predetermined rules.
  • the M precoding matrices satisfy one of the following characteristics:
  • each column of each of the M precoding matrices is 1; each of the M precoding matrices is an identity matrix; the precoding matrix is determined by the determined by the first communication node; each precoding matrix in the M precoding matrices is obtained according to one downlink measurement reference signal resource in the M downlink measurement reference signal resources; each precoding matrix in the M precoding matrices The precoding matrices are obtained according to the M downlink measurement reference signal resources.
  • the method further includes:
  • Receive second signaling information where the second signaling information includes an acquisition manner of the M precoding matrices.
  • the second signaling information may be signaling information sent by the second communication node to the first communication node and used to indicate how to obtain the M precoding matrices.
  • the determining a set of channel state information according to the M downlink measurement reference signal resources includes:
  • the reference signal resources are in one-to-one correspondence; a set of channel state information is obtained according to the sum of the M pieces of channel measurement information.
  • a channel measurement value is obtained based on each downlink measurement reference signal, and then M channel measurement values are added to form a channel measurement sum value, that is, the channel measurement information.
  • the interference and noise can be combined.
  • the measurements yield a set of channel state information.
  • the RSRP and RSRQ are obtained according to the channel measurement summation value, or the SINR is obtained according to the channel measurement summation value and the interference measurement value, and optionally, the CQI value is obtained according to the SINR.
  • the determining a set of channel state information according to the M downlink measurement reference signal resources includes:
  • the downlink measurement reference signal includes CSI-RS and/or SSB.
  • any two downlink measurement reference signal resources in the M downlink measurement reference signal resources correspond to the same RI layer PDSCH data; the columns of any two precoding matrices in the M precoding matrices corresponding to the same RI layer PDSCH data; any two precoding matrices in the M precoding matrices have the same number of columns; wherein, the RI layer PDSCH data is the RI layer data of the PDSCH, and the PDSCH includes all The PDSCH corresponding to the set of channel state information described above.
  • the set of channel state information includes at least one of the following:
  • the set of channel state information includes more than one CQI, wherein the more than one CQI corresponds to different codewords.
  • the M downlink measurement reference signal resources satisfy at least one of the following characteristics:
  • the M downlink measurement reference signal resources correspond to the same RI layer data; the M downlink measurement reference signal resources correspond to a same RI; wherein, RI is a positive integer greater than or equal to 1.
  • the M downlink measurement reference signal resources are all channel measurement resources.
  • the M downlink measurement reference signal resources do not include interference measurement resources.
  • the channel state information is determined based on channel measurement resources and interference measurement resources
  • the channel measurement resources and the interference measurement resources include the same downlink measurement reference signal resources, the channel measurement resources and the interference measurement resources Two sets of configuration values corresponding to the same type of parameters of the same downlink measurement reference signal resource respectively.
  • the two sets of configuration values of the same type of parameters may be indicated by signaling information or notified of one set of configuration values by signaling information, and the other sets of configuration values are obtained based on predetermined rules, and the same type of parameters may include one of the following: power information, Transmission Configuration Indicator (TCI) status information.
  • TCI Transmission Configuration Indicator
  • the present application further provides a method for receiving channel state information
  • FIG. 2 is a schematic flowchart of a method for receiving channel state information provided by the present application.
  • the method effectively solves the technical problem of inconsistent uplink and downlink interference when estimating channel state information based only on uplink measurement reference signals in distributed MIMO, improves the accuracy of channel state estimation in distributed transmission, and considers multiple first How the communication nodes share the downlink measurement reference signal, and consider the power allocation and scheduling characteristics of distributed transmission, make the channel state measurement more accurate, the smaller the measurement reference signal load, and flexibly adapt to the MU scheduling strategy of distributed transmission.
  • the method can be performed by a channel state information receiving device, which can be implemented by software and/or hardware, and integrated on a second communication node, where the second communication node includes but is not limited to: an access point (Access Point, AP).
  • AP Access Point
  • a method for receiving channel state information includes the following steps:
  • S220 Receive a set of channel state information sent by the first communication node, wherein the set of channel state information is determined by the first communication node according to the M downlink measurement reference signal resources.
  • the method for receiving channel state information effectively solves the technical problem of inconsistent uplink and downlink interference when estimating channel state information based only on uplink measurement reference signals in distributed MIMO, and improves the problem of channel state estimation in distributed transmission , and consider how multiple first communication nodes share the downlink measurement reference signal, and consider the power allocation and scheduling characteristics of distributed transmission, so that the channel state measurement is more accurate, the measurement reference signal load is smaller, and the distributed transmission is flexibly adapted MU scheduling policy.
  • the set of channel state information is the M precoding matrices corresponding to the M downlink measurement reference signal resources, the M precoding matrices corresponding to the M downlink measurement reference signal resources, and a The transmission mode of the PDSCH obtained by the RI value is determined.
  • the M precoding matrices satisfy one of the following characteristics:
  • each column of each of the M precoding matrices is 1; each of the M precoding matrices is an identity matrix; the precoding matrix is determined by the determined by the first communication node; each precoding matrix in the M precoding matrices is obtained according to one downlink measurement reference signal resource in the M downlink measurement reference signal resources; each precoding matrix in the M precoding matrices The precoding matrices are obtained according to the M downlink measurement reference signal resources.
  • the method further includes:
  • Send second signaling information where the second signaling information includes an acquisition manner of the M precoding matrices.
  • the set of channel state information is determined by the first communication node according to the M pieces of downlink measurement reference signal resources and the M pieces of power information; wherein each of the M pieces of power information The power information corresponds to one downlink measurement reference signal resource in the M downlink measurement reference signal resources.
  • the method further includes:
  • Send first signaling information where the first signaling information includes one or more of the M pieces of power information; wherein the power information includes at least one of the following information:
  • the power difference between the EPRE of the PDSCH and the EPRE of a downlink measurement reference signal resource; the power difference between a downlink measurement reference signal resource and the synchronization signal; the difference between the EPRE corresponding to some ports of the PDSCH and the EPRE of a downlink measurement reference signal resource The power difference between the two, wherein some ports of the PDSCH correspond to the antenna ports of the one downlink measurement reference signal resource; wherein, the one downlink measurement reference signal resource is one of the M downlink measurement reference signal resources.
  • Measurement reference signal resources, each of the M pieces of power information respectively corresponds to one downlink measurement reference signal resource in the M pieces of downlink measurement reference signal resources.
  • the method further includes:
  • a demodulation reference signal port is sent to the first communication node, wherein the demodulation reference signal port and the M downlink measurement reference signal resources satisfy a quasi-co-location relationship.
  • the set of channel state information is determined by the first communication node according to M downlink measurement reference signal resources, and the method for the first communication node to determine the set of channel state information includes:
  • the downlink measurement reference signal ports include downlink measurement reference signal ports in the M downlink measurement reference signal resources, for example, the downlink measurement reference signal includes CSI-RS and/or SSB.
  • the present application further provides a signaling information transmission method
  • FIG. 3 is a schematic flowchart of a signaling information transmission method provided by the present application.
  • the method is applicable to the case of indicating the Q sets of configuration values of the same type of parameters corresponding to one downlink measurement reference signal resource.
  • the signaling transmission scheme fully considers the power allocation characteristics and scheduling characteristics of distributed transmission, so that the channel state measurement is more accurate, and flexibly adapts to the MU scheduling strategy of distributed transmission.
  • the apparatus may be implemented by software and/or hardware and integrated on the communication node.
  • the signaling information transmission method is the signaling information sending method
  • the communication node may be the second communication node
  • the signaling information transmission method is the signaling information receiving method
  • the communication node may be the first communication node.
  • the method for transmitting signaling information includes the following steps:
  • S310 Transmit signaling information, where the signaling information includes a Q set of configuration values of the same type of parameter corresponding to a downlink measurement reference signal resource, where Q is a positive integer greater than or equal to 1.
  • the signaling information may be used to indicate the Q sets of configuration values of the same type of parameters corresponding to a downlink measurement reference signal resource.
  • the transmission signaling information is sending signaling information or receiving signaling information.
  • the method may be performed by the second communication node.
  • the method may be performed by the first communication node in the case of receiving the signaling information.
  • the configuration value includes one of the following: time domain resources, frequency domain resources, time-frequency resources, and downlink measurement reference signal port groups.
  • This embodiment does not limit the same type of parameters, such as the same type of parameters that need to be configured.
  • the same type of parameters includes, but is not limited to, one of the following: power information and TCI state information.
  • the signaling information transmission method provided by the present application effectively determines the Q sets of configuration values of the same type of parameters corresponding to a downlink measurement reference signal resource.
  • the Q sets of configuration values correspond to one of the following downlink measurement reference signal resources: Q time domain resources, Q frequency domain resources, Q time-frequency resources, and Q downlink measurement reference signal resources port group.
  • the Q is equal to 2
  • the two sets of configuration values respectively correspond to the value of the same type of parameter when the one downlink measurement reference signal resource is used as a channel measurement resource and the value of the parameter when used as an interference measurement resource.
  • the value of a parameter of the same class is equal to 2
  • the signaling information is a medium access control-control element (Medium Access Control, Control Element, MAC-CE).
  • Medium Access Control, Control Element, MAC-CE Medium Access Control, Control Element, MAC-CE
  • the same type of parameters includes one of the following:
  • the power information includes at least one of the following:
  • the power difference between the EPRE of the PDSCH and the EPRE of a downlink measurement reference signal resource; the power difference between a downlink measurement reference signal resource and the synchronization signal; the difference between the EPRE corresponding to some ports of the PDSCH and the EPRE of a downlink measurement reference signal resource The power difference between , wherein some ports of the PDSCH correspond to the antenna ports of the one downlink measurement reference signal resource.
  • the terminal When performing channel quality estimation in the related art, it is mainly based on that the terminal sends an uplink reference signal, and the base station obtains channel information.
  • this technical solution cannot solve the inconsistent uplink and downlink interference, and the interaction delay between the access point (AP) and the CPU is relatively large and interactive.
  • AP access point
  • the present application adopts the following technical solutions to effectively solve the technical problem of inconsistent uplink and downlink interference when estimating channel state information only based on uplink measurement reference signals in distributed MIMO, and improve the performance of distributed transmission.
  • the accuracy of channel state estimation and considering how multiple first communication nodes share the downlink measurement reference signal, as well as the power allocation characteristics and scheduling characteristics of distributed transmission, makes the channel state measurement more accurate, and the measurement reference signal load is smaller, and Flexibly adapt to the MU scheduling strategy of distributed transmission.
  • the terminal obtains a set of channel state information according to M downlink measurement reference signal resources, wherein the downlink measurement reference signal resources include at least CSI-RS resources and/or SSB resources, and the set of channel state information includes the following At least one of: RSRP, SINR, RSRQ, CQI, RI, PMI; M is a positive integer greater than 1.
  • the set of channel state information includes at least one of the following: RSRP, SINR, RSRQ, CQI, RI, and PMI, that is, the set of channel state information includes one RSRP and/or one SINR, and/or one RSRQ, and/or one CQI, and/or one RI, and/or one PMI.
  • a set of channel state information includes more than one CQI
  • the more than one CQI corresponds to the CQI of different codewords, for example, when RI (ie v) is less than a predetermined value, only feedback For one CQI value, when RI is greater than or equal to a predetermined value, two CQIs are fed back, and different CQIs correspond to different codewords.
  • FIG. 3a is a schematic diagram of a scenario of channel state information transmission provided by the application
  • FIG. 3b is a schematic diagram of another scenario of channel state information transmission provided by the application.
  • six APs that is, the second communication
  • the six sending nodes of the node send downlink signals to UE1 and UE2 on the same time-frequency resource.
  • the number of APs is 6, and the number of UEs is 2.
  • the scenario shown in FIG. 3a is just an example, and this embodiment does not exclude other application examples.
  • r k is the received signal at user k
  • h km is the channel coefficient between user k and AP m
  • w im is the additional precoding matrix at AP m for signal si of user i
  • si is the signal of user i
  • K is the number of users (for example, in Figure 3a ).
  • K 2).
  • M can be a number greater than or equal to 2. That is, the total transmit power of each AP is less than or equal to 1.
  • one CSI-RS resource When each AP sends one CSI-RS resource, one CSI-RS resource includes one or more CSI-RS ports.
  • the terminal obtains a ⁇ CQI, RI ⁇ based on multiple CSI-RS resources, and the terminal feeds back the obtained ⁇ RI, CQI ⁇ to the CPU, where the CPU controls the scheduling of the 6 APs and 2 UEs in Figure 3a.
  • the CSI-RS measurement reference signal in this CSI-RS resource is the AP-Specific reference signal.
  • a terminal is configured with multiple CSI-RS resources, and the terminal obtains a CQI based on the multiple CSI-RS resources, as shown in Figure 3b, where the CQI is obtained based on the following formula:
  • P i is the number of CSI-RS ports of CSI-RS resource i
  • W m is a precoding matrix corresponding to CSI-RS resource m
  • W m is a matrix of P m *v.
  • Hypothetical port The power difference between the EPRE of the PDSCH and the EPRE of the CSI-RS resource m on the . Therefore, when calculating CQI, the power difference corresponding to different CSI-RS resources is different, and this power difference is not all ports of PDSCH corresponding to CQI.
  • the power difference between the EPRE and CSI-RS resources of the PDSCH on the PDSCH is the power difference between the EPRE and CSI-RS resources of the PDSCH on some ports of the PDSCH, where PDSCH is the PDSCH corresponding to the CQI, that is, such as The PDSCH on the Channel State Information (CSI) reference resource (CSI reference resource), that is, the CQI is obtained based on the following formula:
  • the M CSI-RS resources are all channel measurement resources, and the M CSI-RS resources do not include interference measurement resources.
  • the M CSI-RS resources correspond to the data of the same RI layer (that is, the v-layer data), for example, after the RI layer data is precoded, it can be in any one or more of the M CSI-RS resources.
  • each CSI-RS resource in the M CSI-RS resources corresponds to the RI layer data, and each CSI-RS resource transmits the RI layer data.
  • one CSI-RS resource corresponds to one AP, and it is not excluded in this embodiment that one AP group corresponds to one CSI-RS resource.
  • the base station configures multiple CSI-RS resources for the terminal. Based on the multiple CSI-RS resources, the terminal only feeds back CQI, but does not feed back PMI and RI.
  • W m is an identity matrix, Or based on the precoding selected by the terminal.
  • the base station configures W m based on the identity matrix, or is based on the precoding selected by the terminal, or the predetermined W m is only based on the terminal selection.
  • the CSI-RS resource includes a single port, it is based on terminal selection, and when the CSI-RS resource includes more than one CSI-RS port, it is based on the identity matrix.
  • the terminal does not select the CSI-RS resources configured by the base station, that is, the terminal does not feed back channel state information-reference signal resource indicator (CSI-RS Resource Indicator, CRI) in these multiple CSI-RS resources, based on The CQI is obtained from multiple CSI-RS resources configured by the base station.
  • CRI channel state information-reference signal resource indicator
  • the terminal feeds back CQI based on multiple CSI-RS resources configured by the base station.
  • W is only based on the CSI-RS resource m, and is not jointly selected based on multiple CSI-RS resources.
  • CSI-RS resource m is 1 port, and the channel obtained based on 1 port of CSI-RS resource m is but
  • the number of ports of the CSI-RS resource m is greater than 1, that is, the channel obtained based on the multi-port of the CSI-RS resource m is:
  • SVD Singular Value Decomposition
  • the terminal feeds back CQI, RI based on multiple CSI-RS resources configured by the base station, and the set of CQI, RI values is obtained based on the multiple CSI-RS resources.
  • the port number on the left side of the equal sign in formula (2) and formula (3) is uniformly numbered according to the CSI-RS resource and the port number in the CSI-RS resource, that is, the port number of the CSI-RS port in the CSI-RS resource depends on the Regarding the CSI-RS resource index and the port number in the CSI-RS resource, for example, CSI-RS resource 1 and CSI-RS resource 2 are both 1 ports, and their port numbers are 3000 and 3001 respectively.
  • the starting number of the precoded antenna port number on the left side of the equal sign in the above formula is 3000, and this embodiment does not exclude other starting antenna port numbers.
  • the interference is measured on the dedicated interference measurement resource. If the dedicated interference measurement resource is not configured, the interference is calculated independently based on each CSI-RS resource, and then the interference phase is calculated independently. add. For example, the interference is obtained based on formula (4):
  • rm is the received signal on CSI-RS resource m
  • s m is the CSI-RS reference signal on CSI-RS resource m.
  • the channel state information is obtained according to the quotient of the sum of the channel measurement values and the measurement values of interference and noise, for example, the channel state information includes: SINR, RSRQ, CQI, or the sum of the M measurement values
  • the value is directly included in the channel state information, eg RSRP is included in the channel state information.
  • the CPU side or the control unit may use multiple APs to simultaneously send demodulation reference signal (Demodulation Reference Signal, DMRS) data at the same layer, where the DMRS and multiple A quasi-co-location relationship is satisfied between the two downlink measurement reference signal resources.
  • DMRS demodulation Reference Signal
  • the base station configures the CSI-RS resource for the terminal, and the CSI-RS resource configures the relative power difference information of the EPRE of the PDSCH and the EPRE of the CSI-RS resource, wherein on different frequency domain resource sets, the relative power difference
  • the power difference information is different.
  • the Physical Resource Block (PRB) set occupied by CSI-RS resources is divided into Y PRB sets, and the power difference information is configured for the Y PRB sets respectively, or the relative power difference information is allocated for the first PRB set.
  • PRB Physical Resource Block
  • Power difference information configure the difference information between the relative power difference of the EPRE of the PDSCH corresponding to the PRB set and the EPRE of the CSI-RS resource and the relative power difference corresponding to the first PRB set for other PRB sets, that is, the two PRB sets The difference in the corresponding relative power difference.
  • the signaling information informs the division information of the PRB set, or it is predetermined that every consecutive X PRBs in the CSI-RS resources constitute A set of PRBs, with a total of PRB sets, where N is the PRB span occupied by CSI-RS resources, that is, CSI-RS resources occupy subcarriers in each of the N PRBs, or the CSI-RS resources are in the N PRBs Subcarriers are occupied in every 2 PRBs among the PRBs.
  • different power information is configured on different resources of a CSI-RS resource.
  • different TCI state information can also be configured on different resources of a CSI-RS resource, wherein the TCI state includes the Quasi-co-located reference signal information for a CSI-RS resource.
  • the base station configures CSI-RS resources for the terminal, each CSI-RS resource includes multiple CSI-RS ports, and different port groups correspond to different power and TCI states, that is, TCI state configuration.
  • a CSI-RS resource includes A CSI-RS ports, the A CSI-RS ports are divided into B CSI-RS port groups, and each port group is configured with the EPRE and CSI-RS of the PDSCH corresponding to the port group. The power difference between the EPREs of the port group.
  • each port group is configured with a corresponding TCI state, wherein the TCI state includes one or more quasi-co-located reference signals, each quasi-co-located reference signal is associated with a type of quasi-co-located parameter, and the port The ports in the group and the quasi-co-located reference signal satisfy a quasi-co-located relationship with respect to the quasi-co-located parameter.
  • the quasi-co-location parameters include at least one of the following: Doppler shift, Doppler spread, average delay, delay spread, Spatial Rx Parameter).
  • the MAC-CE configures power information for one CSI-RS resource, where the power information includes at least one of the following: the power difference between the EPRE of the PDSCH and the EPRE of the CSI-RS resource, the CSI-RS resource and the synchronization The power difference between the signals.
  • the base station configures the terminal with channel measurement resources and interference measurement resources, wherein the CSI-RS resources corresponding to the channel measurement resources and the interference measurement resources are the same, but the power information corresponding to the channel measurement resources and the power information corresponding to the interference measurement resources are the same. different.
  • the base station configures CSI-RS resource 1 for the terminal, and CSI-RS resource 1 configures frequency domain information, code domain information, and port information of the CSI-RS resource.
  • the base station configures the relative power of two PDSCH and CSI-RS resources in CSI-RS resource 1, where relative power 1:n 1 is the power difference between the target PDSCH and CSI-RS resource 1, and relative power 2:n 2 is the interference PDSCH
  • the power difference with CSI-RS resource 1 for example, the channel estimation based on CSI-RS resource 1 is Then the target channel energy is The interference channel energy is
  • the power information of the downlink measurement reference signal resources includes at least one of the following: the power difference between the EPRE of the PDSCH and the EPRE of the CSI-RS resource, and the power difference between the CSI-RS resource and the synchronization signal.
  • FIG. 4 is a schematic structural diagram of an apparatus for sending channel state information provided by the present application.
  • the apparatus may be configured on a first communication node, as shown in FIG. 4, the device includes: a first determination module 41, configured to determine M downlink measurement reference signal resources, where M is a positive integer greater than 1; and a second determination module 42, configured to determine the M downlink measurement reference signal resources according to the resource, determine a set of channel state information; the sending module 43 is configured to send the set of channel state information.
  • the apparatus for sending channel state information provided in this embodiment is used to implement the method for sending channel state information in the embodiment shown in FIG. 1 .
  • the implementation principle and technical effect of the apparatus for sending channel state information provided in this embodiment are the same as the channel state information provided in this embodiment of the present application.
  • the method for sending status information is similar, and details are not described here.
  • the second determining module 42 is configured to: obtain a PDSCH transmission mode according to the M downlink measurement reference signal resources, M precoding matrices, and an RI value; determine the PDSCH transmission mode according to the PDSCH transmission mode the set of channel state information.
  • the transmission mode of the PDSCH satisfies one of the following formulas:
  • the channel state information is further obtained according to M pieces of power information, and each of the M pieces of power information corresponds to one downlink measurement reference signal resource among the M pieces of downlink measurement reference signal resources.
  • the second determining module 42 is configured to: obtain a set of channel state information according to the M pieces of downlink measurement reference signal resources and the M pieces of power information; wherein, each power in the M pieces of power information The information corresponds to one downlink measurement reference signal resource in the M downlink measurement reference signal resources.
  • the second determining module 42 obtains a set of channel state information according to the M pieces of downlink measurement reference signal resources and M pieces of power information, including: according to the M pieces of downlink measurement reference signal resources and M pieces of power information Obtain the transmission mode of the PDSCH; obtain a set of channel state information according to the transmission mode of the PDSCH, wherein the transmission mode of the PDSCH satisfies one of the following formulas:
  • each of the M pieces of power information includes at least one of the following:
  • the power difference between the EPRE of the PDSCH and the EPRE of a downlink measurement reference signal resource; the power difference between a downlink measurement reference signal resource and the synchronization signal; the difference between the EPRE corresponding to some ports of the PDSCH and the EPRE of a downlink measurement reference signal resource The power difference between the two, wherein some ports of the PDSCH correspond to the antenna ports of the one downlink measurement reference signal resource; wherein, the one downlink measurement reference signal resource is one of the M downlink measurement reference signal resources.
  • Measurement reference signal resources, each of the M pieces of power information respectively corresponds to one downlink measurement reference signal resource in the M pieces of downlink measurement reference signal resources, and the M pieces of power information are included in the received first signal. order information or determined according to predetermined rules.
  • the M precoding matrices satisfy one of the following characteristics:
  • each column of each of the M precoding matrices is 1; each of the M precoding matrices is an identity matrix; the precoding matrix is determined by the determined by the first communication node; each precoding matrix in the M precoding matrices is obtained according to one downlink measurement reference signal resource in the M downlink measurement reference signal resources; each precoding matrix in the M precoding matrices The precoding matrices are obtained according to the M downlink measurement reference signal resources.
  • the apparatus further includes: a third determining module configured to: receive second signaling information, where the second signaling information includes an acquisition manner of the M precoding matrices.
  • the second determining module 42 is configured to: obtain one piece of channel measurement information according to each of the M pieces of downlink measurement reference signal resources; obtain the sum of the M pieces of channel measurement information,
  • the M pieces of channel measurement information are in one-to-one correspondence with the M pieces of downlink measurement reference signal resources; a set of channel state information is obtained according to the sum of the M pieces of channel measurement information.
  • the determining a set of channel state information according to the M downlink measurement reference signal resources includes:
  • the CSI-RS ports include downlink measurement reference signal ports in the M CSI-RS resources.
  • any two downlink measurement reference signal resources in the M downlink measurement reference signal resources correspond to the same RI layer PDSCH data; the columns of any two precoding matrices in the M precoding matrices corresponding to the same RI layer PDSCH data; any two precoding matrices in the M precoding matrices have the same number of columns; wherein, the RI layer PDSCH data is the RI layer data of the PDSCH, and the PDSCH includes all The PDSCH corresponding to the set of channel state information described above.
  • the set of channel state information includes at least one of the following:
  • the set of channel state information includes more than one CQI, wherein the more than one CQI corresponds to different codewords.
  • the M downlink measurement reference signal resources satisfy at least one of the following characteristics:
  • the M downlink measurement reference signal resources correspond to the same RI layer data; the M downlink measurement reference signal resources correspond to a same RI; wherein, RI is a positive integer greater than or equal to 1.
  • the M downlink measurement reference signal resources are all channel measurement resources.
  • the M downlink measurement reference signal resources do not include interference measurement resources.
  • the channel state information is determined based on channel measurement resources and interference measurement resources
  • the channel measurement resources and the interference measurement resources include the same downlink measurement reference signal resources, the channel measurement resources and the interference measurement resources Two sets of configuration values corresponding to the same type of parameters of the same downlink measurement reference signal resource respectively.
  • the present application provides a channel state information receiving apparatus
  • FIG. 5 is a schematic structural diagram of a channel state information receiving apparatus provided by the present application.
  • the apparatus may be integrated on a second communication node, such as
  • the device includes: a sending module 51, configured to send M downlink measurement reference signal resources, where M is a positive integer greater than 1; a receiving module 52, configured to receive a set of channel state information sent by the first communication node ; wherein, the set of channel state information is determined by the first communication node according to the M downlink measurement reference signal resources.
  • the device for receiving channel state information provided in this embodiment is used to implement the method for receiving channel state information in the embodiment of the present application.
  • the implementation principle and technical effect of the device for receiving channel state information provided in this embodiment are the same as those for receiving channel state information provided by the embodiment of the present application. The method is similar and will not be repeated here.
  • the set of channel state information is the M precoding matrices corresponding to the M downlink measurement reference signal resources, the M precoding matrices corresponding to the M downlink measurement reference signal resources, and a The transmission mode of the PDSCH obtained by the RI value is determined.
  • the M precoding matrices satisfy one of the following characteristics:
  • each column of each of the M precoding matrices is 1; each of the M precoding matrices is an identity matrix; the precoding matrix is determined by the determined by the first communication node; each precoding matrix in the M precoding matrices is obtained according to one downlink measurement reference signal resource in the M downlink measurement reference signal resources; each precoding matrix in the M precoding matrices The precoding matrices are obtained according to the M downlink measurement reference signal resources.
  • the apparatus further includes a second signaling information sending module, configured to send second signaling information, where the second signaling information includes an acquisition manner of the M precoding matrices.
  • the set of channel state information is determined by the first communication node according to the M pieces of downlink measurement reference signal resources and the M pieces of power information; wherein each of the M pieces of power information The power information corresponds to one downlink measurement reference signal resource in the M downlink measurement reference signal resources.
  • the apparatus further includes: a first signaling information sending module configured to: send first signaling information, where the first signaling information includes one or more of the M pieces of power information;
  • the power information includes at least one of the following information:
  • the power difference between the EPRE of the PDSCH and the EPRE of a downlink measurement reference signal resource; the power difference between a downlink measurement reference signal resource and the synchronization signal; the difference between the EPRE corresponding to some ports of the PDSCH and the EPRE of a downlink measurement reference signal resource The power difference between the two, wherein part of the ports of the PDSCH corresponds to the antenna port of the one downlink measurement reference signal resource; wherein the one downlink measurement reference signal resource is one of the M downlink measurement reference signal resources.
  • Signal resources, each of the M pieces of power information respectively corresponds to one downlink measurement reference signal resource in the M pieces of downlink measurement reference signal resources.
  • the method further includes:
  • a demodulation reference signal port is sent to the first communication node, wherein the demodulation reference signal port and the M downlink measurement reference signal resources satisfy a quasi-co-location relationship.
  • the set of channel state information is determined by the first communication node according to M downlink measurement reference signal resources, and the method for the first communication node to determine the set of channel state information includes:
  • the downlink measurement reference signal ports include downlink measurement reference signal ports in the M downlink measurement reference signal resources.
  • the downlink measurement reference signal includes CSI-RS and/or SSB.
  • the present application provides a signaling information transmission device
  • FIG. 6 is a schematic structural diagram of a signaling information transmission device provided by the present application.
  • the device can be integrated on a communication node, such as in a signaling
  • the apparatus includes: a transmission module 61 configured to transmit signaling information, where the signaling information includes a Q set of configuration values of the same type of parameter corresponding to a downlink measurement reference signal resource, where Q is greater than or equal to A positive integer of 1.
  • the signaling information transmission apparatus provided in this embodiment is used to implement the signaling information transmission method of the embodiment of this application.
  • the implementation principle and technical effect of the signaling information transmission apparatus provided in this embodiment are the same as the signaling information transmission method of the embodiment of this application. similar, and will not be repeated here.
  • the Q sets of configuration values correspond to one of the following downlink measurement reference signal resources: Q time domain resources, Q frequency domain resources, Q time-frequency resources, and Q downlink measurement reference signal resources port group.
  • the Q is equal to 2
  • the two sets of configuration values respectively correspond to the value of the same type of parameter when the one downlink measurement reference signal resource is used as a channel measurement resource and the value of the parameter when used as an interference measurement resource.
  • the value of a parameter of the same class is equal to 2
  • the signaling information is MAC-CE.
  • the same type of parameters includes one of the following:
  • the power information includes at least one of the following:
  • the power difference between the EPRE of the PDSCH and the EPRE of a downlink measurement reference signal resource; the power difference between a downlink measurement reference signal resource and the synchronization signal, the difference between the EPRE corresponding to some ports of the PDSCH and the EPRE of a downlink measurement reference signal resource corresponds to the antenna port of the one downlink measurement reference signal resource.
  • an embodiment of the present application further provides a first communication node
  • FIG. 7 is a schematic structural diagram of a first communication node provided by the present application.
  • the first communication node provided by the present application A communication node includes one or more processors 71, wherein the one or more processors 71 implement the signaling information transmission method and the channel state information transmission method provided by any embodiment of the present application when executed.
  • the first communication node may also include a storage device 72; the number of processors 71 in the first communication node may be one or more, and one processor 71 is taken as an example in FIG. 7; the storage device 72 is used to store one or more programs ; The one or more programs are executed by the one or more processors 71, so that the one or more processors 71 implement the signaling information transmission method and channel state information transmission as described in the embodiments of the present application method.
  • the first communication node further includes: a communication device 73 , an input device 74 and an output device 75 .
  • the processor 71 , the storage device 72 , the communication device 73 , the input device 74 and the output device 75 in the first communication node may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 7 .
  • the input device 74 can be used to receive input numerical or character information, and to generate key signal input related to user settings and function control of the first communication node.
  • the output device 75 may include a display device such as a display screen.
  • the communication device 73 may include a receiver and a transmitter.
  • the communication device 73 is configured to transmit and receive information according to the control of the processor 71 .
  • the storage device 72 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the signaling information transmission method and the channel state information transmission method described in the embodiments of the present application.
  • the transmission module 61 in the signaling information transmission apparatus another example, the first determination module 41, the second determination module 42 and the transmission module 43 in the channel state information transmission apparatus.
  • the storage device 72 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the first communication node, and the like.
  • storage device 72 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the storage device 72 may include memory located remotely from the processor 71, and these remote memories may be connected to the first communication node through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • an embodiment of the present application further provides a second communication node
  • FIG. 8 is a schematic structural diagram of a second communication node provided by the present application.
  • the second communication node provided by the present application includes one or more processors 81 , wherein the one or more processors 81 implement the signaling information transmission provided by any embodiment of the present application during execution.
  • a method and a channel state information receiving method are examples of processors 81 .
  • the second communication node may further include a storage device 82; the number of processors 81 in the second communication node may be one or more, and one processor 81 is taken as an example in FIG. 8; the storage device 82 is used to store one or more programs ; the one or more programs are executed by the one or more processors 81, so that the one or more processors 81 implement the signaling information transmission method and the channel state information reception as described in the embodiments of the present application method.
  • the second communication node further includes: a communication device 83 , an input device 84 and an output device 85 .
  • the processor 81, the storage device 82, the communication device 83, the input device 84, and the output device 85 in the second communication node may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 8 .
  • the input device 84 may be used to receive input numerical or character information, and to generate key signal input related to user settings and function control of the second communication node.
  • the output device 85 may include a display device such as a display screen.
  • the communication device 83 may include a receiver and a transmitter.
  • the communication device 83 is configured to transmit and receive information according to the control of the processor 81 .
  • the storage device 82 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the signaling information transmission method and the channel state information reception method described in the embodiments of the present application.
  • the transmission module in the signaling information transmission apparatus another example is the transmission module 51 and the reception module 52 in the channel state information reception apparatus.
  • the storage device 82 may include a stored program area and a stored data area, wherein the stored program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the second communication node, and the like.
  • storage device 82 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • storage device 82 may include memory located remotely from processor 81, which may be connected to the second communication node through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • Embodiments of the present application further provide a storage medium, where a computer program is stored in the storage medium, and when the computer program is executed by a processor, any one of the methods described in the present application is implemented, and the storage medium stores a computer program, and the computer When the program is executed by the processor, any one of the method for sending channel state information, the method for receiving channel state information, and the method for transmitting signaling information described in the embodiments of the present application is implemented.
  • Channel state information sending method including:
  • M is a positive integer greater than 1
  • determine a set of channel state information according to the M downlink measurement reference signal resources and send the set of channel state information.
  • a method for receiving channel state information including:
  • Send M downlink measurement reference signal resources where M is a positive integer greater than 1; receive a set of channel state information sent by the first communication node; wherein, the set of channel state information is the first communication node according to the M determined by downlink measurement reference signal resources.
  • Signaling information transmission method including:
  • the signaling information includes a Q set of configuration values of the same type of parameter corresponding to a downlink measurement reference signal resource, where Q is a positive integer greater than or equal to 1.
  • the computer storage medium of the embodiments of the present application may adopt any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or any combination of the above.
  • Examples (non-exhaustive list) of computer readable storage media include: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read only memory (Read Only Memory) Memory, ROM), erasable programmable read only memory (Erasable Programmable Read Only Memory, EPROM), flash memory, optical fiber, portable CD-ROM, optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in connection with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a propagated data signal in baseband or as part of a carrier wave, with computer-readable program code embodied thereon. Such propagated data signals may take a variety of forms including, but not limited to, electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any suitable medium, including but not limited to: wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • suitable medium including but not limited to: wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • Computer program code for carrying out the operations of the present application may be written in one or more programming languages, including object-oriented programming languages, such as Java, Smalltalk, C++, and conventional A procedural programming language, such as the "C" language or similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any kind of network, including a Local Area Network (LAN) or Wide Area Network (WAN), or may be connected to an external computer (eg, use an internet service provider to connect via the internet).
  • LAN Local Area Network
  • WAN Wide Area Network
  • the term user terminal covers any suitable type of wireless user equipment, such as a mobile telephone, portable data processing device, portable web browser or vehicle mounted mobile station.
  • the various embodiments of the present application may be implemented in hardware or special purpose circuits, software, logic, or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
  • Embodiments of the present application may be implemented by the execution of computer program instructions by a data processor of a mobile device, eg in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages source or object code.
  • ISA Instruction Set Architecture
  • the block diagrams of any logic flow in the figures of the present application may represent program steps, or may represent interconnected logic circuits, modules and functions, or may represent a combination of program steps and logic circuits, modules and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable for the local technical environment and may be implemented using any suitable data storage technology, such as, but not limited to, Read-Only Memory (ROM), Random Access Memory (RAM), optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disk (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor may be of any type suitable for the local technical environment, such as, but not limited to, a general purpose computer, a special purpose computer, a microprocessor, a Digital Signal Processing (DSP), an Application Specific Integrated Circuit (ASIC) ), programmable logic devices (Field-Programmable Gate Array, FPGA) and processors based on multi-core processor architecture.
  • a general purpose computer such as, but not limited to, a general purpose computer, a special purpose computer, a microprocessor, a Digital Signal Processing (DSP), an Application Specific Integrated Circuit (ASIC) ), programmable logic devices (Field-Programmable Gate Array, FPGA) and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公开了信道状态信息发送方法、信道状态信息接收方法、信令信息传输方法、节点和介质。该信道状态信息发送方法应用于第一通信节点,包括:确定M个下行测量参考信号资源,M为大于1的正整数;根据所述M个下行测量参考信号资源,确定一套信道状态信息;发送所述一套信道状态信息。

Description

信道状态信息发送方法、信道状态信息接收方法、信令信息传输方法、节点和介质 技术领域
本申请涉及通信技术领域,例如涉及信道状态信息发送方法、信道状态信息接收方法、信令信息传输方法、节点和介质。
背景技术
分布式多输入多输出(Multiple-Input Multiple-Output,MIMO)作为未来通信的一个重要研究方向,受到了广泛的关注。MIMO场景下进行信道质量估计主要基于终端发送上行参考信号,基站基于上行参考信号获取信道信息,如信道质量指示(Channel Quality Indicator,CQI),以完成信道质量估计。
然而,上述信道质量估计所采用的技术手段无法解决上下行干扰不一致的技术问题。
发明内容
本申请提供信道状态信息发送方法、信道状态信息接收方法、信令信息传输方法、节点和介质,通过第一通信节点采用多个下行测量参考信号资源进行信道测量的方法,有效地解决分布式MIMO中,仅凭上行测量参考信号进行信道状态信息估计时上下行干扰不一致的技术问题,提高了分布式传输的信道状态估计的准确性。
第一方面,本申请提供了一种信道状态信息发送方法,应用于第一通信节点,包括:
确定M个下行测量参考信号资源,M为大于1的正整数;根据所述M个下行测量参考信号资源,确定一套信道状态信息;发送所述一套信道状态信息。
第二方面,本申请还提供了一种信令信息传输方法,包括:
传输信令信息,所述信令信息中包括一个下行测量参考信号资源对应的同一类参数的Q套配置值,Q为大于或者等于1的正整数。
通过上述方案,为一个下行测量参考信号资源配置同一类参数的Q套配置值,提高资源配置的灵活性,适应分布式MIMO下灵活配置多用户(Multi-User,MU)传输的需求。
第三方面,本申请还提供了一种信道状态信息接收方法,应用于第二通信节点,包括:
发送M个下行测量参考信号资源,M为大于1的正整数;接收第一通信节点发送的一套信道状态信息;其中,所述一套信道状态信息是所述第一通信节点根据所述M个下行测量参考信号资源确定的。
第四方面,本申请还提供了一种第一通信节点,包括:
一个或多个处理器,其中,所述一个或多个处理器在执行时实现如本申请第一方面或第二方面所述的方法。
第五方面,本申请还提供了一种第二通信节点,包括:
一个或多个处理器,其中,所述一个或多个处理器在执行时实现如本申请第二方面或第三方面所述的方法。
第六方面,本申请还提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中任意一种所述的方法。
附图说明
图1为本申请提供的一种信道状态信息发送方法的流程示意图;
图2为本申请提供的一种信道状态信息接收方法的流程示意图;
图3为本申请提供的一种信令信息传输方法的流程示意图;
图3a为本申请提供的一种信道状态信息传输的场景示意图;
图3b为本申请提供的一种信道状态信息传输的又一场景示意图;
图4为本申请提供的一种信道状态信息发送装置的结构示意图;
图5为本申请提供的一种信道状态信息接收装置的结构示意图;
图6为本申请提供的一种信令信息传输装置的结构示意图;
图7为本申请提供的一种第一通信节点的结构示意图;
图8为本申请提供的一种第二通信节点的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在一些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
在一个示例性实施方式中,图1为本申请提供的一种信道状态信息发送方法的流程示意图。本实施例的信道状态信息发送方法,通过第一通信节点采用多个下行测量参考信号资源进行信道测量,有效地解决分布式MIMO中,仅凭上行测量参考信号进行信道状态信息估计时上下行干扰不一致的技术问题,提高了分布式传输的信道状态估计的准确性;并考虑了多个第一通信节点如何共用下行测量参考信号,以及考虑分布式传输的功率分配特性和调度特性,使得信道状态测量更精确,测量参考信号负载更小,并灵活适应分布式传输的MU调度策略。该方法可以由信道状态信息发送装置执行,该装置可以由软件和/或硬件实现,并集成在第一通信节点上,第一通信节点包括但不限于:用户终端(User Equipment,UE)。
如图1所示,本申请提供的一种信道状态信息发送方法,包括如下步骤:
S110、确定M个下行测量参考信号资源,M为大于1的正整数。
M个下行测量参考信号资源中的每个下行测量参考信号资源可以是第二通信节点的一个发送节点或者一组发送节点发送的测量参考信号资源,其中第二通信节点包括一个或者多个发送节点。一个下行测量参考信号资源中包括一个或者多个下行测量参考信号端口。此处不对下行测量参考信号的内容进行限定,示例性的,下行测量参考信号资源包括但不限于信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)资源和/或同步信号块(Synchronization Signal Block,SSB)资源。
一套信道状态信息中包括如下至少之一:参考信号接收功率(Reference Signal Receiving Power,RSRP),信干噪比(Signal to Interference plus Noise Ratio,SINR),参考信号接收质量(Reference Signal Receiving Quality,RSRQ),CQI,秩指示(Rank Indicator,RI),预编码矩阵指示(Precoding Matrix Indicator,PMI)。
在一个实施例中,第二通信节点的一个发送节点可以对应一个下行测量参考信号资源;或者第二通信节点的一组发送节点可以对应一个CSI-RS资源。
S120、根据所述M个下行测量参考信号资源,确定一套信道状态信息。
在根据下行测量参考信号资源确定一套信道状态信息的情况下,本申请可以基于下行测量参考信号确定物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的传输模式,然后根据该传输模式确定一套信道状态信息;本申请还可以根据下行测量参考信号资源和M个功率信息确定PDSCH的传输模块式,然后得到所述的一套信道状态信息。
本实施例不限定确定策略,本领域技术人员可以根据实际情况确定。
S130、发送所述一套信道状态信息。
确定一套信道状态信息后,本步骤可以发送一套信道状态信息。如将一套信道状态信息发送至第二通信节点或中央处理器(Central Processing Unit,CPU)。
本申请提供了一种信道状态信息发送方法,有效地通过M个下行测量参考信号资源确定一套信道状态信息,有效地解决进行分布式MIMO中仅凭上行测量参考信号估计信道状态信息估计时上下行干扰不一致的技术问题,提高了分布式传输的信道状态估计的准确性,并考虑了多个第一通信节点如何共用下行测量参考信号,以及考虑分布式传输的功率分配特性和调度特性,使得信道状态测量更精确,测量参考信号负载越小,并灵活适应分布式传输的MU调度策略。
在上述实施例的基础上,提出了上述实施例的变型实施例,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个实施例中,根据所述M个下行测量参考信号资源,确定一套信道状态信息,包括:
根据所述M个下行测量参考信号资源,M个预编码矩阵,和一个RI值得到PDSCH的传输模式;根据所述PDSCH的传输模式确定所述一套信道状态信息。
M个预编码矩阵可以为M个下行测量参考信号资源对应的预编码矩阵。本申请可以首先根据M个下行测量参考信号资源,M个预编码矩阵,和一个RI值确定PDSCH的传输模式,然后基于确定的传输模式确定一套信道状态信息,此处不限定根据PDSCH的传输模式确定一套信道状态信息的手段。
PDSCH的传输模式可以表征层数据和端口号之间的映射关系。
在一个实施例中,所述PDSCH的传输模式满足如下公式之一:
Figure PCTCN2021114918-appb-000001
其中,
Figure PCTCN2021114918-appb-000002
表示预编码后天线端口3000+l上发送的PDSCH,
Figure PCTCN2021114918-appb-000003
对应下行测量参考信号资源m的P m个天线端口;
Figure PCTCN2021114918-appb-000004
其中,
Figure PCTCN2021114918-appb-000005
m=1,2,...,M,l=0,1,...,P m-1表示预编码后对应CSI-RS资源m的天线端口3000+l上发送的PDSCH符号。
其中,P m,m=1,2,...,M是下行测量参考信号资源m的天线端口数,W m,m=1,2,...,M是下行测量参考信号资源m对应的预编码矩阵,W m,m=1,2,...,M的维度为P m*v,x a-1(i)是PDSCH的第a层的层数据,a=1,2,...,v,v为RI值。
在一个实施例中,所述信道状态信息还根据M个功率信息得到,所述M个功率信息中的每个功率信息对应所述M个下行测量参考信号资源中的一个下行测量参考信号资源。
功率信息可以为PDSCH的EPRE和一个下行测量参考信号资源的EPRE之间的功率差;或者,一个下行测量参考信号资源和同步信号之间的功率差;或者,PDSCH的部分端口对应的EPRE和一个下行测量参考信号资源的EPRE之间的功率差。其中,所述一个下行测量参考信号资源是所述M个下行测量参考信号资源中的一个下行测量参考信号资源。
在确定一套信道状态信息时,还可以根据M个功率信息和M个下行测量参考信号资源确定。
在一个实施例中,根据所述M个下行测量参考信号资源,确定一套信道状态信息,包括:
根据所述M个下行测量参考信号资源和M个功率信息得到一套信道状态信息;其中,所述M个功率信息中的每个功率信息对应所述M个下行测量参考信号资源中的一个下行测量参考信号资源。
在一个实施例中,根据所述M个下行测量参考信号资源和M个功率信息得到一套信道状态信息,包括:
根据所述M个下行测量参考信号资源和M个功率信息得到PDSCH的传输模式;根据所述PDSCH的传输模式得到一套信道状态信息,其中所述PDSCH 的传输模式满足如下公式之一:
Figure PCTCN2021114918-appb-000006
其中,
Figure PCTCN2021114918-appb-000007
表示预编码后天线端口3000+l上发送的PDSCH,
Figure PCTCN2021114918-appb-000008
对应下行测量参考信号资源m的P m个天线端口;
Figure PCTCN2021114918-appb-000009
其中,
Figure PCTCN2021114918-appb-000010
m=1,2,...,M,l=0,1,...,P m-1表示预编码后对应CSI-RS资源m的天线端口3000+l上发送的PDSCH符号。
其中,P m,m=1,2,...,M是下行测量参考信号资源m的天线端口数,W m,m=1,2,...,M是下行测量参考信号资源m对应的预编码矩阵,W m,m=1,2,...,M的维度为P m*v,x v-1(i)是PDSCH的第 v层的层数据,
Figure PCTCN2021114918-appb-000011
是所述PDSCH对应所述下行测量参考信号资源i的P i个天线端口部分的每个资源单元上的能量(Energy Per Resource Element,EPRE)和所述下行测量参考信号资源i的EPRE之间的功率差。
在一个实施例中,所述M个功率信息中的每个功率信息包括如下至少之一:
PDSCH的EPRE和一个下行测量参考信号资源的EPRE之间的功率差;一个下行测量参考信号资源和同步信号之间的功率差;PDSCH的部分端口对应的EPRE和一个下行测量参考信号资源的EPRE之间的功率差,其中,所述PDSCH的部分端口对应所述一个下行测量参考信号资源的天线端口;其中,所述一个下行测量参考信号资源是所述M个下行测量参考信号资源中的一个下行测量参 考信号资源,所述M个功率信息中的每个功率信息分别对应所述M个下行测量参考信号资源中的一个下行测量参考信号资源,所述M个功率信息包括在接收的第一信令信息中或根据预定规则确定。
在一个实施例中,所述M个预编码矩阵满足如下特征之一:
所述M个预编码矩阵中的每个预编码矩阵的每个列中的元素都为1;所述M个预编码矩阵中的每个预编码矩阵为单位矩阵;所述预编码矩阵由所述第一通信节点确定;所述M个预编矩阵中的每个预编码矩阵根据所述M个下行测量参考信号资源中一个下行测量参考信号资源得到;所述M个预编矩阵中的每个预编码矩阵根据所述M个下行测量参考信号资源得到。
在一个实施例中,该方法还包括:
接收第二信令信息,所述第二信令信息中包括所述M个预编码矩阵的获取方式。
第二信令信息可以为第二通信节点发送至第一通信节点的用于指示M个预编码矩阵的获取方式的信令信息。
在一个实施例中,所述根据所述M个下行测量参考信号资源,确定一套信道状态信息,包括:
根据所述M个下行测量参考信号资源中的每个下行测量参考信号资源得到一个信道测量信息;得到M个信道测量信息的加和值,其中,M个信道测量信息和所述M个下行测量参考信号资源一一对应;根据所述M个信道测量信息的加和值得到一套信道状态信息。
此处不限定如何根据M个信道测量信息的加和值得到一套信道状态信息的手段。
基于每个下行测量参考信号的得到一个信道测量值,然后将M个信道测量值相加,构成一个信道测量加和值,即信道测量信息,在得到信道测量信息后,可以结合干扰和噪声的测量值得到一套信道状态信息。比如根据信道测量加和值得到RSRP,RSRQ,或者根据信道测量加和值和干扰测量值,得到SINR,可选地,根据SINR得到CQI值。
在一实施例中,所述根据所述M个下行测量参考信号资源,确定一套信道状态信息,包括:
根据所述M个下行测量参考信号资源确定
Figure PCTCN2021114918-appb-000012
个下行测量参考信号端口;根据所述
Figure PCTCN2021114918-appb-000013
个下行测量参考信号端口,得到所述一套信道状态信息;其中,P m 是下行测量参考信号资源m的下行测量参考信号端口数,所述
Figure PCTCN2021114918-appb-000014
个下行测量参考信号端口包括所述M个下行测量参考信号资源中的下行测量参考信号端口。其中,下行测量参考信号包括CSI-RS,和/或SSB。
在一个实施例中,所述M个下行测量参考信号资源中的任意两个下行测量参考信号资源对应相同的RI层PDSCH数据;所述M个预编码矩阵中的任意两个预编码矩阵的列对应相同的所述RI层PDSCH数据;所述M个预编码矩阵中的任意两个预编码矩阵的列数相同;其中,所述RI层PDSCH数据是PDSCH的RI层数据,所述PDSCH包括所述一套信道状态信息对应的PDSCH。
在一个实施例中,所述一套信道状态信息包括如下至少之一:
CQI,RSRP,RSRQ,SINR,RI,PMI。
在一个实施例中,所述一套信道状态信息中包括多于一个的CQI,其中,所述多于1个CQI对应不同的码字。
在一个实施例中,所述M个下行测量参考信号资源满足如下特征至少之一:
所述M个下行测量参考信号资源对应相同的RI层数据;所述M个下行测量参考信号资源对应一个相同的RI;其中,RI是大于或者等于1的正整数。
在一个实施例中,在确定所述一套信道状态信息的情况下,所述M个下行测量参考信号资源都为信道测量资源。
在一个实施例中,在确定信道状态信息的情况下,所述M个下行测量参考信号资源中不包括干扰测量资源。
在一个实施例中,信道状态信息基于信道测量资源和干扰测量资源确定,所述信道测量资源和所述干扰测量资源包括相同的下行测量参考信号资源,所述信道测量资源和所述干扰测量资源分别对应所述相同的下行测量参考信号资源的同一类参数的2套配置值。
所述同一类参数的2套配置值可以由信令信息指示或者信令信息通知其中一套配置值,其他套配置值基于预定规则得到,所述同一类参数可以包括如下之一:功率信息,传输配置指示(Transmission Configuration Indicator,TCI)状态信息。
在一个示例性实施例方式中,本申请还提供了一种信道状态信息接收方法,图2为本申请提供的一种信道状态信息接收方法的流程示意图。该方法有效地解决分布式MIMO中,仅凭上行测量参考信号进行信道状态信息估计时上下行干扰不一致的技术问题,提高了分布式传输的信道状态估计的准确性,并考虑了多个第一通信节点如何共用下行测量参考信号,以及考虑分布式传输的功率 分配特性和调度特性,使得信道状态测量更精确,测量参考信号负载越小,并灵活适应分布式传输的MU调度策略。该方法可以由信道状态信息接收装置执行,该装置可以由软件和/或硬件实现,并集成在第二通信节点上,第二通信节点包括但不限于:接入点(Access Point,AP)。本实施例尚未详尽指出,参见上述实施例。
如图2所示,本申请提供的一种信道状态信息接收方法,包括如下步骤:
S210、发送M个下行测量参考信号资源,M为大于1的正整数。
S220、接收第一通信节点发送的一套信道状态信息;其中,所述一套信道状态信息是所述第一通信节点根据所述M个下行测量参考信号资源确定的。
本申请提供的一种信道状态信息接收方法,有效地解决分布式MIMO中,仅凭上行测量参考信号进行信道状态信息估计时上下行干扰不一致的技术问题,提高了分布式传输的信道状态估计问题,并考虑了多个第一通信节点如何共用下行测量参考信号,以及考虑分布式传输的功率分配特性和调度特性,使得信道状态测量更精确,测量参考信号负载更小,并灵活适应分布式传输的MU调度策略。
在上述实施例的基础上,提出了上述实施例的变型实施例,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个实施例中,所述一套信道状态信息是所述第一通信节点根据所述M个下行测量参考信号资源,所述M个下行测量参考信号资源对应的M个预编码矩阵,和一个RI值得到的PDSCH的传输模式确定的。
在一个实施例中,所述M个预编码矩阵满足如下特征之一:
所述M个预编码矩阵中的每个预编码矩阵的每个列中的元素都为1;所述M个预编码矩阵中的每个预编码矩阵为单位矩阵;所述预编码矩阵由所述第一通信节点确定;所述M个预编矩阵中的每个预编码矩阵根据所述M个下行测量参考信号资源中一个下行测量参考信号资源得到;所述M个预编矩阵中的每个预编码矩阵根据所述M个下行测量参考信号资源得到。
在一个实施例中,该方法还包括:
发送第二信令信息,所述第二信令信息中包括所述M个预编码矩阵的获取方式。
在一个实施例中,所述一套信道状态信息是所述第一通信节点根据所述M个下行测量参考信号资源和M个功率信息确定的;其中,所述M个功率信息中的每个功率信息对应所述M个下行测量参考信号资源中的一个下行测量参考信 号资源。
在一个实施例中,该方法,还包括:
发送第一信令信息,所述第一信令信息包括所述M个功率信息中一个或者多个;其中,所述功率信息包括如下信息至少之一:
PDSCH的EPRE和一个下行测量参考信号资源的EPRE之间的功率差;一个下行测量参考信号资源和同步信号之间的功率差;PDSCH的部分端口对应的EPRE和一个下行测量参考信号资源的EPRE之间的功率差,其中,所述PDSCH的部分端口对应所述一个下行测量参考信号资源的天线端口;其中,所述一个下行测量参考信号资源是所述M个下行测量参考信号资源中的一个下行测量参考信号资源,所述M个功率信息中的每个功率信息分别对应所述M个下行测量参考信号资源中的一个下行测量参考信号资源。
在一个实施例中,该方法,还包括:
根据所述一套信道状态信息,向所述第一通信节点发送解调参考信号端口,其中,所述解调参考信号端口和所述M个下行测量参考信号资源满足准共址关系。
在一个实施例中,所述一套信道状态信息是第一通信节点根据M个下行测量参考信号资源确定的,第一通信节点确定所述的一套信道状态信息的方法包括:
根据M个下行测量参考信号资源确定
Figure PCTCN2021114918-appb-000015
个信道测量下行测量参考信号端口;根据
Figure PCTCN2021114918-appb-000016
个信道测量下行测量参考信号端口,得到所述的一套信道状态信息;其中,P m是下行测量参考信号资源m的下行测量参考信号端口数,所述
Figure PCTCN2021114918-appb-000017
个下行测量参考信号端口包括所述M个下行测量参考信号资源中的下行测量参考信号端口,比如下行测量参考信号包括CSI-RS和/或SSB。
在一个示例性实施方式中,本申请还提供了一种信令信息传输方法,图3为本申请提供的一种信令信息传输方法的流程示意图。该方法适用于指示一个下行测量参考信号资源对应的同一类参数的Q套配置值的情况。该信令传输方案充分考虑了分布式传输的功率分配特性,调度特性问题,使得信道状态测量更精确,并灵活适应分布式传输的MU调度策略,该方法可以由本申请提供的信令信息传输装置执行,该装置可以由软件和/或硬件实现,并集成在通信节点上。在信令信息的传输方法为信令信息的发送方法时,通信节点可以为第二通 信节点;在信令信息的传输方法为信令信息的接收方法时,通信节点可以为第一通信节点。
如图3所示,本申请提供的信令信息的传输方法,包括如下步骤:
S310、传输信令信息,所述信令信息中包括一个下行测量参考信号资源对应的同一类参数的Q套配置值,Q为大于或者等于1的正整数。
信令信息可以用于指示一个下行测量参考信号资源对应的同一类参数的Q套配置值。
传输信令信息为发送信令信息或接收信令信息。在发送信令信息的情况下,该方法可以由第二通信节点执行。在接收信令信息的情况下,该方法可以由第一通信节点执行。
本实施例不对配置值的内容进行限定,示例性的,配置值包括如下之一:时域资源,频域资源,时频资源,下行测量参考信号端口组。
本实施例不对同一类参数进行限定,如可以为需要配置值的同一类的参数,示例性的,同一类参数包括但不限于如下之一:功率信息,TCI状态信息。本申请提供的信令信息的传输方法,有效地确定了一个下行测量参考信号资源对应的同一类参数的Q套配置值。
在上述实施例的基础上,提出了上述实施例的变型实施例,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个实施例中,所述Q套配置值对应所述一个下行测量参考信号资源的如下之一:Q个时域资源,Q个频域资源,Q个时频资源,Q个下行测量参考信号端口组。
在一个实施例中,所述Q等于2,所述2套配置值分别对应所述一个下行测量参考信号资源作为信道测量资源时的所述同一类参数的值和作为干扰测量资源时的所述同一类参数的值。
在一个实施例中,所述信令信息是媒体接入控制-控制元素(Medium Access Control,Control Element,MAC-CE)。
在一个实施例中,所述同一类参数包括如下之一:
功率信息,传输配置指示状态信息。
在一个实施例中,所述功率信息包括如下至少之一:
PDSCH的EPRE和一个下行测量参考信号资源的EPRE之间的功率差;一个下行测量参考信号资源和同步信号之间的功率差;PDSCH的部分端口对应的EPRE和一个下行测量参考信号资源的EPRE之间的功率差,其中,所述PDSCH 的部分端口对应所述一个下行测量参考信号资源的天线端口。
以下对本申请进行示例性的描述:
相关技术在进行信道质量估计时,主要基于终端发送上行参考信号,基站获取信道信息,但是该技术方案无法解决上下行干扰不一致、接入点(Access Point,AP)和CPU交互时延比较大和交互量比较大的技术问题。本申请为了解决上述技术问题,采用了如下技术方案,以有效地解决分布式MIMO中,仅凭上行测量参考信号进行信道状态信息估计时上下行干扰不一致的技术问题,,提高了分布式传输的信道状态估计准确性,并考虑了多个第一通信节点如何共用下行测量参考信号,以及考虑分布式传输的功率分配特性和调度特性,使得信道状态测量更精确,测量参考信号负载越小,并灵活适应分布式传输的MU调度策略。
实施例1
在本实施例中,终端根据M个下行测量参考信号资源得到一套信道状态信息,其中,下行测量参考信号资源至少包括CSI-RS资源和/或SSB资源,所述一套信道状态信息包括如下至少之一:RSRP,SINR,RSRQ,CQI,RI,PMI;M是大于1的正整数。
在一个实施例中,所述一套信道状态信息包括如下至少之一:RSRP,SINR,RSRQ,CQI,RI,PMI,即所述一套信道状态信息中包括一个RSRP,和/或一个SINR,和/或一个RSRQ,和/或一个CQI,和/或一个RI,和/或一个PMI。
或者,在一套信道状态信息中包括多于一个的CQI的情况下,所述多于一个的CQI对应不同的码字的CQI,比如在RI(即v)小于预定值的情况下,只反馈一个CQI值,在RI大于或等于预定值的情况下,反馈两个CQI,不同的CQI对应不同的码字。
在分布式MIMO场景下,多个AP和CPU之间通过有线(或无线)链接,所有AP同时为所有UE服务,也不排除,为每个UE确定部分AP为其服务AP。图3a为本申请提供的一种信道状态信息传输的场景示意图,图3b为本申请提供的一种信道状态信息传输的又一场景示意图,如图3a所示,6个AP(即第二通信节点的6个发送节点)在相同的时频资源上给UE1和UE2发送下行信号。图3a中AP个数为6,UE个数为2。图3a所示场景只是示例,本实施例并不排除其他的应用示例。
为此可以建立如下的信号模型:
Figure PCTCN2021114918-appb-000018
其中,r k是用户k处的接收信号,h km是用户k和AP m之间的信道系数,w im是AP m处对于用户i的信号s i附加的预编码矩阵,
Figure PCTCN2021114918-appb-000019
是AP m处对于用户i的信号s i附加的功率信息,s i为用户i的信号,M是AP个数(比如图3a中M=6),K是用户个数(比如图3a中的K=2)。实际中M可以是大于或者等于2的数。
Figure PCTCN2021114918-appb-000020
即各个AP的发送总功率小于或者等于1。
当每个AP发送一个CSI-RS资源,其中一个CSI-RS资源中包括一个或者多个CSI-RS端口。终端基于多个CSI-RS资源得到一个{CQI,RI},终端将得到的{RI,CQI}反馈给CPU,其中CPU控制图3a中的6个AP和2个UE的调度。从公式(1)可以看到,这个CSI-RS资源中的CSI-RS测量参考信号是AP-Specific的参考信号,如果针对这个AP-Specific的测量参考信号,CPU想让UE1和UE2都测量,并各自反馈各自的{CQI,RI},但是从公式(1)可以看出,为了让UE1和UE2都准确地测量CQI,需要考虑各个AP处给各个UE施加的功率信息η im不同。故可以采用如下方案。
给一个终端配置多个CSI-RS资源,终端基于多个CSI-RS资源得到一个CQI,如图3b所示,其中CQI基于如下公式得到:
Figure PCTCN2021114918-appb-000021
其中,P i是CSI-RS资源i的CSI-RS端口数,W m是CSI-RS资源m对应的预编码矩阵,W m是P m*v的矩阵。假设端口
Figure PCTCN2021114918-appb-000022
上的PDSCH的EPRE和CSI-RS资源m的EPRE之间的功率差为P c,m,每个CSI-RS资源分别配置其对应的PDSCH的EPRE和CSI-RS资源的EPRE之间的功率差。从而就可以体现在计算CQI的时候,不同CSI-RS资源对应的功率差不同,而且 这个功率差不是CQI对应的PDSCH的全部端口
Figure PCTCN2021114918-appb-000023
上的PDSCH的EPRE和CSI-RS资源之间的功率差,而是PDSCH的部分端口上的PDSCH的EPRE和CSI-RS资源之间的功率差,其中PDSCH是所述CQI对应的PDSCH,即比如信道状态信息(Channel State Information,CSI)参考资源(CSI reference resource)上的PDSCH,即CQI是基于如下公式得到的:
Figure PCTCN2021114918-appb-000024
其中,
Figure PCTCN2021114918-appb-000025
是CSI-RS资源m中配置的PDSCH EPRE和CSI-RS资源的EPRE之间的功率差。从公式(2)看到在得到所述CQI的时候,所述M个CSI-RS资源都是信道测量资源,所述M个CSI-RS资源不包括干扰测量资源。所述M个CSI-RS资源对应相同RI层(即所v层数据)数据,比如所述RI层数据经过预编码之后,可以在所述M个CSI-RS资源中的任意一个或者多个资源中传输,所述M个CSI-RS资源中的每个CSI-RS资源都对应所述RI层数据,每个CSI-RS资源中都传输了所述RI层数据。
上述是一个CSI-RS资源对应一个AP,本实施例中也不排除一个AP组对应一个CSI-RS资源。
在图3b中,基站给终端配置多个CSI-RS资源,终端基于所述多个CSI-RS资源,只反馈CQI,不反馈PMI和RI,在计算CQI的时候,假设W m是单位矩阵,或者基于终端选择的预编码。或者基站配置W m的获取方式是基于单位矩阵,还是基于终端选择的预编码,或者预定W m只基于终端选择。或者当CSI-RS资源包括单端口的时候是基于终端选择,当CSI-RS资源包括多于一个CSI-RS端口的时候,基于单位矩阵。在图3b中,终端对于基站配置的CSI-RS资源不进行选择,即终端在这多个CSI-RS资源中不反馈信道状态信息-参考信号资源指示(CSI-RS Resource Indicator,CRI),基于基站配置的多个CSI-RS资源得到CQI。在图3b中终端基于基站配置的多个CSI-RS资源,反馈CQI。W仅基于CSI-RS资源m,不是基于多个CSI-RS资源共同选择。比如CSI-RS资源m是1端口, 基于CSI-RS资源m的1端口得到的信道为
Figure PCTCN2021114918-appb-000026
Figure PCTCN2021114918-appb-000027
当CSI-RS资源m的端口数大于1,即基于CSI-RS资源m的多端口得到的信道为
Figure PCTCN2021114918-appb-000028
则W m是对
Figure PCTCN2021114918-appb-000029
进行奇异值分解(Singular Value Decomposition,SVD)之后的最大RI个特征值对应的右特征向量,即R=UDV',W m=V(:,1:RI),即W m是对
Figure PCTCN2021114918-appb-000030
的相关矩阵进行SVD之后的最大RI个特征值对应的RI个特征向量。
Figure PCTCN2021114918-appb-000031
是Rx*P m的矩阵,其中Rx是接收波束。
本实施例的另一个实施方式中,终端基于基站配置的多个CSI-RS资源反馈CQI,RI,所述一套CQI,RI值是基于所述多个CSI-RS资源得到的。
公式(2)和公式(3)中的等号左边的端口号,根据CSI-RS资源和CSI-RS资源内的端口号统一编号,即CSI-RS资源中的CSI-RS端口的端口号依赖于所述CSI-RS资源索引和CSI-RS资源中的端口号,比如CSI-RS资源1和CSI-RS资源2都是1端口,则他们的端口号分别是3000,3001。
本实施例的另一种实施方式中,公式(2)改为如下公式(2-1):
Figure PCTCN2021114918-appb-000032
其中,
Figure PCTCN2021114918-appb-000033
是CSI-RS资源m上的端口P m个端口[3000,3001,....,P m]。公式(3)改为方式(3-1):
Figure PCTCN2021114918-appb-000034
在上述公式中等号左边的预编码后的天线端口号的起始号为3000,本实施例也不排除其他起始天线端口号。
在计算CQI的时候,如果配置了专有干扰测量资源,在专有干扰测量资源上测量干扰,如果没有配置专有干扰测量资源,其干扰基于各个CSI-RS资源独立计算干扰,然后将干扰相加。比如干扰基于公式(4)得到:
Figure PCTCN2021114918-appb-000035
其中r m是CSI-RS资源m上的接收信号,
Figure PCTCN2021114918-appb-000036
是基于CSI-RS资源m得到的信道估计,比如为
Figure PCTCN2021114918-appb-000037
其中s m是CSI-RS资源m上的CSI-RS参考信号。
当基于M个下行测量参考信号资源得到一个RSRP/RSRQ/SINR值的时候,首先基于所述M个下行测量参考信号资源的每个下行测量参考信号资源得到一个RSRP/RSRQ/SINR值,然后得到这M个RSRP/RSRQ/SINR值的加和值,所述加和值包括在所述一套信道状态信息中上报给基站。或者根据所述M个下行测量参考信号资源中每个下行测量参考资源得到一个信道测量值,将所述M个测量测量值加起来得到一个信道测量值,然后得到一个干扰和噪声的测量值,根据信道测量值加和值与所述干扰和噪声的测量值的商,得到所述信道状态信息,比如信道状态信息中包括:SINR,RSRQ,CQI,或者将所述M个测量值的加和值直接包括在所述信道状态信息中,比如信道状态信息中包括RSRP。
终端基于多个下行测量参考信号资源反馈一套信道状态信息之后,CPU侧或者控制单元可以采用多个AP同时发送同一层解调参考信号(Demodulation Reference Signal,DMRS)数据,其中所述DMRS和多个下行测量参考信号资源之间满足准共址关系。
实施例2
在本实施例中,基站给终端配置CSI-RS资源,CSI-RS资源中配置PDSCH的EPRE和CSI-RS资源的EPRE的相对功率差信息,其中在不同的频域资源集合上,所述相对功率差信息不同。比如将CSI-RS资源所占的物理资源块(Physical Resource Block,PRB)集合分成Y个PRB集合,分别为Y个PRB集合配置所述功率差信息,或者为第一个PRB集合分配所述相对功率差信息,为其他PRB集合配置该PRB集合对应的PDSCH的EPRE和CSI-RS资源的EPRE的相对功率差与第一个PRB集合对应的相对功率差之间的差信息,即两个PRB集合对应的相对功率差的差。
根据信令信息或预定规则,将CSI-RS资源所占的PRB集合分成Y个PRB集合,比如信令信息告知PRB集合的划分信息,或者预定,CSI-RS资源中每连 续的X个PRB构成一个PRB集合,总共有
Figure PCTCN2021114918-appb-000038
个PRB集合,其中N是CSI-RS资源所占的PRB跨度,即CSI-RS资源在所述N个PRB中的每个PRB中都占有子载波,或者所述CSI-RS资源在所述N个PRB中的每2个PRB中占有子载波。
这个主要是考虑,当所述CSI-RS资源是AP-specific的CSI-RS资源,但是在不同的PRB集合中,由于AP服务的用户数不同,分配UE1的功率信息不同。
上述是一个CSI-RS资源的不同频域位置对应不同的功率信息,本实施例也不排除一个CSI-RS资源的不同时域资源对应不同的功率信息,或者一个CSI-RS资源的不同时频资源对应不同的功率信息。
上述是一个CSI-RS资源的不同的资源上,配置不同的功率信息,类似地,也可以是一个CSI-RS资源的不同资源上配置不同的TCI state信息,其中所述TCI state中包括所述一个CSI-RS资源的准共址参考信号信息。
实施例3
在本实施例中,基站给终端配置了CSI-RS资源,每个CSI-RS资源包括多个CSI-RS端口,不同端口组对应不同的功率和TCI状态,即TCI state配置。
比如一个CSI-RS资源包括A个CSI-RS端口,将这A个CSI-RS端口分成B个CSI-RS端口组,每个端口组分别配置所述端口组对应的PDSCH的EPRE和CSI-RS端口组的EPRE之间的功率差。
在一个实施例中,每个端口组分别配置对应的TCI state,其中TCI state中包括一个或者多个准共址参考信号,每个准共址参考信号关联一类准共址参数,所述端口组中的端口和所述准共址参考信号关于所述准共址参数满足准共址关系。其中准共址参数包括如下至少之一:多普勒频移(Doppler shift),多普勒扩展(Doppler spread),平均延迟(average delay),延迟扩展(delay spread),空间接收参数(Spatial Rx Parameter)。
实施例4
在本实施例中,MAC-CE为一个CSI-RS资源配置功率信息,其中功率信息包括如下至少之一:PDSCH的EPRE和CSI-RS资源的EPRE之间的功率差,CSI-RS资源和同步信号之间的功率差。
实施例5
在本实施例中,基站给终端配置信道测量资源和干扰测量资源,其中信道测量资源和干扰测量资源对应的CSI-RS资源相同,只是信道测量资源对应的功率信息和干扰测量资源对应的功率信息不同。
比如基站给终端配置CSI-RS资源1,CSI-RS资源1中配置CSI-RS资源的频域信息,码域信息,端口信息等。基站在CSI-RS资源1中配置两个PDSCH和CSI-RS资源的相对功率,其中相对功率1:η 1是目标PDSCH和CSI-RS资源1的功率差,相对功率2:η 2是干扰PDSCH和CSI-RS资源1的功率差,比如基于CSI-RS资源1得到的信道估计为
Figure PCTCN2021114918-appb-000039
则目标信道能量为
Figure PCTCN2021114918-appb-000040
干扰信道能量为
Figure PCTCN2021114918-appb-000041
在上述实施例中,下行测量参考信号资源的功率信息包括如下至少之一:PDSCH的EPRE和CSI-RS资源的EPRE之间的功率差,CSI-RS资源和同步信号之间的功率差。
在一个示例性实施方式中,本申请提供了一种信道状态信息发送装置,图4为本申请提供的一种信道状态信息发送装置的结构示意图,该装置可以配置于第一通信节点,如图4所示,该装置包括:第一确定模块41,设置为确定M个下行测量参考信号资源,M为大于1的正整数;第二确定模块42,设置为根据所述M个下行测量参考信号资源,确定一套信道状态信息;发送模块43,设置为发送所述一套信道状态信息。
本实施例提供的信道状态信息发送装置用于实现如图1所示实施例的信道状态信息发送方法,本实施例提供的信道状态信息发送装置实现原理和技术效果与本申请实施例提供的信道状态信息发送方法类似,此处不再赘述。
在上述实施例的基础上,提出了上述实施例的变型实施例,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个实施例中,第二确定模块42,设置为:根据所述M个下行测量参考信号资源,M个预编码矩阵,和一个RI值得到PDSCH的传输模式;根据所述PDSCH的传输模式确定所述一套信道状态信息。
在一个实施例中,所述PDSCH的传输模式满足如下公式之一:
Figure PCTCN2021114918-appb-000042
其中,
Figure PCTCN2021114918-appb-000043
表示预编码后天线端口3000+l上发送的PDSCH,
Figure PCTCN2021114918-appb-000044
对应下行测量参考信号资源m的P m个天线端口;
Figure PCTCN2021114918-appb-000045
其中,
Figure PCTCN2021114918-appb-000046
m=1,2,...,M,l=0,1,...,P m-1表示预编码后对应CSI-RS资源m的天线端口3000+l上发送的PDSCH符号。
其中,P m,m=1,2,...,M是下行测量参考信号资源m的天线端口数,W m,m=1,2,...,M是下行测量参考信号资源m对应的预编码矩阵,W m,m=1,2,...,M的维度为P m*v,x a-1(i)是PDSCH的第a层的层数据,a=1,2,...,v,v为RI值。
在一个实施例中,所述信道状态信息还根据M个功率信息得到,所述M个功率信息中的每个功率信息对应所述M个下行测量参考信号资源中的一个下行测量参考信号资源。
在一个实施例中,第二确定模块42,设置为:根据所述M个下行测量参考信号资源和M个功率信息得到一套信道状态信息;其中,所述M个功率信息中的每个功率信息对应所述M个下行测量参考信号资源中的一个下行测量参考信号资源。
在一个实施例中,第二确定模块42根据所述M个下行测量参考信号资源和M个功率信息得到一套信道状态信息,包括:根据所述M个下行测量参考信号 资源和M个功率信息得到PDSCH的传输模式;根据所述PDSCH的传输模式得到一套信道状态信息,其中所述PDSCH的传输模式满足如下公式之一:
Figure PCTCN2021114918-appb-000047
其中,
Figure PCTCN2021114918-appb-000048
表示预编码后天线端口3000+l上发送的PDSCH,
Figure PCTCN2021114918-appb-000049
对应下行测量参考信号资源m的P m个天线端口;
Figure PCTCN2021114918-appb-000050
其中,
Figure PCTCN2021114918-appb-000051
m=1,2,...,M,l=0,1,...,P m-1表示预编码后对应CSI-RS资源m的天线端口3000+l上发送的PDSCH符号。
其中,P m,m=1,2,...,M是下行测量参考信号资源m的天线端口数,W m,m=1,2,...,M是下行测量参考信号资源m对应的预编码矩阵,W m,m=1,2,...,M的维度为P m*v,x v-1(i)是PDSCH的第 v层的层数据,
Figure PCTCN2021114918-appb-000052
是所述PDSCH对应所述下行测量参考信号资源i的P i个天线端口部分的每个资源单元上的能量EPRE和所述下行测量参考信号资源i的EPRE之间的功率差。
在一个实施例中,所述M个功率信息中的每个功率信息包括如下至少之一:
PDSCH的EPRE和一个下行测量参考信号资源的EPRE之间的功率差;一个下行测量参考信号资源和同步信号之间的功率差;PDSCH的部分端口对应的EPRE和一个下行测量参考信号资源的EPRE之间的功率差,其中,所述PDSCH的部分端口对应所述一个下行测量参考信号资源的天线端口;其中,所述一个 下行测量参考信号资源是所述M个下行测量参考信号资源中的一个下行测量参考信号资源,所述M个功率信息中的每个功率信息分别对应所述M个下行测量参考信号资源中的一个下行测量参考信号资源,所述M个功率信息包括在接收的第一信令信息中或根据预定规则确定。
在一个实施例中,所述M个预编码矩阵满足如下特征之一:
所述M个预编码矩阵中的每个预编码矩阵的每个列中的元素都为1;所述M个预编码矩阵中的每个预编码矩阵为单位矩阵;所述预编码矩阵由所述第一通信节点确定;所述M个预编矩阵中的每个预编码矩阵根据所述M个下行测量参考信号资源中一个下行测量参考信号资源得到;所述M个预编矩阵中的每个预编码矩阵根据所述M个下行测量参考信号资源得到。
在一个实施例中,该装置还包括:第三确定模块,设置为:接收第二信令信息,所述第二信令信息中包括所述M个预编码矩阵的获取方式。
在一个实施例中,第二确定模块42设置为:根据所述M个下行测量参考信号资源中的每个下行测量参考信号资源得到一个信道测量信息;得到M个信道测量信息的加和值,其中,M个信道测量信息和所述M个下行测量参考信号资源一一对应;根据所述M个信道测量信息的加和值得到一套信道状态信息。
在一实施例中,所述根据所述M个下行测量参考信号资源,确定一套信道状态信息,包括:
根据所述M个下行测量参考信号资源确定
Figure PCTCN2021114918-appb-000053
个CSI-RS端口;根据所述
Figure PCTCN2021114918-appb-000054
个CSI-RS端口,得到所述一套信道状态信息;其中,P m是下行测量参考信号资源m的CSI-RS端口数,所述
Figure PCTCN2021114918-appb-000055
个CSI-RS端口包括所述M个CSI-RS资源中的下行测量参考信号端口。
在一个实施例中,所述M个下行测量参考信号资源中的任意两个下行测量参考信号资源对应相同的RI层PDSCH数据;所述M个预编码矩阵中的任意两个预编码矩阵的列对应相同的所述RI层PDSCH数据;所述M个预编码矩阵中的任意两个预编码矩阵的列数相同;其中,所述RI层PDSCH数据是PDSCH的RI层数据,所述PDSCH包括所述一套信道状态信息对应的PDSCH。
在一个实施例中,所述一套信道状态信息包括如下至少之一:
CQI,RSRP,RSRQ,SINR,RI,PMI。
在一个实施例中,所述一套信道状态信息中包括多于一个的CQI,其中,所述多于1个CQI对应不同的码字。
在一个实施例中,所述M个下行测量参考信号资源满足如下特征至少之一:
所述M个下行测量参考信号资源对应相同的RI层数据;所述M个下行测量参考信号资源对应一个相同的RI;其中,RI是大于或者等于1的正整数。
在一个实施例中,在确定所述一套信道状态信息的情况下,所述M个下行测量参考信号资源都为信道测量资源。
在一个实施例中,在确定信道状态信息的情况下,所述M个下行测量参考信号资源中不包括干扰测量资源。
在一个实施例中,信道状态信息基于信道测量资源和干扰测量资源确定,所述信道测量资源和所述干扰测量资源包括相同的下行测量参考信号资源,所述信道测量资源和所述干扰测量资源分别对应所述相同的下行测量参考信号资源的同一类参数的2套配置值。
在一个示例性实施方式中,本申请提供了一种信道状态信息接收装置,图5为本申请提供的一种信道状态信息接收装置的结构示意图,该装置可以集成在第二通信节点上,如图5所示,该装置包括:发送模块51,设置为发送M个下行测量参考信号资源,M为大于1的正整数;接收模块52,设置为接收第一通信节点发送的一套信道状态信息;其中,所述一套信道状态信息是所述第一通信节点根据所述M个下行测量参考信号资源确定的。
本实施例提供的信道状态信息接收装置用于实现本申请实施例的信道状态信息接收方法,本实施例提供的信道状态信息接收装置实现原理和技术效果与本申请实施例提供的信道状态信息接收方法类似,此处不再赘述。
在上述实施例的基础上,提出了上述实施例的变型实施例,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个实施例中,所述一套信道状态信息是所述第一通信节点根据所述M个下行测量参考信号资源,所述M个下行测量参考信号资源对应的M个预编码矩阵,和一个RI值得到的PDSCH的传输模式确定的。
在一个实施例中,所述M个预编码矩阵满足如下特征之一:
所述M个预编码矩阵中的每个预编码矩阵的每个列中的元素都为1;所述M个预编码矩阵中的每个预编码矩阵为单位矩阵;所述预编码矩阵由所述第一通信节点确定;所述M个预编矩阵中的每个预编码矩阵根据所述M个下行测量参考信号资源中一个下行测量参考信号资源得到;所述M个预编矩阵中的每个预编码矩阵根据所述M个下行测量参考信号资源得到。
在一个实施例中,该装置还包括第二信令信息发送模块,设置为:发送第二信令信息,所述第二信令信息中包括所述M个预编码矩阵的获取方式。
在一个实施例中,所述一套信道状态信息是所述第一通信节点根据所述M个下行测量参考信号资源和M个功率信息确定的;其中,所述M个功率信息中的每个功率信息对应所述M个下行测量参考信号资源中的一个下行测量参考信号资源。
在一个实施例中,该装置,还包括:第一信令信息发送模块,设置为:发送第一信令信息,所述第一信令信息包括所述M个功率信息中一个或者多个;其中所述功率信息包括如下信息至少之一:
PDSCH的EPRE和一个下行测量参考信号资源的EPRE之间的功率差;一个下行测量参考信号资源和同步信号之间的功率差;PDSCH的部分端口对应的EPRE和一个下行测量参考信号资源的EPRE之间的功率差,其中所述PDSCH的部分端口对应所述一个下行测量参考信号资源的天线端口;其中所述一个下行测量参考信号资源是所述M个下行测量参考信号资源中的一个下行测量参考信号资源,所述M个功率信息中的每个功率信息分别对应所述M个下行测量参考信号资源中的一个下行测量参考信号资源。
在一实施例中,该方法,还包括:
根据所述一套信道状态信息,向所述第一通信节点发送解调参考信号端口,其中,所述解调参考信号端口和所述M个下行测量参考信号资源满足准共址关系。
在一个实施例中,所述一套信道状态信息是第一通信节点根据M个下行测量参考信号资源确定的,第一通信节点确定所述的一套信道状态信息的方法包括:
根据M个下行测量参考信号资源确定
Figure PCTCN2021114918-appb-000056
个信道测量下行测量参考信号端口;根据
Figure PCTCN2021114918-appb-000057
个信道测量下行测量参考信号端口,得到所述的一套信道状态信息;其中,P m是下行测量参考信号资源m的下行测量参考信号端口数,所述
Figure PCTCN2021114918-appb-000058
个下行测量参考信号端口包括所述M个下行测量参考信号资源中的下行测量参考信号端口。下行测量参考信号包括CSI-RS和/或SSB。
在一个示例性实施方式中,本申请提供了一种信令信息传输装置,图6为本申请提供的一种信令信息传输装置的结构示意图,该装置可以集成在通信节 点上,如在信令信息传输为信令信息发送的情况下集成在第二通信节点上,在信令信息传输为信令信息接收的情况下,集成在第一通信节点上。如图6所示,该装置包括:传输模块61,设置为传输信令信息,所述信令信息中包括一个下行测量参考信号资源对应的同一类参数的Q套配置值,Q为大于或者等于1的正整数。
本实施例提供的信令信息传输装置用于实现本申请实施例的信令信息传输方法,本实施例提供的信令信息传输装置实现原理和技术效果与本申请实施例的信令信息传输方法类似,此处不再赘述。
在上述实施例的基础上,提出了上述实施例的变型实施例,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个实施例中,所述Q套配置值对应所述一个下行测量参考信号资源的如下之一:Q个时域资源,Q个频域资源,Q个时频资源,Q个下行测量参考信号端口组。
在一个实施例中,所述Q等于2,所述2套配置值分别对应所述一个下行测量参考信号资源作为信道测量资源时的所述同一类参数的值和作为干扰测量资源时的所述同一类参数的值。
在一个实施例中,所述信令信息是MAC-CE。
在一个实施例中,所述同一类参数包括如下之一:
功率信息,传输配置指示状态信息。
在一个实施例中,所述功率信息包括如下至少之一:
PDSCH的EPRE和一个下行测量参考信号资源的EPRE之间的功率差;一个下行测量参考信号资源和同步信号之间的功率差,PDSCH的部分端口对应的EPRE和一个下行测量参考信号资源的EPRE之间的功率差,其中所述PDSCH的部分端口对应所述一个下行测量参考信号资源的天线端口。
在一个示例性实施方式中,本申请实施例还提供了一种第一通信节点,图7为本申请提供的一种第一通信节点的结构示意图,如图7所示,本申请提供的第一通信节点,包括一个或多个处理器71,其中所述一个或多个处理器71在执行时实现本申请任一实施例提供的信令信息传输方法和信道状态信息发送方法。
第一通信节点还可以包括存储装置72;该第一通信节点中的处理器71可以是一个或多个,图7中以一个处理器71为例;存储装置72用于存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器71执行,使得所述一个 或多个处理器71实现如本申请实施例中所述的信令信息传输方法和信道状态信息发送方法。
第一通信节点还包括:通信装置73、输入装置74和输出装置75。
第一通信节点中的处理器71、存储装置72、通信装置73、输入装置74和输出装置75可以通过总线或其他方式连接,图7中以通过总线连接为例。
输入装置74可用于接收输入的数字或字符信息,以及产生与第一通信节点的用户设置以及功能控制有关的按键信号输入。输出装置75可包括显示屏等显示设备。
通信装置73可以包括接收器和发送器。通信装置73设置为根据处理器71的控制进行信息收发通信。
存储装置72作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例所述信令信息传输方法和信道状态信息发送方法对应的程序指令/模块(例如,信令信息传输装置中的传输模块61;又如,信道状态信息发送装置中的第一确定模块41、第二确定模块42和发送模块43)。存储装置72可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据第一通信节点的使用所创建的数据等。此外,存储装置72可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置72可包括相对于处理器71远程设置的存储器,这些远程存储器可以通过网络连接至第一通信节点。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
在一个示例性实施方式中,本申请实施例还提供了一种第二通信节点,图8为本申请提供的一种第二通信节点的结构示意图。如图8所示,本申请提供的第二通信节点,包括一个或多个处理器81,其中所述一个或多个处理器81在执行时实现本申请任一实施例提供的信令信息传输方法和信道状态信息接收方法。
第二通信节点还可以包括存储装置82;该第二通信节点中的处理器81可以是一个或多个,图8中以一个处理器81为例;存储装置82用于存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器81执行,使得所述一个或多个处理器81实现如本申请实施例中所述的信令信息传输方法和信道状态信息接收方法。
第二通信节点还包括:通信装置83、输入装置84和输出装置85。
第二通信节点中的处理器81、存储装置82、通信装置83、输入装置84和 输出装置85可以通过总线或其他方式连接,图8中以通过总线连接为例。
输入装置84可用于接收输入的数字或字符信息,以及产生与第二通信节点的用户设置以及功能控制有关的按键信号输入。输出装置85可包括显示屏等显示设备。
通信装置83可以包括接收器和发送器。通信装置83设置为根据处理器81的控制进行信息收发通信。
存储装置82作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例所述信令信息传输方法和信道状态信息接收方法对应的程序指令/模块(例如,信令信息传输装置中的传输模块;又如信道状态信息接收装置中的发送模块51和接收模块52)。存储装置82可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据第二通信节点的使用所创建的数据等。此外,存储装置82可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置82可包括相对于处理器81远程设置的存储器,这些远程存储器可以通过网络连接至第二通信节点。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请任一所述方法,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中任一所述的信道状态信息发送方法、信道状态信息接收方法和信令信息传输方法。
信道状态信息发送方法,包括:
确定M个下行测量参考信号资源,M为大于1的正整数;根据所述M个下行测量参考信号资源,确定一套信道状态信息;发送所述一套信道状态信息。
信道状态信息接收方法,包括:
发送M个下行测量参考信号资源,M为大于1的正整数;接收第一通信节点发送的一套信道状态信息;其中,所述一套信道状态信息是所述第一通信节点根据所述M个下行测量参考信号资源确定的。
信令信息传输方法,包括:
传输信令信息,所述信令信息中包括一个下行测量参考信号资源对应的同一类参数的Q套配置值,Q为大于或者等于1的正整数。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是,但不限于:电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、可擦式可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、闪存、光纤、便携式CD-ROM、光存储器件、磁存储器件、或者上述的任意合适的组合。计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于:电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、无线电频率(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络,包括局域网(Local Area Network,LAN)或广域网(Wide Area Network,WAN),连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实 现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (34)

  1. 一种信道状态信息发送方法,应用于第一通信节点,包括:
    确定M个下行测量参考信号资源,M为大于1的正整数;
    根据所述M个下行测量参考信号资源,确定一套信道状态信息;
    发送所述一套信道状态信息。
  2. 根据权利要求1所述的方法,其中,所述根据所述M个下行测量参考信号资源,确定一套信道状态信息,包括:
    根据所述M个下行测量参考信号资源,M个预编码矩阵,和一个秩指示RI值得到物理下行共享信道PDSCH的传输模式;
    根据所述PDSCH的传输模式确定所述一套信道状态信息。
  3. 根据权利要求2所述的方法,其中,所述PDSCH的传输模式满足如下公式之一:
    Figure PCTCN2021114918-appb-100001
    其中,
    Figure PCTCN2021114918-appb-100002
    表示预编码后天线端口3000+l上发送的PDSCH,
    Figure PCTCN2021114918-appb-100003
    对应下行测量参考信号资源m的P m个天线端口;
    Figure PCTCN2021114918-appb-100004
    其中,
    Figure PCTCN2021114918-appb-100005
    表示预编码后对应信道状态信息参考 信号CSI-RS资源m的天线端口3000+l上发送的PDSCH符号;
    其中,P m,m=1,2,...,M是下行测量参考信号资源m的天线端口数,W m,m=1,2,...,M是下行测量参考信号资源m对应的预编码矩阵,W m,m=1,2,...,M的维度为P m*v,x a-1(i)是PDSCH的第a层的层数据,a=1,2,...,v,v为RI值。
  4. 根据权利要求2所述的方法,其中,所述一套信道状态信息还根据M个功率信息得到,所述M个功率信息中的每个功率信息对应所述M个下行测量参考信号资源中的一个下行测量参考信号资源。
  5. 根据权利要求1所述的方法,其中,所述根据所述M个下行测量参考信号资源,确定一套信道状态信息,包括:
    根据所述M个下行测量参考信号资源和M个功率信息得到所述一套信道状态信息;
    其中,所述M个功率信息中的每个功率信息对应所述M个下行测量参考信号资源中的一个下行测量参考信号资源。
  6. 根据权利要求5所述的方法,其中,所述根据所述M个下行测量参考信号资源和M个功率信息得到所述一套信道状态信息,包括:
    根据所述M个下行测量参考信号资源和所述M个功率信息得到PDSCH的传输模式;
    根据所述PDSCH的传输模式得到所述一套信道状态信息,其中,所述PDSCH的传输模式满足如下公式之一:
    Figure PCTCN2021114918-appb-100006
    其中,
    Figure PCTCN2021114918-appb-100007
    表示预编码后天线端口3000+l上发送的PDSCH,
    Figure PCTCN2021114918-appb-100008
    对应下行测量参考信号资源m的P m个天线端口;
    Figure PCTCN2021114918-appb-100009
    其中,
    Figure PCTCN2021114918-appb-100010
    表示预编码后对应CSI-RS资源m的天线端口3000+l上发送的PDSCH符号;
    其中,P m,m=1,2,...,M是下行测量参考信号资源m的天线端口数,W m,m=1,2,...,M是下行测量参考信号资源m对应的预编码矩阵,W m,m=1,2,...,M的维度为P m*v,x v-1(i)是PDSCH的第v层的层数据,
    Figure PCTCN2021114918-appb-100011
    是所述PDSCH对应下行测量参考信号资源i的P i个天线端口部分的每个资源单元上的能量EPRE和所述下行测量参考信号资源i的EPRE之间的功率差。
  7. 根据权利要求4-6中的任意一项所述的方法,其中,所述M个功率信息中的每个功率信息包括如下至少之一:
    PDSCH的EPRE和一个下行测量参考信号资源的EPRE之间的功率差;
    一个下行测量参考信号资源和同步信号之间的功率差;
    PDSCH的部分端口对应的EPRE和一个下行测量参考信号资源的EPRE之间的功率差,其中,所述PDSCH的部分端口对应所述一个下行测量参考信号资源的天线端口;
    其中,所述一个下行测量参考信号资源是所述M个下行测量参考信号资源中的一个下行测量参考信号资源,所述M个功率信息中的每个功率信息对应所述M个下行测量参考信号资源中的一个下行测量参考信号资源,所述M个功率信息包括在接收的第一信令信息中或根据预定规则确定。
  8. 根据权利要求2-6中的任一项所述的方法,其中,M个预编码矩阵满足如下特征之一:
    所述M个预编码矩阵中的每个预编码矩阵的每个列中的元素都为1;
    所述M个预编码矩阵中的每个预编码矩阵为单位矩阵;
    所述预编码矩阵由所述第一通信节点确定;
    所述M个预编矩阵中的每个预编码矩阵根据所述M个下行测量参考信号资 源中一个下行测量参考信号资源得到;
    所述M个预编矩阵中的每个预编码矩阵根据所述M个下行测量参考信号资源得到。
  9. 根据权利要求8所述的方法,还包括:
    接收第二信令信息,其中,所述第二信令信息中包括所述M个预编码矩阵的获取方式。
  10. 根据权利要求1所述的方法,其中,所述根据所述M个下行测量参考信号资源,确定一套信道状态信息,包括:
    根据所述M个下行测量参考信号资源中的每个下行测量参考信号资源得到一个信道测量信息;
    得到M个信道测量信息的加和值,其中,所述M个信道测量信息和所述M个下行测量参考信号资源一一对应;
    根据所述M个信道测量信息的加和值得到所述一套信道状态信息。
  11. 根据权利要求1所述的方法,其中,所述根据所述M个下行测量参考信号资源,确定一套信道状态信息,包括:
    根据所述M个下行测量参考信号资源确定
    Figure PCTCN2021114918-appb-100012
    个下行测量参考信号端口;
    根据所述
    Figure PCTCN2021114918-appb-100013
    个下行测量参考信号端口,得到所述一套信道状态信息;
    其中,P m是下行测量参考信号资源m的下行测量参考信号端口数,所述
    Figure PCTCN2021114918-appb-100014
    个下行测量参考信号端口包括所述M个下行测量参考信号资源中的下行测量参考信号端口。
  12. 根据权利要求1-6、10、11中的任意一项所述的方法,其中,
    所述M个下行测量参考信号资源中的任意两个下行测量参考信号资源对应相同的RI层PDSCH数据;
    M个预编码矩阵中的任意两个预编码矩阵的列对应相同的所述RI层PDSCH数据;
    所述M个预编码矩阵中的任意两个预编码矩阵的列数相同;
    其中,所述RI层PDSCH数据是PDSCH的RI层数据,所述PDSCH包括所述一套信道状态信息对应的PDSCH。
  13. 根据权利要求1-6、10、11中的任意一项所述的方法,其中,所述一套 信道状态信息包括如下至少之一:
    信道质量指示CQI,参考信号接收功率RSRP,参考信号接收质量RSRQ,信干噪比SINR,RI,预编码矩阵指示PMI。
  14. 根据权利要求1-6、10、11中的任意一项所述的方法,其中,所述一套信道状态信息中包括多于一个的CQI,其中,所述多于1个CQI中的不同CQI对应不同的码字。
  15. 根据权利要求1-6、10、11中的任意一项所述的方法,其中,所述M个下行测量参考信号资源满足如下特征至少之一:
    所述M个下行测量参考信号资源对应相同的RI层数据;
    所述M个下行测量参考信号资源对应一个相同的RI;
    其中,RI是大于或者等于1的正整数。
  16. 根据权利要求1-6、10、11中的任意一项所述的方法,其中,在确定所述一套信道状态信息的情况下,所述M个下行测量参考信号资源都为信道测量资源。
  17. 根据权利要求1-6、10、11中的任意一项所述的方法,其中,在确定信道状态信息的情况下,所述M个下行测量参考信号资源中不包括干扰测量资源。
  18. 根据权利要求1-6、10、11中的任意一项所述的方法,其中,
    信道状态信息基于信道测量资源和干扰测量资源确定,所述信道测量资源和所述干扰测量资源包括相同的下行测量参考信号资源,所述信道测量资源和所述干扰测量资源分别对应所述相同的下行测量参考信号资源的同一类参数的2套配置值。
  19. 一种信令信息传输方法,包括:
    传输信令信息,所述信令信息中包括一个下行测量参考信号资源对应的同一类参数的Q套配置值,Q为大于或者等于1的正整数。
  20. 根据权利要求19所述的方法,其中,
    所述Q套配置值对应所述一个下行测量参考信号资源的如下之一:Q个时域资源,Q个频域资源,Q个时频资源,Q个下行测量参考信号端口组。
  21. 根据权利要求19所述的方法,其中,
    Q等于2,2套配置值分别对应所述一个下行测量参考信号资源作为信道测量资源时的所述同一类参数的值和作为干扰测量资源时的所述同一类参数的值。
  22. 根据权利要求19所述的方法,其中,
    所述信令信息是媒体接入控制-控制元素MAC-CE。
  23. 根据权利要求19-22中的任意一项所述的方法,其中,所述同一类参数包括如下之一:
    功率信息,传输配置指示TCI状态信息。
  24. 根据权利要求23所述的方法,其中,所述功率信息包括如下至少之一:
    物理下行共享信道PDSCH的每个资源单元上的能量EPRE和一个下行测量参考信号资源的EPRE之间的功率差;
    一个下行测量参考信号资源和同步信号之间的功率差;
    PDSCH的部分端口对应的EPRE和一个下行测量参考信号资源的EPRE之间的功率差,其中,所述PDSCH的部分端口对应所述一个下行测量参考信号资源的天线端口。
  25. 一种信道状态信息接收方法,应用于第二通信节点,包括:
    发送M个下行测量参考信号资源,M为大于1的正整数;
    接收第一通信节点发送的一套信道状态信息;
    其中,所述一套信道状态信息是所述第一通信节点根据所述M个下行测量参考信号资源确定的。
  26. 根据权利要求25所述的方法,其中,所述一套信道状态信息是所述第一通信节点根据所述M个下行测量参考信号资源,所述M个下行测量参考信号资源对应的M个预编码矩阵,和一个秩指示RI值得到的物理下行共享信道PDSCH的传输模式确定的。
  27. 根据权利要求26所述的方法,其中,所述M个预编码矩阵满足如下特征之一:
    所述M个预编码矩阵中的每个预编码矩阵的每个列中的元素都为1;
    所述M个预编码矩阵中的每个预编码矩阵为单位矩阵;
    所述预编码矩阵由所述第一通信节点确定;
    所述M个预编矩阵中的每个预编码矩阵根据所述M个下行测量参考信号资源中一个下行测量参考信号资源得到;
    所述M个预编矩阵中的每个预编码矩阵根据所述M个下行测量参考信号资源得到。
  28. 根据权利要求27所述的方法,还包括:
    发送第二信令信息,所述第二信令信息中包括所述M个预编码矩阵的获取方式。
  29. 根据权利要求25所述的方法,其中,所述一套信道状态信息是所述第一通信节点根据所述M个下行测量参考信号资源和M个功率信息确定的;
    其中,所述M个功率信息中的每个功率信息对应所述M个下行测量参考信号资源中的一个下行测量参考信号资源。
  30. 根据权利要求29所述的方法,还包括:
    发送第一信令信息,所述第一信令信息包括所述M个功率信息中的至少之一;
    其中,所述功率信息包括如下信息至少之一:
    PDSCH的每个资源单元上的能量EPRE和一个下行测量参考信号资源的EPRE之间的功率差;
    一个下行测量参考信号资源和同步信号之间的功率差;
    PDSCH的部分端口对应的EPRE和一个下行测量参考信号资源的EPRE之间的功率差,其中,所述PDSCH的部分端口对应所述一个下行测量参考信号资源的天线端口;
    其中,所述一个下行测量参考信号资源是所述M个下行测量参考信号资源中的一个下行测量参考信号资源,所述M个功率信息中的每个功率信息对应所述M个下行测量参考信号资源中的一个下行测量参考信号资源。
  31. 根据权利要求25所述的方法,还包括:
    根据所述一套信道状态信息,向所述第一通信节点发送解调参考信号端口,其中,所述解调参考信号端口和所述M个下行测量参考信号资源满足准共址关系。
  32. 一种第一通信节点,包括:
    至少一个处理器,其中,所述至少一个处理器在执行时实现如权利要求1-24中任一项所述的方法。
  33. 一种第二通信节点,包括:
    至少一个处理器,其中,所述至少一个处理器在执行时实现如权利要求19-31中任一所述的信道状态信息接收方法。
  34. 一种存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-31中任一项所述的方法。
PCT/CN2021/114918 2020-09-04 2021-08-27 信道状态信息发送方法、信道状态信息接收方法、信令信息传输方法、节点和介质 WO2022048497A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/024,598 US20240120978A1 (en) 2020-09-04 2021-08-27 Channel state information transmission method, channel state information reception method, signaling information transmission method, node, and medium
KR1020237011442A KR20230058714A (ko) 2020-09-04 2021-08-27 채널 상태 정보 송신 방법, 채널 상태 정보 수신 방법, 시그널링 정보 전송 방법, 노드 및 매체
EP21863562.1A EP4210249A1 (en) 2020-09-04 2021-08-27 Channel state information transmission method, channel state information reception method, signaling information transmission method, node, and medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010921180.2A CN112019463A (zh) 2020-09-04 2020-09-04 信道状态发送、接收、信令信息传输方法、节点和介质
CN202010921180.2 2020-09-04

Publications (1)

Publication Number Publication Date
WO2022048497A1 true WO2022048497A1 (zh) 2022-03-10

Family

ID=73517181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114918 WO2022048497A1 (zh) 2020-09-04 2021-08-27 信道状态信息发送方法、信道状态信息接收方法、信令信息传输方法、节点和介质

Country Status (5)

Country Link
US (1) US20240120978A1 (zh)
EP (1) EP4210249A1 (zh)
KR (1) KR20230058714A (zh)
CN (1) CN112019463A (zh)
WO (1) WO2022048497A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024045666A1 (zh) * 2022-08-31 2024-03-07 中兴通讯股份有限公司 信道重构方法,通信节点及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112019463A (zh) * 2020-09-04 2020-12-01 中兴通讯股份有限公司 信道状态发送、接收、信令信息传输方法、节点和介质
CN117459104A (zh) * 2022-07-18 2024-01-26 中兴通讯股份有限公司 一种传输方法、通信节点及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103580779A (zh) * 2012-07-20 2014-02-12 电信科学技术研究院 信道质量指示信息上报及确定方法和设备
CN103580739A (zh) * 2012-07-20 2014-02-12 电信科学技术研究院 信道质量指示信息上报及确定方法和设备
CN111901003A (zh) * 2020-06-02 2020-11-06 中兴通讯股份有限公司 复用方法、装置、设备及存储介质
CN112019463A (zh) * 2020-09-04 2020-12-01 中兴通讯股份有限公司 信道状态发送、接收、信令信息传输方法、节点和介质
CN113475128A (zh) * 2019-07-19 2021-10-01 Oppo广东移动通信有限公司 一种信息传输方法及装置、通信设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045762B (zh) * 2010-12-02 2013-07-24 大唐移动通信设备有限公司 一种上报信道状态的方法及装置
CN102255689B (zh) * 2011-07-08 2018-05-04 中兴通讯股份有限公司 一种信道状态信息的处理方法、装置及系统
KR20130130593A (ko) * 2012-05-22 2013-12-02 삼성전자주식회사 분산 안테나를 사용하는 복수 개의 기지국을 포함하는 무선통신 시스템에서 기준 신호 측정 방법 및 장치
CN103825663B (zh) * 2014-02-21 2016-04-20 电信科学技术研究院 信道状态信息测量方法以及装置
CN105991231B (zh) * 2015-02-28 2021-07-30 中兴通讯股份有限公司 获取信道状态信息csi的方法及装置
EP3335344B1 (en) * 2015-08-14 2020-03-11 Telefonaktiebolaget LM Ericsson (PUBL) Multiple csi reports for multi-user superposition transmission
CN111200871B (zh) * 2018-11-16 2022-02-18 华为技术有限公司 接收数据的方法和通信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103580779A (zh) * 2012-07-20 2014-02-12 电信科学技术研究院 信道质量指示信息上报及确定方法和设备
CN103580739A (zh) * 2012-07-20 2014-02-12 电信科学技术研究院 信道质量指示信息上报及确定方法和设备
CN113475128A (zh) * 2019-07-19 2021-10-01 Oppo广东移动通信有限公司 一种信息传输方法及装置、通信设备
CN111901003A (zh) * 2020-06-02 2020-11-06 中兴通讯股份有限公司 复用方法、装置、设备及存储介质
CN112019463A (zh) * 2020-09-04 2020-12-01 中兴通讯股份有限公司 信道状态发送、接收、信令信息传输方法、节点和介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAOMI: "Enhancements on multi-beam operation", 3GPP TSG RAN WG1 #102-E; R1-2006540, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 7 August 2020 (2020-08-07), e-Meeting; 20200817 - 20200828, XP051915388 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024045666A1 (zh) * 2022-08-31 2024-03-07 中兴通讯股份有限公司 信道重构方法,通信节点及存储介质

Also Published As

Publication number Publication date
KR20230058714A (ko) 2023-05-03
EP4210249A1 (en) 2023-07-12
CN112019463A (zh) 2020-12-01
US20240120978A1 (en) 2024-04-11

Similar Documents

Publication Publication Date Title
US11750250B2 (en) Communications method and device
US11283503B2 (en) Communication method and communications apparatus
JP6037321B2 (ja) チャネル状態情報を確定する方法及び端末
KR102383100B1 (ko) 적응적인 빔포밍을 위한 무선 통신 장치 및 이의 동작 방법
WO2022048497A1 (zh) 信道状态信息发送方法、信道状态信息接收方法、信令信息传输方法、节点和介质
CN113271671B (zh) 波束管理方法及相关装置
US20230327730A1 (en) Interference measurement method, user equipment and network side device
US11109251B2 (en) Method and apparatus for channel state information reporting
CN109155693B (zh) 低复杂度多配置csi报告
US20130250876A1 (en) Method And Apparatus Providing Inter-Transmission Point Phase Relationship Feedback For Joint Transmission CoMP
CN107733611B (zh) 准共位置信息的处理方法及装置
US9450662B2 (en) Evolved node-B, user equipment, and methods for channel quality indicator (CQI) feedback
US9615280B2 (en) Calculating and reporting channel characteristics
WO2017096954A1 (zh) Cqi估计、sinr确定方法及相关设备
WO2017185982A1 (zh) 准共位置类型的处理方法、装置及计算机存储介质
US11832251B2 (en) Apparatus for CSI prediction control
CN114598365B (zh) 传输方法、装置、设备及可读存储介质
CN112422245B (zh) 发送和接收指示的方法和装置
CN103620996A (zh) 信道状态信息上报方法及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863562

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237011442

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021863562

Country of ref document: EP

Effective date: 20230404