WO2017193884A1 - 参考信号发送方法、检测方法、基站和移动台 - Google Patents

参考信号发送方法、检测方法、基站和移动台 Download PDF

Info

Publication number
WO2017193884A1
WO2017193884A1 PCT/CN2017/083439 CN2017083439W WO2017193884A1 WO 2017193884 A1 WO2017193884 A1 WO 2017193884A1 CN 2017083439 W CN2017083439 W CN 2017083439W WO 2017193884 A1 WO2017193884 A1 WO 2017193884A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
resource configuration
mobile station
type
initial
Prior art date
Application number
PCT/CN2017/083439
Other languages
English (en)
French (fr)
Inventor
那崇宁
蒋惠玲
柿岛佑一
永田聪
Original Assignee
株式会社Ntt都科摩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ntt都科摩 filed Critical 株式会社Ntt都科摩
Priority to EP17795502.8A priority Critical patent/EP3457721A4/en
Priority to US16/099,012 priority patent/US20190199492A1/en
Priority to CN201780026827.1A priority patent/CN109155711B/zh
Priority to JP2018559210A priority patent/JP2019516327A/ja
Publication of WO2017193884A1 publication Critical patent/WO2017193884A1/zh
Priority to JP2022015376A priority patent/JP7291257B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present invention relates to the field of wireless communications, and in particular to a channel state information reference signal (CSI-RS) transmission method, a channel state information reference signal (CSI-RS) detection method, a base station, and a mobile station that can be used in a wireless communication system.
  • CSI-RS channel state information reference signal
  • CSI-RS channel state information reference signal
  • CSI-RS channel state information-reference signal
  • the base station transmits a CSI-RS for the mobile station to the mobile station such that the mobile station performs CSI measurement according to the CSI-RS and returns a measurement result.
  • FD-MIMO Full Dimensional MIMO
  • Massive MIMO Massive Multiple Input Multiple Output
  • the wireless transmission technology proposed in 13 Compared with the traditional MIMO system, in FD-MIMO and massive MIMO systems, when the data of the mobile station increases, the base station can use more antennas for data transmission to improve system throughput. However, as the number of antennas increases, the overhead of control signaling required for CSI-RS also increases.
  • the base station needs to separately set a suitable MIMO antenna array and FD-MIMO and massive MIMO antenna arrays. This leads to a further increase in the overhead of control signaling.
  • a channel state information reference signal performed by a base station is provided No. (CSI-RS) transmission method, wherein the base station has an antenna array, the method comprising: aggregating a plurality of CSI-RS initial resource configurations to obtain a CSI-RS aggregate resource configuration; and using the CSI-RS aggregation a first part of the resource configuration, the CSI-RS of the first antenna port in the antenna array is transmitted at a first density; and the second part resource configuration in the CSI-RS aggregate resource configuration is used, to be a second The density transmits a CSI-RS of a second antenna port in the antenna array.
  • CSI-RS channel state information reference signal performed by a base station
  • a channel state information reference signal (CSI-RS) detecting method performed by a mobile station comprising: receiving, from a base station, aggregate configuration information about a CSI-RS aggregate resource configuration, wherein And acquiring, by the plurality of CSI-RS initial resource configurations, the CSI-RS aggregation resource configuration; determining an antenna port in an antenna array of the base station to be detected according to the received aggregation configuration information; and corresponding to the determined antenna port The CSI-RS is tested.
  • CSI-RS channel state information reference signal
  • a base station including: a resource management unit, configured to aggregate multiple CSI-RS initial resource configurations to obtain a CSI-RS aggregate resource configuration; and send a unit configured to use The first part of the resource configuration in the CSI-RS aggregation resource configuration, the CSI-RS of the first antenna port in the antenna array of the base station is sent at a first density, and the second in the CSI-RS aggregation resource configuration is used. Part of the resource configuration, transmitting the CSI-RS of the second antenna port in the antenna array at a second density.
  • a mobile station comprising: a receiving unit configured to receive aggregate configuration information about a CSI-RS aggregate resource configuration from a base station, where the initial resource configuration is aggregated by multiple CSI-RSs Obtaining the CSI-RS aggregation resource configuration; the port determining unit is configured to determine an antenna port in an antenna array of the base station to be detected according to the received aggregation configuration information; and a detecting unit configured to pair with the determined antenna port The corresponding CSI-RS is detected.
  • the initial CSI-RS resource configuration is aggregated, and the CSI-RS is transmitted at different densities in the aggregated resource configuration. This enables the wireless communication system to achieve good compatibility between the FD-MIMO and the massive MIMO system and the conventional MIMO system while reducing the downlink control signaling overhead occupied by the CSI-RS by reducing the transmission density.
  • FIG. 1 is a flowchart showing a channel state information reference signal (CSI-RS) transmission method performed by a base station.
  • CSI-RS channel state information reference signal
  • FIG. 2 is a diagram showing determining an aggregated CSI-RS initial resource configuration according to a first type of mobile station and a second type of mobile station.
  • FIG. 3 is a schematic diagram showing a first partial resource and a second partial resource in a CSI-RS aggregate resource configuration in the example shown in FIG. 2.
  • FIG. 4 is a diagram showing determining an aggregated CSI-RS initial resource configuration according to a first type of mobile station and a second type of mobile station according to another example of the present invention.
  • FIG. 5 is a schematic diagram showing a first partial resource and a second partial resource in a CSI-RS aggregate resource configuration in the example shown in FIG. 4.
  • FIG. 6 is a schematic diagram showing orthogonal coverage coding of two CSI-RS initial resource configurations included in the second partial resource configuration described in FIG. 3 according to an example of the present invention.
  • FIG. 7 is a flowchart showing a channel state information (CSI) detecting method.
  • CSI channel state information
  • Figure 8 shows a block diagram of a base station in accordance with an embodiment of the present invention.
  • Figure 9 shows a block diagram of a mobile station in accordance with an embodiment of the present invention.
  • CSI-RS channel state information reference signal
  • CSI-RS channel state information reference signal
  • the base station may statically or semi-statically transmit configuration information such as antenna port, beam, time, and frequency resources used when transmitting the CSI-RS to the mobile station through RRC signaling. Then, according to the indication of the configuration information, the base station periodically transmits the CSI-RS to the mobile station, and the mobile station receives the CSI-RS at the time interval indicated by the configuration information, performs measurement according to the received CSI-RS, and according to the measurement Perform CSI feedback to the base station.
  • configuration information such as antenna port, beam, time, and frequency resources used when transmitting the CSI-RS to the mobile station through RRC signaling.
  • Resource allocation methods for CSI-RS supporting different antenna ports have been separately proposed. For example, in Release 10, a resource allocation method for a CSI-RS having an antenna array of 1, 2, 4, or 8 ports is proposed. As another example, in Release 13, an antenna array for a port having 8, 12, or 16 is proposed. Further, in Release 14, a base station supporting more antenna ports (for example, a base station supporting 20, 24, 28 or 32 ports) is proposed. It can be understood that if CSI-RS is transmitted at the same transmission density as the CSI-RS of fewer antenna ports (for example, 8-port) if more antenna ports (for example, 32 ports) are used, it may result in The downlink signaling overhead is significantly increased.
  • Embodiments of the present invention improve resource allocation and transmission methods of CSI-RS.
  • embodiments of the present invention will be described with reference to the drawings.
  • a base station may have an antenna array comprising a plurality of antenna ports.
  • FIG. 1 shows a flow chart of a CSI-RS transmission method 100. As shown in FIG. 1, in step S101, multiple CSI-RS initial resource configurations are aggregated to obtain a CSI-RS aggregate resource configuration.
  • the CSI-RS initial resource configuration and the CSI-RS initial resource configuration aggregation mode may be determined according to the type of the mobile station actually connected to the base station. Specifically, there may be a first type of mobile station and a second type of mobile station connected to the base station, wherein the base station transmits data to the first type of mobile station through the first number of antenna ports in the antenna array, and the base station passes through the antenna array The second number of antenna ports transmit data to the second type of mobile station, the first number being less than the second number.
  • the aggregated CSI-RS initial resource configuration may be determined according to the first type of mobile station and the second type of mobile station.
  • the style of the aggregated CSI-RS initial resource configuration may be determined according to the first type of mobile station, and according to the style and the second type of the aggregated CSI-RS initial resource configuration.
  • the mobile station of the type determines the number of initial resource configurations of the aggregated CSI-RS.
  • the pattern of CSI-RS initial resource configuration may include the number of ports used to transmit CSI-RS and the location of the occupied resources.
  • the mobile station of the first type is a mobile station that receives 4-port data transmission
  • the mobile station of the second type is a mobile station that receives 12-port data transmission
  • the style of the initial resource configuration of the aggregated CSI-RS is For the pattern of CSI-RS resource configuration of a mobile station receiving 4-port data transmission, in addition, it may be determined that three CSI-RS initial resource configurations are required to obtain a CSI-RS aggregate resource configuration.
  • the style of the aggregated CSI-RS initial resource configuration can be determined.
  • the CSI-RS initial resource configuration and the CSI-RS initial resource configuration aggregation mode may be determined according to the type of mobile station that may be connected to the base station.
  • the base station transmits data to the first type of mobile station through the first number of antenna ports in the antenna array
  • the base station transmits data to the second type of mobile station through a second number of antenna ports in the antenna array, the first number being less than the second number.
  • the aggregated CSI-RS initial resource configuration may be determined according to the first type of mobile station and the second type of mobile station.
  • FIG. 2 is a diagram showing determining an aggregated CSI-RS initial resource configuration according to a first type of mobile station and a second type of mobile station according to an example of the present invention.
  • a first type of mobile station receiving 8-port data transmission and a second type of mobile station capable of receiving 24-port data transmission are connected to the base station.
  • a pattern of CSI-RS resource configuration of a mobile station capable of receiving 8-port data transmission in an existing standard can be obtained as a pattern of CSI-RS initial resource configuration.
  • CSI-RS is transmitted through antenna ports 15-22.
  • Each time a CSI-RS is transmitted it is transmitted using a specific resource block (for example, as shown in the gray area in FIG. 2) of one subframe and bandwidth. Specifically, each time a CSI-RS is transmitted, a CSI-RS is transmitted using a frequency resource block distributed over the entire bandwidth of the base station. As shown in FIG. 2, the entire bandwidth may be divided into a plurality of resource block groups, each resource block group including 12 frequency resource blocks, and 8-port CSI-RSs are transmitted in the same manner in each resource block group. In addition, you can take one Or a plurality of subframes (for example, 5 subframes) are intervals, and the CSI-RS is periodically transmitted.
  • a specific resource block for example, as shown in the gray area in FIG. 2
  • a CSI-RS is transmitted using a frequency resource block distributed over the entire bandwidth of the base station. As shown in FIG. 2, the entire bandwidth may be divided into a plurality of resource block groups, each resource block group including 12 frequency resource blocks, and 8-port CSI
  • 2 CSI-RS initial resource configurations may be aggregated to obtain a CSI-RS aggregate resource configuration.
  • CSI-RS resource configurations 210-1 and 210-2 are aggregated to obtain a CSI-RS aggregate resource configuration.
  • the CSI-RS in the first part resource configuration and the second part resource configuration of the CSI-RS aggregate resource configuration, the CSI-RS may be transmitted in different densities, which will be described in detail below in conjunction with step S102 and step S103.
  • a mobile station of a first type may include one or more sub-types of mobile stations, wherein the number of antenna ports used by the base station to transmit data to mobile stations of respective sub-types is different.
  • the base station may determine the style of the aggregated CSI-RS initial resource configuration based on one or more subtypes of mobile stations.
  • the style of the aggregated CSI-RS initial resource configuration is a pattern of CSI-RS resource configurations for mobile stations of a particular subtype in one or more subtypes of mobile stations.
  • the pattern of the aggregated CSI-RS initial resource configuration may be determined based on the number of mobile stations connected to the base station capable of receiving 4 and 8 port data transmissions. For example, when the number of mobile stations connected to the base station capable of receiving 8-port data transmission is larger than the number of mobile stations capable of receiving 4-port data transmission, the CSI-RS resource configuration pattern of the mobile station capable of receiving 8-port data transmission will be configured. As a style of CSI-RS initial resource configuration. On the contrary, the pattern of the CSI-RS resource configuration of the mobile station capable of receiving the 4-port data transmission is used as the pattern of the CSI-RS initial resource configuration.
  • the CSI-RS of the first antenna port in the antenna array is transmitted at the first density using the first partial resource configuration in the CSI-RS aggregation resource configuration.
  • the CSI-RS of the second antenna port in the antenna array is transmitted at the second density using the second partial resource configuration in the CSI-RS aggregation resource configuration.
  • the first density can be an integer multiple of the second density.
  • the base station transmits data to the first type of mobile station through the first number of antenna ports in the antenna array, the base station passes through the antenna array The second number of antenna ports in the data transmission data to the second type of mobile station, the first number being less than the second number.
  • the mobile station and the second type of mobile station determine a first partial resource configuration, wherein a CSI-RS of the first antenna port is used for CSI measurement of the first type of mobile station, a CSI-RS of the first antenna port, and a second antenna port The CSI-RS is used for CSI measurement of the second type of mobile station.
  • the CSI-RS can be transmitted with a transmission density suitable for the mobile station of the first type.
  • the CSI-RS can be transmitted at a second density different from the first density.
  • the CSI-RS can be transmitted at a second density that is lower than the first density.
  • the first partial resource configuration may include at least one aggregated CSI-RS initial resource configuration.
  • FIG. 3 is a schematic diagram showing a first partial resource and a second partial resource in a CSI-RS aggregate resource configuration in the example shown in FIG. 2.
  • the CSI-RS aggregate resource configuration 300 is obtained by performing aggregation on the CSI-RS initial resource configurations 210-1 to 210-2 shown in FIG. 2.
  • the first partial resource configuration may be determined according to a mobile station capable of receiving 8-port data transmission and a second type of mobile station capable of receiving 24-port data transmission to determine a size of the first partial resource configuration, and is applicable in the first partial resource configuration
  • the CSI-RS is transmitted by the transmission density of the mobile station capable of receiving 8-port data transmission.
  • a CSI-RS resource configuration for a mobile station capable of receiving 8-port data transmission is configured as a CSI-RS initial resource configuration.
  • the CSI-RS initial resource configuration 210-1 can be used as the first partial resource configuration 310
  • the CSI-RS initial resource configuration 210-2 can be used as the second partial resource configuration 320.
  • the eight antenna ports whose reference signals are transmitted in the first partial resource configuration 310 are ports 15-18, 27-30, and the 16 antenna ports that transmit their reference signals in the second partial resource configuration 320.
  • ports 19-26, 31-38 That is, the antenna port in the first partial resource configuration transmission reference signal is different from the antenna port in the second partial resource configuration transmission reference signal.
  • the transmission density of the reference signal for each antenna port in the first partial resource configuration 310 is twice the transmission density of the reference signal for each antenna port in the second partial resource configuration 320.
  • the transmission of the CSI-RS for the mobile station capable of receiving the 8-port data transmission is thus completed by the first partial resource configuration 310, and the mobile capable of receiving the 24-port data transmission is completed by the first partial resource configuration 310 and the second partial resource configuration 320 Taiwan The transmission of CSI-RS.
  • the CSI-RS is transmitted through the antenna ports 15-22.
  • the number of the antenna port in the 24-port antenna array is different from the number of the antenna port in the 8-port antenna array, as shown in FIG. 3, in the first partial resource configuration, it is used to receive 8-port data.
  • the antenna port number of the first type of mobile station transmitted is different from the antenna port number of the first type of mobile station capable of receiving 8-port data transmission as shown in FIG. 2.
  • the initial antenna port P′ corresponding to the CSI-RS initial resource configuration may be determined according to the resource configuration information about the CSI-RS initial resource configuration, and aggregated in the CSI-RS according to the determined initial antenna port.
  • the initial CSI-RS resource allocation number K in the resource configuration, the CSI-RS initial resource configuration number L in the first partial resource configuration in the CSI-RS aggregation resource configuration, and the relationship parameter between the first density and the second density Q obtains the antenna port P in the antenna array to be detected.
  • the antenna port P can be determined by the following formula (1) and formula (2).
  • the antenna port P can be determined by the following formula (1).
  • the antenna port P can be determined by the following formula (2).
  • k is the number of the initial resource configuration of the aggregated CSI-RS
  • M is the number of rows (or the number of columns) included in the antenna array of the base station
  • C is included in the antenna array for the initial resource allocation of the CSI-RS.
  • the antenna port in the antenna array to be detected may also be determined according to the resource block index n_RB indicated in the aggregated CSI-RS initial resource configuration.
  • the antenna port P can be determined by the following formula (3) and formula (4).
  • the antenna port P can be determined by the following formula (3).
  • the antenna port P can be determined by the following formula (4).
  • n_RB represents the number of the resource block in the entire bandwidth.
  • the constant "15" in the equations (1) - (4) is the starting number of the antenna port for transmitting the CSI-RS. For example, as described above, in Release 10, the CSI-RS is transmitted through the antenna ports 15-22.
  • FIG. 4 is a diagram showing determining an aggregated CSI-RS initial resource configuration according to a first type of mobile station and a second type of mobile station according to another example of the present invention.
  • a mobile station of a first type that receives 8-port data transmission and a mobile station of a second type capable of receiving 32-port data transmission are connected to a base station.
  • the pattern of the CSI-RS resource configuration of the mobile station capable of receiving the 8-port data transmission in the existing standard can be obtained as the pattern of the CSI-RS initial resource configuration.
  • FIG. 4 shows a diagram showing determining an aggregated CSI-RS initial resource configuration according to a first type of mobile station and a second type of mobile station according to another example of the present invention.
  • a mobile station of a first type that receives 8-port data transmission and a mobile station of a second type capable of receiving 32-port data transmission are connected to a base station.
  • two CSI-RS initial resource configurations may be aggregated to obtain a CSI-RS aggregate resource configuration.
  • CSI-RS resource configurations 410-1 through 410-2 are aggregated to obtain a CSI-RS aggregate resource configuration.
  • Aggregating CSI-RS resource configurations 410-1 to 410-2 and aggregated CSI-RS resource configurations 210-1 to 210-2, in order to illustrate aggregation for 32 ports, the CSI-RS resource configuration is shown in FIG. More parts on the frequency.
  • CSI-RSs may be transmitted at different densities.
  • FIG. 5 is a schematic diagram showing a first partial resource and a second partial resource in a CSI-RS aggregate resource configuration in the example shown in FIG. 4.
  • the CSI-RS aggregate resource configuration 500 is obtained by performing aggregation on the CSI-RS initial resource configurations 410-1 and 410-2 shown in FIG.
  • the first partial resource configuration may be determined according to a mobile station capable of receiving 8-port data transmission and a second type of mobile station capable of receiving 32-port data transmission to determine a size of the first partial resource configuration, and is applicable in the first partial resource configuration
  • the CSI-RS is transmitted by the transmission density of the mobile station capable of receiving 8-port data transmission.
  • the CSI-RS resource configuration for the mobile station capable of receiving 8-port data transmission is configured as the CSI-RS initial resource configuration. Therefore, as shown in FIG. 5, the CSI-RS initial resource configuration 410-1 may be used as the first partial resource configuration 510 for transmitting CSI-RS for the first type of mobile station capable of receiving 8-port data transmission, and The CSI-RS initial resource configuration 410-2 serves as a second partial resource configuration 520 for transmitting CSI-RS for a first type of mobile station capable of receiving 24-port data transmission. As shown in FIG. 5, in the first partial resource configuration 510, each of the eight antenna ports for the first type of mobile station is transmitted.
  • the CSI-RS and in the second partial resource configuration 520, transmits a CSI-RS for the second type of mobile station that is different from the 24 port ports in the first partial resource configuration 510.
  • the transmission density of the reference signal for each antenna port in the first partial resource configuration 510 is three times the transmission density of the reference signal for each antenna port in the second partial resource configuration 520.
  • the transmission of the CSI-RS for the mobile station capable of receiving the 8-port data transmission is thus completed by the first partial resource configuration 510, and the mobile capable of receiving the 32-port data transmission is completed by the first partial resource configuration 510 and the second partial resource configuration 520
  • the CSI-RS of the antenna port transmitted in the second partial resource configuration may be orthogonally covered in time and frequency to implement code division multiplexing, thereby implementing code division multiplexing. Improve power gain during channel estimation.
  • orthogonal coverage coding may be performed on multiple resource block groups included in the second partial resource configuration.
  • FIG. 6 is a diagram showing orthogonal coverage coding for two resource block groups included in the second partial resource configuration 320 described in FIG. 3 according to an example of the present invention.
  • the CSI-RSs of the resource block groups 210-2A and 210-2B with respect to the antenna ports 19, 20, 23, 24 are orthogonally covered to be used in the CSI-RS initial resource configuration 210-2A.
  • a first partial codeword for the CSI-RS of the antenna ports 19, 20, 23, 24 is transmitted, and a second partial codeword for the CSI-RS of the antenna ports 19, 20, 23, 24 is transmitted in 210-2B.
  • the same operations are performed for the antenna ports 31, 32, 35, 36, the antenna ports 21, 22, 25, 26 and the antenna ports 33, 34, 37, 38.
  • the CSI-RS initial resource configurations are aggregated, and in the aggregated resource configuration, the CSI-RSs are transmitted at different densities, which enables the wireless communication system to pass.
  • the transmission density is reduced to reduce the downlink control signaling overhead occupied by the CSI-RS, and the FD-MIMO and the large-scale MIMO system can be well compatible with the traditional MIMO system.
  • the method illustrated in FIG. 1 may further include transmitting to the mobile station by radio resource control (RRC) signaling Sending aggregate configuration information about the CSI-RS aggregate resource configuration. At least a portion of the aggregated configuration information can be communicated using parameters already present in the communication system. For example, information about the CSI-RS initial resource configuration may be sent to the mobile station through an antenna port number parameter (antennaPortsCount).
  • RRC radio resource control
  • FIG. 7 shows a flow chart of a CSI detection method 700.
  • the CSI detection method 700 corresponds to the CSI-RS transmission method 100 shown in FIG. 1.
  • step S701 aggregate configuration information about a CSI-RS aggregate resource configuration is received from a base station, where the CSI-RS aggregate resource configuration is obtained by aggregating a plurality of CSI-RS initial resource configurations.
  • the CSI-RS aggregate resource configuration includes a first partial resource configuration and a second partial resource configuration.
  • the base station may use the first partial resource configuration in the CSI-RS aggregation resource configuration to transmit the CSI-RS of the first antenna port in the antenna array at the first density; and use the second partial resource configuration in the CSI-RS aggregation resource configuration, The CSI-RS of the second antenna port in the antenna array is transmitted at a second density.
  • the aggregation configuration information includes resource configuration information about the aggregated CSI-RS initial resource configuration, the aggregated CSI-RS initial resource configuration total, and the CSI-RS initial included in the first partial resource configuration in the CSI-RS aggregation resource configuration.
  • an antenna port in an antenna array of a base station to be detected is determined according to the received aggregation configuration information.
  • an initial antenna port corresponding to the CSI-RS initial resource configuration may be determined according to resource configuration information regarding a CSI-RS initial resource configuration.
  • the aggregated CSI-RS initial resource configuration total number, the CSI-RS initial resource configuration number included in the first partial resource configuration in the CSI-RS aggregate resource configuration, and the first density A relationship parameter with the second density obtains an antenna port in the antenna array to be detected.
  • the antenna ports in the antenna array of the base station to be detected can be obtained using the above formulas (1) - (4).
  • the CSI-RS corresponding to the determined antenna port is detected.
  • a mobile station that uses less antenna ports (for example, 4-port or 8-port) for data reception can efficiently receive CSI-RS using an existing resource configuration without requiring Make changes to the receiving policy.
  • a mobile station that uses more antenna ports (for example, 24 ports, 28 ports, or 32 ports) for data reception can effectively use a partial density resource configuration to receive CSI-RS, which causes the wireless communication system to transmit by lowering
  • the density can reduce the downlink control signaling overhead occupied by the CSI-RS, and can achieve good compatibility between the FD-MIMO and the massive MIMO system and the traditional MIMO system.
  • FIG. 8 shows a block diagram of a base station 800 in accordance with an embodiment of the present invention.
  • the base station 800 includes a resource management unit 810 and a transmitting unit 820.
  • the base station 800 may include other components in addition to these two units, however, since these components are not related to the content of the embodiment of the present invention, the illustration and description thereof are omitted herein.
  • the specific details of the operations described below performed by the base station 800 according to the embodiment of the present invention are the same as those described above with reference to FIGS. 1-6, repeated description of the same details is omitted herein to avoid redundancy.
  • the resource management unit 810 aggregates a plurality of CSI-RS initial resource configurations to obtain a CSI-RS aggregate resource configuration.
  • the CSI-RS initial resource configuration and the CSI-RS initial resource configuration aggregation mode may be determined according to the type of the mobile station actually connected to the base station. Specifically, there may be a first type of mobile station and a second type of mobile station connected to the base station 800, wherein the transmitting unit 820 transmits data to the first type of mobile station through the first number of antenna ports in the antenna array, the transmitting unit 820 transmits data to a second type of mobile station through a second number of antenna ports in the antenna array, the first number being less than the second number.
  • the aggregated CSI-RS initial resource configuration may be determined according to the first type of mobile station and the second type of mobile station.
  • the pattern of the aggregated CSI-RS initial resource configuration may be determined according to the first type of mobile station, and the aggregated CSI-RS is determined according to the style of the aggregated CSI-RS initial resource configuration and the second type of mobile station.
  • the pattern of CSI-RS initial resource configuration may include the number of ports used to transmit CSI-RS and the location of the occupied resources.
  • the CSI-RS initial resource configuration and the CSI-RS initial resource configuration aggregation mode may be determined according to the type of mobile station that may be connected to the base station 800.
  • the transmitting unit 820 passes the first number of antenna ports in the antenna array to the first type of mobile station Transmitting data, the transmitting unit 820 transmits data to the second type of mobile station through a second number of antenna ports in the antenna array, the first number being less than the second number.
  • the aggregated CSI-RS initial resource configuration may be determined according to the first type of mobile station and the second type of mobile station.
  • the first type of mobile station may include one or more subtypes of mobile stations, wherein the number of antenna ports used by the transmitting unit 820 to transmit data to mobile stations of respective subtypes is different.
  • the resource management unit 810 can determine the style of the aggregated CSI-RS initial resource configuration according to one or more subtypes of mobile stations. For example, being aggregated
  • the pattern of CSI-RS initial resource configuration is a pattern of CSI-RS resource configurations for mobile stations of a particular subtype in one or more subtypes of mobile stations.
  • the resource management unit 810 can use a mobile station capable of receiving 4- and 8-port data transmissions as a mobile station of a first type, and a mobile station capable of receiving 24-port data transmission as a mobile station of a second type.
  • the resource management unit 810 can determine the style of the aggregated CSI-RS initial resource configuration based on the number of mobile stations connected to the base station capable of receiving 4 and 8 port data transmissions.
  • the resource management unit 810 when the number of mobile stations connected to the base station capable of receiving 8-port data transmission is greater than the number of mobile stations capable of receiving 4-port data transmission, the resource management unit 810 will be directed to the CSI-RS of the mobile station capable of receiving 8-port data transmission.
  • the style of the resource configuration is used as the style of the CSI-RS initial resource configuration.
  • the resource management unit 810 regards the pattern of the CSI-RS resource configuration of the mobile station capable of receiving the 4-port data transmission as the pattern of the CSI-RS initial resource configuration.
  • the transmitting unit 820 transmits the CSI-RS of the first antenna port in the antenna array at the first density using the first partial resource configuration in the CSI-RS aggregation resource configuration. In addition, the transmitting unit 820 also transmits the CSI-RS of the second antenna port in the antenna array at the second density using the second partial resource configuration in the CSI-RS aggregation resource configuration.
  • the first density can be an integer multiple of the second density.
  • the transmitting unit 820 transmits data to the first type of mobile station through the first number of antenna ports in the antenna array, and transmits Unit 820 transmits data to a second type of mobile station through a second number of antenna ports in the antenna array, the first number being less than the second number.
  • the resource management unit 810 determines a first partial resource configuration according to the first type of mobile station and the second type of mobile station, wherein the CSI-RS of the first antenna port is used for the mobile station of the first type
  • the CSI measurement, the CSI-RS of the first antenna port and the CSI-RS of the second antenna port are used for CSI measurement of the second type of mobile station.
  • the CSI-RS can be transmitted with a transmission density suitable for the mobile station of the first type.
  • the second partial resource configuration since it is not necessary to consider the mobile station of the first type, the CSI-RS can be transmitted at a second density different from the first density.
  • the CSI-RS can be transmitted at a second density that is lower than the first density.
  • the first partial resource configuration may include at least one aggregated CSI-RS initial resource configuration.
  • the base station 800 may further include a port determining unit to The resource configuration information of the CSI-RS initial resource configuration determines an initial antenna port P′ corresponding to the CSI-RS initial resource configuration, and initializes the CSI-RS aggregated in the CSI-RS aggregate resource configuration according to the determined initial antenna port.
  • the resource allocation number K, the CSI-RS initial resource configuration number L in the first partial resource configuration in the CSI-RS aggregation resource configuration, and the relationship parameter Q between the first density and the second density are obtained in the antenna array to be detected.
  • Antenna port P As described above, in the first partial resource configuration, the antenna port P can be determined by the above formula (1) and formula (2); in addition, in the second part resource configuration, the above formula (3) and formula (4) can be adopted. To determine the antenna port P.
  • the base station 800 may further include an encoding unit to perform orthogonal coverage code on time and frequency for the CSI-RS of the antenna port transmitted in the second partial resource configuration.
  • orthogonal coverage coding may be performed on multiple CSI-RS initial resource configurations included in the second partial resource configuration.
  • the CSI-RS initial resource configurations are aggregated, and in the aggregated resource configuration, the CSI-RSs are transmitted at different densities, which enables the wireless communication system to reduce the transmission density. While reducing the downlink control signaling overhead occupied by the CSI-RS, the FD-MIMO and the massive MIMO system can be well compatible with the conventional MIMO system.
  • the transmitting unit 820 may also transmit, to the mobile station, the CSI through radio resource control (RRC) signaling.
  • RRC radio resource control
  • - Aggregation configuration information of the RS aggregation resource configuration At least a portion of the aggregated configuration information can be communicated using parameters already present in the communication system. For example, information about the CSI-RS initial resource configuration may be sent to the mobile station through an antenna port number parameter (antennaPortsCount).
  • FIG. 9 shows a block diagram of a mobile station 900 in accordance with an embodiment of the present invention.
  • the mobile station 900 includes a receiving unit 910, a port determining unit 920, and a detecting unit 930.
  • the mobile station 900 may include other components in addition to these three units, however, since these components are not related to the content of the embodiment of the present invention, the illustration and description thereof are omitted herein. Further, since the specific details of the operations described below performed by the mobile station 900 according to the embodiment of the present invention are the same as those described above with reference to FIG. 7, the repeated description of the same details is omitted herein to avoid redundancy.
  • the receiving unit 910 may receive, from the base station, aggregate configuration information about a CSI-RS aggregate resource configuration, where the CSI-RS aggregate resource configuration is obtained by aggregating a plurality of CSI-RS initial resource configurations.
  • the CSI-RS aggregate resource configuration includes a first partial resource configuration and a second partial resource configuration.
  • the base station may use the first partial resource configuration in the CSI-RS aggregation resource configuration to transmit the CSI-RS of the first antenna port in the antenna array at the first density; and use the second partial resource configuration in the CSI-RS aggregation resource configuration, The CSI-RS of the second antenna port in the antenna array is transmitted at a second density.
  • the aggregation configuration information includes resource configuration information about the aggregated CSI-RS initial resource configuration, the aggregated CSI-RS initial resource configuration total, and the CSI-RS initial included in the first partial resource configuration in the CSI-RS aggregation resource configuration.
  • the port determining unit 920 can determine an antenna port in an antenna array of the base station to be detected according to the received aggregated configuration information.
  • an initial antenna port corresponding to the CSI-RS initial resource configuration may be determined according to resource configuration information regarding a CSI-RS initial resource configuration. Then, according to the determined initial antenna port, the aggregated CSI-RS initial resource configuration total number, the CSI-RS initial resource configuration number included in the first partial resource configuration in the CSI-RS aggregate resource configuration, and the first density A relationship parameter with the second density obtains an antenna port in the antenna array to be detected.
  • the antenna ports in the antenna array of the base station to be detected can be obtained using the above formulas (1) - (4).
  • the detecting unit 930 can then detect the CSI-RS corresponding to the determined antenna port.
  • a mobile station that uses less antenna ports (for example, 4-port or 8-port) for data reception can efficiently receive CSI-RS using an existing resource configuration without requiring Make changes to the receiving policy.
  • a mobile station that uses more antenna ports (for example, 24 ports, 28 ports, or 32 ports) for data reception can effectively use a partial density resource configuration to receive CSI-RS, which causes the wireless communication system to transmit by lowering
  • the density can reduce the downlink control signaling overhead occupied by the CSI-RS, and can achieve good compatibility between the FD-MIMO and the massive MIMO system and the traditional MIMO system.
  • the operations of the above-described base station 800 and mobile station 900 may be implemented by hardware, by a software module executed by a processor, and further by a combination of the two.
  • Software modules can be arranged in any format of storage medium, such as RAM (random access) Memory), flash memory, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), registers, hard disk, removable disk, and CD-ROM.
  • RAM random access
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrically Erasable Programmable ROM
  • registers hard disk, removable disk, and CD-ROM.
  • Such a storage medium is coupled to the processor such that the processor can write information to or read information from the storage medium.
  • Such storage media can also be accumulated in the processor.
  • Such a storage medium and processor can be arranged in an ASIC.
  • Such an ASIC can be arranged in the base station 800 and the mobile station 900.
  • As a discrete component, such a storage medium and processor can be disposed in base station 800 and mobile station 900.
  • operations performed by the resource management unit in the above-described base station may be performed by a processor.
  • the operations performed by the port determining unit and the detecting unit in the mobile station described above may be performed by a processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明的实施例提供了一种CSI-RS发送方法、CSI检测方法、基站和移动台。根据本发明实施例的信道状态信息参考信号(CSI-RS)发送方法由基站执行,包括:对多个CSI-RS初始资源配置进行聚合,以获得CSI-RS聚合资源配置;使用所述CSI-RS聚合资源配置中的第一部分资源配置,以第一密度发送所述天线阵列中的第一天线端口的CSI-RS;以及使用所述CSI-RS聚合资源配置中的第二部分资源配置,以第二密度发送所述天线阵列中的第二天线端口的CSI-RS。

Description

参考信号发送方法、检测方法、基站和移动台 技术领域
本发明涉及无线通信领域,并且具体涉及可以在无线通信系统中使用的信道状态信息参考信号(CSI-RS)发送方法、信道状态信息参考信号(CSI-RS)检测方法、基站和移动台。
背景技术
在LTE系统的后继系统(例如,有时也称为LTE-Advanced或者LTE-Advanced Pro)中,在用户终端中对信道的空间特性进行测量,并且将测量结果以信道状态信息(CSI)的形式反馈给无线基站变得越发重要。在LTE的后继系统(例如,Release 10)中,提出了使用信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)作为用于测量信道状态信息(Channel State Information,CSI)的参考信号。例如,基站向移动台发送用于该移动台的CSI-RS,以使得移动台根据该CSI-RS进行CSI测量并返回测量结果。
另一方面,全维度多输入多输出(Full Dimensional MIMO,FD-MIMO)和大规模多输入多输出(Massive MIMO)天线是在3GPP(第三代合作伙伴计划)研究的LTE(长期演进)Release 13中提出的无线传输技术。与传统的MIMO系统相比,在FD-MIMO和大规模MIMO系统中,当移动台的数据增加时,基站能够使用更多天线进行数据传输,以提高系统吞吐量。然而,随着天线的数量的增加,用于CSI-RS所需要的控制信令的开销也随之增加。此外,考虑到小区内可能既存在使用传统的MIMO系统的移动台也存在使用FD-MIMO和大规模MIMO系统的移动台,如果不能使得FD-MIMO和大规模MIMO系统与传统的MIMO系统兼容,则基站需要分别设置适用于传统的MIMO天线阵列以及FD-MIMO和大规模MIMO天线阵列。这导致控制信令的开销的进一步增加。
发明内容
根据本发明的一个方面,提供了一种由基站执行的信道状态信息参考信 号(CSI-RS)发送方法,其中所述基站具有天线阵列,所述方法包括:对多个CSI-RS初始资源配置进行聚合,以获得CSI-RS聚合资源配置;使用所述CSI-RS聚合资源配置中的第一部分资源配置,以第一密度发送所述天线阵列中的第一天线端口的CSI-RS;以及使用所述CSI-RS聚合资源配置中的第二部分资源配置,以第二密度发送所述天线阵列中的第二天线端口的CSI-RS。
根据本发明的另一个方面,提供了一种由移动台执行的信道状态信息参考信号(CSI-RS)检测方法,包括:从基站接收关于CSI-RS聚合资源配置的聚合配置信息,其中通过对多个CSI-RS初始资源配置进行聚合获得所述CSI-RS聚合资源配置;根据所接收的聚合配置信息确定所需检测的基站的天线阵列中的天线端口;对与所确定的天线端口对应的CSI-RS进行检测。
根据本发明的另一个方面,提供了一种基站,包括:资源管理单元,配置为对多个CSI-RS初始资源配置进行聚合,以获得CSI-RS聚合资源配置;发送单元,配置为使用所述CSI-RS聚合资源配置中的第一部分资源配置,以第一密度发送所述基站的天线阵列中的第一天线端口的CSI-RS,以及使用所述CSI-RS聚合资源配置中的第二部分资源配置,以第二密度发送所述天线阵列中的第二天线端口的CSI-RS。
根据本发明的另一个方面,提供了一种移动台,包括:接收单元,配置为从基站接收关于CSI-RS聚合资源配置的聚合配置信息,其中通过对多个CSI-RS初始资源配置进行聚合获得所述CSI-RS聚合资源配置;端口确定单元,配置为根据所接收的聚合配置信息确定所需检测的基站的天线阵列中的天线端口;以及检测单元,配置为对与所确定的天线端口对应的CSI-RS进行检测。
根据本发明上述方面的CSI-RS发送方法、CSI-RS检测方法、基站和移动台,对个CSI-RS初始资源配置进行聚合,并在聚合后的资源配置中,以不同密度发送CSI-RS,这使得无线通信系统在通过降低发送密度来减少CSI-RS所占用的下行控制信令开销的同时,能够实现FD-MIMO和大规模MIMO系统与传统的MIMO系统的良好兼容。
附图说明
通过结合附图对本发明的实施例进行详细描述,本发明的上述和其它目 的、特征、优点将会变得更加清楚。
图1是示出了由基站执行的信道状态信息参考信号(CSI-RS)发送方法的流程图。
图2是示出了根据第一类型的移动台和第二类型的移动台确定被聚合的CSI-RS初始资源配置的示意图。
图3是示出了在图2所示的示例中,CSI-RS聚合资源配置中的第一部分资源和的第二部分资源的示意图。
图4是示出了根据本发明的另一示例,根据第一类型的移动台和第二类型的移动台确定被聚合的CSI-RS初始资源配置的示意图。
图5是示出了在图4所示的示例中,CSI-RS聚合资源配置中的第一部分资源和的第二部分资源的示意图。
图6是示出了根据本发明的一个示例,对图3中所述的第二部分资源配置中包含的2个CSI-RS初始资源配置进行正交覆盖编码的示意图。
图7是示出了信道状态信息(CSI)检测方法的流程图。
图8示出了根据本发明实施例的基站的框图。
图9示出了根据本发明实施例的移动台的框图。
具体实施方式
下面将参照附图来描述根据本发明实施例的信道状态信息参考信号(CSI-RS)发送方法、信道状态信息参考信号(CSI-RS)检测方法、基站和移动台。在附图中,相同的参考标号自始至终表示相同的元件。应当理解:这里描述的实施例仅仅是说明性的,而不应被解释为限制本发明的范围。此外,这里所述的UE可以包括各种类型的用户终端,例如移动终端(或称为移动台)或者固定终端,然而,为方便起见,在下文中有时候可互换地使用UE和移动台。
基站可通过RRC信令静态或半静态地向移动台发送关于传输CSI-RS时所使用的天线端口、波束、时间和频率资源等配置信息。然后,根据配置信息的指示的,基站周期性地向移动台发送CSI-RS,并且移动台以配置信息所指示的时间间隔接收CSI-RS,根据所接收的CSI-RS进行测量,并根据测量进行向基站进行CSI反馈。
已经分别提出了支持不同天线端口的CSI-RS的资源配置方法。例如,在Release 10中,提出了用于具有1、2、4、或8端口的天线阵列的CSI-RS的资源配置方法。又例如,在Release 13中,提出了用于具有8、12、或16端口的天线阵列。此外,在Release 14中,提出了支持更多天线端口的基站(例如,支持20、24、28或32端口的基站)。能够理解,如果在使用较多天线端口(例如,32端口)的情况下,如果以与较少天线端口(例如,8端口)的CSI-RS相同的发送密度来发送CSI-RS,则会导致下行链路信令开销显著增加。
虽然为了减少信令开销,已经提出了在使用较多天线端口的情况下,使用较小的密度来发送CSI-RS,然而这导致使用不同发送密度的天线端口之间不能相互兼容,需要在基站中分别设置针对不同发送密度的天线阵列。例如,分别设置8端口的天线阵列、16端口的天线阵列和32端口的天线阵列。这在增加了基站设置的复杂性的同时,也增加了下行链路信令的开销。因此,现有的CSI-RS发送方法不适用于小区中同时存在使用传统的MIMO系统的移动台以及使用FD-MIMO和大规模MIMO系统的移动台的情况。
本发明的实施例改进了CSI-RS的资源配置和发送方式。下面,将参照附图来描述本发明的实施例。
以下,参照图1描述根据本发明实施例的由基站执行的信道状态信息参考信号(CSI-RS)发送方法。在根据本发明的实施例中,基站可具有包含多个天线端口的天线阵列。图1示出了CSI-RS发送方法100的流程图。如图1所示,在步骤S101中,对多个CSI-RS初始资源配置进行聚合,以获得CSI-RS聚合资源配置。
根据本发明的一个示例,可根据实际连接到基站的移动台的类型来确定CSI-RS初始资源配置以及对CSI-RS初始资源配置聚合方式。具体地,可存在第一类型的移动台和第二类型的移动台连接到基站,其中基站通过天线阵列中的第一数量的天线端口向第一类型的移动台发送数据,基站通过天线阵列中的第二数量的天线端口向第二类型的移动台发送数据,第一数量小于第二数量。可根据第一类型的移动台和第二类型的移动台确定被聚合的CSI-RS初始资源配置。例如,可根据第一类型的移动台确定被聚合的CSI-RS初始资源配置的样式,并且根据被聚合的CSI-RS初始资源配置的样式和第二类 型的移动台确定被聚合的CSI-RS初始资源配置的个数。CSI-RS初始资源配置的样式可包括用于发送CSI-RS的端口数及所占据的资源的位置。
例如,当第一类型的移动台为接收4端口数据传输的移动台,第二类型的移动台为接收12端口数据传输的移动台时,可确定被聚合的CSI-RS初始资源配置的样式为针对接收4端口数据传输的移动台的CSI-RS资源配置的样式,此外,可确定需要对3个CSI-RS初始资源配置以获得CSI-RS聚合资源配置。
又例如,当第一类型的移动台为接收8端口数据传输的移动台,第二类型的移动台为接收16端口数据传输的移动台时,可确定被聚合的CSI-RS初始资源配置的样式为针对接收8端口数据传输的移动台的CSI-RS资源配置的样式,此外,可确定需要对2个CSI-RS初始资源配置以获得CSI-RS聚合资源配置。
根据本发明的另一示例,可根据可能连接到基站的移动台的类型来确定CSI-RS初始资源配置以及对CSI-RS初始资源配置聚合方式。具体地,可存在第一类型的移动台和第二类型的移动台可能连接到基站,其中如上所述,基站通过天线阵列中的第一数量的天线端口向第一类型的移动台发送数据,基站通过天线阵列中的第二数量的天线端口向第二类型的移动台发送数据,第一数量小于第二数量。可根据第一类型的移动台和第二类型的移动台确定被聚合的CSI-RS初始资源配置。
图2是示出了根据本发明的一个示例,根据第一类型的移动台和第二类型的移动台确定被聚合的CSI-RS初始资源配置的示意图。在图2所示的示例中,接收8端口数据传输的第一类型的移动台和能够接收24端口数据传输的第二类型的移动台连接到基站。可获得在现有标准中能够接收8端口数据传输的移动台的CSI-RS资源配置的样式作为CSI-RS初始资源配置的样式。如图2所示,例如根据Release 10,对于8端口的天线阵列,通过天线端口15-22发送CSI-RS。每次发送CSI-RS时,使用1个子帧和带宽中的特定资源块(例如图2中的灰色区域所示)进行发送。具体地说,每次发送CSI-RS时,使用分布在基站的整个带宽上的频率资源块发送CSI-RS。如图2所示,整个带宽可分为多个资源块组,每个资源块组包括12个频率资源块,并且在各个资源块组中以相同的方式发送8端口的CSI-RS。此外,可以以一个 或多个子帧(例如5个子帧)为间隔,周期性地发送CSI-RS。
此外,在图2所示的示例中,可聚合2个CSI-RS初始资源配置以获得CSI-RS聚合资源配置。例如,聚合CSI-RS资源配置210-1和210-2以获得CSI-RS聚合资源配置。根据本发明的实施例,在CSI-RS聚合资源配置的第一部分资源配置和第二部分资源配置中,可以不同密度发送CSI-RS,以下将结合步骤S102和步骤S103对此进行详细描述。
此外,根据本发明的另一示例,第一类型的移动台可包括一个或多个子类型的移动台,其中基站向各个子类型的移动台发送数据时所使用的天线端口数量不同。在此情况下,基站可根据一个或多个子类型的移动台确定被聚合的CSI-RS初始资源配置的样式。例如,被聚合的CSI-RS初始资源配置的样式是针对一个或多个子类型的移动台中特定子类型的移动台的CSI-RS资源配置的样式。
例如,可存在能够接收4、8和24端口数据传输的移动台连接到基站。可将能够接收4和8端口数据传输的移动台作为第一类型的移动台,将能够接收24端口数据传输的移动台作为第二类型的移动台。可根据连接到基站的能够接收4和8端口数据传输的移动台数量来确定被聚合的CSI-RS初始资源配置的样式。例如,当连接到基站的能够接收8端口数据传输的移动台数量多于能够接收4端口数据传输的移动台数量时,将针对能够接收8端口数据传输的移动台的CSI-RS资源配置的样式作为CSI-RS初始资源配置的样式。反之,将针对能够接收4端口数据传输的移动台的CSI-RS资源配置的样式作为CSI-RS初始资源配置的样式。
返回图1在步骤S102中,使用CSI-RS聚合资源配置中的第一部分资源配置,以第一密度发送天线阵列中的第一天线端口的CSI-RS。此外,在步骤S103中,使用CSI-RS聚合资源配置中的第二部分资源配置,以第二密度发送天线阵列中的第二天线端口的CSI-RS。例如,第一密度可以是第二密度的整数倍。
如上所述,可存在第一类型的移动台和第二类型的移动台连接到基站,其中基站通过天线阵列中的第一数量的天线端口向第一类型的移动台发送数据,基站通过天线阵列中的第二数量的天线端口向第二类型的移动台发送数据,第一数量小于第二数量。根据本发明的一个示例,可根据第一类型的 移动台和第二类型的移动台确定第一部分资源配置,其中第一天线端口的CSI-RS用于第一类型的移动台的CSI测量,第一天线端口的CSI-RS和第二天线端口的CSI-RS用于第二类型的移动台的CSI测量。从而在第一部分资源配置中,可以以适用于第一类型的移动台的发送密度来发送CSI-RS。另一方面,在第二部分资源配置中,由于不需要考虑第一类型的移动台,因此可以以不同于第一密度的第二密度发送CSI-RS。例如,可以以比第一密度低的第二密度发送CSI-RS。此外,根据本发明的另一示例,第一部分资源配置可包含至少一个被聚合的CSI-RS初始资源配置。
图3是示出了在图2所示的示例中,CSI-RS聚合资源配置中的第一部分资源和的第二部分资源的示意图。具体地,在图3中,通过对图2所示的CSI-RS初始资源配置210-1至210-2进行聚合获得CSI-RS聚合资源配置300。如上所述,在本示例中,存在能够接收8端口数据传输的第一类型的移动台和能够接收24端口数据传输的第二类型的移动台连接到基站。可根据能够接收8端口数据传输的移动台和能够接收24端口数据传输的第二类型的移动台确定第一部分资源配置,以便确定第一部分资源配置的大小,并且在第一部分资源配置中以适用于能够接收8端口数据传输的移动台的发送密度来发送CSI-RS。
如上所述,在图2中,将针对能够接收8端口数据传输的移动台的CSI-RS资源配置作为CSI-RS初始资源配置。因此如图3所示,可以将CSI-RS初始资源配置210-1作为第一部分资源配置310,并且将CSI-RS初始资源配置210-2作为第二部分资源配置320。如图3所示,在第一部分资源配置310中发送其参考信号的8个天线端口为端口15-18,27-30,并且在第二部分资源配置320中发送其参考信号的16个天线端口为端口19-26,31-38。即,在第一部分资源配置发送参考信号的天线端口与在第二部分资源配置发送参考信号的天线端口不同。
此外如图3所示,在第一部分资源配置310中对于每个天线端口的参考信号的发送密度是在第二部分资源配置320中对于每个天线端口的参考信号的发送密度的2倍。从而通过第一部分资源配置310完成对于能够接收8端口数据传输的移动台的CSI-RS的发送,并且通过第一部分资源配置310和第二部分资源配置320共同完成对于能够接收24端口数据传输的移动台的 CSI-RS的发送。
此外,在图2所示的示例中,对于8端口的天线阵列,通过天线端口15-22发送CSI-RS。然而,由于24端口的天线阵列中天线端口的编号与在8端口的天线阵列中天线端口的编号不同,因此,如图3所示,在第一部分资源配置中,用于向能够接收8端口数据传输的第一类型的移动台的天线端口编号与在图2所示的向能够接收8端口数据传输的第一类型的移动台的天线端口编号不同。
根据本发明的一个示例,可根据关于CSI-RS初始资源配置的资源配置信息确定与CSI-RS初始资源配置对应的初始天线端口P’,并且根据所确定的初始天线端口、在CSI-RS聚合资源配置中被聚合的CSI-RS初始资源配置数K、CSI-RS聚合资源配置中的第一部分资源配置中CSI-RS初始资源配置数L、以及第一密度与第二密度之间的关系参数Q获得所需检测的天线阵列中的天线端口P。
例如,在第一部分资源配置中,可通过以下公式(1)和公式(2)来确定天线端口P。
具体地,当(P’-15)<M*C时,可通过以下公式(1)来确定天线端口P。
P=(k-1)*M*C+P’……(1)
当(P’-15)>=M*C时,可通过以下公式(2)来确定天线端口P。
P=(k-1)*M*C+P’……(2)
其中,k表示被聚合的CSI-RS初始资源配置的编号,M表示基站的天线阵列中所包含的行数(或列数),C表示在CSI-RS初始资源配置针对的天线阵列中所包含的列数(或行数)。
此外,还可根据被聚合的CSI-RS初始资源配置中所指示的资源块索引n_RB确定所需检测的天线阵列中的天线端口。
例如,在第二部分资源配置中,可通过以下公式(3)和公式(4)来确定天线端口P。
具体地,当(P’-15)<M*C时,可通过以下公式(3)来确定天线端口P。
P=(k-1)*M*C+l*M*C+P’……(3)
当(P’-15)>=M*C时,可通过以下公式(4)来确定天线端口P。
P=(k-1)*M*C+(K-L)*Q*M*C+l*M*C+P’……(4)
其中,l=mod(n_RB,Q),n_RB表示在整个带宽中资源块的编号。
在公式(1)-(4)中的常数“15”,为用于发送CSI-RS的天线端口的起始编号。例如,如上所述,在Release 10中,通过天线端口15-22发送CSI-RS。
图4是示出了根据本发明的另一示例,根据第一类型的移动台和第二类型的移动台确定被聚合的CSI-RS初始资源配置的示意图。在图4所示的示例中,接收8端口数据传输的第一类型的移动台和能够接收32端口数据传输的第二类型的移动台连接到基站。与图2类似,可获得在现有标准中能够接收8端口数据传输的移动台的CSI-RS资源配置的样式作为CSI-RS初始资源配置的样式。此外,在图4所示的示例中,为了实现对能够接收32端口数据传输的第二类型的移动台发送CSI-RS,可聚合2个CSI-RS初始资源配置以获得CSI-RS聚合资源配置。例如,聚合CSI-RS资源配置410-1至410-2以获得CSI-RS聚合资源配置。聚合CSI-RS资源配置410-1至410-2与聚合CSI-RS资源配置210-1至210-2,为了说明针对32端口的聚合,在图4中示出了该CSI-RS资源配置在频率上更多的部分。根据本发明的实施例,在CSI-RS聚合资源配置的第一部分资源配置和第二部分资源配置中,可以不同密度发送CSI-RS。
图5是示出了在图4所示的示例中,CSI-RS聚合资源配置中的第一部分资源和的第二部分资源的示意图。具体地,在图5中,通过对图4所示的CSI-RS初始资源配置410-1和410-2进行聚合获得CSI-RS聚合资源配置500。可根据能够接收8端口数据传输的移动台和能够接收32端口数据传输的第二类型的移动台确定第一部分资源配置,以便确定第一部分资源配置的大小,并且在第一部分资源配置中以适用于能够接收8端口数据传输的移动台的发送密度来发送CSI-RS。
如上所述,在图4中,将针对能够接收8端口数据传输的移动台的CSI-RS资源配置作为CSI-RS初始资源配置。因此如图5所示,可以将CSI-RS初始资源配置410-1作为第一部分资源配置510,用于发送针对能够接收8端口数据传输的第一类型的移动台的CSI-RS,并且将另外CSI-RS初始资源配置410-2作为第二部分资源配置520,用于发送针对能够接收24端口数据传输的第一类型的移动台的CSI-RS。如图5所示,在第一部分资源配置510中,发送用于第一类型的移动台的8个天线端口中每个天线端口 的CSI-RS,而在第二部分资源配置520中,发送针对第二类型的移动台的与在第一部分资源配置510中的天线段端口不同的24个端口的CSI-RS。如图5所示,在第一部分资源配置510中对于每个天线端口的参考信号的发送密度是在第二部分资源配置520中对于每个天线端口的参考信号的发送密度的3倍。从而通过第一部分资源配置510完成对于能够接收8端口数据传输的移动台的CSI-RS的发送,并且通过第一部分资源配置510和第二部分资源配置520共同完成对于能够接收32端口数据传输的移动台的CSI-RS的发送。
此外,根据本发明的另一示例,可对第二部分资源配置中发送的天线端口的CSI-RS在时间和频率上进行正交覆盖编码(orthogonal covering code),以实现码分复用,从而改善信道估计时的功率增益。例如,可对第二部分资源配置中包含的多个资源块组进行正交覆盖编码。
图6是示出了根据本发明的一个示例,对图3中所述的第二部分资源配置320中包含的2个资源块组进行正交覆盖编码的示意图。如图6所示,将资源块组210-2A和210-2B中关于天线端口19、20、23、24的CSI-RS进行正交覆盖编码,以在CSI-RS初始资源配置210-2A中发送关于天线端口19、20、23、24的CSI-RS的第一部分码字,在210-2B中发送关于天线端口19、20、23、24的CSI-RS的第二部分码字。此外,对天线端口31、32、35、36,天线端口21、22、25、26以及天线端口33、34、37、38进行同样的操作。
在根据本发明上述实施例的CSI-RS发送方法中,对个CSI-RS初始资源配置进行聚合,并在聚合后的资源配置中,以不同密度发送CSI-RS,这使得无线通信系统在通过降低发送密度来减少CSI-RS所占用的下行控制信令开销的同时,能够实现FD-MIMO和大规模MIMO系统与传统的MIMO系统的良好兼容。
此外,根据本发明的另一示例,在根据实际连接到基站的移动台的类型进行资源聚合的情况下,图1中所示的方法还可包括通过无线资源控制(RRC)信令向移动台发送关于所述CSI-RS聚合资源配置的聚合配置信息。可使用通信系统中已经存在的参数来通知至少部分聚合配置信息。例如,可通过天线端口数参数(antennaPortsCount)向移动台发送关于所述CSI-RS初始资源配置的信息。
以下,参照图7描述根据本发明实施例的由移动台执行的信道状态信息参考信号(CSI-RS)检测方法。图7示出了CSI检测方法700的流程图。CSI检测方法700与图1中所示的CSI-RS发送方法100对应。
如图7所示,在步骤S701中,从基站接收关于CSI-RS聚合资源配置的聚合配置信息,其中通过对多个CSI-RS初始资源配置进行聚合获得所述CSI-RS聚合资源配置。根据本发明的一个示例,CSI-RS聚合资源配置包括第一部分资源配置和第二部分资源配置。基站可使用CSI-RS聚合资源配置中的第一部分资源配置,以第一密度发送天线阵列中的第一天线端口的CSI-RS;并且使用CSI-RS聚合资源配置中的第二部分资源配置,以第二密度发送天线阵列中的第二天线端口的CSI-RS。聚合配置可信息包括关于被聚合的CSI-RS初始资源配置的资源配置信息、被聚合的CSI-RS初始资源配置总数、CSI-RS聚合资源配置中的第一部分资源配置中包含的CSI-RS初始资源配置数、以及第一密度与第二密度之间的关系参数。
在步骤S702中,根据所接收的聚合配置信息确定所需检测的基站的天线阵列中的天线端口。根据本发明的一个示例,可根据关于CSI-RS初始资源配置的资源配置信息确定与所述CSI-RS初始资源配置对应的初始天线端口。然后,根据所确定的初始天线端口、被聚合的CSI-RS初始资源配置总数、CSI-RS聚合资源配置中的第一部分资源配置中包含的CSI-RS初始资源配置数、以及所述第一密度与所述第二密度之间的关系参数获得所需检测的天线阵列中的天线端口。例如,可使用上述公式(1)-(4)获得所需检测的基站的天线阵列中的天线端口。然后在步骤S703中,对与所确定的天线端口对应的CSI-RS进行检测。
在根据本发明上述实施例的CSI检测方法中,使用较少天线端口(例如4端口或8端口)进行数据接收的移动台,能够有效地使用已有的资源配置接收CSI-RS,而不需要对接收策略进行改变。另一方面,使用较多天线端口(例如24端口、28端口或32端口)进行数据接收的移动台,能够有效地使用部分地密度资源配置接收CSI-RS,这使得无线通信系统在通过降低发送密度来减少CSI-RS所占用的下行控制信令开销的同时,能够实现FD-MIMO和大规模MIMO系统与传统的MIMO系统的良好兼容。
下面,参照图8来描述根据本发明实施例的基站。图8示出了根据本发明实施例的基站800的框图。如图8所示,基站800包括资源管理单元810和发送单元820。除了这两个单元以外,基站800还可以包括其他部件,然而,由于这些部件与本发明实施例的内容无关,因此在这里省略其图示和描述。此外,由于根据本发明实施例的基站800执行的下述操作的具体细节与在上文中参照图1-6描述的细节相同,因此在这里为了避免重复而省略对相同细节的重复描述。
资源管理单元810对多个CSI-RS初始资源配置进行聚合,以获得CSI-RS聚合资源配置。根据本发明的一个示例,可根据实际连接到基站的移动台的类型来确定CSI-RS初始资源配置以及对CSI-RS初始资源配置聚合方式。具体地,可存在第一类型的移动台和第二类型的移动台连接到基站800,其中发送单元820通过天线阵列中的第一数量的天线端口向第一类型的移动台发送数据,发送单元820通过天线阵列中的第二数量的天线端口向第二类型的移动台发送数据,第一数量小于第二数量。可根据第一类型的移动台和第二类型的移动台确定被聚合的CSI-RS初始资源配置。例如,可根据第一类型的移动台确定被聚合的CSI-RS初始资源配置的样式,并且根据被聚合的CSI-RS初始资源配置的样式和第二类型的移动台确定被聚合的CSI-RS初始资源配置的个数。CSI-RS初始资源配置的样式可包括用于发送CSI-RS的端口数及所占据的资源的位置。
根据本发明的另一示例,可根据可能连接到基站800的移动台的类型来确定CSI-RS初始资源配置以及对CSI-RS初始资源配置聚合方式。具体地,可存在第一类型的移动台和第二类型的移动台可能连接到基站800,其中如上所述,发送单元820通过天线阵列中的第一数量的天线端口向第一类型的移动台发送数据,发送单元820通过天线阵列中的第二数量的天线端口向第二类型的移动台发送数据,第一数量小于第二数量。可根据第一类型的移动台和第二类型的移动台确定被聚合的CSI-RS初始资源配置。
此外,根据本发明的另一示例,第一类型的移动台可包括一个或多个子类型的移动台,其中发送单元820向各个子类型的移动台发送数据时所使用的天线端口数量不同。在此情况下,资源管理单元810可根据一个或多个子类型的移动台确定被聚合的CSI-RS初始资源配置的样式。例如,被聚合的 CSI-RS初始资源配置的样式是针对一个或多个子类型的移动台中特定子类型的移动台的CSI-RS资源配置的样式。
例如,可存在能够接收4、8和24端口数据传输的移动台连接到基站。资源管理单元810可将能够接收4和8端口数据传输的移动台作为第一类型的移动台,将能够接收24端口数据传输的移动台作为第二类型的移动台。资源管理单元810可根据连接到基站的能够接收4和8端口数据传输的移动台数量来确定被聚合的CSI-RS初始资源配置的样式。例如,当连接到基站的能够接收8端口数据传输的移动台数量多于能够接收4端口数据传输的移动台数量时,资源管理单元810将针对能够接收8端口数据传输的移动台的CSI-RS资源配置的样式作为CSI-RS初始资源配置的样式。反之,资源管理单元810将针对能够接收4端口数据传输的移动台的CSI-RS资源配置的样式作为CSI-RS初始资源配置的样式。
发送单元820使用CSI-RS聚合资源配置中的第一部分资源配置,以第一密度发送天线阵列中的第一天线端口的CSI-RS。此外,发送单元820还使用CSI-RS聚合资源配置中的第二部分资源配置,以第二密度发送天线阵列中的第二天线端口的CSI-RS。例如,第一密度可以是第二密度的整数倍。
如上所述,可存在第一类型的移动台和第二类型的移动台连接到基站800,其中发送单元820通过天线阵列中的第一数量的天线端口向第一类型的移动台发送数据,发送单元820通过天线阵列中的第二数量的天线端口向第二类型的移动台发送数据,第一数量小于第二数量。根据本发明的一个示例,可资源管理单元810根据第一类型的移动台和第二类型的移动台确定第一部分资源配置,其中第一天线端口的CSI-RS用于第一类型的移动台的CSI测量,第一天线端口的CSI-RS和第二天线端口的CSI-RS用于第二类型的移动台的CSI测量。从而在第一部分资源配置中,可以以适用于第一类型的移动台的发送密度来发送CSI-RS。另一方面,在第二部分资源配置中,由于不需要考虑第一类型的移动台,因此可以以不同于第一密度的第二密度发送CSI-RS。例如,可以以比第一密度低的第二密度发送CSI-RS。此外,根据本发明的另一示例,第一部分资源配置可包含至少一个被聚合的CSI-RS初始资源配置。
根据本发明的一个示例,基站800还可包括端口确定单元,以根据关于 CSI-RS初始资源配置的资源配置信息确定与CSI-RS初始资源配置对应的初始天线端口P’,并且根据所确定的初始天线端口、在CSI-RS聚合资源配置中被聚合的CSI-RS初始资源配置数K、CSI-RS聚合资源配置中的第一部分资源配置中CSI-RS初始资源配置数L、以及第一密度与第二密度之间的关系参数Q获得所需检测的天线阵列中的天线端口P。如上所述,在第一部分资源配置中,可通过以上公式(1)和公式(2)来确定天线端口P;此外在第二部分资源配置中,可通过以上公式(3)和公式(4)来确定天线端口P。
此外,根据本发明的另一示例,基站800还可包括编码单元,以可对第二部分资源配置中发送的天线端口的CSI-RS在时间和频率上进行正交覆盖编码(orthogonal covering code),以实现码分复用,从而改善信道估计时的功率增益。例如,可对第二部分资源配置中包含的多个CSI-RS初始资源配置进行正交覆盖编码。
在根据本发明上述实施例的基站中,对个CSI-RS初始资源配置进行聚合,并在聚合后的资源配置中,以不同密度发送CSI-RS,这使得无线通信系统在通过降低发送密度来减少CSI-RS所占用的下行控制信令开销的同时,能够实现FD-MIMO和大规模MIMO系统与传统的MIMO系统的良好兼容。
此外,根据本发明的另一示例,在根据实际连接到基站的移动台的类型进行资源聚合的情况下,发送单元820还可通过无线资源控制(RRC)信令向移动台发送关于所述CSI-RS聚合资源配置的聚合配置信息。可使用通信系统中已经存在的参数来通知至少部分聚合配置信息。例如,可通过天线端口数参数(antennaPortsCount)向移动台发送关于所述CSI-RS初始资源配置的信息。
根据本发明的实施例,可根据基站对移动台进行相应的设置。图9示出了根据本发明实施例的移动台900的框图。如图9所示,移动台900包括接收单元910、端口确定单元920和检测单元930。除了这三个单元以外,移动台900还可以包括其他部件,然而,由于这些部件与本发明实施例的内容无关,因此在这里省略其图示和描述。此外,由于根据本发明实施例的移动台900执行的下述操作的具体细节与在上文中参照图7描述的细节相同,因此在这里为了避免重复而省略对相同细节的重复描述。
接收单元910可从基站接收关于CSI-RS聚合资源配置的聚合配置信息,其中通过对多个CSI-RS初始资源配置进行聚合获得所述CSI-RS聚合资源配置。根据本发明的一个示例,CSI-RS聚合资源配置包括第一部分资源配置和第二部分资源配置。基站可使用CSI-RS聚合资源配置中的第一部分资源配置,以第一密度发送天线阵列中的第一天线端口的CSI-RS;并且使用CSI-RS聚合资源配置中的第二部分资源配置,以第二密度发送天线阵列中的第二天线端口的CSI-RS。聚合配置可信息包括关于被聚合的CSI-RS初始资源配置的资源配置信息、被聚合的CSI-RS初始资源配置总数、CSI-RS聚合资源配置中的第一部分资源配置中包含的CSI-RS初始资源配置数、以及第一密度与第二密度之间的关系参数。
端口确定单元920可根据所接收的聚合配置信息确定所需检测的基站的天线阵列中的天线端口。根据本发明的一个示例,可根据关于CSI-RS初始资源配置的资源配置信息确定与所述CSI-RS初始资源配置对应的初始天线端口。然后,根据所确定的初始天线端口、被聚合的CSI-RS初始资源配置总数、CSI-RS聚合资源配置中的第一部分资源配置中包含的CSI-RS初始资源配置数、以及所述第一密度与所述第二密度之间的关系参数获得所需检测的天线阵列中的天线端口。例如,可使用上述公式(1)-(4)获得所需检测的基站的天线阵列中的天线端口。然后检测单元930可对与所确定的天线端口对应的CSI-RS进行检测。
在根据本发明上述实施例的CSI检测方法中,使用较少天线端口(例如4端口或8端口)进行数据接收的移动台,能够有效地使用已有的资源配置接收CSI-RS,而不需要对接收策略进行改变。另一方面,使用较多天线端口(例如24端口、28端口或32端口)进行数据接收的移动台,能够有效地使用部分地密度资源配置接收CSI-RS,这使得无线通信系统在通过降低发送密度来减少CSI-RS所占用的下行控制信令开销的同时,能够实现FD-MIMO和大规模MIMO系统与传统的MIMO系统的良好兼容。
上述基站800和移动台900的操作可以通过硬件实现,也可以通过由处理器执行的软件模块实现,并且进一步可以通过两者的组合实现。
软件模块可以被布置在任意格式的存储介质中,例如RAM(随机访问 存储器)、闪存、ROM(只读存储器)、EPROM(可擦除可编程ROM)、EEPROM(电可擦除可编程ROM)、寄存器、硬盘、可移除盘以及CD-ROM。
这种存储介质连接到处理器,使得处理器可以向该存储介质写入信息或从该存储介质读取信息。这种存储介质还可以在处理器中累积。这种存储介质和处理器可以被布置在ASIC中。这种ASIC可以被布置在基站800和移动台900中。作为分立组件,这种存储介质和处理器可以被布置在基站800和移动台900中。例如,可通过处理器执行上述基站中的资源管理单元执行的操作。又例如,可通过处理器执行上述移动台中的端口确定单元和检测单元执行的操作。
因此,通过使用上述实施例详细解释了本发明;然而,本领域技术人员应清楚本发明不限于在理解释的实施例。本发明在不背离由权利要求限定的本发明的范围的情况下可以被实现为校正的、修改的模式。因此,说明书的描述仅意图解释示例,并且不对本发明施加任何限制含义。

Claims (23)

  1. 一种由基站执行的信道状态信息参考信号(CSI-RS)发送方法,其中所述基站具有天线阵列,所述方法包括:
    对多个CSI-RS初始资源配置进行聚合,以获得CSI-RS聚合资源配置;
    使用所述CSI-RS聚合资源配置中的第一部分资源配置,以第一密度发送所述天线阵列中的第一天线端口的CSI-RS;以及
    使用所述CSI-RS聚合资源配置中的第二部分资源配置,以第二密度发送所述天线阵列中的第二天线端口的CSI-RS。
  2. 如权利要求1所述的方法,其中
    第一类型的移动台和第二类型的移动台连接到所述基站,
    所述基站通过所述天线阵列中的第一数量的天线端口向所述第一类型的移动台发送数据,
    所述基站通过所述天线阵列中的第二数量的天线端口向所述第二类型的移动台发送数据,
    第一数量小于第二数量,以及
    所述方法还包括:
    根据所述第一类型的移动台和所述第二类型的移动台确定被聚合的CSI-RS初始资源配置。
  3. 如权利要求2所述的方法,其中根据所述第一类型的移动台和所述第二类型的移动台确定被聚合的CSI-RS初始资源配置包括:
    根据所述第一类型的移动台确定被聚合的CSI-RS初始资源配置的样式;
    根据被聚合的CSI-RS初始资源配置的样式和所述第二类型的移动台确定被聚合的CSI-RS初始资源配置的个数。
  4. 如权利要求3所述的方法,其中
    所述第一类型的移动台包括一个或多个子类型的移动台,
    所述基站向各个子类型的移动台发送数据时所使用的天线端口数量不同,
    所述根据所述第一类型的移动台确定被聚合的CSI-RS初始资源配置的样式包括:
    根据所述一个或多个子类型的移动台确定被聚合的CSI-RS初始资源配置的样式。
  5. 如权利要求4所述的方法,其中
    被聚合的CSI-RS初始资源配置的样式是针对所述一个或多个子类型的移动台中特定子类型的移动台的CSI-RS资源配置的样式。
  6. 如权利要求2-5中任意一项所述的方法,还包括:
    根据所述第一类型的移动台和所述第二类型的移动台确定所述第一部分资源配置,其中
    所述第一天线端口的CSI-RS用于所述第一类型的移动台的CSI测量,
    所述第一天线端口的CSI-RS和所述第二天线端口的CSI-RS用于所述第二类型的移动台的CSI测量。
  7. 如权利要求6中任意一项所述的方法,其中
    所述第一部分资源配置包含至少一个被聚合的CSI-RS初始资源配置。
  8. 如权利要求2-5中任意一项所述的方法,其中
    所述第一密度是所述第二密度的整数倍,以及
    根据第一类型的移动台和第二类型的移动台确定第一密度与第二密度之间的关系。
  9. 如权利要求1-5中任意一项所述的方法,其中
    通过无线资源控制(RRC)信令向移动台发送关于所述CSI-RS聚合资源配置的聚合配置信息。
  10. 如权利要求1-5中任意一项所述的方法,其中
    通过天线端口数参数向移动台发送关于所述CSI-RS初始资源配置的信息。
  11. 一种由移动台执行的信道状态信息参考信号(CSI-RS)检测方法,包括:
    从基站接收关于CSI-RS聚合资源配置的聚合配置信息,其中通过对多个CSI-RS初始资源配置进行聚合获得所述CSI-RS聚合资源配置;
    根据所接收的聚合配置信息确定所需检测的基站的天线阵列中的天线端口;
    对与所确定的天线端口对应的CSI-RS进行检测。
  12. 如权利要求11所述的方法,其中
    所述CSI-RS聚合资源配置包括第一部分资源配置和第二部分资源配置,
    所述基站使用所述CSI-RS聚合资源配置中的第一部分资源配置,以第一密度发送所述天线阵列中的第一天线端口的CSI-RS;并且使用所述CSI-RS聚合资源配置中的第二部分资源配置,以第二密度发送所述天线阵列中的第二天线端口的CSI-RS,
    所述聚合配置信息包括关于被聚合的CSI-RS初始资源配置的资源配置信息、被聚合的CSI-RS初始资源配置的个数、CSI-RS聚合资源配置中的第一部分资源配置、以及所述第一密度与所述第二密度之间的关系参数。
  13. 如权利要求12所述的方法,其中根据所接收的聚合配置信息确定所需检测的天线阵列中的天线端口包括:
    根据关于所述CSI-RS初始资源配置的资源配置信息确定与所述CSI-RS初始资源配置对应的初始天线端口;
    根据所确定的初始天线端口、被聚合的CSI-RS初始资源配置的个数、CSI-RS聚合资源配置中的第一部分资源配置、以及所述第一密度与所述第二密度之间的关系参数获得所需检测的天线阵列中的天线端口。
  14. 如权利要求13所述的方法,其中根据所接收的聚合配置信息确定所需检测的天线阵列中的天线端口还包括:
    根据被聚合的CSI-RS初始资源配置中所指示的资源块索引确定所需检测的天线阵列中的天线端口。
  15. 一种基站,包括:
    资源管理单元,配置为对多个CSI-RS初始资源配置进行聚合,以获得CSI-RS聚合资源配置;
    发送单元,配置为使用所述CSI-RS聚合资源配置中的第一部分资源配置,以第一密度发送所述基站的天线阵列中的第一天线端口的CSI-RS,以及使用所述CSI-RS聚合资源配置中的第二部分资源配置,以第二密度发送所述天线阵列中的第二天线端口的CSI-RS。
  16. 如权利要求15所述的基站,其中
    第一类型的移动台和第二类型的移动台连接到所述基站,
    所述发送单元还配置为通过所述天线阵列中的第一数量的天线端口向 所述第一类型的移动台发送数据,并且通过所述天线阵列中的第二数量的部分天线端口向所述第二类型的移动台发送数据,其中第一数量小于第二数量,以及
    所述资源管理单元根据所述第一类型的移动台和所述第二类型的移动台确定被聚合的CSI-RS初始资源配置。
  17. 如权利要求16所述的基站,其中
    所述资源管理单元根据所述第一类型的移动台确定被聚合的CSI-RS初始资源配置的样式,并且根据被聚合的CSI-RS初始资源配置的样式和所述第二类型的移动台确定被聚合的CSI-RS初始资源配置的个数。
  18. 如权利要求16或17所述的基站,其中
    所述资源管理单元根据所述第一类型的移动台和所述第二类型的移动台确定所述第一部分资源配置,
    所述第一天线端口的CSI-RS用于所述第一类型的移动台的CSI测量,
    所述第一天线端口的CSI-RS和所述第二天线端口的CSI-RS用于所述第二类型的移动台的CSI测量。
  19. 如权利要求16或17所述的基站,其中
    所述第一密度是所述第二密度的整数倍,以及
    根据第一类型的移动台和第二类型的移动台确定第一密度与第二密度之间的关系。
  20. 一种移动台,包括:
    接收单元,配置为从基站接收关于CSI-RS聚合资源配置的聚合配置信息,其中通过对多个CSI-RS初始资源配置进行聚合获得所述CSI-RS聚合资源配置;
    端口确定单元,配置为根据所接收的聚合配置信息确定所需检测的基站的天线阵列中的天线端口;以及
    检测单元,配置为对与所确定的天线端口对应的CSI-RS进行检测。
  21. 如权利要求20所述的移动台,其中
    所述CSI-RS聚合资源配置包括第一部分资源配置和第二部分资源配置,
    所述基站使用所述CSI-RS聚合资源配置中的第一部分资源配置,以第一密度发送所述天线阵列中的第一天线端口的CSI-RS;并且使用所述 CSI-RS聚合资源配置中的第二部分资源配置,以第二密度发送所述天线阵列中的第二天线端口的CSI-RS,
    所述配置信息包括关于被聚合的CSI-RS初始资源配置的资源配置信息、被聚合的CSI-RS初始资源配置的个数、CSI-RS聚合资源配置中的第一部分资源配置、以及所述第一密度与所述第二密度之间的关系参数。
  22. 如权利要求21所述的移动台,其中
    所述端口确定单元根据关于所述CSI-RS初始资源配置的资源配置信息确定与所述CSI-RS初始资源配置对应的初始天线端口,并且根据所确定的初始天线端口、被聚合的CSI-RS初始资源配置的个数、CSI-RS聚合资源配置中的第一部分资源配置、以及所述第一密度与所述第二密度之间的关系参数获得所需检测的天线阵列中的天线端口。
  23. 如权利要求22所述的移动台,其中
    所述端口确定单元还根据被聚合的CSI-RS初始资源配置中所指示的资源块索引确定所需检测的天线阵列中的天线端口。
PCT/CN2017/083439 2016-05-12 2017-05-08 参考信号发送方法、检测方法、基站和移动台 WO2017193884A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17795502.8A EP3457721A4 (en) 2016-05-12 2017-05-08 REFERENCE SIGNAL SENDING METHOD, DETECTION METHOD, BASE STATION AND MOBILE STATION
US16/099,012 US20190199492A1 (en) 2016-05-12 2017-05-08 A method, a base station and a mobile station for transmitting and detecting reference signals
CN201780026827.1A CN109155711B (zh) 2016-05-12 2017-05-08 参考信号发送方法、检测方法、基站和移动台
JP2018559210A JP2019516327A (ja) 2016-05-12 2017-05-08 参照信号の送信方法、検出方法、基地局及び移動局
JP2022015376A JP7291257B2 (ja) 2016-05-12 2022-02-03 端末、基地局、通信システム及び無線通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610317343.X 2016-05-12
CN201610317343.XA CN107370582A (zh) 2016-05-12 2016-05-12 参考信号发送方法、检测方法、基站和移动台

Publications (1)

Publication Number Publication Date
WO2017193884A1 true WO2017193884A1 (zh) 2017-11-16

Family

ID=60266311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083439 WO2017193884A1 (zh) 2016-05-12 2017-05-08 参考信号发送方法、检测方法、基站和移动台

Country Status (5)

Country Link
US (1) US20190199492A1 (zh)
EP (1) EP3457721A4 (zh)
JP (2) JP2019516327A (zh)
CN (2) CN107370582A (zh)
WO (1) WO2017193884A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210051011A (ko) 2019-10-29 2021-05-10 삼성전자주식회사 Ofdm 기반 단일반송파 시스템을 위한 채널 추정 방법 및 장치
US11985515B2 (en) * 2019-11-04 2024-05-14 Qualcomm Incorporated Methods and apparatuses for dynamic antenna array reconfiguration and signaling in millimeter wave bands
CN113950093A (zh) * 2020-07-15 2022-01-18 大唐移动通信设备有限公司 一种csi测量上报方法、终端及网络侧设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102754458A (zh) * 2010-02-12 2012-10-24 捷讯研究有限公司 用于协作多点网络实现的参考信号
CN103843274A (zh) * 2012-09-26 2014-06-04 华为技术有限公司 信道状态信息的测量方法、设备及系统
US20150180628A1 (en) * 2012-07-12 2015-06-25 Lg Electronics Inc. Method for transmitting reference signal to antenna port in wireless access system
CN105075319A (zh) * 2013-04-09 2015-11-18 松下电器(美国)知识产权公司 将信道状态信息参考信号端口映射到资源块的方法、基站和用户装备

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841817B (zh) * 2009-03-20 2013-09-11 中兴通讯股份有限公司 一种信道测量导频的配置方法
CN102158292B (zh) * 2010-02-12 2016-01-20 中兴通讯股份有限公司 信道测量导频发送方法及基站
CN102546110A (zh) * 2011-12-31 2012-07-04 电信科学技术研究院 一种传输信道状态信息的方法及装置
US8953478B2 (en) * 2012-01-27 2015-02-10 Intel Corporation Evolved node B and method for coherent coordinated multipoint transmission with per CSI-RS feedback
CN103384388B (zh) * 2012-05-04 2016-08-10 华为技术有限公司 确定主小区主站点方法、测量方法、信息发送方法及装置
CN103391174B (zh) * 2012-05-10 2019-06-11 中兴通讯股份有限公司 Csi反馈信令的指示配置方法及基站
US9402256B2 (en) * 2012-08-08 2016-07-26 Blackberry Limited Method and system having reference signal design for new carrier types
CN104995855B (zh) * 2013-01-17 2018-10-19 英特尔Ip公司 长期演进无线网络中的时分双工系统的信道状态信息参考信号模式
US11139933B2 (en) * 2013-04-02 2021-10-05 Sun Patent Trust Method of mapping CSI-RS ports to antenna units, base station and user equipment
US10334662B2 (en) * 2013-04-16 2019-06-25 Qualcomm Incorporated Enhanced antenna management by a base station
CN109743081B (zh) * 2013-06-26 2020-03-10 华为技术有限公司 参考信号的传输方法及装置
CN105165036B (zh) * 2013-08-09 2018-12-28 华为技术有限公司 Csi测量资源的配置方法、csi上报方法、基站及用户设备
JP6114153B2 (ja) * 2013-09-26 2017-04-12 株式会社Nttドコモ 基地局、移動局、参照信号送信方法及びチャネル品質測定方法
HUE049819T2 (hu) * 2014-05-22 2020-10-28 Qualcomm Inc Periodikus és aperiodikus csatornaállapot információ (CSI) jelentés MIMO-hoz
EP3252983A4 (en) * 2015-01-30 2018-10-03 Electronics and Telecommunications Research Institute Method and apparatus for transmitting downlink reference signal, and method and apparatus for transmitting control information in multi-cell collaborative communication system
US10903951B2 (en) * 2015-06-05 2021-01-26 Futurewei Technologies, Inc. Systems and methods for adaptive pilot allocation
CN104869649B (zh) * 2015-06-16 2018-02-13 江苏省邮电规划设计院有限责任公司 一种lte系统中多点协作传输多小区测量导频配置方法
WO2017048178A1 (en) * 2015-09-14 2017-03-23 Telefonaktiebolaget Lm Ericsson (Publ) Network node, wireless device and methods thereby to indicate a first set of antenna ports and a second set of antenna ports

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102754458A (zh) * 2010-02-12 2012-10-24 捷讯研究有限公司 用于协作多点网络实现的参考信号
US20150180628A1 (en) * 2012-07-12 2015-06-25 Lg Electronics Inc. Method for transmitting reference signal to antenna port in wireless access system
CN103843274A (zh) * 2012-09-26 2014-06-04 华为技术有限公司 信道状态信息的测量方法、设备及系统
CN105075319A (zh) * 2013-04-09 2015-11-18 松下电器(美国)知识产权公司 将信道状态信息参考信号端口映射到资源块的方法、基站和用户装备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Discussion on CSI-RS Overhead Reduction", 3GPPTSG RANWG1 MEETING #84 BIS, RL-162280, 15 April 2016 (2016-04-15), XP051080085 *

Also Published As

Publication number Publication date
CN109155711B (zh) 2022-02-18
CN107370582A (zh) 2017-11-21
JP7291257B2 (ja) 2023-06-14
JP2019516327A (ja) 2019-06-13
US20190199492A1 (en) 2019-06-27
EP3457721A1 (en) 2019-03-20
EP3457721A4 (en) 2020-01-08
JP2022058862A (ja) 2022-04-12
CN109155711A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
US20210195595A1 (en) Signaling transmitting and receiving methods, device, network-side device, terminal and storage medium
WO2017050033A1 (zh) 一种信息发送及确定、关系确定的方法及装置
US9882816B2 (en) Method of mapping CSI-RS ports to resource blocks, base station and user equipment
KR101790191B1 (ko) 기준 신호를 송수신하는 방법 및 장치, 사용자 기기, 및 기지국
JP6108250B2 (ja) チャネル状態情報を報告および受信する方法およびデバイス
CN111432479B (zh) 传输信道状态信息的方法和装置
CN110138469B (zh) 一种移动终端及其信道状态信息测量参考信号的测量方法
JP7291257B2 (ja) 端末、基地局、通信システム及び無線通信方法
US20140293815A1 (en) Method and apparatus for obtaining channel state information
WO2012155520A1 (zh) 一种干扰测量参考信息的通知方法、干扰测量方法及装置
WO2015042855A1 (zh) 通信方法、基站和用户设备
WO2022143350A1 (zh) 信道状态信息上报方法、资源配置方法、通信节点及存储介质
WO2014194525A1 (zh) 传输导频信号的方法、基站和用户设备
CN106559182B (zh) 信道参数的配置获取方法、装置及系统
WO2017167216A1 (zh) 参考信号发送方法、信道状态信息反馈方法、基站和移动台
WO2021139577A1 (zh) 信息获取方法、装置、设备和存储介质
WO2013131401A1 (zh) 信道状态信息的处理方法、基站和终端
WO2014047794A1 (zh) 反馈csi-rs资源组合的方法和装置、用户设备和基站
CN108282211A (zh) 一种信号传输方法和网络设备以及终端设备
CN103546262A (zh) 上报信道状态信息的方法和装置
KR20160089238A (ko) 무선 통신 시스템에서 협력 전송을 위한 제어 정보 송신 장치 및 방법
CN113873549B (zh) 状态信息的传输方法、装置、计算机设备和存储介质
WO2017185982A1 (zh) 准共位置类型的处理方法、装置及计算机存储介质
WO2017114513A1 (zh) 一种csi反馈方法及装置
WO2017107067A1 (zh) 参考信号发送和信道测量的方法、发送设备和终端设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018559210

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795502

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017795502

Country of ref document: EP

Effective date: 20181212