WO2016043176A1 - Plurality of sapphire single crystals and method of manufacturing same - Google Patents

Plurality of sapphire single crystals and method of manufacturing same Download PDF

Info

Publication number
WO2016043176A1
WO2016043176A1 PCT/JP2015/076102 JP2015076102W WO2016043176A1 WO 2016043176 A1 WO2016043176 A1 WO 2016043176A1 JP 2015076102 W JP2015076102 W JP 2015076102W WO 2016043176 A1 WO2016043176 A1 WO 2016043176A1
Authority
WO
WIPO (PCT)
Prior art keywords
sapphire single
crystal
single crystals
seed crystal
gap
Prior art date
Application number
PCT/JP2015/076102
Other languages
French (fr)
Japanese (ja)
Inventor
古滝 敏郎
弘倫 斎藤
数人 樋口
高橋 正幸
佐藤 次男
Original Assignee
並木精密宝石株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 並木精密宝石株式会社 filed Critical 並木精密宝石株式会社
Publication of WO2016043176A1 publication Critical patent/WO2016043176A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/34Edge-defined film-fed crystal-growth using dies or slits
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides

Definitions

  • the present invention relates to a plurality of sapphire single crystals and a manufacturing method thereof.
  • a sapphire single crystal substrate is widely used as a semiconductor substrate material typified by a light emitting element such as an LED (Light Emitting Diode).
  • Mass production methods for sapphire single crystal substrates are roughly classified into CZ method (Czochralski method) and EFG method (Edge-defined Film-fed. Growth method).
  • the CZ method is a method in which a sapphire single crystal serving as a substrate material is grown in a lump in an ingot and sliced from the ingot obtained by the growth into a substrate.
  • the EFG method is a method of growing a sapphire single crystal into a flat plate shape and cutting out the sapphire single crystal obtained by the growth into an arbitrary shape.
  • a method for simultaneously growing a plurality of sapphire single crystals using the EFG method has been filed and published (for example, see Patent Document 1).
  • the seed crystal is arranged in a direction perpendicular to the longitudinal direction of the liquid surface of the raw material melt for growing the flat sapphire single crystal, and the seed crystal is pulled up. A plurality of flat sapphire single crystals are produced. Since a plurality of sapphire single crystals can be grown at once, the mass productivity of the sapphire single crystals can be improved.
  • the gap between the dies is set too small, the gap between the sapphire single crystals also becomes small, the thermal balance between the sapphire single crystals deteriorates, and other individual sapphire single crystals that are free from the occurrence of flatting This will cause crystal defects. Therefore, not only the flatting but also the crystal quality of the sapphire single crystal is lowered, which causes a significant reduction in mass productivity.
  • the present invention has been made in light of the above circumstances, and optimally sets the gap between dies or the gap between sapphire single crystals with respect to the thickness of the die or the maximum thickness of a plurality of sapphire single crystals. Therefore, it is an object to provide a plurality of sapphire single crystals and a manufacturing method thereof that can prevent crystal defects by preventing flattening and improving thermal balance.
  • the gap D between the dies is set to be 0.33 times or more and 0.67 times or less of the die thickness t, and the plurality of sapphire single crystals are set. It is characterized by producing crystals.
  • the gap D is further within a range of 0.33 to 0.67 times the thickness t. Is preferably satisfied.
  • the plurality of sapphire single crystals of the present invention are formed from a common seed crystal, and the gap d between the sapphire single crystals is 0.33 which is the maximum thickness tm among the thicknesses of the plurality of sapphire single crystals. It is set to be not less than twice and not more than 0.67 times.
  • the gap d is within the range of 0.33 times to 0.67 times the thickness tm. Is preferably satisfied.
  • the angle of deviation of the crystal axes of the main surfaces of the plurality of sapphire single crystals is preferably in the range of 0.5 ° or less.
  • the gaps D and d set in the range of 0.33 to 0.67 times the die thickness t or the maximum thickness tm of the plurality of sapphire single crystals.
  • a plurality of sapphire single crystals are formed.
  • the gap D between the dies as a guide can be known, it is possible to reduce the number of verifications of optimization of the gap D between the dies, and as a result, the development of the growth of a plurality of sapphire single crystals and the improvement of the crystal quality. It becomes possible to improve the speed.
  • each sapphire single crystal grown and grown in addition to preventing the occurrence of flattening and the occurrence of crystal defects due to the flatting, the thermal balance between each sapphire single crystal grown and grown is crystallized. It became possible to hold in an optimal state suitable for breeding.
  • the growth condition of each sapphire single crystal can be maintained uniformly by maintaining the heat balance. For this reason, it is possible to pull up a plurality of sapphire single crystals having no crystal parts such as line defects and crystal grain boundaries and having improved crystal quality. Therefore, a plurality of more practical sapphire single crystals can be pulled up simultaneously, and it becomes possible to further improve yield and mass productivity.
  • FIG. 1 It is a schematic block diagram which shows the manufacturing apparatus of the sapphire single crystal by EFG method.
  • (a) It is a top view which shows typically an example of the die
  • (b) It is a front view of the figure (a).
  • (c) It is a side view of the same figure (a).
  • (a) It is explanatory drawing which shows an example of the seed crystal which concerns on embodiment of this invention.
  • (b) It is explanatory drawing which shows the other example of the seed crystal which concerns on embodiment of this invention.
  • (c) It is explanatory drawing which shows the further another example of the seed crystal which concerns on embodiment of this invention.
  • FIGS. 1 to 10 a plurality of sapphire single crystals and a manufacturing method thereof according to an embodiment of the present invention will be described with reference to FIGS. 1 to 10.
  • the sapphire single crystal manufacturing apparatus 1 includes a growth container 3 for growing a sapphire single crystal 2 and a pulling container 4 for pulling up the grown sapphire single crystal 2. -fed. Growth) method is used to grow and grow sapphire single crystal 2.
  • the growth container 3 includes a crucible 5, a crucible drive unit 6, a heater 7, an electrode 8, a die 9, and a heat insulating material 10.
  • the crucible 5 is made of molybdenum and melts the aluminum oxide raw material.
  • the crucible drive unit 6 rotates the crucible 5 with the vertical direction as an axis.
  • the heater 7 heats the crucible 5.
  • the electrode 8 energizes the heater 7.
  • the die 9 is installed in the crucible 5 and determines the liquid surface shape of an aluminum oxide melt (hereinafter simply referred to as “melt” if necessary) 21 when pulling up the sapphire single crystal 2.
  • the heat insulating material 10 surrounds the crucible 5, the heater 7 and the die 9.
  • the growth vessel 3 includes an atmospheric gas inlet 11 and an exhaust port 12.
  • the atmosphere gas introduction port 11 is an introduction port for introducing, for example, argon gas into the growth vessel 3 as the atmosphere gas, and prevents oxidation of the crucible 5, the heater 7, and the die 9.
  • the exhaust port 12 is provided for exhausting the inside of the growth vessel 3.
  • the pulling container 4 includes a shaft 13, a shaft driving unit 14, a gate valve 15, and a substrate inlet / outlet 16, and pulls up a plurality of flat plate-shaped sapphire single crystals 2 grown from the seed crystal 17.
  • the shaft 13 holds a seed crystal 17.
  • the shaft driving unit 14 moves the shaft 13 up and down toward the crucible 5 and rotates the shaft 13 around the lifting direction.
  • the gate valve 15 partitions the growth container 3 and the lifting container 4.
  • the substrate entrance / exit 16 takes in and out the seed crystal 17.
  • the manufacturing apparatus 1 also has a control unit (not shown), and the rotation of the crucible drive unit 6 and the shaft drive unit 14 is controlled by this control unit.
  • the die 9 is made of molybdenum and has a number of partition plates 18 as shown in FIG.
  • FIG. 2 shows a case where there are 30 partition plates 18 and 15 dies 9 are formed.
  • the partition plates 18 have the same flat plate shape and are arranged in parallel to each other so as to form a minute gap (slit) 19 to form one die 9.
  • the slit 19 is provided over almost the entire width of the die 9. Further, since the plurality of dies 9 have the same shape and are arranged in parallel at a predetermined interval so that the longitudinal directions thereof are parallel to each other, a plurality of slits 19 are provided.
  • a slope 30 is formed on the upper part of each partition plate 18, and an acute angle opening 20 is formed by arranging the slopes 30 to face each other.
  • the slit 19 has a role of raising the melt 21 from the lower end of each die 9 to the opening 20 by capillary action.
  • the aluminum oxide raw material charged into the crucible 5 is melted (raw material melt) based on the temperature rise of the crucible 5 to become a melt 21.
  • a part of the melt 21 enters the slit 19 of the die 9, and ascends in the slit 19 based on the capillary phenomenon as described above and is exposed from the opening 20. 22 is formed (see FIG. 5A).
  • the sapphire single crystal 2 grows according to the shape of the melt surface formed by the aluminum oxide melt pool (hereinafter referred to as “melt pool” if necessary) 22.
  • the shape of the melt surface is an elongated rectangle, so that a flat sapphire single crystal 2 is manufactured.
  • FIGS. 1, 4, and 5 in this embodiment, a flat substrate is used as the seed crystal 17, and the c-axis is along the surface direction of the main surface (a surface orthogonal to the crystal surface 28).
  • a horizontal sapphire single crystal substrate is used.
  • the seed crystal 17 is arranged so that the planar direction of the seed crystal 17 and the longitudinal direction of the die 9 are orthogonal to each other at an angle of 90 °. Accordingly, the c-axis of the seed crystal 17 is perpendicular to the partition plate 18. Further, since the seed crystal 17 and the sapphire single crystal 2 are also orthogonal to each other at an angle of 90 °, FIG. 1 shows the side surface of the sapphire single crystal 2.
  • the contact area between the melt 21 and the seed crystal 17 is minimized. It becomes possible to do. Therefore, the contact part of the seed crystal 17 becomes easy to become familiar with the melt 21, and the generation of crystal defects in the sapphire single crystal 2 is reduced or eliminated.
  • the contact area with the substrate holder (not shown) under the shaft 13 is large, the seed crystal 17 is deformed due to a stress due to a difference in thermal expansion coefficient, and may be damaged in some cases. Conversely, the fixation of the seed crystal 17 may be loosened due to the difference in thermal expansion coefficient. Therefore, it is preferable that the contact area between the seed crystal 17 and the substrate holder is small.
  • the seed crystal 17 needs to have a substrate shape that can be securely fixed to the substrate holder.
  • FIG. 3 is a diagram showing an example of the substrate shape of the seed crystal 17.
  • FIGS. 4A and 4B show a case where a notch 23 is provided in the upper part of the seed crystal 17. Using this notch 23, for example, a U-shaped substrate holder can be inserted from the lower side of the two notches 23 to securely hold the seed crystal 17 while reducing the contact area. Become.
  • a notch hole 24 may be provided inside the seed crystal 17. Using this cutout hole 24, for example, locking claws are inserted into the two cutout holes 24 to securely hold the seed crystal 17 while reducing the contact area between the substrate holder and the seed crystal 17. It becomes possible.
  • a method for manufacturing the sapphire single crystal 2 using the manufacturing apparatus 1 will be described.
  • a predetermined amount of granulated aluminum oxide raw material powder (99.99% aluminum oxide), which is a sapphire raw material, is charged into a crucible 5 in which a die 9 is stored.
  • the aluminum oxide raw material powder may contain compounds and elements other than aluminum oxide depending on the purity or composition of the sapphire single crystal to be produced.
  • the heater 7, or the die 9 the inside of the growth vessel 3 is replaced with argon gas, and the oxygen concentration is set to a predetermined value or less.
  • the crucible 5 is heated to a predetermined temperature by the heater 7 to melt the aluminum oxide raw material powder. Since the melting point of aluminum oxide is about 2050 ° C. to 2072 ° C., the heating temperature of the crucible 5 is set to a temperature higher than the melting point (for example, 2100 ° C.). After a while after heating, the raw material powder is melted and an aluminum oxide melt 21 is prepared. Further, a part of the melt 21 rises through the slit 19 of the die 9 by capillary action to reach the surface of the die 9, and a melt pool 22 is formed on the slit 19.
  • the seed crystal 17 is lowered while being held at an angle perpendicular to the longitudinal direction of the melt reservoir 22 above the slit 19, so that the seed crystal 17 is melted in the melt reservoir 22. Touch the liquid surface.
  • the seed crystal 17 is previously introduced into the pulling container 4 from the substrate entrance 16.
  • the melt 21 and the melt reservoir 22 are not shown in order to prioritize the visibility of the slit 19 and the opening 20.
  • FIG. 4 is a diagram showing the positional relationship between the seed crystal 17 and the partition plate 18.
  • the contact area between the seed crystal 17 and the melt 21 can be reduced by making the plane direction of the seed crystal 17 orthogonal to the longitudinal direction of the partition plate 18. Therefore, the contact portion of the seed crystal 17 becomes compatible with the melt 21, and crystal defects are less likely to occur in the grown and grown sapphire single crystal 2.
  • the neck 25 described later can be formed thinly. Also in this respect, the generation of crystal defects in the sapphire single crystal 2 is reduced or eliminated, It becomes possible to keep the crystal quality high. Therefore, the yield of the sapphire single crystal 2 can be improved.
  • FIG. 5 (b) is a diagram showing how a part of the seed crystal 17 is melted.
  • FIG. 6 is an explanatory view showing how the neck 25 grows.
  • the neck 25 is a crystal portion having a thin diameter about the thickness T of the seed crystal 17 or the width of the melt pool 22, and is formed to reduce or eliminate crystal defects. Further, the length of the neck 25 is formed up to about three times its diameter.
  • the manufacturing method of this embodiment compared with the manufacturing method which makes a seed crystal and a melt surface contact in parallel, it is a raw material required for pulling up the sapphire single crystal 2 until a crystal defect is removed. Therefore, the manufacturing cost can be reduced. In addition, since the time until crystal defects are completely removed in the pulling direction of the sapphire single crystal 2 can be shortened, the manufacturing speed can be improved.
  • FIG. 7 is a diagram illustrating the shape of the lower side of the seed crystal 17.
  • FIG. 7A shows a case where the lower side has a comb shape
  • FIG. 7B shows a case of a saw shape.
  • the interval between the irregularities is matched with the interval between the openings 20 and the convex portion is aligned with the center of the melt reservoir 22.
  • the convex portion can be used as the growth starting point of the sapphire single crystal 2, and the neck 25 can be formed more easily.
  • the shape of the unevenness is not limited to that shown in FIG. 7, and may be, for example, a corrugated uneven shape.
  • the heater 7 is controlled to lower the temperature of the crucible 5 and the substrate holder is set at a predetermined speed, and the sapphire single crystal as shown in FIG. 2 is grown so as to be widened in the longitudinal direction of the die 9 (spreading).
  • the sapphire single crystal 2 is widened to the full width of the die 9 (the end of the partition plate 18) (full spread)
  • a flat sapphire single crystal 2 having a large area and having the same width as the full width of the die 9 is grown. (Straight cylinder process).
  • FIG. 8 is a schematic diagram showing how the width of the sapphire single crystal 2 is expanded by the spreading process.
  • a flat plate portion 26 having a constant width similar to the full width of the die 9 is formed at a predetermined speed.
  • the flat sapphire single crystal 2 is obtained by pulling up to a predetermined length (straight body length).
  • the obtained sapphire single crystal 2 is allowed to cool, the gate valve 15 is opened, the sapphire single crystal 2 is moved to the pulling container 4 side, and taken out from the substrate entrance 16.
  • the appearance of the obtained flat plate-shaped sapphire single crystal 2 is shown in FIG.
  • the length of the straight body is not particularly limited, it is preferably 2 inches or more (50.8 mm or more).
  • the plurality of sapphire single crystals 2 are grown and grown while the plane direction of the main surface 27 of the plurality of sapphire single crystals 2 is the same as the crystal plane 28 of the seed crystal 17.
  • the seed crystal 17 is made of a sapphire single crystal and the crystal plane 28 is a c-plane
  • all the main surfaces 27 of the obtained flat plate-shaped sapphire single crystal 2 can be the c-plane. Therefore, it is possible to obtain a plurality of sapphire single crystals 2 with no variation in view of the crystal direction.
  • the manufacturing apparatus 1 is provided with a crucible driving unit 6 that rotates the crucible 5 in which the die 9 is installed, and a control unit (not shown) that controls the rotation.
  • the shaft 13 is also provided with a shaft drive unit 14 that rotates the shaft 13 and a control unit (not shown) that controls the rotation thereof. That is, the positioning of the seed crystal 17 with respect to the die 9 is adjusted by rotating the shaft 13 or the crucible 5 by the control unit.
  • FIG. 10 is a view showing an example in which a notch 29 is provided in the die 9.
  • dies 9 each having a V-shaped notch 29 are shown in the center in the longitudinal direction of the inclined surface 30.
  • the notch 29 is formed on a straight line in the thickness direction of the die 9.
  • the crystal plane 28 of the seed crystal 17 is not limited to the c plane, and can be set to a desired crystal plane such as an r plane, a plane, m plane, and the like. Thus, by arbitrarily setting the crystal plane 28, the plane direction of the main surface 27 of the sapphire single crystal 2 can be arbitrarily changed.
  • a plurality of sapphire single crystals 2 are manufactured by setting the gap D between the dies 9 within a range of 0.33 times to 0.67 times the thickness t of the dies 9. .
  • the gap D between the dies 9 is a minimum of 0.68 mm (0.33 ⁇ 2.0 mm) to a maximum of 4.36 mm (0.67). X6.5 mm).
  • the calculated value of the gap D was rounded off to the third decimal place.
  • the gap d between the sapphire single crystals 2 formed from the common seed crystal 17 is 0.33 times or more of the maximum thickness tm among the thicknesses of the sapphire single crystals 2. It is set to 0.67 times or less (see FIG. 9). Even if the thickness of the plurality of sapphire single crystals 2 varies, the maximum thickness of the plurality of sapphire single crystals 2 does not exceed the thickness t of the die 9. Therefore, ideally, the thickness t and the thickness tm are equal, and the gap D and the gap d are formed equally.
  • the seed crystal 17 is prevented from entering the gaps between the dies 9 or the gaps between the sapphire single crystals 2, and the occurrence of flatting.
  • the present applicant has found that it is possible to prevent the sticking between adjacent sapphire single crystals 2.
  • the gap D or d is set as described above, it is possible to prevent the melts 21 of the adjacent dies 9 from being connected by surface tension at the time of contact between the seed crystal 17 and the melt pool 22.
  • the gap D between the dies as a guide is known, it is possible to reduce the number of times of verification of optimization of the gap D between the dies. It becomes possible to improve the improvement speed.
  • a preferable setting value of the thickness T of the seed crystal 17 is 2 mm or more.
  • the thickness T is 2 mm or more.
  • the angle of deviation of the crystal axis of the main surface 27 between the sapphire single crystals 2 can be kept within a range of 0.5 ° or less due to the shape of the seed crystal 17 and its rigidity. . More specifically, the deformation of the seed crystal 17 is prevented with respect to the weight of the sapphire single crystal 2 that increases as the crystal growth increases, and the crystal plane 28 of the seed crystal 17 and the sapphire single crystal 2
  • the shape of the seed crystal 17 is set such that the deviation angle in the crystal axis direction generated between the main surface 27 and the crystal surface is within 0.5 ° or less.
  • the polishing amount necessary for correcting the deviation angle of the crystal axis for each sapphire single crystal 2 can be reduced to about 1.5 mm in the thickness direction of the sapphire single crystal 2.
  • the sapphire single crystal 2 of the present embodiment also has an effect of improving workability as a semiconductor substrate.
  • the manufacturing method of the present embodiment it is possible to form a plurality of large sapphire single crystals 2 maintaining crystal quality from a common seed crystal 17 at a time.
  • the gap D is within a range of 0.33 to 0.67 times the thickness t. Is set to satisfy.
  • the gap d between the sapphire single crystals 2 formed from the common seed crystal 17 is also within a range of 0.33 to 0.67 times the thickness tm. Will satisfy the relationship. Specifically, assuming that the thickness t of the die 9 is manufactured in the range of 2.0 mm to 6.5 mm, the gap D between the dies 9 is in the range of 0.96 mm to 2.28 mm from the minimum according to Equation 3. Will be set. However, the calculated value of the gap D was rounded off to the third decimal place.
  • the gap D and the gap d are ideally formed equally.
  • a plurality of sapphire single crystals 2 with such gaps D or d in addition to preventing the occurrence of the flatting and the generation of crystal defects due to the flatting, further, between the sapphire single crystals 2 It is possible to maintain a uniform heat balance in the crucible 5 by the temperature in the crucible 5 and the radiant heat between the sapphire single crystals 2. Therefore, a plurality of sapphire single crystals 2 with improved crystal quality can be grown and grown simultaneously.
  • each sapphire single crystal 2 is kept uniform by the melt pool 22 on the die 9 and the radiant heat between the sapphire single crystals 2, and between the sapphire single crystals 2 grown and grown. It became possible to maintain the heat balance in an optimum state suitable for crystal growth.
  • the gap D or the gap d is set to be 0.33 times or more and 0.67 times or less of the thickness t or the thickness tm as a range in which it is possible to achieve both prevention of flatting while ensuring mass productivity.
  • the thickness variation of the sapphire single crystal 2 and the thickness variation over the length of the straight body of each sapphire single crystal 2 is t (see FIG. 2 (b), FIG. 4, etc.). ), Being within the range of 0.01 t or more and 0.1 t or less is preferable from the viewpoint that it is possible to prevent the adjacent sapphire single crystals 2 from sticking (flatting).
  • the present invention can be applied to the growth of a sapphire single crystal having a step structure on the main surface.
  • the m-axis of the seed crystal is aligned with the pulling direction of the sapphire single crystal.
  • the c-axis of the seed crystal positioned in the direction perpendicular to the pulling direction is a predetermined angle (for example, 0.05 ° or more) in the a-axis direction with respect to the normal of the main surface of the sapphire single crystal with the pulling direction as the rotation axis It is also possible to grow by inclining.
  • the description which overlaps with the said embodiment is abbreviate
  • the Z axis is arranged in parallel to the pulling direction of the sapphire single crystal.
  • the c-axis of the seed crystal 31 is adjusted so that the angle ⁇ formed with the Z-axis (the axis in the pulling direction) is within a predetermined range (for example, 90 ° ⁇ 0.5 °), as shown in FIG. Further, as shown in FIG. 11B, the c-axis is inclined at a predetermined angle ⁇ (for example, a range of 0.05 ° or more and 1.0 ° or less) in the X-axis direction (a-axis direction).
  • the m-axis in the pulling-up axis direction (Z-axis direction) is perpendicular to the c-axis as shown in FIG. 11 (a), and the m-axis is as shown in FIG. 11 (c).
  • the deviation angle ⁇ from the pulling-up axis direction (Z-axis) is adjusted within a predetermined angle range (for example, 0.5 ° or less) in the X-axis direction with respect to the Z-axis.
  • the sapphire single crystal 32 grown using the seed crystal 31 is c c as shown in FIG.
  • the axis is inclined at a predetermined angle ⁇ (in the range of 0.05 ° or more and 1.0 ° or less as described above) with respect to the normal nv direction of the main surface with the Z axis (the pulling direction) as the rotation axis. That is, a sapphire single crystal having a c-axis tilt angle on the main surface corresponding to the predetermined angle ⁇ can be obtained with the interval d.
  • the deviation angle between the m-axis and the Z-axis is formed within the ⁇ (0.5 °), and as shown in FIG. 12 (c), the c-axis and the Z-axis are formed within the ⁇ (90 ° ⁇ 0.5 °). Is done.
  • illustration of the neck is abbreviate
  • a clear crystal habit plane appears when the step structure appears on the c-plane, which is the main surface of the sapphire single crystal.
  • a sapphire single crystal whose c-axis is inclined at a predetermined angle ⁇ with respect to the nv direction using a seed crystal 31 in which the c-axis is inclined in the a-axis direction by a predetermined angle ⁇ in advance.
  • growing 32 has been described, the present invention is not limited to this, and a sapphire single crystal may be grown using the seed crystal 33 shown in FIG.
  • the c-axis of the seed crystal 33 is adjusted so that the angle ⁇ formed with the Z-axis is within a predetermined range (for example, 90 ° ⁇ 0.5 °) as shown in FIG. 13 (a). As shown, the c-axis is adjusted to be parallel to the Y-axis direction. On the other hand, the m-axis in the pulling direction (Z-axis) is perpendicular to the c-axis as shown in FIG. 13A, and the deviation angle ⁇ from the Z-axis is Z-axis as shown in FIG. Is adjusted within a predetermined range (0.5 ° or less) in the X-axis direction (a-axis direction).
  • a predetermined range for example, 90 ° ⁇ 0.5 °
  • the normal line of the side surface (end face) of the seed crystal 33 is positioned with a predetermined angle ⁇ shifted from the normal line of the partition plate 18 as shown in FIG.
  • the shaft 13 or the crucible 5 is rotated by the control unit so that the normal line of the side surface (end face) of the seed crystal 33 is accurately positioned within the range of the predetermined angle ⁇ with respect to the normal line of the partition plate 18. To do. Thereby, a sapphire single crystal in which the c-axis is inclined by a predetermined angle ⁇ in a predetermined direction can be obtained.
  • Example 2 In this example, the manufacturing apparatus 1 shown in FIG. 1 and a die without a notch 29 as shown in FIG. 2 were used, and a sapphire single crystal having a c-plane principal surface was grown and grown by the EFG method. Sixteen dies were prepared and arranged in parallel with a predetermined gap D in parallel with each other.
  • a granulated aluminum oxide raw material powder (99.99% aluminum oxide) was used as the aluminum oxide raw material, and a predetermined amount was charged into the crucible 5 containing the die 9 and melted to obtain an aluminum oxide melt.
  • Argon gas was introduced into the growth vessel 3 as the atmospheric gas.
  • the seed crystal As the seed crystal, a substrate made of sapphire single crystal and having a thickness T of 2 mm was used, and the c-axis was a horizontal substrate along the plane direction of the main surface (a plane orthogonal to the crystal plane 28).
  • the shape of the seed crystal was the substrate shown in FIG. Further, the seed crystal was arranged so that the plane direction of the seed crystal and the longitudinal direction of the die were orthogonal to each other at an angle of 90 ° as shown in FIG.
  • the width of the sapphire single crystal was about 2 inches.
  • examples 1 to 10 were performed, and in examples 1 to 4, the gap D was set to 0.34 times the thickness t of the die.
  • the gap D was set so as to satisfy Equation 3.
  • the thickness t of the die is appropriately set as shown in Table 1 within the range of 3.3 mm to 4.5 mm in Examples 1 to 4, and appropriately set within Table 1 to within the range of 3.3 mm to 6.5 mm in Examples 5 to 10. Set as shown. Therefore, as shown in Table 1, the gap D was appropriately set in the range of 1.12 mm to maximum 1.53 mm in Examples 1 to 4, and appropriately set in the range of 1.20 mm to maximum 2.28 mm in Examples 5 to 10. However, the calculated value of the gap D was rounded off to the third decimal place.
  • the gap d between the 16 flat-plate-shaped sapphire single crystals grown and grown was measured, the gap d was 0.33 times the maximum thickness tm of the 16 sheets in all Examples 1 to 10 or more and 0.67. It was confirmed that it was within the range of more than twice.
  • the thickness tm in each example was equal to the die thickness t (as described above, the die thickness t was different in each example). Further, in Examples 5 to 10, it was also confirmed that the gap d satisfies the equation (4).
  • the comparative example is different from the example in that the die thickness t is set to 4.5 mm, the gap D between the dies is set to 1.3 mm, the gap D is set to about 0.29 times the thickness t, and set to less than 0.33 times. This is the point.
  • the gap d between the 16 flat-plate-shaped sapphire single crystals grown and measured was measured, the gap d was less than 0.33 times the maximum thickness tm of the 16 pieces, and was formed at about 0.29 times. Was confirmed.
  • the thickness tm in the comparative example was equal to the die thickness t.

Abstract

Provided are a plurality of sapphire single crystals and a method of manufacturing the same that can prevent crystal defects by preventing flatting and improving heat balance by optimally setting the gap between dies or the gap between sapphire single crystals with respect to the thickness of the dies or the maximum thickness of the plurality of sapphire single crystals. A plurality of sapphire single crystals are manufactured by: housing a plurality of dies, each having a slit, in a crucible; charging an aluminum oxide raw material into the crucible and heating the aluminum oxide raw material to form a molten pile of aluminum oxide above the slits; causing seed crystals to touch the molten pile and then withdrawing the seed crystals from the molten pile to grow a plurality of sapphire single crystals; and setting a gap D between the dies to 0.33 to 0.67 times the thickness t of the dies. A gap d between the plurality of sapphire single crystals is set to 0.33 to 0.67 times the maximum thickness tm of the sapphire single crystals, among the thicknesses of the plurality of sapphire single crystals.

Description

複数のサファイア単結晶とその製造方法Multiple sapphire single crystals and method for producing the same
 本発明は、複数のサファイア単結晶とその製造方法に関する。 The present invention relates to a plurality of sapphire single crystals and a manufacturing method thereof.
 現在、LED(Light Emitting Diode)等の発光素子に代表される半導体基板材料として、サファイア単結晶基板が広く用いられている。サファイア単結晶基板の量産方法としては、CZ法(チョクラルスキー法)とEFG法(Edge-defined Film-fed. Growth法)に大別される。 Currently, a sapphire single crystal substrate is widely used as a semiconductor substrate material typified by a light emitting element such as an LED (Light Emitting Diode). Mass production methods for sapphire single crystal substrates are roughly classified into CZ method (Czochralski method) and EFG method (Edge-defined Film-fed. Growth method).
 CZ法は、基板素材となるサファイア単結晶を塊状にインゴットで育成し、育成によって得られたインゴットから基板状にスライスする方法である。一方EFG法は、サファイア単結晶を平板状に育成し、育成によって得られたサファイア単結晶を任意の形状に切り抜く方法である。これら二つの育成方法の内、EFG法を用いて複数のサファイア単結晶を同時に成長させる方法が出願され、公開されている(例えば、特許文献1参照)。 The CZ method is a method in which a sapphire single crystal serving as a substrate material is grown in a lump in an ingot and sliced from the ingot obtained by the growth into a substrate. On the other hand, the EFG method is a method of growing a sapphire single crystal into a flat plate shape and cutting out the sapphire single crystal obtained by the growth into an arbitrary shape. Among these two growth methods, a method for simultaneously growing a plurality of sapphire single crystals using the EFG method has been filed and published (for example, see Patent Document 1).
 前述の特許文献1記載の単結晶製造方法では、平板形状のサファイア単結晶を成長させる原料融液の液面の長手方向に対して垂直な方向に種結晶を配置し、種結晶を引き上げることにより、平板状の複数のサファイア単結晶を製造する。複数のサファイア単結晶を一括で成長させることが出来るので、サファイア単結晶の量産性を向上させることが可能となる。 In the single crystal manufacturing method described in Patent Document 1, the seed crystal is arranged in a direction perpendicular to the longitudinal direction of the liquid surface of the raw material melt for growing the flat sapphire single crystal, and the seed crystal is pulled up. A plurality of flat sapphire single crystals are produced. Since a plurality of sapphire single crystals can be grown at once, the mass productivity of the sapphire single crystals can be improved.
特許第4465481号公報Japanese Patent No. 4465481
 しかしながら、特許文献1記載の製造方法では、複数のサファイア単結晶間で単結晶同士が貼り付く、フラッティングが発生するおそれがある。フラッティングの原因としては原料融液の液面の液溜まりを形成するダイ間の間隙を小さく設定し過ぎることが考えられる。ダイ間の間隙を小さく設定し過ぎると、種結晶を原料融液の液面とダイに接触させて種結晶の一部を溶融する際に、ダイ間の間隙に種結晶の入り込みが発生するため、フラッティングが発生し、隣接するサファイア単結晶同士が貼り付いて一体化してしまうと云う課題があった。フラッティングが発生すると、一体化したサファイア単結晶は不良品となり量産性や歩留まりの低下を招いていた。また、ダイ間の間隙が小さくなると、複数のサファイア単結晶間の間隙も小さくなり、フラッティング発生の原因となる。 However, in the manufacturing method described in Patent Document 1, single crystals stick to each other between a plurality of sapphire single crystals, and there is a possibility that flatting may occur. As a cause of the flatting, it is conceivable that the gap between the dies forming the liquid pool of the raw material melt is set too small. If the gap between the dies is set too small, the seed crystal will enter the gap between the dies when the seed crystal is brought into contact with the surface of the raw material melt and the die to melt part of the seed crystal. There has been a problem that flattening occurs and adjacent sapphire single crystals stick together to be integrated. When flatting occurred, the integrated sapphire single crystal became a defective product, leading to a decrease in mass productivity and yield. Further, when the gap between the dies is reduced, the gap between the plurality of sapphire single crystals is also reduced, which causes the occurrence of flatting.
 更に、ダイ間の間隙を小さく設定し過ぎると複数のサファイア単結晶間の間隙も小さくなり、サファイア単結晶間の熱バランスが悪化し、フラッティングの発生を免れたその他の個々のサファイア単結晶に結晶欠陥を招いてしまう。従って、フラッティングだけで無くサファイア単結晶の結晶品質の低下も招いてしまい、量産性の著しい低下を引き起こしていた。 Furthermore, if the gap between the dies is set too small, the gap between the sapphire single crystals also becomes small, the thermal balance between the sapphire single crystals deteriorates, and other individual sapphire single crystals that are free from the occurrence of flatting This will cause crystal defects. Therefore, not only the flatting but also the crystal quality of the sapphire single crystal is lowered, which causes a significant reduction in mass productivity.
 本発明は、上記事情に照らしてなされたものであり、ダイの厚みか又は複数のサファイア単結晶の最大の厚みに対して、ダイ間の間隙又はサファイア単結晶間の間隙を最適に設定することで、フラッティングの防止と熱バランスの改善による結晶欠陥の防止が可能な、複数のサファイア単結晶とその製造方法の提供を課題とする。 The present invention has been made in light of the above circumstances, and optimally sets the gap between dies or the gap between sapphire single crystals with respect to the thickness of the die or the maximum thickness of a plurality of sapphire single crystals. Therefore, it is an object to provide a plurality of sapphire single crystals and a manufacturing method thereof that can prevent crystal defects by preventing flattening and improving thermal balance.
 前記課題は、以下の本発明により達成される。即ち、
 (1)本発明の複数のサファイア単結晶の製造方法は、スリットを有すると共に、各々の長手方向が平行に配置された複数のダイを坩堝に収容し、坩堝に酸化アルミニウム原料を投入して加熱し、酸化アルミニウム原料を坩堝内で溶融して酸化アルミニウム融液を用意し、スリットを介してスリット上部に酸化アルミニウム融液溜まりを形成し、そのスリット上部の酸化アルミニウム融液に種結晶を接触させ、種結晶を引き上げることで、所望の主面を有する複数のサファイア単結晶を成長させ、各ダイ間の間隙Dを、ダイの厚みtの0.33倍以上0.67倍以下に設定して複数のサファイア単結晶を製造することを特徴とする。
The above-mentioned subject is achieved by the following present invention. That is,
(1) In the method for producing a plurality of sapphire single crystals of the present invention, a plurality of dies having slits and arranged in parallel in the longitudinal direction are accommodated in a crucible, and an aluminum oxide raw material is charged into the crucible and heated. Then, an aluminum oxide raw material is melted in a crucible to prepare an aluminum oxide melt, an aluminum oxide melt pool is formed at the upper part of the slit through a slit, and a seed crystal is brought into contact with the aluminum oxide melt at the upper part of the slit. By pulling up the seed crystal, a plurality of sapphire single crystals having a desired main surface are grown, and the gap D between the dies is set to be 0.33 times or more and 0.67 times or less of the die thickness t, and the plurality of sapphire single crystals are set. It is characterized by producing crystals.
 (2)本発明の複数のサファイア単結晶の製造方法の一実施形態は、間隙Dを厚みtの0.33倍以上0.67倍以下の範囲内で更に、
Figure JPOXMLDOC01-appb-M000003
 
を満足することが好ましい。
(2) In one embodiment of the method for producing a plurality of sapphire single crystals of the present invention, the gap D is further within a range of 0.33 to 0.67 times the thickness t.
Figure JPOXMLDOC01-appb-M000003

Is preferably satisfied.
 (3)また、本発明の複数のサファイア単結晶は共通の種結晶から形成されており、更にサファイア単結晶間の間隙dが、複数のサファイア単結晶の厚みの内、最大の厚みtmの0.33倍以上0.67倍以下に設定されることを特徴とする。 (3) Further, the plurality of sapphire single crystals of the present invention are formed from a common seed crystal, and the gap d between the sapphire single crystals is 0.33 which is the maximum thickness tm among the thicknesses of the plurality of sapphire single crystals. It is set to be not less than twice and not more than 0.67 times.
 (4)本発明の複数のサファイア単結晶の一実施形態は、間隙dが厚みtmの0.33倍以上0.67倍以下の範囲内で更に、
Figure JPOXMLDOC01-appb-M000004
 
を満足することが好ましい。
(4) In one embodiment of the plurality of sapphire single crystals of the present invention, the gap d is within the range of 0.33 times to 0.67 times the thickness tm.
Figure JPOXMLDOC01-appb-M000004

Is preferably satisfied.
 (5)本発明の複数のサファイア単結晶の、他の実施形態は、複数の前記サファイア単結晶の主面の結晶軸のずれ角が、0.5°以下の範囲内であることが好ましい。 (5) In another embodiment of the plurality of sapphire single crystals of the present invention, the angle of deviation of the crystal axes of the main surfaces of the plurality of sapphire single crystals is preferably in the range of 0.5 ° or less.
 前記(1)、(3)の発明に依れば、ダイの厚みtか又は複数のサファイア単結晶における最大の厚みtmの、0.33倍以上0.67倍以下の範囲内に設定された間隙D及びdで、複数のサファイア単結晶を形成する。このような間隙D又はdで複数のサファイア単結晶を形成することにより、ダイ間の間隙又はサファイア単結晶間の間隙への種結晶の入り込みが防止され、フラッティングの発生も防止され、隣接するサファイア単結晶同士の貼り付きを解消することが可能となる。 According to the inventions of (1) and (3), the gaps D and d set in the range of 0.33 to 0.67 times the die thickness t or the maximum thickness tm of the plurality of sapphire single crystals. Thus, a plurality of sapphire single crystals are formed. By forming a plurality of sapphire single crystals with such a gap D or d, it is possible to prevent the seed crystal from entering the gap between the dies or the gap between the sapphire single crystals, and to prevent the occurrence of fluttering. It becomes possible to eliminate sticking between sapphire single crystals.
 更に、前記の通り間隙D又はdを設定することにより、種結晶と融液溜まりとの接触時に、隣同士のダイの各融液が表面張力によって繋がる事も防止出来る。従って、歩留まりの低下を解消してより高い量産性で以てサファイア単結晶を育成することが可能となった。更に、フラッティングに起因する結晶欠陥の発生も防止することが出来る。 Furthermore, by setting the gap D or d as described above, it is possible to prevent the melts of adjacent dies from being connected by the surface tension at the time of contact between the seed crystal and the melt pool. Therefore, it became possible to grow a sapphire single crystal with higher mass productivity by eliminating the decrease in yield. Furthermore, it is possible to prevent the occurrence of crystal defects due to flatting.
 更に、目安となるダイ間の間隙Dが分かるため、ダイ間の間隙Dの最適化の検証回数を減少させることが可能となり、その結果、サファイア単結晶の複数枚育成の開発及び結晶品質の改善スピードを向上させることが可能となる。 Furthermore, since the gap D between the dies as a guide can be known, it is possible to reduce the number of verifications of optimization of the gap D between the dies, and as a result, the development of the growth of a plurality of sapphire single crystals and the improvement of the crystal quality. It becomes possible to improve the speed.
 更に、前記(2)、(4)の発明に依れば、フラッティング発生の防止やフラッティングに起因する結晶欠陥の発生防止に加えて、育成成長する各サファイア単結晶間の熱バランスを結晶育成に適した最適な状態で保持する事が可能となった。加えて、熱バランスの保持によって各サファイア単結晶の育成条件を均一に保持することが可能となった。この為、線欠陥及び結晶粒界といった結晶箇所が無く更に結晶品質が改善されたサファイア単結晶を複数引き上げることが可能となった。従って、より実用的なサファイア単結晶を複数同時に引き上げることが出来、更なる歩留まりの改善と量産性の向上を図ることが可能となる。 Further, according to the inventions of the above (2) and (4), in addition to preventing the occurrence of flattening and the occurrence of crystal defects due to the flatting, the thermal balance between each sapphire single crystal grown and grown is crystallized. It became possible to hold in an optimal state suitable for breeding. In addition, the growth condition of each sapphire single crystal can be maintained uniformly by maintaining the heat balance. For this reason, it is possible to pull up a plurality of sapphire single crystals having no crystal parts such as line defects and crystal grain boundaries and having improved crystal quality. Therefore, a plurality of more practical sapphire single crystals can be pulled up simultaneously, and it becomes possible to further improve yield and mass productivity.
 更に、前記(5)の発明に依れば、サファイア単結晶毎における結晶軸のずれ角の補正に必要な研磨量を、サファイア単結晶の厚み方向において1.5mm程度に収めることが可能となった。この為、半導体用基板としてのサファイア単結晶の加工性を向上させることが可能となる。 Further, according to the invention of (5), it is possible to keep the polishing amount necessary for correcting the deviation angle of the crystal axis for each sapphire single crystal to about 1.5 mm in the thickness direction of the sapphire single crystal. . For this reason, it becomes possible to improve the workability of the sapphire single crystal as the semiconductor substrate.
EFG法によるサファイア単結晶の製造装置を示す概略構成図である。It is a schematic block diagram which shows the manufacturing apparatus of the sapphire single crystal by EFG method. (a)本発明の実施形態に係るダイの一例を模式的に示す平面図である。(b)同図(a)の正面図である。(c)同図(a)の側面図である。(a) It is a top view which shows typically an example of the die | dye which concerns on embodiment of this invention. (b) It is a front view of the figure (a). (c) It is a side view of the same figure (a). (a)本発明の実施形態に係る種結晶の一例を示す説明図である。(b)本発明の実施形態に係る種結晶の他の例を示す説明図である。(c)本発明の実施形態に係る種結晶の更に他の例を示す説明図である。(a) It is explanatory drawing which shows an example of the seed crystal which concerns on embodiment of this invention. (b) It is explanatory drawing which shows the other example of the seed crystal which concerns on embodiment of this invention. (c) It is explanatory drawing which shows the further another example of the seed crystal which concerns on embodiment of this invention. 本発明の実施形態における種結晶と仕切り板との位置関係を模式的に示す斜視図である。It is a perspective view which shows typically the positional relationship of the seed crystal and partition plate in embodiment of this invention. (a)本発明の実施形態における種結晶と仕切り板との位置関係を模式的に示す正面図である。(b)本発明の実施形態における、種結晶の一部を溶融する様子を示す正面図である。(a) It is a front view which shows typically the positional relationship of the seed crystal and partition plate in embodiment of this invention. (b) It is a front view which shows a mode that a part of seed crystal is fuse | melted in embodiment of this invention. 本発明の実施形態におけるネックが成長する様子を模式的に示す斜視図である。It is a perspective view which shows typically a mode that the neck in embodiment of this invention grows. (a)本発明の実施形態に係る種結晶において、下辺が櫛歯形状の種結晶を示す説明図である。(b)本発明の実施形態に係る種結晶において、下辺が鋸形形状の種結晶を示す説明図である。(a) In the seed crystal which concerns on embodiment of this invention, a lower side is explanatory drawing which shows a comb-tooth shaped seed crystal. (b) In the seed crystal which concerns on embodiment of this invention, a lower side is explanatory drawing which shows a saw-shaped seed crystal. 本発明の実施形態に係るサファイア単結晶のスプレディング工程を模式的に示す斜視図である。It is a perspective view which shows typically the spreading process of the sapphire single crystal which concerns on embodiment of this invention. EFG法により得られる、本発明の実施形態に係る複数のサファイア単結晶を部分的に示す斜視図である。It is a perspective view which shows partially the several sapphire single crystal which concerns on embodiment of this invention obtained by EFG method. 本発明の実施形態の変更例における、種結晶と仕切り板との位置関係を模式的に示す斜視図である。It is a perspective view which shows typically the positional relationship of a seed crystal and a partition plate in the example of a change of embodiment of this invention. (a)本発明の実施形態の変更例に係る種結晶の正面図である。(b)同図(a)の平面図である。(c)同図(a)の側面図である。(a) It is a front view of the seed crystal which concerns on the example of a change of embodiment of this invention. (b) It is a top view of the figure (a). (c) It is a side view of the same figure (a). (a)図11の種結晶を用いて育成されたサファイア単結晶の底面図である。 (b)同図(a)の正面図である。(c)同図(a)の側面図である。(a) It is a bottom view of the sapphire single crystal grown using the seed crystal of FIG. (B) is a front view of FIG. (c) It is a side view of the same figure (a). (a)本発明の他の変更例に係る種結晶の正面図である。(b)同図(a)の平面図である。(c)同図(a)の側面図である。(a) It is a front view of the seed crystal concerning the other modification of this invention. (b) It is a top view of the figure (a). (c) It is a side view of the same figure (a). 図13に示す種結晶と、仕切り板との位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of the seed crystal shown in FIG. 13, and a partition plate.
 以下に、本発明の実施形態に係る複数のサファイア単結晶及びその製造方法について、図1から図10を参照しながら説明する。 Hereinafter, a plurality of sapphire single crystals and a manufacturing method thereof according to an embodiment of the present invention will be described with reference to FIGS. 1 to 10.
 図1に示すように、サファイア単結晶の製造装置1は、サファイア単結晶2を育成する育成容器3と、育成したサファイア単結晶2を引き上げる引き上げ容器4とから構成され、EFG(Edge-defined Film-fed. Growth)法によりサファイア単結晶2を育成成長する。 As shown in FIG. 1, the sapphire single crystal manufacturing apparatus 1 includes a growth container 3 for growing a sapphire single crystal 2 and a pulling container 4 for pulling up the grown sapphire single crystal 2. -fed. Growth) method is used to grow and grow sapphire single crystal 2.
 育成容器3は、坩堝5、坩堝駆動部6、ヒータ7、電極8、ダイ9、及び断熱材10を備える。坩堝5はモリブデン製であり、酸化アルミニウム原料を溶融する。坩堝駆動部6は、坩堝5をその鉛直方向を軸として回転させる。ヒータ7は坩堝5を加熱する。また、電極8はヒータ7を通電する。ダイ9は坩堝5内に設置され、サファイア単結晶2を引き上げる際の酸化アルミニウム融液(以下、必要に応じて単に「融液」と表記)21の液面形状を決定する。また断熱材10は、坩堝5とヒータ7とダイ9を取り囲んでいる。 The growth container 3 includes a crucible 5, a crucible drive unit 6, a heater 7, an electrode 8, a die 9, and a heat insulating material 10. The crucible 5 is made of molybdenum and melts the aluminum oxide raw material. The crucible drive unit 6 rotates the crucible 5 with the vertical direction as an axis. The heater 7 heats the crucible 5. The electrode 8 energizes the heater 7. The die 9 is installed in the crucible 5 and determines the liquid surface shape of an aluminum oxide melt (hereinafter simply referred to as “melt” if necessary) 21 when pulling up the sapphire single crystal 2. The heat insulating material 10 surrounds the crucible 5, the heater 7 and the die 9.
 更に育成容器3は、雰囲気ガス導入口11と排気口12を備える。雰囲気ガス導入口11は、雰囲気ガスとして例えばアルゴンガスを育成容器3内に導入するための導入口であり、坩堝5やヒータ7、及びダイ9の酸化消耗を防止する。一方、排気口12は育成容器3内を排気するために備えられる。 Furthermore, the growth vessel 3 includes an atmospheric gas inlet 11 and an exhaust port 12. The atmosphere gas introduction port 11 is an introduction port for introducing, for example, argon gas into the growth vessel 3 as the atmosphere gas, and prevents oxidation of the crucible 5, the heater 7, and the die 9. On the other hand, the exhaust port 12 is provided for exhausting the inside of the growth vessel 3.
 引き上げ容器4は、シャフト13、シャフト駆動部14、ゲートバルブ15、及び基板出入口16を備え、種結晶17から育成成長した複数の平板形状のサファイア単結晶2を引き上げる。シャフト13は種結晶17を保持する。またシャフト駆動部14は、シャフト13を坩堝5に向けて昇降させると共に、その昇降方向を軸としてシャフト13を回転させる。ゲートバルブ15は育成容器3と引き上げ容器4とを仕切る。また基板出入口16は、種結晶17を出し入れする。 The pulling container 4 includes a shaft 13, a shaft driving unit 14, a gate valve 15, and a substrate inlet / outlet 16, and pulls up a plurality of flat plate-shaped sapphire single crystals 2 grown from the seed crystal 17. The shaft 13 holds a seed crystal 17. Further, the shaft driving unit 14 moves the shaft 13 up and down toward the crucible 5 and rotates the shaft 13 around the lifting direction. The gate valve 15 partitions the growth container 3 and the lifting container 4. The substrate entrance / exit 16 takes in and out the seed crystal 17.
 なお製造装置1は図示されない制御部も有しており、この制御部により坩堝駆動部6及びシャフト駆動部14の回転を制御する。 The manufacturing apparatus 1 also has a control unit (not shown), and the rotation of the crucible drive unit 6 and the shaft drive unit 14 is controlled by this control unit.
 次に、ダイ9について説明する。ダイ9はモリブデン製であり、図2に示すように多数の仕切り板18を有する。図2ではダイの一例として、仕切り板18が30枚であり、ダイ9が15個形成されている場合を示している。仕切り板18は同一の平板形状を有し、微小間隙(スリット)19を形成するように互いに平行に配置されて、1つのダイ9を形成している。スリット19は、ダイ9のほぼ全幅に亘って設けられる。また複数のダイ9は同一形状を有すると共に、その長手方向が互いに平行となるように所定の間隔で並列に配置されているため、複数のスリット19が設けられることとなる。各仕切り板18の上部は斜面30が形成されており、互いの斜面30が向かい合わせで配置されることで、鋭角の開口部20が形成されている。またスリット19は融液21を毛細管現象によって、各ダイ9の下端から開口部20に上昇させる役割を有している。 Next, the die 9 will be described. The die 9 is made of molybdenum and has a number of partition plates 18 as shown in FIG. As an example of the die, FIG. 2 shows a case where there are 30 partition plates 18 and 15 dies 9 are formed. The partition plates 18 have the same flat plate shape and are arranged in parallel to each other so as to form a minute gap (slit) 19 to form one die 9. The slit 19 is provided over almost the entire width of the die 9. Further, since the plurality of dies 9 have the same shape and are arranged in parallel at a predetermined interval so that the longitudinal directions thereof are parallel to each other, a plurality of slits 19 are provided. A slope 30 is formed on the upper part of each partition plate 18, and an acute angle opening 20 is formed by arranging the slopes 30 to face each other. The slit 19 has a role of raising the melt 21 from the lower end of each die 9 to the opening 20 by capillary action.
 坩堝5内に投入される酸化アルミニウム原料は、坩堝5の温度上昇に基づいて溶融(原料メルト)し、融液21となる。この融液21の一部は、ダイ9のスリット19に侵入し、前記のように毛細管現象に基づいてスリット19内を上昇し開口部20から露出して、開口部20で酸化アルミニウム融液溜まり22が形成される(図5(a)参照)。EFG法では、酸化アルミニウム融液溜まり(以下、必要に応じて「融液溜まり」と表記)22で形成される融液面の形状に従って、サファイア単結晶2が成長する。図2に示したダイ9では、融液面の形状は細長い長方形となるので、平板形状のサファイア単結晶2が製造される。 The aluminum oxide raw material charged into the crucible 5 is melted (raw material melt) based on the temperature rise of the crucible 5 to become a melt 21. A part of the melt 21 enters the slit 19 of the die 9, and ascends in the slit 19 based on the capillary phenomenon as described above and is exposed from the opening 20. 22 is formed (see FIG. 5A). In the EFG method, the sapphire single crystal 2 grows according to the shape of the melt surface formed by the aluminum oxide melt pool (hereinafter referred to as “melt pool” if necessary) 22. In the die 9 shown in FIG. 2, the shape of the melt surface is an elongated rectangle, so that a flat sapphire single crystal 2 is manufactured.
 次に、種結晶17について説明する。図1、図4、及び図5に示すように本実施形態では、種結晶17として平板形状の基板を用い、更にc軸が主面(結晶面28と直交する面)の面方向に沿って水平なサファイア単結晶製の基板を用いる。更に、種結晶17の平面方向とダイ9の長手方向は、互いに90°の角度で以て直交となるように、種結晶17が配置される。従って、種結晶17のc軸は、仕切り板18と垂直になる。また、種結晶17とサファイア単結晶2も90°の角度で以て直交するので、図1ではサファイア単結晶2の側面を示している。種結晶17の平面方向と仕切り板18の長手方向との位置関係を垂直にする(種結晶17を仕切り板18と交叉させる)ことにより、融液21と種結晶17との接触面積を最小にすることが可能となる。従って、種結晶17の接触部分が融液21と馴染み易くなり、サファイア単結晶2での結晶欠陥の発生が低減又は解消される。 Next, the seed crystal 17 will be described. As shown in FIGS. 1, 4, and 5, in this embodiment, a flat substrate is used as the seed crystal 17, and the c-axis is along the surface direction of the main surface (a surface orthogonal to the crystal surface 28). A horizontal sapphire single crystal substrate is used. Further, the seed crystal 17 is arranged so that the planar direction of the seed crystal 17 and the longitudinal direction of the die 9 are orthogonal to each other at an angle of 90 °. Accordingly, the c-axis of the seed crystal 17 is perpendicular to the partition plate 18. Further, since the seed crystal 17 and the sapphire single crystal 2 are also orthogonal to each other at an angle of 90 °, FIG. 1 shows the side surface of the sapphire single crystal 2. By making the positional relationship between the plane direction of the seed crystal 17 and the longitudinal direction of the partition plate 18 perpendicular (by crossing the seed crystal 17 with the partition plate 18), the contact area between the melt 21 and the seed crystal 17 is minimized. It becomes possible to do. Therefore, the contact part of the seed crystal 17 becomes easy to become familiar with the melt 21, and the generation of crystal defects in the sapphire single crystal 2 is reduced or eliminated.
 種結晶17は、シャフト13の下部の基板保持具(図示せず)との接触面積が大きいと、熱膨張率の差による応力のため変形し、場合によっては破損してしまう。反対に熱膨張率の差により種結晶17の固定が緩む場合もある。従って、種結晶17と基板保持具との接触面積は小さい方が好ましい。また、種結晶17は基板保持具に確実に固定できる基板形状の必要がある。 If the contact area with the substrate holder (not shown) under the shaft 13 is large, the seed crystal 17 is deformed due to a stress due to a difference in thermal expansion coefficient, and may be damaged in some cases. Conversely, the fixation of the seed crystal 17 may be loosened due to the difference in thermal expansion coefficient. Therefore, it is preferable that the contact area between the seed crystal 17 and the substrate holder is small. The seed crystal 17 needs to have a substrate shape that can be securely fixed to the substrate holder.
 図3は種結晶17の基板形状の一例を示した図である。このうち、同図(a)及び(b)は、種結晶17の上部に切り欠き部23を設けたものである。この切り欠き部23を利用して、例えば2カ所の切り欠き部23の下側からU字形の基板保持具を差し込んで、接触面積を小さくしつつ確実に種結晶17を保持することが可能となる。 FIG. 3 is a diagram showing an example of the substrate shape of the seed crystal 17. Among these, FIGS. 4A and 4B show a case where a notch 23 is provided in the upper part of the seed crystal 17. Using this notch 23, for example, a U-shaped substrate holder can be inserted from the lower side of the two notches 23 to securely hold the seed crystal 17 while reducing the contact area. Become.
 また、図3(c)に示したように、種結晶17内側に切り欠き穴24を設けても良い。この切り欠き穴24を利用して、例えば2カ所の切り欠き穴24に係止爪を差し込んで、基板保持具と種結晶17との接触面積を小さくしつつ、確実に種結晶17を保持することが可能となる。 Further, as shown in FIG. 3C, a notch hole 24 may be provided inside the seed crystal 17. Using this cutout hole 24, for example, locking claws are inserted into the two cutout holes 24 to securely hold the seed crystal 17 while reducing the contact area between the substrate holder and the seed crystal 17. It becomes possible.
 次に、前記製造装置1を使用したサファイア単結晶2の製造方法を説明する。最初にサファイア原料である、造粒された酸化アルミニウム原料粉末(99.99%酸化アルミニウム)をダイ9が収納された坩堝5に所定量投入して充填する。酸化アルミニウム原料粉末には、製造しようとするサファイア単結晶の純度又は組成に応じて、酸化アルミニウム以外の化合物や元素が含まれていても良い。 Next, a method for manufacturing the sapphire single crystal 2 using the manufacturing apparatus 1 will be described. First, a predetermined amount of granulated aluminum oxide raw material powder (99.99% aluminum oxide), which is a sapphire raw material, is charged into a crucible 5 in which a die 9 is stored. The aluminum oxide raw material powder may contain compounds and elements other than aluminum oxide depending on the purity or composition of the sapphire single crystal to be produced.
 続いて、坩堝5やヒータ7若しくはダイ9を酸化消耗させないために、育成容器3内をアルゴンガスで置換し、酸素濃度を所定値以下とする。 Subsequently, in order not to oxidize the crucible 5, the heater 7, or the die 9, the inside of the growth vessel 3 is replaced with argon gas, and the oxygen concentration is set to a predetermined value or less.
 次に、ヒータ7で加熱して坩堝5を所定の温度とし、酸化アルミニウム原料粉末を溶融する。酸化アルミニウムの融点は2050℃~2072℃程度なので、坩堝5の加熱温度はその融点以上の温度(例えば2100℃)に設定する。加熱後しばらくすると原料粉末が溶融して、酸化アルミニウム融液21が用意される。更に融液21の一部はダイ9のスリット19を毛細管現象により上昇してダイ9の表面に達し、スリット19上部に融液溜まり22が形成される。 Next, the crucible 5 is heated to a predetermined temperature by the heater 7 to melt the aluminum oxide raw material powder. Since the melting point of aluminum oxide is about 2050 ° C. to 2072 ° C., the heating temperature of the crucible 5 is set to a temperature higher than the melting point (for example, 2100 ° C.). After a while after heating, the raw material powder is melted and an aluminum oxide melt 21 is prepared. Further, a part of the melt 21 rises through the slit 19 of the die 9 by capillary action to reach the surface of the die 9, and a melt pool 22 is formed on the slit 19.
 次に図4及び図5に示すように、スリット19上部の融液溜まり22の長手方向に対して垂直な角度に種結晶17を保持しつつ降下させ、種結晶17を融液溜まり22の融液面に接触させる。なお、種結晶17は、予め基板出入口16から引き上げ容器4内に導入しておく。図4ではスリット19や開口部20の見易さを優先するため、融液21と融液溜まり22の図示を省略している。 Next, as shown in FIGS. 4 and 5, the seed crystal 17 is lowered while being held at an angle perpendicular to the longitudinal direction of the melt reservoir 22 above the slit 19, so that the seed crystal 17 is melted in the melt reservoir 22. Touch the liquid surface. The seed crystal 17 is previously introduced into the pulling container 4 from the substrate entrance 16. In FIG. 4, the melt 21 and the melt reservoir 22 are not shown in order to prioritize the visibility of the slit 19 and the opening 20.
 図4は、種結晶17と仕切り板18との位置関係を示した図である。前記の通り、種結晶17の平面方向を仕切り板18の長手方向と直交させることにより、種結晶17と融液21との接触面積を小さくすることが可能となる。従って、種結晶17の接触部分が融液21となじみ、育成成長されるサファイア単結晶2に結晶欠陥が生じにくくなる。更に、融液21と種結晶17との接触面積を小さくすることで、後述するネック25を細く形成することができ、この点でもサファイア単結晶2の結晶欠陥の発生を低減又は解消して、結晶品質を高品質に保つことが可能となる。従って、サファイア単結晶2の歩留まりを向上させることが出来る。 FIG. 4 is a diagram showing the positional relationship between the seed crystal 17 and the partition plate 18. As described above, the contact area between the seed crystal 17 and the melt 21 can be reduced by making the plane direction of the seed crystal 17 orthogonal to the longitudinal direction of the partition plate 18. Therefore, the contact portion of the seed crystal 17 becomes compatible with the melt 21, and crystal defects are less likely to occur in the grown and grown sapphire single crystal 2. Furthermore, by reducing the contact area between the melt 21 and the seed crystal 17, the neck 25 described later can be formed thinly. Also in this respect, the generation of crystal defects in the sapphire single crystal 2 is reduced or eliminated, It becomes possible to keep the crystal quality high. Therefore, the yield of the sapphire single crystal 2 can be improved.
 種結晶17を融液面に接触させる際に、種結晶17の下部を仕切り板18の上部に接触させて溶融しても良い。図5(b)は、種結晶17の一部を溶融する様子を示した図である。このように種結晶17の一部を溶融することで、種結晶17と融液21との温度差を速やかに解消ことができ、サファイア単結晶2での結晶欠陥の発生を更に低減することが可能となる。 When the seed crystal 17 is brought into contact with the melt surface, the lower part of the seed crystal 17 may be brought into contact with the upper part of the partition plate 18 and melted. FIG. 5 (b) is a diagram showing how a part of the seed crystal 17 is melted. By melting part of the seed crystal 17 in this way, the temperature difference between the seed crystal 17 and the melt 21 can be quickly eliminated, and the generation of crystal defects in the sapphire single crystal 2 can be further reduced. It becomes possible.
 続いて基板保持具を所定の上昇速度で引き上げて、種結晶17の引き上げを開始し、図6に示すようにネック25を形成する。具体的には、まずシャフト13により基板保持具を高速で上昇させながら細いネック25を作製(ネッキング)する。以降ではこの工程をネッキング工程と称する。図6はネック25が成長する様子を示した説明図である。ネック25は、種結晶17の厚みT若しくは融液溜まり22の幅程度の細い径を有する結晶部分であり、結晶欠陥を低減又は除去するために形成される。またネック25の長さは、その径の3倍程度まで形成される。この程度まで結晶成長されると、ネック25で結晶欠陥が発生しても、その欠陥はサファイア単結晶2まで形成されることが防止される。従ってネッキング工程を経ることにより、結晶欠陥が低減又は解消された平板形状のサファイア単結晶2を製造することが可能となる。 Subsequently, the substrate holder is pulled up at a predetermined rising speed to start pulling up the seed crystal 17, and a neck 25 is formed as shown in FIG. Specifically, first, a thin neck 25 is produced (necked) while the substrate holder is raised at high speed by the shaft 13. Hereinafter, this process is referred to as a necking process. FIG. 6 is an explanatory view showing how the neck 25 grows. The neck 25 is a crystal portion having a thin diameter about the thickness T of the seed crystal 17 or the width of the melt pool 22, and is formed to reduce or eliminate crystal defects. Further, the length of the neck 25 is formed up to about three times its diameter. When the crystal is grown to this extent, even if a crystal defect occurs at the neck 25, the defect is prevented from being formed up to the sapphire single crystal 2. Therefore, by passing through the necking step, it is possible to produce a flat sapphire single crystal 2 with reduced or eliminated crystal defects.
 なお本実施形態の製造方法に依れば、種結晶と融液面とを平行に接触させる製造方法と比較して、結晶欠陥が除去されるまでにサファイア単結晶2の引き上げに必要となる原料が少なくて済むので、製造コストを下げることが可能となる。また、サファイア単結晶2の引き上げ方向において結晶欠陥が抜け切るまでの時間も短くて済むので、製造速度の向上も図れる。 In addition, according to the manufacturing method of this embodiment, compared with the manufacturing method which makes a seed crystal and a melt surface contact in parallel, it is a raw material required for pulling up the sapphire single crystal 2 until a crystal defect is removed. Therefore, the manufacturing cost can be reduced. In addition, since the time until crystal defects are completely removed in the pulling direction of the sapphire single crystal 2 can be shortened, the manufacturing speed can be improved.
 なお、ネッキング工程をより容易にするため、種結晶17の下辺に凹凸を設けてもよい。図7は、種結晶17の下辺の形状を例示した図であり、同図(a)は下辺が櫛歯形状の場合を、同図(b)では鋸形形状の場合を示している。 In order to make the necking process easier, irregularities may be provided on the lower side of the seed crystal 17. FIG. 7 is a diagram illustrating the shape of the lower side of the seed crystal 17. FIG. 7A shows a case where the lower side has a comb shape, and FIG. 7B shows a case of a saw shape.
 この凹凸の間隔は、開口部20の間隔に合わせ、凸部分を融液溜まり22の中心に合わせる。凸部分を設けることで凸部分をサファイア単結晶2の成長開始点とすることができ、ネック25がより容易に形成可能となる。なお、凹凸の形状は図7に示したものには限定されず、例えば波形の凹凸形状であっても良い。 The interval between the irregularities is matched with the interval between the openings 20 and the convex portion is aligned with the center of the melt reservoir 22. By providing the convex portion, the convex portion can be used as the growth starting point of the sapphire single crystal 2, and the neck 25 can be formed more easily. Note that the shape of the unevenness is not limited to that shown in FIG. 7, and may be, for example, a corrugated uneven shape.
 ネッキング工程を経た後、ヒータ7を制御して坩堝5の温度を降下させると共に、基板保持具の上昇速度を所定の速度に設定し、種結晶17を中心に図8に示すようにサファイア単結晶2をダイ9の長手方向に拡幅するように結晶成長させる(スプレディング)。サファイア単結晶2が、ダイ9の全幅(仕切り板18の端)まで拡幅すると(フルスプレッド)、ダイ9の全幅と同程度の幅を有する、面積の広い平板形状のサファイア単結晶2が育成される(直胴工程)。図8は、スプレディング工程によりサファイア単結晶2の幅が広がる様子を示した模式図である。幅の広いサファイア単結晶2が得られることにより、サファイア単結晶製品の歩留まりが向上する。 After passing through the necking step, the heater 7 is controlled to lower the temperature of the crucible 5 and the substrate holder is set at a predetermined speed, and the sapphire single crystal as shown in FIG. 2 is grown so as to be widened in the longitudinal direction of the die 9 (spreading). When the sapphire single crystal 2 is widened to the full width of the die 9 (the end of the partition plate 18) (full spread), a flat sapphire single crystal 2 having a large area and having the same width as the full width of the die 9 is grown. (Straight cylinder process). FIG. 8 is a schematic diagram showing how the width of the sapphire single crystal 2 is expanded by the spreading process. By obtaining a wide sapphire single crystal 2, the yield of sapphire single crystal products is improved.
 スプレディング工程により、ダイ9の全幅までサファイア単結晶2を成長させた後、図9に示すようにダイ9の全幅と同程度の一定幅を有する、平板形状の直胴部分26を所定の速度で所定の長さ(直胴長さ)まで引き上げて、平板形状のサファイア単結晶2を得る。 After the sapphire single crystal 2 is grown to the full width of the die 9 by the spreading process, as shown in FIG. 9, a flat plate portion 26 having a constant width similar to the full width of the die 9 is formed at a predetermined speed. The flat sapphire single crystal 2 is obtained by pulling up to a predetermined length (straight body length).
 この後、得られたサファイア単結晶2を放冷し、ゲートバルブ15を空け、引き上げ容器4側に移動して、基板出入口16から取り出す。得られた平板形状のサファイア単結晶2の外観を図9に示す。直胴長さは特に限定されないが、2インチ以上(50.8mm以上)が好ましい。 After this, the obtained sapphire single crystal 2 is allowed to cool, the gate valve 15 is opened, the sapphire single crystal 2 is moved to the pulling container 4 side, and taken out from the substrate entrance 16. The appearance of the obtained flat plate-shaped sapphire single crystal 2 is shown in FIG. Although the length of the straight body is not particularly limited, it is preferably 2 inches or more (50.8 mm or more).
 以上説明したような製造装置1、種結晶17、及びダイ9を用いることにより、共通の種結晶17から複数のサファイア単結晶2を同時に製造することが出来る。従って、一枚当たりのサファイア単結晶2の製造コストを下げることが可能となる。 By using the manufacturing apparatus 1, seed crystal 17, and die 9 as described above, a plurality of sapphire single crystals 2 can be simultaneously manufactured from the common seed crystal 17. Therefore, the manufacturing cost of the sapphire single crystal 2 per sheet can be reduced.
 またEFG法では、複数のサファイア単結晶2の主面27の面方向が、種結晶17の結晶面28と同じ結晶方向を取りながら、複数のサファイア単結晶2が育成成長される。一例として、種結晶17がサファイア単結晶製で結晶面28がc面の場合、得られる平板形状のサファイア単結晶2の全ての主面27を、c面とすることが出来る。従って、複数のサファイア単結晶2を結晶方向の観点から見てばらつきの無い状態で得ることが出来る。 In the EFG method, the plurality of sapphire single crystals 2 are grown and grown while the plane direction of the main surface 27 of the plurality of sapphire single crystals 2 is the same as the crystal plane 28 of the seed crystal 17. As an example, when the seed crystal 17 is made of a sapphire single crystal and the crystal plane 28 is a c-plane, all the main surfaces 27 of the obtained flat plate-shaped sapphire single crystal 2 can be the c-plane. Therefore, it is possible to obtain a plurality of sapphire single crystals 2 with no variation in view of the crystal direction.
 従って、種結晶17、及び仕切り板18を含めたダイ9は、精密に位置決めする必要がある。よって図1に示したように製造装置1は、ダイ9を設置する坩堝5を回転する坩堝駆動部6、及びその回転を制御する制御部(図示せず)が設けられている。またシャフト13に関しても、シャフト13を回転するシャフト駆動部14、及びその回転を制御する制御部(図示せず)が設けられている。即ち、ダイ9に対する種結晶17の位置決めは、制御部によりシャフト13又は坩堝5を回転させて調整する。 Therefore, the die 9 including the seed crystal 17 and the partition plate 18 needs to be precisely positioned. Therefore, as shown in FIG. 1, the manufacturing apparatus 1 is provided with a crucible driving unit 6 that rotates the crucible 5 in which the die 9 is installed, and a control unit (not shown) that controls the rotation. The shaft 13 is also provided with a shaft drive unit 14 that rotates the shaft 13 and a control unit (not shown) that controls the rotation thereof. That is, the positioning of the seed crystal 17 with respect to the die 9 is adjusted by rotating the shaft 13 or the crucible 5 by the control unit.
 なお、種結晶17とダイ9との精密な位置決めについては、各仕切り板18の斜面30の一部を切り欠いたダイ9を使用することによっても行うことが出来る。図10は、ダイ9に切り欠き部29を設けた例を示した図である。図10では一例として、斜面30の長手方向での中央に、V字形の切り欠き部29をそれぞれ設けたダイ9を図示している。 Note that the precise positioning of the seed crystal 17 and the die 9 can also be performed by using the die 9 in which a part of the slope 30 of each partition plate 18 is cut out. FIG. 10 is a view showing an example in which a notch 29 is provided in the die 9. In FIG. 10, as an example, dies 9 each having a V-shaped notch 29 are shown in the center in the longitudinal direction of the inclined surface 30.
 切り欠き部29は、ダイ9の厚さ方向において一直線上に形成されている。このような切り欠き部29を設けることにより、種結晶17と融液面との接触時における位置決めが容易となり、各サファイア単結晶2間の製品品質のばらつきを低減若しくは解消することが可能となる。 The notch 29 is formed on a straight line in the thickness direction of the die 9. By providing such a notch 29, positioning at the time of contact between the seed crystal 17 and the melt surface is facilitated, and variations in product quality between the sapphire single crystals 2 can be reduced or eliminated. .
 尚、種結晶17の結晶面28はc面に限定されず、例えばr面、a面、m面等、所望の結晶面に設定することが可能である。このように結晶面28を任意に設定することで、サファイア単結晶2の主面27の面方向も任意に変更することが可能となる。 The crystal plane 28 of the seed crystal 17 is not limited to the c plane, and can be set to a desired crystal plane such as an r plane, a plane, m plane, and the like. Thus, by arbitrarily setting the crystal plane 28, the plane direction of the main surface 27 of the sapphire single crystal 2 can be arbitrarily changed.
 上述した効果に加えて、本実施形態では各ダイ9間の間隙Dを、ダイ9の厚みtの0.33倍以上0.67倍以下の範囲内に設定して複数のサファイア単結晶2を製造している。具体的には、ダイ9の厚みtが2.0mm~6.5mmの範囲内で製造されるとすると、各ダイ9間の間隙Dは、最小0.68mm(0.33×2.0mm)~最大4.36mm(0.67×6.5mm)の範囲内に設定されることになる。但し間隙Dの計算値は、小数点以下第3位を四捨五入した。 In addition to the effects described above, in the present embodiment, a plurality of sapphire single crystals 2 are manufactured by setting the gap D between the dies 9 within a range of 0.33 times to 0.67 times the thickness t of the dies 9. . Specifically, if the die 9 is manufactured with a thickness t in the range of 2.0 mm to 6.5 mm, the gap D between the dies 9 is a minimum of 0.68 mm (0.33 × 2.0 mm) to a maximum of 4.36 mm (0.67). X6.5 mm). However, the calculated value of the gap D was rounded off to the third decimal place.
 このように間隙Dを設定することにより、共通の種結晶17から複数形成されるサファイア単結晶2間の間隙dは、複数のサファイア単結晶2の厚みの内、最大の厚みtmの0.33倍以上0.67倍以下に設定される(図9参照)。複数のサファイア単結晶2の厚みにばらつきが発生しても、複数のサファイア単結晶2における厚みの最大値は、ダイ9の厚みtを超えることは無い。従って、理想的には前記厚みtと前記厚みtmは等しくなり、間隙Dと間隙dも等しく形成される。このような間隙D又はdで複数のサファイア単結晶2が形成されることで、ダイ9間の間隙又はサファイア単結晶2間の間隙への種結晶17の入り込みを防止して、フラッティングの発生も防止し、隣接するサファイア単結晶2同士の貼り付きを解消することが可能となることを、本出願人は検証の末、見出した。更に、前記の通り間隙D又はdを設定することにより、種結晶17と融液溜まり22との接触時に、隣同士のダイ9の各融液21が表面張力によって繋がる事も防止出来るため、歩留まりの低下を解消してより高い量産性で以てサファイア単結晶2を育成することが可能となった。更に、フラッティングに起因する結晶欠陥の発生も防止することが出来る。 By setting the gap D in this way, the gap d between the sapphire single crystals 2 formed from the common seed crystal 17 is 0.33 times or more of the maximum thickness tm among the thicknesses of the sapphire single crystals 2. It is set to 0.67 times or less (see FIG. 9). Even if the thickness of the plurality of sapphire single crystals 2 varies, the maximum thickness of the plurality of sapphire single crystals 2 does not exceed the thickness t of the die 9. Therefore, ideally, the thickness t and the thickness tm are equal, and the gap D and the gap d are formed equally. By forming a plurality of sapphire single crystals 2 with such gaps D or d, the seed crystal 17 is prevented from entering the gaps between the dies 9 or the gaps between the sapphire single crystals 2, and the occurrence of flatting. As a result of verification, the present applicant has found that it is possible to prevent the sticking between adjacent sapphire single crystals 2. Furthermore, since the gap D or d is set as described above, it is possible to prevent the melts 21 of the adjacent dies 9 from being connected by surface tension at the time of contact between the seed crystal 17 and the melt pool 22. Thus, it was possible to grow the sapphire single crystal 2 with higher mass productivity. Furthermore, it is possible to prevent the occurrence of crystal defects due to flatting.
 更に、目安となるダイ間の間隙Dが分かるため、ダイ間の間隙Dの最適化の検証回数を減少させることが可能となり、その結果、サファイア単結晶2の複数枚育成の開発及び結晶品質の改善スピードを向上させることが可能となる。 Further, since the gap D between the dies as a guide is known, it is possible to reduce the number of times of verification of optimization of the gap D between the dies. It becomes possible to improve the improvement speed.
 また、前記幅と厚みを有するサファイア単結晶2の育成に関して、種結晶17の厚みTの好ましい設定値として、2mm以上が挙げられる。厚みTを2mm以上に設定することにより、サファイア単結晶2の引き上げ時に於ける種結晶17の変形が防止され、育成成長されるサファイア単結晶2の主面27と、種結晶17の結晶面28間の結晶軸方向のずれ角を抑制することが可能となった。更に坩堝5の高温条件下でも種結晶17の強度が保たれると共に、育成成長される各サファイア単結晶2の重量に加えて種結晶17自体の自重による種結晶17の変形が防止可能となり、前記結晶軸方向のずれ角抑制の効果を得ることが出来る。 Further, regarding the growth of the sapphire single crystal 2 having the width and thickness, a preferable setting value of the thickness T of the seed crystal 17 is 2 mm or more. By setting the thickness T to 2 mm or more, deformation of the seed crystal 17 during pulling of the sapphire single crystal 2 is prevented, and the main surface 27 of the sapphire single crystal 2 to be grown and the crystal surface 28 of the seed crystal 17 are grown. It was possible to suppress the deviation angle in the crystal axis direction. Furthermore, the strength of the seed crystal 17 is maintained even under high temperature conditions of the crucible 5, and the deformation of the seed crystal 17 due to the own weight of the seed crystal 17 itself can be prevented in addition to the weight of each sapphire single crystal 2 grown and grown. The effect of suppressing the deviation angle in the crystal axis direction can be obtained.
 前記効果に加えて、本実施形態では前記種結晶17の形状及びその剛性によって、各サファイア単結晶2間での主面27の結晶軸のずれ角を0.5°以下の範囲内に収めることが出来る。より具体的には、結晶育成の引き上げ進行に伴って増加していくサファイア単結晶2の重量に対して種結晶17の変形を防止し、種結晶17の結晶面28と、サファイア単結晶2の主面27での結晶面との間で生じる結晶軸方向のずれ角を、0.5°以下に収まる種結晶17の形状を設定している。これにより、サファイア単結晶2毎における結晶軸のずれ角の補正に必要な研磨量を、サファイア単結晶2の厚み方向において1.5mm程度に収めることが可能となった。この為、本実施形態のサファイア単結晶2では、半導体用基板としての加工性向上という効果も有するものである。 In addition to the above-described effects, in this embodiment, the angle of deviation of the crystal axis of the main surface 27 between the sapphire single crystals 2 can be kept within a range of 0.5 ° or less due to the shape of the seed crystal 17 and its rigidity. . More specifically, the deformation of the seed crystal 17 is prevented with respect to the weight of the sapphire single crystal 2 that increases as the crystal growth increases, and the crystal plane 28 of the seed crystal 17 and the sapphire single crystal 2 The shape of the seed crystal 17 is set such that the deviation angle in the crystal axis direction generated between the main surface 27 and the crystal surface is within 0.5 ° or less. As a result, the polishing amount necessary for correcting the deviation angle of the crystal axis for each sapphire single crystal 2 can be reduced to about 1.5 mm in the thickness direction of the sapphire single crystal 2. For this reason, the sapphire single crystal 2 of the present embodiment also has an effect of improving workability as a semiconductor substrate.
 本実施形態の製造方法に依れば、結晶品質が保持された大型のサファイア単結晶2を、共通の種結晶17から一度に複数形成することが可能となった。 According to the manufacturing method of the present embodiment, it is possible to form a plurality of large sapphire single crystals 2 maintaining crystal quality from a common seed crystal 17 at a time.
 更に好ましくは、間隙Dを前記厚みtの0.33倍以上0.67倍以下の範囲内で更に、
Figure JPOXMLDOC01-appb-M000005
 
を満足するように設定することである。
More preferably, the gap D is within a range of 0.33 to 0.67 times the thickness t.
Figure JPOXMLDOC01-appb-M000005

Is set to satisfy.
 このように間隙Dを設定することにより、共通の種結晶17から複数形成されるサファイア単結晶2間の間隙dも、前記厚みtmの0.33倍以上0.67倍以下の範囲内で更に、
Figure JPOXMLDOC01-appb-M000006
 
の関係を満足することになる。具体的には、ダイ9の厚みtを2.0mm~6.5mmの範囲内で製造されるとすると、各ダイ9間の間隙Dは前記数3より、最小0.96mm~最大2.28mmの範囲内に設定されることになる。但し間隙Dの計算値は、小数点以下第3位を四捨五入した。
By setting the gap D in this way, the gap d between the sapphire single crystals 2 formed from the common seed crystal 17 is also within a range of 0.33 to 0.67 times the thickness tm.
Figure JPOXMLDOC01-appb-M000006

Will satisfy the relationship. Specifically, assuming that the thickness t of the die 9 is manufactured in the range of 2.0 mm to 6.5 mm, the gap D between the dies 9 is in the range of 0.96 mm to 2.28 mm from the minimum according to Equation 3. Will be set. However, the calculated value of the gap D was rounded off to the third decimal place.
 前記の通り、理想的には間隙Dと間隙dは等しく形成される。このような間隙D又はdで複数のサファイア単結晶2が形成されることで、前記フラッティング発生の防止やフラッティングに起因する結晶欠陥の発生防止に加えて、更に、各サファイア単結晶2間に於ける熱バランスを坩堝5内の温度と各サファイア単結晶2同士の放射熱とにより均一に保つことが可能となる。従って、結晶品質がより改善されたサファイア単結晶2を複数同時に育成成長させることが可能になった。 As described above, the gap D and the gap d are ideally formed equally. By forming a plurality of sapphire single crystals 2 with such gaps D or d, in addition to preventing the occurrence of the flatting and the generation of crystal defects due to the flatting, further, between the sapphire single crystals 2 It is possible to maintain a uniform heat balance in the crucible 5 by the temperature in the crucible 5 and the radiant heat between the sapphire single crystals 2. Therefore, a plurality of sapphire single crystals 2 with improved crystal quality can be grown and grown simultaneously.
 より具体的には、各サファイア単結晶2端面の温度を、ダイ9上の融液溜まり22と各サファイア単結晶2同士の放射熱とによって均一に保ち、育成成長する各サファイア単結晶2間の熱バランスを結晶育成に適した最適な状態で保持する事が可能となった。加えて、本実施形態では前記熱バランスの保持によって各サファイア単結晶2の育成条件を均一に保持することが可能となった。この為、線欠陥及び結晶粒界といった結晶箇所が無く更に結晶品質が改善されたサファイア単結晶2を複数引き上げることが可能となった。従って、より実用的なサファイア単結晶2を複数同時に引き上げることが出来、更なる歩留まりの改善と量産性の向上を図ることが可能となる。 More specifically, the temperature at the end face of each sapphire single crystal 2 is kept uniform by the melt pool 22 on the die 9 and the radiant heat between the sapphire single crystals 2, and between the sapphire single crystals 2 grown and grown. It became possible to maintain the heat balance in an optimum state suitable for crystal growth. In addition, in this embodiment, it is possible to keep the growth conditions of each sapphire single crystal 2 uniform by maintaining the heat balance. For this reason, it becomes possible to pull up a plurality of sapphire single crystals 2 having no crystal parts such as line defects and crystal grain boundaries and having improved crystal quality. Therefore, a plurality of more practical sapphire single crystals 2 can be pulled up simultaneously, and it becomes possible to further improve yield and mass productivity.
 なお間隙D又は間隙dを、前記厚みt又は前記厚みtmの0.33倍未満とすると、フラッティングが発生してしまう。一方、0.67倍を超えると間隙D又は間隙dが開きすぎてしまい、一度に製造できるサファイア単結晶の枚数が削減されてしまい、量産性が低下する。従って、量産性を確保しつつフラッティング防止を両立可能な範囲として、本発明では間隙D又は間隙dを、前記厚みt又は前記厚みtmの0.33倍以上0.67倍以下と設定する、 Note that if the gap D or the gap d is less than 0.33 times the thickness t or the thickness tm, flatting occurs. On the other hand, when it exceeds 0.67 times, the gap D or the gap d is excessively opened, the number of sapphire single crystals that can be manufactured at one time is reduced, and the mass productivity is lowered. Therefore, in the present invention, the gap D or the gap d is set to be 0.33 times or more and 0.67 times or less of the thickness t or the thickness tm as a range in which it is possible to achieve both prevention of flatting while ensuring mass productivity.
 なお、各サファイア単結晶2間の厚みのばらつきや、各サファイア単結晶2における直胴長さに亘る厚みの変動を、ダイ9の厚みをtとすると(図2(b)、図4等参照)、0.01t以上0.1t以下の範囲内に収めることが、隣同士のサファイア単結晶2のくっ付き(フラッティング)を防止可能になると云う点から好ましい。 It should be noted that the thickness variation of the sapphire single crystal 2 and the thickness variation over the length of the straight body of each sapphire single crystal 2 is t (see FIG. 2 (b), FIG. 4, etc.). ), Being within the range of 0.01 t or more and 0.1 t or less is preferable from the viewpoint that it is possible to prevent the adjacent sapphire single crystals 2 from sticking (flatting).
 なお本発明は、前述の実施形態に限定するものでは無く、特許請求の範囲の各項に記載された内容から逸脱しない範囲の構成による実施が可能である。即ち本発明は、主に特定の実施形態に関して特に図示され、かつ説明されているが、本発明の技術的思想および目的の範囲から逸脱すること無く、以上述べた実施形態に対し、数量、その他の詳細な構成において、当業者が様々な変形を加えることが出来るものである。 It should be noted that the present invention is not limited to the above-described embodiment, and can be implemented with configurations within a range that does not deviate from the contents described in the respective claims. That is, the invention has been illustrated and described with particular reference to particular embodiments, but with respect to the embodiments described above without departing from the spirit and scope of the invention, Those skilled in the art can add various modifications to the detailed configuration.
 例えば本発明は、主面にステップ構造を有するサファイア単結晶の育成にも適用することが可能である。サファイア単結晶の主面を例えばc面とする、EFG法によるサファイア単結晶の製造方法において、種結晶のm軸をサファイア単結晶の引き上げ方向に合わせる。更に、引き上げ方向に対して垂直方向に位置する種結晶のc軸を、引き上げ方向を回転軸としてサファイア単結晶の主面の法線に対してa軸方向に所定角度(例えば、0.05°以上)に傾斜させて育成しても良い。なお、前記実施形態と重複する説明は省略又は簡略化する。 For example, the present invention can be applied to the growth of a sapphire single crystal having a step structure on the main surface. In the method for manufacturing a sapphire single crystal by the EFG method in which the main surface of the sapphire single crystal is, for example, c-plane, the m-axis of the seed crystal is aligned with the pulling direction of the sapphire single crystal. Furthermore, the c-axis of the seed crystal positioned in the direction perpendicular to the pulling direction is a predetermined angle (for example, 0.05 ° or more) in the a-axis direction with respect to the normal of the main surface of the sapphire single crystal with the pulling direction as the rotation axis It is also possible to grow by inclining. In addition, the description which overlaps with the said embodiment is abbreviate | omitted or simplified.
 ここで、c軸が傾斜した種結晶について図11を参照して説明する。図11に示す種結晶31の平面の法線をZ軸、種結晶31の側面(結晶面)の法線をY軸、及び種結晶31の正面の法線をX軸とする直交座標系を用いて説明する。Z軸はサファイア単結晶の引き上げ方向に対して平行に配置されている。 Here, the seed crystal in which the c-axis is inclined will be described with reference to FIG. An orthogonal coordinate system in which the normal of the plane of the seed crystal 31 shown in FIG. 11 is the Z axis, the normal of the side surface (crystal plane) of the seed crystal 31 is the Y axis, and the normal of the front of the seed crystal 31 is the X axis. It explains using. The Z axis is arranged in parallel to the pulling direction of the sapphire single crystal.
 種結晶31のc軸は、図11(a)に示すように、Z軸(引き上げ方向の軸)とのなす角αが所定の範囲内(例えば、90°±0.5°)に調整されており、また、図11(b)に示すように、c軸は、X軸方向(a軸方向)に所定角度β(例えば、0.05°以上1.0°以下の範囲)に傾斜している。一方、引き上げ軸方向(Z軸方向)のm軸は、図11(a)に示すように、c軸に対して垂直であり、また、 このm軸は、図11(c)に示すように、引き上げ軸方向(Z軸)とのずれ角γが、Z軸に対してX軸方向に所定角度の範囲内(例えば、0.5°以下)に調整されている。 The c-axis of the seed crystal 31 is adjusted so that the angle α formed with the Z-axis (the axis in the pulling direction) is within a predetermined range (for example, 90 ° ± 0.5 °), as shown in FIG. Further, as shown in FIG. 11B, the c-axis is inclined at a predetermined angle β (for example, a range of 0.05 ° or more and 1.0 ° or less) in the X-axis direction (a-axis direction). On the other hand, the m-axis in the pulling-up axis direction (Z-axis direction) is perpendicular to the c-axis as shown in FIG. 11 (a), and the m-axis is as shown in FIG. 11 (c). The deviation angle γ from the pulling-up axis direction (Z-axis) is adjusted within a predetermined angle range (for example, 0.5 ° or less) in the X-axis direction with respect to the Z-axis.
 このように種結晶31のc軸をX軸方向に所定角度βだけ傾斜させることにより、この
種結晶31を用いて育成成長されたサファイア単結晶32は、図12(a)に示すようにc軸がZ軸(引き上げ方向)を回転軸として主面の法線nv方向に対して所定角度β(前記の通り、0.05°以上1.0°以下の範囲)で傾斜している。即ち所定角度βに対応した、主面におけるc軸の傾斜角度を有するサファイア単結晶を前記間隔dで以て得ることが出来る。これにより、得られるサファイア単結晶の主面におけるステップ構造が全て同一方向になり、結晶欠陥の無い複数のサファイア単結晶を得ることが出来る。またm軸とZ軸とのずれ角は前記γ(0.5°)以内に形成され、図12(c)に示すようにc軸とZ軸とは前記α(90°±0.5°)以内に形成される。なお、図12(c)ではネックの図示は省略している。
In this way, by tilting the c-axis of the seed crystal 31 by a predetermined angle β in the X-axis direction, the sapphire single crystal 32 grown using the seed crystal 31 is c c as shown in FIG. The axis is inclined at a predetermined angle β (in the range of 0.05 ° or more and 1.0 ° or less as described above) with respect to the normal nv direction of the main surface with the Z axis (the pulling direction) as the rotation axis. That is, a sapphire single crystal having a c-axis tilt angle on the main surface corresponding to the predetermined angle β can be obtained with the interval d. Thereby, all the step structures in the main surface of the obtained sapphire single crystal are in the same direction, and a plurality of sapphire single crystals without crystal defects can be obtained. Further, the deviation angle between the m-axis and the Z-axis is formed within the γ (0.5 °), and as shown in FIG. 12 (c), the c-axis and the Z-axis are formed within the α (90 ° ± 0.5 °). Is done. In addition, illustration of the neck is abbreviate | omitted in FIG.12 (c).
 サファイア単結晶の主面であるc面にステップ構造が現れることで、明確な結晶晶癖面が現れる。 A clear crystal habit plane appears when the step structure appears on the c-plane, which is the main surface of the sapphire single crystal.
 なお、図11及び図12に示す変更例では、予めc軸がa軸方向に所定角度βだけ傾斜した種結晶31を用いて、c軸がnv方向に対して所定角度β傾斜したサファイア単結晶32を育成する場合を説明したが、これに限定されず図13に示す種結晶33を用いてサファイア単結晶を育成しても良い。 In the modification shown in FIGS. 11 and 12, a sapphire single crystal whose c-axis is inclined at a predetermined angle β with respect to the nv direction using a seed crystal 31 in which the c-axis is inclined in the a-axis direction by a predetermined angle β in advance. Although the case of growing 32 has been described, the present invention is not limited to this, and a sapphire single crystal may be grown using the seed crystal 33 shown in FIG.
 種結晶33のc軸は図13(a)に示すように、Z軸とのなす角αが所定の範囲内(例えば、90°±0.5°)に調整されており、また図13(b)に示すようにc軸はY軸方向に平行に調整されている。一方、引き上げ方向(Z軸)のm軸は、図13(a)に示すようにc軸に対して垂直であり、図13(c)に示すようにZ軸とのずれ角γがZ軸に対してX軸方向(a軸方向)に所定の範囲内(0.5°以下)に調整されている。 The c-axis of the seed crystal 33 is adjusted so that the angle α formed with the Z-axis is within a predetermined range (for example, 90 ° ± 0.5 °) as shown in FIG. 13 (a). As shown, the c-axis is adjusted to be parallel to the Y-axis direction. On the other hand, the m-axis in the pulling direction (Z-axis) is perpendicular to the c-axis as shown in FIG. 13A, and the deviation angle γ from the Z-axis is Z-axis as shown in FIG. Is adjusted within a predetermined range (0.5 ° or less) in the X-axis direction (a-axis direction).
 図13に示す種結晶33を用いた場合には、図14に示すように種結晶33の側面(端面)の法線を仕切り板18の法線に対して所定角度βずらして位置決めする。 When the seed crystal 33 shown in FIG. 13 is used, the normal line of the side surface (end face) of the seed crystal 33 is positioned with a predetermined angle β shifted from the normal line of the partition plate 18 as shown in FIG.
 従って、前記制御部によりシャフト13又は坩堝5を回転させて、種結晶33の側面(端面)の法線が仕切り板18の法線に対して所定角度βの範囲内となるように精度良く位置決めする。これにより、c軸が所定方向に所定角度βだけ傾斜したサファイア単結晶を得ることが出来る。 Therefore, the shaft 13 or the crucible 5 is rotated by the control unit so that the normal line of the side surface (end face) of the seed crystal 33 is accurately positioned within the range of the predetermined angle β with respect to the normal line of the partition plate 18. To do. Thereby, a sapphire single crystal in which the c-axis is inclined by a predetermined angle β in a predetermined direction can be obtained.
 以下に本発明の実施例を説明するが、本発明は以下の実施例にのみ限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to the following examples.
(実施例)
 本実施例においては、図1に示す製造装置1及び図2に示すような切り欠き部29の無いダイを使用し、EFG法により主面がc面のサファイア単結晶を育成成長した。ダイは16個用意し、互いに平行に所定間隙Dで並列に配置した。
(Example)
In this example, the manufacturing apparatus 1 shown in FIG. 1 and a die without a notch 29 as shown in FIG. 2 were used, and a sapphire single crystal having a c-plane principal surface was grown and grown by the EFG method. Sixteen dies were prepared and arranged in parallel with a predetermined gap D in parallel with each other.
 酸化アルミニウム原料には、造粒された酸化アルミニウム原料粉末(99.99%酸化アルミニウム)を用い、ダイ9を収納した坩堝5に所定量投入して溶融し、酸化アルミニウム融液を得た。また雰囲気ガスとして、アルゴンガスを育成容器3内に導入した。 A granulated aluminum oxide raw material powder (99.99% aluminum oxide) was used as the aluminum oxide raw material, and a predetermined amount was charged into the crucible 5 containing the die 9 and melted to obtain an aluminum oxide melt. Argon gas was introduced into the growth vessel 3 as the atmospheric gas.
 種結晶には、サファイア単結晶製で厚みTが2mmの基板を用い、更にc軸が主面(結晶面28と直交する面)の面方向に沿って水平な基板とした。種結晶の形状は図3(a)に示す基板とした。更に、その種結晶の平面方向とダイの長手方向とを、図4に示すように互いに90°の角度で以て直交となるように、種結晶を配置した。 As the seed crystal, a substrate made of sapphire single crystal and having a thickness T of 2 mm was used, and the c-axis was a horizontal substrate along the plane direction of the main surface (a plane orthogonal to the crystal plane 28). The shape of the seed crystal was the substrate shown in FIG. Further, the seed crystal was arranged so that the plane direction of the seed crystal and the longitudinal direction of the die were orthogonal to each other at an angle of 90 ° as shown in FIG.
 その種結晶を用いて、16枚の平板形状のサファイア単結晶を引き上げて育成成長した。サファイア単結晶の幅は2インチ程度とした。 Using the seed crystal, 16 plate-shaped sapphire single crystals were pulled up and grown. The width of the sapphire single crystal was about 2 inches.
 実施例は全部で例1~例10まで行い、実施例1~4では間隙Dをダイの厚みtの0.34倍に設定した。一方、実施例5~10では間隙Dが前記数3を満足するように設定した。ダイの厚みtは、実施例1~4では3.3mm~4.5mmの範囲内で適宜表1に示すように設定し、実施例5~10では3.3mm~6.5mmの範囲内で適宜表1に示すように設定した。従って間隙Dは表1に示すように、実施例1~4では最小1.12mm~最大1.53mmに適宜設定し、実施例5~10では最小1.20mm~最大2.28mmの範囲内に適宜設定した。但し間隙Dの計算値は、小数点以下第3位を四捨五入した。 In all examples, examples 1 to 10 were performed, and in examples 1 to 4, the gap D was set to 0.34 times the thickness t of the die. On the other hand, in Examples 5 to 10, the gap D was set so as to satisfy Equation 3. The thickness t of the die is appropriately set as shown in Table 1 within the range of 3.3 mm to 4.5 mm in Examples 1 to 4, and appropriately set within Table 1 to within the range of 3.3 mm to 6.5 mm in Examples 5 to 10. Set as shown. Therefore, as shown in Table 1, the gap D was appropriately set in the range of 1.12 mm to maximum 1.53 mm in Examples 1 to 4, and appropriately set in the range of 1.20 mm to maximum 2.28 mm in Examples 5 to 10. However, the calculated value of the gap D was rounded off to the third decimal place.
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 
 育成成長された16枚の平板形状のサファイア単結晶間の間隙dを測定したところ、全ての実施例1~10に亘って、間隙dは16枚の中で最大の厚みtmの0.33倍以上0.67倍以上の範囲に収められていることが確認された。なお、各実施例における厚みtmはダイの厚みtと等しい値であった(前記の通り、各実施例においてダイの厚みtは異なる)。更に、実施例5~10では間隙dが数4を満足することも確認された。 When the gap d between the 16 flat-plate-shaped sapphire single crystals grown and grown was measured, the gap d was 0.33 times the maximum thickness tm of the 16 sheets in all Examples 1 to 10 or more and 0.67. It was confirmed that it was within the range of more than twice. The thickness tm in each example was equal to the die thickness t (as described above, the die thickness t was different in each example). Further, in Examples 5 to 10, it was also confirmed that the gap d satisfies the equation (4).
 育成成長された16枚の平板形状のサファイア単結晶におけるフラッティングの発生を各実施例1~10で確認したところ、全ての実施例に関してフラッティングの発生が防止され、隣接するサファイア単結晶同士の貼り付きが解消されていることが確認された。 In each of Examples 1 to 10, it was confirmed that fluttering occurred in the 16 grown flat plate-shaped sapphire single crystals. As a result, the occurrence of flatting was prevented in all the examples. It was confirmed that sticking was eliminated.
 更に各実施例5~10では、16枚全てのサファイア単結晶に亘って線欠陥及び結晶粒界といった結晶箇所が無いことが確認された。 Furthermore, in each of Examples 5 to 10, it was confirmed that there were no crystal parts such as line defects and crystal grain boundaries across all 16 sapphire single crystals.
(比較例)
 以下に、前記実施例の比較例を説明する。なお比較例では、実施例と重複する部分や工程は記載を省略又は簡略化し、異なる部分や工程を重点的に説明する。
(Comparative example)
Below, the comparative example of the said Example is demonstrated. In the comparative example, the description of the parts and processes that overlap with the examples is omitted or simplified, and the different parts and processes are described mainly.
 比較例が実施例と異なる点は、ダイの厚みtを4.5mmに設定すると共に、ダイ間の間隙Dを1.3mmに設定し、間隙Dを厚みtの約0.29倍とし、0.33倍未満に設定した点である。 The comparative example is different from the example in that the die thickness t is set to 4.5 mm, the gap D between the dies is set to 1.3 mm, the gap D is set to about 0.29 times the thickness t, and set to less than 0.33 times. This is the point.
 育成成長された16枚の平板形状のサファイア単結晶間の間隙dを測定したところ、間隙dは16枚の中で最大の厚みtmの0.33倍未満である、約0.29倍で形成されていることが確認された。なお、比較例における厚みtmはダイの厚みtと等しい値であった。 When the gap d between the 16 flat-plate-shaped sapphire single crystals grown and measured was measured, the gap d was less than 0.33 times the maximum thickness tm of the 16 pieces, and was formed at about 0.29 times. Was confirmed. The thickness tm in the comparative example was equal to the die thickness t.
 育成成長された16枚の平板形状のサファイア単結晶におけるフラッティングの発生を確認したところ、一部の間隙dでフラッティングが発生していることが確認された。 When it was confirmed that flattened 16 sapphire single crystals grown and grown were flattened, it was confirmed that flattening occurred in some gaps d.
   1       サファイア単結晶の製造装置
   2、32     サファイア単結晶
   3       育成容器
   4       引き上げ容器
   5       坩堝
   6       坩堝駆動部
   7       ヒータ
   8       電極
   9       ダイ
   10       断熱材
   11       雰囲気ガス導入口
   12       排気口
   13       シャフト
   14       シャフト駆動部
   15       ゲートバルブ
   16       基板出入口
   17、31、33   種結晶
   18       仕切り板
   19       スリット
   20       開口部
   21       酸化アルミニウム融液
   22       酸化アルミニウム融液溜まり
   23       種結晶の切り欠き部
   24       種結晶の切り欠き穴
   25       ネック
   26       直胴部分
   27       主面
   28       結晶面
   29       仕切り板の切り欠き部
   30       斜面
   T       種結晶の厚み
   t       ダイの厚み
   tm      サファイア単結晶の最大の厚み
   D       ダイ間の間隙
   d       サファイア単結晶間の間隙
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus of sapphire single crystal 2, 32 Sapphire single crystal 3 Growth container 4 Lifting container 5 Crucible 6 Crucible drive part 7 Heater 8 Electrode 9 Die 10 Heat insulating material 11 Atmospheric gas introduction port 12 Exhaust port 13 Shaft 14 Shaft drive part 15 Gate Valve 16 Substrate inlet / outlet 17, 31, 33 Seed crystal 18 Partition plate 19 Slit 20 Opening 21 Aluminum oxide melt 22 Aluminum oxide melt reservoir 23 Seed crystal notch 24 Seed crystal notch hole 25 Neck 26 Straight body part 27 Main surface 28 Crystal surface 29 Notch of partition plate 30 Slope T Thickness of seed crystal t Thickness of die tm Maximum thickness of sapphire single crystal D Between dies Gap between the d sapphire single crystal

Claims (5)

  1.  スリットを有すると共に、各々の長手方向が平行に配置された複数のダイを坩堝に収容し、
     坩堝に酸化アルミニウム原料を投入して加熱し、酸化アルミニウム原料を坩堝内で溶融して酸化アルミニウム融液を用意し、
     スリットを介してスリット上部に酸化アルミニウム融液溜まりを形成し、
     そのスリット上部の酸化アルミニウム融液に種結晶を接触させ、種結晶を引き上げることで、所望の主面を有する複数のサファイア単結晶を成長させ、
     各ダイ間の間隙Dを、ダイの厚みtの0.33倍以上0.67倍以下に設定して複数のサファイア単結晶を製造することを特徴とする、複数のサファイア単結晶の製造方法。
    A plurality of dies having slits and arranged in parallel in the longitudinal direction are accommodated in a crucible,
    An aluminum oxide raw material is put into a crucible and heated, and the aluminum oxide raw material is melted in the crucible to prepare an aluminum oxide melt.
    Form an aluminum oxide melt pool at the top of the slit through the slit,
    A plurality of sapphire single crystals having a desired principal surface are grown by bringing the seed crystal into contact with the aluminum oxide melt above the slit and pulling up the seed crystal.
    A method for producing a plurality of sapphire single crystals, characterized in that a plurality of sapphire single crystals are produced by setting a gap D between each die to be 0.33 times or more and 0.67 times or less of a die thickness t.
  2.  前記間隙Dを前記厚みtの0.33倍以上0.67倍以下の範囲内で更に、
    Figure JPOXMLDOC01-appb-M000001
     
    を満足することを特徴とする請求項1記載の複数のサファイア単結晶の製造方法。
    The gap D is within a range of 0.33 times to 0.67 times the thickness t, and
    Figure JPOXMLDOC01-appb-M000001

    The method for producing a plurality of sapphire single crystals according to claim 1, wherein:
  3.  複数のサファイア単結晶は共通の種結晶から形成されており、
     更にサファイア単結晶間の間隙dが、複数のサファイア単結晶の厚みの内、最大の厚みtmの0.33倍以上0.67倍以下に設定されることを特徴とする、複数のサファイア単結晶。
    A plurality of sapphire single crystals are formed from a common seed crystal,
    Furthermore, the gap | interval d between sapphire single crystals is set to 0.33 times or more and 0.67 times or less of the maximum thickness tm among the thickness of several sapphire single crystals, The several sapphire single crystal characterized by the above-mentioned.
  4.  前記間隙dが、前記厚みtmの0.33倍以上0.67倍以下の範囲内で更に、
    Figure JPOXMLDOC01-appb-M000002
     
    を満足することを特徴とする請求項3記載の複数のサファイア単結晶。
    The gap d is within a range of 0.33 to 0.67 times the thickness tm.
    Figure JPOXMLDOC01-appb-M000002

    The plurality of sapphire single crystals according to claim 3, wherein:
  5.  複数の前記サファイア単結晶の主面の結晶軸のずれ角が、0.5°以下の範囲内であることを特徴とする請求項3又は4の何れかに記載の複数のサファイア単結晶。 5. The plurality of sapphire single crystals according to claim 3, wherein a deviation angle of a crystal axis of a main surface of the plurality of sapphire single crystals is within a range of 0.5 ° or less.
PCT/JP2015/076102 2014-09-19 2015-09-15 Plurality of sapphire single crystals and method of manufacturing same WO2016043176A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-190746 2014-09-19
JP2014190746A JP5895280B1 (en) 2014-09-19 2014-09-19 Method for producing a plurality of sapphire single crystals

Publications (1)

Publication Number Publication Date
WO2016043176A1 true WO2016043176A1 (en) 2016-03-24

Family

ID=55533213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076102 WO2016043176A1 (en) 2014-09-19 2015-09-15 Plurality of sapphire single crystals and method of manufacturing same

Country Status (3)

Country Link
JP (1) JP5895280B1 (en)
TW (1) TW201625823A (en)
WO (1) WO2016043176A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113737273A (en) * 2021-09-23 2021-12-03 安徽光智科技有限公司 Preparation device and preparation method of spherical cover window
US11492724B2 (en) 2018-03-23 2022-11-08 Tdk Corporation Die for EFG-based single crystal growth, EFG-based single crystal growth method, and EFG single crystal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7350298B2 (en) 2019-09-05 2023-09-26 Orbray株式会社 Method for manufacturing ceramic composites

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144888A (en) * 1977-05-25 1978-12-16 Agency Of Ind Science & Technol Producing apparatus for beltlike silicon crystal
JPS5567599A (en) * 1978-11-16 1980-05-21 Ricoh Co Ltd Strip crystal growing method
JPH05279189A (en) * 1992-03-30 1993-10-26 Chichibu Cement Co Ltd Method for growing rutile single crystal
JP2001322892A (en) * 2000-05-10 2001-11-20 Namiki Precision Jewel Co Ltd Method of producing single crystal material, seed substrate, die and device for producing single crystal material
JP2003313092A (en) * 2002-04-19 2003-11-06 Namiki Precision Jewel Co Ltd Method for growing sapphire sheet material and sapphire sheet material
JP2003327495A (en) * 2002-05-14 2003-11-19 Namiki Precision Jewel Co Ltd Crystal habit face sapphire plate material and method of producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144888A (en) * 1977-05-25 1978-12-16 Agency Of Ind Science & Technol Producing apparatus for beltlike silicon crystal
JPS5567599A (en) * 1978-11-16 1980-05-21 Ricoh Co Ltd Strip crystal growing method
JPH05279189A (en) * 1992-03-30 1993-10-26 Chichibu Cement Co Ltd Method for growing rutile single crystal
JP2001322892A (en) * 2000-05-10 2001-11-20 Namiki Precision Jewel Co Ltd Method of producing single crystal material, seed substrate, die and device for producing single crystal material
JP2003313092A (en) * 2002-04-19 2003-11-06 Namiki Precision Jewel Co Ltd Method for growing sapphire sheet material and sapphire sheet material
JP2003327495A (en) * 2002-05-14 2003-11-19 Namiki Precision Jewel Co Ltd Crystal habit face sapphire plate material and method of producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11492724B2 (en) 2018-03-23 2022-11-08 Tdk Corporation Die for EFG-based single crystal growth, EFG-based single crystal growth method, and EFG single crystal
CN113737273A (en) * 2021-09-23 2021-12-03 安徽光智科技有限公司 Preparation device and preparation method of spherical cover window
CN113737273B (en) * 2021-09-23 2022-06-24 安徽光智科技有限公司 Preparation device and preparation method of spherical cover window

Also Published As

Publication number Publication date
JP2016060672A (en) 2016-04-25
JP5895280B1 (en) 2016-03-30
TW201625823A (en) 2016-07-16

Similar Documents

Publication Publication Date Title
JP5702931B2 (en) Method for forming single crystal C-plane sapphire material
US20170183792A1 (en) Apparatus for forming single crystal sapphire
JP5633732B2 (en) Sapphire single crystal manufacturing method and sapphire single crystal manufacturing apparatus
JP6364647B2 (en) Large sapphire multi-substrate
JP4465481B2 (en) Single crystal material manufacturing method, seed substrate, die, and single crystal material manufacturing apparatus
JP4245856B2 (en) Sapphire plate growing method
WO2016043176A1 (en) Plurality of sapphire single crystals and method of manufacturing same
JP6014838B1 (en) Multiple sapphire single crystals and method for producing the same
JP6025085B2 (en) Multiple sapphire single crystals and method for producing the same
JP6142948B2 (en) Sapphire single crystal growth die and die pack, sapphire single crystal growth apparatus, sapphire single crystal growth method
JP2008120614A (en) Compound semiconductor single crystal substrate and method for producing the same
WO2017061360A1 (en) Die and die pack for growing sapphire single crystals, apparatus for growing sapphire single crystals, and method for growing sapphire single crystals
WO2017069107A1 (en) Sapphire single crystal and method for producing same
JP2008536793A (en) Thin semiconductor ribbon growth method
JP2010248003A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JP2017078013A (en) Sapphire single crystal manufacturing method of the same
JP6142208B1 (en) Die pack, sapphire single crystal growing apparatus, and sapphire single crystal growing method
JP2016130205A (en) Production method for sapphire single crystal
JP6025080B1 (en) Heat reflector structure of large EFG growth furnace
JP2018065709A (en) Die, die pack, single crystal growth apparatus and single crystal growth method
JP2014156373A (en) Manufacturing apparatus for sapphire single crystal
JP2016147767A (en) Crucible for growing single crystal, single crystal production apparatus, and production method of single crystal
JP2007186390A (en) Method for manufacturing compound semiconductor single crystal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15842232

Country of ref document: EP

Kind code of ref document: A1