WO2017061360A1 - Die and die pack for growing sapphire single crystals, apparatus for growing sapphire single crystals, and method for growing sapphire single crystals - Google Patents

Die and die pack for growing sapphire single crystals, apparatus for growing sapphire single crystals, and method for growing sapphire single crystals Download PDF

Info

Publication number
WO2017061360A1
WO2017061360A1 PCT/JP2016/079235 JP2016079235W WO2017061360A1 WO 2017061360 A1 WO2017061360 A1 WO 2017061360A1 JP 2016079235 W JP2016079235 W JP 2016079235W WO 2017061360 A1 WO2017061360 A1 WO 2017061360A1
Authority
WO
WIPO (PCT)
Prior art keywords
die
sapphire single
crystal
single crystal
curvature
Prior art date
Application number
PCT/JP2016/079235
Other languages
French (fr)
Japanese (ja)
Inventor
弘倫 斎藤
Original Assignee
並木精密宝石株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016117713A external-priority patent/JP6142948B2/en
Application filed by 並木精密宝石株式会社 filed Critical 並木精密宝石株式会社
Publication of WO2017061360A1 publication Critical patent/WO2017061360A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/34Edge-defined film-fed crystal-growth using dies or slits
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides

Definitions

  • the present invention relates to a sapphire single crystal growth die and die pack, a sapphire single crystal growth apparatus, and a sapphire single crystal growth method.
  • CZ Czochralski
  • HEM heat exchange
  • EFG edge defined film fed growth
  • the EFG method is a crystal manufacturing method that has a very high utility value when manufacturing a single crystal having a predetermined crystal orientation.
  • a sapphire single crystal grown using the EFG method requires less man-hours for processing a thin plate-like substrate. Since it can be reduced, it is used in various applications including an epitaxial growth substrate of a blue light emitting element.
  • Patent document 1 is known as a mass production method of a sapphire single crystal using the EFG method.
  • a plurality of single crystal seeds are grown by arranging and pulling up seed crystals for crystal growth in a direction perpendicular to the longitudinal direction of the raw material melt surface for growing a flat single crystal material.
  • a method for manufacturing a sapphire single crystal and a die for growing the single crystal material are disclosed.
  • Patent Document 2 discloses a die in which the shape of the upper edge of the capillary in the long side direction of the silicon ribbon single crystal growth apparatus using the EFG method is recessed at the center with respect to both ends thereof.
  • the die of Patent Document 2 is characterized by being concavely curved with a curvature of 3 W to 20 W with respect to the width dimension W in the long side direction of the upper edge of the capillary, and uses a capillary with a width dimension of 2.54 cm. It is described that a good quality ribbon crystal can be obtained by using a material having a curvature R of 250 mm when the pulling speed of the silicon ribbon crystal is 20 mm per minute and a curvature R of 150 mm when the pulling rate is 30 mm per minute. It is described that when a silicon single crystal is grown using the curved die described in Patent Document 2, the crystal defect of the grown crystal can be suppressed because the solid-liquid interface becomes a horizontal plane.
  • the sapphire substrate conventionally manufactured by the present applicant has been required to increase the substrate size required by the market year after year, and to increase the growth crystal.
  • a method of increasing the size of the grown crystal by changing the width in the longitudinal direction of the die has been attempted.
  • the grown crystal is a crystal such as a line defect (slip) or a grain boundary (grain boundary). Many defects were generated and good large crystals could not be obtained.
  • Patent Document 2 merely shows the result that the curvatures R150 mm and 250 mm when the width W of the capillary is 2.54 cm are included in the range of 3W to 20W.
  • a method for determining the optimal curvature R according to the crystal width has not been established. Conventionally, by preparing several types of dies having a changed curvature R and repeating the growth test, It is necessary to determine the optimal curvature R according to the width, which takes a long time and cost.
  • the present invention has been made in view of the above problems, and by quickly determining the curvature R of the die upper surface without taking a long time and cost, a sapphire single crystal and a sapphire having a large diameter and excellent crystal quality.
  • An object is to provide a substrate. It is another object of the present invention to provide a die and a die pack applicable to sapphire single crystal growth by the EFG method, a sapphire single crystal growth apparatus, and a method for growing a sapphire single crystal.
  • the present inventor has found a method for quickly determining the optimum value of the curvature R of the upper surface of the die according to the grown crystal width, and when using a die and a die pack having the curvature R determined thereby, sapphire having excellent crystal quality
  • a method for quickly determining the optimum value of the curvature R of the upper surface of the die according to the grown crystal width and when using a die and a die pack having the curvature R determined thereby, sapphire having excellent crystal quality
  • single crystals and sapphire substrates can be mass-produced. According to the verification by the present inventor, it was found that the curvature R of the die upper surface applicable to sapphire single crystal growth is different from the numerical range shown in Patent Document 2.
  • the die according to the present invention is a die used for growing a sapphire single crystal by the EFG method, and the upper surface has a curvature R in the longitudinal direction, and the curvature R has a width W of 5 in the longitudinal direction. It is characterized by being less than double.
  • one embodiment of the die according to the present invention is characterized in that the main growth surface of the sapphire single crystal is a c-plane.
  • Another embodiment of the die according to the present invention is characterized in that the curvature R is less than three times the width W.
  • another embodiment of the die according to the present invention is characterized in that the main growth surface of the sapphire single crystal is a-plane.
  • a die pack according to the present invention is a die pack in which a plurality of the dies described in any one of (1) to (4) above are arranged in parallel and facing each other, and the number is 2 or more and 80 or less. It is characterized by being.
  • the sapphire single crystal growing apparatus uses the die described in any one of (1) to (4) or the die pack described in (5).
  • the method for growing a sapphire single crystal according to the present invention is characterized by using the die according to any one of (1) to (4) or the die pack according to (5). To do.
  • the present invention it is possible to provide a sapphire single crystal and a sapphire substrate having a large diameter and excellent crystal quality by quickly determining the curvature R of the die upper surface without taking a long time and cost.
  • a die and a die pack applicable to sapphire single crystal growth by the EFG method, a sapphire single crystal growth apparatus, and a sapphire single crystal growth method.
  • a pair of partition plates 201 are arranged to face each other with a minute gap.
  • the raw material melt is guided to the upper part of the die through the minute gap to form the raw material melt surface.
  • the partition plates 201 have the same flat plate shape and are arranged in parallel so as to form a minute gap (slit 202).
  • FIG. 1A is a front view of a die 101 and a die pack 102 according to the present invention
  • FIG. The “die” described in the present specification refers to one constituted by a pair of partition plates (201, 201).
  • the “die pack” refers to a plurality of the dies 101 arranged in opposition so that the slits are parallel to each other.
  • the upper surface of the die and the die pack according to the present invention has a curvature R with respect to the longitudinal direction of the die.
  • the curvature R is determined by the width of the straight body portion of the crystal to be grown.
  • the width W in the longitudinal direction of the die is designed to have the same width as the width of the straight body portion of the crystal to be grown.
  • the upper surface of the die on which crystal growth is performed preferably has an inclined surface on the upper surface and an opening having an acute angle.
  • the curvature R applicable to the sapphire single crystal growth by the EFG method is the width W in the longitudinal direction of the die. 5 times or less is preferable. By making it 5 times or less, the temperature distribution in the central part and the edge part in the longitudinal direction of the die can be reduced, so that crystal defects and growing are not related to the crystal plane of the main growth surface of the sapphire single crystal. It is possible to suppress the occurrence of freezing in the sapphire, and a sapphire single crystal having excellent crystal quality can be manufactured. In addition, the die can be easily designed.
  • a mathematical function R It is preferable to apply eW 2 + fW.
  • a technique for obtaining the optimum value of the curvature R by applying a quadratic function is a technique found by the present inventor based on an example described later.
  • FIG. 2 is a graph showing the relationship between the longitudinal width W of the die and the curvature R of the upper surface of the die.
  • e is preferably set to a value of 0.001 or more and 0.2 or less regardless of the main growth surface of the grown crystal.
  • f is preferably 0.001 or more and 3 or less.
  • e and f may be selected in an optimal numerical range depending on the growth main surface of the grown crystal.
  • the growth principal surface is the c-plane
  • e is preferably 0.001 or more and 0.2 or less
  • f is preferably 0.001 or more and 3 or less
  • e is 0.001 or more and 0.05 or less
  • F is more preferably 0.001 or more and 3 or less.
  • R / W is set to have a value of less than 3. That is, when the growth main surface is a c-plane, the curvature R is preferably less than three times the width W in the longitudinal direction of the die. Since the numerical ranges are set for e and f, it is possible to ensure a slight degree of design freedom even when the width W is the same and the thickness of the grown crystal and the number of dies are different.
  • e is preferably 0.001 or more and 0.1 or less, and more preferably e is 0.005 or more and 0.05 or less.
  • the value of f is preferably 0.5 or more and 2.5 or less.
  • the width W in the longitudinal direction corresponds to the width of the grown crystal, and the width is desirably 20 mm or more and 300 mm or less.
  • the width W is as small as less than 20 mm, the effect itself of providing the curvature R in the longitudinal direction of the die is small, which is not preferable.
  • it exceeds 300 mm it is difficult to obtain the optimum value of the curvature R using the above-described mathematical formula, which is not preferable.
  • the thickness t of the die 101 constituted by a pair of partition plates corresponds to the thickness of the grown crystal.
  • the die of the present invention desirably has a thickness t of 1 mm or more and 10 mm or less.
  • the thickness t By setting the thickness t to 1 mm or more, the strength and self-supporting property of the grown sapphire single crystal itself can be ensured. Furthermore, even when processing into a sapphire substrate, a sufficient processing allowance can be ensured.
  • an example of the die pack 102 of the present invention is one in which a plurality of sets of the dies are arranged so that the slits are parallel to each other.
  • the number is preferably from 2 to 80, more preferably from 2 to 50.
  • a plurality of sapphire single crystals can be grown from a common seed crystal, so that mass productivity can be improved.
  • the number is limited by the grown crystal width and crystal thickness. When the number of grown crystals exceeds 80, it is not preferable because it becomes difficult to adjust the temperature balance in the number direction.
  • the material of the die and die pack is preferably refractory metal molybdenum or molybdenum alloy suitable for use at a high temperature exceeding 2000 ° C. during sapphire single crystal growth.
  • the die and the die pack are produced according to the grown crystal width and thickness, and the number of grown crystals, and are placed in a crucible.
  • the sapphire single crystal manufacturing apparatus 3 includes a growth container 4 for growing a sapphire single crystal and a pulling container 5 for pulling up the grown sapphire single crystal.
  • Crystal 20 is grown.
  • the growth container 4 includes a crucible 6, a crucible driving unit 7, a heater 8, an electrode 9, a die pack 102, and a heat insulating material 10.
  • the crucible 6 is made of molybdenum or an alloy of molybdenum and melts the aluminum oxide raw material.
  • the crucible drive unit 7 rotates the crucible 6 with the vertical direction as an axis.
  • the heater 8 heats the crucible 6.
  • the electrode 9 energizes the heater 8.
  • the die pack 102 is installed in the crucible 6 and determines the liquid surface shape of an aluminum oxide melt (hereinafter simply referred to as “melt” if necessary) when pulling up the sapphire single crystal.
  • the heat insulating material 10 surrounds the crucible 6, the heater 8, and the die pack 102.
  • the growth container 4 includes an atmospheric gas inlet 11 and an exhaust 12.
  • the atmosphere gas inlet 11 is an inlet for introducing, for example, argon gas into the growth vessel 4 as the atmosphere gas, and prevents oxidation of the crucible 6, the heater 8, and the die pack 102.
  • the exhaust port 12 is provided for exhausting the inside of the growth vessel 4.
  • the pulling container 5 includes a shaft 13, a shaft driving unit 14, a gate valve 15, and a substrate inlet / outlet 16, and pulls up a plurality of sapphire single crystals 20 grown from the seed crystal 21.
  • the shaft 13 holds the seed crystal 21.
  • the shaft driving unit 14 moves the shaft 13 up and down toward the crucible 6 and rotates the shaft 13 around the lifting direction.
  • the gate valve 15 partitions the growth container 4 and the pulling container 5.
  • the substrate entrance / exit 16 takes in and out the seed crystal 21.
  • the manufacturing apparatus 3 also has a control unit (not shown), and the rotation of the crucible drive unit 7 and the shaft drive unit 14 is controlled by this control unit.
  • a method for manufacturing the sapphire single crystal 20 using the manufacturing apparatus 3 will be described with reference to FIGS.
  • a predetermined amount of granulated aluminum oxide raw material powder (99.99% aluminum oxide), which is a raw material of sapphire single crystal, is charged into a crucible 6 in which a die pack 102 is housed.
  • the aluminum oxide raw material powder may contain compounds and elements other than aluminum oxide depending on the purity or composition of the sapphire single crystal to be produced.
  • the heater 8, or the die pack 102 the inside of the growth vessel 4 is replaced with argon gas, and the oxygen concentration is set to a predetermined value or less.
  • the crucible 6 is heated to a predetermined temperature by the heater 8 to melt the aluminum oxide raw material powder. Since the melting point of aluminum oxide is about 2050 ° C. to 2072 ° C., the heating temperature of the crucible 6 is set to a temperature higher than the melting point (for example, 2100 ° C.).
  • the raw material powder melts and an aluminum oxide melt 17 is prepared. As shown in FIG. 4A, a part of the melt ascends through the slit 202 of the die due to capillary action and reaches the surface of the die pack 102, and the melt pool 18 is formed above the slit.
  • the seed crystal 21 is lowered while holding the seed crystal 21 at an angle perpendicular to the longitudinal direction of the melt reservoir 18 above the slit, and the seed crystal 21 is melted in the melt reservoir 18. Touch the liquid surface.
  • the seed crystal 21 is previously introduced into the pulling container 5 from the substrate entrance 16.
  • the shape of the seed crystal 21 shown in FIGS. 4A and 4B is an example.
  • the plane direction of the seed crystal 21 and the longitudinal direction of the die pack 102 so as to be orthogonal to each other at an angle of 90 °, it is possible to simultaneously grow a plurality of sapphire single crystals from one seed crystal. It becomes. Therefore, the plane direction of the grown sapphire single crystal 20 is also orthogonal to the plane direction of the seed crystal 21 at an angle of 90 °.
  • the neck portion 22 is formed as shown in FIG. Specifically, first, a thin neck portion 22 is produced (necked) while the substrate holder is raised at high speed by the shaft 13. Hereinafter, this process is referred to as a necking process.
  • the neck portion 22 is a crystal portion having a diameter as thin as the thickness of the seed crystal 21 or the width of the melt pool 18 and is formed to reduce or eliminate crystal defects.
  • the length of the neck portion 22 is formed up to about three times its diameter.
  • FIG. 5 is a schematic view showing a state in which the width of the sapphire single crystal 20 is widened by a spraying process.
  • the sapphire single crystal 20 When the sapphire single crystal 20 is expanded to the full width of the die (full spread), growth of the straight body portion 23 having a crystal width defined by the width W in the longitudinal direction of the die is started (straight body process).
  • a plurality of sapphire single crystals 20 having a straight body portion defined by side surfaces that are substantially parallel to and opposed to each other are manufactured.
  • the length of the straight body is not particularly limited, but is preferably 2 inches or more (50.8 mm or more).
  • a plurality of sapphire single crystals 20 as shown in FIG. 6 are obtained through the above-described necking process, spraying process, and straight body process.
  • the gate valve 15 is opened, moved to the pulling container 5 side, and taken out from the substrate inlet / outlet 16.
  • a plurality of sapphire single crystals 20 can be manufactured from the common seed crystal 21.
  • the crystal plane of the main surface of the sapphire single crystal 20 can be arbitrarily changed by arbitrarily setting the crystal plane of the seed crystal 21.
  • the main surface of the sapphire single crystal 20 is not limited to the a-plane, and can be set to a desired crystal plane such as a c-plane, r-plane, or m-plane.
  • a plurality of sapphire single crystals 20 having the c-plane as the main surface were manufactured by the method described above.
  • the curvature R (mm) of the die upper surface and the width W (mm) in the longitudinal direction of the die were changed as parameters of the die pack 102 as shown in Table 1, and the sapphire single crystals of Examples 1 to 5 and Comparative Examples 1 and 2 20 was obtained.
  • the die thickness t in Examples 2 to 4 where the width W is 105 mm and Comparative Example 1 are the same.
  • the number of breeding in Examples 3 and 4 and Comparative Example 1 is the same, and the number of breeding is different from that in Examples 1 and 2.
  • the thickness t and the number of growth of the dies in Example 5 and Comparative Example 2 in which the width W is 155 mm are the same.
  • FIG. 7 is a graph showing the relationship between the width W in the die longitudinal direction and the curvature R of the die upper surface when the main surface of the grown crystal is the c-plane.
  • Examples 1 to 5 are plotted with ⁇
  • Comparative Examples 1 and 2 are plotted with ⁇ .
  • the sapphire single crystal 20 having the a-plane as the main surface was manufactured by the method described above.
  • the curvature R (mm) of the die upper surface and the width W (mm) in the longitudinal direction of the die are changed as parameters of the die pack 102 as shown in Table 1, and a plurality of sapphires of Examples 6 to 9 and Comparative Examples 3 and 4 are used.
  • Single crystal 20 was obtained. It should be noted that the thicknesses t and the number of grown dies are the same in Examples 7 and 8 where the width W is 138 mm and Comparative Example 3. Further, the die thickness t and the number of growths in Example 9 and Comparative Example 4 in which the width W is 150 mm are the same.
  • FIG. 8 is a graph showing the relationship between the width W in the die longitudinal direction and the curvature R of the die upper surface when the principal surface of the grown crystal is the a-plane.
  • Examples 6 to 9 are plotted with ⁇
  • Comparative Examples 3 and 4 are plotted with ⁇ .
  • R is 5 W or less.
  • the sapphire single crystal grown using the die and the die pack of the present invention has no crystal defects such as a line defect (slip) and a grain boundary (grain boundary) in the straight body portion, and is excellent in crystal quality.
  • the straight body portion has no crystal defects means that the crystal defects as described above do not exist in the region used for substrate processing in the straight body portion of the grown crystal. Specifically, since there is no crystal defect in a region within 95% of the width of the grown crystal, the product yield can be improved. Further, the shape of the lower end surface of the straight body portion of the grown crystal is formed to be concave with respect to the pulling direction. This is because the upper surface of the die of the present invention has a curvature in the longitudinal direction. By polishing the sapphire single crystal thus obtained, a sapphire substrate having excellent crystal quality can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

[Problem] To provide: a sapphire single crystal which has a large diameter and exceptional crystalline quality, by rapidly determining, without the need for an extended period of time or imposing costs, the curvature R of the top surface of a die used for growing sapphire single crystals by the EFG process; and a sapphire substrate. Additionally, to provide a die and die pack for use in growing sapphire single crystals by the EFG process, and a method for growing sapphire single crystals. [Solution] Used is a die for use in growing sapphire single crystals by the EFG process, the die being characterized in that: the upper surface has a curvature R in the lengthwise direction; and the curvature R is no more than five times the width W in the lengthwise direction.

Description

サファイア単結晶育成用ダイ及びダイパック、サファイア単結晶育成装置、サファイア単結晶の育成方法Sapphire single crystal growth die and die pack, sapphire single crystal growth apparatus, sapphire single crystal growth method
 本発明は、サファイア単結晶育成用ダイ及びダイパック、サファイア単結晶育成装置、サファイア単結晶の育成方法に関する。 The present invention relates to a sapphire single crystal growth die and die pack, a sapphire single crystal growth apparatus, and a sapphire single crystal growth method.
従来、単結晶を成長させる方法として、チョクラルスキー(CZ)法、ヒートエクスチェンジ(HEM)法、ベルヌイ法、エッジデファインド・フィルムフェッド・グロース(EFG)法などが知られている。このうち、平板形状の単結晶を製造する方法としてはEFG法が唯一の方法として知られている。EFG法は、所定の結晶方位を有する単結晶を製造する場合に極めて利用価値が高い結晶製造方法であり、EFG法を用いて育成されたサファイア単結晶は、薄板状の基板加工への工数を減らすことができるという利点があることから、青色発光素子のエピタキシャル成長基板をはじめとする様々な用途に用いられている。 Conventionally, Czochralski (CZ) method, heat exchange (HEM) method, Bernoulli method, edge defined film fed growth (EFG) method and the like are known as methods for growing a single crystal. Of these, the EFG method is known as the only method for producing a flat single crystal. The EFG method is a crystal manufacturing method that has a very high utility value when manufacturing a single crystal having a predetermined crystal orientation. A sapphire single crystal grown using the EFG method requires less man-hours for processing a thin plate-like substrate. Since it can be reduced, it is used in various applications including an epitaxial growth substrate of a blue light emitting element.
EFG法を用いたサファイア単結晶の量産方法として、特許文献1が知られている。特許文献1には、平板形状の単結晶材を成長させる原料溶融液面の長手方向に垂直な方向に、結晶成長用の種結晶を配置して引き上げることにより、一枚の種結晶から複数枚の単結晶材を育成するサファイア単結晶の製造方法とダイが開示されている。 Patent document 1 is known as a mass production method of a sapphire single crystal using the EFG method. In Patent Document 1, a plurality of single crystal seeds are grown by arranging and pulling up seed crystals for crystal growth in a direction perpendicular to the longitudinal direction of the raw material melt surface for growing a flat single crystal material. A method for manufacturing a sapphire single crystal and a die for growing the single crystal material are disclosed.
 特許文献2には、EFG法を用いたシリコンリボン単結晶成長装置において、キャピラリ上縁の長辺方向における形状が、その両端に対し中央部分が凹んでいるダイが開示されている。特許文献2のダイは、キャピラリ上縁の長辺方向の幅寸法Wに対し3W乃至20Wの曲率をもって凹形に湾曲していることを特徴としており、幅寸法が2.54cmのキャピラリを使用して、シリコンリボン結晶の引き上げ速度が毎分20mmのときには曲率Rが250mm、毎分30mmのときには曲率Rが150mmのものを用いて良質のリボン結晶が得られると記載されている。特許文献2に記載の湾曲したダイを用いてシリコン単結晶を成長させると、固液界面が水平面になるため育成結晶の結晶欠陥を抑えることができることが記載されている。 Patent Document 2 discloses a die in which the shape of the upper edge of the capillary in the long side direction of the silicon ribbon single crystal growth apparatus using the EFG method is recessed at the center with respect to both ends thereof. The die of Patent Document 2 is characterized by being concavely curved with a curvature of 3 W to 20 W with respect to the width dimension W in the long side direction of the upper edge of the capillary, and uses a capillary with a width dimension of 2.54 cm. It is described that a good quality ribbon crystal can be obtained by using a material having a curvature R of 250 mm when the pulling speed of the silicon ribbon crystal is 20 mm per minute and a curvature R of 150 mm when the pulling rate is 30 mm per minute. It is described that when a silicon single crystal is grown using the curved die described in Patent Document 2, the crystal defect of the grown crystal can be suppressed because the solid-liquid interface becomes a horizontal plane.
特許第4465481号公報Japanese Patent No. 4465481 特開昭52-156184号公報JP 52-156184 A
本出願人が従来から製造していたサファイア基板は、年々市場が求める基板サイズが大口径化し、育成結晶を大型化する必要があった。大口径化への対応として、ダイの長手方向の幅を変更して育成結晶を大型化する方法が試みられたが、育成結晶に線欠陥(slip)や結晶粒界(grain boundary)等の結晶欠陥が多数発生し、良好な大型結晶が得られなかった。 The sapphire substrate conventionally manufactured by the present applicant has been required to increase the substrate size required by the market year after year, and to increase the growth crystal. In order to cope with the increase in the diameter, a method of increasing the size of the grown crystal by changing the width in the longitudinal direction of the die has been attempted. However, the grown crystal is a crystal such as a line defect (slip) or a grain boundary (grain boundary). Many defects were generated and good large crystals could not be obtained.
それに加えて、結晶育成中に融液が一時的に固化してしまうフリーズという現象が頻繁に発生していた。フリーズが起こると、結晶品質が悪くなるだけでなく、程度によっては育成を中断しなくてはならなくなり、結果として製品歩留まりが低下するという問題も引き起こしていた。 In addition, the phenomenon of freezing in which the melt temporarily solidifies during crystal growth has frequently occurred. When freezing occurs, not only does the crystal quality deteriorate, but depending on the degree, the growth must be interrupted, resulting in a problem that the product yield decreases.
本発明者は、サファイア単結晶を育成する際、上面が僅かに湾曲したダイを用いることによって、上記の結晶欠陥の発生を抑える効果があるという知見を経験的に得ていた。しかしながら、特許文献2に開示されている3W乃至20Wを適用しても良好なサファイアの大型結晶は得られなかった。即ち、特許文献2では、単にキャピラリの幅寸法Wが2.54cmの場合の曲率R150mm及び250mmが、3W乃至20Wの範囲に含まれていたという結果を示しているにすぎず、サファイア単結晶育成には適用できなかった。そのため、サファイア単結晶について、結晶幅に応じた最適な曲率Rを決定する手法は確立されておらず、従来は、曲率Rを変更したダイを実際に数種類用意し、育成試験を繰り返すことによって結晶幅に応じた最適な曲率Rを決定する必要があり、長い時間とコストがかかっていた。 The present inventor has empirically obtained the knowledge that, when growing a sapphire single crystal, the use of a die having a slightly curved upper surface has the effect of suppressing the occurrence of the above crystal defects. However, even if 3W to 20W disclosed in Patent Document 2 is applied, a good large sapphire crystal could not be obtained. That is, Patent Document 2 merely shows the result that the curvatures R150 mm and 250 mm when the width W of the capillary is 2.54 cm are included in the range of 3W to 20W. Could not be applied. Therefore, for sapphire single crystals, a method for determining the optimal curvature R according to the crystal width has not been established. Conventionally, by preparing several types of dies having a changed curvature R and repeating the growth test, It is necessary to determine the optimal curvature R according to the width, which takes a long time and cost.
前述したように、大口径かつ結晶品質に優れたサファイア基板を市場に提供することが求められており、長い時間やコストをかけることなく最適な曲率Rを迅速に決定する必要があった。 As described above, it is required to provide a sapphire substrate having a large diameter and excellent crystal quality to the market, and it is necessary to quickly determine an optimal curvature R without taking a long time and cost.
本発明は、上記課題に鑑みてなされたものであり、長い時間やコストをかけることなく、ダイ上面の曲率Rを迅速に決定することにより、大口径かつ結晶品質に優れたサファイア単結晶及びサファイア基板を提供することを目的とする。また、EFG法によるサファイア単結晶育成に適用可能なダイ及びダイパックと、サファイア単結晶育成装置、サファイア単結晶の育成方法を提供することを目的とする。 The present invention has been made in view of the above problems, and by quickly determining the curvature R of the die upper surface without taking a long time and cost, a sapphire single crystal and a sapphire having a large diameter and excellent crystal quality. An object is to provide a substrate. It is another object of the present invention to provide a die and a die pack applicable to sapphire single crystal growth by the EFG method, a sapphire single crystal growth apparatus, and a method for growing a sapphire single crystal.
本発明者は、育成結晶幅に応じたダイ上面の曲率Rの最適値を迅速に決定する手法を見出し、それによって求められた曲率Rを有するダイ及びダイパックを用いると、結晶品質に優れたサファイア単結晶及びサファイア基板を量産できることを見出した。本発明者の検証によると、サファイア単結晶育成に適用可能なダイ上面の曲率Rは、特許文献2に示された数値範囲とは異なることが分かった。 The present inventor has found a method for quickly determining the optimum value of the curvature R of the upper surface of the die according to the grown crystal width, and when using a die and a die pack having the curvature R determined thereby, sapphire having excellent crystal quality We have found that single crystals and sapphire substrates can be mass-produced. According to the verification by the present inventor, it was found that the curvature R of the die upper surface applicable to sapphire single crystal growth is different from the numerical range shown in Patent Document 2.
(1)即ち、本発明に係るダイは、EFG法によるサファイア単結晶の育成に使用するダイであって、上面が長手方向に曲率Rを有し、前記曲率Rが長手方向の幅Wの5倍以下であることを特徴とする。 (1) That is, the die according to the present invention is a die used for growing a sapphire single crystal by the EFG method, and the upper surface has a curvature R in the longitudinal direction, and the curvature R has a width W of 5 in the longitudinal direction. It is characterized by being less than double.
(2)また、本発明に係るダイの一実施形態は、前記サファイア単結晶の成長主面がc面であることを特徴とする。 (2) Moreover, one embodiment of the die according to the present invention is characterized in that the main growth surface of the sapphire single crystal is a c-plane.
(3)また、本発明に係るダイの他の実施形態は、前記曲率Rが前記幅Wの3倍未満であることを特徴とする。 (3) Another embodiment of the die according to the present invention is characterized in that the curvature R is less than three times the width W.
(4)また、本発明に係るダイの他の実施形態は、前記サファイア単結晶の成長主面がa面であることを特徴とする。 (4) Further, another embodiment of the die according to the present invention is characterized in that the main growth surface of the sapphire single crystal is a-plane.
(5)また、本発明に係るダイパックは、上記(1)~(4)のいずれかに記載の前記ダイを複数組平行に対向配置させたダイパックであって、その数が2以上80以下であることを特徴とする。 (5) A die pack according to the present invention is a die pack in which a plurality of the dies described in any one of (1) to (4) above are arranged in parallel and facing each other, and the number is 2 or more and 80 or less. It is characterized by being.
(6)また、本発明に係るサファイア単結晶育成装置は、上記(1)~(4)のいずれか一つに記載のダイ又は上記(5)に記載のダイパックを用いることを特徴とする。 (6) Further, the sapphire single crystal growing apparatus according to the present invention uses the die described in any one of (1) to (4) or the die pack described in (5).
(7)また、本発明に係るサファイア単結晶の育成方法は、上記(1)~(4)のいずれか一つに記載のダイ又は上記(5)に記載のダイパックを使用することを特徴とする。 (7) The method for growing a sapphire single crystal according to the present invention is characterized by using the die according to any one of (1) to (4) or the die pack according to (5). To do.
本発明によれば、長い時間やコストをかけることなく、ダイ上面の曲率Rを迅速に決定することにより、大口径かつ結晶品質に優れたサファイア単結晶及びサファイア基板の提供が可能になるという効果を有する。さらには、EFG法によるサファイア単結晶育成に適用可能なダイ及びダイパックと、サファイア単結晶育成装置、サファイア単結晶の育成方法を提供することが可能になるという効果を有する。 According to the present invention, it is possible to provide a sapphire single crystal and a sapphire substrate having a large diameter and excellent crystal quality by quickly determining the curvature R of the die upper surface without taking a long time and cost. Have Furthermore, there is an effect that it is possible to provide a die and a die pack applicable to sapphire single crystal growth by the EFG method, a sapphire single crystal growth apparatus, and a sapphire single crystal growth method.
本発明に係るダイ及びダイパックを説明する(a)正面図、(b)側面図である。It is (a) front view and (b) side view explaining the die | dye and die pack which concern on this invention. ダイの長手方向の幅Wとダイ上面の曲率Rの関係を示すグラフである。It is a graph which shows the relationship between the width | variety W of the longitudinal direction of die | dye, and the curvature R of die upper surface. EFG法によるサファイア単結晶の製造装置を示す概略構成図である。It is a schematic block diagram which shows the manufacturing apparatus of the sapphire single crystal by EFG method. (a) 本発明の実施形態における種結晶とダイ及びダイパックの位置関係を模式的に示す図である。(b) 本発明の実施形態における、種結晶の一部を溶融する様子を示す説明図である。(A) It is a figure which shows typically the positional relationship of the seed crystal, die | dye, and die pack in embodiment of this invention. (B) It is explanatory drawing which shows a mode that a part of seed crystal is fuse | melted in embodiment of this invention. 本発明の実施形態に係るサファイア単結晶のスプレーディング(spreading)工程を模式的に示す斜視図である。It is a perspective view which shows typically the spraying (spreading) process of the sapphire single crystal which concerns on embodiment of this invention. EFG法により得られる複数枚のサファイア単結晶を模式的に示す斜視図である。It is a perspective view showing typically a plurality of sapphire single crystals obtained by the EFG method. 育成結晶の主面をc面とした場合のダイ長手方向の幅Wとダイ上面の曲率Rの関係を示すグラフである。It is a graph which shows the relationship between the width | variety W of the die longitudinal direction and the curvature R of die upper surface at the time of making the main surface of a growth crystal into c surface. 育成結晶の主面をa面とした場合のダイ長手方向の幅Wとダイ上面の曲率Rの関係を示すグラフである。It is a graph which shows the relationship between the width | variety W of the die longitudinal direction when the main surface of a growth crystal is a surface, and the curvature R of die | dye upper surface.
 以下、図1を参照して、本発明に係るダイ及びダイパックについて詳細に説明する。 Hereinafter, the die and die pack according to the present invention will be described in detail with reference to FIG.
本発明のダイ101及びダイパック102の一例は、図1(a),(b)に示すように、一対の仕切り板201が微小間隙を空けて対向配置されている。原料溶融液は、該微小間隙を伝ってダイ上部に導かれ、原料溶融液面を形成する。仕切り板201は同一の平板形状を有し、微小間隙(スリット202)を形成するように平行に配置されている。 In an example of the die 101 and the die pack 102 according to the present invention, as shown in FIGS. 1A and 1B, a pair of partition plates 201 are arranged to face each other with a minute gap. The raw material melt is guided to the upper part of the die through the minute gap to form the raw material melt surface. The partition plates 201 have the same flat plate shape and are arranged in parallel so as to form a minute gap (slit 202).
図1(a)は本発明に係るダイ101及びダイパック102の正面図、(b)は側面図である。本明細書中で記載する「ダイ」とは、一対の仕切り板(201,201)によって構成されるものを呼ぶものとする。そして「ダイパック」とは、前記ダイ101が複数組、互いのスリットが平行になるように対向配置したものを呼ぶものとする。 FIG. 1A is a front view of a die 101 and a die pack 102 according to the present invention, and FIG. The “die” described in the present specification refers to one constituted by a pair of partition plates (201, 201). The “die pack” refers to a plurality of the dies 101 arranged in opposition so that the slits are parallel to each other.
図1(a),(b)に示すように、本発明に係るダイ及びダイパックは、その上面がダイの長手方向に対し曲率Rを有している。曲率Rは、育成する結晶の直胴部分の幅によって決定される。ダイの長手方向の幅Wは、育成する結晶の直胴部分の幅と同一の幅を持つように設計される。結晶育成が行われるダイの上面形状は、一例として図1(a)に示すように、上面に傾斜面を有し、鋭角の開口部が形成されたものを用いるのが好ましい。 As shown in FIGS. 1A and 1B, the upper surface of the die and the die pack according to the present invention has a curvature R with respect to the longitudinal direction of the die. The curvature R is determined by the width of the straight body portion of the crystal to be grown. The width W in the longitudinal direction of the die is designed to have the same width as the width of the straight body portion of the crystal to be grown. For example, as shown in FIG. 1A, the upper surface of the die on which crystal growth is performed preferably has an inclined surface on the upper surface and an opening having an acute angle.
本発明者が実際に曲率Rの異なる数種類のダイ及びダイパックを準備して行った育成試験によれば、EFG法によるサファイア単結晶育成に適用可能な曲率Rは、ダイの長手方向の幅Wの5倍以下とするのが好ましい。5倍以下とすることで、ダイの長手方向における中央部分と端の部分での温度分布を小さくすることができるため、サファイア単結晶の成長主面の結晶面にかかわらず、結晶欠陥や育成中におけるフリーズの発生を抑えることが可能となり、結晶品質に優れたサファイア単結晶を製造できる。また、ダイの設計が容易になるという効果も有する。 According to the growth test that the present inventors actually prepared several types of dies and die packs having different curvatures R, the curvature R applicable to the sapphire single crystal growth by the EFG method is the width W in the longitudinal direction of the die. 5 times or less is preferable. By making it 5 times or less, the temperature distribution in the central part and the edge part in the longitudinal direction of the die can be reduced, so that crystal defects and growing are not related to the crystal plane of the main growth surface of the sapphire single crystal. It is possible to suppress the occurrence of freezing in the sapphire, and a sapphire single crystal having excellent crystal quality can be manufactured. In addition, the die can be easily designed.
さらに本発明者の育成試験による検証によれば、成長主面毎に幅Wに対する曲率Rの最適値を求める場合、幅Wの5倍以下とすることに加え、二次関数である数式R=eW2+fWを適用するのが好ましい。二次関数を適用して曲率Rの最適値を求める手法は、後述する実施例に基づいて本発明者が見出した手法である。図2は、ダイの長手方向の幅Wとダイ上面の曲率Rの関係を示すグラフであり、二次関数であるR=eW2+fWを適用する手法によって、あらゆる結晶幅に対して、曲率Rの最適値を簡便に決定することが可能となる。 Further, according to the verification by the inventor's growth test, when obtaining the optimum value of the curvature R with respect to the width W for each growth principal surface, in addition to setting it to be not more than 5 times the width W, a mathematical function R = It is preferable to apply eW 2 + fW. A technique for obtaining the optimum value of the curvature R by applying a quadratic function is a technique found by the present inventor based on an example described later. FIG. 2 is a graph showing the relationship between the longitudinal width W of the die and the curvature R of the upper surface of the die. By applying a quadratic function R = eW 2 + fW, the curvature R can be obtained for any crystal width. It is possible to easily determine the optimum value of.
ここで、育成結晶の成長主面にかかわらず、eは0.001以上0.2以下の値とするのが好ましい。eに加えて、fは0.001以上3以下とするのが好ましい。e及びfを上記の数値範囲とすることにより、育成結晶の成長主面にかかわらず、結晶欠陥やフリーズの発生を抑えることが可能となり、結晶品質に優れたサファイア単結晶を製造できる。 Here, e is preferably set to a value of 0.001 or more and 0.2 or less regardless of the main growth surface of the grown crystal. In addition to e, f is preferably 0.001 or more and 3 or less. By setting e and f within the above numerical range, it is possible to suppress the occurrence of crystal defects and freezes regardless of the growth main surface of the grown crystal, and a sapphire single crystal having excellent crystal quality can be manufactured.
本発明者の育成試験による検証によれば、e及びfは、育成結晶の成長主面によって最適な数値範囲を選択すればよい。例えば成長主面がc面の場合は、eが0.001以上0.2以下、且つ、fが0.001以上3以下とするのが好ましく、eが0.001以上0.05以下、且つ、fが0.001以上3以下とするのがより好ましい。また、e及びfの条件に加えて、R/Wが3未満の値を有するように設定されるのが好ましい。すなわち、成長主面がc面の場合、曲率Rはダイの長手方向の幅Wの3倍未満とするのが好ましい。e及びfに数値範囲が設定されていることで、同じ幅Wであっても育成結晶の厚みやダイの枚数が異なる場合における若干の設計自由度を確保することが可能となる。 According to the verification by the inventor's growth test, e and f may be selected in an optimal numerical range depending on the growth main surface of the grown crystal. For example, when the growth principal surface is the c-plane, e is preferably 0.001 or more and 0.2 or less, and f is preferably 0.001 or more and 3 or less, and e is 0.001 or more and 0.05 or less, and , F is more preferably 0.001 or more and 3 or less. In addition to the conditions of e and f, it is preferable that R / W is set to have a value of less than 3. That is, when the growth main surface is a c-plane, the curvature R is preferably less than three times the width W in the longitudinal direction of the die. Since the numerical ranges are set for e and f, it is possible to ensure a slight degree of design freedom even when the width W is the same and the thickness of the grown crystal and the number of dies are different.
また、主面がa面の場合は、eが0.001以上0.1以下とするのが好ましく、さらに、eを0.005以上0.05以下とするのがより好ましい。また、前記eに加えてfの値は0.5以上2.5以下とするのが好ましい。 Moreover, when the main surface is a-plane, e is preferably 0.001 or more and 0.1 or less, and more preferably e is 0.005 or more and 0.05 or less. In addition to e, the value of f is preferably 0.5 or more and 2.5 or less.
また、数式R=eW2+fWにより求められた曲率Rは、最大で±25%、好ましくは±10%、さらに好ましくは±5%の範囲内で必要に応じて変更することが可能であり、ダイの加工難易度を下げることができる。従って、ダイの加工コストを下げることが可能になる。 Further, the curvature R obtained by the formula R = eW 2 + fW can be changed as necessary within a range of ± 25% at maximum, preferably ± 10%, more preferably ± 5%, Die processing difficulty can be reduced. Therefore, the die processing cost can be reduced.
本発明のダイ及びダイパックにおいて、長手方向の幅Wは育成結晶の幅に対応し、その幅は20mm以上300mm以下であることが望ましい。幅Wが20mm未満と小さい場合には、ダイの長手方向に曲率Rを設ける効果自体が小さいため好ましくない。また、300mmを超えると、前述の数式を用いて曲率Rの最適値を求めることが困難になるため、好ましくない。20mm以上300mm以下とすることによって、結晶品質に優れ、かつ300mm以下までの大口径サファイア基板に対応した大型のサファイア単結晶を育成することができる。 In the die and die pack of the present invention, the width W in the longitudinal direction corresponds to the width of the grown crystal, and the width is desirably 20 mm or more and 300 mm or less. When the width W is as small as less than 20 mm, the effect itself of providing the curvature R in the longitudinal direction of the die is small, which is not preferable. On the other hand, if it exceeds 300 mm, it is difficult to obtain the optimum value of the curvature R using the above-described mathematical formula, which is not preferable. By setting it to 20 mm or more and 300 mm or less, it is possible to grow a large sapphire single crystal excellent in crystal quality and corresponding to a large-diameter sapphire substrate up to 300 mm or less.
図1(a)に示されるように、一対の仕切り板によって構成されるダイ101の厚みtは、育成結晶の厚みに対応する。本発明のダイは、その厚みtを1mm以上10mm以下とすることが望ましい。厚みtを1mm以上とすることで、育成されたサファイア単結晶自身の強度と自立性を確保することができる。さらに、サファイア基板に加工する場合でも、十分な加工代を確保することができる。また、厚みtが10mmを超えると結晶品質に優れたサファイア単結晶を得ることが困難となるため、10mm以下とするのが好ましい。 As shown in FIG. 1A, the thickness t of the die 101 constituted by a pair of partition plates corresponds to the thickness of the grown crystal. The die of the present invention desirably has a thickness t of 1 mm or more and 10 mm or less. By setting the thickness t to 1 mm or more, the strength and self-supporting property of the grown sapphire single crystal itself can be ensured. Furthermore, even when processing into a sapphire substrate, a sufficient processing allowance can be ensured. Moreover, since it will become difficult to obtain the sapphire single crystal excellent in crystal quality when thickness t exceeds 10 mm, it is preferable to set it as 10 mm or less.
また本発明のダイパック102の一例は、前記ダイが複数組、互いのスリットが平行になるように対向配置したものである。本発明では、その数は2以上80以下、より好ましくは2以上50以下とするのが望ましい。本発明のダイパックを用いると、共通の種結晶から複数枚のサファイア単結晶を育成できるため量産性を向上できる。しかしながら、その数は育成結晶幅と結晶厚みによって制限を受ける。育成結晶枚数が80を超えると、枚数方向の温度バランス調整が難しくなるため好ましくない。 In addition, an example of the die pack 102 of the present invention is one in which a plurality of sets of the dies are arranged so that the slits are parallel to each other. In the present invention, the number is preferably from 2 to 80, more preferably from 2 to 50. When the die pack of the present invention is used, a plurality of sapphire single crystals can be grown from a common seed crystal, so that mass productivity can be improved. However, the number is limited by the grown crystal width and crystal thickness. When the number of grown crystals exceeds 80, it is not preferable because it becomes difficult to adjust the temperature balance in the number direction.
前記ダイ及びダイパックの材質は、サファイア単結晶育成時において2000℃を超える高温下での使用に適している高融点金属のモリブデン又はモリブデンの合金が好ましい。 The material of the die and die pack is preferably refractory metal molybdenum or molybdenum alloy suitable for use at a high temperature exceeding 2000 ° C. during sapphire single crystal growth.
前記ダイ及びダイパックは、育成結晶幅及び厚み、育成枚数に応じて作製され、坩堝内に設置される。 The die and the die pack are produced according to the grown crystal width and thickness, and the number of grown crystals, and are placed in a crucible.
以下、本発明に係るダイ及びダイパックを使用して、EFG法においてサファイア単結晶を育成する方法について、図3~図6を参照しながら詳細に説明する。ここでは、ダイパックを使用して複数枚のサファイア単結晶を育成する場合について説明するが、ダイを使用して一枚のサファイア単結晶を育成する場合も同様に育成することができる。 Hereinafter, a method for growing a sapphire single crystal in the EFG method using the die and the die pack according to the present invention will be described in detail with reference to FIGS. Here, a case where a plurality of sapphire single crystals are grown using a die pack will be described. However, a case where a single sapphire single crystal is grown using a die can also be grown similarly.
図3に示すように、サファイア単結晶の製造装置3は、サファイア単結晶を育成する育成容器4と、育成したサファイア単結晶を引き上げる引き上げ容器5とから構成され、EFG法により複数枚のサファイア単結晶20を成長させる。
育成容器4は、坩堝6、坩堝駆動部7、ヒータ8、電極9、ダイパック102、及び断熱材10を備える。坩堝6はモリブデン又はモリブデンの合金製であり、酸化アルミニウム原料を溶融する。坩堝駆動部7は、坩堝6をその鉛直方向を軸として回転させる。ヒータ8は坩堝6を加熱する。また、電極9はヒータ8を通電する。
As shown in FIG. 3, the sapphire single crystal manufacturing apparatus 3 includes a growth container 4 for growing a sapphire single crystal and a pulling container 5 for pulling up the grown sapphire single crystal. Crystal 20 is grown.
The growth container 4 includes a crucible 6, a crucible driving unit 7, a heater 8, an electrode 9, a die pack 102, and a heat insulating material 10. The crucible 6 is made of molybdenum or an alloy of molybdenum and melts the aluminum oxide raw material. The crucible drive unit 7 rotates the crucible 6 with the vertical direction as an axis. The heater 8 heats the crucible 6. The electrode 9 energizes the heater 8.
ダイパック102は坩堝6内に設置され、サファイア単結晶を引き上げる際の酸化アルミニウム融液(以下、必要に応じて単に「融液」と表記)の液面形状を決定する。また断熱材10は、坩堝6とヒータ8とダイパック102を取り囲んでいる。 The die pack 102 is installed in the crucible 6 and determines the liquid surface shape of an aluminum oxide melt (hereinafter simply referred to as “melt” if necessary) when pulling up the sapphire single crystal. The heat insulating material 10 surrounds the crucible 6, the heater 8, and the die pack 102.
 更に育成容器4は、雰囲気ガス導入口11と排気口12を備える。雰囲気ガス導入口11は、雰囲気ガスとして例えばアルゴンガスを育成容器4内に導入するための導入口であり、坩堝6やヒータ8、及びダイパック102の酸化消耗を防止する。一方、排気口12は育成容器4内を排気するために備えられる。 Furthermore, the growth container 4 includes an atmospheric gas inlet 11 and an exhaust 12. The atmosphere gas inlet 11 is an inlet for introducing, for example, argon gas into the growth vessel 4 as the atmosphere gas, and prevents oxidation of the crucible 6, the heater 8, and the die pack 102. On the other hand, the exhaust port 12 is provided for exhausting the inside of the growth vessel 4.
引き上げ容器5は、シャフト13、シャフト駆動部14、ゲートバルブ15、及び基板出入口16を備え、種結晶21から結晶成長した複数枚のサファイア単結晶20を引き上げる。シャフト13は種結晶21を保持する。またシャフト駆動部14は、シャフト13を坩堝6に向けて昇降させると共に、その昇降方向を軸としてシャフト13を回転させる。ゲートバルブ15は育成容器4と引き上げ容器5とを仕切る。また基板出入口16は、種結晶21を出し入れする。 The pulling container 5 includes a shaft 13, a shaft driving unit 14, a gate valve 15, and a substrate inlet / outlet 16, and pulls up a plurality of sapphire single crystals 20 grown from the seed crystal 21. The shaft 13 holds the seed crystal 21. Further, the shaft driving unit 14 moves the shaft 13 up and down toward the crucible 6 and rotates the shaft 13 around the lifting direction. The gate valve 15 partitions the growth container 4 and the pulling container 5. The substrate entrance / exit 16 takes in and out the seed crystal 21.
なお製造装置3は、図示されない制御部も有し、この制御部により坩堝駆動部7及びシャフト駆動部14の回転を制御する。 The manufacturing apparatus 3 also has a control unit (not shown), and the rotation of the crucible drive unit 7 and the shaft drive unit 14 is controlled by this control unit.
 次に、前記製造装置3を使用したサファイア単結晶20の製造方法について、図4~図6を参照しながら説明する。最初にサファイア単結晶の原料である造粒された酸化アルミニウム原料粉末(99.99%酸化アルミニウム)をダイパック102が収納された坩堝6に所定量投入して充填する。酸化アルミニウム原料粉末には、製造しようとするサファイア単結晶の純度又は組成に応じて、酸化アルミニウム以外の化合物や元素が含まれていても良い。 Next, a method for manufacturing the sapphire single crystal 20 using the manufacturing apparatus 3 will be described with reference to FIGS. First, a predetermined amount of granulated aluminum oxide raw material powder (99.99% aluminum oxide), which is a raw material of sapphire single crystal, is charged into a crucible 6 in which a die pack 102 is housed. The aluminum oxide raw material powder may contain compounds and elements other than aluminum oxide depending on the purity or composition of the sapphire single crystal to be produced.
続いて、坩堝6やヒータ8若しくはダイパック102を酸化消耗させないために、育成容器4内をアルゴンガスで置換し、酸素濃度を所定値以下とする。
 次に、ヒータ8で加熱して坩堝6を所定の温度とし、酸化アルミニウム原料粉末を溶融する。酸化アルミニウムの融点は2050℃~2072℃程度なので、坩堝6の加熱温度はその融点以上の温度(例えば2100℃)に設定する。加熱後しばらくすると原料粉末が溶融して、酸化アルミニウム融液17が用意される。図4(a)に示すように、融液の一部はダイのスリット202を毛細管現象により上昇してダイパック102の表面に達し、スリット上部に融液溜まり18が形成される。
Subsequently, in order not to oxidize the crucible 6, the heater 8, or the die pack 102, the inside of the growth vessel 4 is replaced with argon gas, and the oxygen concentration is set to a predetermined value or less.
Next, the crucible 6 is heated to a predetermined temperature by the heater 8 to melt the aluminum oxide raw material powder. Since the melting point of aluminum oxide is about 2050 ° C. to 2072 ° C., the heating temperature of the crucible 6 is set to a temperature higher than the melting point (for example, 2100 ° C.). After a while after heating, the raw material powder melts and an aluminum oxide melt 17 is prepared. As shown in FIG. 4A, a part of the melt ascends through the slit 202 of the die due to capillary action and reaches the surface of the die pack 102, and the melt pool 18 is formed above the slit.
次に、図4(b)に示すように、スリット上部の融液溜まり18の長手方向に対して垂直な角度に種結晶21を保持しつつ降下させ、種結晶21を融液溜まり18の融液面に接触させる。なお、種結晶21は、予め基板出入口16から引き上げ容器5内に導入しておく。 Next, as shown in FIG. 4B, the seed crystal 21 is lowered while holding the seed crystal 21 at an angle perpendicular to the longitudinal direction of the melt reservoir 18 above the slit, and the seed crystal 21 is melted in the melt reservoir 18. Touch the liquid surface. The seed crystal 21 is previously introduced into the pulling container 5 from the substrate entrance 16.
図4(a),(b)に示す種結晶21の形状は一例である。種結晶21の平面方向とダイパック102の長手方向が、互いに90°の角度で直交となるように配置されることによって、一枚の種結晶から複数枚のサファイア単結晶を同時に育成することが可能となる。従って、育成されたサファイア単結晶20の平面方向も、種結晶21の平面方向に90°の角度で直交することになる。
次に、図5に示すようにネック部分22を形成する。具体的には、まずシャフト13により基板保持具を高速で上昇させながら細いネック部分22を作製(ネッキング)する。以降ではこの工程をネッキング工程と称する。
The shape of the seed crystal 21 shown in FIGS. 4A and 4B is an example. By arranging the plane direction of the seed crystal 21 and the longitudinal direction of the die pack 102 so as to be orthogonal to each other at an angle of 90 °, it is possible to simultaneously grow a plurality of sapphire single crystals from one seed crystal. It becomes. Therefore, the plane direction of the grown sapphire single crystal 20 is also orthogonal to the plane direction of the seed crystal 21 at an angle of 90 °.
Next, the neck portion 22 is formed as shown in FIG. Specifically, first, a thin neck portion 22 is produced (necked) while the substrate holder is raised at high speed by the shaft 13. Hereinafter, this process is referred to as a necking process.
ネック部分22は、種結晶21の厚み若しくは融液溜まり18の幅程度の細い径を有する結晶部分であり、結晶欠陥を低減又は除去するために形成される。またネック部分22の長さは、その径の3倍程度まで形成される。この程度まで結晶成長されると、ネック部分22で結晶欠陥が発生しても、その欠陥はサファイア単結晶20まで形成されることが防止される。従ってネッキング工程を経ることにより、結晶欠陥が低減又は解消された平板形状のサファイア単結晶20を製造することが可能となる。 The neck portion 22 is a crystal portion having a diameter as thin as the thickness of the seed crystal 21 or the width of the melt pool 18 and is formed to reduce or eliminate crystal defects. The length of the neck portion 22 is formed up to about three times its diameter. When the crystal is grown to this extent, even if a crystal defect occurs in the neck portion 22, the defect is prevented from being formed up to the sapphire single crystal 20. Therefore, by passing through the necking step, it is possible to manufacture a flat sapphire single crystal 20 in which crystal defects are reduced or eliminated.
ネッキング工程を経た後、ヒータ8を制御して坩堝6の温度を降下させると共に、基板保持具の上昇速度を所定の速度に設定し、種結晶21を中心に、図5に示すようにサファイア単結晶20をダイの長手方向に拡幅するように結晶成長させる(スプレーディング工程)。図5は、スプレーディング工程により該サファイア単結晶20の幅が広がる様子を示した模式図である。 After passing through the necking step, the heater 8 is controlled to lower the temperature of the crucible 6, and the substrate holder is set at a predetermined speed, with the seed crystal 21 as the center, as shown in FIG. The crystal 20 is grown so as to be widened in the longitudinal direction of the die (spraying process). FIG. 5 is a schematic view showing a state in which the width of the sapphire single crystal 20 is widened by a spraying process.
サファイア単結晶20が、ダイの全幅まで拡幅すると(フルスプレッド)、ダイの長手方向の幅Wで規定される結晶幅を有する直胴部分23の育成が開始される(直胴工程)。直胴工程では、互いに略平行で対向する側面で規定される直胴部分を有する複数のサファイア単結晶20が製造される。直胴長さは特に限定されないが、2インチ以上(50.8mm以上)が好ましい。前述のネッキング工程、スプレーディング工程及び直胴工程を経て、図6に示すような、複数枚のサファイア単結晶20が得られる。 When the sapphire single crystal 20 is expanded to the full width of the die (full spread), growth of the straight body portion 23 having a crystal width defined by the width W in the longitudinal direction of the die is started (straight body process). In the straight body process, a plurality of sapphire single crystals 20 having a straight body portion defined by side surfaces that are substantially parallel to and opposed to each other are manufactured. The length of the straight body is not particularly limited, but is preferably 2 inches or more (50.8 mm or more). A plurality of sapphire single crystals 20 as shown in FIG. 6 are obtained through the above-described necking process, spraying process, and straight body process.
この後、得られた複数枚のサファイア単結晶20を放冷し、ゲートバルブ15を空け、引き上げ容器5側に移動して、基板出入口16から取り出す。 Thereafter, the plurality of sapphire single crystals 20 obtained are allowed to cool, the gate valve 15 is opened, moved to the pulling container 5 side, and taken out from the substrate inlet / outlet 16.
以上説明したような製造装置3、及びダイパック102を用いることにより、共通の種結晶21から複数枚のサファイア単結晶20を製造することが出来る。なお、種結晶21の結晶面を任意に設定することで、サファイア単結晶20の主面の結晶面も任意に変更することが可能となる。サファイア単結晶20の主面は、a面に限定されず、例えばc面、r面、m面等、所望の結晶面に設定することが可能である。 By using the manufacturing apparatus 3 and the die pack 102 as described above, a plurality of sapphire single crystals 20 can be manufactured from the common seed crystal 21. Note that the crystal plane of the main surface of the sapphire single crystal 20 can be arbitrarily changed by arbitrarily setting the crystal plane of the seed crystal 21. The main surface of the sapphire single crystal 20 is not limited to the a-plane, and can be set to a desired crystal plane such as a c-plane, r-plane, or m-plane.
 図1に示したダイパック102及び図3に示したサファイア単結晶の製造装置3を用いて、上述した方法でc面を主面とする複数のサファイア単結晶20を製造した。ダイ上面の曲率R(mm)、ダイの長手方向の幅W(mm)を表1に示すようにダイパック102の各パラメータとして変更し、実施例1~5および比較例1、2のサファイア単結晶20を得た。なお、幅Wが105mmである実施例2~4、及び比較例1におけるダイの厚みtは同一である。また、実施例3、4、及び比較例1における育成枚数は同一であり、実施例1、2とは育成枚数が異なっている。また、幅Wが155mmである実施例5と比較例2における、ダイの厚みt及び育成枚数は同一である。 Using the die pack 102 shown in FIG. 1 and the sapphire single crystal manufacturing apparatus 3 shown in FIG. 3, a plurality of sapphire single crystals 20 having the c-plane as the main surface were manufactured by the method described above. The curvature R (mm) of the die upper surface and the width W (mm) in the longitudinal direction of the die were changed as parameters of the die pack 102 as shown in Table 1, and the sapphire single crystals of Examples 1 to 5 and Comparative Examples 1 and 2 20 was obtained. The die thickness t in Examples 2 to 4 where the width W is 105 mm and Comparative Example 1 are the same. Further, the number of breeding in Examples 3 and 4 and Comparative Example 1 is the same, and the number of breeding is different from that in Examples 1 and 2. In addition, the thickness t and the number of growth of the dies in Example 5 and Comparative Example 2 in which the width W is 155 mm are the same.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 得られたサファイア単結晶20の結晶性を評価したところ、実施例1~5では線欠陥や結晶粒界といった結晶箇所が無く良好な単結晶であったが、比較例1、2では線欠陥や結晶粒界が存在し結晶性が良好ではなかった。 When the crystallinity of the obtained sapphire single crystal 20 was evaluated, in Examples 1 to 5, there were no crystal defects such as line defects and crystal grain boundaries. There was a crystal grain boundary and the crystallinity was not good.
 図7は、育成結晶の主面をc面とした場合のダイ長手方向の幅Wとダイ上面の曲率Rの関係を示すグラフである。グラフ中では実施例1~5を◆でプロットし、比較例1、2を×でプロットしている。また、グラフ中に示した曲線は実施例1~5のデータを最小二乗法により近似した近似曲線であり、数式R=eW2+fWの関係を示す二次曲線である。 FIG. 7 is a graph showing the relationship between the width W in the die longitudinal direction and the curvature R of the die upper surface when the main surface of the grown crystal is the c-plane. In the graph, Examples 1 to 5 are plotted with ◆, and Comparative Examples 1 and 2 are plotted with ×. The curve shown in the graph is an approximate curve obtained by approximating the data of Examples 1 to 5 by the least square method, and is a quadratic curve indicating the relationship of the formula R = eW 2 + fW.
図7に示したように、良好な単結晶が得られた実施例1~5は前述した数式R=eW2+fWの関係式を満たしているが、比較例1、2は関係式からやや外れており、グラフ中に示した直線R=3Wを境界にRが3W未満で良品となり、Rが3W以上では不良品であった。また、Rが0.05W未満の範囲では上述した数式R=eW2+fWの係数e及びfの下限値を満たすことが困難である。 As shown in FIG. 7, Examples 1 to 5 in which good single crystals were obtained satisfy the relational expression R = eW 2 + fW described above, but Comparative Examples 1 and 2 are slightly different from the relational expression. With the straight line R = 3W shown in the graph as a boundary, R was less than 3W, and the product was non-defective when R was 3W or more. Further, in the range where R is less than 0.05 W, it is difficult to satisfy the lower limit values of the coefficients e and f of the formula R = eW 2 + fW described above.
 したがって、本発明のEFG法におけるサファイア単結晶育成装置を用いたサファイア単結晶の育成方法では、サファイア単結晶の成長主面がc面とした場合には、ダイ上面の曲率Rをダイ長手方向の幅Wの3倍未満とすることで、良好なサファイア単結晶を育成できることがわかった。さらに、Rが3W未満を満たしつつ、数式R=eW2+fWを満たすものがより好ましいことが分かった。 Therefore, in the method for growing a sapphire single crystal using the sapphire single crystal growth apparatus in the EFG method of the present invention, when the main growth surface of the sapphire single crystal is a c-plane, the curvature R of the die upper surface is set in the longitudinal direction of the die. It was found that a good sapphire single crystal can be grown by setting it to less than 3 times the width W. Furthermore, it has been found that it is more preferable that R satisfies the formula R = eW 2 + fW while satisfying less than 3W.
 次に、図1に示したダイパック102及び図3に示したサファイア単結晶の製造装置3を用いて、上述した方法でa面を主面とするサファイア単結晶20を製造した。ダイ上面の曲率R(mm)、ダイの長手方向の幅W(mm)を表1に示すようにダイパック102の各パラメータとして変更し、実施例6~9および比較例3、4の複数のサファイア単結晶20を得た。なお、幅Wが138mmである実施例7、8、及び比較例3におけるダイの厚みt及び育成枚数は同一である。また、幅Wが150mmである実施例9と比較例4におけるダイの厚みt及び育成枚数は同一である。 Next, using the die pack 102 shown in FIG. 1 and the sapphire single crystal manufacturing apparatus 3 shown in FIG. 3, the sapphire single crystal 20 having the a-plane as the main surface was manufactured by the method described above. The curvature R (mm) of the die upper surface and the width W (mm) in the longitudinal direction of the die are changed as parameters of the die pack 102 as shown in Table 1, and a plurality of sapphires of Examples 6 to 9 and Comparative Examples 3 and 4 are used. Single crystal 20 was obtained. It should be noted that the thicknesses t and the number of grown dies are the same in Examples 7 and 8 where the width W is 138 mm and Comparative Example 3. Further, the die thickness t and the number of growths in Example 9 and Comparative Example 4 in which the width W is 150 mm are the same.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 得られたサファイア単結晶20の結晶性を評価したところ、実施例6~9では線欠陥及び結晶粒界といった結晶箇所が無く良好な単結晶であったが、比較例3、4では線欠陥や結晶粒界が存在し結晶性が良好ではなかった。 When the crystallinity of the obtained sapphire single crystal 20 was evaluated, in Examples 6 to 9, there were no crystal parts such as line defects and crystal grain boundaries, but in Comparative Examples 3 and 4, the line defects and There was a crystal grain boundary and the crystallinity was not good.
 図8は、育成結晶の主面をa面とした場合のダイ長手方向の幅Wとダイ上面の曲率Rの関係を示すグラフである。グラフ中では実施例6~9を◆でプロットし、比較例3、4を×でプロットしている。図7と同様に、図8のグラフ中に示した曲線は実施例6~9のデータを最小二乗法により近似した近似曲線であり、数式R=eW2+fWの関係を示す二次曲線である。 FIG. 8 is a graph showing the relationship between the width W in the die longitudinal direction and the curvature R of the die upper surface when the principal surface of the grown crystal is the a-plane. In the graph, Examples 6 to 9 are plotted with ◆, and Comparative Examples 3 and 4 are plotted with ×. Similar to FIG. 7, the curve shown in the graph of FIG. 8 is an approximate curve obtained by approximating the data of Examples 6 to 9 by the method of least squares, and is a quadratic curve indicating the relationship of the formula R = eW 2 + fW. .
図8に示したように、良好な単結晶が得られた実施例6~9は前述した数式R=eW2+fWの関係式を満たしているが、比較例3、4は関係式からやや外れており、グラフ中に示した直線R=5Wを境界にRが5W以下で良品となり、Rが5Wより大きいと不良品であった。また、Rが0.05W未満の範囲では上述した数式R=eW2+fWの係数e及びfの下限値を満たすことが困難である。 As shown in FIG. 8, Examples 6 to 9 in which good single crystals were obtained satisfy the relational expression R = eW 2 + fW described above, but Comparative Examples 3 and 4 are slightly different from the relational expression. When the straight line R = 5W shown in the graph was used as a boundary, R was 5W or less, and the product was non-defective. Further, in the range where R is less than 0.05 W, it is difficult to satisfy the lower limit values of the coefficients e and f of the formula R = eW 2 + fW described above.
 したがって、本発明のEFG法におけるサファイア単結晶育成装置を用いたサファイア単結晶の育成方法では、サファイア単結晶の成長主面がa面とした場合には、ダイ上面の曲率Rをダイ長手方向の幅Wの5倍以下とすることで、良好なサファイア単結晶を育成できることがわかった。さらに、Rが5W以下を満たしつつ、数式R=eW2+fWを満たすものがより好ましいことが分かった。 Therefore, in the method for growing a sapphire single crystal using the sapphire single crystal growth apparatus in the EFG method of the present invention, when the main growth surface of the sapphire single crystal is a-plane, the curvature R of the die upper surface is set in the longitudinal direction of the die. It turned out that a favorable sapphire single crystal can be grown by setting it as 5 times or less of the width W. Furthermore, it has been found that it is more preferable that R satisfies 5W or less and satisfies the formula R = eW 2 + fW.
 図7ではWが約220mmよりも大きい領域において、数式R=eW2+fWはRが3W以上となっている。この領域では、図8に示したようにRが5W以下であれば数式R=eW2+fWの関係式を満たすことで良好な単結晶を育成できると予想されるが、c面での育成では図7に示したようにR=3Wを境界として線欠陥や結晶粒界が生じたため、余裕をもってRが3W未満とすることが好ましい。図8に示したa面の場合にも、同様にRが5W以下とすることが好ましい。 In FIG. 7, in the region where W is greater than about 220 mm, R = eW 2 + fW is such that R is 3W or more. In this region, if R is 5 W or less as shown in FIG. 8, it is expected that a good single crystal can be grown by satisfying the relational expression R = eW 2 + fW. As shown in FIG. 7, since a line defect or a crystal grain boundary occurs with R = 3W as a boundary, it is preferable that R is less than 3W with a margin. Similarly, in the case of the a-plane shown in FIG. 8, it is preferable that R is 5 W or less.
本発明のダイ及びダイパックを用いて育成されたサファイア単結晶は、直胴部分に線欠陥(slip)や結晶粒界(grain boundary)等の結晶欠陥がなく、結晶品質に優れている。「直胴部分に結晶欠陥を有さない」とは、育成結晶の直胴部分のうち、基板加工に使用される領域に上記のような結晶欠陥が存在しないことを意味する。具体的には、育成結晶の幅に対し95%以内の領域に結晶欠陥がないため、製品歩留まりを向上させることができる。また、育成結晶の直胴部分の下端面形状が、引き上げ方向に対し凹面に形成されるという特徴を有する。これは、本発明のダイ上面が長手方向に曲率を有することによる。このようにして得られたサファイア単結晶に研磨加工を施し、結晶品質に優れたサファイア基板を提供することができる。 The sapphire single crystal grown using the die and the die pack of the present invention has no crystal defects such as a line defect (slip) and a grain boundary (grain boundary) in the straight body portion, and is excellent in crystal quality. “The straight body portion has no crystal defects” means that the crystal defects as described above do not exist in the region used for substrate processing in the straight body portion of the grown crystal. Specifically, since there is no crystal defect in a region within 95% of the width of the grown crystal, the product yield can be improved. Further, the shape of the lower end surface of the straight body portion of the grown crystal is formed to be concave with respect to the pulling direction. This is because the upper surface of the die of the present invention has a curvature in the longitudinal direction. By polishing the sapphire single crystal thus obtained, a sapphire substrate having excellent crystal quality can be provided.
101 ダイ
102 ダイパック
201 仕切り板
202 スリット
3 サファイア単結晶の製造装置
4 育成容器
5 引き上げ容器
6 坩堝
7 坩堝駆動部
8 ヒータ
9 電極
10 断熱材
11 雰囲気ガス導入口
12 排気口
13 シャフト
14 シャフト駆動部
15 ゲートバルブ
16 基板出入口
17 酸化アルミニウム融液
18 酸化アルミニウム融液溜まり
20 複数枚のサファイア単結晶
21 種結晶
22 ネック部分
23 直胴部分
R ダイ上面の曲率
W ダイの長手方向の幅
t ダイの厚み
DESCRIPTION OF SYMBOLS 101 Die 102 Die pack 201 Partition plate 202 Slit 3 Sapphire single crystal manufacturing apparatus 4 Growth vessel 5 Pulling vessel 6 Crucible 7 Crucible drive unit 8 Heater 9 Electrode 10 Heat insulating material 11 Atmospheric gas introduction port 12 Exhaust port 13 Shaft 14 Shaft drive unit 15 Gate valve 16 Substrate inlet / outlet 17 Aluminum oxide melt 18 Aluminum oxide melt pool 20 Multiple sapphire single crystals 21 Seed crystal 22 Neck portion 23 Straight barrel portion R Die upper surface curvature W Die longitudinal width t Die thickness

Claims (7)

  1. EFG法によるサファイア単結晶の育成に使用するダイであって、上面が長手方向に曲率Rを有し、前記曲率Rが長手方向の幅Wの5倍以下であることを特徴とするダイ。 A die used for growing a sapphire single crystal by an EFG method, wherein an upper surface has a curvature R in a longitudinal direction, and the curvature R is not more than 5 times a width W in a longitudinal direction.
  2. 前記サファイア単結晶の成長主面がc面であることを特徴とする請求項1記載のダイ。 The die according to claim 1, wherein the main growth surface of the sapphire single crystal is a c-plane.
  3. 前記曲率Rが前記幅Wの3倍未満であることを特徴とする請求項2記載のダイ。 The die according to claim 2, wherein the curvature R is less than three times the width W.
  4. 前記サファイア単結晶の成長主面がa面であることを特徴とする請求項1に記載のダイ。 The die according to claim 1, wherein a main growth surface of the sapphire single crystal is an a-plane.
  5. 請求項1~4の何れか一つに記載の前記ダイを複数組平行に対向配置させたダイパックであって、その数が2以上80以下であることを特徴とするダイパック。 5. A die pack in which a plurality of sets of the dies according to claim 1 are arranged to face each other in parallel, and the number thereof is 2 or more and 80 or less.
  6.  EFG法におけるサファイア単結晶育成装置であって、請求項1~4の何れか一つに記載のダイ又は請求項5に記載のダイパックを用いるサファイア単結晶育成装置。 An apparatus for growing a sapphire single crystal in the EFG method, the apparatus for growing a sapphire single crystal using the die according to any one of claims 1 to 4 or the die pack according to claim 5.
  7. EFG法におけるサファイア単結晶の育成方法であって、請求項1~4の何れか一つに記載のダイ又は請求項5に記載のダイパックを使用することを特徴とするサファイア単結晶の育成方法。 A method for growing a sapphire single crystal in an EFG method, wherein the die according to any one of claims 1 to 4 or the die pack according to claim 5 is used.
PCT/JP2016/079235 2015-10-05 2016-10-03 Die and die pack for growing sapphire single crystals, apparatus for growing sapphire single crystals, and method for growing sapphire single crystals WO2017061360A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015197579 2015-10-05
JP2015-197579 2015-10-05
JP2016-117713 2016-06-14
JP2016117713A JP6142948B2 (en) 2015-10-05 2016-06-14 Sapphire single crystal growth die and die pack, sapphire single crystal growth apparatus, sapphire single crystal growth method

Publications (1)

Publication Number Publication Date
WO2017061360A1 true WO2017061360A1 (en) 2017-04-13

Family

ID=58487539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079235 WO2017061360A1 (en) 2015-10-05 2016-10-03 Die and die pack for growing sapphire single crystals, apparatus for growing sapphire single crystals, and method for growing sapphire single crystals

Country Status (1)

Country Link
WO (1) WO2017061360A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107233744A (en) * 2017-06-12 2017-10-10 大连理工大学 A kind of film aids in the crystallisation by cooling method of nucleation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156184A (en) * 1976-06-22 1977-12-26 Japan Solar Energy Apparatus for growing crystal ribbons
JPS53971A (en) * 1976-04-16 1978-01-07 Ibm Apparatus for forming slender crystalline substance using seed crystal having specific crystal axis
JPS53122684A (en) * 1976-04-16 1978-10-26 Ibm Method of forming silicon crystal
JP2003327495A (en) * 2002-05-14 2003-11-19 Namiki Precision Jewel Co Ltd Crystal habit face sapphire plate material and method of producing the same
JP2015120612A (en) * 2013-12-23 2015-07-02 並木精密宝石株式会社 Large scale sapphire multi-substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53971A (en) * 1976-04-16 1978-01-07 Ibm Apparatus for forming slender crystalline substance using seed crystal having specific crystal axis
JPS53122684A (en) * 1976-04-16 1978-10-26 Ibm Method of forming silicon crystal
JPS52156184A (en) * 1976-06-22 1977-12-26 Japan Solar Energy Apparatus for growing crystal ribbons
JP2003327495A (en) * 2002-05-14 2003-11-19 Namiki Precision Jewel Co Ltd Crystal habit face sapphire plate material and method of producing the same
JP2015120612A (en) * 2013-12-23 2015-07-02 並木精密宝石株式会社 Large scale sapphire multi-substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107233744A (en) * 2017-06-12 2017-10-10 大连理工大学 A kind of film aids in the crystallisation by cooling method of nucleation

Similar Documents

Publication Publication Date Title
JP5702931B2 (en) Method for forming single crystal C-plane sapphire material
CN104088014B (en) A kind of bar-shaped sapphire crystal growth equipment and growing method thereof
CN108779577A (en) The manufacturing method of monocrystalline silicon
CN103806101A (en) Growth method and equipment of square sapphire crystal
JP4465481B2 (en) Single crystal material manufacturing method, seed substrate, die, and single crystal material manufacturing apparatus
JP6142948B2 (en) Sapphire single crystal growth die and die pack, sapphire single crystal growth apparatus, sapphire single crystal growth method
CN112795982A (en) Mold for growing large-size gallium oxide crystal by guided mode method and growing method
WO2017061360A1 (en) Die and die pack for growing sapphire single crystals, apparatus for growing sapphire single crystals, and method for growing sapphire single crystals
WO2016043176A1 (en) Plurality of sapphire single crystals and method of manufacturing same
TW201940756A (en) Method of estimating oxygen concentration in silicon single crystals and method of manufacturing silicon single crystals
WO2017038745A1 (en) Plurality of sapphire single crystals and production method for same
JP4930166B2 (en) Method for producing aluminum oxide single crystal
JP6142208B1 (en) Die pack, sapphire single crystal growing apparatus, and sapphire single crystal growing method
CN214458442U (en) Mould for growing large-size gallium oxide crystal by guided mode method
JP6025085B2 (en) Multiple sapphire single crystals and method for producing the same
JP2017078013A (en) Sapphire single crystal manufacturing method of the same
JP6841490B2 (en) Die, die pack, single crystal growing device, and single crystal growing method
WO2017069107A1 (en) Sapphire single crystal and method for producing same
JP2011157224A (en) Method for manufacturing silicon single crystal
JP7275674B2 (en) Method for growing lithium niobate single crystal
JP3659693B2 (en) Method for producing lithium borate single crystal
JPH04187585A (en) Device of growing crystal
JP4146829B2 (en) Crystal manufacturing equipment
JP6025080B1 (en) Heat reflector structure of large EFG growth furnace
CN117230526A (en) Method for growing large-size rare earth ion doped garnet series crystals by wide seed crystal guided mode method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16853514

Country of ref document: EP

Kind code of ref document: A1