WO2017000130A1 - 四通道集成可调谐阵列激光器芯片的封装结构 - Google Patents

四通道集成可调谐阵列激光器芯片的封装结构 Download PDF

Info

Publication number
WO2017000130A1
WO2017000130A1 PCT/CN2015/082680 CN2015082680W WO2017000130A1 WO 2017000130 A1 WO2017000130 A1 WO 2017000130A1 CN 2015082680 W CN2015082680 W CN 2015082680W WO 2017000130 A1 WO2017000130 A1 WO 2017000130A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
chip
thermistor
bonding
electrode
Prior art date
Application number
PCT/CN2015/082680
Other languages
English (en)
French (fr)
Inventor
刘超
Original Assignee
河北华美光电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河北华美光电子有限公司 filed Critical 河北华美光电子有限公司
Priority to PCT/CN2015/082680 priority Critical patent/WO2017000130A1/zh
Priority to US15/740,673 priority patent/US10205298B2/en
Publication of WO2017000130A1 publication Critical patent/WO2017000130A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02216Butterfly-type, i.e. with electrode pins extending horizontally from the housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02375Positioning of the laser chips
    • H01S5/0238Positioning of the laser chips using marks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06256Controlling the frequency of the radiation with DBR-structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06821Stabilising other output parameters than intensity or frequency, e.g. phase, polarisation or far-fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0265Intensity modulators

Definitions

  • the present invention relates to the field of optical communication technologies, and in particular, to a package structure of a four-channel integrated tunable laser array chip.
  • Integrated semiconductor laser array chips are the most common type of photonic integrated chips available today.
  • the development technology of integrated semiconductor chips is currently a hot spot, and the packaging technology associated with it is getting more and more attention.
  • the package of such a chip is much more complicated than the conventional discrete unit chip, and needs to be carefully considered in terms of optical, thermal, electrical and mechanical structures according to practical applications, in order to achieve good performance of the device.
  • Embodiments of the present invention are directed to a package structure for a four-channel integrated tunable laser array chip.
  • embodiments of the present invention provide a package structure for a four-channel integrated tunable laser array chip (100), including a carrier (200), a refrigerator (300), and a lens. a component (400), an isolator assembly (500), a package (600), a transition ring (700), and a thermistor, wherein
  • the package (600) includes a base (601), an upper cover (607), an optical port (606), a porcelain member (602) on the outer sidewall, and a bonding region (604) on the inner sidewall.
  • the porcelain piece (602) is provided with a lead wire (603), and the bonding area (604) is formed with a bonding finger (605); the base (601) and the upper cover plate (607)
  • the refrigerator (300) and the lens assembly (400) are fixed, the optical port (606) is fixedly connected to the isolator assembly (500) through the transition ring (700);
  • the carrier (200) is fixed on the refrigerator (300) for carrying the array chip (100) and the thermistor and is provided with a transmission signal line (205), and the transmission signal line ( 205) is electrically connected between the chip electrode of the array chip (100) and the bonding finger (605) on the tube bonding region;
  • the lens assembly (400) includes a lens (401) and a lens holder (402) for placing the lens (401), the lens (401) for focusing a beam output by the array chip (100) to The polarizer of the isolator assembly (500).
  • the package structure of the four-channel integrated tunable laser array chip provided by the embodiment of the present invention can realize flexible adjustment of optical path active coupling, ensure reasonable optical path conversion between optical components, and thereby improve optical path coupling.
  • Efficiency increase the transmission distance of data signals; and RF circuit design can ensure signal transmission integrity and reduce transmission loss.
  • FIG. 1 is a schematic diagram showing the appearance of a package structure of a four-channel integrated tunable laser array chip according to an embodiment of the present invention
  • FIG. 2 shows an internal schematic diagram of a package structure of a four-channel integrated tunable laser array chip in accordance with an embodiment of the present invention
  • FIG. 3 is an exploded perspective view showing a package structure of a four-channel integrated tunable laser array chip according to an embodiment of the present invention
  • FIG. 4 shows a top plan view of a chipset waveguide in accordance with an embodiment of the present invention
  • FIG. 5 is a top plan view showing a unit chip according to an embodiment of the present invention.
  • Figure 6 shows a top plan view of a carrier in accordance with an embodiment of the present invention
  • FIG. 7 is a schematic diagram showing details of a transmission signal line on a carrier according to an embodiment of the present invention.
  • Figure 8 shows a top plan view of a refrigerator in accordance with an embodiment of the present invention.
  • Figure 9 shows a perspective schematic view of a lens assembly in accordance with an embodiment of the present invention.
  • Figure 10 shows a perspective view of an isolator assembly in accordance with an embodiment of the present invention
  • Figure 11 shows a top view of a tube housing base in accordance with an embodiment of the present invention
  • FIG. 12 is a schematic view showing a distribution of bonding fingers on a bonding region according to an embodiment of the present invention.
  • Figure 13 shows a perspective view of a transition ring in accordance with an embodiment of the present invention
  • Figure 14 shows a schematic view of a package lead in accordance with an embodiment of the present invention.
  • the package structure of the four-channel integrated tunable laser array chip 100 includes a carrier 200, a refrigerator 300, a lens assembly 400, an isolator assembly 500, a package 600, a transition ring 700, and a thermistor (not shown).
  • the tube case 600 includes a base 601, an upper cover plate 607, a light port 606, a porcelain piece 602 on the outer side wall, and a bonding area 604 on the inner side wall.
  • the porcelain piece 602 is provided with a lead wire 603, and a bonding area.
  • a bonding finger 605 is formed on the 604; the refrigerator 300 and the lens assembly 400 are fixed between the base 601 and the upper cover 607, and the optical port 606 is fixedly connected to the isolator assembly 500 through the transition ring 700.
  • the porcelain 602 and the bonding region 604 of the package are both made of aluminum oxide, and the upper surface of the bonding region 604 is formed by sequentially bonding tungsten, gold, and gold to form a bonding finger 605.
  • the bonding region 604 of the package has a T-shape, and the bonding fingers of the T-shaped arm portion electrically connected to the signal transmission line 205 on the portion deep inside the package 600 are configured to be 50 ⁇ high. Frequency impedance.
  • the carrier 200 is fixed on the refrigerator 300 for carrying the array core.
  • the sheet 100 and the thermistor are provided with a transmission signal line 205, and both ends of the transmission signal line 205 are electrically connected between the chip electrode of the array chip 100 and the bonding fingers 605 on the cell bonding region.
  • the lens assembly 400 includes a lens 401 and a lens holder 402 for placing the lens 401 for focusing the light beam output from the array chip 100 onto the polarizer of the isolator assembly 500.
  • the upper surface of the carrier 200 is provided with a metal coating and includes a chip patch region 201, a chip bonding region 202, a thermistor patch region 203, and a thermistor, respectively.
  • the wiring area 204, the matching resistor 206, the alignment mark line 207, the signal transmission line 205, and the ground line 2050, the chip patch area 201 and the thermistor patch area 203 are used to fix and electrically connect the array chip 100 and the thermistor, respectively. .
  • the array chip 100 includes a multiplexed optical waveguide 110, four unit chips 120, and a ground electrode (not shown) on the back surface of the array chip, and each of the unit chips 120 includes an electric unit.
  • EA Absorption Electrode
  • SOA Semiconductor Optical Amplifier
  • DBR Distributed Bragg Reflectors
  • GAIN gain
  • PHASE phase
  • the array chip 100 is eutectic soldered on the chip chip area 201 of the carrier, the ground electrode is electrically connected to the chip wire area 202 of the carrier, and the chip wire area 202 is electrically connected to the ground line 2050 of the carrier, and the four unit chips 120 are Each of the electrodes is electrically connected to a corresponding phase of each of the transmission signal lines 205 of the carrier.
  • the direction of the optical waveguide 126 of the four unit chips is respectively aligned with the direction of the alignment mark line 207 of the carrier, the output beam of the optical waveguide 126 is multiplexed and transmitted by the multiplexed optical waveguide 110, and the optical port 606 of the multiplexed optical waveguide 110 and the package is 606. Coaxial setting.
  • the carrier 200 includes two sets of transmission signal lines 205, each group including three grounding ground transmission lines, two EA signal transmission lines, two SOA signal transmission lines, two DBR signal transmission lines, two GAIN signal transmission lines, and 2 PHASE signal transmission lines.
  • Each EA signal transmission line is configured to achieve a high frequency impedance of 50 ⁇ , and a 50 ohm matching resistor 206 is connected between each EA signal transmission line and an adjacent ground transmission line.
  • the carrier 200 is made of yttria or aluminum nitride; the metal coating is formed by a sputtering process and is made of TiW/Au alloy; the chip patch area 201 and the thermistor patch area 203 pass Au/Sn Alloy plating prefabrication; matching The resistor 206 is formed by a sputtering process and is made of TaN. In one embodiment, the matching resistor 206 on the carrier 200 is a 50 ohm square film resistor.
  • the thermistor is soldered to the thermistor patch area 203 of the carrier according to the patch mark on the carrier 200.
  • the upper electrode of the thermistor is directly coupled to the corresponding signal transmission line 205 on the carrier 200 by the gold wire.
  • the lower electrode is electrically connected to the corresponding signal transmission line 205 through the solder gold wire of the thermistor wire area 204.
  • the thermistor is a double-sided gold-plated sheet resistor.
  • the upper surface of the base 601 of the package 600 is engraved with: a refrigerator placement mark line 6011 for marking the edge of the refrigerator 300 with the lead side disposed; the beam transfer mark A line 6012 for marking the direction of the central axis of the refrigerator 300; and a lens holder placement mark frame 6013 for marking the fixed position of the lens holder 402.
  • the refrigerator 300 is a thermoelectric cooler including an upper substrate and a lower substrate 301, a plurality of pairs of semiconductor galvanic couples between the upper and lower substrates, and two leads 302, and the thermoelectric cooler 300
  • the lower substrate 301 is fixed on the base 601 of the package, and the two leads 302 are electrically connected to the optical port 606 of the package and to the two bonding fingers 605 on the inner side wall of the package. Accordingly, the bonding fingers 605 electrically connected to the two leads 302 of the thermoelectric cooler are formed in a rectangular shape to facilitate soldering.
  • the end face of the array chip 100 outputting the optical waveguide, the end face of the carrier 200 attached to one end of the chip, and the end face of the refrigerator 300 with the lead end are kept flush.
  • the upper and lower substrates of the thermoelectric cooler 300 are made of a thermally conductive ceramic material and the outer surface is plated with gold; the thermoelectric cooler 300 is bonded or eutectic to the base 601 of the package by silver glue.
  • the isolator assembly 500 has a light entrance 501 and a light exit 502; as shown in connection with FIG. 13, in one embodiment, the transition ring 700 has a large opening 701 and a small opening 702.
  • the light inlet 501 of the isolator assembly and the small opening 702 of the transition ring, and the large opening 701 of the transition ring are fixedly connected to the optical port 606 of the envelope, respectively.
  • the tube casing 600 is a rectangular cavity in plan view, and two rows of porcelain pieces 602 are disposed on the outer sides of the shell walls on the sides of the rectangular long sides, and each row of porcelain pieces 602 is arranged.
  • Two lead wires 603 are brazed, and two inner side bonding walls 604 are disposed on the inner sides of the two side shell walls, and each of the bonding regions 604 is plated with 15 bonding fingers 605, each of which is connected to each of the carrier fingers 605 and the carrier.
  • Electrical connections are made between the signal transmission lines 205 by gold wires or wires.
  • the bonding fingers 605 which are finally electrically connected to the EA electrodes 121 of the four unit chips 120 through the signal transmission line 205 are configured to achieve a high frequency impedance of 50 ⁇ .
  • the lower end surface of the refrigerator 300 is coated with silver glue or solder, and then the refrigerator 300 is bonded or welded to the shell base 601, and the direction of the refrigerator lead 302 faces the bulb optical port 606, and the center of the refrigerator 300 The axial direction coincides with the beam transmission mark line 602, and the edge of the lead side of the refrigerator 300 is flush with the refrigerator placement mark line 6011 on the package base 601.
  • the chipset 100 is placed on the chip patch area 201 on the carrier, and the position of the chipset 100 is adjusted to align the direction of the four unit chip optical waveguides 126 with the four strips on the carrier.
  • the direction of the marking lines 207 is uniform, and the chip set 100 is eutectic soldered to the carrier 200.
  • the chip bonding region 202 soldered to the electrodes of the four unit chips is connected to the ground wire on the carrier 200 by a gold wire. Then, the respective electrodes on the chip are connected to the corresponding transmission lines on the carrier by gold wire soldering. 5 and 7, the specifically connected electrodes and corresponding transmission lines are: EA electrodes 1211 and 2511, SOA electrodes 1212 and 2512, DBR electrodes 1213 and 2513, GAIN electrodes 1214 and 2514, and EA electrodes 1221 and 2521, respectively.
  • the gold wire is connected to the ground wire 2050.
  • the carrier transmission line is welded by gold wire and the corresponding bonding fingers 605 on the package 600 are welded by gold wire.
  • the specifically connected transmission lines and corresponding bonding fingers are 2511 and 6511, 2512 and 2512, 2513 and 6513, 2514 and 6514; 2521 and 6521, 2522 and 6522, 2523 and 6523, 2524 and 6524; 2531 and 6531, 2532, respectively.
  • the lens 401 is glued to the lens holder 402, and then the groove 4021 of the lens holder 402 is snapped onto the coupling jig. And by adjusting the fixture, will The bottom surface of the lens holder 402 is placed in the lens holder placement mark frame 6013 on the upper surface of the base 601 of the envelope 600. Then, one end of the coupling fiber is connected to the optical power meter, and the other end detects the optical signal from the outside through the envelope optical port 606. After the above two points are prepared, it is next shown in FIG.
  • the SOA signal lead and the GAIN signal lead of one unit chip are simultaneously connected, specifically, two leads of one of the following four groups are connected: 6321 and 6341, 6322 and 6342, 6323 and 6343, 6324 and 6344.
  • laser light is output from the 4 x 1 optical waveguide 11 end of the chip set 100.
  • the position of the lens holder 402 and the coupling fiber is adjusted such that the optical power detected by the optical power meter is maximized.
  • the position of the lens holder 402 at the time when the optical power is maximum is fixed by adhesive bonding.
  • the isolator is positioned. Referring to Figures 3, 10 and 13, the coupling fiber stub is first tightly inserted inside the LC optical interface of the small opening 502 of the isolator assembly 500, and the other end of the coupling fiber is connected to an optical power meter.
  • the transition ring 700 is then placed outside the light entrance 501 of the isolator assembly 500, and the direction of the small opening 702 of the transition ring 700 is toward the light exit 502 of the isolator assembly 500.
  • the envelope 600, isolator assembly 500, and the transition ring 700 are then mounted together with the transition ring 700 such that the outer edge of the optical port 606 on the envelope 600 is in intimate contact with the outer edge of the large opening 701 of the transition ring 700.
  • the position of the isolator assembly 500 is adjusted to the maximum reading of the optical power meter.
  • the relative positions of the envelope 600, the transition ring 700, and the isolator assembly 500 are fixed at this time.
  • the edge of the large opening 701 of the transition ring 700 is soldered and fixed to the optical port 606 of the package 600 by laser welding.
  • the small opening 702 side wall of the transition ring 700 and the light entrance 501 of the isolator assembly 500 are similarly used in the same manner.
  • the outer wall is welded and fixed.
  • the package structure of the four-channel integrated tunable laser array chip provided by the embodiment of the present invention can realize flexible adjustment of optical path active coupling, ensure reasonable optical path conversion between optical components, and thereby improve optical path coupling.
  • Efficiency increase the transmission distance of data signals; and RF circuit design can ensure signal transmission integrity and reduce transmission loss.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种用于四通道集成可调谐激光器阵列芯片(100)的封装结构,包括载体(200)、制冷器(300)、透镜组件(400)、隔离器组件(500)、管壳(600)、过渡环(700)以及热敏电阻。这种用于四通道集成可调谐激光器阵列芯片(100)的封装结构可以实现光路有源耦合时的灵活调节,保证光学组件之间的光路合理转换,从而提高光路耦合效率,增加数据信号的传输距离,并且射频电路设计能保证信号传输完整性、减少传输损耗。

Description

四通道集成可调谐阵列激光器芯片的封装结构 技术领域
本发明涉及光通信技术领域,尤其涉及一种四通道集成可调谐激光器阵列芯片的封装结构。
背景技术
现代社会对光纤通信网络传输容量的要求急剧增长,波分复用系统复用的信道数越来越多,这就需要大量不同波长激光器来作为这种通信系统的光源。如果用分立器件来构成这种通信网络的话,那么波分复用系统将十分复杂、体积巨大,且维护成本随传输容量同步上升。与此同时,这种通信系统的能耗也将上升到惊人的地步。为解决日益严重的系统复杂性和能耗激增等问题,最好的方法是用四通道集成芯片取代分立器件来构建波分复用通信系统。采用单片集成技术制作,多个器件集成在一个芯片中可以显著的降低封装成本。此外,集成光学器件具有更小的光学和电学连接损耗,在光学和电学性能、稳定性和可靠性方面都具有优势。
集成的半导体激光器阵列芯片就是目前光子集成芯片中最常见的类型。集成半导体芯片的研制技术是目前的热点,与之配套的封装技术也越来越受到人们的重视。这种芯片的封装与目前常规的分立单元芯片相比要复杂得多,需要根据实际应用在光、热、电和机械结构方面缜密考虑,才能实现器件的良好性能。
发明内容
本发明的实施例旨在提供一种四通道集成可调谐激光器阵列芯片的封装结构。
为实现上述目的,本发明的实施例提供了一种用于四通道集成可调谐激光器阵列芯片(100)的封装结构,包括载体(200)、制冷器(300)、透镜 组件(400)、隔离器组件(500)、管壳(600)、过渡环(700)以及热敏电阻,其中,
所述管壳(600)包括基座(601)、上盖板(607)、光口(606)、位于外侧壁上的瓷件(602)以及位于内侧壁上的键合区(604),所述瓷件(602)上设有引线(603),所述键合区(604)上形成有键合指(605);所述基座(601)与所述上盖板(607)之间固定所述制冷器(300)和所述透镜组件(400),所述光口(606)通过所述过渡环(700)固定连接至所述隔离器组件(500);
所述载体(200)固定在所述制冷器(300)上,用于承载所述阵列芯片(100)和所述热敏电阻并设有传输信号线(205),且所述传输信号线(205)的两端电连接在所述阵列芯片(100)的芯片电极与所述管壳键合区上的键合指(605)之间;
所述透镜组件(400)包括透镜(401)和用于放置所述透镜(401)的透镜座(402),所述透镜(401)用于将所述阵列芯片(100)输出的光束聚焦到所述隔离器组件(500)的起偏器上。
由上述技术方案可知,本发明实施例提供的四通道集成可调谐激光器阵列芯片的封装结构,可以实现光路有源耦合时的灵活调节,保证光学组件之间的光路合理转换,从而提高光路耦合的效率,增加数据信号的传输距离;并且射频电路设计能保证信号传输完整性、减少传输损耗。
附图说明
图1示出根据本发明实施例的四通道集成可调谐激光器阵列芯片的封装结构的外观示意图;
图2示出根据本发明实施例的四通道集成可调谐激光器阵列芯片的封装结构的内部示意图;
图3示出根据本发明实施例的四通道集成可调谐激光器阵列芯片的封装结构的分解示意图;
图4示出根据本发明实施例的芯片组波导的俯视示意图;
图5示出根据本发明实施例的单元芯片的俯视示意图;
图6示出根据本发明实施例的载体的俯视示意图;
图7示出根据本发明实施例的载体上的传输信号线细节示意图;
图8示出根据本发明实施例的制冷器的俯视示意图;
图9示出根据本发明实施例的透镜组件的立体示意图;
图10示出根据本发明实施例的隔离器组件立体示意图;
图11示出根据本发明实施例的管壳基座俯视图;
图12示出根据本发明实施例的键合区上的键合指分布示意图;
图13示出根据本发明实施例的过渡环立体示意图;
图14示出根据本发明实施例的管壳引线示意图。
具体实施方式
下面将详细描述本发明的具体实施例。应当注意,这里描述的实施例只用于举例说明,并不用于限制本发明。
图1-图3分别示出根据本发明实施例的四通道集成可调谐激光器阵列芯片的封装结构的外观、内部和分解示意图,如图1-图3所示,本实施例提供一种用于四通道集成可调谐激光器阵列芯片100的封装结构,包括载体200、制冷器300、透镜组件400、隔离器组件500、管壳600、过渡环700以及热敏电阻(图中未示出)。
其中,管壳600包括基座601、上盖板607、光口606、位于外侧壁上的瓷件602以及位于内侧壁上的键合区604,瓷件602上设有引线603,键合区604上形成有键合指605;基座601与上盖板607之间固定制冷器300和透镜组件400,光口606通过过渡环700固定连接至隔离器组件500。在一个实施例中,管壳的瓷件602和键合区604均为三氧化二铝材质,键合区604上表面通过依次镀钨金、镍和金形成键合指605。另外,在一个实施例中,管壳的键合区604呈T字形,该T字形臂部向管壳600内部深入的部分上与信号传输线205电连接的键合指被配置为达到50Ω的高频阻抗。
接续如图2-图3所示,载体200固定在制冷器300上,用于承载阵列芯 片100和热敏电阻并设有传输信号线205,且传输信号线205的两端电连接在阵列芯片100的芯片电极与管壳键合区上的键合指605之间。
结合参考图9所示,透镜组件400包括透镜401和用于放置透镜401的透镜座402,透镜401用于将阵列芯片100输出的光束聚焦到隔离器组件500的起偏器上。
在一个实施例中,结合图6和图7所示,载体200上表面设置有金属涂层并分别包括芯片贴片区201、芯片打线区202、热敏电阻贴片区203、热敏电阻打线区204、匹配电阻206、对准标记线207、信号传输线205和地线2050,芯片贴片区201和热敏电阻贴片区203分别用于固定并电连接阵列芯片100和热敏电阻。
接续,结合图4-图5所示,阵列芯片100包括合波光波导110、四个单元芯片120和位于阵列芯片背面的地电极(图中未示出),每个单元芯片120均分别包括电吸收调制器(Electricity Absorb,EA)电极121、半导体光放大器(Semiconductor Optical Amplifier,SOA)电极122、分布式布拉格反射(Distributed Bragg Reflectors,DBR)激光器电极123、增益(GAIN)调节电极124和相位(PHASE)调节电极125、以及光波导126。阵列芯片100共晶焊接固定在载体的芯片贴片区201上,地电极电连接至载体的芯片打线区202,芯片打线区202与载体的地线2050电连接,四个单元芯片120的各个电极与载体的各传输信号线205对应相电连接。四个单元芯片的光波导126方向分别与载体的对准标记线207的方向一致,光波导126的输出光束通过合波光波导110进行合波传输,且合波光波导110与管壳的光口606共轴心设置。
在一个实施例中,载体200包括两组传输信号线205,每组包括3条地线接地传输线、2条EA信号传输线、2条SOA信号传输线、2条DBR信号传输线、2条GAIN信号传输线和2条PHASE信号传输线。每条EA信号传输线被配置为达到50Ω的高频阻抗,而且每条EA信号传输线与邻近的接地传输线之间连接一个50欧姆的匹配电阻206。在一个实施例中,载体200为氧化铍或氮化铝材质;金属涂层采用溅射工艺形成且材质为TiW/Au合金;芯片贴片区201和热敏电阻贴片区203通过Au/Sn合金电镀预制形成;匹配 电阻206采用溅射工艺形成且材质为TaN。在一个实施例中,载体200上的匹配电阻206为50Ω方块薄膜电阻。
在一实施例中,热敏电阻根据载体200上的贴片标记焊接在载体的热敏电阻贴片区203上,热敏电阻的上电极通过金丝直接与载体200上相应的信号传输线205电连接,下电极通过热敏电阻打线区204的焊接金丝与相应的信号传输线205电连接。在一实施例中,热敏电阻为双面镀金的方块电阻。
结合图11所示,在一个实施例中,管壳600的基座601上表面刻有:制冷器摆放标记线6011,用于标记与制冷器300设置引线侧的边缘平齐;光束传输标记线6012,用于标记与制冷器300的中心轴方向一致;以及透镜座摆放标记框6013,用于标记透镜座402的固定位置。
结合图8所示,在一个实施例中,制冷器300为热电制冷器,包括上基板和下基板301、位于上下基板之间的多对半导体电偶、以及两根引线302,热电制冷器300通过下基板301固定在管壳的基座601上,两根引线302方向朝向管壳的光口606且与管壳内侧壁上的两个键合指605分别电连接。相应地,与热电制冷器的两根引线302电连接的键合指605被形成为矩形,方便焊接。在一个实施例中,阵列芯片100输出光波导一端的端面、载体200贴覆芯片一端的端面、以及制冷器300带引线一端的端面之间保持平齐。此外,在一个实施例中,热电制冷器300的上下两个基板为导热陶瓷材质且外表面镀金;热电制冷器300用银胶粘接或者共晶焊接在管壳的基座601上。
结合图10所示,在一个实施例中,隔离器组件500具有入光口501和出光口502;结合图13所示,在一个实施例中,过渡环700具有大开口701和小开口702,隔离器组件的入光口501与过渡环的小开口702、以及过渡环的大开口701与管壳的光口606分别固定连接。
再返回结合图1-图3所示,在一个实施例中,管壳600俯视呈矩形腔体,矩形长边的两侧壳壁的外侧设有两排瓷件602,每排瓷件602上钎焊15条引线603,该两侧壳壁的内侧设有两组键合区604,每组键合区604上各镀有15个键合指605,每个键合指605与载体的各信号传输线205之间通过金丝或者引线实现电连接。其中,通过信号传输线205最终与四个单元芯片120的EA电极121电连接的键合指605被配置为达到50Ω的高频阻抗。
基于上述实施例描述的封装结构,现将对应的用于四通道集成可调谐激光器阵列芯片的封装方法简要描述如下。
首先,将制冷器300的下端面涂上银胶或者焊锡,然后将制冷器300粘接或焊接在管壳基座601上,制冷器引线302的方向朝向管壳光口606,制冷器300中心轴向方向与光束传输标记线602一致,制冷器300引线侧的边缘与管壳基座601上的制冷器摆放标记线6011平齐。
继续如图3和图11所示,将芯片组100放置在载体上的芯片贴片区201上,调整芯片组100的位置,使四条单元芯片光波导126的方向与载体上的4条对准标记线207的方向一致,将芯片组100共晶焊接固定在载体200上。
接续,参考图3-图5和图7所示,首先将与4个单元芯片地电极焊接在一起的芯片打线区202与载体200上的地线用金丝连接。然后将芯片上的各个电极与载体上对应的传输线用金丝焊接的方式连接起来。结合图5和图7所示,具体相连接的电极与对应的传输线分别是:EA电极1211和2511,SOA电极1212和2512,DBR电极1213和2513,GAIN电极1214和2514;EA电极1221和2521,SOA电极1222和2522,DBR电极1223和2523,GAIN电极1224和2524;EA电极1231和2531,SOA电极1232和2532,DBR电极1233和2533,GAIN电极1234和2534;EA电极1241和2541,SOA电极1242和2542,DBR电极1243和2543,GAIN电极1244和2544;EA电极1251和2551,SOA电极1252和2552,DBR电极1253和2553,GAIN电极1254和2554,芯片打线区202上通过打六根金丝连接到地线2050。
接续,参考图7和图12所示,将载体传输线用金丝焊接与管壳600上的相应键合指605用金丝焊接的方式连接起来。具体相连接的传输线与对应的键合指分别是2511和6511,2512和2512,2513和6513,2514和6514;2521和6521,2522和6522,2523和6523,2524和6524;2531和6531,2532和6532,2533和6533,2534和6534;2541和6541,2542和6542,2543和6543,2544和6544;2551和6551,2552和6552,2553和6553,2554和6554,2050和6500。
接续,进行透镜定位。如图9所示,将透镜401用胶粘到透镜座402上,然后将透镜座402的凹槽4021卡到耦合夹具上固定。并通过调节夹具,将 透镜座402的底面放置在管壳600的基座601上表面的透镜座摆放标记框6013内。然后,耦合光纤的一端和光功率计相连,另一端从外侧穿过管壳光口606探测光信号。准备好以上两点后,接着如图14所示。将一个单元芯片的SOA信号引线和GAIN信号引线同时接电,具体地为下列四组之一的两根引线接电:6321和6341,6322和6342,6323和6343,6324和6344。引线加上电后,从芯片组100的4×1光波导11端就会输出激光。调整透镜座402和耦合光纤的位置,使得光功率计探测到的光功率最大。用胶粘接固定光功率最大时透镜座402的位置。
最后,进行隔离器定位。结合参考图3、图10和图13所示,先在隔离器组件500的小开口502的LC光接口内侧紧密插入耦合光纤插芯,耦合光纤的另一端连接光功率计。再将过渡环700套在隔离器组件500的入光口501外侧,过渡环700的小开口702的方向朝着隔离器组件500的出光口502方向。然后将管壳600、隔离器组件500连同过渡环700一同安装到耦合夹具上,使得管壳600上的光口606外沿与过渡环700的大开口701的外沿紧密接触。调节隔离器组件500的位置至光功率计的读数最大。固定此时管壳600、过渡环700和隔离器组件500的相对位置。并用激光焊接的方式对过渡环700的大开口701边缘与管壳600的光口606焊接固定,稍后采用同样方式将过渡环700的小开口702侧壁与隔离器组件500的入光口501外壁焊接固定。
由上述技术方案可知,本发明实施例提供的四通道集成可调谐激光器阵列芯片的封装结构,可以实现光路有源耦合时的灵活调节,保证光学组件之间的光路合理转换,从而提高光路耦合的效率,增加数据信号的传输距离;并且射频电路设计能保证信号传输完整性、减少传输损耗。
虽然已参照几个典型实施例描述了本发明,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本发明能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施例不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims (10)

  1. 一种用于四通道集成可调谐激光器阵列芯片(100)的封装结构,包括载体(200)、制冷器(300)、透镜组件(400)、隔离器组件(500)、管壳(600)、过渡环(700)以及热敏电阻,其中,
    所述管壳(600)包括基座(601)、上盖板(607)、光口(606)、位于外侧壁上的瓷件(602)以及位于内侧壁上的键合区(604),所述瓷件(602)上设有引线(603),所述键合区(604)上形成有键合指(605);所述基座(601)与所述上盖板(607)之间固定所述制冷器(300)和所述透镜组件(400),所述光口(606)通过所述过渡环(700)固定连接至所述隔离器组件(500);
    所述载体(200)固定在所述制冷器(300)上,用于承载所述阵列芯片(100)和所述热敏电阻并设有传输信号线(205),且所述传输信号线(205)的两端电连接在所述阵列芯片(100)的芯片电极与所述管壳键合区上的键合指(605)之间;
    所述透镜组件(400)包括透镜(401)和用于放置所述透镜(401)的透镜座(402),所述透镜(401)用于将所述阵列芯片(100)输出的光束聚焦到所述隔离器组件(500)的起偏器上。
  2. 如权利要求1所述的封装结构,其中,所述载体(200)上表面设置有金属涂层并分别包括芯片贴片区(201)、芯片打线区(202)、热敏电阻贴片区(203)、热敏电阻打线区(204)、匹配电阻(206)、对准标记线(207)和传输信号线(205),所述芯片贴片区(201)和所述热敏电阻贴片区(203)分别用于固定并电连接所述阵列芯片(100)和所述热敏电阻。
  3. 如权利要求2所述的封装结构,其中,所述阵列芯片(100)包括合波光波导(110)、四个单元芯片(120)和位于阵列芯片背面的地电极,每个单元芯片(120)均分别包括电吸收调制器EA电极(121)、半导体光放大 器SOA电极(122)、分布式布拉格反射DBR激光器电极(123)、增益GAIN调节电极(124)和相位PHASE调节电极(125)、以及光波导(126);
    所述阵列芯片(100)共晶焊接固定在所述载体的芯片贴片区(201)上,所述地电极电连接至所述载体的芯片打线区(202),所述芯片打线区(202)与所述载体的地线电连接,所述四个单元芯片(120)的各个电极与所述载体的各传输信号线(205)对应相电连接;
    所述四个单元芯片的光波导(126)方向分别与所述载体的对准标记线(207)的方向一致,所述光波导(126)的输出光束通过所述合波光波导(110)进行合波传输,且所述合波光波导(110)与所述管壳的光口(606)共轴心设置。
  4. 如权利要求3所述的封装结构,其中,所述载体(200)包括两组所述传输信号线(205),每组包括3条接地传输线、2条EA信号传输线、2条SOA信号传输线、2条DBR信号传输线、2条GAIN信号传输线和2条PHASE信号传输线。
  5. 如权利要求2所述的封装结构,其中,所述热敏电阻根据所述载体(200)上的贴片标记焊接在所述载体的所述热敏电阻贴片区(203)上,所述热敏电阻的上电极通过金丝直接与所述载体(200)上相应的信号传输线(205)电连接,下电极通过所述热敏电阻打线区(204)的焊接金丝与相应的信号传输线(205)电连接。
  6. 如权利要求1所述的封装结构,其中,所述制冷器(300)为热电制冷器,包括上基板和下基板(301)、位于上下基板之间的多对半导体电偶、以及两根引线(302),所述热电制冷器(300)通过所述下基板(301)固定在所述管壳的基座(601)上,所述两根引线(302)方向朝向所述管壳的光口(606)且与所述管壳内侧壁上的两个所述键合指(605)分别电连接。
  7. 如权利要求1所述的封装结构,其中,所述隔离器组件(500)具有 入光口(501)和出光口(502),所述过渡环(700)具有大开口(701)和小开口(702),所述隔离器组件的入光口(501)与所述过渡环的小开口(702)、以及所述过渡环的大开口(701)与所述管壳的光口(606)分别固定连接。
  8. 如权利要求1所述的封装结构,其中,所述管壳(600)俯视呈矩形腔体,矩形长边的两侧壳壁的外侧设有两排所述瓷件(602),每排所述瓷件(602)上钎焊15条所述引线(603),该两侧壳壁的内侧设有两组所述键合区(604),每组所述键合区(604)上各镀有15个所述键合指(605),每个所述键合指(605)与所述载体的各信号传输线(205)之间通过金丝或者引线实现电连接。
  9. 如权利要求1所述的封装结构,其中,所述管壳的键合区(604)呈T字形,该T字形臂部向所述管壳(600)内部深入的部分上与所述信号传输线(205)电连接的键合指被配置为达到50Ω的高频阻抗。
  10. 如权利要求1所述的封装结构,其中,所述阵列芯片(100)输出光波导一端的端面、所述载体(200)贴覆芯片一端的端面、以及所述制冷器(300)带引线一端的端面之间保持平齐。
PCT/CN2015/082680 2015-06-29 2015-06-29 四通道集成可调谐阵列激光器芯片的封装结构 WO2017000130A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/082680 WO2017000130A1 (zh) 2015-06-29 2015-06-29 四通道集成可调谐阵列激光器芯片的封装结构
US15/740,673 US10205298B2 (en) 2015-06-29 2015-06-29 Packaging structure for four-channel integrated tunable laser array chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/082680 WO2017000130A1 (zh) 2015-06-29 2015-06-29 四通道集成可调谐阵列激光器芯片的封装结构

Publications (1)

Publication Number Publication Date
WO2017000130A1 true WO2017000130A1 (zh) 2017-01-05

Family

ID=57607461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082680 WO2017000130A1 (zh) 2015-06-29 2015-06-29 四通道集成可调谐阵列激光器芯片的封装结构

Country Status (2)

Country Link
US (1) US10205298B2 (zh)
WO (1) WO2017000130A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111509542A (zh) * 2020-05-27 2020-08-07 大连优迅科技有限公司 一种18Ghz激光器
CN115134002A (zh) * 2022-06-30 2022-09-30 重庆秦嵩科技有限公司 一种基于光电混合集成的4通道外调制电光转换组件

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11768341B2 (en) * 2019-09-18 2023-09-26 Nippon Telegraph And Telephone Corporation Package for optical module
US11600964B2 (en) * 2020-08-17 2023-03-07 Cisco Technology, Inc. Package self-heating using multi-channel laser
CN113314942A (zh) * 2021-05-25 2021-08-27 天津凯普林光电科技有限公司 一种激光器组件的加电装置
CN113376770A (zh) * 2021-06-16 2021-09-10 成都光创联科技有限公司 一种简化的多端口光器件及其封装方法
CN113764974B (zh) * 2021-09-16 2023-03-10 中南大学 Fac自动耦合封装设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1554138A (zh) * 2001-07-18 2004-12-08 �����Ӣ��֪ʶ��Ȩ���޹�˾ 波分复用光波长转换器
CN1719675A (zh) * 2004-07-06 2006-01-11 日本光进株式会社 光学模块
US7317742B2 (en) * 2004-02-19 2008-01-08 Sumitomo Electric Industries, Ltd. Optical sub-assembly having a thermo-electric cooler and an optical transceiver using the optical sub-assembly
US20090003398A1 (en) * 2003-03-14 2009-01-01 Akihiro Moto Light-transmitting module capable of responding a high-frequency over 10GHz
US20120014398A1 (en) * 2010-07-16 2012-01-19 Electronics And Telecommunications Research Institute Wavelength-tunable external cavity laser module
US20130038925A1 (en) * 2011-08-11 2013-02-14 Fujitsu Limited Optical amplifying device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3409781B2 (ja) * 2000-09-05 2003-05-26 住友電気工業株式会社 光半導体モジュールの製造方法
JP4204476B2 (ja) * 2001-12-26 2009-01-07 三菱電機株式会社 波長モニタ装置、光モジュールおよび光モジュールの組立方法
US8260150B2 (en) * 2008-04-25 2012-09-04 Finisar Corporation Passive wave division multiplexed transmitter having a directly modulated laser array

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1554138A (zh) * 2001-07-18 2004-12-08 �����Ӣ��֪ʶ��Ȩ���޹�˾ 波分复用光波长转换器
US20090003398A1 (en) * 2003-03-14 2009-01-01 Akihiro Moto Light-transmitting module capable of responding a high-frequency over 10GHz
US7317742B2 (en) * 2004-02-19 2008-01-08 Sumitomo Electric Industries, Ltd. Optical sub-assembly having a thermo-electric cooler and an optical transceiver using the optical sub-assembly
CN1719675A (zh) * 2004-07-06 2006-01-11 日本光进株式会社 光学模块
US20120014398A1 (en) * 2010-07-16 2012-01-19 Electronics And Telecommunications Research Institute Wavelength-tunable external cavity laser module
US20130038925A1 (en) * 2011-08-11 2013-02-14 Fujitsu Limited Optical amplifying device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111509542A (zh) * 2020-05-27 2020-08-07 大连优迅科技有限公司 一种18Ghz激光器
CN115134002A (zh) * 2022-06-30 2022-09-30 重庆秦嵩科技有限公司 一种基于光电混合集成的4通道外调制电光转换组件
CN115134002B (zh) * 2022-06-30 2023-06-23 重庆秦嵩科技有限公司 一种基于光电混合集成的4通道外调制电光转换组件

Also Published As

Publication number Publication date
US20180191130A1 (en) 2018-07-05
US10205298B2 (en) 2019-02-12

Similar Documents

Publication Publication Date Title
WO2017000130A1 (zh) 四通道集成可调谐阵列激光器芯片的封装结构
US20210232045A1 (en) Two-dimensional conformal optically-fed phased array and methods of manufacturing the same
US9507109B2 (en) Optical modules
KR101906592B1 (ko) 광모듈
JP4015440B2 (ja) 光通信モジュール
CN112202046B (zh) 一种新型to封装结构
JP2005043622A (ja) 光半導体モジュール及びその製造方法
JP5169985B2 (ja) 半導体装置
CN112234429B (zh) 多通道激光发射器和光通信器件
JP2003229629A (ja) 光モジュール
JPH02220491A (ja) 半導体光学デバイスのためのシリコンベース搭載構造
CN106338799A (zh) 光发射组件
CN209913232U (zh) 半导体激光泵浦源封装结构
JP2009151053A (ja) 受光モジュール
CN110266395A (zh) 利用波长可调滤波器的光接收器
CN220455568U (zh) 一种并行光电单元及光模块
US20240184197A1 (en) Two-dimensional conformal optically-fed phased array and methods of manufacturing the same
CN220795536U (zh) 一种光电单元及光模块
CN112987153B (zh) 反射镜组、光学器件和光学系统
CN220553017U (zh) 一种双发光组件及一种光模块
JP3379726B2 (ja) 光伝送モジュール及びその製造方法
WO2024001486A1 (zh) 用于光通讯的光器件和光模块
JP2002296464A (ja) 光電気配線基板
JP2010123775A (ja) 光送信モジュール用の熱電モジュールおよび光送信モジュール
JP2004317629A (ja) 光送信モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896661

Country of ref document: EP

Kind code of ref document: A1