WO2016208603A1 - Large-sized sapphire substrate - Google Patents

Large-sized sapphire substrate Download PDF

Info

Publication number
WO2016208603A1
WO2016208603A1 PCT/JP2016/068446 JP2016068446W WO2016208603A1 WO 2016208603 A1 WO2016208603 A1 WO 2016208603A1 JP 2016068446 W JP2016068446 W JP 2016068446W WO 2016208603 A1 WO2016208603 A1 WO 2016208603A1
Authority
WO
WIPO (PCT)
Prior art keywords
sapphire
crystal
crystal orientation
ribbon
plane
Prior art date
Application number
PCT/JP2016/068446
Other languages
French (fr)
Japanese (ja)
Inventor
古滝 敏郎
Original Assignee
並木精密宝石株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 並木精密宝石株式会社 filed Critical 並木精密宝石株式会社
Priority to JP2016560036A priority Critical patent/JP6142209B2/en
Publication of WO2016208603A1 publication Critical patent/WO2016208603A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/34Edge-defined film-fed crystal-growth using dies or slits
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides

Definitions

  • the present invention relates to single crystal sapphire grown by the EFG method.
  • Patent Document 1 Japanese Patent Laid-Open No. 02-271241 (hereinafter described as Patent Document 1) and Japanese Patent Application Laid-Open No. 10-011138 (hereinafter described as Patent Document 2). Is used.
  • the measuring method described in Patent Document 1 allows parallel light to be incident on the crystal surface of the ingot and allows the crystal orientation to be measured from the reflection angle of the parallel light.
  • the processing method described in Patent Document 2 has a technical feature of detecting a crystal orientation based on the reflection angle and determining a cutting direction.
  • the measurement method described in Patent Document 2 is premised on the measurement of an ingot end surface having a substantially cylindrical shape. For this reason, the said measuring method cannot be used with respect to the sapphire ingot which makes an end surface other than the crystal orientation which can use the said measuring method.
  • the invention described in the present application aims to provide a single crystal sapphire having a width of 6 inches or more capable of measuring the crystal orientation with parallel light such as a general-purpose laser immediately after the growth.
  • the invention described in the first aspect of the present invention is a single crystal sapphire ribbon having a width of 6 inches or more grown by the EFG method. It is characterized by being set within °. More specifically, the technical feature is that all deviations of the C-plane or R-plane crystal orientation with respect to any end face of a single crystal sapphire ribbon of 6 inches or more are within 2 °.
  • the deviation of the C-plane or R-plane crystal orientation with respect to the surface of each sapphire ribbon is 2 for a single crystal multi-sapphire ribbon having a width of 6 inches or more grown by the EFG method. It is characterized by being set within °. More specifically, for each sapphire ribbon grown as a multi-sapphire ribbon, it is technical that the deviation between any end face of each sapphire ribbon and the C-plane or R-plane crystal orientation is within 2 °. It is a feature.
  • the invention described in the first aspect of the present invention relates to a single crystal sapphire ribbon having a width of 6 inches or more, and measures the crystal orientation by simple measuring means in a state immediately after the growth. Is possible. This is an effect of setting the crystal orientation to be measured only on the C plane or the R plane for a single crystal sapphire ribbon having a width of 6 inches or more grown by the EFG method.
  • the single crystal sapphire ribbon grown by the EFG method can determine the crystal orientation to be grown according to the growth conditions. More specifically, by appropriately setting the growth conditions, it is possible to form an end surface formed of an arbitrary crystal surface on the surface of the sapphire ribbon immediately after the growth.
  • any single end face of a single crystal sapphire ribbon with a width of 6 inches or more is grown so that the misalignment between the end face and the crystal orientation plane is within 2 °, so that it is perpendicular to the crystal surface.
  • the general-purpose laser is reflected from the C-plane or R-plane in a state where scattering is suppressed, and the measurement using the reflection angle can be supported.
  • the deviation is within 2 °, thereby reducing the thickness of the single crystal sapphire ribbon having a width of 6 inches or more and facilitating the growth of the ribbon by the EFG method.
  • An effect can also be provided. This is an effect of reducing the shaving margin for correcting the tilt of the crystal orientation in the semiconductor substrate application or the like after the crystal orientation measurement by setting the deviation. That is, by reducing the cutting margin, the sapphire ribbon described in the present application can be reduced in thickness during growth. As a result, the sapphire ribbon described in the present application reduces its weight, and it is possible to pull up a single crystal sapphire ribbon having a width of 6 inches or more while suppressing the bending of the seed substrate during crystal growth.
  • the invention described in the second aspect of the present invention is a single crystal multi-sapphire ribbon having a width of 6 inches or more for growing a plurality of sapphire ribbons from a single seed.
  • the effect of the invention described in the first aspect can be imparted to each sapphire ribbon to be grown.
  • the invention described in this aspect by reducing the thickness of the sapphire ribbon, the interval between the sapphire ribbons grown for each seed substrate is reduced to increase the number of the sapphire ribbons, thereby improving the mass productivity of the sapphire ribbons. Is also possible.
  • FIG. 1 is a perspective view of a multi-sapphire ribbon used in the best mode of the present invention
  • FIG. 2 is an explanatory view of the surface of each multi-sapphire ribbon
  • FIG. Illustrations of the ribbon surface and crystal orientation are shown respectively.
  • the clamp for raising etc. description in a figure is abbreviate
  • the sapphire multi-ribbon 1 is grown by the EFG method.
  • all of the sapphire ribbons 3 grown from the seed substrate 2 have a width of 6 inches or more.
  • C is the crystal orientation [0.0.0.1] plane of the sapphire single crystal on the surface direction s side of the sapphire ribbon 3 indicated by hatching. The surface was grown, and the difference between the surface direction s of the sapphire ribbon 3 and the crystal orientation c of the C plane was grown within 2 °.
  • the angle of the crystal orientation c of the C plane with respect to the surface direction s appearing as undulations on the surface of the sapphire ribbon 3 is set. All are within 2 °. More specifically, in the growth of this embodiment in which the seed substrate end face is pulled up in the vertical direction with the C-axis as the C axis, the lifting speed is gradually increased from 0.8 inch / hour to finally 1.5 inch / hour. By raising the temperature range to 40 ° C. such as 2060-2100 ° C., 2090 ° C.-2130 ° C., etc., and changing the temperature within 1 ° C.
  • the swell can be kept within 2 ° C.
  • a general-purpose laser that is incident from the vertical direction on the surface of the sapphire ribbon 3 serving as the crystal habit plane of the sapphire ribbon 3 is reflected from the C surface of the sapphire ribbon 3 in a state where scattering is suppressed, and the crystal from the reflection angle is reflected. It was possible to deal with orientation measurement.
  • the R-plane to be the plane is grown and the deviation between the surface direction s and the crystal orientation of the R-plane is set within 2 °, thereby suppressing the scattering of the general-purpose laser from the R-plane. It is also possible to reflect in the state and correspond to the crystal orientation measurement from the reflection angle.
  • the surface direction s of the sapphire ribbon 3 as a whole is determined by the shape of the die pack that becomes the mold during growth and the various growth conditions described above.
  • a constant deviation always occurs between the crystal orientation c.
  • this deviation by setting this deviation within 2 °, it is possible to reduce the thickness of the sapphire ribbon 3 and easily grow large multi-sapphire ribbons such as 6 inches and 8 inches. This is an effect of reducing the shaving margin for correcting the tilt of the crystal orientation in the semiconductor substrate application or the like after the measurement of the crystal orientation by setting the deviation.
  • the weight of one sapphire ribbon 3 is reduced, and the density of the sapphire ribbons 3 grown from the seed substrate 2 can be increased. This makes it possible to evenly distribute the weight applied to the seed substrate 2 during the growth and to raise and grow the crystal with the center of gravity stabilized.
  • the density was flattened, and the crystal quality at the time of growth was able to obtain the effect of suppressing variations between the sapphire ribbons.

Abstract

[Problem] To provide a large-sized single-crystal sapphire 6 or 8 inches in width, the crystal orientation of which can be measured by parallel light such as a general-purpose laser immediately after growth. [Solution] In the present invention, by growing a single-crystal sapphire ribbon having a surface in which the deviation of C-plane or R-plane crystal orientation is 2° or less with respect to the surface of a single-crystal sapphire ribbon grown by an EFG method, it is possible to obtain a single-crystal sapphire ribbon whereby the crystal orientation can be measured from the reflection angle when a general-purpose laser incident from a direction orthogonal to the surface is reflected.

Description

大型サファイア基板Large sapphire substrate
 本発明は、EFG法によって育成される単結晶サファイアに関する。 The present invention relates to single crystal sapphire grown by the EFG method.
 現在、LED等に用いられる6インチ以上の大型サファイア基板についてはその多くがCZ法等によって育成されたインゴットからの切り出しによって加工されている。これは、従来用いられてきたEFG法による当該基板の育成に際して、シード基板の撓み増加及び、当該撓みに伴う削りしろの付与といった課題が生じ、引き上げが難しくなった事による。 Currently, most of large sapphire substrates of 6 inches or more used for LEDs and the like are processed by cutting out from an ingot grown by the CZ method or the like. This is because when the substrate is grown by the EFG method that has been conventionally used, problems such as an increase in the deflection of the seed substrate and the provision of a shaving margin associated with the deflection occur, making it difficult to pull up.
 これに伴い、サファイア単結晶材料の量産についてはインゴットからの切り出し以外での結晶育成が難しくなっており、当該インゴットの育成後、X線回折又は偏光によるC軸方向の測定によって結晶方位を決定し、基板の切り出しを行っている。この様な加工手順を用いる際の結晶方位について、一般的なインゴットからの基板切り出しでは、特開平02-271241(以下特許文献1として記載)及び特開平10-011138(以下特許文献2として記載)に記載の測定方法が用いられている。 Along with this, for mass production of sapphire single crystal materials, it is difficult to grow crystals other than cutting out from an ingot. After growing the ingot, the crystal orientation is determined by X-ray diffraction or measurement in the C-axis direction by polarization. The substrate is cut out. Regarding the crystal orientation when using such a processing procedure, when cutting out a substrate from a general ingot, Japanese Patent Laid-Open No. 02-271241 (hereinafter described as Patent Document 1) and Japanese Patent Application Laid-Open No. 10-011138 (hereinafter described as Patent Document 2). Is used.
 これら2件のうち、特許文献1記載の測定方法ではインゴットの結晶表面に平行光を入射させ、当該平行光の反射角からその結晶方位を測定する事を可能にしている。また、特許文献2に記載の加工方法では、当該反射角によって結晶方位を検出し、切断方向を決定することをその技術的特徴としている。 Of these two cases, the measuring method described in Patent Document 1 allows parallel light to be incident on the crystal surface of the ingot and allows the crystal orientation to be measured from the reflection angle of the parallel light. Further, the processing method described in Patent Document 2 has a technical feature of detecting a crystal orientation based on the reflection angle and determining a cutting direction.
特開平02-271241号公報Japanese Patent Laid-Open No. 02-271241 特開平10-193338号公報JP-A-10-193338
 上述した従来の発明によってインゴットに対する結晶方位の測定が容易になった一方で、サファイアインゴットに同様の測定方法を用いると、その結晶構造上、当該測定方法を使用可能な結晶方位及び測定範囲が限定されてしまう。この為、当該測定方法でサファイアインゴットを測定すると、対象とする結晶方位及び測定角度によってはインゴットの切断面と結晶方位とのズレによって平行光が散乱し、当該測定ができないといった課題を発生してしまう。 While measurement of crystal orientation relative to the ingot has been facilitated by the conventional invention described above, when a similar measurement method is used for a sapphire ingot, the crystal orientation and measurement range in which the measurement method can be used are limited due to its crystal structure Will be. For this reason, when a sapphire ingot is measured by the measurement method, depending on the target crystal orientation and measurement angle, parallel light is scattered due to a deviation between the cut surface of the ingot and the crystal orientation, and the measurement cannot be performed. End up.
 加えて、特許文献2記載の測定方法は略円筒形となるインゴット端面の測定を前提としている。この為、前記測定方法が使用可能な結晶方位以外を端面とするサファイアインゴットに対しては、前記測定方法を使用することができない。 In addition, the measurement method described in Patent Document 2 is premised on the measurement of an ingot end surface having a substantially cylindrical shape. For this reason, the said measuring method cannot be used with respect to the sapphire ingot which makes an end surface other than the crystal orientation which can use the said measuring method.
 上記課題に対して本願記載の発明では、育成直後の状態で汎用レーザー等の平行光による結晶方位の測定が可能な幅6インチ以上の単結晶サファイアの提供を目的としている。 In view of the above problems, the invention described in the present application aims to provide a single crystal sapphire having a width of 6 inches or more capable of measuring the crystal orientation with parallel light such as a general-purpose laser immediately after the growth.
 上記目的のために本発明に於ける第1の態様記載の発明は、EFG法によって育成する幅6インチ以上の単結晶サファイアリボンについて、表面に対するC面又はR面結晶方位のうねりによるズレを2°以内に設定したことを特徴としている。より具体的には、6インチ以上の単結晶サファイアリボンのいずれかの端面に対する、C面又はR面結晶方位のズレを全て2°以内としたことをその技術的特徴としている。 For the above-mentioned purpose, the invention described in the first aspect of the present invention is a single crystal sapphire ribbon having a width of 6 inches or more grown by the EFG method. It is characterized by being set within °. More specifically, the technical feature is that all deviations of the C-plane or R-plane crystal orientation with respect to any end face of a single crystal sapphire ribbon of 6 inches or more are within 2 °.
 また、本発明に於ける第2の態様記載の発明は、EFG法によって育成する幅6インチ以上の単結晶マルチサファイアリボンについて、各サファイアリボンの表面に対するC面又はR面結晶方位のズレを2°以内に設定したことを特徴としている。より具体的には、マルチサファイアリボンとして育成された各サファイアリボンについて、各サファイアリボン毎に有するいずれかの端面とC面又はR面結晶方位とのズレを2°以内としたことをその技術的特徴としている。
In the invention described in the second aspect of the present invention, the deviation of the C-plane or R-plane crystal orientation with respect to the surface of each sapphire ribbon is 2 for a single crystal multi-sapphire ribbon having a width of 6 inches or more grown by the EFG method. It is characterized by being set within °. More specifically, for each sapphire ribbon grown as a multi-sapphire ribbon, it is technical that the deviation between any end face of each sapphire ribbon and the C-plane or R-plane crystal orientation is within 2 °. It is a feature.
 上述した技術的特徴によって本発明に於ける第1の態様記載の発明は、幅6インチ以上の単結晶サファイアリボンに関し、育成直後の状態に於いて簡単な測定手段による結晶方位の測定を行うことを可能にしている。これは、EFG法によって育成する幅6インチ以上の単結晶サファイアリボンについて、C面又はR面のみに限定して測定する結晶方位を設定したことによる効果となっている。 Due to the technical features described above, the invention described in the first aspect of the present invention relates to a single crystal sapphire ribbon having a width of 6 inches or more, and measures the crystal orientation by simple measuring means in a state immediately after the growth. Is possible. This is an effect of setting the crystal orientation to be measured only on the C plane or the R plane for a single crystal sapphire ribbon having a width of 6 inches or more grown by the EFG method.
 即ち、上記CZ法等によって育成されるサファイアインゴットと異なり、EFG法によって育成される単結晶サファイアリボンはその育成条件によって育成する結晶方位を決定することができる。より具体的には、育成条件を適宜設定することによって、育成直後のサファイアリボンの端面について、任意の結晶表面で形成された端面をサファイアリボン表面に形成することが可能となっている。本願では幅6インチ以上の単結晶サファイアリボンに於けるいずれかの端面について、当該いずれかの端面と結晶方位面とのズレを2°以内として育成することで、結晶表面に対して直角に入射する汎用レーザーをC面又はR面から散乱を抑えた状態で反射し、当該反射角を用いた測定への対応を可能にしている。また、本願では、EFG法によって育成した単結晶を用いて前記反射角を用いた測定に対応している。この為、前記サファイアリボンに於ける一箇所の測定結果から、サファイアリボン全体の結晶方位を判断することができる。 That is, unlike the sapphire ingot grown by the CZ method or the like, the single crystal sapphire ribbon grown by the EFG method can determine the crystal orientation to be grown according to the growth conditions. More specifically, by appropriately setting the growth conditions, it is possible to form an end surface formed of an arbitrary crystal surface on the surface of the sapphire ribbon immediately after the growth. In this application, any single end face of a single crystal sapphire ribbon with a width of 6 inches or more is grown so that the misalignment between the end face and the crystal orientation plane is within 2 °, so that it is perpendicular to the crystal surface. The general-purpose laser is reflected from the C-plane or R-plane in a state where scattering is suppressed, and the measurement using the reflection angle can be supported. Moreover, in this application, it corresponds to the measurement using the said reflection angle using the single crystal grown by EFG method. For this reason, the crystal orientation of the whole sapphire ribbon can be judged from the measurement result of one place in the sapphire ribbon.
 更に、本態様記載の単結晶サファイアリボンでは、前記ズレを2°以内としたことで幅6インチ以上の単結晶サファイアリボンに於ける厚みの低減と、当該リボンのEFG法による育成の容易化という効果をも付与することができる。これは、当該ズレの設定によって、結晶方位測定後、半導体基板用途等で結晶方位の傾きを補正するための削りしろを低減させることによる効果となっている。即ち、当該削りしろの低減により、本願記載のサファイアリボンは育成時の厚みを減らすことが可能となる。これにより、本願記載のサファイアリボンはその重量を軽減し、結晶育成時、シード基板の撓みを抑えて幅6インチ以上の単結晶サファイアリボンを引き上げることが可能となっている。 Furthermore, in the single crystal sapphire ribbon described in this embodiment, the deviation is within 2 °, thereby reducing the thickness of the single crystal sapphire ribbon having a width of 6 inches or more and facilitating the growth of the ribbon by the EFG method. An effect can also be provided. This is an effect of reducing the shaving margin for correcting the tilt of the crystal orientation in the semiconductor substrate application or the like after the crystal orientation measurement by setting the deviation. That is, by reducing the cutting margin, the sapphire ribbon described in the present application can be reduced in thickness during growth. As a result, the sapphire ribbon described in the present application reduces its weight, and it is possible to pull up a single crystal sapphire ribbon having a width of 6 inches or more while suppressing the bending of the seed substrate during crystal growth.
 また上記第1の態様記載の効果に加えて、本発明に於ける第2の態様記載の発明では、単一のシードから複数のサファイアリボンを育成する幅6インチ以上の単結晶マルチサファイアリボンについて、育成される各サファイアリボン毎に上記第1の態様記載の発明が有する効果を付与することができる。加えて、本態様記載の発明では、前記サファイアリボンの厚みを減らすことによって、シード基板1個毎に育成するサファイアリボン間の間隔を狭めて枚数を増やし、当該サファイアリボンの量産性を向上させることもまた、可能となっている。 In addition to the effects described in the first aspect, the invention described in the second aspect of the present invention is a single crystal multi-sapphire ribbon having a width of 6 inches or more for growing a plurality of sapphire ribbons from a single seed. The effect of the invention described in the first aspect can be imparted to each sapphire ribbon to be grown. In addition, in the invention described in this aspect, by reducing the thickness of the sapphire ribbon, the interval between the sapphire ribbons grown for each seed substrate is reduced to increase the number of the sapphire ribbons, thereby improving the mass productivity of the sapphire ribbons. Is also possible.
 以上述べたように、本願記載の発明を用いることで、育成直後の状態で汎用レーザー等の平行光による結晶方位の測定が可能な幅6インチ以上の単結晶サファイアを提供することができる。
As described above, by using the invention described in the present application, it is possible to provide single crystal sapphire having a width of 6 inches or more capable of measuring the crystal orientation with parallel light such as a general-purpose laser immediately after the growth.
本発明に於ける最良の実施形態にて用いるマルチサファイアリボンの斜視図The perspective view of the multi-sapphire ribbon used in the best embodiment in the present invention 図1に於いて示したマルチサファイアリボンの各サファイアリボン表面説明図Each sapphire ribbon surface explanatory drawing of the multi-sapphire ribbon shown in FIG. 図2に於いて示したサファイアリボンの結晶方位説明図Explanation of crystal orientation of sapphire ribbon shown in FIG.
 以下に、図1、図2及び図3を用いて、本発明に於ける最良の実施形態を示す。尚、図中の記号及び部品番号について、同じ部品として機能するものには共通の記号又は番号を付与している。 Hereinafter, the best embodiment of the present invention will be described with reference to FIG. 1, FIG. 2 and FIG. In addition, about the symbol and component number in a figure, the common symbol or number is provided to what functions as the same component.
 図1に本発明に於ける最良の実施形態に於いて用いるマルチサファイアリボンの斜視図を、図2に当該マルチサファイアリボンの各サファイアリボンに於ける表面の説明図を、そして図3に当該サファイアリボンの表面と結晶方位との説明図を、それぞれ示す。尚、引き上げ用のクランプ等については、図中での記載を省略している。 FIG. 1 is a perspective view of a multi-sapphire ribbon used in the best mode of the present invention, FIG. 2 is an explanatory view of the surface of each multi-sapphire ribbon, and FIG. Illustrations of the ribbon surface and crystal orientation are shown respectively. In addition, about the clamp for raising etc., description in a figure is abbreviate | omitted.
 図1に於いて示す様に、本実施形態ではEFG法によってサファイアマルチリボン1を育成している。尚、図1中、シード基板2から複数育成されている各サファイアリボン3は全て幅6インチ以上となっている。また、図2から解るように、本実施形態では図1中、ハッチングにて示したサファイアリボン3の表面方向s側にサファイア単結晶の結晶方位[0.0.0.1]面となるC面を設けて育成しており、サファイアリボン3の表面方向sとC面の結晶方位cとのズレは2°以内として育成した。 As shown in FIG. 1, in this embodiment, the sapphire multi-ribbon 1 is grown by the EFG method. In FIG. 1, all of the sapphire ribbons 3 grown from the seed substrate 2 have a width of 6 inches or more. In addition, as can be seen from FIG. 2, in the present embodiment, in FIG. 1, C is the crystal orientation [0.0.0.1] plane of the sapphire single crystal on the surface direction s side of the sapphire ribbon 3 indicated by hatching. The surface was grown, and the difference between the surface direction s of the sapphire ribbon 3 and the crystal orientation c of the C plane was grown within 2 °.
 本実施形態ではシード基板2の結晶方位、引き上げ方向、引き上げ速度及び、育成温度といった各種条件を設定することで、サファイアリボン3表面のうねりとして現れる表面方向sに対するC面の結晶方位cの角度を全て2°以内に収めている。より具体的には、シード基板端面をC軸として垂直方向に引き上げる本実施形態の育成に於いて、引き上げ速度を0.8インチ/時から緩やかに速度を上げて最終的に1.5インチ/時まで上昇させると共に温度範囲を2060~2100℃、2090℃~2130℃等の40℃温度を上げる温度範囲にて育成し、当該温度の変更を1度につき1℃以内の範囲で行うことにより、前記うねりを2℃以内に収めることを可能にしている。これにより、サファイアリボン3の晶癖面となるサファイアリボン3の表面に垂直方向から入射する汎用レーザーを、当該サファイアリボン3のC面から散乱を抑えた状態で反射し、当該反射角からの結晶方位測定に対応することができた。尚、本実施形態と同じ技術的見地から、表面方向s側に図2にて示した[1.-1.0.2]面となるR面を設けて育成し、表面方向sとR面の結晶方位とのズレを2°以内とすることによって、前記汎用レーザーをR面から散乱を抑えた状態で反射し、当該反射角からの結晶方位測定に対応することもまた、可能となっている。 In this embodiment, by setting various conditions such as the crystal orientation of the seed substrate 2, the pulling direction, the pulling speed, and the growth temperature, the angle of the crystal orientation c of the C plane with respect to the surface direction s appearing as undulations on the surface of the sapphire ribbon 3 is set. All are within 2 °. More specifically, in the growth of this embodiment in which the seed substrate end face is pulled up in the vertical direction with the C-axis as the C axis, the lifting speed is gradually increased from 0.8 inch / hour to finally 1.5 inch / hour. By raising the temperature range to 40 ° C. such as 2060-2100 ° C., 2090 ° C.-2130 ° C., etc., and changing the temperature within 1 ° C. at a time, The swell can be kept within 2 ° C. As a result, a general-purpose laser that is incident from the vertical direction on the surface of the sapphire ribbon 3 serving as the crystal habit plane of the sapphire ribbon 3 is reflected from the C surface of the sapphire ribbon 3 in a state where scattering is suppressed, and the crystal from the reflection angle is reflected. It was possible to deal with orientation measurement. In addition, from the same technical viewpoint as this embodiment, it is shown in FIG. 2 on the surface direction s side [1. -0.2.2] The R-plane to be the plane is grown and the deviation between the surface direction s and the crystal orientation of the R-plane is set within 2 °, thereby suppressing the scattering of the general-purpose laser from the R-plane. It is also possible to reflect in the state and correspond to the crystal orientation measurement from the reflection angle.
 尚、図3に示す様に、サファイアリボン3全体としての表面方向sは、育成時の型となるダイパックの形状及び前述した各種育成条件によって決定される為、表面方向sと本実施形態で用いる結晶方位cとの間には常に一定のズレが生じる。本実施形態ではこのズレを2°以内に設定したことで、サファイアリボン3の厚みを低減し、6インチ、8インチといった大型のマルチサファイアリボンの育成を容易に行うことを可能としている。これは、当該ズレの設定により、前記結晶方位の測定後、半導体基板用途等で結晶方位の傾きを補正するための削りしろを低減させたことによる効果となっている。 As shown in FIG. 3, the surface direction s of the sapphire ribbon 3 as a whole is determined by the shape of the die pack that becomes the mold during growth and the various growth conditions described above. A constant deviation always occurs between the crystal orientation c. In this embodiment, by setting this deviation within 2 °, it is possible to reduce the thickness of the sapphire ribbon 3 and easily grow large multi-sapphire ribbons such as 6 inches and 8 inches. This is an effect of reducing the shaving margin for correcting the tilt of the crystal orientation in the semiconductor substrate application or the like after the measurement of the crystal orientation by setting the deviation.
 即ち、前記厚みの低減によって、サファイアリボン3一枚辺りの重量が減少し、シード基板2から育成する各サファイアリボン3同士の密度を高めることができる。これにより、育成時、シード基板2にかかる加重を均等に配分し、重心を安定させた状態で結晶の引き上げ及び育成を行うことが可能となった。加えて、当該密度を高めたことで、各サファイアリボン間の温度分布を平坦にし、育成時の結晶品質について、各サファイアリボン間でのバラツキ抑制という効果をも得ることができた。 That is, by reducing the thickness, the weight of one sapphire ribbon 3 is reduced, and the density of the sapphire ribbons 3 grown from the seed substrate 2 can be increased. This makes it possible to evenly distribute the weight applied to the seed substrate 2 during the growth and to raise and grow the crystal with the center of gravity stabilized. In addition, by increasing the density, the temperature distribution between the sapphire ribbons was flattened, and the crystal quality at the time of growth was able to obtain the effect of suppressing variations between the sapphire ribbons.
 以上述べたように、本願実施形態記載の構造を用いることによって、育成直後の状態で汎用レーザー等の平行光による結晶方位の測定が可能な幅6インチ以上の単結晶サファイアを提供することができた。
As described above, by using the structure described in the embodiment of the present application, it is possible to provide single crystal sapphire having a width of 6 inches or more capable of measuring the crystal orientation with parallel light such as a general-purpose laser immediately after the growth. It was.
 1 サファイアマルチリボン
 2 シード基板
 3 サファイアリボン
 c C面結晶方位
 r R面結晶方位
 s サファイアリボンの表面方向
1 Sapphire multi-ribbon 2 Seed substrate 3 Sapphire ribbon c C-plane crystal orientation r R-plane crystal orientation s Sapphire ribbon surface direction

Claims (2)

  1. 結晶引き上げ後のいずれかの端面について、表面に対するC面又はR面結晶方位のうねりによるズレが全て2°以内である、幅6インチ以上の単結晶サファイアリボン。 A single crystal sapphire ribbon having a width of 6 inches or more in which any end face after crystal pulling is all within 2 ° due to undulation of the C-plane or R-plane crystal orientation with respect to the surface.
  2.  結晶引き上げ後のいずれかの端面について、表面に対するC面又はR面結晶方位のズレが全て2°以内である、幅6インチ以上の単結晶マルチサファイアリボン。 A single-crystal multi-sapphire ribbon with a width of 6 inches or more in which any deviation of the C-plane or R-plane crystal orientation with respect to the surface of any end face after the crystal pulling is within 2 °
PCT/JP2016/068446 2015-06-22 2016-06-22 Large-sized sapphire substrate WO2016208603A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016560036A JP6142209B2 (en) 2015-06-22 2016-06-22 Large sapphire substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-124393 2015-06-22
JP2015124393 2015-06-22

Publications (1)

Publication Number Publication Date
WO2016208603A1 true WO2016208603A1 (en) 2016-12-29

Family

ID=57586502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068446 WO2016208603A1 (en) 2015-06-22 2016-06-22 Large-sized sapphire substrate

Country Status (2)

Country Link
JP (1) JP6142209B2 (en)
WO (1) WO2016208603A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327495A (en) * 2002-05-14 2003-11-19 Namiki Precision Jewel Co Ltd Crystal habit face sapphire plate material and method of producing the same
JP2011504451A (en) * 2007-11-21 2011-02-10 サンゴバン・セラミックス・アンド・プラスティックス・インコーポレイティッド Method and apparatus for r-plane sapphire
JP2015120612A (en) * 2013-12-23 2015-07-02 並木精密宝石株式会社 Large scale sapphire multi-substrate
JP2015124096A (en) * 2013-12-25 2015-07-06 並木精密宝石株式会社 Single crystal sapphire ribbon for large substrate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101230279B1 (en) * 2006-09-22 2013-02-06 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 C-plane sapphire method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327495A (en) * 2002-05-14 2003-11-19 Namiki Precision Jewel Co Ltd Crystal habit face sapphire plate material and method of producing the same
JP2011504451A (en) * 2007-11-21 2011-02-10 サンゴバン・セラミックス・アンド・プラスティックス・インコーポレイティッド Method and apparatus for r-plane sapphire
JP2015120612A (en) * 2013-12-23 2015-07-02 並木精密宝石株式会社 Large scale sapphire multi-substrate
JP2015124096A (en) * 2013-12-25 2015-07-06 並木精密宝石株式会社 Single crystal sapphire ribbon for large substrate

Also Published As

Publication number Publication date
JP6142209B2 (en) 2017-06-07
JPWO2016208603A1 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
JP6364647B2 (en) Large sapphire multi-substrate
US8500905B2 (en) Kyropoulos sapphire single crystal growing apparatus using elliptic crucible
US20140272413A1 (en) Sapphire Ribbons and Apparatus and Method for Producing a Plurality of Sapphire Ribbons Having Improved Dimensional Stability
EP3004430A1 (en) Method for manufacturing a silicon cylinder by growth on seeds in a directed solidification furnace
US8828139B2 (en) Method of manufacturing sapphire seed and method of manufacturing sapphire single crystal
US9926646B2 (en) Method for growing B-Ga2O3-based single crystal
JP6142209B2 (en) Large sapphire substrate
TW201443301A (en) Method for growing [beta]-ga2o3-based single crystal
JP6610417B2 (en) Method for growing CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal
JP2015124096A (en) Single crystal sapphire ribbon for large substrate
WO2016043176A1 (en) Plurality of sapphire single crystals and method of manufacturing same
US6491753B2 (en) Method for the growing of single crystals
JP4949839B2 (en) Spinel boules, wafers and methods for their production
JP6618179B2 (en) Method for producing SiC single crystal
JP2007506639A5 (en)
JP7117938B2 (en) SiC single crystal evaluation method and SiC wafer manufacturing method
TWI809766B (en) Manufacturing method of GaAs wafer and GaAs wafer group
JP6025087B1 (en) Sapphire ribbon
JP6025085B2 (en) Multiple sapphire single crystals and method for producing the same
JP7222669B2 (en) SINGLE CRYSTAL GROWTH METHOD, SEED CRYSTAL, AND SINGLE CRYSTAL
JP7101194B2 (en) Single crystal, mold for EFG device, EFG device, method for manufacturing single crystal, and method for manufacturing single crystal member
JP2016204190A (en) Method for manufacturing aluminum oxide single crystal
JP2018145078A (en) Method for growing lithium tantalate single crystal
Shlegel’ et al. Correlation of the structural imperfection and morphology of Bi 4 Ge 3 O 12 crystals grown by the low-gradient Czochralski method
WO2015040695A1 (en) Device for producing and method for producing compound semiconductor substrate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016560036

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814373

Country of ref document: EP

Kind code of ref document: A1