WO2016208673A1 - コラーゲン様構造を有する重合ペプチド及びゲル - Google Patents

コラーゲン様構造を有する重合ペプチド及びゲル Download PDF

Info

Publication number
WO2016208673A1
WO2016208673A1 PCT/JP2016/068667 JP2016068667W WO2016208673A1 WO 2016208673 A1 WO2016208673 A1 WO 2016208673A1 JP 2016068667 W JP2016068667 W JP 2016068667W WO 2016208673 A1 WO2016208673 A1 WO 2016208673A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
residue
polymerized
chain
motif
Prior art date
Application number
PCT/JP2016/068667
Other languages
English (en)
French (fr)
Inventor
隆規 小出
慎一郎 市瀬
俊吾 竹内
能勢 博
Original Assignee
学校法人早稲田大学
コラジェン・ファーマ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人早稲田大学, コラジェン・ファーマ株式会社 filed Critical 学校法人早稲田大学
Priority to JP2017524969A priority Critical patent/JP6455862B2/ja
Priority to US15/579,286 priority patent/US10851152B2/en
Priority to CN201680032893.5A priority patent/CN107735405B/zh
Priority to EP16814442.6A priority patent/EP3315509B1/en
Publication of WO2016208673A1 publication Critical patent/WO2016208673A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin, cold insoluble globulin [CIG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0009Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials
    • A61L26/0028Polypeptides; Proteins; Degradation products thereof
    • A61L26/0047Specific proteins or polypeptides not covered by groups A61L26/0033 - A61L26/0042
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0061Use of materials characterised by their function or physical properties
    • A61L26/008Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/043Proteins; Polypeptides; Degradation products thereof
    • A61L31/047Other specific proteins or polypeptides not covered by A61L31/044 - A61L31/046
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/145Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/02General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length in solution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/32Proteins, polypeptides; Degradation products or derivatives thereof, e.g. albumin, collagen, fibrin, gelatin
    • A61L15/325Collagen
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture

Definitions

  • the present invention relates to a polymerized peptide composed of a collagen-like peptide, a gel containing the polymerized peptide, a polymerized peptide thin film, and a production method and use thereof.
  • Collagen has a triple helical structure in which the three chains of a peptide having a primary structure amino acid sequence (Xaa and Yaa represent any amino acid residue) consisting of repeating the basic unit of-(Xaa-Yaa-Gly)- It is a general term for proteins that form, and is a major component of the extracellular matrix that exists between cells of animal tissues. It is abundant in animal connective tissue and constitutes the skeletal structure of the tissue. There are 28 reported human collagen proteins. On the other hand, a motif having physiological activity is incorporated in the amino acid sequence of the primary structure.
  • Non-patent Document 1 when tissue collagen is exposed to blood during tissue damage such as a wound, the integrin ⁇ 2 ⁇ 1 receptor and glycoprotein VI (GPVI) Activating the blood coagulation system triggered by the binding of platelets in the blood having a receptor to the wound site as a trigger, and has activities such as hemostasis and promotion of wound healing (Non-patent Document 1).
  • GPVI glycoprotein VI
  • gelatin produced by heating and extracting collagen collected from livestock, fish, etc. with water by utilizing the strength and physiological activity of collagen is used as a capsule in medicines and medical materials that apply hemostasis and pressure ulcers. It is widely used as a raw material for cosmetics, as a cosmetic raw material, and a food material.
  • Natural collagen has not only an action on platelets via the integrin ⁇ 2 ⁇ 1 receptor and the like, but also various activities such as adhesion of cells having discoidin receptor, syndecan receptor and fibronectin (Non-patent Document 1). ). Therefore, with natural collagen, it is substantially difficult to obtain and use collagen having an activity selective to a desired physiological activity.
  • Patent Documents 1 and 2). focusing on these characteristics of collagen, non-natural collagen-like peptides having a collagen-like structure and activity are produced, and application to research materials and medical materials has been attempted.
  • Collagen is useful as a medical material, but its use on humans is at risk of allergies and zoonotic diseases. Therefore, the use of collagen-like peptides such as artificial collagen or artificial gelatin as medical materials has been studied. However, conventional collagen-like peptides have not always been sufficient in terms of physical strength, properties such as denaturation upon heating and inability to be processed into sheets.
  • the present invention provides medical materials and research materials that can imitate or newly impart the structure / physical properties and physiological functions of collagen and ensure safety by making them completely artificial products. It is produced as a polymerized peptide by oxidative crosslinking of a collagen-like peptide having a triple helical structure consisting of three chains of peptide chains containing a plurality of cysteine (Cys) residues.
  • the material containing this polymerized peptide can be used after being processed into a hydrogel and a sheet, and by incorporating a functional amino acid sequence present on a biopolymer such as an integrin binding sequence, a specific physiological function such as cell adhesion Can be granted.
  • the present invention provides a method for producing the hydrogel and the sheet-like processed product, and uses as a composition for cell culture, wound covering, regenerative medical material, research material and the like using these.
  • the present invention is a polymerized peptide, Having a triple-stranded peptide having a triple helical structure as a repeating unit, polymerized by oxidative crosslinking, Each peptide chain constituting the three-chain peptide may be the same or different from each other, Each peptide chain consists of a triple helix-forming peptide group having a repeating structure of at least 5 times with-(Xaa-Yaa-Gly)-as the basic unit, and at least 2 residues within 10 residues from each of the amino terminus and carboxy terminus.
  • Xaa and Yaa are each independently a proline (Pro or P) residue, a hydroxyproline (Hyp or O) residue, an arginine (Arg or R) residue, a lysine (Lys or K) residue, a valine ( Val or V) residue, leucine (Leu or L) residue, isoleucine (Ile or I) residue, serine (Ser or S) residue, threonine (Thr or T) residue, alanine (Ala or A) residue Group, glycine (Gly or G) residue, phenylalanine (Phe or F) residue, methionine (Met or M) residue, glutamic acid (Glu or E) residue, aspartic acid (Asp or D) residue, asparagine ( Asn or N) residue, glutamine (Gln or Q)
  • the peptide chain is (i) a peptide chain comprising at least one triple helix-forming peptide group and at least one cross-linking peptide group, (ii) a peptide chain comprising at least one peptide group for forming a triple helix and at least one peptide group for forming a cross-linking, and at least one peptide group having a physiologically active motif; and (iii) a peptide comprising at least one peptide group for forming a triple helix and a peptide group for forming a bridge, and at least one peptide group in which a side chain of an amino acid residue is bound to a motif having physiological activity via a linker
  • the peptide chain may be at least one selected from the group consisting of chains.
  • the polymerized peptide of the present invention may be a polymerized peptide having a structural unit of a trimeric peptide formed from three peptide chains represented by the following formula (I) and oxidatively crosslinked.
  • a 1 , A 2 and A 3 may be the same or different and are each independently a peptide chain represented by the following formula (II):
  • a 1 , A 2 and A 3 form a trimer having a triple helical structure, and may be cross-linked by a disulfide bond by a cysteine (Cys) residue contained in each peptide chain,
  • the trimer is polymerized by oxidative crosslinking at the Cys disulfide bond.
  • R 1 and R 4 each have an amino terminus and a carboxy terminus, each independently a peptide group consisting of any 2 to 10 amino acid residues including at least 2 Cys residues
  • Z is (i) a peptide group consisting only of a repeating structure having-(Xaa-Yaa-Gly)-as a basic unit; (ii) a peptide group having a structure having a repeating unit of-(Xaa-Yaa-Gly)-and a physiologically active motif, or (iii) It has a structure repeating as a basic unit of-(Xaa-Yaa-Gly)-, and has physiological activity through a linker in the side chain of at least one amino acid residue contained in the peptide chain
  • At least one selected from R 2 and R 3 are each independently a peptide group containing a structure that repeats continuously in units of-(Xaa-Yaa-
  • the peptide chain may be represented by the following formula (III).
  • R 5 and R 6 are each an amino terminus and a carboxy terminus, each independently being a peptide group consisting of any 2 to 10 amino acid residues including at least 2 Cys residues, p, q, and r are all integers of 0 or more, the sum of p, q, and r is 3 or more, and s is an integer of 1 or more.
  • the physiological activity may be a specific binding activity for a biopolymer.
  • the binding motif of the ligand having specific binding activity to the biopolymer is a binding motif for a collagen receptor selected from integrin, discoidin domain receptor (DDR) or heparan sulfate proteoglycan (HSPG), or derived from fibronectin.
  • DDR discoidin domain receptor
  • HSPG heparan sulfate proteoglycan
  • the binding motif for the integrin is -Gly-Phe-Hyp-Gly-Glu-Arg-
  • the binding motif for the discoidin domain receptor is -Gly-Val-Met-Gly-Phe-Hyp-
  • the binding motif amino acid for heparan sulfate proteoglycan The sequence is -Lys-Gly-His-Arg-Gly-Phe-
  • the binding motif for fibronectin-derived integrin ⁇ v ⁇ 3 may be -Arg-Gly-Asp-.
  • the peptide chain may be selected from peptides having an amino acid sequence selected from SEQ ID NOs: 1-7, 10-18, 23 and 24.
  • the peptide chain is an amino acid in which one or several amino acids are deleted, substituted or added to the amino acid sequence of a peptide having an amino acid sequence selected from SEQ ID NOs: 1 to 7, 10 to 18, 23 and 24 May consist of an array.
  • the peptide chain may be selected from peptides having an amino acid sequence selected from SEQ ID NOs: 1, 2, 5-7, 10-18 and 23.
  • polymerized peptide In the invention of the polymerized peptide, one or several amino acids are deleted, substituted or added to the amino acid sequence of the peptide having an amino acid sequence selected from SEQ ID NOs: 1, 2, 5-7, 10-18 and 23. May consist of different amino acid sequences.
  • the peptide chain having the physiologically active motif is the side chain of the Lys residue of the peptide group, with the integrin-binding motif derived from fibronectin using Bis (NHS) PEG 5 (bis (succinimidyl) penta (ethylene glycol)) as a linker. In some cases.
  • polymerized peptide In the invention of the polymerized peptide, There is a case of a copolymerized peptide produced by combining two or more of the motifs having physiological activity.
  • the present invention also provides a method for producing the polymerized peptide, -(Xaa-Yaa-Gly)-as a basic unit, which has a repeating structure of at least 5 times and contains at least 2 cysteine (Cys) residues within 10 residues from each of the amino terminus and carboxy terminus
  • a step of dissolving a peptide chain which may be different, in a solvent at a temperature higher than the denaturation temperature, Forming a triple-stranded peptide having a triple helical structure consisting of three of the peptides by self-assembly by cooling;
  • a manufacturing method is provided.
  • Xaa and Yaa are each independently a proline (Pro or P) residue, a hydroxyproline (Hyp or O) residue, an arginine (Arg or R) residue, or a lysine (Lys or K) residue.
  • the proline residue may be modified with an amino group or a fluorine atom, and an N-isobutyl group glycine residue may be used at the Xaa position and the
  • the present invention provides a polymerized peptide produced by the production method.
  • the present invention provides a gelling agent comprising at least one of the above-mentioned polymerized peptides.
  • the present invention provides a gel containing at least one of the polymerized peptides.
  • the gel of the present invention may be a gel containing one, two, three, four or five of the polymerized peptides.
  • the gel of the present invention may be a gel containing a polymerized peptide in which at least two kinds of three-chain peptides are combined with the three-chain peptide as a polymerization unit.
  • the gel of the present invention may be a gel containing a polymerized peptide that is a combination of two, three, four, or five of the three-chain peptides.
  • the gel of the present invention may be a gel further containing at least one of three-chain peptides not containing a cysteine residue.
  • the gel of the present invention may be a gel produced by oxidative polymerization of at least one of three-chain peptides.
  • the gel of the present invention may be a gel produced by oxidative polymerization of one, two, three, four, or five types of three-chain peptides.
  • the gel of the present invention comprises a mixture of a three-chain peptide composed of a peptide chain containing a cysteine residue and a three-chain peptide composed of a peptide chain not containing a cysteine residue, followed by oxidative polymerization. It may be a manufactured gel.
  • each peptide chain constituting the three-chain peptide includes a peptide chain having a different number of cysteine residues for controlling the stiffness of the gel and a peptide chain having a bioactive motif. It may be a multifunctional gel.
  • the peptide chain for controlling the hardness of the gel may be a peptide chain in which the number of cysteine residues contained in the vicinity of the N-terminal and C-terminal of the peptide chain is different.
  • the number of the cysteine residues in the peptide chain for controlling the hardness of the gel is selected from 1, 2 or 3 near the N-terminal and C-terminal, respectively, near the N-terminal and the C-terminal. , May be the same or different.
  • the gel is a hydrogel and may be used as a substrate for culturing cells selectively.
  • the present invention provides a polymerized peptide thin film produced by drying the gel.
  • the present invention also provides a regenerative medical material comprising the polymerized peptide thin film.
  • the regenerative medical material may be a composition for promoting wound healing.
  • the schematic diagram of the polymeric peptide of the collagenous peptide of this invention, the gel containing this, and the polymeric peptide thin film is represented.
  • Chromatogram of synthesized peptide by reversed-phase high performance liquid chromatography (RP-HPLC) analysis Chromatogram of CC2-GPOGPR (short). Chromatogram of synthesized peptide by reversed-phase high performance liquid chromatography (RP-HPLC) analysis: C2-GPOGPR) (short) chromatogram. Chromatogram of synthesized peptide by reversed-phase high performance liquid chromatography (RP-HPLC) analysis: Soluble GPOGPR short (short) chromatogram. Results of CD spectrum measurement of the synthesized peptide chain at 4, 37, and 80 ° C .: This shows the CD spectrum of YCC2.
  • results of CD spectrum measurement of the synthesized peptide chain at 4, 37 and 80 ° C . CD2 CD spectrum is shown. Results of CD spectrum measurement of the synthesized peptide chain at 4, 37 and 80 ° C .: The CD spectrum of CC1 is represented. Results of CD spectrum measurement of the synthesized peptide chain at 4, 37, and 80 ° C .: represents the CD spectrum of CCC2. Results of CD spectrum measurement of the synthesized peptide chain at 4, 37 and 80 ° C .: Shows the CD spectrum of CCCC2. Results of CD spectrum measurement of the synthesized peptide chain at 4, 37 and 80 ° C .: The CD spectrum of YCC2-Scr is shown.
  • YCC2 ⁇ 225 is the result of changing the temperature. This shows the result of measuring ⁇ 225 of YCC2-Scr while changing the temperature. It represents the result of quantifying the amount of SH of each peptide over time in the polymerization reaction of CCCC2, CCC2, CC2, CC1, YCC2 and YCC2-Scr.
  • the comparison result of the gel formation ability of each peptide in the hydrogel formed with YCC2, CC2, CC1, C2, CCC2, CCCC2, YCC2-Scr and Y2 is represented.
  • Fig. 4 represents the thermal stability measurements of hydrogels in the hydrogels formed with CCCC2, CCC2, CC2 and YCC2.
  • the produced polymerized peptide thin film is represented. Left: Inner diameter 6 mm, Peptide amount 1 mg, Support PVDF membrane Inside: Inner diameter 10 mm, Peptide amount 3 mg, Support nylon mesh Right: Inner diameter 6 mm, Peptide amount 1 mg, Support PVDF membrane
  • the external view at the time of rehydrating a polymeric peptide thin film is represented. Measurement results of CD spectrum at 4, 37 and 80 ° C.
  • CD spectrum of YCC2-GFOGER CD spectrum of YCC2-GFOGER. Measurement results of CD spectrum of synthesized peptide with bioactive motif at 4, 37 and 80 ° C .: CD spectrum of Soluble-GFOGER. Measurement results of CD spectrum at 4, 37 and 80 ° C. of the peptide incorporating the synthesized bioactive motif: The CD spectrum of YCC2-GVMGFO at 4, 37 and 80 ° C. is shown. Measurement results of CD spectra of synthesized peptides incorporating bioactive motifs at 4, 37 and 80 ° C .: CD spectra of Soluble-GVMGFO. Measurement result of CD spectrum at 4, 37 and 80 ° C.
  • FIG. 5 shows the results of comparison of human fibroblast adhesion to type I collagen (Collagen I; positive control) on a gel formed with a polymerized peptide of a collagen-like peptide having a GFOGER sequence motif (Pol-GFOGER).
  • Collagen I Collagen I; positive control
  • GPOGPR motifs of FAK phosphorylation signals via integrins when using gels (Pol-GFOGER) formed from polymerized peptides of collagen-like peptides with GFOGER sequence motifs
  • the result of Western blot is shown.
  • Collagen I Collagen I
  • GPOGPR motif GPOGPR motif of FAK phosphorylation signaling via integrin when using gel
  • Poly-GFOGER polymerized peptide of collagen-like peptide with GFOGER sequence motif Comparison with: represents the result of comparing the effects of FAK on phosphorylation. Comparison of changes in the number of adherent cells with changes in the amount of binding motifs in the polymerized peptide (Pol-GFOGER) of a collagen-like peptide having a GFOGER sequence motif compared to collagen I (Collagen I) and GPOGPR motif (Pol-GPOGPR) A microscopic observation diagram showing the results is shown.
  • FIG. 2 shows a microscopic observation of the adhesion of human fibroblasts compared to type I collagen (Collagen I), soluble GFOGER (Soluble GFOGER), soluble GVMGFO (Soluble GVMGFO) and soluble KGHRGF (Soluble KGHRGF).
  • the observation figure in a microscope showing the evaluation result of the inhibitory effect of EDTA and heparin with respect to the human fibroblast adhesion of the polymerized peptide (Each Pol-GFOGER and Pol-KGHRGF) incorporating GFOGER and KGHRGF is shown.
  • the result of having measured the cell number about the inhibitory effect of EDTA and heparin shown by FIG. 15B is represented.
  • the observation figure in a microscope showing the examination result of the cell adhesion of the gel by the polymerization peptide which has various content ratios of the some binding motif which combined GFOGER sequence motif (GFO) and GVMGFO sequence motif (GVM) is shown.
  • the photograph figure showing the result of the cell adhesion assay using Using a type I collagen as a positive control and a polymer gel containing no CCC2-GFOGER (short) as a negative control, adhesion and aggregation of human skin fibroblasts to the gel were observed with a fluorescence microscope.
  • Human skin fibroblast cells that adhere to the gel prepared by changing the composition ratio of the two components to 9: 1, 7: 3, 5: 5, 3: 7, and 1: 9 Aggregation was evaluated.
  • FIG. 6 is a photographic view of the dorsal subcutaneous tissue 10 days after transplanted with a collagen-like polymerized peptide thin film under the back of a mouse and stained with hematoxylin-eosin and observed with a microscope.
  • FIG. 4 is a photograph of a photograph obtained by transplanting a collagen-like polymerized peptide thin film subcutaneously on the back of a mouse and observing the subcutaneous tissue on the back 30 days after staining with hematoxylin-eosin. PVDF was used as a support for the purpose of confirming the implantation site because it did not show biodegradability.
  • polymerized peptide of collagen-like peptide The three-chain peptide according to the present invention is generally also referred to as a collagen-like peptide.
  • the “collagen-like peptide” is a non-natural peptide or polypeptide having a repeating structure having a basic unit of — (Xaa-Yaa-Gly) — as in natural collagen. Three chains were self-assembled in a solvent to form a helical structure, thereby forming a three-chain peptide, or a three-chain peptide having the helical structure was further crosslinked. Refers to a peptide or polypeptide.
  • Xaa and Yaa are each independently a proline (Pro or P) residue, a hydroxyproline (Hyp or O) residue, an arginine (Arg or R) residue, a lysine (Lys or K) residue, Valine (Val or V) residue, leucine (Leu or L) residue, isoleucine (Ile or I) residue, serine (Ser or S) residue, threonine (Thr or T) residue, alanine (Ala or Ala ) Residue, glycine (Gly or G) residue, phenylalanine (Phe or F) residue, methionine (Met or M) residue, glutamic acid (Glu or E) residue, aspartic acid (Asp or D) residue, Selected from asparagine (Asn or N) residue, glutamine (Gln or Q) residue, histidine (His or H) residue, tryptophan (Trp or W) residue or tyrosine (
  • one of the embodiments of the present invention is a polymerized peptide obtained by polymerizing a three-chain peptide, that is, a collagen-like peptide (see FIG. 1).
  • the polymerized peptide of the present collagen-like peptide has the following configuration.
  • a polymerized peptide comprising: Having a triple-stranded peptide having a triple helical structure as a repeating unit, polymerized by oxidative crosslinking, Each peptide chain constituting the three-chain peptide may be the same or different from each other, and has a repeating structure of at least 5 times with-(Xaa-Yaa-Gly)-as a basic unit, A polymerized peptide comprising at least two cysteine (Cys) residues within 10 residues from each of an amino terminus and a carboxy terminus.
  • [Xaa and Yaa are each independently a proline (Pro or P) residue, a hydroxyproline (Hyp or O) residue, an arginine (Arg or R) residue, a lysine (Lys or K) residue, a valine ( Val or V) residue, leucine (Leu or L) residue, isoleucine (Ile or I) residue, serine (Ser or S) residue, threonine (Thr or T) residue, alanine (Ala or A) residue Group, glycine (Gly or G) residue, phenylalanine (Phe or F) residue, methionine (Met or M) residue, glutamic acid (Glu or E) residue, aspartic acid (Asp or D) residue, asparagine ( Asn or N) residue, glutamine (Gln or Q) residue, histidine (His or H) residue, tryptophan (Trp or W) residue or tyrosine (Tyr or Y)
  • the “peptide chain” is a peptide or polypeptide having a primary structure necessary for forming a triple helical structure by three peptide chains, and includes a Cys residue for forming an oxidative bridge. It may be expressed as “single-chain peptide”.
  • the number of Cys residues contained within 10 residues from the N-terminus and C-terminus of the peptide chain may be independently the same or different, and may be 2 or more, 3 residues As described above, it may be 4 residues or more and 5 residues or more.
  • the peptide groups from each of the amino terminus and carboxy terminus containing at least 2 cysteine (Cys) residues are within 9 residues, within 8 residues, other than within 10 residues. It may be within 7 residues, within 6 residues, within 5 residues, within 4 residues or within 3 residues.
  • polymerized peptide refers to a peptide obtained by polymerizing a “collagen-like peptide” via a disulfide bond formed by, for example, oxidative crosslinking between cysteine residues contained in the collagen peptide. .
  • the degree of polymerization of the polymerized peptide of the present invention is 2 or more, and is not particularly limited as long as it is a degree of polymerization that can form a gel containing the polymerized peptide of the present invention, preferably a hydrogel, but the average degree of polymerization is less than 100, 100 It may be ⁇ 500, 500 ⁇ 1000, 1000 ⁇ 5000, 5000 ⁇ 10000 or 10000 or more.
  • the repetitive structure having-(Xaa-Yaa-Gly)-as a basic unit in a collagen-like peptide has a different minimum number of repeats depending on the amino acid residue constituting it.
  • 4-fluoroproline is contained in this basic unit, it is known that a stable triple helical structure can be formed if it is a repeating unit of 5 or more times (Sakakibara S. (1973) Biochem. Biophys. Acta, 303, 198-202).
  • the collagen-like peptide forms a stable triple helical structure.
  • the collagen-like peptide forms a more stable triple helical structure.
  • the collagen-like peptide forms a more stable triple helical structure.
  • the collagen-like peptide forms a more stable triple helical structure.
  • the collagen-like peptide forms a more stable triple helical structure.
  • the collagen-like peptide forms a more stable triple helical structure.
  • the collagen-like peptide forms a more stable triple helical structure.
  • the collagen-like peptide forms a more stable triple helical structure.
  • the number of repetitions having-(Xaa-Yaa-Gly)-as the basic unit is 5 times or more, 6 times or more, 7 times or more, 8 times or more, 9 times or more, or 10 times or more There are cases.
  • an amino acid is L-form.
  • the amino acids herein include 20 kinds of L-amino acids known to be used for translation of proteins generally used in molecular biology, as well as modified amino acid residues well known in the art, such as 4-amino acids.
  • hydroxylproline is 3-hydroxyproline or 4-hydroxy-L-proline, and is represented by “Hyp” in three letter code and “O” in one letter code.
  • the homotrimer refers to a trimer composed of three peptides having the same primary structure.
  • a heterotrimer is a trimer consisting of two peptides with the same primary structure and one peptide with a primary structure different from the peptide, or three peptides with different primary structures. Is a trimer.
  • the denaturation temperature refers to a temperature at which half of the triple helical structure of the collagenous peptide of the present specification is transferred to a random coil.
  • the denaturation temperature is measured by a known method such as a higher-order structure analysis by circular dichroism spectrum (CD spectrum) measurement (Patent Documents 1 and 2), but also by other known methods not limited thereto. It can be measured.
  • the collagen-like peptide according to the present invention can be produced by a known peptide chemical synthesis method using a commercially available amino acid and not limited thereto (Patent Document 1).
  • a nucleic acid sequence encoding a desired amino acid sequence is produced, this is incorporated into an expression vector, a recombinant expression vector is prepared by a known method, and introduced into an appropriate host such as a microorganism such as Escherichia coli to transform. Is made. Since the recombinant peptide chain is produced by culturing the obtained transformant in an appropriate medium, the recombinant peptide chain used in the present invention is recovered by recovering the recombinant peptide chain produced from the culture. Can be prepared.
  • Patent Document 2 EP1014176A2, US6992172, WO2004 / 85473, WO2008 / 103041, etc.
  • Such a peptide chain can be obtained by separation and purification using a separation means such as high performance liquid chromatography and used for the production of a three-chain peptide.
  • this peptide chain may form a triple-stranded peptide having a triple helical structure by self-assembly in an aqueous solvent at the time of manufacture or purification.
  • a collagen-like peptide is produced by incorporating a plurality of cysteine residues into the peptide chain, and is not limited thereto, but is oxidized and crosslinked with an oxidizing agent such as dimethyl sulfoxide (DMSO) or air oxidation.
  • DMSO dimethyl sulfoxide
  • Polymerized peptides are provided in which the peptides are cross-linked with disulfide bonds.
  • a polymerized peptide of a collagen-like peptide produced by this method has improved strength as compared with known collagen-like peptides, and can impart properties that do not denature even when heated in an aqueous solution.
  • the oxidizing agent for producing the polymerized peptide of the present invention includes oxygen, iodine, hydrogen peroxide, sodium bromate (sodium bromate), potassium bromate, sodium perborate or perboric acid. Although potassium etc. are mentioned, it is not limited to these.
  • the confirmation of the formation of a cross-link by the disulfide bond of the present invention can be confirmed, for example, by quantifying the residual thiol group after the oxidative cross-linking reaction with an Elman reagent.
  • a polymerized peptide thin film with improved strength as described below is provided.
  • a polymer of collagen-like peptide that does not impart physiological activity or has been imparted by incorporating a motif having physiological activity into the peptide chain and / or binding a peptide having a motif having physiological activity to the side chain of the peptide chain A polymerized peptide having the physiological activity, a gel containing the polymerized peptide, and a thin film containing the polymerized peptide can be produced.
  • a motif to be incorporated into a collagen-like peptide a polymerized peptide having a physiological activity selective to a desired physiological activity can be imparted, unlike natural collagen.
  • the polymer of the collagen-like peptide which does not provide bioactivity can be manufactured by not incorporating the peptide which has these bioactivity.
  • the polymerized peptide of this embodiment may be described as the following configuration.
  • the peptide chain is (i) a peptide chain comprising at least one triple helix-forming peptide group and at least one cross-linking peptide group, (ii) a peptide chain comprising at least one peptide group for forming a triple helix and at least one peptide group for forming a cross-linking, and at least one peptide group having a physiologically active motif; and (iii) a peptide comprising at least one peptide group for forming a triple helix and a peptide group for forming a bridge, and at least one peptide group in which a side chain of an amino acid residue is bound to a motif having physiological activity via a linker
  • the configuration of the polymerized peptide of this embodiment may be described as the following configuration.
  • the polymerized peptide comprising: A polymerized peptide comprising a structural unit of a trimeric peptide formed from three peptide chains represented by the following formula (I), which is oxidized and crosslinked.
  • a 1 , A 2 and A 3 may be the same or different and are each independently a peptide chain represented by the following formula (II):
  • a 1 , A 2 and A 3 form a trimer having a triple helical structure, and may be cross-linked by a disulfide bond by a cysteine (Cys) residue contained in each peptide chain,
  • the trimer is polymerized by oxidative crosslinking at the Cys disulfide bond.
  • R 1 and R 4 are each an amino terminus and a carboxy terminus, each independently being a peptide group consisting of any 2 to 10 amino acid residues including at least 2 Cys residues
  • Z is (i) a peptide group consisting only of a repeating structure having-(Xaa-Yaa-Gly)-as a basic unit; (ii) a peptide group having a structure having a repeating unit of-(Xaa-Yaa-Gly)-and a physiologically active motif, and (iii) It has a structure repeating as a basic unit of-(Xaa-Yaa-Gly)-, and has physiological activity via a linker on the side chain of at least one amino acid residue contained in the peptide chain
  • a peptide group formed by binding a motif sequence At least one selected from the group consisting of R 2 and R 3 are each independently a peptide group containing a structure that repeats continuously in units of-(Xa
  • motif refers to a small structural portion found in the amino acid sequences of various proteins, and refers to amino acid sequences that are very well conserved locally in natural proteins. It refers to the amino acid sequence of a motif involved in the functional expression of a protein, and is sometimes referred to as “motif sequence” or “sequence motif”.
  • Polymerized peptide of a collagen-like peptide that does not impart a specific physiological activity is a polymer of the collagen-like peptide that is a polymerized peptide that does not impart a specific physiological activity.
  • the polymerized peptide that does not impart the specific physiological activity is constituted by a peptide chain composed of a repeating sequence having-(Xaa-Yaa-Gly)-as a basic unit and a peptide group containing a plurality of Cys residues.
  • a collagen-like peptide having a triple helix structure are formed by forming a collagen-like peptide having a triple helix structure, and the collagen-like peptide is cross-linked and polymerized by a disulfide bond, and more specifically has the structure described below.
  • the collagen-like peptide constituting the polymerized peptide of the present invention may be a homotrimer or a heterotrimer.
  • a polymer peptide thin film can be used as a medical material for preventing adhesion of an organ and a suture material from a gel containing the polymerized peptide of the present invention or a place where a specific physiological activity is not imparted.
  • the gel or polymerized peptide thin film containing the polymerized peptide of the present invention is used as a medical material for preventing adhesion of an organ, for example, it is placed between the organ and the skin at the time of surgery or between the organ and the organ. Thus, adhesion between the organ and the skin or other organs can be prevented. Since the placed medical material of the present invention is gradually solubilized or degraded by phagocytic cells such as peptidases and macrophages present in the living body and disappears, no re-operation is required to remove the medical material. The burden on the patient's prognosis is small and the quality of life (QOL) is improved.
  • QOL quality of life
  • the medical material of the present invention is an artificially produced collagen-like peptide, unlike natural collagen, there is little risk of virus infection or microbial infection. Further, since it is cross-linked with a disulfide bond and does not denature even when heat-treated, it can be heated for sterilization, for example.
  • Collagen-like peptide polymerization peptide consisting of a peptide chain incorporating a biologically active motif Incorporating a biologically active motif into the peptide chain or binding to the single-chain side chain via a linker
  • a polymerized peptide of a collagen-like peptide having a desired physiological activity, a regulated activity intensity, and / or a combination of a plurality of physiological activities can be produced.
  • a collagen-like peptide polymer incorporating a bioactive motif in a peptide chain has the following constitution.
  • Polymer of collagen-like peptide”, The peptide chain is A peptide chain comprising at least one peptide group for forming a triple helix, at least one peptide group for forming a crosslink, and at least one peptide group having a physiologically active motif.
  • the peptide chain may be represented by the following formula (III).
  • R 5 and R 6 are each an amino terminus and a carboxy terminus, each independently being a peptide group consisting of any 2 to 10 amino acid residues including at least 2 Cys residues, p, q and r are all integers of 0 or more, the sum of p, q and r is 3 or more, and s is an integer of 1 or more.
  • the collagen-like peptide constituting the polymerized peptide of the present invention may be a homotrimer or a heterotrimer.
  • the physiological activity may be a specific binding activity to a biopolymer.
  • biopolymer refers to proteins, polypeptides, peptides, nucleic acids, and fragments thereof possessed by mammals including humans.
  • Specific binding activity to a biopolymer includes, but is not limited to, adhesion or binding activity of various cells to a collagen receptor and adhesion or binding activity of various cells to fibronectin.
  • a specific motif possessed by a ligand that selectively binds to various receptors present on cell membranes is known as a specific binding activity for biopolymers.
  • the binding motif for example, by incorporating a binding motif for a collagen receptor selected from integrin, discoidin domain receptor (DDR) or heparan sulfate proteoglycan (HSPG) at the time of production of the peptide chain, the binding motif can be selectively used.
  • DDR discoidin domain receptor
  • HSPG heparan sulfate proteoglycan
  • a receptor-selective cell adhesiveness having binding activity is imparted, and a research material or a medical material can be provided.
  • VWF motif other than the above, VWF motif, SPARC / BM-40 / osteonectin motif, aegyptin motif, LAIR-1 motif, GPVI motif, PEDF motif, Hsp47 motif, HLA motif, HLA super motif, zinc finger C2H2 type motif , Cytochrome b (N-terminal) / b6 / petB motif, immunoglobulin domain motif, WD domain G- ⁇ repeat motif, PDZ domain motif, leucine rich repeat motif, protein kinase domain motif, PH domain motif, EGF-like domain motif, Reverse transcriptase (RNA-dependent DNA polymerase) motif, Ank repeat motif, NADH-ubiquinone / plastoquinone (complex I) motif, EF hand motif, retroviral aspartyl protease motif, 7-transmembrane receptor (rhodopsin family) Mochi
  • cell adhesion motif examples include, for example, RGD sequence, LDV sequence, REDV sequence, YIGSR sequence, PDSGR sequence, RYVVLPR sequence, LGTIPG sequence, RNIAEIIKDI sequence, IKVAV sequence, LRE sequence, DGEA sequence, and HAV sequence. Each sequence can be mentioned.
  • the target cell for the physiological activity is a cell having a receptor that binds the motif as a binding ligand.
  • Specific examples include cells such as fibroblasts, hepatocytes, undifferentiated chondrocytes, muscle cells, platelets, neutrophils, macrophages, Schwann cells, keratinocytes, or epithelial cells.
  • motifs other than the above for example, recorded in PROSITE (http://www.expasy.ch/prosite/) and PRINTS (http://bioinf.man.ac.uk/dbbrowser/PRINTS/PRINTS.html)
  • PROSITE http://www.expasy.ch/prosite/
  • PRINTS http://bioinf.man.ac.uk/dbbrowser/PRINTS/PRINTS.html
  • the binding motif for the integrin is -Gly-Phe-Hyp-Gly-Glu-Arg-
  • the binding motif for the discoidin domain receptor is -Gly-Val-Met-Gly-Phe-Hyp-
  • the binding motif for heparan sulfate proteoglycan is -Lys-Gly-His-Arg-Gly-Phe- can be mentioned, but is not limited thereto.
  • the polymerized peptide of the present invention is used as a research substrate having a desired selective activity
  • research aimed at elucidating the mechanism of the intracellular signal transduction system of cells that bind to the substrate Can be used for
  • a gel or polymerized peptide thin film containing the polymerized peptide of the present invention can be placed on a wound site, a surgical wound at the time of surgery, or the cornea or retina.
  • Gel or polymerized peptide thin film enhances the migration and binding of fibroblasts to a wound site or surgical wound, for example, by incorporating the binding motif in which a receptor present on the cell membrane of fibroblasts has binding activity. It can be used for promoting wound treatment that promotes healing of wounds or surgical wounds, or as a medical material for cornea or retina regeneration.
  • a polymer of a collagen-like peptide in which a side chain of a peptide chain is bound to a motif having a physiological activity via a linker A collagen-like peptide having a side chain of a peptide chain bound to a motif having a physiological activity via a linker
  • the polymer has the following configuration.
  • the peptide chain may be represented by the following formula (III).
  • R 5 and R 6 are each an amino terminus and a carboxy terminus, each independently being a peptide group consisting of any 2 to 10 amino acid residues including at least 2 Cys residues, p, q, and r are all integers of 0 or more, the sum of p, q, and r is 3 or more, and s is an integer of 1 or more.
  • the collagen peptide constituting the polymerized peptide of the present invention may be a homotrimer or a heterotrimer.
  • the physiological activity may be a specific binding activity for a biopolymer.
  • a fibronectin integrin binding motif is incorporated or bound at the time of production of a peptide chain or after the production of a polymerized peptide, so that the receptor has a selective binding activity to the motif.
  • a research material or medical material to which cell adhesion is imparted can be provided.
  • the binding motif for fibronectin-derived integrin ⁇ v ⁇ 3 includes, but is not limited to, -Arg-Gly-Asp-.
  • VWF motif other than the above, VWF motif, SPARC / BM-40 / osteonectin motif, aegyptin motif, LAIR-1 motif, GPVI motif, PEDF motif, Hsp47 motif, HLA motif, HLA super motif, zinc finger C2H2 type motif , Cytochrome b (N-terminal) / b6 / petB motif, immunoglobulin domain motif, WD domain G- ⁇ repeat motif, PDZ domain motif, leucine rich repeat motif, protein kinase domain motif, PH domain motif, EGF-like domain motif, Reverse transcriptase (RNA-dependent DNA polymerase) motif, Ank repeat motif, NADH-ubiquinone / plastoquinone (complex I) motif, EF hand motif, retrovirus aspartyl protease motif, 7-transmembrane receptor (rhodopsin family) Mochi Etc. The but not limited thereto.
  • cell adhesion motif examples include, for example, RGD sequence, LDV sequence, REDV sequence, YIGSR sequence, PDSGR sequence, RYVVLPR sequence, LGTIPG sequence, RNIAEIIKDI sequence, IKVAV sequence, LRE sequence, DGEA sequence, and HAV sequence. Each sequence can be mentioned.
  • the target cell for the physiological activity is a cell having a receptor that binds the motif as a binding ligand.
  • Specific examples include, but are not limited to, fibroblasts, hepatocytes, undifferentiated chondrocytes, muscle cells, platelets, neutrophils, macrophages, Schwann cells, keratinocytes, and epithelial cells.
  • motifs other than the above for example, recorded in PROSITE (http://www.expasy.ch/prosite/) and PRINTS (http://bioinf.man.ac.uk/dbbrowser/PRINTS/PRINTS.html)
  • PROSITE http://www.expasy.ch/prosite/
  • PRINTS http://bioinf.man.ac.uk/dbbrowser/PRINTS/PRINTS.html
  • a gel containing the polymerized peptide of the present invention or a polymerized peptide thin film can be placed on a wound site or a surgical wound at the time of surgery.
  • Gel or polymerized peptide thin film enhances migration and binding of fibroblasts to a wound site or surgical wound, for example, by incorporating a binding motif in which a receptor present on the cell membrane of fibroblasts has binding activity, It can be used as a medical material for promoting wound healing that promotes healing of wounds or surgical wounds.
  • polymerized peptide incorporating or binding multiple types of bioactive motifs As an aspect of the present invention, a peptide chain incorporating the bioactive motif and / or a peptide chain binding the bioactive motif By using them in combination, polymerized peptides having activities in which the respective physiological activities are selectively combined and the activity intensity of each activity being adjusted to a desired ratio can be mentioned.
  • Polymerized peptides having this combination activity have a desired activity by mixing the collagen-like peptides having the respective activities so as to achieve the desired activity, after adjusting the mixing ratio and then polymerizing by oxidative crosslinking. Peptides can be produced. Using this polymerized peptide, a gel containing this polymerized peptide and a polymerized peptide thin film can be produced by the production method described above.
  • the motif having physiological activity used in combination includes, but is not limited to, a binding motif for integrin, a binding motif for discoidin, a binding motif for heparan sulfate, and an RGD motif.
  • a binding motif for a collagen receptor selected from integrins, discoidin domain receptors (DDR) or heparan sulfate proteoglycans (HSPG), or an RGD motif of fibronectin is used at the time of peptide chain production or polymerization. Incorporation after peptide production can provide a research material or a medical material in which a receptor-selective cell adhesion having a selective binding activity is imparted to the binding motif.
  • DDR discoidin domain receptors
  • HSPG heparan sulfate proteoglycans
  • VWF motif other than the above, VWF motif, SPARC / BM-40 / osteonectin motif, aegyptin motif, LAIR-1 motif, GPVI motif, PEDF motif, Hsp47 motif, HLA motif, HLA super motif, zinc finger C2H2 type motif , Cytochrome b (N-terminal) / b6 / petB motif, immunoglobulin domain motif, WD domain G- ⁇ repeat motif, PDZ domain motif, leucine rich repeat motif, protein kinase domain motif, PH domain motif, EGF-like domain motif, Reverse transcriptase (RNA-dependent DNA polymerase) motif, Ank repeat motif, NADH-ubiquinone / plastoquinone (complex I) motif, EF hand motif, retroviral aspartyl protease motif, 7-transmembrane receptor (rhodopsin family) Mochi
  • cell adhesion motif examples include, for example, RGD sequence, LDV sequence, REDV sequence, YIGSR sequence, PDSGR sequence, RYVVLPR sequence, LGTIPG sequence, RNIAEIIKDI sequence, IKVAV sequence, LRE sequence, DGEA sequence, and HAV sequence. Each sequence can be mentioned.
  • the target cell for the physiological activity is a cell having a receptor that binds the motif as a binding ligand.
  • Specific examples include, but are not limited to, fibroblasts, hepatocytes, undifferentiated chondrocytes, muscle cells, platelets, neutrophils, macrophages, Schwann cells, keratinocytes, and epithelial cells.
  • motifs other than the above for example, recorded in PROSITE (http://www.expasy.ch/prosite/) and PRINTS (http://bioinf.man.ac.uk/dbbrowser/PRINTS/PRINTS.html)
  • PROSITE http://www.expasy.ch/prosite/
  • PRINTS http://bioinf.man.ac.uk/dbbrowser/PRINTS/PRINTS.html
  • Gelling agent, gel, hydrogel and polymerized peptide thin film containing polymerized peptide of collagen-like peptide of the present invention When the polymerized peptide is produced in an aqueous solvent, it is produced as a hydrogel of the polymerized peptide of the present invention and water. That is, the polymerized peptide of the present invention has a use as a gelling agent.
  • the hydrogel of the present invention can be used as a regenerative medical material such as a post-surgical organ adhesion-preventing agent, a hemostatic agent, a wound healing promoter, and a cornea or retina regenerating material.
  • a regenerative medical material such as a post-surgical organ adhesion-preventing agent, a hemostatic agent, a wound healing promoter, and a cornea or retina regenerating material.
  • the hydrogel can be dried to produce a polymerized peptide thin film that is a sheet-like film.
  • This polymerized peptide thin film can be used, for example, as a regenerative medical material such as a cell sheet that can be rehydrated at the time of use and transplanted into the body such as the above-mentioned wound healing promoting material, artificial cornea or artificial myocardium.
  • the polymerized peptide thin film of the present invention can be stored for a long period of time at room temperature by drying as compared with a hydrogel composed of a polymerized peptide before drying, and the interaction between peptide molecules is changed. Even if it adds, stronger intensity
  • the gel of the present invention is produced by forming the triple-stranded peptide as a heterotrimer, forming a triple helical structure, and then oxidatively polymerizing with an oxidizing agent to form a gel.
  • the triple-stranded peptide is homotrimeric.
  • a gel containing at least one kind of peptide chain is produced by forming a triple helical structure as a monomer, and then mixing a plurality of types of homotrimers, followed by oxidative polymerization with an oxidizing agent and gelling. be able to.
  • the preparation of the gel obtained by cross-linking and polymerizing a plurality of types of homotrimers described above will be described in more detail. It may be a gel produced by polymerization and gelation.
  • This gel composed of multiple types of three-chain peptides is composed of, for example, a three-chain peptide composed of a peptide chain for controlling the hardness of the gel and a peptide chain having a bioactive motif Triple chain peptides can be combined to control the stiffness of the gel and / or adjust the expression of bioactivity.
  • gel stiffness refers to the robustness of a gel against degradation by phagocytic cells such as macrophages in vivo.
  • the hardness of this gel is influenced by the degree of cross-linking polymerization of the gel and the difference in the branched structure of the cross-linked peptide chain. For example, a hard gel is formed when many crosslinks by disulfide bonds are contained in the gel.
  • Examples of the single-chain peptide used in the plurality of types of three-chain peptides include peptide chains in which the number of cysteine residues contained in the single-chain peptide is different in order to control the hardness of the gel. It is done.
  • each peptide chain is heated and then slowly cooled to form a triple-stranded peptide having a triple helical structure composed of each peptide chain, and these three-chain peptides are mixed at a predetermined ratio, and then A gel containing a multifunctional polymerized peptide can be produced and used by cross-linking polymerization with an oxidizing agent and gelation.
  • Polymerized peptide gels prepared by blending peptides containing many cysteine residues at a high rate tend to be slow in biodegradability in vivo, while blending peptides containing few cysteine residues at a high rate.
  • the gel containing the prepared polymerized peptide exhibits faster biodegradability.
  • the activity expression intensity of the bioactive motif of the peptide chain can be adjusted. Therefore, by adjusting the degree of crosslinking contained in the gel, It is considered that the hardness of the gel and the expression intensity of the physiological activity can be controlled.
  • a peptide chain containing three, two or one cysteine residues in the vicinity of both the N-terminus and the C-terminus is used, and the cysteine residues are located at both ends.
  • the combination ratio of peptide chains containing 3 cysteine residues and peptide chains containing 2 cysteine residues or 2 cysteine residues, and 2 peptide chains each containing 2 cysteine residues at each end is 10 parts by mass. % Or less, and by preparing a gel containing less than 70%, preferably 50% or less as a mass ratio of the peptide chain containing one cysteine residue at a time, as a medical material Can be used.
  • cysteine residue in the gel is replaced with the peptide chain.
  • a gel containing a polymerized peptide containing a peptide chain containing one peptide at each end of the peptide chain containing less than 30%, preferably 10% or less, can be used.
  • These peptide chains can be used by combining a peptide chain not containing a cysteine residue with a peptide chain having a cysteine residue.
  • Examples of peptide chains containing three, two or one cysteine residues near both the N-terminus and C-terminus are CCC2-GPOGPRGP (short) (SEQ ID NO: 15), CC2-GPOGPR (short) (SEQ ID NO: 23), C2-GPOGPR (short) (SEQ ID NO: 24) and the like.
  • Examples of peptide chains that do not contain cysteine residues include Soluble GFOGER (SEQ ID NO: 19), Soluble GVMGFO ⁇ (SEQ ID NO: 20), Soluble KGHRGF (SEQ ID NO: 21), Soluble GPOGPR (short) (SEQ ID NO: 25), etc. Is mentioned.
  • the combination of the three-chain peptide composed of the peptide chain that controls the hardness of this gel and the three-chain peptide composed of the peptide chain having the bioactive motif are mixed and mixed, and polymerized by the above method.
  • a peptide By forming a peptide, it is possible to produce a multifunctional polymerized peptide in which the hardness of the gel in the body of the polymerized peptide, the type of physiological activity, and the strength of its expression are controlled. Then, by adjusting the hardness of the polymerized peptide and / or the type and amount of the active expression motif in vivo, for example, the biodegradation rate after in vivo transplantation can be adjusted or controlled.
  • a gel containing a polymerized peptide using various peptide chains can be produced according to the use for which the gel of the present invention is desired. That is, for example, artificial organ materials, such as artificial blood vessels, that should not be biodegradable are mixed with many peptides with a composition containing many cysteine residues to produce gels, while organ adhesion after surgery For materials that should be biodegraded after remaining in the living body for a predetermined period of time, such as preventives and wound healing promoters, the gel containing the polymerized peptide of the present invention is produced with fewer cysteine residues. .
  • the polymerized peptide of the present invention is selectively used by incorporating a motif having a desired physiological activity or binding via a linker.
  • a gel, hydrogel or polymerized peptide thin film having physiological activity can be produced.
  • a gel, hydrogel or polymerized peptide thin film having no particular physiological activity in other words, having low irritation and high safety in a living body is produced. be able to.
  • the polymerized peptide imparted with a selective physiological activity can be obtained by, for example, incorporating or binding the aforementioned binding motif for the collagen receptor into the peptide chain.
  • selective binding activity can be imparted to cells having a collagen receptor in a hydrogel or polymerized peptide thin film.
  • hydrogels or polymerized peptide thin films as a scaffold, cells with selective binding activity accumulate, and the tissue around the position where the hydrogel or polymerized peptide thin film is placed due to the activity of cytokines or chemokines released by these cells And / or physiological activity, such as a wound healing promotion effect, can be provided to a cell.
  • it can be used as a medical material having high selectivity for platelets, fibroblasts and / or corneal cells, preferably a regenerative medical material, and more preferably a regenerative medical material for promoting wound healing.
  • a medical material having high selectivity for platelets, fibroblasts and / or corneal cells preferably a regenerative medical material, and more preferably a regenerative medical material for promoting wound healing.
  • binding motif examples include a binding motif for a collagen receptor selected from integrin, discoidin domain receptor (DDR) or heparan sulfate proteoglycan (HSPG), or a binding motif for integrin ⁇ v ⁇ 3 derived from fibronectin.
  • DDR discoidin domain receptor
  • HSPG heparan sulfate proteoglycan
  • the binding motif for integrin is -Gly-Phe-Hyp-Gly-Glu-Arg-
  • the binding motif for discoidin domain receptor is -Gly-Val-Met-Gly-Phe-Hyp-
  • heparan sulfate -Lys-Gly-His-Arg-Gly-Phe- can be used as the binding motif amino acid sequence for proteoglycan
  • the binding motif for fibronectin-derived integrin ⁇ v ⁇ 3 includes, but is not limited to, -Arg-Gly-Asp- Not.
  • Resin CTC 2-chlorotrityl chloride
  • CD Circular dichroism
  • DDR discoidin domain receptor
  • ECM extracellular matrix
  • FAK Focal adhesion kinase
  • HDF human skin fibroblasts
  • HRP Horseradish peroxidase
  • HSPG heparan sulfate proteoglycan
  • PEDF Pigment epithelium-derived factor
  • SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel electrophoresis
  • vWF von Bill brand factor
  • amino acid sequence is represented by a single letter code commonly used by those skilled in the art. However, “O” represents a 4-hydroxyproline residue, “Ac-” represents an acetylated N-terminus, “—NH 2 ” represents an amidated carboxy terminus, and “ ⁇ A” represents ⁇ -alanine. Represents a residue.
  • the peptide chain has a repeating sequence 10 to 17 times of the basic unit of-(Xaa-Yaa-Gly)-forming a triple helical structure.
  • the basic sequence was designed to be polymerized by incorporating Cys residues at or near both NC ends and forming a disulfide bridge (-S-S-) by oxidation of the side chain thiol group (-SH).
  • -S-S- disulfide bridge
  • -SH side chain thiol group
  • GVMGFO of SEQ ID NOs: 13, 17 and 20 and KGHRGF of SEQ ID NOs: 14, 18 and 21 are integrin receptor, discoidin receptor (DDR) and heparan sulfate proteoglycan, respectively.
  • HSPG collagen binding motif of the receptor
  • RGQOGVMGFO and KGHRGFSGL are binding motifs for vWF and PEDF, respectively.
  • Y2 SEQ ID NO: 8
  • YCC2-Scr which is considered to have a random coil structure because it does not have a repetitive sequence of (Pro-Hyp-Gly) were designed (SEQ ID NO: 9) .
  • Fmocated amino acids Fmoc-Arg (Pbf) -OH, Fmoc-Cys (Trt) -OH, Fmoc-Gly-OH, Fmoc-Pro-OH and Fmoc-Tyr (tBu) -OH are Novabiochem (Merck Millipore Corporation , USA). Wang resin was also purchased from Novabiochem. Other reagents used were those of grades higher than commercially available special grades. CTC resin was purchased from Peptide Institute, Inc. (Osaka). In preparation of the Ellman reagent, DTNB was dissolved in 50 mM phosphate buffer (pH 8.4) so that the concentration was 9 mg / ml.
  • a circular dichroism dispersometer J-820 (JASCO Corporation) was used for CD spectrum measurement of peptides.
  • a UV-visible spectrophotometer V-630 (JASCO Corporation) was used for UV absorbance measurement of the Fmoc group.
  • TaKaRa Thermal Cycler (Takara Bio Inc., Shiga) was used to control the temperature of peptide refolding.
  • Stainless steel balls (diameter 1.5 mm, Funabane Seiko, Hyogo) were used to determine gel formation.
  • Cell culture dishes include Nunc Cell-Culture / Petri Dishes (9 cm dishes), Nunc MicroWell 96-Well Microplates (96-well plates), Nunc Cell-Culture Treated Multidishes (6-well plates) (Thermo Fisher Scientific, Inc., USA) ) was used.
  • a laser scanning confocal microscope FV1000 (Olympus Corporation, Tokyo) was used for cell observation.
  • LAS-3000 (Fuji Film Co., Ltd., Tokyo) was used.
  • FIGS. 2A to 2D The results of RP-HPLC analysis of each peptide of YCC2, CC2, CC1, and C2 are shown in FIGS. 2A to 2D (results of RP-HPLC analysis of other peptides are not shown).
  • Table 2 shows the retention time of each peptide.
  • mrw represents the residue average molecular weight
  • c represents the peptide concentration (mg / ml)
  • l represents the cell length (cm).
  • the thermal stability of the triple helix structure was confirmed by monitoring ⁇ mrw, 225 with temperature change. Measurement conditions are 4 to 75 ° C or 4 to 90 ° C, cell length 0.05 mm, measurement wavelength 225 mm, data acquisition interval 0.5 ° C, temperature gradient 18 ° C / hour, sensitivity standard (100 mm), response 2 seconds, bandwidth 1 nm. In the region where the signal decreased linearly, the triple helix structure was judged to be completely random coiled.
  • results of CD spectrum measurement of peptides The results of CD spectrum measurement at 4 ° C, 37 ° C and 80 ° C for each synthesized peptide are shown in Figs. 3A to 3G. 4A and 4B show the results of measuring the temperature change of the CD spectral intensity ( ⁇ 225) at 225 nm for YCC2 and YCC2-Scr. From these measurement results, all the peptides except YCC2-Scr showed a positive cotton effect near 225 nm only at 4 ° C and 37 ° C, and thus formed a triple helix structure below 37 ° C. It was confirmed to be in a denatured state.
  • collagen-like peptides except YCC2-Scr form a triple helix regardless of the terminal sequence and internal sequence, and YCC2-Scr does not form a triple helix structure, but has a polyproline type II conformation. It was thought that it was taking.
  • a gel composed of a polymerized peptide obtained by polymerizing a collagen-like peptide was prepared by oxidizing and cross-linking the peptide having the triple helical structure with DMSO as an oxidizing agent. The progress of the polymerization reaction due to oxidative crosslinking was confirmed by measuring the residual thiol group.
  • a peptide solution having a concentration of 1.11% (w / v) was prepared using degassed water and placed in a PCR tube. This was heated at 80 ° C. for 5 minutes and then allowed to stand overnight at 4 ° C. DMSO was added to this solution to prepare a peptide solution having a final concentration of 10% DMSO and a peptide of 1% (w / v). Mineral oil was filled to cover the surface. Mineral oil was removed from the peptide solution for each measurement to prepare a peptide solution for oxidation monitoring.
  • SH group thiol group
  • FIG. 5 shows the change in the ratio of the amount of SH with the passage of time when the amount of SH of each peptide at 0 hour is 100%.
  • CCCC2 gelled in 12 hours, CCC2 in 24 hours, and CC2 and YCC2 in 74 hours. Therefore, quantitative data for the subsequent time zones are not measured.
  • the percent decrease rate of SH amount was almost the same for each peptide.
  • the ratio of the amount of SH in CC1 and YCC2-Scr that did not form a gel after 74 hours was about 0%. From the above results, it was shown that the oxidation of many peptides was almost 100% after 74 hours. When 3 days had passed, the sample that did not form a gel was determined to be a peptide that did not gel.
  • FIG. 6 shows the results of evaluation of gel forming ability at 1% (w / v) concentration of each peptide.
  • the white arrow indicates the position of the stainless sphere. From this result, gel formation was observed in gels having two or more Cys residues near both sides of the N-terminal and C-terminal (see CC2, CC1, and C2). In addition, no gel was formed with the peptide having a random coil structure (see YCC2 and YCC2-Scr). This indicates that the triple helix structure is important for gel formation.
  • Table 4 shows the time required for gel formation at 1% (w / v).
  • YCC2 ⁇ Preparation of polymerized peptide thin film and evaluation of strength> YCC2 was used for the preparation of the polymerized peptide thin film.
  • a peptide solution having a concentration of 1.11% (w / v) was prepared using degassed water and placed in a PCR tube. This was heated at 80 ° C. for 5 minutes and then allowed to stand overnight at 4 ° C. DMSO was added to this solution to prepare a final concentration 10% DMSO, 1.0% (w / v) peptide solution.
  • This peptide solution was transferred onto a non-water-absorbing substrate (parafilm, silicon-processed hole glass, Teflon (registered trademark) plate).
  • a PVDF membrane or nylon mesh was placed on the non-water-absorbing substrate as a support. Gelation was carried out by allowing to stand for 3 days at room temperature under humid conditions (10% DMSO). Then, it switched to drying conditions and was dried at room temperature for 3 days. As the combination of the non-water-absorbing base and the support, the combination of a Teflon (registered trademark) plate and a nylon mesh was the best.
  • FIG. 10 shows the results of obtaining a rehydrated polymerized peptide hydrogel. Since the hydrogel obtained by rehydration has less water retention than the hydrogel before drying, the peptide density was high and a hydrogel with high strength could be produced.
  • a laminated polymer peptide thin film was produced by the following method. 1) In the same manner as in Example 4, the collagen-like peptide was dissolved in degassed H 2 O (22.2 mg / ml), heated, and then slowly cooled to form a triple helix. 2) Add DMSO (10% DMSO, 20 mg / ml peptide), oxidize by standing for 4 days in a closed container filled with 10% DMSO on a support (diameter 1 cm circle), hydrogel Formed. 3) Dried and dehydrated in air.
  • FIGS. 11A to 11F The measurement results of the CD spectrum are shown in FIGS. 11A to 11F.
  • Each peptide exhibited a positive cotton effect at around 225 nm only at 4 ° C and 27 ° C, so it was confirmed that it formed a triple helix structure below 37 ° C and could be denatured at 80 ° C. .
  • This result also shows that the formation of a triple helix structure at 37 ° C. or lower is not related to the presence or absence of a Cys residue in the primary structure of the peptide chain.
  • Example 3 a gel containing a polymerized peptide of a peptide chain incorporating these physiologically active motifs was prepared, and selective cell binding activity evaluation using cultured cells described below was performed. used.
  • D-MEM high glucose, D-MEM low glucose and 0.5% trypsin / EDTA are from Wako Pure Chemical Industries, Ltd. (Osaka), FBS, penicillin streptomycin (100 x) are from Invitrogen (Thermo Fisher Scientific corporation ) Purchased from.
  • Human breast adenocarcinoma (MDA-MB-231) was purchased from ATCC and human skin fibroblasts (HDF) were purchased from Cell Applications.
  • MDA-MB-231 is cultured in DMEM high glucose (10% FBS, 100 Units / ml penicillin, 100 ⁇ g / ml streptomycin), HDF is DMEM low glucose (10% FBS, 100 Units / ml penicillin, 100 ⁇ g / ml ml streptomycin) and maintained.
  • DMEM high glucose 10% FBS, 100 Units / ml penicillin, 100 ⁇ g / ml streptomycin
  • HDF DMEM low glucose
  • the cells were treated with 0.05% trypsin / EDTA, and the cells were collected in a 15 ml tube and centrifuged at 1200 rpm for 4 minutes. After removing the supernatant, the cells were recovered by suspending them in the culture medium and incubating at 37 ° C. for 20-30 minutes. This cell suspension was used for cell adhesion assay and Western blotting.
  • Collagen-like peptides containing Cys residues are dissolved in degassed 0.05% (v / v) TFA aqueous solution, heated to 300 ⁇ g / ml at 80 ° C for 5 minutes, and then gradually cooled to 4 ° C at 1 ° C / min. A triple helix was formed by storing overnight at 4 ° C. This was diluted to 30 ⁇ g / ml to 30% MOPS buffer (pH 7.8) (Sigma-Aldrich: Sigma-Aldrich Japan GK, Tokyo), and 15% methanol, and 50 ⁇ l / well was added to a 96-well plate. Added and allowed to dry overnight.
  • adherent cells were fixed with 4% (v / v) p-formaldehyde / phosphate buffer (pH 7.4) (Wako Pure Chemical Industries, Ltd.) Stained with 2% crystal violet / MeOH (Wako Pure Chemical Industries, Ltd.). The stained cells were observed using a laser scanning confocal microscope FV1000 (Olympus Corporation).
  • SDS sample buffer 50 mM Tris / HCl (pH 6.7), 2% SDS, 10% glycerol, 1 ⁇ g / ml pepstatin A, 1 ⁇ g / ml leupeptin, 1 mM PMSF, 2 mM NEM, 1 mM Na 3 VO 4 , 10 mM NaF
  • the prepared SDS-PAGE sample was quantified for protein by the BCA method. Each sample was added to 10% (w / v) acrylamide gel at 30 ⁇ g / well and separated by SDS-PAGE.
  • the separated protein was transferred to a nitrocellulose membrane (GE Healthcare). Then, it was immersed in a 5% (w / v) blocking solution prepared using skim milk (Wako Pure Chemical Industries, Ltd.) and TBS (50 mM Tris ⁇ HCl (pH 7.4), 150 mM NaCl) overnight. Blocked.
  • MDA-MB-231 caused cell adhesion dependent on internal sequence to Pol-GFOGER. Furthermore, this cell adhesion was inhibited by EDTA and recovered by Mg 2+ , indicating that this cell adhesion is an integrin-dependent cell adhesion. Therefore, YCC2 can be used as a scaffold for cell culture, and at the same time, receptor-specific cells targeted by incorporating various receptor-binding motifs of natural collagen into the internal sequence of YCC2. It has been shown that adhesion can be induced.
  • FIG. 13A shows the results of Western blotting of FAK and pFAK (pTyr397) of cultured cells.
  • MDA-MB-231 sensitively sensed the integrin ligand, and the number of adherent cells tended to increase logarithmically with the integrin ligand content.
  • the number of adherent cells can be controlled by adjusting the amount of the ligand contained in the polymerized peptide, and various cell culture environments can be reproduced.
  • Collagen with a molecular weight of about 300 kDa has one integrin binding site
  • YCC2-GFOGER contains one integrin binding site in a triple helix peptide of about 12 kDa.
  • the same mass of collagen and a mixed polymerized peptide of YCC2 and YCC2-GFOGER are coated, it is considered that when the content of YCC2-GFOGER is about 4%, an integrin-binding site similar to collagen is included.
  • FIG. 15A shows the results of observation after fixing the cells, staining the cells, and culturing the cells.
  • FIGS. 15B and 15C show the results of Pol-GFOGER and Pol-KGHRGF in the triple helix sequence.
  • a hydrogel having a triple helix structure characteristic of collagen as a basic structure can be prepared. Since the hydrogel-forming ability of the peptide of the present invention does not depend on the amino acids in the triple helix sequence, various amino acid sequences satisfying (Xaa-Yaa-Gly) n can be incorporated into the sequence forming the triple helix. is there. Specifically, sequence-specific cell adhesion is induced by incorporating GFOGER, which is an integrin binding sequence, GVMGFO, which is a binding sequence for DDR, or KGHRGF, which is a binding sequence for HSPG, into the sequence forming the triple helix.
  • GFOGER is an integrin binding sequence
  • GVMGFO which is a binding sequence for DDR
  • KGHRGF which is a binding sequence for HSPG
  • the peptide of the present invention is excellent in that a ligand can be quantitatively mixed by copolymerizing peptides containing various sequences.
  • the peptide of the present invention and the gel thereof can be provided as a tool for controlling behavior such as cell spreading, proliferation, and differentiation.
  • the collagen-like peptide hydrogel produced using the peptide of the present invention is processed into a sheet shape, so that it can be used as an anti-adhesion material for organs after surgery, a suture material and a wound dressing material, and suitable on this sheet. By culturing cells, it becomes possible to produce cell sheets that can be transplanted into the body, such as an artificial cornea or an artificial myocardium.
  • CCC2-KGHRGF SEQ ID NO: 18
  • the polymerized peptide using CCC2-KGHRGF was diluted to 30 ⁇ g / ml, coated on a 96-well plate overnight, the solution was removed, and 1 mg / ml BS dissolved in 5 mg / ml NaHCO 3 aqueous solution.
  • PEG polymerized peptide using CCC2-KGHRGF
  • a peptide chain for controlling the gel hardness As a peptide chain for controlling the gel hardness, a three-chain peptide composed of CCC2-GPOGPR (short), CC2-GPOGPR (short) and C2-GPOGPR (short) peptides, and a peptide chain having a bioactive motif
  • the polymer peptide gel produced by oxidative cross-linking is combined with a three-chain peptide composed of CCC2-GFOGER (short), and the effect on the cell aggregation activity of human skin fibroblasts is evaluated. did.
  • CCC2-GPOGPR (short) (SEQ ID NO: 10), CC2-GPOGPR (short) (SEQ ID NO: 23) or C2-GPOGPR (short) (SEQ ID NO: 24) were dissolved in degassed ultrapure water, respectively. After heating at o C for 5 minutes, the mixture was allowed to stand at 4 o C overnight to form a triple helix. These were mixed at various ratios, DMSO was added to a final concentration of 10%, and 50 ⁇ L each was added to a 96-well plate.
  • a 3-chain peptide composed of CCC2-GFOGER (short) (SEQ ID NO: 16) at a weight ratio of 1% was added to all peptide mixtures, and those not added were defined as Ligand-free.
  • the plate was allowed to stand in a container filled with 10% DMSO for 4 days or longer to gel the peptide solution. These gels were immersed in cell culture medium overnight to dilute DMSO and used in the following experiments using cells. Type I collagen was used as a positive control.
  • HDF Human skin fibroblasts
  • FIG. 18A shows the result of comparing the adhesion to human skin fibroblasts with a gel containing a polymerized peptide produced by mixing with a 3-GFOGER (short) 3-chain peptide and then gelling.
  • Experimental method 9 1, 7: 3 of two different three-chain peptides among the three-chain peptides composed of CCC2-GPOGPR (short), CC2-GPOGPR (short) and C2-GPOGPR (short), respectively , 5: 5, 3: 7 or 1: 9 combined in a solvent, and mixed in a solvent, and in the same way as in the above experiment, a 3-chain peptide composed of CCC2-GFOGER (short) at a weight ratio of 1% Was added, and a gel was formed by oxidative crosslinking to polymerize the three-chain peptide, and the gelation ability and cell aggregation of human skin fibroblasts adhering to this gel were evaluated in the same manner as in the above experiment. did.
  • C2-GPOGPR (short) is a gel with a composition ratio of 7: 3, 5: 5, 3: 7, 1: 9, and CCC2 (short): C2-GPOGPR (short) In the gel having a composition ratio of 3: 7 and 1: 9, gelation did not occur even when DMSO, which is an oxidative crosslinking agent, was added.
  • mice were sacrificed 10 and 30 days after transplantation, tissues were removed, fixed with 10% formalin solution, paraffin sections were prepared, hematoxylin-eosin stained, and histological analysis was performed under an optical microscope .
  • the gel or polymerized peptide thin film containing the polymerized peptide of the present invention can be used for preventing adhesions to organs, suture materials, wound sites by placing it between the organ and the skin at the time of surgery or between the organ and the organ. It was shown that it can be used as a medical material such as a covering material and a wound healing promoter.
  • the indwelled medical material of the present invention is gradually solubilized or degraded by phagocytic cells such as peptidases and macrophages present in the living body and disappears, so that no reoperation is required to remove the medical material. Therefore, the burden on the patient's prognosis is small, and it has the merit of improving QOL (Quality of Life).
  • the medical material of the present invention is an artificially produced collagen-like peptide, unlike natural collagen, there is little risk of virus infection or microbial infection. Further, since it is cross-linked with a disulfide bond and does not denature even when heat-treated, it has an advantage that it can be heated for sterilization, for example.

Abstract

コラーゲンは医療材料として有用であるが、ヒトへの使用はアレルギー及び人畜共通伝染病の危険がある。そこで、人工コラーゲン等が医療材料として検討されている。しかし、従来の人工コラーゲンは必ずしも物理的な強度や、加熱すると変性する、シート状に加工できない等の点で十分とは言えず、実用性の点で問題があった。本発明は、複数のシステイン(Cys)残基を含むペプチド鎖の3本鎖からなる三重らせん構造を有するコラーゲン様ペプチドを、酸化架橋させて、重合ペプチドとして製造される。本重合ペプチドは、ヒドロゲル及び薄膜シートに加工して使用でき、かつ、生体高分子上に存在する機能性アミノ酸配列を組み込むことによって、細胞接着性などの特定の生理機能を付与できる。さらに、本発明は、前記重合ペプチド等の製造方法、並びに、これらを使用した細胞培養、創傷被覆、再生医療材料及び研究用材料等の組成物としての用途を提供する。

Description

コラーゲン様構造を有する重合ペプチド及びゲル
 本発明は、コラーゲン様ペプチドからなる重合ペプチド、該重合ペプチドを含むゲル及び重合ペプチド薄膜、並びにそれらの製造方法及び用途に関する。
 コラーゲンは、-(Xaa-Yaa-Gly)-の基本単位を繰り返してなる一次構造のアミノ酸配列を有するペプチド(Xaa及びYaaは任意のアミノ酸残基を表す)の3本鎖が、三重らせん構造を形成するタンパク質の総称であり、動物組織の細胞間に存在する細胞外マトリックスの主要構成成分である。動物結合組織中に豊富に含まれ、組織の骨格構造を構成している。ヒトのコラーゲンタンパク質は28種あることが報告されている。一方、上記一次構造のアミノ酸配列中に生理活性を有するモチーフが組み込まれており、例えば、創傷等の組織損傷時に組織中のコラーゲンが血液に曝露されることにより、インテグリンα2β1受容体及びglycoprotein VI(GPVI)受容体を有する血中の血小板の創傷部位への結合をトリガーとして血液凝固系の活性化を惹起し、止血及び創傷治癒促進等の活性を有する(非特許文献1)。
 そこで、コラーゲンが有する強度や生理活性を活用し、家畜や魚類等から採取されたコラーゲンを水で加熱抽出して製造されるゼラチンが、止血や褥瘡潰瘍を適用とする医薬品及び医療材料に、カプセル剤等の原料に、さらに化粧品原料及び食品材料等として広く使用されている。
 しかし、コラーゲンを採取する家畜にヒトと共通して感染する例えばプリオン病等の発症を認めると、安全性の確保のために家畜からのコラーゲンの供給は規制され、関連する産業分野へのコラーゲンの供給が不安定になる。
 また、天然のコラーゲンは、上記インテグリンα2β1受容体等を介した血小板に対する作用のみならず、ジスコイジン受容体、シンデカン受容体及びフィブロネクチンを有する細胞を接着する等の多様な活性を有する(非特許文献1)。したがって、天然のコラーゲンでは、所望の生理活性に選択的な活性を有するコラーゲンを取得して利用することは実質的に困難である。
 そこで、コラーゲンのこれらの特性に着目し、コラーゲン様の構造及び活性を有する非天然のコラーゲン様ペプチドを製造し、研究材料や医療材料等への応用が試みられている(特許文献1、2)。
特開2005-263784号公報 特開2013-074936号公報
Koide T., Phil. Trans. R. Soc. B (2007) 362, 1281-1291
 コラーゲンは医療材料として有用であるが、ヒトへの使用はアレルギー及び人畜共通伝染病の危険がある。そこで、人工コラーゲン又は人工ゼラチン等のコラーゲン様ペプチドの医療材料としての利用が検討されている。しかし、従来のコラーゲン様ペプチドは物理的な強度や、加熱すると変性する、シート状に加工できない等の特性の点で必ずしも十分とは言えなかった。
 本発明は、コラーゲンの構造・物性と生理的機能を模倣又は新たに付与可能であり、かつ完全人工品とすることで安全性を担保した医療材料及び研究材料を提供する。複数のシステイン(Cys)残基を含むペプチド鎖の3本鎖からなる三重らせん構造を有するコラーゲン様ペプチドを、酸化架橋させることにより、重合ペプチドとして製造される。本重合ペプチドを含む材料は、ヒドロゲル及びシートに加工して使用でき、かつ、インテグリン結合配列等、生体高分子上に存在する機能性アミノ酸配列を組み込むことによって、細胞接着性などの特定の生理機能を付与できる。さらに、本発明は、前記ヒドロゲル及びシート状加工品の製造方法、並びに、これらを使用した細胞培養、創傷被覆、再生医療材料及び研究用材料等の組成物としての用途を提供する。
 具体的には、本発明は、重合ペプチドであって、
 三重らせん構造を有する3本鎖ペプチドを繰り返し単位として有し、酸化架橋で重合され、
 前記3本鎖ペプチドを構成する各ペプチド鎖は、同一であっても又は相互に異なっていてもよく、
 各ペプチド鎖は、-(Xaa-Yaa-Gly)-を基本単位として少なくとも5回の繰り返し構造を有する三重らせん形成用ペプチド基と、アミノ末端及びカルボキシ末端の各々から10残基以内に少なくとも2残基のシステイン(Cys)残基を含む架橋形成用ペプチド基とを有する重合ペプチドを提供する。
 [Xaa及びYaaは、それぞれ独立して、プロリン(Pro又はP)残基、ヒドロキシプロリン(Hyp又はO)残基、アルギニン(Arg又はR)残基、リシン(Lys又はK)残基、バリン(Val又はV)残基、ロイシン(Leu又はL)残基、イソロイシン(Ile又はI)残基、セリン(Ser又はS)残基、トレオニン(Thr又はT)残基、アラニン(Ala又はA)残基、グリシン(Gly又はG)残基、フェニルアラニン(Phe又はF)残基、メチオニン(Met又はM)残基、グルタミン酸(Glu又はE)残基、アスパラギン酸(Asp又はD)残基、アスパラギン(Asn又はN)残基、グルタミン(Gln又はQ)残基、ヒスチジン(His又はH)残基、トリプトファン(Trp又はW)残基又はチロシン(Tyr又はY)残基から選択され、プロリン残基はアミノ基又はフッ素原子で修飾されていてもよく、Xaa位及びYaa位にはN-イソブチル基グリシン残基を用いてもよい。]
 本発明の前記重合ペプチドにおいて、
 前記ペプチド鎖が、
 (i)  少なくとも1つの前記三重らせん形成用ペプチド基と少なくとも1つの架橋形成用ペプチド基からなるペプチド鎖、
 (ii) 少なくとも1つの前記三重らせん形成用ペプチド基と少なくとも1つの架橋形成用ペプチド基、及び生理活性を有するモチーフを有する少なくとも1つのペプチド基を含むペプチド鎖、及び、
 (iii) 少なくとも1つの前記三重らせん形成用ペプチド基と架橋形成用ペプチド基、及び、アミノ酸残基の側鎖にリンカーを介して生理活性を有するモチーフを結合させた少なくとも1つのペプチド基を含むペプチド鎖
 からなる群から選択される少なくとも1つであるペプチド鎖である場合がある。
 本発明の前記重合ペプチドにおいて
 下記式(I)で表される3本のペプチド鎖から形成される三量体ペプチドの構造単位を有し、酸化架橋されてなる重合ペプチドの場合がある。
Figure JPOXMLDOC01-appb-C000001
 [式(I)中、
 A1, A2及び A3は、同一又は相違してもよく、それぞれ独立して下記式(II)で表されるペプチド鎖であり、
 A1, A2及び A3は、三重らせん構造を有する三量体を形成し、各々のペプチド鎖に含まれるシステイン(Cys)残基によってジスルフィド結合で架橋されていてもよく、
 該三量体は、前記Cysのジスルフィド結合で酸化架橋により重合される。
Figure JPOXMLDOC01-appb-C000002
 (式(II)中、
 R1及びR4は、各々アミノ末端及びカルボキシ末端を有し、相互に独立して少なくとも2残基のCys残基を含む任意の2~10残基のアミノ酸残基からなるペプチド基であり、
 Zは、
 (i) -(Xaa-Yaa-Gly)-を基本単位とする繰り返し構造のみからなるペプチド基、
 (ii) -(Xaa-Yaa-Gly)-を基本単位として繰り返す構造及び生理活性を有するモチーフを有するペプチド基、又は、
 (iii) -(Xaa-Yaa-Gly)-を基本単位として繰り返す構造を有し、かつ、該ペプチド鎖に含まれる少なくとも1残基のアミノ酸残基の側鎖にリンカーを介して生理活性を有するモチーフ配列を結合させてなるペプチド基、
 から選択される少なくとも1つであり、
 R2及びR3は独立して-(Xaa-Yaa-Gly)-を単位として連続して繰り返す構造を含むペプチド基であり、
  -(Xaa-Yaa-Gly)-を基本単位とする繰り返し構造における繰り返し回数は、R2、Z及びR3の各々は0回以上であり、R2、Z及びR3で合計して3回以上であり、
  mは1以上の整数である。)]
 前記重合ペプチドの発明において、
 前記ペプチド鎖は、下記式(III)で表される場合がある。
Figure JPOXMLDOC01-appb-C000003
[式(III)中、
R5及びR6は、各々アミノ末端及びカルボキシ末端であり、相互に独立して少なくとも2残基のCys残基を含む任意の2~10残基のアミノ酸残基からなるペプチド基であり、
 p、q及びrは、いずれも0以上の整数であり、p、q及びrの合計は3以上であり、sは1以上の整数である。]
 前記重合ペプチドの発明において、
 前記生理活性は生体高分子に対する特異的な結合活性である場合がある。
 前記重合ペプチドの発明において、
 前記生体高分子に対する特異的な結合活性を有するリガンドの結合モチーフは、インテグリン、ジスコイジンドメイン受容体(DDR)若しくはヘパラン硫酸プロテオグリカン(HSPG)から選択されるコラーゲン受容体に対する結合モチーフ、又はフィブロネクチン由来のインテグリンαvβ3に対する結合モチーフの少なくとも1つから選択される重合ペプチドの場合がある。
 前記重合ペプチドの発明において、
 前記インテグリンに対する結合モチーフは-Gly-Phe-Hyp-Gly-Glu-Arg-、ジスコイジンドメイン受容体に対する結合モチーフは-Gly-Val-Met-Gly-Phe-Hyp-、ヘパラン硫酸プロテオグリカンに対する結合モチーフアミノ酸配列は-Lys-Gly-His-Arg-Gly-Phe-であり、フィブロネクチン由来のインテグリンαvβ3に対する結合モチーフは-Arg-Gly-Asp-である場合がある。
 前記重合ペプチドの発明において、
 前記ペプチド鎖は、配列番号1~7、10~18、23及び24から選択されるアミノ酸配列を有するペプチドから選択される場合がある。
 前記重合ペプチドの発明において、
 前記ペプチド鎖は、配列番号1~7、10~18、23及び24から選択されるアミノ酸配列を有するペプチドのアミノ酸配列に対して1個若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなる場合がある。
 前記重合ペプチドの発明において、
 前記ペプチド鎖は、配列番号1、2、5~7、10~18及び23から選択されるアミノ酸配列を有するペプチドから選択される場合がある。
 前記重合ペプチドの発明において、
 前記ペプチド鎖は、配列番号1、2、5~7、10~18及び23から選択されるアミノ酸配列を有するペプチドのアミノ酸配列に対して1個若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなる場合がある。
 前記重合ペプチドの発明において、
 前記生理活性を有するモチーフを有するペプチド鎖は、フィブロネクチン由来のインテグリン結合モチーフがBis(NHS)PEG5(bis(succinimidyl)penta(ethylene glycol))をリンカーとして、前記ペプチド基のLys残基の側鎖のアミノ基に結合されてなる場合がある。
 前記重合ペプチドの発明において、
 前記生理活性を有するモチーフの2種類以上を組み合わせて製造される共重合ペプチドの場合がある。
 また、本発明は、前記重合ペプチドの製造方法であって、
 -(Xaa-Yaa-Gly)-を基本単位として少なくとも5回の繰り返し構造を有し、アミノ末端及びカルボキシ末端の各々から10残基以内に少なくとも2残基のシステイン(Cys)残基を含む相互に異なっていてもよいペプチド鎖を変性温度以上の温度で溶媒に溶解する工程、
 冷却することにより自己集合により前記ペプチドの3本からなる三重らせん構造を有する3本鎖ペプチドを形成する工程、
 該3本鎖ペプチドを構造単位として、酸化架橋で重合させる工程、
 を含む製造方法を提供する。
 該製造方法において、Xaa及びYaaは、それぞれ独立して、プロリン(Pro又はP)残基、ヒドロキシプロリン(Hyp又はO)残基、アルギニン(Arg又はR)残基、リシン(Lys又はK)残基、バリン(Val又はV)残基、ロイシン(Leu又はL)残基、イソロイシン(Ile又はI)残基、セリン(Ser又はS)残基、トレオニン(Thr又はT)残基、アラニン(Ala又はA)残基、グリシン(Gly又はG)残基、フェニルアラニン(Phe又はF)残基、メチオニン(Met又はM)残基、グルタミン酸(Glu又はE)残基、アスパラギン酸(Asp又はD)残基、アスパラギン(Asn又はN)残基、グルタミン(Gln又はQ)残基、ヒスチジン(His又はH)残基、トリプトファン(Trp又はW)残基又はチロシン(Tyr又はY)残基から選択され、プロリン残基はアミノ基又はフッ素原子で修飾されていてもよく、Xaa位及びYaa位にはN-イソブチル基グリシン残基を用いてもよい。
 さらに、本発明は、前記製造方法で製造される重合ペプチドを提供する。
 さらに、本発明は、前記重合ペプチドの少なくとも1種を含むゲル化剤を提供する。
 さらに、本発明は、前記重合ペプチドの少なくとも1種を含むゲルを提供する。
 本発明の前記ゲルは、前記重合ペプチドの1種、2種、3種、4種又は5種を含むゲルである場合がある。
 本発明の前記ゲルは、前記3本鎖ペプチドを重合単位として、少なくとも2種の3本鎖ペプチドを組み合わせた重合ペプチド含むゲルである場合がある。
 本発明の前記ゲルは、前記3本鎖ペプチドの2種、3種、4種又は5種を組み合わせた重合ペプチド含むゲルである場合がある。
 本発明の前記ゲルは、システイン残基を含まない3本鎖ペプチドの少なくとも1種をさらに含むゲルである場合がある。
 本発明の前記ゲルは、3本鎖ペプチドの少なくとも1種を酸化重合させてゲル化して製造されるゲルである場合がある。
 本発明の前記ゲルは、3本鎖ペプチドの1種、2種、3種、4種、5種を酸化重合させてゲル化して製造されるゲルである場合がある。
 本発明の前記ゲルは、システイン残基を含むペプチド鎖から構成される3本鎖ペプチド、及び、システイン残基を含まないペプチド鎖から構成される3本鎖ペプチドとを混合し、酸化重合させて製造されるゲルである場合がある。
 前記ゲルは、前記3本鎖ペプチドを構成する各ペプチド鎖が、前記ゲルの硬さ(stiffness)を制御するためのシステイン残基数が異なるペプチド鎖と、生理活性モチーフを有するペプチド鎖とを含む多機能ゲルである場合がある。
 前記多機能ゲルにおいて、前記ゲルの硬さを制御するためのペプチド鎖が、ペプチド鎖のN末端及びC末端近傍に含まれるシステイン残基の数が相違するペプチド鎖である場合がある。
 前記ゲルの硬さを制御するためのペプチド鎖における前記システイン残基の数が、N末端及びC末端の近傍で、それぞれ1、2又は3個から選択され、N末端近傍とC末端近傍とで、同一又は相違する場合がある。
 前記ゲルの発明において、
 ゲルが、ヒドロゲルであり、細胞を細胞選択的に培養するための基材として使用される場合がある。
 さらに、本発明は、前記ゲルを乾燥させて製造される重合ペプチド薄膜を提供する。
 また、本発明は、前記重合ペプチド薄膜を含む再生医療材料を提供する。
 前記再生医療材料の発明において、
 再生医療材料は、創傷治癒促進用組成物である場合がある。
 本明細書において言及される全ての文献はその全体が引用により本明細書に取り込まれる。
本発明のコラーゲン様ペプチドの重合ペプチド、及びこれを含むゲル並びに重合ペプチド薄膜の概要図を表す。 合成したペプチドの逆相系高速液体クロマトグラフィー(RP-HPLC) 分析でのクロマトグラム:YCC2のクロマトグラムを表す。 合成したペプチドの逆相系高速液体クロマトグラフィー(RP-HPLC) 分析でのクロマトグラム:CC1のクロマトグラムを表す。 合成したペプチドの逆相系高速液体クロマトグラフィー(RP-HPLC) 分析でのクロマトグラム:CC2のクロマトグラムを表す。 合成したペプチドの逆相系高速液体クロマトグラフィー(RP-HPLC) 分析でのクロマトグラム:C2のクロマトグラムを表す。 合成したペプチドの逆相系高速液体クロマトグラフィー(RP-HPLC) 分析でのクロマトグラム:CC2-GPOGPR (short)のクロマトグラムを表す。 合成したペプチドの逆相系高速液体クロマトグラフィー(RP-HPLC) 分析でのクロマトグラム:C2-GPOGPR (short)のクロマトグラムを表す。 合成したペプチドの逆相系高速液体クロマトグラフィー(RP-HPLC) 分析でのクロマトグラム:Soluble GPOGPR (short)のクロマトグラムを表す。 合成したペプチド鎖の4、37及び80℃におけるCDスペクトル測定の結果:YCC2のCDスペクトルを表す。 合成したペプチド鎖の4、37及び80℃におけるCDスペクトル測定の結果:CC2のCDスペクトルを表す。 合成したペプチド鎖の4、37及び80℃におけるCDスペクトル測定の結果:CC1のCDスペクトルを表す。 合成したペプチド鎖の4、37及び80℃におけるCDスペクトル測定の結果:CCC2のCDスペクトルを表す。 合成したペプチド鎖の4、37及び80℃におけるCDスペクトル測定の結果:CCCC2のCDスペクトルを表す。 合成したペプチド鎖の4、37及び80℃におけるCDスペクトル測定の結果:YCC2-ScrのCDスペクトルを表す。 合成したペプチド鎖の4、37及び80℃におけるCDスペクトル測定の結果:Y2のCDスペクトルを表す。 YCC2のθ225 を温度を変化させて測定した結果を表す。 YCC2-Scrのθ225を温度を変化させて測定した結果を表す。 CCCC2、CCC2、CC2、CC1、YCC2及びYCC2-Scrの重合化反応における、時間経過に伴う各ペプチドのSH量を定量した結果を表す。 YCC2、CC2、CC1、C2、CCC2、CCCC2、YCC2-Scr及びY2で形成されるヒドロゲルにおける各ペプチドのゲル形成能の比較結果を表す。 CCCC2、CCC2、CC2及びYCC2で形成されるヒドロゲルにおける、各ヒドロゲルの崩壊性判定結果を表す。 CCCC2、CCC2、CC2及びYCC2で形成されるヒドロゲルにおける、ヒドロゲルの熱安定性測結果を表す。 作製した重合ペプチド薄膜を表す。左:内径6 mm、ペプチド量1mg、支持体PVDF膜中:内径10 mm、ペプチド量3 mg、支持体ナイロンメッシュ右:内径6 mm、ペプチド量1 mg、支持体PVDF膜 重合ペプチド薄膜を再水和した場合の外観図を表す。 合成した生理活性モチーフを組み込んだペプチドの4、37及び80℃におけるCDスペクトルの測定結果:YCC2-GFOGERのCDスペクトルを表す。 合成した生理活性モチーフを組み込んだペプチドの4、37及び80℃におけるCDスペクトルの測定結果:Soluble-GFOGERのCDスペクトルを表す。 合成した生理活性モチーフを組み込んだペプチドの4、37及び80℃におけるCDスペクトルの測定結果:YCC2-GVMGFOの4、37及び80℃におけるCDスペクトルを表す。 合成した生理活性モチーフを組み込んだペプチドの4、37及び80℃におけるCDスペクトルの測定結果:Soluble-GVMGFOのCDスペクトルを表す。 合成した生理活性モチーフを組み込んだペプチドの4、37及び80℃におけるCDスペクトルの測定結果:YCC2-KGHRGFのCDスペクトルを表す。 合成した生理活性モチーフを組み込んだペプチドの4、37及び80℃におけるCDスペクトルの測定結果:Soluble-KGHRGFのCDスペクトルを表す。 GFOGER配列モチーフを有するコラーゲン様ペプチドの重合ペプチドからなるゲルへのヒト線維芽細胞の接着能の評価:コラーゲンI(Collagen I)、変性コラーゲン(Heat denatured collagen)、GFOGER組み込み重合ペプチド(Pol-GFOGER)、GPOGPR組み込み重合ペプチド(Pol-GPOGPR)、可溶性GFOGER(Soluble GFOGER)との比較結果として、顕微鏡での観察図を示す。 GFOGER配列モチーフを有するコラーゲン様ペプチドの重合ペプチド(Pol-GFOGER)で形成されたゲルへのヒト線維芽細胞の接着能のI型コラーゲン(Collagen I;陽性対照)と比較した結果を表す。Mgイオン要求性及びEDTA添加による阻害活性の検討結果として、顕微鏡での観察図を表す。 GFOGER配列モチーフを有するコラーゲン様ペプチドの重合ペプチドから形成されたゲル(Pol-GFOGER)を使用した場合の、インテグリンを介したFAKのリン酸化シグナルの、コラーゲンI(Collagen I;陽性対照)及びGPOGPRモチーフ(Pol-GPOGPR)との比較結果として、ウェスタンブロットの結果を表す。 GFOGER配列モチーフを有するコラーゲン様ペプチドの重合ペプチドからなるゲル(Pol-GFOGER)を使用した場合の、インテグリンを介したFAKのリン酸化シグナル伝達の、コラーゲンI(Collagen I)及びGPOGPRモチーフ(Pol-GPOGPR)との比較:FAKのリン酸化に及ぼす影響を比較した結果を表す。 GFOGER配列モチーフを有するコラーゲン様ペプチドの重合ペプチド(Pol-GFOGER)の結合モチーフ量の存在割合の変化に伴う接着細胞数の変化をコラーゲンI(Collagen I)及びGPOGPRモチーフ(Pol-GPOGPR)と比較した結果を表す、顕微鏡での観察図を示す。 GFOGER配列モチーフを有するコラーゲン様ペプチドの重合ペプチド(Pol-GFOGER)の結合モチーフ量の存在割合の変化に伴う接着細胞数の変化をコラーゲンI(Collagen I)及びGPOGPRモチーフ(Pol-GPOGPR)と比較した結果を表す、接着細胞数の計測結果を示す。 GFOGER配列モチーフを有するコラーゲン様ペプチドの重合ペプチド(Pol-GFOGER)の結合モチーフ量の存在割合の変化に伴う接着細胞数の変化を評価した結果を表す。GFOGER配列モチーフ存在割合と接着細胞数との用量作用曲線を表す。 GFOGER配列モチーフ、GVMGFO配列モチーフ又はKGHRGF配列モチーフを有する重合ペプチドによるゲル(各、Pol-GFOGER、Pol-GVMGFO及びPol-KGHRGFと記載)に対して、結合モチーフを組み込まない重合ペプチド(Pol-GPOGPR)、I型コラーゲン(Collagen I)、可溶性GFOGER(Soluble GFOGER)、可溶性GVMGFO(Soluble GVMGFO)及び可溶性KGHRGF(Soluble KGHRGF)と比較したヒト線維芽細胞の接着性についての顕微鏡での観察図を表す。 GFOGERとKGHRGFを組み込んだ重合ペプチド(各Pol-GFOGER及びPol-KGHRGF)のヒト線維芽細胞接着に対するEDTA及びヘパリンの阻害作用の評価結果を表す、顕微鏡での観察図を示す。 図15Bで示されたEDTA及びヘパリンの阻害作用について細胞数を計測した結果を表す。 GFOGER配列モチーフ(GFO)及びGVMGFO配列モチーフ(GVM)を組み合わせた複数の結合モチーフの種々の含有割合を有する重合ペプチドによるゲルの細胞接着の検討結果を表す、顕微鏡での観察図を示す。 GFOGER配列モチーフ(GFO)及びGVMGFO配列モチーフ(GVM)を組み合わせた複数の結合モチーフを有する重合ペプチドによるゲルの細胞接着の検討結果として、接着細胞数を計測した結果を表す。 一本鎖ペプチドの側鎖にリンカーを介してRGDモチーフを結合させた重合ペプチドによるゲルにおけるヒト線維芽細胞の接着性の検討結果を表す、顕微鏡での観察図を示す。 ゲルの硬さ(stiffness)を制御するためのペプチド鎖CCC2-GPOGPR (short)と、生理活性モチーフを有するペプチド鎖CCC2-GFOGER (short)の2種類の異なる特性のペプチドを混ぜ込んだ多機能ゲルを用いた細胞接着アッセイの結果を表す写真図。陽性対照としてI型コラーゲンを、CCC2-GFOGER (short)を含まない重合ゲルを陰性対照として、ヒト皮膚線維芽細胞のゲルへの接着と凝集性を、蛍光顕微鏡で観察した。 ゲルの硬さを制御するためのペプチド鎖と、生理活性モチーフを有するペプチド鎖の2種の異なる特性を有するペプチドを混ぜ込んだ多機能ゲルを用いた細胞接着アッセイの結果を表す写真図。2つの成分の組み合わせでの組成比を9:1、7:3、5:5、3:7及び1:9に変化させたゲルを調製し、本ゲルに接着するヒト皮膚線維芽細胞の細胞凝集性を評価した。 コラーゲン様重合ペプチド薄膜のin vivoでの移植後の生分解性を評価した結果を表す。マウスの背部皮下にコラーゲン様重合ペプチド薄膜を移植して10日後の背部皮下組織を、ヘマトキシリン-エオジン染色して顕微鏡で観察した写真図。 マウスの背部皮下にコラーゲン様重合ペプチド薄膜を移植して30日後の背部皮下組織を、ヘマトキシリン-エオジン染色して顕微鏡で観察した写真の図。PVDFは、生分解性を示さないため移植部位を確認することを目的に支持体として使用した。
1.コラーゲン様ペプチドの重合ペプチド
 本発明に係る3本鎖ペプチドは、一般に、コラーゲン様ペプチドともいわれる。本明細書において、「コラーゲン様ペプチド」とは、非天然のペプチド又はポリペプチドであって、天然のコラーゲンと同様に、-(Xaa-Yaa-Gly)-を基本単位とする繰り返し構造を有するペプチド鎖の3本が、溶媒中で自己集合して、らせん構造を形成することにより、3本鎖ペプチドを形成させたもの、又は、該らせん構造を有する3本鎖ペプチドを、さらに、架橋させたペプチド又はポリペプチドを言う。ただし、前記Xaa及びYaaは、それぞれ独立して、プロリン(Pro又はP)残基、ヒドロキシプロリン(Hyp又はO)残基、アルギニン(Arg又はR)残基、リシン(Lys又はK)残基、バリン(Val又はV)残基、ロイシン(Leu又はL)残基、イソロイシン(Ile又はI)残基、セリン(Ser又はS)残基、トレオニン(Thr又はT)残基、アラニン(Ala又はA)残基、グリシン(Gly又はG)残基、フェニルアラニン(Phe又はF)残基、メチオニン(Met又はM)残基、グルタミン酸(Glu又はE)残基、アスパラギン酸(Asp又はD)残基、アスパラギン(Asn又はN)残基、グルタミン(Gln又はQ)残基、ヒスチジン(His又はH)残基、トリプトファン(Trp又はW)残基又はチロシン(Tyr又はY)残基から選択され、プロリン残基はアミノ基又はフッ素原子で修飾されていてもよく、Xaa位及びYaa位にはN-イソブチル基グリシン残基を用いてもよい。
 したがって、本発明の態様の一つは、3本鎖ペプチド、すなわち、コラーゲン様ペプチドが重合した重合ペプチドである(図1参照)。本コラーゲン様ペプチドの重合ペプチドは、以下の構成を有する。
 重合ペプチドであって、
 三重らせん構造を有する3本鎖ペプチドを繰り返し単位として有し、酸化架橋で重合され、
 前記3本鎖ペプチドを構成する各ペプチド鎖は、同一であっても又は相互に異なっていてもよく、-(Xaa-Yaa-Gly)-を基本単位として少なくとも5回の繰り返し構造を有し、アミノ末端及びカルボキシ末端の各々から10残基以内に少なくとも2残基のシステイン(Cys)残基を含むことを特徴とする、重合ペプチド。
 [Xaa及びYaaは、それぞれ独立して、プロリン(Pro又はP)残基、ヒドロキシプロリン(Hyp又はO)残基、アルギニン(Arg又はR)残基、リシン(Lys又はK)残基、バリン(Val又はV)残基、ロイシン(Leu又はL)残基、イソロイシン(Ile又はI)残基、セリン(Ser又はS)残基、トレオニン(Thr又はT)残基、アラニン(Ala又はA)残基、グリシン(Gly又はG)残基、フェニルアラニン(Phe又はF)残基、メチオニン(Met又はM)残基、グルタミン酸(Glu又はE)残基、アスパラギン酸(Asp又はD)残基、アスパラギン(Asn又はN)残基、グルタミン(Gln又はQ)残基、ヒスチジン(His又はH)残基、トリプトファン(Trp又はW)残基又はチロシン(Tyr又はY)残基から選択され、プロリン残基はアミノ基又はフッ素原子で修飾されていてもよく、Xaa位及びYaa位にはN-イソブチル基グリシン残基を用いてもよい。]
 本明細書において、「ペプチド鎖」は3本のペプチド鎖によって三重らせん構造を形成するために必要な一次構造を有するペプチド又はポリペプチドであって、酸化架橋を形成するためのCys残基を含んでいてもよく、「1本鎖ペプチド」と表される場合がある。
 前記ペプチド鎖のN末端及びC末端から10残基以内に含まれるCys残基の数は、それぞれ独立して、同一であってもよく、又は異なってもよく、2残基以上、3残基以上、4残基以上、5残基以上であってもよい。
 上記の重合ペプチドの構成において、少なくとも2残基のシステイン(Cys)残基を含むアミノ末端及びカルボキシ末端の各々からのペプチド基は、10残基以内以外に、9残基以内、8残基以内、7残基以内、6残基以内、5残基以内、4残基以内又は3残基以内であってもよい。
 本明細書において、「重合ペプチド」とは、「コラーゲン様ペプチド」が、例えば、該コラーゲンペプチドに含まれるシステイン残基間の酸化的架橋によって形成されるジスルフィド結合を介して重合させたペプチドを言う。
 本発明の重合ペプチドの重合度は、2以上であり、本発明の重合ペプチドを含むゲル、好ましくはヒドロゲルを形成可能な重合度であれば、特に限定されないが、平均重合度が100未満、100~500、500~1000、1000~5000、5000~10000又は10000以上の場合もある。
 コラーゲン様ペプチドにおける-(Xaa-Yaa-Gly)-を基本単位とする繰り返し構造は、構成するアミノ酸残基により最小繰り返し回数は相違する。この基本単位に4-フッ化プロリンを含む場合に、5回以上の繰り返し単位であれば、安定な三重らせん構造を形成できることが知られている(Sakakibara S. (1973) Biochem. Biophys. Acta, 303, 198-202)。
 -(Xaa-Yaa-Gly)-を基本単位とする繰り返し回数が、5回以上の場合に、コラーゲン様ペプチドは、安定な三重らせん構造を形成する。-(Xaa-Yaa-Gly)-を基本単位とする繰り返し回数が6回以上の場合に、コラーゲン様ペプチドは、さらに安定な三重らせん構造を形成する。-(Xaa-Yaa-Gly)-を基本単位とする繰り返し回数が7回以上の場合に、コラーゲン様ペプチドは、さらに安定な三重らせん構造を形成する。-(Xaa-Yaa-Gly)-を基本単位とする繰り返し回数が8回以上の場合に、コラーゲン様ペプチドは、さらに安定な三重らせん構造を形成する。-(Xaa-Yaa-Gly)-を基本単位とする繰り返し回数が9回以上の場合に、コラーゲン様ペプチドは、さらに安定な三重らせん構造を形成する。-(Xaa-Yaa-Gly)-を基本単位とする繰り返し回数が10回以上の場合に、コラーゲン様ペプチドは、さらに安定な三重らせん構造を形成する。-(Xaa-Yaa-Gly)-を基本単位とする繰り返し回数が11回以上の場合に、コラーゲン様ペプチドは、さらに安定な三重らせん構造を形成する。-(Xaa-Yaa-Gly)-を基本単位とする繰り返し回数が12回以上の場合に、コラーゲン様ペプチドは、さらに安定な三重らせん構造を形成する。
 したがって、本発明の重合ペプチドにおいて、-(Xaa-Yaa-Gly)-を基本単位とする繰り返し回数は、5回以上、6回以上、7回以上、8回以上、9回以上又は10回以上の場合がある。
 本明細書と、本明細書に添付される配列表とにおいて、ペプチドの構造は、当業者に周知慣用のアミノ酸の3文字又は1文字による表記法で記述される。本明細書においてアミノ酸はL体である。本明細書のアミノ酸は、分子生物学で一般的なタンパク質の翻訳に用いられることが知られた20種類のL-アミノ酸の他、当該技術分野においてよく知られる修飾アミノ酸残基、例えば、4-ヒドロキシ-L-プロリン、4-フルオロ-L-プロリン及びN-イソブチル基グリシンを含む。本明細書において、ヒドロキシルプロリンは、3-ヒドロキシプロリン又は4-ヒドロキシ-L-プロリンであり、3文字表記で「Hyp」と、一文字表記で「O」と表される。
 本明細書のコラーゲン様ペプチドにおいて、ホモ三量体とは、同一の1次構造のペプチド3本からなる三量体をいう。またヘテロ三量体とは、同一の1次構造のペプチド2本と、該ペプチドとは異なる1次構造のペプチド1本とからなる三量体、又は、それぞれ異なる1次構造のペプチド3本からなる三量体をいう。
 本明細書において、変性温度とは、本明細書のコラーゲン様ペプチドが三重らせん構造の半量がランダムコイルに転移する温度をいう。変性温度は、例えば、円二色性スペクトル(CDスペクトル)測定による高次構造解析などの公知の方法により測定されるが(特許文献1及び2)、これに限定されない他の公知の方法によっても測定できる。
 本発明に係るコラーゲン様ペプチドの製造は、市販のアミノ酸を使用し、これに限定されない、公知のペプチドの化学合成法によって製造できる(特許文献1)。また、所望のアミノ酸配列をコードする核酸配列を製造し、これを発現ベクターに組み込んで、組み換え発現ベクターを公知の方法で作製し、大腸菌等の微生物等の適当な宿主に導入して形質転換体を作製する。得られた形質転換体を適当な培地で培養することにより、遺伝子組み換えペプチド鎖が産生されるので、培養物から産生された遺伝子組み換えペプチド鎖を回収することにより、本発明で用いる遺伝子組み換えペプチド鎖を調製することができる。(特許文献2、EP1014176A2、US6992172、WO2004/85473、WO2008/103041等)。
 このようなペプチド鎖を、例えば、高速液体クロマトグラフィー等の分離手段を用いて分離精製して取得し、3本鎖ペプチドの製造に使用できる。
 また、このペプチド鎖は、製造又は精製した時点の水溶媒中で自己集合により三重らせん構造を有する3本鎖ペプチドを形成する場合がある。あるいは、この化学合成で合成されたペプチド鎖、及び/又は、遺伝子工学的方法で製造されたペプチド鎖又は自己集合で形成された3本鎖ペプチドを、例えば、変性温度以上の温度の水等の溶媒に溶解させた後に冷却することにより、3本のペプチド鎖が自己集合し、らせん構造を有するペプチド三量体を形成する。これにより、コラーゲン様ペプチドを製造できる(特許文献1及び2)。
 本発明では、前記ペプチド鎖に複数のシステイン残基を組み込んだコラーゲン様ペプチドを製造し、これらに限定されない、ジメチルスルホキシド(DMSO)等の酸化剤や空気酸化などで酸化架橋させることにより、コラーゲン様ペプチドがジスルフィド結合で架橋された重合ペプチドが提供される。本方法で製造されるコラーゲン様ペプチドの重合ペプチドは、公知のコラーゲン様ペプチドと比較して、向上した強度を有し、また、水溶液中で加熱しても変性しない特性を付与できる。
 本発明の重合ペプチドを製造する際の酸化剤としては、上記DMSO以外にも、酸素、ヨウ素、過酸化水素、臭素酸ナトリウム(ブロム酸ナトリウム)、臭素酸カリウム、過ホウ素酸ナトリウム又は過ホウ素酸カリウムなどが挙げられるが、これらに限定されない。
 本発明のジスルフィド結合による架橋形成の確認は、例えば、エルマン試薬で酸化的架橋反応後の残存チオール基を定量することにより可能である。
 さらに、本発明で水溶媒中で製造される重合ペプチドからなるヒドロゲルを、乾燥させることにより、以下に記載する、より強度が向上した重合ペプチド薄膜が提供される。
 2.生理活性を付与しない、又は付与したコラーゲン様ペプチドの重合体
 前記ペプチド鎖に生理活性を有するモチーフを組み込む、及び/又は、ペプチド鎖の側鎖に生理活性を有するモチーフを有するペプチドを結合させることにより、該生理活性を有する重合ペプチド、該重合ペプチドを含有するゲル及び該重合ペプチドを含有する薄膜を製造することができる。コラーゲン様ペプチドに組み込むモチーフを選択することにより、天然のコラーゲンと相違し、所望の生理活性に選択的な生理活性を有する重合ペプチドを付与できる。また、これらの生理活性を有するペプチドを組み込まないことにより、生理活性を付与しないコラーゲン様ペプチドの重合体を製造できる。
 本態様の重合ペプチドは、以下の構成として説明される場合がある。
 前記「1.コラーゲン様ペプチドの重合ペプチド」に記載の重合ペプチドであって、
 前記ペプチド鎖は、
 (i)  少なくとも1つの前記三重らせん形成用ペプチド基と少なくとも1つの架橋形成用ペプチド基からなるペプチド鎖、
 (ii) 少なくとも1つの前記三重らせん形成用ペプチド基と少なくとも1つの架橋形成用ペプチド基、及び生理活性を有するモチーフを有する少なくとも1つのペプチド基を含むペプチド鎖、及び、
 (iii) 少なくとも1つの前記三重らせん形成用ペプチド基と架橋形成用ペプチド基、及び、アミノ酸残基の側鎖にリンカーを介して生理活性を有するモチーフを結合させた少なくとも1つのペプチド基を含むペプチド鎖
 からなる群から選択される少なくとも1つであることを特徴とする、重合ペプチド。
 さらに、本態様の重合ペプチドの構成は、以下の構成として説明される場合がある。
 前記重合ペプチドであって、
 下記式(I)で表される3本のペプチド鎖から形成される三量体ペプチドの構造単位を有し、酸化架橋されてなることを特徴とする、重合ペプチド。
Figure JPOXMLDOC01-appb-C000004
 [式(I)中、
 A1, A2及び A3は、同一又は相違してもよく、それぞれ独立して下記式(II)で表されるペプチド鎖であり、
 A1, A2及び A3は、三重らせん構造を有する三量体を形成し、各々のペプチド鎖に含まれるシステイン(Cys)残基によってジスルフィド結合で架橋されていてもよく、
 該三量体は、前記Cysのジスルフィド結合で酸化架橋により重合される。
Figure JPOXMLDOC01-appb-C000005
 (式(II)中、
 R1及びR4は、各々アミノ末端及びカルボキシ末端であり、相互に独立して少なくとも2残基のCys残基を含む任意の2~10残基のアミノ酸残基からなるペプチド基であり、
 Zは、
 (i)  -(Xaa-Yaa-Gly)-を基本単位とする繰り返し構造のみからなるペプチド基、
 (ii) -(Xaa-Yaa-Gly)-を基本単位として繰り返す構造及び生理活性を有するモチーフを有するペプチド基、及び、
 (iii) -(Xaa-Yaa-Gly)-を基本単位として繰り返す構造を有し、かつ、該ペプチド鎖に含まれる少なくとも1残基のアミノ酸残基の側鎖にリンカーを介して生理活性を有するモチーフ配列を結合させてなるペプチド基、
からなる群から選択される少なくとも1つであり、
 R2及びR3は独立して-(Xaa-Yaa-Gly)-を単位として連続して繰り返す構造を含むペプチド基であり、
 -(Xaa-Yaa-Gly)-を基本単位とする繰り返し構造における繰り返し回数は、R2、Z及びR3の各々は0回以上であり、R2、Z及びR3で合計して3回以上であり、
  mは1以上の整数である。)]
 本明細書において、「モチーフ」とは、種々のタンパク質のアミノ酸配列中に認められる小さい構造部分を指し、天然のタンパク質において局所的に非常に良く保存されているアミノ酸配列のことであり、それらのタンパク質の機能発現に関与するモチーフのアミノ酸配列をいい、「モチーフ配列」又は「配列モチーフ」と言われる場合がある。
 以下に、特定の生理活性を付与しない重合ペプチド、及び、特定の生理活性を付与した重合ペプチドに分けて説明する。
(1)特定の生理活性を付与しないコラーゲン様ペプチドの重合ペプチド
 本発明の態様の一つは、前記コラーゲン様ペプチドの重合体であって、特定の生理活性を付与しない重合ペプチドである。該特定の生理活性を付与しない重合ペプチドは、-(Xaa-Yaa-Gly)-を基本単位とする繰り返し配列と、複数のCys残基を含むペプチド基からなるペプチド鎖によって構成され、該ペプチド鎖の3本が三重らせん構造を有するコラーゲン様ペプチドを形成し、該コラーゲン様ペプチドがジスルフィド結合で架橋重合された重合ペプチドであり、より具体的には以下に記載の構成を有する。
 前記「1.コラーゲン様ペプチドの重合体」に記載の構成を有する重合ペプチドであって、
 前記ペプチド鎖は、
 少なくとも1つの前記三重らせん形成用ペプチド基と少なくとも1つの架橋形成用ペプチド基からなるペプチド鎖であることを特徴とする。
 本発明の重合ペプチドを構成するコラーゲン様ペプチドは、ホモ三量体であってもよく、また、ヘテロ三量体であってもよい。
 本発明の重合ペプチドを含むゲル又は、特定の生理活性を付与していない所から、例えば、重合ペプチド薄膜を臓器の癒着防止用の医療材料、及び縫合材として使用できる。
 本発明の重合ペプチドを含むゲル又は重合ペプチド薄膜を臓器の癒着防止用の医療材料として使用する場合には、例えば、手術時に臓器と皮膚との間に、又は臓器と臓器の間に留置させることにより、臓器と皮膚や他の臓器との癒着を防止できる。留置された本発明の医療材料は、生体中に存在するペプチダーゼやマクロファージ等の貪食細胞により、徐々に可溶化又は分解され、消失するため、該医療材料を除去する再手術を必要としないため、患者の予後への負担が小さく、QOL(Quality of Life)を改善する。
 また、本発明の医療材料は、人工的に製造されたコラーゲン様ペプチドであるため、天然のコラーゲンと相違し、ウイルス感染や微生物感染の危険性が小さい。さらに、ジスルフィド結合で架橋されており加熱処理しても変性しないため、例えば、滅菌のために加熱することが可能である。
(2)生理活性を有するモチーフを組み込んだペプチド鎖からなるコラーゲン様ペプチドの重合ペプチド
 生理活性を有するモチーフを、前記ペプチド鎖に組み込む、又は前記一本鎖の側鎖にリンカーを介して結合させることにより、所望の生理活性有する、活性強度を調節した、及び/又は、複数の生理活性を組み合わせたコラーゲン様ペプチドの重合ペプチドを製造できる。
1) ペプチド鎖に生理活性を有するモチーフを組み込んだコラーゲン様ペプチドの重合体
 生理活性を有するモチーフを組み込んだコラーゲン様ペプチドの重合体は、以下の構成を有する。
 前記「1.コラーゲン様ペプチドの重合体」に記載の構成を有する重合ペプチドであって、
 前記ペプチド鎖は、
 少なくとも1つの前記三重らせん形成用ペプチド基と少なくとも1つの架橋形成用ペプチド基、及び生理活性を有するモチーフを有する少なくとも1つのペプチド基からなるペプチド鎖であることを特徴とする。
 前記重合ペプチドにおいて、
 前記ペプチド鎖は、下記式(III)で表される場合がある。
Figure JPOXMLDOC01-appb-C000006
 [式(III)中、
 R5及びR6は、各々アミノ末端及びカルボキシ末端であり、相互に独立して少なくとも2残基のCys残基を含む任意の2~10残基のアミノ酸残基からなるペプチド基であり、
 p、q及びrは、いずれも0以上の整数であり、p、q及びrの合計は3以上であり、sは1以上の整数である。]
 本発明の重合ペプチドを構成するコラーゲン様ペプチドは、ホモ三量体であってもよく、また、ヘテロ三量体であってもよい。
 前記重合ペプチドの発明において、前記生理活性は生体高分子に対する特異的な結合活性である場合がある。本明細書において、「生体高分子」とは、ヒトをはじめとした哺乳動物が有するタンパク質、ポリペプチド、ペプチド、核酸、及びこれらの断片をいう。生体高分子に対する特異的な結合活性としては、コラーゲン受容体に対する各種細胞の接着又は結合活性、並びに、フィブロネクチンに対する各種細胞の接着又は結合活性などをいうが、これらに限定されない。生体高分子に対する特異的な結合活性は、細胞膜に存在する各種受容体に選択的に結合するリガンドが有する特定のモチーフが知られている。
 モチーフとしては、例えば、インテグリン、ジスコイジンドメイン受容体(DDR)又はヘパラン硫酸プロテオグリカン(HSPG)から選択されるコラーゲン受容体に対する結合モチーフをペプチド鎖の製造時に組み込むことにより、該結合モチーフに選択的な結合活性を有する受容体選択的な細胞接着性が付与され研究材料又は医療材料を提供できる。
 上記以外の「モチーフ」としては、VWFモチーフ、SPARC/BM-40/osteonectinモチーフ、aegyptinモチーフ、LAIR-1モチーフ、GPVIモチーフ、PEDFモチーフ、Hsp47モチーフ、HLAモチーフ、HLAスーパーモチーフ、ジンクフィンガーC2H2型モチーフ、チトクロームb(N-末端)/b6/petBモチーフ、免疫グロブリンドメインモチーフ、WDドメインG-βリピートモチーフ、PDZドメインモチーフ、ロイシンリッチリピートモチーフ、プロテインキナーゼドメインモチーフ、PHドメインモチーフ、EGF様ドメインモチーフ、逆転写酵素(RNA依存性DNAポリメラーゼ)モチーフ、Ankリピートモチーフ、NADH-ユビキノン/プラストキノン(複合体I)モチーフ、EFハンドモチーフ、レトロウイルスアスパルチルプロテアーゼモチーフ、7回膜貫通型レセプター(ロドプシンファミリー)モチーフ等が挙げられるが、これらに限定されない。
 また、細胞接着モチーフとして具体的には、例えば、RGD配列、LDV配列、REDV配列、YIGSR配列、PDSGR配列、RYVVLPR配列、LGTIPG配列、RNIAEIIKDI配列、IKVAV配列、LRE配列、DGEA配列、及びHAV配列の各配列を挙げることができる。
 選択的な生理活性として、選択的な細胞接着性を本発明の重合ペプチドに付与する場合、本生理活性の対象となる細胞としては、上記モチーフを結合リガンドとして結合する受容体を有する細胞であり、具体的には、例えば、線維芽細胞、肝細胞、未分化軟骨細胞、筋細胞、血小板、好中球、マクロファージ、シュワン細胞、ケラチノサイト又は上皮細胞などの細胞が挙げられる。
 さらに、上記以外のモチーフとして、例えば、PROSITE(http://www.expasy.ch/prosite/)及びPRINTS(http://bioinf.man.ac.uk/dbbrowser/PRINTS/PRINTS.html)に収録されているモチーフを使用することができる。
 前記インテグリンに対する結合モチーフは-Gly-Phe-Hyp-Gly-Glu-Arg-、ジスコイジンドメイン受容体に対する結合モチーフは-Gly-Val-Met-Gly-Phe-Hyp-、ヘパラン硫酸プロテオグリカンに対する結合モチーフは-Lys-Gly-His-Arg-Gly-Phe-が挙げられるが、これに限定されない。
 さらに、本発明の重合ペプチドを所望の選択的活性を有する研究用の基材として使用する場合には、該基材に結合する細胞の細胞内情報伝達系のメカニズムの解明などを目的とした研究に使用できる。
 また、医療材料として使用する場合には、例えば、創傷部位、手術時の術創又は角膜や網膜上に、本発明の重合ペプチドを含むゲル又は重合ペプチド薄膜を留置させて使用することができる。ゲル又は重合ペプチド薄膜は、例えば、線維芽細胞の細胞膜上に存在する受容体が結合活性を有する前記結合モチーフを組み込むことにより、創傷部位又は術創への線維芽細胞の遊走と結合を亢進し創傷又は術創の治癒を促進させる創傷治療促進用に、又は角膜や網膜再生用の医療材料として使用できる。
2)ペプチド鎖の側鎖にリンカーを介して生理活性を有するモチーフを結合させたコラーゲン様ペプチドの重合体
 ペプチド鎖の側鎖にリンカーを介して生理活性を有するモチーフを結合させたコラーゲン様ペプチドの重合体は、以下の構成を有する。
 前記「1.コラーゲン様ペプチドの重合体」に記載の構成を有する重合ペプチドであって、
 前記ペプチド鎖は、
 -(Xaa-Yaa-Gly)-を基本単位として繰り返す構造を有し、かつ、該ペプチド鎖に含まれる少なくとも1残基のアミノ酸残基の側鎖にリンカーを介して生理活性を有するモチーフを結合させてなるペプチド基である場合がある。
 前記重合ペプチドの発明において、
 前記ペプチド鎖は、下記式(III)で表される場合がある。
Figure JPOXMLDOC01-appb-C000007
 [式(III)中、
 R5及びR6は、各々アミノ末端及びカルボキシ末端であり、相互に独立して少なくとも2残基のCys残基を含む任意の2~10残基のアミノ酸残基からなるペプチド基であり、
p、q及びrは、いずれも0以上の整数であり、p、q及びrの合計は3以上であり、sは1以上の整数である。]
 本発明の重合ペプチドを構成するコラーゲンペプチドは、ホモ三量体であってもよく、また、ヘテロ三量体であってもよい。
 前記重合ペプチドの発明において、
 前記生理活性は生体高分子に対する特異的な結合活性である場合がある。
 本発明において、前記モチーフとして、例えば、フィブロネクチンのインテグリンに対する結合モチーフを、ペプチド鎖の製造時又は重合ペプチド製造後に組み込む又は結合させることにより、該モチーフに選択的な結合活性を有する受容体選択的な細胞接着性が付与された研究材料又は医療材料を提供できる。
 フィブロネクチン由来のインテグリンαvβ3に対する結合モチーフとしては、-Arg-Gly-Asp-が挙げられるが、これに限定されない。
 上記以外の「モチーフ」としては、VWFモチーフ、SPARC/BM-40/osteonectinモチーフ、aegyptinモチーフ、LAIR-1モチーフ、GPVIモチーフ、PEDFモチーフ、Hsp47モチーフ、HLAモチーフ、HLAスーパーモチーフ、ジンクフィンガーC2H2型モチーフ、チトクロームb(N-末端)/b6/petBモチーフ、免疫グロブリンドメインモチーフ、WDドメインG-βリピートモチーフ、PDZドメインモチーフ、ロイシンリッチリピートモチーフ、プロテインキナーゼドメインモチーフ、PHドメインモチーフ、EGF様ドメインモチーフ、逆転写酵素(RNA依存性DNAポリメラーゼ)モチーフ、Ankリピートモチーフ、NADH-ユビキノン/プラストキノン(複合体I)モチーフ、EFハンドモチーフ、レトロウイルスアスパルチルプロテアーゼモチーフ、7回膜貫通型レセプター(ロドプシンファミリー)モチーフ等が挙げられるが、これらに限定されない。
 また、細胞接着モチーフとして具体的には、例えば、RGD配列、LDV配列、REDV配列、YIGSR配列、PDSGR配列、RYVVLPR配列、LGTIPG配列、RNIAEIIKDI配列、IKVAV配列、LRE配列、DGEA配列、及びHAV配列の各配列を挙げることができる。
 選択的な生理活性として、選択的な細胞接着性を本発明の重合ペプチドに付与する場合、本生理活性の対象となる細胞としては、上記モチーフを結合リガンドとして結合する受容体を有する細胞であり、具体的には、例えば、線維芽細胞、肝細胞、未分化軟骨細胞、筋細胞、血小板、好中球、マクロファージ、シュワン細胞、ケラチノサイト、上皮細胞などの細胞が挙げられるがこれらに限定されない。
 さらに、上記以外のモチーフとして、例えば、PROSITE(http://www.expasy.ch/prosite/)及びPRINTS(http://bioinf.man.ac.uk/dbbrowser/PRINTS/PRINTS.html)に収録されているモチーフを使用することができる。
 所望の選択的活性を有する研究材料として使用する場合には、該材料に接着する細胞の細胞内情報伝達系のメカニズムの解明などに使用できる。
 また、医療材料として使用する場合には、例えば、創傷部位又は手術時の術創に、本発明の重合ペプチドを含むゲル又は重合ペプチド薄膜を留置させて使用することができる。ゲル又は重合ペプチド薄膜は、例えば、線維芽細胞の細胞膜上に存在する受容体が結合活性を有する結合モチーフを組み込むことにより、創傷部位又は術創への線維芽細胞の遊走と結合を亢進し、創傷又は術創の治癒を促進させる創傷治癒促進用の医療材料として使用できる。
3)複数の種類の生理活性モチーフを組み込んだ、又は結合させた重合ペプチド
 本発明の態様として、前記の生理活性モチーフを組み込んだペプチド鎖及び/又は前記の生理活性モチーフを結合させたペプチド鎖を組み合わせて使用することにより、それぞれの生理活性を選択的に組み合わせた活性を有し、各活性の活性強度を所望の割合に調整した重合ペプチドが挙げられる。
 この組み合わせ活性を有する重合ペプチドは、それぞれの活性を有するコラーゲン様ペプチドを所望の活性となるように、混合比を調整して混合した後、酸化的架橋で重合させることにより所望の活性を有する重合ペプチドを製造できる。この重合ペプチドを用い、上記の製造方法により、この重合ペプチドを含むゲル及び重合ペプチド薄膜を作製することができる。
 本態様において、組み合わせて使用する生理活性を有するモチーフとしては、インテグリンに対する結合モチーフ、ジスコイジンに対する結合モチーフ、ヘパラン硫酸に対する結合モチーフ及びRGDモチーフなどが挙げられるが、これらに限定されない。
 これらのモチーフとしては、例えば、インテグリン、ジスコイジンドメイン受容体(DDR)又はヘパラン硫酸プロテオグリカン(HSPG)から選択されるコラーゲン受容体に対する結合モチーフ、又はフィブロネクチンのRGDモチーフを、ペプチド鎖の製造時又は重合ペプチド製造後に組み込むことにより、該結合モチーフに選択的な結合活性を有する受容体選択的な細胞接着性が付与された研究材料又は医療材料を提供できる。
 上記以外の「モチーフ」としては、VWFモチーフ、SPARC/BM-40/osteonectinモチーフ、aegyptinモチーフ、LAIR-1モチーフ、GPVIモチーフ、PEDFモチーフ、Hsp47モチーフ、HLAモチーフ、HLAスーパーモチーフ、ジンクフィンガーC2H2型モチーフ、チトクロームb(N-末端)/b6/petBモチーフ、免疫グロブリンドメインモチーフ、WDドメインG-βリピートモチーフ、PDZドメインモチーフ、ロイシンリッチリピートモチーフ、プロテインキナーゼドメインモチーフ、PHドメインモチーフ、EGF様ドメインモチーフ、逆転写酵素(RNA依存性DNAポリメラーゼ)モチーフ、Ankリピートモチーフ、NADH-ユビキノン/プラストキノン(複合体I)モチーフ、EFハンドモチーフ、レトロウイルスアスパルチルプロテアーゼモチーフ、7回膜貫通型レセプター(ロドプシンファミリー)モチーフ等が挙げられるが、これらに限定されない。
 また、細胞接着モチーフとして具体的には、例えば、RGD配列、LDV配列、REDV配列、YIGSR配列、PDSGR配列、RYVVLPR配列、LGTIPG配列、RNIAEIIKDI配列、IKVAV配列、LRE配列、DGEA配列、及びHAV配列の各配列を挙げることができる。
 選択的な生理活性として、選択的な細胞接着性を本発明の重合ペプチドに付与する場合、本生理活性の対象となる細胞としては、上記モチーフを結合リガンドとして結合する受容体を有する細胞であり、具体的には、例えば、線維芽細胞、肝細胞、未分化軟骨細胞、筋細胞、血小板、好中球、マクロファージ、シュワン細胞、ケラチノサイト、上皮細胞などの細胞が挙げられるがこれらに限定されない。
 さらに、上記以外のモチーフとして、例えば、PROSITE(http://www.expasy.ch/prosite/)及びPRINTS(http://bioinf.man.ac.uk/dbbrowser/PRINTS/PRINTS.html)に収録されているモチーフを使用することができる。
3.本発明のコラーゲン様ペプチドの重合ペプチドを含むゲル化剤、ゲル、ヒドロゲル及び重合ペプチド薄膜
 前記重合ペプチドは、水溶媒中で製造される場合に、本発明の重合ペプチドと水とのヒドロゲルとして製造され、即ち、本発明の重合ペプチドは、ゲル化剤としての用途を有する。
 また、本発明の前記ヒドロゲルは、手術後の臓器の癒着防止剤、止血剤、創傷治癒促進剤及び角膜や網膜再生用材料等の再生医療材料として使用できる。
 さらに、前記ヒドロゲルは、乾燥させることにより、シート状のフィルムである重合ペプチド薄膜を製造できる。この重合ペプチド薄膜は、例えば、用時に再水和して、前記の創傷治癒促進用材料、人工角膜や人工心筋膜などの体内に移植可能な細胞シート等の再生医療材料として使用できる。
 本発明の重合ペプチド薄膜は、乾燥前の重合ペプチドからなるヒドロゲルと比較して、乾燥させることにより、室温下で長期間保存可能であり、かつ、ペプチド分子間の相互作用が変化し、再水和しても、元のヒドロゲルと比較して、より強い強度が付与される。そこで、本発明の重合ペプチド薄膜は、強度がより改良され、加熱滅菌可能な加熱耐性の医療用材料として使用できる。
 本発明のゲルは、前記3本鎖ペプチドがヘテロ三量体として、三重らせん構造を形成後、酸化剤で酸化重合させてゲル化して製造することにより、又は、前記3本鎖ペプチドがホモ三量体として、三重らせん構造を形成後、複数の種類のホモ三量体を混合後に酸化剤で酸化重合させてゲル化して製造することにより、少なくとも1種以上のペプチド鎖を含むゲルを製造することができる。
 上記、複数種類のホモ三量体を架橋重合させたゲルの作製を、より詳細に記載すると、前記3本鎖ペプチドを重合単位として、複数種類の3本鎖ペプチドを混合し、酸化剤で架橋重合させてゲル化して製造されるゲルである場合がある。
 この複数種類の3本鎖ペプチドより構成されるゲルは、例えば、ゲルの硬さを制御するためのペプチド鎖から構成される3本鎖ペプチド、及び、生理活性モチーフを有するペプチド鎖から構成される3本鎖ペプチドを組み合わせて、ゲルの硬さ(stiffness)の制御、及び/又は、生理活性の発現を調整することができる。
 本明細書において、「ゲルの硬さ(stiffness)」とは、生体内において、例えば、マクロファージ等の貪食細胞による分解に対するゲルの堅牢さを言う。このゲルの硬さは、ゲルの架橋重合の程度や架橋されたペプチド鎖の枝分かれ構造の相違等によって影響を受ける。例えば、ジスルフィド結合による架橋がゲル中に多く含まれると硬いゲルが形成される。
 前記複数種類の3本鎖ペプチドに使用される1本鎖ペプチドとしては、例えば、ゲルの硬さを制御するために、1本鎖ペプチドに含まれるシステイン残基の数が相違するペプチド鎖が挙げられる。例えば、1本のペプチド鎖のN末端側とC末端、又はその近傍に、それぞれに3個のシステインを含むペプチド鎖、2個のシステインを含むペプチド鎖、1個のシステインを含むペプチド鎖を組み合わせて、各ペプチド鎖毎に加熱後徐冷することによりそれぞれのペプチド鎖から構成される三重らせん構造を有する3本鎖ペプチドを形成し、これらの3本鎖ペプチドを所定の比率で混合し、その後、酸化剤により架橋重合させ、ゲル化させることにより多機能の重合ペプチドを含有するゲルを製造し、使用することができる。
 システイン残基を多く含むペプチドを高い割合で配合して作製した重合ペプチドのゲルは、生体内で生分解性が遅くなる傾向を認め、一方、システイン残基が少ないペプチドを高い割合で配合して作製した重合ペプチドを含むゲルは、より速い生分解性を示す。
 また、異なるシステイン残基数を組み合わせたゲルを使用することにより、ペプチド鎖が有する生理活性モチーフの活性発現強度を調整でき、したがって、ゲル中に含まれる架橋度を調整することにより、本発明のゲルの硬さ及び生理活性の発現強度を制御できるものと考えられる。
 例えば、本発明のゲルにおいて、N末端とC末端の両方の近傍にシステイン残基を各3個ずつ、2個ずつ又は1個ずつを含むペプチド鎖を使用して、システイン残基を両末端に3個ずつ含むペプチド鎖とシステイン残基を2個ずつ又は1個ずつを含むペプチド鎖と組み合わせて、システイン残基を両末端に各2個ずつを含むペプチド鎖の配合比率が質量比として、10%以下の場合に、また、システイン残基を1個ずつを含むペプチド鎖の配合比率が質量比として、70%未満、好ましくは、50%以下を含有するゲルを製造することにより、医療材料として使用できる。
 さらに、例えば、N末端とC末端の両方の近傍にシステイン残基を2個ずつ又は1個ずつを含むペプチド鎖を使用して、これらを組み合わせる場合には、ゲル中のシステイン残基をペプチド鎖の各末端に1個ずつ含むペプチド鎖の配合比率が質量比として30%未満、好ましくは10%以下を含有する重合ペプチドを含むゲルを製造して、使用できる。これらのペプチド鎖は、システイン残基を含まないペプチド鎖も、システイン残基を有するペプチド鎖と組み合わせることにより使用できる。
 前記のN末端とC末端の両方の近傍にシステイン残基を3個、2個又は1個を含むペプチド鎖の例として、CCC2-GPOGPR (short)(配列番号15)、CC2-GPOGPR (short)(配列番号23)、C2-GPOGPR (short)(配列番号24)等が挙げられる。
また、システイン残基を含まないペプチド鎖の例として、Soluble GFOGER (配列番号19)、Soluble GVMGFO (配列番号20)、Soluble KGHRGF (配列番号21)、及びSoluble GPOGPR (short)(配列番号25)等が挙げられる。
 さらに、このゲルの硬さを制御するペプチド鎖から構成される3本鎖ペプチドの組み合わせに、生理活性モチーフを有するペプチド鎖から構成される3本鎖ペプチドを組み合わせて混合し、上記の方法で重合ペプチドを形成することにより、この重合ペプチドが有する生体内でのゲルの硬さの制御と、生理活性の種類とその発現強度とを制御した多機能な重合ペプチドを製造できる。そして、この重合ペプチドの硬さ、及び/又は、生体内での活性発現モチーフの種類と量とを調整することにより、例えば、生体内移植後の生分解速度を調整又は制御することができる。
 したがって、本発明のゲルを所望とする用途にしたがって、各種のペプチド鎖を使用した重合ペプチドを含有するゲルを製造できる。すなわち、例えば、人工血管等、生分解性を受けない方が良い人工臓器の材料には、システイン残基を多く含む組成のペプチドを多く配合してゲルを作製し、一方、手術後の臓器癒着防止材や創傷治癒促進剤等の所定の期間生体に残留後は生分解を受けた方が良い材料に関しては、システイン残基の配合を少なくして本発明の重合ペプチドを含有するゲルを製造する。
4.本発明のコラーゲン様ペプチドの重合ペプチドを含む再生医療用材料
 本発明の重合ペプチドは、前記に説明のとおり、所望の生理活性を有するモチーフを組み込む又はリンカーを介して結合させることにより、選択的な生理活性を有するゲル、ヒドロゲル又は重合ペプチド薄膜を製造することができる。あるいは、生理活性を有するモチーフを組み込まない又は結合させないことにより、特段の生理活性を有さない、換言すれば、生体で刺激性が小さく、安全性の高いゲル、ヒドロゲル又は重合ペプチド薄膜を製造することができる。
 本発明の重合ペプチドを含むゲル、ヒドロゲル又は重合ペプチド薄膜において、選択的生理活性を付与した重合ペプチドは、例えば、前記のコラーゲン受容体に対する結合モチーフをペプチド鎖に組み込む又は結合させることにより、該ゲル、ヒドロゲル又は重合ペプチド薄膜にコラーゲン受容体を有する細胞に選択的な結合活性を付与できる。
 これらのヒドロゲル又は重合ペプチド薄膜を足場として、選択的な結合活性を有する細胞が集積し、これらの細胞が放出するサイトカインやケモカインの活性等により、ヒドロゲル又は重合ペプチド薄膜を留置した位置の周囲の組織及び/又は細胞に、例えば、創傷治癒促進効果等の生理活性を付与することができる。
 そこで、例えば、血小板、線維芽細胞及び/又は角膜細胞に選択性の高い医療材料、好ましくは、再生医療用材料、さらに好ましくは、創傷治癒促進用再生医療材料として、使用できる。血小板及び/又は線維芽細胞の本発明の医療材料に足場として選択的に結合することにより、これらの細胞からサイトカイン及び/又はケモカインが放出され、創傷治癒等の組織再生が促進されることが期待される。
 結合モチーフとして、例えば、インテグリン、ジスコイジンドメイン受容体(DDR)若しくはヘパラン硫酸プロテオグリカン(HSPG)から選択されるコラーゲン受容体に対する結合モチーフ、又はフィブロネクチン由来のインテグリンαvβ3に対する結合モチーフが挙げられる。
 より具体的には、インテグリンに対する結合モチーフは-Gly-Phe-Hyp-Gly-Glu-Arg-、ジスコイジンドメイン受容体に対する結合モチーフは-Gly-Val-Met-Gly-Phe-Hyp-、ヘパラン硫酸プロテオグリカンに対する結合モチーフアミノ酸配列は-Lys-Gly-His-Arg-Gly-Phe-が使用可能であり、フィブロネクチン由来のインテグリンαvβ3に対する結合モチーフは-Arg-Gly-Asp-が挙げられるが、これらに限定されない。
 以下に、本実施例で使用される略号を記載する。
アミノ酸残基(全てL体)
Arg(R):アルギニン
Asp(D):アルパラギン酸
Cys(C):システイン
Gln(Q):グルタミン
Glu(E):グルタミン酸
Gly(G):グリシン
His(H):ヒスチジン
Hyp(O):4-ヒドロキシプロリン
Lys(K):リジン
Pro(P):プロリン
Tyr(Y):チロシン
Ile(I):イソロイシン
Leu(L):ロイシン
Met(M):メチオニン
Phe(F):フェニルアラニン
Ser(S):セリン
Val(V):バリン
保護基
Fmoc: 9-フルオレニルメトキシカルボニル
tBu: tert-ブチル
Trt:トリフェニルメチル(トリチル)
Pbf: 2,2,4,6,7-ペンタメチルジヒドロベンゾフラン-5-スルホニル
Boc: tert-ブトキシカルボニル
レジン
CTC:塩化2-クロロトリチル
試薬
BCA:ビシンコニン酸
BSA:ウシ血清アルブミン
CHCA:α-シアノ-4-ヒドロキシケイ皮酸
DCM:ジクロロメタン
DIC: N,N'-ジイソプロピルカルボジイミド
DIEA: N,N-ジイソプロピルエチルアミン
DMAP: N,N-ジメチルアミノピリジン
DMF: N,N-ジメチルホルムアミド
DMSO:ジメチルスルホキシド
DTNB: 5,5'-ジチオビス-2-ニトロ安息香酸
DTT:ジチオトレイトール
EDT:エタンジチオール
EDTA:エチレンジアミン四酢酸
FBS:ウシ胎児血清
HOBt: 1-ヒドロキシベンゾトリアゾール
MeCN:アセトニトリル
MeOH:メタノール
MOPS: 3-モルホリノプロパンスルホン酸
NEM: N-エチルマレイミド
PBS:リン酸緩衝液
PMSF:フェニルメチルスルホニルフルオリド
SDS:ドデシル硫酸ナトリウム
TBS:トリス緩衝生理食塩水
TFA:トリフルオロ酢酸
TMSO:テトラメチレンスルホキシド
機器
RP-HPLC:逆相高速液体クロマトグラフィー
MALDI-TOF-MS:マトリックス支援レーザー脱離イオン化飛行時間型質量分析計
その他
CD:円偏光二色性
DDR:ジスコイジンドメイン受容体
ECM:細胞外マトリックス
FAK:接着斑キナーゼ (focal adhesion kinase)
HDF:ヒト皮膚線維芽細胞
HRP:ホースラディッシュペルオキシダーゼ
HSPG:ヘパラン硫酸プロテオグリカン
PEDF:色素上皮由来因子
SDS-PAGE:ドデシル硫酸ナトリウム-ポリアクリルアミドゲル電気泳動
vWF:フォン・ビルブランド因子
 以下に説明する本発明の実施例は例示のみを目的とし、本発明の技術的範囲を限定するものではない。本発明の技術的範囲は請求の範囲の記載によってのみ限定される。本発明の趣旨を逸脱しないことを条件として、本発明の変更、例えば、本発明の構成要件の追加、削除及び置換を行うことができる。
<一本鎖ペプチドの製造>
材料及び方法
ペプチド合成
 本実施例で下記表1に記載の配列番号1~22のペプチドを固相合成し、使用する。
Figure JPOXMLDOC01-appb-T000008
 表1において、アミノ酸配列は、当業者に慣用の1文字表記で表される。ただし、「O」は、4-ヒドロキシプロリン残基を表し、「Ac-」はアセチル化されたN末端を、「-NH2」はアミド化されたカルボキシ末端を、「βA」はβ‐アラニン残基を表す。
 ペプチド鎖は、三重らせん構造を形成する-(Xaa-Yaa-Gly)-の基本単位の10~17回の繰り返し配列を有する。この基本配列のNC両末端又はその近傍にCys残基を組み込み、側鎖のチオール基(-SH)の酸化によってジスルフィド架橋(-S-S-)を形成させることで重合化する設計とした。表1中の、配列番号12、16及び19のGFOGER、配列番号13、17及び20のGVMGFO並びに配列番号14、18及び21のKGHRGFはそれぞれインテグリン受容体、ジスコイジン受容体(DDR)、ヘパラン硫酸プロテオグリカン受容体(HSPG)のコラーゲン結合モチーフである。なお、RGQOGVMGFO及びKGHRGFSGLはそれぞれvWFとPEDFの結合モチーフである。また、Cys残基を持たないY2(配列番号8)、及び(Pro-Hyp-Gly)の繰り返し配列をもたないためにランダムコイル構造となると考えられるYCC2-Scrを設計した(配列番号9)。
 Fmoc化されたアミノ酸、Fmoc-Arg(Pbf)-OH、Fmoc-Cys(Trt)-OH、Fmoc-Gly-OH、Fmoc-Pro-OH及びFmoc-Tyr(tBu)-OHはNovabiochem(Merck Millipore Corporation、米国)より購入した。また、Wang resinもNovabiochemより購入した。他の試薬は、市販の特級品以上のグレードのものを使用した。CTC resinは株式会社ペプチド研究所(大阪)より購入した。Ellman試薬の作製は、DTNBを 50 mMのリン酸緩衝液 (pH8.4) に 9 mg/mlとなるように溶解した。
実験に使用した器具及び装置
 固相合成にはPD-10 empty column (GE Healthcare、米国) 又はLibra Tube (株式会社ハイペップ研究所、京都)を用いた。ペプチドの分析にはHPLC C20A シリーズ(株式会社島津製作所、京都)を用い、カラムはCOSMOSIL 5C18 AR-II (ナカライテスク株式会社、京都)を用いた。ペプチドの精製にはLC 2000 Plus シリーズ(日本分光株式会社、東京)を用い、カラムはCOSMOSIL 5C18 AR-II (ナカライテスク株式会社)又はCadenza CD-C18 (インタクト株式会社、京都)を用いた。ペプチドの質量分析にはAutoflex-III (Bruker Corporation、ドイツ)を用いた。ペプチドのCDスペクトル測定には円二色性分散計J-820 (日本分光株式会社)を用いた。Fmoc基のUV吸光度測定には紫外可視分光光度計V-630 (日本分光株式会社)を用いた。ペプチドのリフォールディングの温度制御にはTaKaRa Thermal Cycler (タカラバイオ株式会社、滋賀)を用いた。ゲル形成の判定にはステンレス球(直径1.5 mm、有限会社舟辺精工、兵庫)を用いた。細胞培養皿にはNunc Cell-Culture/Petri Dishes (9 cm ディッシュ)、Nunc MicroWell 96-Well Microplates (96 ウェルプレート)、Nunc Cell-Culture Treated Multidishes (6 ウェルプレート) (Thermo Fisher Scientific, Inc.、米国)を用いた。細胞の観察にはレーザー走査型共焦点顕微鏡FV1000 (オリンパス株式会社、東京)を用いた。ウエスタンブロッティングの可視化にはLAS-3000 (富士フィルム株式会社、東京)を用いた。
固相合成用によるペプチド鎖の調製
 ペプチドは、当業者に慣用のFmoc合成法(特開2005-263784号公報)により、合成した。
RP-HPLCによるペプチドの精製
 ペプチドの精製にはRP-HPLC (LC 2000 Plusシリーズ、日本分光株式会社)を用いて、0.05% (v/v) TFA-H2Oと0.05% (v/v) TFA-MeCNの直線濃度勾配により溶出させた。カラム径を20 mm、カラム温度を60℃、流速を5 ml/分、検出波長を220 nmとした。カラムはCOSMOSIL 5C18 AR-II (ナカライテスク株式会社)又はCadenza CD-C18 (インタクト株式会社)を用いた。
ペプチドのRP-HPLCによる純度分析及びその結果
 合成したペプチドを精製した後、その純度を確かめるためにRP-HPLC により分析した。ペプチドは移動相に0.05% TFA/H2O と0.05% TFA/MeCN を用いた直線濃度勾配により溶出させ、Soluble KGHRGF の分析時の濃度勾配は0.05% TFA/MeCN 0~30%/30分、30~90%/5分とし、その他のペプチドの分析時の濃度勾配は0.05% TFA/MeCN 10~40%/30min、40~90%/5分とした。また、カラム温度は60℃、測定波長は220nm とした。
 YCC2、CC2、CC1及びC2の各ペプチドのRP-HPLC分析の結果を図2A~図2Dに示す(他のペプチドのRP-HPLC分析の結果は非提示)。また、各ペプチドの保持時間を表2に示した。
Figure JPOXMLDOC01-appb-T000009
ペプチドの質量分析結果
 合成し、精製した上記の各ペプチドの質量分析をMALDI-TOF MSにより行った。各ペプチドの質量の計算値と実測値を表3に示す。測定サンプルを調製するときのマトリックスにはCHCAを用いた。この結果から、すべてのペプチドは目的としたペプチドであることが確認された。
Figure JPOXMLDOC01-appb-T000010
<コラーゲン様ペプチドにおける三重らせん構築の評価>
 ペプチドのコンフォメーションの確認による三重らせん構造の確認
ペプチドの構造をCDスペクトル(円二色性分散計J-820、日本分光株式会社)により確認した。ペプチド粉末を、脱気した0.05% TFA/H2Oに溶解し、1 mg/mlの溶液を調製した。80℃で5分間加熱後、4℃にて一晩静置してリフォールディングさせた溶液を測定サンプルとして調製した。CDスペクトルは、温度4、37、80℃、セル長0.05 cm、感度standard (100 mdeg)、測定波長250~190 nm、データ取り込み間隔0.2 nm、走査速度50 nm/分、レスポンス0.5秒、バンド幅1 nm、積算回数4回の条件で測定した。得られたシグナル(θobs)を残基平均モル楕円率(θmrw)として示した。θmrwを以下の式により算出した。
Figure JPOXMLDOC01-appb-M000011
(式中、mrwは残基平均分子量を、cはペプチド濃度(mg/ml)を、lはセル長(cm)を示す。)
 三重らせん構造の熱安定性は温度変化に伴うθmrw, 225をモニターすることで確認した。測定条件は、4~75℃又は4~90℃、セル長0.05 cm、測定波長225 nm、データ取り込み間隔0.5℃、温度勾配18℃/時間、感度standard (100 mdeg)、レスポンス2秒、バンド幅1 nmであった。シグナルが線形的に減少している領域では三重らせん構造は完全にランダムコイル化していると判定した。
ペプチドのCDスペクトル測定結果
 合成したそれぞれのペプチドについて、4℃、37℃及び80℃におけるCDスペクトルを測定した結果を図3A~図3Gに示す。また、YCC2及びYCC2-Scrについて、225 nmのCDスペクトル強度(θ225)の温度変化測定を行った結果を図4A及び図4Bに示す。これらの測定結果から、YCC2-Scrを除くすべてのペプチドが4℃及び37℃においてのみ225 nm付近で正のコットン効果を示したため、37℃以下で三重らせん構造を形成しており、80℃では変性状態であることが確認された。C2のCDスペクトル測定は未実施であるが、同様の三重らせん骨格を有するすべてのペプチドにおいて三重らせん形成が見られたことから、C2も同様に三重らせんを形成していると考えられた。一方、YCC2-Scrは測定したすべての温度において225 nm付近に正のコットン効果が見られた。225 nmにおけるθ225の温度変化測定の結果より、CC2では75℃付近で熱変性が起こっている様子が観察された一方、YCC2-Scrでは1次関数的な減衰が見られた。これらのことから、YCC2-Scrを除くコラーゲン様ペプチドは末端配列及び内部配列によらず三重らせんを形成しており、YCC2-Scrは三重らせん構造は形成しないものの、ポリプロリンII型の立体構造をとっていると考えられた。
<コラーゲン様ペプチドの重合によるゲル形成とその特性の評価>
 上記三重らせん構造を有するペプチドを、酸化剤であるDMSOで酸化架橋させることにより、コラーゲン様ペプチドを重合させた重合ペプチドからなるゲルを作製した。残存チオール基を測定することにより、酸化的架橋による重合反応の進行を確認した。
コラーゲン様ペプチドの酸化的重合反応における残存チオール基の測定
 脱気した水を用いて、1.11% (w/v)濃度のペプチド溶液を調製し、PCRチューブに入れた。これを80℃で5分間加熱後、4℃で一晩静置した。この溶液にDMSOを加えて終濃度10% DMSO、ペプチド1% (w/v)のペプチド溶液を調製した。表面を覆うようにミネラルオイルを充填した。ペプチド溶液から測定毎にミネラルオイルを取り除いて酸化モニター用のペプチド溶液を調製した。エルマン試薬は、DTNBを50 mM リン酸緩衝液(pH8.4)に9 mg/mlとなるように調製した。最終濃度が、ペプチド0.167 mg/ml、33 mM リン酸緩衝液(pH8.4)、Ellman試薬1.5 mg/mlの条件で5分間静置した後に吸光度を測定した。DMSOを加えた時間を始点(0時間)として時間経過に伴う吸光度の変化を記録した。Ellman試薬はペプチドのもつチオール基(以下「SH基」と記載)の量に依存して5-メルカプト-2-ニトロ安息香酸(λmax = 412 nm、ε = 1.55×104)を生成するため、412 nmにおける吸光度を測定した。測定後、997 nmと900 nmにおける吸光度を測定して光路長補正を行った。
 0時間の各ペプチドのSH量を100%としたとき、時間経過に伴うSH量の割合の変化を図5に示す。CCCC2は12時間で、CCC2は24時間で、CC2及びYCC2は74時間でゲル化した。そのため、それ以降の時間帯の定量データは測定していない。SH量のパーセント減少速度は各ペプチドでほぼ同様であった。また、74時間経過でゲル形成しないCC1及びYCC2-ScrのSH量の割合は約0%であった。以上の結果から、74時間を経過した時点で、多くのペプチドの酸化は、ほぼ100%完了していることが示された。なお、3日経過した時点で、ゲルを形成しないサンプルは、ゲル化しないペプチドであると判定した。
コラーゲン様ペプチドの重合ペプチドヒドロゲルの作製とその安定性の評価
 脱気した水を用いて、1.11% (w/v)又は1.66% (w/v)濃度のペプチド溶液を調製し、PCRチューブに入れた。これをポリメラーゼ連鎖反応(PCR)機(TaKaRa PCR Thermal Cycler、タカラバイオ株式会社)にて80℃で5分間加熱後、4℃で一晩静置した。この溶液にDMSO及び水を加えて10% DMSO、0.1~1.5% (w/v)濃度のペプチド溶液を調製した。液面を覆うようにミネラルオイルを充填し、室温で一定時間静置してゲル化した。その後、ステンレス球をゲルに保持できるかどうかでゲル形成を判定した。
ペプチド鎖の配列変化によるゲル化能の評価結果
 各ペプチドの1% (w/v)濃度でのゲル形成能を評価した結果を図6に示す。白色矢印はステンレス球の位置を示す。この結果から、N末端及びC末端の両側近傍にCys残基を2つ以上もつゲルではゲル形成が観察された(CC2と、CC1及びC2とを参照)。また、ランダムコイル構造を有するペプチドではゲルが形成されなかった(YCC2とYCC2-Scrとを参照)。このことから、ゲル形成に三重らせん構造が重要であることが示された。また、1% (w/v)でのゲル形成に要した時間を表4に示す。
Figure JPOXMLDOC01-appb-T000012
 以上の結果から、Cys残基を多く含むペプチドほどゲル形成時間が短いことが示された。また、ゲル化可能なペプチドは、CCCC2、CCC2、CC2及びYCC2であることが示された。
ペプチド濃度のゲル化への影響評価結果
 1% (w/v)濃度においてゲル化したペプチド(CCCC2、CCC2、CC2及びYCC2)を用いて、室温、3日間の酸化条件下でのゲル化必要濃度を評価した結果を表5に示す。
Figure JPOXMLDOC01-appb-T000013
 CCCC2、CCC2、CC2及びYCC2の順番で、ゲル形成能が高いとの結果を示した。また、CCCC2は0.3% (w/v)の濃度でもゲル化した。
ヒドロゲルの安定性測定
 ヒドロゲルの還元処理に対する安定性の測定
 Cys残基を NC 両末端近傍に2個以上持つペプチドをDMSOで酸化することによってヒドロゲルが形成されることが示された。そこで、還元処理によってジスルフィド架橋を切断することでゲルは崩壊するのかを検証した。作製したヒドロゲル(30 μl)に100 μlの還元溶液(100 mM DTT、50 mM リン酸緩衝液(pH8.4))あるいは水を加えた。最終濃度がペプチド濃度2.3 mg/ml、2.3% DMSO 23 mM DTT、12 mMリン酸緩衝液(pH8.4)あるいは 2.3 mg/ml、2.3% DMSOとなった。その後、それぞれを約90 回/分の頻度で100μl/回の容量を黄色チップ(~200μl)を用いてピペッティングした。図7にその結果を示す。
 これより、重合ペプチドであるヒドロゲルは全て還元処理によって完全に崩壊することが示された。一方、水を加えることによってCCCC2、CCC2はゲルの崩壊が見られないが、CC2、YCC2ではゲルの崩壊が見られた。
ヒドロゲルの熱安定性の測定
 作製したヒドロゲルにステンレス球を載せた後、恒温装置に移し、35℃~95℃までの間のさまざまな温度で10分間静置した。ステンレス球の沈降によってゲルが崩壊したかを判定した。
熱安定性測定結果
 1% (w/v)のペプチドを用いて作製したヒドロゲルの熱安定性を測定した結果を図8に示す。この結果から、CCCC2、CCC2又はYCC2から形成されたヒドロゲルは95℃以下ではステンレス球の沈降はみられなかった。CC2から形成されたヒドロゲルは85~90℃でステンレス球が沈降を開始し、95℃で完全に沈降した。したがって、ジスルフィド結合の数に比例して、三重らせん構造が安定化し、ペプチドの変性温度が高くなったと考えられる。
<重合ペプチド薄膜の作製と強度の評価>
 重合ペプチド薄膜の作製にはYCC2を用いた。脱気した水を用いて、1.11% (w/v)濃度のペプチド溶液を調製し、PCRチューブに入れた。これを80℃で5分間加熱後、4℃で一晩静置した。この溶液にDMSOを加えて終濃度10% DMSO、1.0% (w/v)ペプチド溶液を調製した。このペプチド溶液を非吸水基盤(パラフィルム、シリコン加工したホールガラス、テフロン(登録商標)板)上に移した。この時、支持体としてPVDF膜又はナイロンメッシュを非吸水基盤上に設置した。湿潤条件(10% DMSO)の室温で3日間静置することでゲル化させた。その後、乾燥条件に切り換えて、室温で3日間乾燥させた。非吸水基盤と支持体との組み合わせは、テフロン(登録商標)板とナイロンメッシュとの組み合わせが最も優れていた。
重合ペプチド薄膜の作製結果
 YCC2ペプチドから形成された重合ペプチド薄膜を作製したコラーゲン様重合ペプチド薄膜は、非常に透明度が高かった(図9)。
重合ペプチド薄膜の再水和
 上記方法で作製した重合ペプチド薄膜に非吸水フィルム上で水を添加した。数分間水和させた後、重合ペプチド薄膜が吸収しなかった水を回収除去した。これにより、再水和した重合ペプチドヒドロゲルを得た。
重合ペプチド薄膜の再水和結果
 再水和させた重合ペプチドのヒドロゲルを得た結果を図10に示す。再水和で得たヒドロゲルは、乾燥前のヒドロゲルより保水量が少ないため、ペプチド密度が高くなり、強度の高いヒドロゲルを作製することができた。
<積層重合ペプチド薄膜の製造>
 CCC2-GFOGER(short)(配列番号11)で製造した重合ペプチドを使用して、積層した重合ペプチド薄膜を以下の方法で製造した。
1) 前記実施例4と同様に、コラーゲン様ペプチドを脱気したH2Oに溶解し (22.2 mg/ml)、加熱後、徐冷することにより三重らせんを形成した。
2) DMSOを添加 (10% DMSO、20 mg/mlペプチド)し、支持体 (直径1 cm円)上、10% DMSOを充填した密閉容器中で約4日静置することで酸化し、ヒドロゲルを形成させた。
3) 大気中で乾燥し脱水した。
4) 2)と同様に調製した10% DMSO、20 mg/mlペプチド溶液を積層し、10% DMSOを充填した密閉容器中で約4日酸化した。
5) 大気中で乾燥し脱水した。
 この乾燥させた重合ペプチド積層薄膜を再水和し、支持体から切り離すことにより、又は、支持体から切り離した後に再水和させることにより、強度がより向上した重合ペプチド薄膜を製造した。
<生理活性付与重合ペプチドの作製と評価>
 生理活性を有するモチーフを組み込んだペプチド鎖のコラーゲン様ペプチドの重合ペプチドの製造
 YCC2-GFOGER(配列番号12)、YCC2-GVMGFO(配列番号13)及びYCC2-KGHRGF(配列番号14)、並びに、これらの各ペプチドの対照として、各ペプチドのN末端及びC末端の両端近傍にCys残基を含まないSoluble GFOGER(配列番号19)、Soluble GVMGFO(配列番号20)及びSoluble KGHRGF(配列番号21)を、実施例2と同様の方法で合成し、その各ペプチド溶解液のCDスペクトルを測定することにより、三重らせん構造の構築を確認した。
 CDスペクトルの測定結果を図11A~図11Fに示す。各ペプチドは全て4℃及び27℃においてのみ225 nm付近で正のコットン効果を示したことから、37℃以下で三重らせん構造を形成しており、80℃では変性可能であることが確認された。また、本結果は、37℃以下での三重らせん構造の形成には、ペプチド鎖の一次構造におけるCys残基の有無に関係しないことを示している。
 次に、実施例3と同様の方法で、これらの生理活性モチーフを組み込んだペプチド鎖の重合ペプチドを含むゲルを作製し、以下に記載する培養細胞を用いた選択的な細胞結合活性の評価に使用した。
材料及び方法
細胞培養
 D-MEM高グルコース、D-MEM低グルコース及び0.5%トリプシン/EDTAは和光純薬工業株式会社(大阪)から、FBS、ペニシリン・ストレプトマイシン(100 x)はInvitrogen(Thermo Fisher Scientific corporation)から購入した。ヒト乳腺癌(MDA-MB-231)はATCCから、ヒト皮膚線維芽細胞(HDF)はCell Applications から購入した。MDA-MB-231は、DMEM高グルコース(10% FBS、100 Units/ml ペニシリン、100 μg/ml ストレプトマイシン)で培養し、HDFはDMEM低グルコース(10% FBS、100 Units/ml ペニシリン、100 μg/ml ストレプトマイシン)で培養し、維持した。細胞接着アッセイ及びウエスタンブロッティングに用いる場合は、細胞を0.05%トリプシン/EDTAで処理し、細胞を15 ml チューブに回収して1200 rpmで4分間遠心した。上清を除去した後、細胞を培養培地で懸濁し、37℃で20~30分間インキュベートすることで回復した。この細胞懸濁液を細胞接着アッセイ及びウエスタンブロッティングに用いた。
ペプチド及びタンパク質の細胞培養皿へのコーティング
 I型コラーゲン(株式会社高研、東京)及びBSA (Jackson Immuno Research Laboratories Inc.、米国)を、30 μg/mlの水溶液として50 μl/wellを96ウェルプレート(Nunc MicroWell 96-Well Microplates)に添加して2晩乾燥させた。Cys残基を含まないコラーゲン様ペプチドは1~3 mg/mlの水溶液とし、95℃で5分間加熱した後、4℃で1晩保存することで三重らせんを形成させた。これを30 μg/mlに希釈し、50 μl/wellを96ウェルプレートに添加して2晩乾燥させた。Cys残基を含むコラーゲン様ペプチドは脱気した0.05% (v/v) TFA水溶液に溶解し、300 μg/mlとして80℃で5分間加熱した後、1℃/分で4℃まで徐冷し、4℃で1晩保存することで三重らせんを形成させた。これを30 mM MOPS緩衝液(pH7.8) (Sigma-Aldrich:シグマ アルドリッチ ジャパン合同会社、東京)、15%メタノールとなるように30 μg/mlに希釈し、50 μl/wellを96ウェルプレートに添加して2晩乾燥させた。異なるリガンドを組み込んだ重合ペプチドをコートするときは、各ペプチドを脱気した0.05% (v/v) TFA水溶液に溶解して(1 mg/ml)、80℃で5分間加熱した後、1℃/分で4℃まで徐冷し、4℃で1晩保存することで三重らせんを形成させた。これらのペプチドを様々な割合で混合するとともに、20% (v/v) DMSO、総ペプチド濃度が0.3 mg/mlとなるように希釈し、ペプチド溶液上にミネラルオイルを重層し、Ellman試験によってチオールが検出されなくなるまで室温で酸化させた。このペプチド溶液をMilliQ水で30 μg/mlに希釈し、50 μl/wellを96ウェルプレートに添加して2晩風乾した。
細胞接着アッセイ
 ペプチド又はタンパク質をコートした96ウェルプレートを60~70℃で熱変性させた5 mg/ml BSAでブロッキングし、37℃で1~2時間インキュベートした。BSA溶液を除いてPBS (10 mM リン酸緩衝液 (pH 7.4), 137 mM NaCl, 2.7 mM KCl) (Sigma Aldrich)で洗浄し、MDA-MB-231細胞懸濁液(40-60 x 103 cells/well)又はHDF細胞懸濁液(4-10 x 103 cells/well)を添加して37℃で30~180分間インキュベートした。その後、培地とともに浮遊細胞を除去してPBSで洗浄の後、4% (v/v) p-ホルムアルデヒド/リン酸バッファー(pH7.4) (和光純薬工業株式会社)で接着細胞を固定し、2%クリスタルバイオレット/MeOH (和光純薬工業株式会社)で染色した。染色細胞はレーザー走査型共焦点顕微鏡FV1000 (オリンパス株式会社)を用いて観察した。
ウエスタンブロッティング
 ペプチド又はタンパク質をコートした6ウェルプレートを60~70℃で熱変性したBSA(5 mg/ml)でブロッキングし、37℃で1~2時間インキュベートした。BSA溶液を除去し、PBSで洗浄の後、MDA-MB-231細胞懸濁液(50 x 103 cells/well)を添加し、37℃で90分間インキュベートした。培地を除去した細胞にSDS サンプルバッファー(50 mM Tris・HCl (pH 6.7), 2% SDS, 10%グリセロール、 1 μg/ml ペプスタチンA、 1 μg/ml ロイペプチン、 1 mM PMSF、2 mM NEM、1 mM Na3VO4、10 mM NaF)を添加し、細胞を溶解した。これを1.5 mlチューブに回収し、95℃で5分間加熱したものをSDS-PAGEサンプルとした。調製したSDS-PAGEサンプルはBCA法により、タンパク質を定量した。10% (w/v)アクリルアミドゲルに各サンプルを30 μg/well添加し、SDS-PAGEにより分離した。分離したタンパク質をニトロセルロース膜(GE Healthcare)に転写した。その後、スキムミルク(和光純薬工業株式会社)と、TBS (50 mM Tris・HCl (pH 7.4)、150 mM NaCl)とを用いて調製した5% (w/v)ブロッキング溶液に浸漬して1晩ブロッキングした。1次抗体希釈液(1 : 1000)(抗FAKマウス抗体(Merck Millipore Corporation、米国)、抗pFAK (pTyr397)ウサギ抗体(Invitrogen)、又は抗β-アクチンマウス抗体(Sigma Aldrich)を添加して2~3時間静置した。1次抗体を除去して、ニトロセルロース膜をTBST(0.1% Tween-20)に浸して10~20分間振盪した。これを3回繰り返した後、2次抗体希釈液(1 : 1000)(抗マウス抗体ヤギ抗体-HRP複合体(プロメガ株式会社、東京)、抗ウサギ抗体ヤギ抗体-HRP複合体(Santa Cruz  Biotechnologies Inc.、米国))を加えて、30分間静置した。2次抗体を除去し、ニトロセルロース膜をTBS-Tに浸して10~20分間振盪した。これを3回繰り返した後、Western blotting KitPlus (Pierce; サーモフィッシャーサイエンティフィック株式会社)を用いて発色し、LAS-3000 (富士フィルム株式会社)により可視化して定量した。
インテグリン結合配列に対する細胞接着の観察結果
 BSA、I型コラーゲン、YCC2重合ペプチド(Pol-GPOGPR)、YCC2-GFOGER重合ペプチド(Pol-GFOGER)及びリガンドを含み、重合ペプチドを形成しないペプチド(Soluble GFOGER)を96ウェルプレートにコートし、MDA-MB-231を培養したときの細胞接着を観察し、比較した(図12A及び図12B)。YCC2及びYCC2-GFOGERは還元状態で三重らせんを形成させた後、塩基性バッファーで希釈することで酸化条件とした。これによって96ウェルプレート上でペプチドを酸化し、ジスルフィド架橋させた。
 I型コラーゲン、ゼラチン及びPol-GFOGERで顕著な細胞接着を認めた。一方、BSA、Pol-GPOGPR及びsoluble GFOGERでは、細胞接着を示さなかった(図12A)。
 また、I型コラーゲン及びPol-GFOGERでの、EDTAによりインテグリンを介した細胞接着の阻害を観察した。I型コラーゲン及びPol-GFOGERのいずれにおいても、4 mM EDTAの添加により、細胞接着は阻害された。一方、4 mM EDTAと8 mMのMg2+とを添加した実験群では、EDTAによる阻害効果は消失し、顕著な細胞接着を示した(図12B)。
 この結果から、MDA-MB-231はPol-GFOGERに対して内部配列に依存的な細胞接着を起こした。さらに、この細胞接着はEDTAによって阻害され、Mg2+によって回復したため、この細胞接着はインテグリンに依存的な細胞接着であることが示された。このことから、YCC2は細胞培養の足場基材として利用可能であると同時に、YCC2の内部配列中に天然のコラーゲンが有する様々な受容体結合モチーフを組み込むことで標的とする受容体特異的な細胞接着を誘導可能であることが示された。
インテグリンを介したシグナル入力結果
 BSA、I型コラーゲン、YCC2-GFOGER重合ペプチド(Pol-GFOGER)及びYCC2重合ペプチド(Pol-GPOGPR)を96ウェルプレートにコートし、MDA-MB-231を90分間培養した。このとき、YCC2及びYCC2-GFOGERは還元状態で三重らせんを形成させた後、塩基性バッファーで希釈することで酸化条件とした。これによって96ウェルプレート上でペプチドを酸化し、ジスルフィド架橋することでコートした。培養した細胞のFAK及びpFAK (pTyr397)のウエスタンブロッティングの結果を図13Aに示す。また、FAKのバンド強度に対するpFAK (pTyr397)のバンド強度を画像解析ソフトウェアImage Jにより解析し、数値化した結果を図13Bに示す。Pol-GPOGPR上で培養した細胞ではFAKのリン酸化が見られなかったが、Pol-GFOGER上で培養した細胞ではI型コラーゲン上で培養した細胞と同程度のリン酸化が観察された。この結果から、本ペプチド配列中にインテグリンのリガンドを組み込むことで、インテグリンを介した細胞接着を誘導するだけでなく、細胞内シグナルの入力が可能であることが示された。なお、インテグリンだけでなく、DDRやHSPGのリガンドのモチーフを組み込んだ場合においても受容体特異的なシグナルの入力が可能であると考えられた。
リガンド含有量依存的な細胞接着能の変化の観察結果
 BSA、I型コラーゲン、熱変性させたI型コラーゲン(ゼラチン)及び様々な重量比で混合したYCC2とYCC2-GFOGERの重合ペプチドを96ウェルプレートにコートし、このプレート上でMDA-MB-231を37℃で5% CO2条件下で180分間培養した。YCC2とYCC2-GFOGERは還元状態で三重らせんを形成させた後、様々な重量比で混合し、塩基性バッファーで希釈することにより酸化し、共重合させ、96ウェルプレートにコートした。細胞を培養した後、接着細胞を固定し、染色し、観察した結果を図14Aに示す。また、接着細胞数を計数し、比較した結果を図14B及び図14Cに示す。
 GFOGERモチーフの存在割合に依存して、細胞接着数は増加し、100% GFOGER群では、I型コラーゲンよりも高値の細胞接着数を示した(図14B)。
 これらの結果から、MDA-MB-231はインテグリンのリガンドを敏感に感知し、接着細胞数はインテグリンのリガンド含有量に対して対数関数的に増加する傾向が得られた。
 したがって、本重合ペプチド中に含有するリガンドの量を調節することにより、接着細胞数を制御することが可能であり、様々な細胞培養環境の再現が可能になると考えられる。また、約300 kDaの分子量のコラーゲンが1つのインテグリン結合部位を有する一方、YCC2-GFOGERでは約12 kDaの三重らせんペプチド中に1つのインテグリン結合部位を含んでいる。このため、同質量のコラーゲン及びYCC2とYCC2-GFOGERの混合重合ペプチドをコートすると、YCC2-GFOGERの含有量が約4%のときにコラーゲンと同程度のインテグリン結合部位を含むと考えられる。しかしながら、コラーゲン及び本コラーゲン様ペプチドの重合ペプチドに対する細胞接着数を比較すると、YCC2-GFOGERの含有量が30%のときにコラーゲンと同程度の細胞接着能を示している。この違いはコラーゲンと本ペプチドをコートしたときのコーティング効率の違いか、又はコラーゲンがインテグリンだけでなく、いくつもの受容体結合モチーフをもっていることに起因するものと考えられる。本発明の重合ペプチドを用いることによって、1つの細胞が増殖や分化等の挙動を引き起こすのに必要又は十分な単位面積当たりのリガンド数を明らかにすることが可能となる。
異なる受容体のリガンド配列に対する細胞接着
 BSA、I型コラーゲン、YCC2重合ペプチド(Pol-GPOGPR)、YCC2-GFOGER重合ペプチド(Pol-GFOGER)、YCC2-GVMGFO重合ペプチド(Pol-GVMGFO)、YCC2-KGHRGF重合ペプチド(Pol-KGHRGF)、Soluble GFOGER、Soluble GVMGFO及びSoluble KGHRGFを96ウェルプレートにコートし、このプレート上でHDFを37℃、5% CO2条件下で60分間培養した。このとき、YCC2-GFOGER、YCC2-GVMGFO及びYCC2-KGHRGFは還元状態で三重らせんを形成させた。その後、塩基性バッファーで希釈し、酸化条件で96ウェルプレート上で酸化し、重合化してコートした。細胞培養後、細胞を固定、染色して観察した結果を図15Aに示す。また、Pol-GFOGER及びPol-KGHRGFへの細胞接着がEDTA、又は三重らせん配列中のKGHRGFに対して特異的に結合することが知られているヘパリンによって阻害されるかどうかを検討した。この結果を図15B及び図15Cに示す。
 I型コラーゲン、Pol-GFOGER、Pol-GVMGFO及びPol-KGHRGFで細胞接着性を認め、特にI型コラーゲン群及びPol-GFOGERでは、顕著な細胞接着性を認めた。一方、Soluble GFOGER、Soluble GVMGFO及びSoluble KGHRGFでは細胞接着を認めなかった(図15A)。また、Pol-GFOGERの細胞接着に対して、EDTAは阻害作用を示したが、ヘパリンは阻害作用を示さなかった。一方、Pol-KGHRGFの細胞接着に対して、EDTA及びヘパリンのいずれもが、細胞接着阻害作用を示した(図15B)。
 以上の結果において、Pol-GPOGPRでは細胞接着が観察されなかったが、Pol-GFOGER、Pol-GVMGFO及びPol-KGHRGFでは細胞接着が観察された。また、Pol-GFOGERへの細胞接着はEDTAによってのみ阻害されたが、Pol-KGHRGFへの細胞接着はEDTAによっても、ヘパリンによっても有意に阻害された(Studentのt検定の両側検定法)。したがって、YCC2の三重らせんを形成する配列中に受容体と結合するリガンド配列を組み込むことで、ある特定の受容体を介した細胞接着を誘導することができ、本発明がコラーゲン結合受容体に対して汎用的に利用可能であることが示された。
複数のリガンドを含有する重合ペプチドに対する細胞接着の観察結果
 YCC2-GFOGERとYCC2-GVMGFOとを様々な割合で混合し、共重合させた重合ペプチドをコートした96ウェルプレート上でHDFを培養したときの細胞接着の様子と、接着した細胞数を計数した結果を図16A及び図16Bに示す。
 GFOGERとGVMGFOとを混合した場合の接着細胞数は、インテグリンのリガンドであるGFOGERのみを有する又はDDRのリガンドであるGVMGFOのみを有する重合ペプチドに対する接着細胞数と比較して、全体的に増加する傾向が観察された。
 ペプチドの両末端にそれぞれ2残基ずつのCysを有する本発明のペプチドを用いることによって、コラーゲンに特徴的な三重らせん構造を基本構造とするヒドロゲルを作製することができる。本発明のペプチドによるヒドロゲル形成能は三重らせん配列中のアミノ酸に依存しないことから、三重らせんを形成する配列中には(Xaa-Yaa-Gly)nを満たす様々なアミノ酸配列を組み込むことが可能である。具体的には、三重らせんを形成する配列中にインテグリンの結合配列であるGFOGER、DDRの結合配列であるGVMGFO、又はHSPGの結合配列であるKGHRGFを組み込むことで配列特異的な細胞接着を誘導することができる。さらに、本発明のペプチド配列中に、特定の受容体のリガンドのモチーフを組み込むことでターゲットの受容体を介したシグナル入力が可能である。本発明のペプチドは、様々な配列を含むペプチドを共重合することでリガンドを定量的に混合することができる点で優れている。本発明のペプチド及びそのゲルは、細胞の伸展、増殖、分化等の挙動を制御するツールとして提供可能である。また、本発明のペプチドを用いて作製したコラーゲン様ペプチドヒドロゲルをシート状に加工することで手術後の臓器の癒着防止材、縫合材及び創傷被覆材としての利用、並びに、このシート上に適切な細胞を培養することで、人工角膜や人工心筋膜などの体内に移植可能な細胞シートの作製も可能となる。
<ペプチド鎖の側鎖にリンカーを介して結合させたRGDモチーフの重合ペプチドの製造と細胞接着性の評価>
 次に、生理活性を有するモチーフを、ペプチド鎖の側鎖にリンカーを介して結合させたコラーゲン様ペプチドの重合ペプチドとこれを含むゲルを作製し、ヒト線維芽細胞の接着性を評価した。
(1)ペプチド鎖の側鎖にリンカーを介してRGDモチーフを結合させた重合ペプチド及びそのゲルの作製
 CCC2-KGHRGF(配列番号18)を、前記実施例2と同様の方法で合成した。このCCC2-KGHRGFを1.11 mg/mlで三重らせん形成後、10%までDMSOを加えて、上にミネラルオイルを重層し、室温で1週間程度酸化・重合させた。次に、CCC2-KGHRGFを使用した重合ペプチドを30 μg/mlに希釈して96ウェルプレートに1晩コートし、溶液を除去して、5 mg/ml NaHCO3 水溶液に溶解した1 mg/ml BS(PEG)5(Pierce社製、カタログ番号No.21581)を加え、室温で1時間程度反応させることにより、リンカーを結合させた。次に、10 mM エタノールアミン(EA)、又は、5 mg/ml NaHCO3水溶液に溶解した100 μg/ml RGD pep(配列番号22)を加え、室温で1時間程度反応させることにより、CCC2-KGHRGFに結合させたリンカーに結合させた。
(2)ヒト線維芽細胞の接着性の評価
 前記RGDモチーフを結合させたゲルに、5 mg/ml BSAを加えて1時間程度ブロッキングした。次にヒト線維芽細胞 (HDF) 懸濁液を加えて37℃で1時間程度培養後、浮遊している細胞を培地とともに除去し、PBSで洗浄した。接着した細胞を4% p-ホルムアルデヒドで固定後、2%クリスタルバイオレット染色、水で洗浄し、風乾後、顕微鏡で観察することにより、この重合ペプチドにリンカーを介して結合させたRGDモチーフへのHDFの結合性を評価した。
(3)RGDモチーフを結合させたゲルへの線維芽細胞の接着性の評価結果
 実施例5と同様にKGHRGFにリンカーを結合させていない重合ペプチドのゲル(KGHRGD)は、HDFの接着性を示した。一方、このKGHRGFにリンカーを結合させたペプチドの重合ペプチド(KGHRGF-Linker)は、HDFの接着性を示さなかった。このリンカーにさらに、RGDモチーフを結合させた重合ペプチド(KGHRGF-RGD)では、HDFの接着性を示した。また、対照として使用したRGDモチーフを有する可溶性ペプチド(soluble RGD)を使用した場合には、HDFの結合性を示さなかった(図17)。
 以上の結果より、KGHRGFに修飾を加えるとKGHRGFに対するシンデカンのヘパラン硫酸を介した細胞接着性が失われ、Lysの側鎖にRGDを修飾することで、これに対するインテグリンを介した細胞接着活性が付与されたと考えることができる。
 以上の結果より、ペプチド鎖の側鎖にリンカーを介してモチーフを結合させた重合ペプチドにおいても、所望の細胞接着性を付与できることが示された。
<複数種の機能を組み合わせた重合ゲルでの細胞接着アッセイ>
 ゲルの硬さの制御用ペプチド鎖としてCCC2-GPOGPR (short)、CC2-GPOGPR (short)及びC2-GPOGPR (short)の各ペプチドより構成される3本鎖ペプチドと、生理活性モチーフを有するペプチド鎖であるCCC2-GFOGER(short)で構成される3本鎖ペプチドとを組み合わせて、酸化架橋して製造される重合ペプチドのゲルを作製し、ヒト皮膚線維芽細胞の細胞凝集活性に与える影響を評価した。
1.GFOGERモチーフを含むCCC2-GFOGER(short)を混入させたゲルにおけるヒト皮膚線維芽細胞の接着活性の評価
 最初に、ペプチド鎖CCC2-GPOGPR (short)で構成される3本鎖ペプチドにヒト皮膚線維芽細胞接着能を有する少量のCCC2-GFOGER(short)で構成される3本鎖ペプチドを添加して、架橋重合して作製したゲルでのヒト皮膚線維芽細胞の接着性及び細胞間相互作用に基づく細胞凝集性を評価した。
実験方法
 CCC2-GPOGPR (short)(配列番号10)、CC2-GPOGPR (short)(配列番号23)又はC2-GPOGPR (short)(配列番号24)をそれぞれ脱気した超純水に溶解し、80oCで5分間加熱した後、4oCで一晩静置することで三重らせんを形成させた。これらを様々な割合で混合し、終濃度10%となるようにDMSOを添加し、96ウェルプレート中に50 μLずつ加えた。このとき、すべてのペプチド混合液に対して重量比1%のCCC2-GFOGER (short)(配列番号16)で構成される3本鎖ペプチドを添加し、添加していないものをLigand-freeとした。このプレートを10% DMSOで満たした容器中で4日間以上静置することでペプチド溶液をゲル化させた。これらのゲルは細胞培養培地に一晩浸すことでDMSOを希釈し、以下の細胞を用いた実験に使用した。なお、I型コラーゲンを陽性対照とした。
 ヒト皮膚線維芽細胞 (HDF) は0.05%トリプシン/EDTAで剥離し、15 mLチューブ中で800回転/分で遠心することで回収した。回収した細胞は細胞染色試薬(Cell tracker green CMFDA、ライフテクノロジーズジャパン株式会社、東京)を含む培養培地で再懸濁し、37oCで20~30分間インキュベートした後にアッセイに用いた。96ウェルプレートに調製したゲルにD-MEM (1% FBS, ペニシリン、ストレプトマイシン) で再懸濁したHDF (10 x 103個/ウェル)を播種し、37oCで3時間培養した。これを共焦点顕微鏡で観察した。
実験結果
 コラーゲン、CCC2-GPOGPR (short)の3本鎖ペプチドのみを架橋重合して製造されるゲル(ligand free)、及び、CCC2-GPOGPR (short)の3本鎖ペプチドと重量比1%のCCC2-GFOGER (short)の3本鎖ペプチドとを混合後、ゲル化して製造される重合ペプチドを含有するゲルでのヒト皮膚線維芽細胞に対する接着性を比較した結果を図18Aに示した。
 コラーゲン、及びCCC2-GFOGER (short)とから構成される3本鎖を含むゲルでは、個々のヒト皮膚線維芽細胞が単体で伸展して接着している観察像を認めた。しかし、CCC2-GPOGPR (short)の3本鎖ペプチドのみを酸化架橋して製造されるゲル(ligand free)では、わずかな細胞接着しか認めなかった(図18A)。
2.システイン残基の数が異なるペプチド鎖より構成される3本鎖を組み合わせて製造した重合ゲルにおけるヒト皮膚線維芽細胞の細胞凝集活性の評価
 次に、システイン残基数が異なるペプチド鎖を用い、各ペプチド鎖より構成される3本鎖ペプチドの各種構成比のゲルで、重量比1%のCCC2-GFOGER (short)の3本鎖ペプチドを含むゲルについて、そのゲル化能及び細胞接着能を比較、評価した。
実験方法
 CCC2-GPOGPR (short)、CC2-GPOGPR (short)及びC2-GPOGPR (short)のそれぞれより構成される3本鎖ペプチド中の2種の異なる3本鎖ペプチドを9:1、7:3、5:5、3:7又は1:9の配合比率で組み合わせて溶媒中で混合し、さらに、上記実験と同様に重量比1%のCCC2-GFOGER (short)より構成される3本鎖ペプチドを添加した後に、酸化架橋して3本鎖ペプチドを重合させたゲルを作製し、ゲル化能、及びこのゲルに接着するヒト皮膚線維芽細胞の細胞凝集性を上記実験と同様の方法で評価した。
実験結果
 CC2-GPOGPR (short):C2-GPOGPR (short)が7:3と5:5、3:7、1:9の構成比率のゲル、及びCCC2 (short):C2-GPOGPR (short)が3:7と1:9の構成比率のゲルでは、酸化架橋剤であるDMSOを添加してもゲル化しなかった。
 一方、ゲル化能を認めた各ペプチド鎖の構成比率において、(1) 細胞間の接着が強い凝集体となり、個々の細胞としての進展の様子を認めない観察像(図18Bにおける矢印)、(2) 数個の細胞が凝集しながら接着している観察像(同、*)、(3) 数個の細胞からなる塊がさらに寄り合っている観察像(同、△)、及び、(4) ほとんどの細胞が単体で伸展して接着している観察像(図18B、CCC2-GPOGPR(short):CC2-GPOGPR(short)=9:1、7:3、5:5、およびCCC2-GPOGPR(short):C2-GPOGPR(short)=9:1の観察像)を認めた。
 これらの結果より、CCC2-GPOGPR (short)に対してCC2-GPOGPR (short)又はC2-GPOGPR (short)の配合比率が増加するに伴って、細胞間の相互作用が強くなり、細胞が単体で伸展した形態をとらずに、集合し、凝集している凝集型の細胞形態が観察された(図18B、*でマーク)。また、CC2-GPOGPR (short) とC2-GPOGPR (short) を混合したゲルでは細胞の凝集がさらに顕著に見られた。
 すなわち、システイン残基数が少ないペプチド鎖を用いた場合、ゲル化能が低下し、細胞凝集能が高くなる。一方、システイン残基数が多いペプチド鎖を使用した場合には、ゲルの形成が容易であり、個々の細胞が強くゲルに接着し伸展する傾向が見られた。
 これらの細胞の挙動変化は、システインの数が異なるペプチドを混合してゲルを作成することにより、このようなゲルの硬さ(stiffness)の制御と生理活性発現の制御や生体親和性の向上をもたらすことが可能であることを示した。
<in vivo埋込実験>
 ゲル薄膜を再水和したゲルを生体に移植し、生体中における挙動を検討し、評価した。
1.ゲル薄膜の製造と再水和
 CCC2-GPOGPR (short)(配列番号10)で構成される3本鎖ペプチドとSoluble GPOGPR (short)(配列番号25)で構成される3本鎖ペプチドとを1:1の割合で混合後、DMSOで酸化架橋することにより重合ペプチドを含むゲルを製造した。このゲルを乾燥し、室温で1週間以上保存し、使用直前に生理食塩水で再水和したゲルを使用した。このとき、生分解を受けないPVDF(ポリフッ化ビニリデン)膜を移植位置のマーカーとして使用するための支持体として製造した後、下記のin vivo埋込実験に使用した。
2.in vivo埋込実験
 コラーゲン様重合ペプチド薄膜をC57BL6マウス(雄性、8週齢)の背部皮下に移植した。移植実験では、イソフルランによる吸入麻酔下、マウスの背部を除毛後2cm程度の皮膚切開を加えた。切開部よりモスキート鉗子を挿入して皮下ポケットを作製し、コラーゲン様重合ペプチド薄膜をこの皮下ポケットに挿入して移植操作を完了し、ナイロン糸を用いて縫合閉鎖した。
 移植10日後と30日後にマウスを犠牲死させ、組織を摘出し、10%ホルマリン液にて固定後、パラフィン切片を作製し、ヘマトキシリン-エオジン染色後、光学顕微鏡下で組織学的解析を行った。
 その結果、移植10日後で、薄膜表面に線維芽細胞の接着が認められ(図19A)、移植30日後ではコラーゲン様重合ペプチド薄膜が分解吸収され、膜厚の菲薄化が認められた(図19B)。この時点で、皮下組織再生部の炎症性細胞浸潤は軽微であり、異物型巨細胞浸潤は見られず、線維化の程度も天然コラーゲンと同様であった。一方、支持体であるPVDF膜周囲の一部では異物型巨細胞浸潤を伴う異物反応が見られた。以上より、コラーゲン様重合ペプチドの生体適合性が確認された。
 本結果より、手術時に臓器と皮膚との間に、又は臓器と臓器の間に留置させることにより、本発明の重合ペプチドを含むゲル又は重合ペプチド薄膜を臓器の癒着防止用、縫合材、創傷部位の被覆材及び創傷治癒促進材等の医療材料として使用できることが示された。留置された本発明の医療材料は、生体中に存在するペプチダーゼやマクロファージ等の貪食細胞により、徐々に可溶化又は分解され、消失するため、該医療材料を除去する再手術を必要としない。そのため、患者の予後への負担が小さく、QOL(Quality of Life)を改善するとのメリットを有する。
 また、本発明の医療材料は、人工的に製造されたコラーゲン様ペプチドであるため、天然のコラーゲンと相違し、ウイルス感染や微生物感染の危険性が小さい。さらに、ジスルフィド結合で架橋されており加熱処理しても変性しないため、例えば、滅菌のために加熱することが可能との利点も有する。

Claims (12)

  1.  重合ペプチドであって、
     三重らせん構造を有する3本鎖ペプチドを繰り返し単位として有し、酸化架橋で重合され、
     前記3本鎖ペプチドを構成する各ペプチド鎖は、同一であっても又は相互に異なっていてもよく、
     各ペプチド鎖は、-(Xaa-Yaa-Gly)-を基本単位として少なくとも5回の繰り返し構造を有する三重らせん形成用ペプチド基と、アミノ末端及びカルボキシ末端の各々から10残基以内に少なくとも2残基のシステイン(Cys)残基を含む架橋形成用ペプチド基とを有することを特徴とする、重合ペプチド。
     [Xaa及びYaaは、それぞれ独立して、プロリン(Pro又はP)残基、ヒドロキシプロリン(Hyp又はO)残基、アルギニン(Arg又はR)残基、リシン(Lys又はK)残基、バリン(Val又はV)残基、ロイシン(Leu又はL)残基、イソロイシン(Ile又はI)残基、セリン(Ser又はS)残基、トレオニン(Thr又はT)残基、アラニン(Ala又はA)残基、グリシン(Gly又はG)残基、フェニルアラニン(Phe又はF)残基、メチオニン(Met又はM)残基、グルタミン酸(Glu又はE)残基、アスパラギン酸(Asp又はD)残基、アスパラギン(Asn又はN)残基、グルタミン(Gln又はQ)残基、ヒスチジン(His又はH)残基、トリプトファン(Trp又はW)残基又はチロシン(Tyr又はY)残基から選択され、プロリン残基はアミノ基又はフッ素原子で修飾されていてもよく、Xaa位及びYaa位にはN-イソブチル基グリシン残基を用いてもよい。]
  2.  請求項1に記載の重合ペプチドであって、
     前記ペプチド鎖は、
     (i)  少なくとも1つの前記三重らせん形成用ペプチド基と少なくとも1つの架橋形成用ペプチド基からなるペプチド鎖、
     (ii) 少なくとも1つの前記三重らせん形成用ペプチド基と少なくとも1つの架橋形成用ペプチド基、及び生理活性を有するモチーフを有する少なくとも1つのペプチド基を含むペプチド鎖、及び、
     (iii) 少なくとも1つの前記三重らせん形成用ペプチド基と架橋形成用ペプチド基、及び、アミノ酸残基の側鎖にリンカーを介して生理活性を有するモチーフを結合させた少なくとも1つのペプチド基を含むペプチド鎖
     からなる群から選択される少なくとも1つであることを特徴とする、重合ペプチド。
  3.  請求項2に記載の重合ペプチドであって、
     前記生理活性を有するモチーフの2種類以上を組み合わせて製造されることを特徴とする、共重合ペプチド。
  4.  請求項1に記載の重合ペプチドの製造方法であって、
     (Xaa-Yaa-Gly)を基本単位として少なくとも5回の繰り返し構造を有し、アミノ末端及びカルボキシ末端の各々から10残基以内に少なくとも2残基のシステイン(Cys)残基を含む相互に異なっていてもよいペプチド鎖を溶媒に溶解する工程、
     自己集合により前記ペプチドの3本からなる三重らせん構造を有する3本鎖ペプチドを形成する工程、
     該3本鎖ペプチドを繰り返し単位として有し、酸化架橋で重合させる工程、
     を含むことを特徴とする、製造方法。
     [Xaa及びYaaは、それぞれ独立して、プロリン(Pro又はP)残基、ヒドロキシプロリン(Hyp又はO)残基、アルギニン(Arg又はR)残基、リシン(Lys又はK)残基、バリン(Val又はV)残基、ロイシン(Leu又はL)残基、イソロイシン(Ile又はI)残基、セリン(Ser又はS)残基、トレオニン(Thr又はT)残基、アラニン(Ala又はA)残基、グリシン(Gly又はG)残基、フェニルアラニン(Phe又はF)残基、メチオニン(Met又はM)残基、グルタミン酸(Glu又はE)残基、アスパラギン酸(Asp又はD)残基、アスパラギン(Asn又はN)残基、グルタミン(Gln又はQ)残基、ヒスチジン(His又はH)残基、トリプトファン(Trp又はW)残基又はチロシン(Tyr又はY)残基から選択され、プロリン残基はアミノ基又はフッ素原子で修飾されていてもよく、Xaa位及びYaa位にはN-イソブチル基グリシン残基を用いてもよい。]
  5.  請求項1~3のいずれか1項に記載の重合ペプチドの少なくとも1種を含むことを特徴とする、ゲル化剤。
  6.  請求項1~3のいずれか1項に記載の重合ペプチドの少なくとも1種を含むことを特徴とする、ゲル。
  7.  請求項1~3のいずれか1項に記載の3本鎖ペプチドを重合単位として、少なくとも2種の3本鎖ペプチドを組み合わせた重合ペプチド含むことを特徴とする、請求項6に記載のゲル。
  8.  システイン残基を含まない3本鎖ペプチドの少なくとも1種をさらに含むことを特徴とする、請求項6又は7に記載のゲル。
  9.  請求項6~8のいずれか1項に記載のゲルであって、
    ゲルが、ヒドロゲルであり、選択的な細胞を培養するための基材として使用されることを特徴とする、ゲル。
  10.  請求項6~9のいずれか1項に記載のゲルを乾燥させて製造される、重合ペプチド薄膜。
  11.  請求項6~9のいずれか1項に記載のゲル又は請求項10に記載の重合ペプチド薄膜を含むことを特徴とする、再生医療材料。
  12.  請求項11に記載の再生医療材料であって、
     創傷治癒促進用組成物であることを特徴とする、再生医療材料。
PCT/JP2016/068667 2015-06-25 2016-06-23 コラーゲン様構造を有する重合ペプチド及びゲル WO2016208673A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017524969A JP6455862B2 (ja) 2015-06-25 2016-06-23 コラーゲン様構造を有する重合ペプチド及びゲル
US15/579,286 US10851152B2 (en) 2015-06-25 2016-06-23 Polymerized peptide and gel having collagen-like structure
CN201680032893.5A CN107735405B (zh) 2015-06-25 2016-06-23 具有胶原模拟肽结构的聚合肽和凝胶
EP16814442.6A EP3315509B1 (en) 2015-06-25 2016-06-23 Polymerized peptide and gel having collagen-like structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-127450 2015-06-25
JP2015127450 2015-06-25

Publications (1)

Publication Number Publication Date
WO2016208673A1 true WO2016208673A1 (ja) 2016-12-29

Family

ID=57586344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068667 WO2016208673A1 (ja) 2015-06-25 2016-06-23 コラーゲン様構造を有する重合ペプチド及びゲル

Country Status (5)

Country Link
US (1) US10851152B2 (ja)
EP (1) EP3315509B1 (ja)
JP (1) JP6455862B2 (ja)
CN (1) CN107735405B (ja)
WO (1) WO2016208673A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103981A1 (en) * 2017-11-22 2019-05-31 Geltor Inc. Methods and systems for engineering collagen
JP2020054341A (ja) * 2018-10-01 2020-04-09 株式会社片岡製作所 細胞培養器具および細胞培養器具の製造方法
WO2020071332A1 (ja) * 2018-10-01 2020-04-09 株式会社片岡製作所 細胞培養器具および細胞培養器具の製造方法
US11655441B2 (en) 2019-04-26 2023-05-23 Kataoka Corporation Cell culture base, cell culture vessel, method for culturing cells, method for producing cells, method for producing cell culture base, and method for producing cell culture vessel

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574164A (zh) * 2018-10-16 2021-10-29 得克萨斯州大学系统董事会 用于产生肿瘤类器官的组合物和产生肿瘤类器官的方法
DE102019207859A1 (de) * 2018-12-21 2020-06-25 Gelita Ag Synthetische und rekombinant hergestellte Kollagenpeptide mit biologischer Wirksamkeit
WO2022050176A1 (ja) 2020-09-02 2022-03-10 コラジェン・ファーマ株式会社 ペプチドを含む組成物及びその用途
CN113512094B (zh) * 2021-06-29 2023-04-14 兰州大学 一种共价光交联多肽、共价光交联多肽自组装形成的胶原蛋白仿生材料
CN114404605A (zh) * 2022-01-29 2022-04-29 陕西未来多肽生物科技有限公司 一种维c金-胶原肽纳米复合材料及其应用
WO2023239678A1 (en) * 2022-06-06 2023-12-14 Collagen Matrix, Inc. Collagen-impregnated devices and methods for treatment of cancer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841559A (ja) * 1980-10-03 1983-03-10 ドクタ−・ル−ラント・ナハフオルガ−・ゲ−エムベ−ハ− コラ−ゲン質包帯材
JPH0680935A (ja) * 1992-06-18 1994-03-22 Flamel Technol 架橋可能な新規コラーゲン誘導体、その製造方法および生体材料の製造へのその応用
JPH08504463A (ja) * 1992-12-16 1996-05-14 フラメル・テクノロジー 新規なコラーゲン誘導体、これらを製造する方法、および生体材料を製造することへのこれらの応用
JP2013074936A (ja) * 2011-09-29 2013-04-25 Fujifilm Corp 血管内皮細胞遊走用足場

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4407767A (en) 1979-10-31 1983-10-04 Monsanto Company Drawing and beaming a weftless warp of yarns
DE69940802D1 (de) 1998-12-23 2009-06-10 Fujifilm Mfg Europe Bv Silberhalogenidemulsionen, die rekombinante gelatineartige Proteine enthalten
US6992172B1 (en) 1999-11-12 2006-01-31 Fibrogen, Inc. Recombinant gelatins
EP1875924B1 (en) 2003-03-28 2010-04-28 FUJIFILM Manufacturing Europe B.V. RGD-enriched gelatine-like proteins for prevention of platelet aggregation
JP5601437B2 (ja) 2004-02-16 2014-10-08 株式会社テクノネットワーク四国 コラーゲン様構造を有するポリペプチド
CN100391974C (zh) * 2006-01-09 2008-06-04 浙江理工大学 一种重组胶原蛋白及其合成和表达纯化方法
ATE554103T1 (de) 2007-02-21 2012-05-15 Fujifilm Mfg Europe Bv Rgd-haltige rekombinante gelatine
KR102384622B1 (ko) 2013-09-09 2022-04-11 에보닉 오퍼레이션스 게엠베하 변형된 세균 콜라겐-유사 단백질

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841559A (ja) * 1980-10-03 1983-03-10 ドクタ−・ル−ラント・ナハフオルガ−・ゲ−エムベ−ハ− コラ−ゲン質包帯材
JPH0680935A (ja) * 1992-06-18 1994-03-22 Flamel Technol 架橋可能な新規コラーゲン誘導体、その製造方法および生体材料の製造へのその応用
JPH08504463A (ja) * 1992-12-16 1996-05-14 フラメル・テクノロジー 新規なコラーゲン誘導体、これらを製造する方法、および生体材料を製造することへのこれらの応用
JP2013074936A (ja) * 2011-09-29 2013-04-25 Fujifilm Corp 血管内皮細胞遊走用足場

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BARTH, DIRK: "The Role of Cystine Knots in Collagen Folding and Stability, Part II. Conformational Properties of (Pro-Hyp-Gly)n Model Trimers with N- and C-Terminal Collagen Type III Cystine Knots", CHEM. EUR. J., vol. 9, no. 15, 28 July 2003 (2003-07-28), pages 3703 - 3714, XP055341145 *
BOUDKO, SERGEI: "Nucleation and Propagation of the Collagen Triple Helix in Single-chain and Trimerized Peptides: Transition from Third to First Order Kinetics", J. MOL. BIOL., vol. 317, 2002, pages 459 - 470, XP004468980 *
See also references of EP3315509A4 *
WEGENER, HENRIK: "The cysteine rich region of type VII collagen is a cystine knot with a new topology", J. BIOL. CHEM., vol. 289, no. 8, 2014, pages 4861 - 4869, XP055341153 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103981A1 (en) * 2017-11-22 2019-05-31 Geltor Inc. Methods and systems for engineering collagen
GB2582108A (en) * 2017-11-22 2020-09-09 Geltor Inc Methods and systems for engineering collagen
EP3713953A4 (en) * 2017-11-22 2021-08-25 Geltor, Inc. METHODS AND SYSTEMS FOR GROWING COLLAGEN
GB2582108B (en) * 2017-11-22 2022-08-17 Geltor Inc Methods and systems for engineering collagen
JP2020054341A (ja) * 2018-10-01 2020-04-09 株式会社片岡製作所 細胞培養器具および細胞培養器具の製造方法
WO2020071332A1 (ja) * 2018-10-01 2020-04-09 株式会社片岡製作所 細胞培養器具および細胞培養器具の製造方法
JP2020156518A (ja) * 2018-10-01 2020-10-01 株式会社片岡製作所 細胞培養器具および細胞培養器具の製造方法
US11655441B2 (en) 2019-04-26 2023-05-23 Kataoka Corporation Cell culture base, cell culture vessel, method for culturing cells, method for producing cells, method for producing cell culture base, and method for producing cell culture vessel

Also Published As

Publication number Publication date
EP3315509B1 (en) 2021-02-17
EP3315509A4 (en) 2019-01-09
US20180319867A1 (en) 2018-11-08
US10851152B2 (en) 2020-12-01
CN107735405A (zh) 2018-02-23
CN107735405B (zh) 2022-04-08
JP6455862B2 (ja) 2019-01-23
JPWO2016208673A1 (ja) 2018-04-19
EP3315509A1 (en) 2018-05-02

Similar Documents

Publication Publication Date Title
JP6455862B2 (ja) コラーゲン様構造を有する重合ペプチド及びゲル
Jonker et al. Peptide-and protein-based hydrogels
US4792525A (en) Tetrapeptide
US4578079A (en) Tetrapeptide
US4614517A (en) Tetrapeptide
US8691944B2 (en) Fibronectin polypeptides and methods of use
Chen et al. Surface physical activity and hydrophobicity of designed helical peptide amphiphiles control their bioactivity and cell selectivity
US20160194378A1 (en) Peptides and uses thereof
JP7027312B2 (ja) 合成ドラグラインスパイダーシルクを製作するための組成物および方法
EP2625192A1 (en) A bioactive amino acid sequence and use therefrom
EP2913061B1 (en) Use of peptides for promoting wound healing
EP2580237A1 (en) Novel peptides for wound healing
KR102297563B1 (ko) 항노화 및 창상 치료용 펩티드 및 이를 포함하는 조성물
US5695997A (en) Tetrapeptide
Ichise et al. Development of a collagen-like peptide polymer via end-to-end disulfide cross-linking and its application as a biomaterial
EP2670770A2 (en) High molecular ordered fibrilar structures, method for their preparation and uses thereof
JP4406013B2 (ja) 細胞の接着・伸展を促進するペプチド、その断片及びその誘導体
CN115698054A (zh) 包含肽的组合物及其用途
KR20230088787A (ko) 신규 생물활성 펩티드 조합 및 이의 용도
WO2023127888A1 (en) Novel peptides
Mizuguchi et al. Design of bFGF-tethered self-assembling extracellular matrix proteins via coiled-coil triple-helix formation
Kong et al. Design, synthesis and antitumor activity of Ascaphin-8 derived stapled peptides based on halogen–sulfhydryl click chemical reactions
JPH10316581A (ja) 医療用手当材およびそれに用いる新規なペプチド
WO2024033929A1 (en) Peptides for the treatment of fibrosis
JP2006272002A (ja) 医療用手当材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814442

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15579286

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017524969

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016814442

Country of ref document: EP