WO2015040695A1 - Device for producing and method for producing compound semiconductor substrate - Google Patents

Device for producing and method for producing compound semiconductor substrate Download PDF

Info

Publication number
WO2015040695A1
WO2015040695A1 PCT/JP2013/075145 JP2013075145W WO2015040695A1 WO 2015040695 A1 WO2015040695 A1 WO 2015040695A1 JP 2013075145 W JP2013075145 W JP 2013075145W WO 2015040695 A1 WO2015040695 A1 WO 2015040695A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound semiconductor
semiconductor substrate
ingots
ingot
holding
Prior art date
Application number
PCT/JP2013/075145
Other languages
French (fr)
Japanese (ja)
Inventor
雅博 中山
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to PCT/JP2013/075145 priority Critical patent/WO2015040695A1/en
Publication of WO2015040695A1 publication Critical patent/WO2015040695A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02027Setting crystal orientation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0058Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material
    • B28D5/0082Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material for supporting, holding, feeding, conveying or discharging work
    • B28D5/0088Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material for supporting, holding, feeding, conveying or discharging work the supporting or holding device being angularly adjustable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • B28D5/045Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools by cutting with wires or closed-loop blades

Definitions

  • the present invention relates to a method and an apparatus for manufacturing a compound semiconductor substrate.
  • a method of slicing a single crystal ingot with saw wires has been widely practiced.
  • the method can be roughly classified into a method using loose abrasive grains and a method using fixed abrasive grains.
  • abrasive grains such as diamond and GC (Green Carborundum; high purity green silicon carbide) are dispersed in a slurry state, followed by the reciprocating motion of the saw wire in the form of free abrasive grains, and cut by the cutting force of the abrasive grains.
  • a saw wire with diamond abrasive grains fixed to the surface is used, and cutting is performed with the cutting force of the abrasive blade.
  • Patent Document 1 discloses a method of slicing a silicon semiconductor. According to the publication, it is disclosed that there is an effect of suppressing breakage during processing by disposing the crystal so that the wire traveling direction for slicing does not coincide with the crushing direction of the crystal.
  • Patent Document 2 also discloses a method related to slice processing of a silicon semiconductor. According to the publication, it is disclosed that it is desirable to perform processing by arranging the OF (orientation flat) direction or the notch direction in a specific direction in order to ensure the slice main surface orientation accuracy. In any of the techniques, there are references to the damage during processing and the accuracy of the principal plane orientation, but the problem between the slice direction and the warp characteristics is not extended.
  • Patent Document 1 discloses a method for slicing a compound semiconductor, and mentions a problem of warping due to material anisotropy.
  • near-isotropic crystals such as silicon do not cause significant warping anisotropy depending on the crystal slice direction. Therefore, a substrate having a desired plane orientation and a small amount of warpage can be manufactured relatively easily.
  • a compound semiconductor such as silicon carbide has an ingot length of, for example, about 20 mm at the current technical level, and it is difficult to grow a long ingot. Therefore, since the number of substrates that can be taken from one ingot is small, a large number of slicers are required to mass-produce substrates.
  • the present invention has been made to solve the above-described problems, and is a simple method for manufacturing a compound semiconductor substrate that can efficiently manufacture a substrate having a desired plane orientation and a small amount of warpage.
  • a method and manufacturing apparatus are provided.
  • the method for manufacturing a compound semiconductor substrate according to the present invention includes the following steps.
  • a plurality of holding portions having a holding surface and capable of adjusting the inclination of the holding surface are prepared.
  • Each of a plurality of ingots made of a compound semiconductor is held by a plurality of holding portions.
  • the postures of the plurality of ingots are adjusted.
  • By cutting each of the plurality of ingots simultaneously, a compound semiconductor substrate having a desired main surface is cut out.
  • the postures of the plurality of ingots are adjusted, and each of the plurality of ingots is cut simultaneously. Therefore, it is possible to efficiently manufacture a compound semiconductor substrate having a desired plane orientation and a small amount of warpage by a simple method.
  • the above-described method of manufacturing a compound semiconductor substrate further includes a step of measuring a deviation angle of a crystal orientation of each crystal end face of each of the plurality of ingots with respect to a desired main surface.
  • the step of adjusting the postures of the plurality of ingots the postures of the plurality of ingots are adjusted based on the shift angle.
  • the compound semiconductor is preferably silicon carbide. Since silicon carbide is a high-hardness material, it takes a long time to cut the ingot. According to the above-described method for manufacturing a compound semiconductor substrate, it is possible to significantly reduce the cutting time of each ingot and improve the production efficiency as compared with the case of cutting ingots one by one.
  • each of the plurality of ingots has a hexagonal crystal structure, and in the step of cutting out the compound semiconductor substrate, each of the plurality of ingots has a (1-100) orientation ( 15 ° ⁇ 30 ° ⁇ n (where n is an integer)) cut along a direction inclined by ⁇ 5 °.
  • a hexagonal single crystal usually has anisotropy in the ⁇ 1-100> orientation and the ⁇ 11-20> orientation. Therefore, by cutting the ingot along an intermediate position between the ⁇ 1-100> orientation and the ⁇ 11-20> orientation, the distortion due to processing damage is antagonized, and the amount of warping of the compound semiconductor substrate after slicing is reduced. Can do.
  • each of the plurality of ingots has a cubic crystal structure, and in the step of cutting out the compound semiconductor substrate, each of the plurality of ingots is (45 °) from the ⁇ 011> orientation. ⁇ 90 ° ⁇ n (where n is an integer)) Cut along a direction inclined by ⁇ 5 °.
  • a cubic silicon carbide single crystal usually has anisotropy in the ⁇ 011> and ⁇ 0-11> orientations. Therefore, by cutting the ingot along the intermediate position between the ⁇ 011> direction and the ⁇ 0-11> direction, it is possible to antagonize distortion due to processing damage and to reduce the amount of warping of the compound semiconductor substrate after slicing. .
  • the apparatus for manufacturing a compound semiconductor substrate according to the present invention has a plurality of holding portions and a cutting portion.
  • the holding portion has a holding surface and is capable of adjusting the inclination of the holding surface, and is a portion for holding each of a plurality of ingots made of a compound semiconductor.
  • the cutting portion is a portion that can simultaneously slice each of the plurality of ingots.
  • the apparatus for manufacturing a compound semiconductor substrate according to the present invention includes a plurality of holding units capable of adjusting the inclination of the holding surface and a cutting unit capable of simultaneously slicing each of the plurality of ingots. Therefore, a compound semiconductor substrate having a desired plane orientation and a small amount of warpage can be manufactured by a simple method.
  • each holding surface of the plurality of holding units can rotate about the normal line of the holding surface and can rotate about a line orthogonal to the normal line. .
  • position of an ingot can be adjusted accurately.
  • the fact that the holding surface can be rotated about the line with the holding surface means that the holding surface can be moved by a certain angle along the direction of rotation about the axis with the holding surface as a rotation axis. It doesn't matter.
  • the above-described compound semiconductor substrate manufacturing apparatus further includes a measuring unit for measuring a deviation angle of the crystal orientation of each crystal end face of the plurality of ingots.
  • a measuring unit for measuring a deviation angle of the crystal orientation of each crystal end face of the plurality of ingots.
  • position of an ingot can be adjusted accurately based on the deviation
  • a substrate having a desired plane orientation and a small amount of warpage can be manufactured by a simple method.
  • the individual orientation is indicated by []
  • the collective orientation is indicated by ⁇ >
  • the individual plane is indicated by ()
  • the collective plane is indicated by ⁇ .
  • “ ⁇ ” (bar) is added on the number in crystallography, but in the present specification, a negative sign is attached before the number.
  • the angle is described using a system in which the omnidirectional angle is 360 degrees.
  • the compound semiconductor substrate manufacturing apparatus 100 mainly includes a holding unit 5, a wire W, and rollers R1, R2, and R3.
  • the holding part 5 is for holding the compound semiconductor ingot 1.
  • the holding part 5 has a holding surface 5 d that holds the ingot 1.
  • a pedestal 4 for directly holding the ingot 1 is disposed on the holding surface 5d.
  • the pedestal 4 is made of carbon, for example.
  • a single wire W is spirally wound around the rollers R1, R2, and R3.
  • the wire W is a cutting part for cutting the ingot.
  • a wire W row in which a plurality of wires W are arranged substantially in parallel is formed above the holding part 5.
  • the wire W is configured to be movable as each of the rollers R1, R2, and R3 rotates in the same direction.
  • the rollers R1, R2, and R3 alternately repeat forward rotation and reverse rotation so that the wire W stretched between the rollers R1 and R2 can reciprocate along the substantially horizontal direction M on the holding unit 5. It is configured. Thereby, the wire W is comprised so that the ingot 1 can be cut
  • ingot 1 is made of, for example, silicon carbide and has a substantially cylindrical shape.
  • OF (orientation flat) and IF (index flat) are formed along the crystal growth direction in the ingot 1 used in the method for manufacturing the compound semiconductor substrate of the present embodiment.
  • the crystal end face 3 of the ingot 1 is, for example, a ⁇ 0001 ⁇ face just or a face off by 4 to 8 degrees.
  • a broken line in FIG. 2 indicates a cut surface of the ingot 1.
  • the compound semiconductor substrate 10 is cut out by cutting the ingot 1 along the broken line.
  • the compound semiconductor substrate 10 will be described with reference to FIG.
  • the compound semiconductor substrate 10 has a main surface 2 and side surfaces, and an OF surface and an IF surface are formed on the side surfaces.
  • the compound semiconductor substrate 10 has a diameter D and a thickness T.
  • the thickness T corresponds to the interval between the plurality of wires W.
  • the plane orientation of the main surface 2 of the compound semiconductor substrate 10 may be the same as or different from the plane orientation of the crystal end face 3 of the ingot 1.
  • a SUS unit 6 is provided below the holding unit 5.
  • the holding unit 5 is fixed to the stage 7 by bringing the SUS unit 6 into contact with the inner wall surface 7 a of the stage 7 of the wire saw and pressing the SUS unit 6 against the inner wall surface 7 a of the stage 7 with the clamp screw 8.
  • the stage 7 is configured to be movable in a direction approaching the wire W.
  • the ingot 1 comes into contact with the wire W, and the ingot 1 is cut along the cutting direction SD by the wire W.
  • the ingot 1 may be cut when the wire W approaches the stage 7.
  • the goniometer has a holding surface 5d, and the ingot 1 is disposed on the holding surface 5d.
  • the goniometer is configured to be capable of adjusting the posture of the ingot 1 disposed on the holding surface 5d by changing the angle of the holding surface 5d.
  • the goniometer is configured to be able to rotate the holding surface 5d around the normal line of the holding surface 5d. Further, the holding surface 5d is configured to be rotatable with a line orthogonal to the normal line as a rotation axis. That is, the holding surface 5d can be rotated about two axes.
  • the X-ray measurement unit 11 as a measurement unit includes an irradiation unit 12 and a detection unit 13.
  • the deviation angle of the crystal orientation of the crystal end surface 3 with respect to a desired surface can be measured.
  • the deviation angle is measured with respect to the horizontal direction (x direction) and the vertical direction (y direction) of the crystal end face 3 of the ingot 1 as described later.
  • a holding part preparation process (S10: FIG. 6) is implemented. Specifically, a plurality of goniometers as the holding unit 5 capable of adjusting the inclination of the holding surface 5d are prepared. As described above, the goniometer can rotate the holding surface 5d with the normal line of the holding surface 5d as the rotation axis, and can rotate the holding surface 5d with the line orthogonal to the normal line as the rotation axis.
  • an ingot holding step (S20: FIG. 6) is performed. Specifically, referring to FIG. 4, each of a plurality of ingots made of a compound semiconductor is held on holding surfaces 5d of a plurality of goniometers.
  • the step of measuring the orientation error angle of the crystal end face of the ingot (S30: FIG. 6) is performed. Specifically, as shown in FIG. 5, the ingot 1 irradiates the crystal end surface 3 with X-rays by the irradiation unit 12 of the X-ray measurement unit 11, and the X-ray reflection angle is detected by the detection unit 13. Thus, the deviation angle of the crystal orientation of the crystal end face 3 with respect to the desired main surface 2 is measured. The deviation angle of the crystal orientation of the crystal end face 3 with respect to the desired main surface 2 is measured along the horizontal direction and the vertical direction. In other words, as shown in FIG.
  • the crystal end face 3 of the ingot 1 is irradiated with X-rays so that the X-ray irradiation direction has a y-direction component, and the first misorientation angle is measured.
  • the ingot is rotated 90 ° about the z axis as a rotation axis.
  • the crystal end face 3 of the ingot 1 is irradiated with X-rays so that the X-ray irradiation direction has a component in the x direction, and the second misorientation angle is measured.
  • the deviation angle of the crystal orientation of the crystal end face 3 with respect to the desired main surface 2 is measured with respect to the horizontal direction (x direction) and the vertical direction (y direction).
  • the first azimuth deviation angle and the second azimuth deviation angle are calculated as coordinate-converted numerical values.
  • the arrangement of the ingot at the time of X-ray measurement is the same as the arrangement of the ingot at the time of cutting so that the main surface 2 of the compound semiconductor substrate 10 cut out has a desired plane orientation.
  • the origin is adjusted so that
  • a step of detecting a deviation angle in the horizontal direction (x direction) and the vertical direction (y direction) of the crystal end face of the ingot is performed.
  • the vertical direction (y direction) of the crystal end surface 3 of the ingot 1 is used.
  • a deviation angle (first deviation angle) with respect to the cut surface is measured.
  • a deviation angle (second deviation angle) of the crystal end face 3 of the ingot 1 with respect to the horizontal cut surface is measured. Is done.
  • the cut surface is a surface on which the wire W moves when the ingot 1 is cut by the wire W.
  • the detection of the deviation angle is performed, for example, by measuring the first distance between the first micrometer S1 and the crystal end face 3 of the ingot 1 and the second distance between the second micrometer S2 and the crystal end face of the ingot 1. Is done. By calculating the difference between the first distance and the second distance, the deviation angle of the crystal end face 3 of the ingot 1 is calculated.
  • the measurement of the deviation angle may be performed using a laser sensor.
  • an ingot posture adjustment step (S40: FIG. 6) is performed.
  • the postures of the plurality of ingots 1 held on the holding surfaces are adjusted by changing the inclinations of the holding surfaces 5d of the plurality of goniometers.
  • the adjustment of the posture of the ingot 1 is performed based on the first azimuth deviation angle and the second azimuth deviation angle measured by the X-ray measurement unit 11.
  • the adjustment of the posture of the ingot 1 is performed in addition to the first azimuth deviation angle and the second azimuth deviation angle, and the first deviation angle and the second deviation measured by the first micrometers S1 to S4. Based on the angle.
  • the posture of ingot 1 is changed by angle ⁇ by rotating holding surface 5d within holding surface 5d (xz plane) with a goniometer.
  • the posture of ingot 1 is changed by angle ⁇ by rotating holding surface 5 d in a plane (yz plane) perpendicular to holding surface 5 d by a goniometer.
  • the z direction is a direction in which the ingot 1 grows. In this way, when the ingot 1 is cut, the posture of the ingot 1 is adjusted biaxially so that the main surface 2 of the cut out compound semiconductor substrate 10 has a desired plane orientation.
  • each of the plurality of ingots 1 is arranged along the crystal growth direction (z direction) of the ingot 1.
  • three ingots 1 a, 1 b, 1 c are arranged in series along the crystal growth direction of ingot 1.
  • Each of the three ingots 1a, 1b, and 1c is configured so that when the ingot 1 is cut by the wire W, the main surface 2 of the compound semiconductor substrate 10 has a desired plane orientation. It is arranged with the posture adjusted.
  • the plurality of ingots 1 may be arranged side by side in the horizontal direction (x direction).
  • Each of the plurality of ingots 1 is simultaneously cut by the plurality of wires W along the direction indicated by the broken line in FIG. Thereby, a plurality of compound semiconductor substrates 10 having the desired main surface 2 are cut out.
  • FIG. 13 is a schematic view of an ingot viewed from the growth direction when the crystal structure of the compound semiconductor forming the ingot is a hexagonal crystal.
  • the crystal plane parallel to the paper is the ⁇ 0001 ⁇ plane.
  • each of the plurality of ingots is tilted from the ⁇ 1-100> orientation by (15 ° ⁇ 30 ° ⁇ n (where n is an integer)) ⁇ 5 °. It is preferable to cut along the direction. That is, it is cut in the direction along the broken line shown in FIG.
  • a desirable cutting direction SD is a direction shifted by 30 ° in the xy plane.
  • a hexagonal silicon carbide single crystal usually has anisotropy in the ⁇ 1-100> orientation and the ⁇ 11-20> orientation. Having anisotropy means that the properties differ depending on the normal direction. Therefore, by cutting the ingot along the intermediate position between the ⁇ 1-100> orientation and the ⁇ 11-20> orientation, it is possible to antagonize distortion due to processing damage and reduce the amount of warping after slicing.
  • FIG. 14 is a schematic view of an ingot viewed from the growth direction when the crystal structure of the compound semiconductor forming the ingot is a cubic crystal.
  • the crystal plane parallel to the paper is the ⁇ 001 ⁇ plane.
  • each of the plurality of ingots is inclined in the direction inclined by ⁇ 5 ° (45 ° ⁇ 90 ° ⁇ n (where n is an integer)) from the ⁇ 011> orientation.
  • a desirable cutting direction SD is a direction shifted by 90 ° in the xy plane.
  • a cubic silicon carbide single crystal usually has anisotropy in the ⁇ 011> orientation and the ⁇ 0-11> orientation. Having anisotropy means that the properties differ depending on the normal direction. Therefore, by cutting the ingot along an intermediate position between the ⁇ 011> direction and the ⁇ 0-11> direction, it is possible to antagonize distortion due to processing damage and reduce the amount of warping after slicing.
  • silicon carbide (SiC) has been described as an example of the compound semiconductor material forming ingot 1, but is not limited thereto.
  • the material forming the ingot 1 may be, for example, GaN, GaAs, GaP, InP, SiGe, or other materials.
  • the postures of the plurality of ingots 1 are adjusted, and each of the plurality of ingots 1 is cut simultaneously. Therefore, the compound semiconductor substrate 10 having a desired plane orientation and a small amount of warpage can be manufactured by a simple method.
  • the deviation angle of the crystal orientation of each crystal end face 3 of the plurality of ingots 1 with respect to the desired principal surface 2 is measured. Thereafter, the postures of the plurality of ingots 1 are adjusted based on the deviation angle. Thereby, since the attitude
  • the compound semiconductor is silicon carbide. Since silicon carbide is a high-hardness material, it takes a long time to cut the ingot. According to the method for manufacturing a compound semiconductor substrate according to the present embodiment, the cutting time of the ingot 1 can be significantly shortened as compared with the case where the ingots 1 are cut one by one.
  • each of the plurality of ingots 1 has a hexagonal crystal structure, and in the step of cutting the compound semiconductor substrate 10, each of the plurality of ingots is It is cut along a direction inclined by (15 ° ⁇ 30 ° ⁇ n (where n is an integer)) ⁇ 5 ° from the ⁇ 1-100> orientation.
  • a hexagonal silicon carbide single crystal usually has anisotropy in the ⁇ 1-100> and ⁇ 11-20> orientations. Therefore, by cutting the ingot 1 along an intermediate position between the ⁇ 1-100> orientation and the ⁇ 11-20> orientation, the distortion due to processing damage is antagonized, and the warpage amount of the compound semiconductor substrate 10 after slicing is reduced. can do.
  • each of the plurality of ingots 1 has a cubic crystal structure, and in the step of cutting the compound semiconductor substrate, each of the plurality of ingots 1 It is cut along a direction inclined by (45 ° ⁇ 90 ° ⁇ n (where n is an integer)) ⁇ 5 ° from the ⁇ 011> orientation.
  • a cubic silicon carbide single crystal usually has anisotropy in the ⁇ 011> and ⁇ 0-11> orientations. Therefore, by cutting the ingot 1 along the intermediate position between the ⁇ 011> direction and the ⁇ 0-11> direction, the distortion due to processing damage is antagonized, and the compound semiconductor substrate 10 with a small amount of warping after slicing is manufactured. be able to.
  • the compound semiconductor substrate manufacturing apparatus includes a plurality of holding portions 5 that can adjust the inclination of the holding surface 5d, and a wire W as a cutting portion that can simultaneously slice each of the plurality of ingots 1. have. Therefore, the compound semiconductor substrate 10 having a desired plane orientation and a small amount of warpage can be manufactured by a simple method.
  • each holding surface 5d of the plurality of holding portions 5 is rotatable about the normal line of the holding surface 5d and is orthogonal to the normal line. Can be rotated around the axis. Thereby, the attitude
  • the compound semiconductor substrate manufacturing apparatus further includes an X-ray measurement unit 11 for measuring the deviation angle of the crystal orientation of each crystal end face 3 of the plurality of ingots 1.
  • position of the ingot 1 can be accurately adjusted based on the deviation

Abstract

This method for producing a compound semiconductor substrate (10) has the steps that follow. A plurality of holding sections (5) are prepared having a holding surface (5d), the inclination of the holding surface (5d) being adjustable. A plurality of ingots (1) comprising a compound semiconductor are respectively held by the plurality of holding sections (5). By means of adjusting the inclination of each holding surface (5d) of the plurality of holding sections (5), the attitude of each of the plurality of ingots (1) is adjusted. By means of simultaneously cutting each of the plurality of ingots (1), a compound semiconductor substrate (10) having a desired primary surface (2) is cut out. As a result, it is possible to provide a device for producing and method for producing a compound semiconductor substrate (10) that are able to produce a substrate having a low amount of warping and a desired plane orientation by means of a simple method.

Description

化合物半導体基板の製造方法および製造装置Method and apparatus for manufacturing compound semiconductor substrate
 この発明は、化合物半導体基板の製造方法および製造装置に関する。 The present invention relates to a method and an apparatus for manufacturing a compound semiconductor substrate.
 従来、単結晶インゴットを切断する手段として、ソーワイヤによって単結晶インゴットをスライスする方法が広く実施されている。当該方法としては、遊離砥粒を使った方法と固定砥粒を使った方法とに大別できる。前者では、ダイヤモンド、GC(Green Carborundum;高純度緑色炭化珪素)といった砥粒をスラリー状に分散させ遊離砥粒の形態でソーワイヤーの往復運動にならわせ、砥粒の切削力で切断加工する。後者では表面にダイヤモンド砥粒を固着させたソーワイヤーを使い、砥粒刃の切削力で切断加工する。昨今、サファイア、炭化珪素、窒化物半導体、セラミック等の難削材の加工には切削能力の大きい固定砥粒方式の加工が不可欠になりつつある。たとえば特開平9-17755号公報(特許文献1)にはシリコン半導体をスライス加工する方法が開示されている。当該公報によれば、スライスのためのワイヤー走行方向と結晶のヘキカイ方向とが一致しないように結晶を配置することによって加工中の破損を抑制する効果があると開示されている。 Conventionally, as a means for cutting a single crystal ingot, a method of slicing a single crystal ingot with saw wires has been widely practiced. The method can be roughly classified into a method using loose abrasive grains and a method using fixed abrasive grains. In the former, abrasive grains such as diamond and GC (Green Carborundum; high purity green silicon carbide) are dispersed in a slurry state, followed by the reciprocating motion of the saw wire in the form of free abrasive grains, and cut by the cutting force of the abrasive grains. In the latter, a saw wire with diamond abrasive grains fixed to the surface is used, and cutting is performed with the cutting force of the abrasive blade. In recent years, fixed-abrasive processing with high cutting ability is becoming indispensable for processing difficult-to-cut materials such as sapphire, silicon carbide, nitride semiconductor, and ceramic. For example, Japanese Patent Laid-Open No. 9-17755 (Patent Document 1) discloses a method of slicing a silicon semiconductor. According to the publication, it is disclosed that there is an effect of suppressing breakage during processing by disposing the crystal so that the wire traveling direction for slicing does not coincide with the crushing direction of the crystal.
 また特開平11-262917号公報(特許文献2)にもシリコン半導体のスライス加工に関する方法が開示されている。当該公報によれば、スライス主面方位精度を確保するためにOF(オリエンテーションフラット)方向またはノッチ方向を特定の向きに配置して加工することが望ましいことが開示されている。いずれの技術においても各々、加工中の破損、主面方位の精度についての言及はあるも、スライス方向と反り特性との間にある課題については延べられていない。一方、これらシリコン半導体の加工方法に対して特開平9-17755号公報(特許文献1)では化合物半導体のスライス方法を開示しており、材料の異方性による反りの課題に言及している。 In addition, Japanese Patent Laid-Open No. 11-262917 (Patent Document 2) also discloses a method related to slice processing of a silicon semiconductor. According to the publication, it is disclosed that it is desirable to perform processing by arranging the OF (orientation flat) direction or the notch direction in a specific direction in order to ensure the slice main surface orientation accuracy. In any of the techniques, there are references to the damage during processing and the accuracy of the principal plane orientation, but the problem between the slice direction and the warp characteristics is not extended. On the other hand, Japanese Laid-Open Patent Publication No. 9-17755 (Patent Document 1) discloses a method for slicing a compound semiconductor, and mentions a problem of warping due to material anisotropy.
 たとえばシリコンのような等方性に近い結晶は、結晶のスライス方向によって反りの異方性が顕著に発生することはない。そのため、所望の面方位を有し、かつ反り量が小さい基板を比較的容易に製造することができる。 For example, near-isotropic crystals such as silicon do not cause significant warping anisotropy depending on the crystal slice direction. Therefore, a substrate having a desired plane orientation and a small amount of warpage can be manufactured relatively easily.
特開平9-17755号公報Japanese Patent Laid-Open No. 9-17755 特開平11-262917号公報Japanese Patent Laid-Open No. 11-262917
 しかしながら、化合物半導体は結晶に強い異方性を有しているため、インゴットの切断方向によって基板の反りが大きく異なってくる。それゆえ、所望の面方位を有し、かつ反り量の小さい基板を得ることが困難であった。また、たとえば炭化珪素などの化合物半導体は、現在の技術水準ではインゴット長はたとえば20mm程度であり、長尺状のインゴットを成長させることが困難である。それゆえ、1つのインゴットから取れる基板の枚数が少数であるので、基板を量産するためには多数のスライサーが必要とされる。 However, since compound semiconductors have strong anisotropy in crystals, the warpage of the substrate varies greatly depending on the cutting direction of the ingot. Therefore, it has been difficult to obtain a substrate having a desired plane orientation and a small amount of warpage. Further, for example, a compound semiconductor such as silicon carbide has an ingot length of, for example, about 20 mm at the current technical level, and it is difficult to grow a long ingot. Therefore, since the number of substrates that can be taken from one ingot is small, a large number of slicers are required to mass-produce substrates.
 この発明は、上記のような課題を解決するために成されたものであり、簡易な方法で、所望の面方位を有し、反り量の小さい基板を効率よく製造可能な化合物半導体基板の製造方法および製造装置を提供することである。 The present invention has been made to solve the above-described problems, and is a simple method for manufacturing a compound semiconductor substrate that can efficiently manufacture a substrate having a desired plane orientation and a small amount of warpage. A method and manufacturing apparatus are provided.
 本発明に係る化合物半導体基板の製造方法は以下の工程を有している。保持面を有し、保持面の傾きを調整可能な複数の保持部が準備される。化合物半導体から成る複数のインゴットのそれぞれが複数の保持部により保持される。複数の保持部の保持面の各々の傾きを調整することにより、複数のインゴットの各々の姿勢が調整される。複数のインゴットの各々を同時に切断することにより、所望の主面を有する化合物半導体基板が切り出される。 The method for manufacturing a compound semiconductor substrate according to the present invention includes the following steps. A plurality of holding portions having a holding surface and capable of adjusting the inclination of the holding surface are prepared. Each of a plurality of ingots made of a compound semiconductor is held by a plurality of holding portions. By adjusting the inclinations of the holding surfaces of the plurality of holding portions, the postures of the plurality of ingots are adjusted. By cutting each of the plurality of ingots simultaneously, a compound semiconductor substrate having a desired main surface is cut out.
 本発明に係る化合物半導体基板の製造方法によれば、複数のインゴットの各々の姿勢が調整されて、複数のインゴットの各々が同時に切断される。それゆえ、簡易な方法で、所望の面方位を有し、かつ反り量の小さい化合物半導体基板を効率よく製造することができる。 According to the method for manufacturing a compound semiconductor substrate according to the present invention, the postures of the plurality of ingots are adjusted, and each of the plurality of ingots is cut simultaneously. Therefore, it is possible to efficiently manufacture a compound semiconductor substrate having a desired plane orientation and a small amount of warpage by a simple method.
 上記の化合物半導体基板の製造方法において好ましくは、複数のインゴットの各々の結晶端面の面方位の所望の主面に対するずれ角度を測定する工程をさらに備える。複数のインゴットの各々の姿勢を調整する工程では、ずれ角度に基づいて複数のインゴットの各々の姿勢が調整される。 Preferably, the above-described method of manufacturing a compound semiconductor substrate further includes a step of measuring a deviation angle of a crystal orientation of each crystal end face of each of the plurality of ingots with respect to a desired main surface. In the step of adjusting the postures of the plurality of ingots, the postures of the plurality of ingots are adjusted based on the shift angle.
 これにより、インゴットの姿勢が精度良く調整されるため、精度良く所望の面方位を有し、かつ反り量の小さい化合物半導体基板を製造することができる。 Thereby, since the posture of the ingot is accurately adjusted, a compound semiconductor substrate having a desired plane orientation and a small amount of warpage can be manufactured with high accuracy.
 上記の化合物半導体基板の製造方法において好ましくは、化合物半導体は炭化珪素である。炭化珪素は高硬度材料であるため、インゴットを切断するために長時間を必要とする。上記の化合物半導体基板の製造方法によれば、インゴットを1本ずつ切断する場合と比較して、1本当たりのインゴットの切断時間を大幅に短縮しかつ生産効率を向上することができる。 In the above-described method for manufacturing a compound semiconductor substrate, the compound semiconductor is preferably silicon carbide. Since silicon carbide is a high-hardness material, it takes a long time to cut the ingot. According to the above-described method for manufacturing a compound semiconductor substrate, it is possible to significantly reduce the cutting time of each ingot and improve the production efficiency as compared with the case of cutting ingots one by one.
 上記の化合物半導体基板の製造方法において好ましくは、複数のインゴットの各々の結晶構造は六方晶であって、化合物半導体基板を切り出す工程において、複数のインゴットの各々は、<1-100>方位から(15°±30°×n(ここでnは整数))±5°傾けた方向に沿って切断される。 Preferably, in the above-described method for manufacturing a compound semiconductor substrate, each of the plurality of ingots has a hexagonal crystal structure, and in the step of cutting out the compound semiconductor substrate, each of the plurality of ingots has a (1-100) orientation ( 15 ° ± 30 ° × n (where n is an integer)) cut along a direction inclined by ± 5 °.
 六方晶の単結晶の場合、通常<1-100>方位と<11-20>方位では異方性を有している。そこで、<1-100>方位と<11-20>方位との中間位置に沿ってインゴットを切断することで、加工ダメージによる歪を拮抗させ、スライス後の化合物半導体基板の反り量を低減することができる。 A hexagonal single crystal usually has anisotropy in the <1-100> orientation and the <11-20> orientation. Therefore, by cutting the ingot along an intermediate position between the <1-100> orientation and the <11-20> orientation, the distortion due to processing damage is antagonized, and the amount of warping of the compound semiconductor substrate after slicing is reduced. Can do.
 上記の化合物半導体基板の製造方法において好ましくは、複数のインゴットの各々の結晶構造は立方晶であって、化合物半導体基板を切り出す工程において、複数のインゴットの各々は、<011>方位から(45°±90°×n(ここでnは整数))±5°傾けた方向に沿って切断される。 Preferably, in the above method for manufacturing a compound semiconductor substrate, each of the plurality of ingots has a cubic crystal structure, and in the step of cutting out the compound semiconductor substrate, each of the plurality of ingots is (45 °) from the <011> orientation. ± 90 ° × n (where n is an integer)) Cut along a direction inclined by ± 5 °.
 立方晶の炭化珪素単結晶の場合、通常<011>方位と<0-11>方位では異方性を有している。そこで、<011>方位と<0-11>方位との中間位置に沿ってインゴットを切断することで、加工ダメージによる歪を拮抗させ、スライス後の化合物半導体基板の反り量を低減することができる。 A cubic silicon carbide single crystal usually has anisotropy in the <011> and <0-11> orientations. Therefore, by cutting the ingot along the intermediate position between the <011> direction and the <0-11> direction, it is possible to antagonize distortion due to processing damage and to reduce the amount of warping of the compound semiconductor substrate after slicing. .
 本発明に係る化合物半導体基板の製造装置は、複数の保持部と、切断部とを有している。保持部は、保持面を有し、保持面の傾きを調整可能であって、化合物半導体から成る複数のインゴットの各々を保持するための部分である。切断部は、複数のインゴットの各々を同時にスライス可能な部分である。 The apparatus for manufacturing a compound semiconductor substrate according to the present invention has a plurality of holding portions and a cutting portion. The holding portion has a holding surface and is capable of adjusting the inclination of the holding surface, and is a portion for holding each of a plurality of ingots made of a compound semiconductor. The cutting portion is a portion that can simultaneously slice each of the plurality of ingots.
 本発明に係る化合物半導体基板の製造装置は、保持面の傾きを調整可能な複数の保持部と、複数のインゴットの各々を同時にスライス可能な切断部とを有している。それゆえ、簡易な方法で、所望の面方位を有し、かつ反り量の小さい化合物半導体基板を製造することができる。 The apparatus for manufacturing a compound semiconductor substrate according to the present invention includes a plurality of holding units capable of adjusting the inclination of the holding surface and a cutting unit capable of simultaneously slicing each of the plurality of ingots. Therefore, a compound semiconductor substrate having a desired plane orientation and a small amount of warpage can be manufactured by a simple method.
 上記の化合物半導体基板の製造装置において好ましくは、複数の保持部の各々の保持面は、保持面の法線を軸として回転可能であり、かつ法線と直交する線を軸として回転可能である。これにより、インゴットの姿勢を精度よく調整することができる。なお、保持面がある線を軸に回転可能とは、保持面がある軸を回転軸として回転する方向に沿ってある一定の角度だけ移動可能であることを意味し、360°回転しなくても構わない。 Preferably, in the above-described compound semiconductor substrate manufacturing apparatus, each holding surface of the plurality of holding units can rotate about the normal line of the holding surface and can rotate about a line orthogonal to the normal line. . Thereby, the attitude | position of an ingot can be adjusted accurately. Note that the fact that the holding surface can be rotated about the line with the holding surface means that the holding surface can be moved by a certain angle along the direction of rotation about the axis with the holding surface as a rotation axis. It doesn't matter.
 上記の化合物半導体基板の製造装置において好ましくは、複数のインゴットの各々の結晶端面の面方位のずれ角度を測定するための測定部をさらに有している。これにより、面方位のずれ角度に基づいて、インゴットの姿勢を精度よく調整することができる。 Preferably, the above-described compound semiconductor substrate manufacturing apparatus further includes a measuring unit for measuring a deviation angle of the crystal orientation of each crystal end face of the plurality of ingots. Thereby, the attitude | position of an ingot can be adjusted accurately based on the deviation | shift angle of a surface orientation.
 本発明によれば、簡易な方法で、所望の面方位を有し、かつ反り量の小さい基板を製造することができる。 According to the present invention, a substrate having a desired plane orientation and a small amount of warpage can be manufactured by a simple method.
本発明の一実施の形態における化合物半導体基板の製造装置の構成を概略的に示す正面図である。It is a front view which shows roughly the structure of the manufacturing apparatus of the compound semiconductor substrate in one embodiment of this invention. インゴットの形状を概略的に説明するための斜視図である。It is a perspective view for demonstrating roughly the shape of an ingot. 化合物半導体基板の形状を概略的に説明するための斜視図である。It is a perspective view for demonstrating schematically the shape of a compound semiconductor substrate. 本発明の一実施の形態における化合物半導体基板の製造装置の構成を概略的に示す正面図である。It is a front view which shows roughly the structure of the manufacturing apparatus of the compound semiconductor substrate in one embodiment of this invention. 化合物半導体基板の面方位を測定する方法を説明するための図である。It is a figure for demonstrating the method to measure the surface orientation of a compound semiconductor substrate. 本発明の一実施の形態における化合物半導体基板の製造方法を概略的に説明するフロー図である。It is a flowchart explaining roughly the manufacturing method of the compound semiconductor substrate in one embodiment of this invention. 複数のインゴットの姿勢を調整する工程を説明するための概略平面図である。It is a schematic plan view for demonstrating the process of adjusting the attitude | position of a several ingot. 複数のインゴットの姿勢を調整する工程を説明するための概略側面図である。It is a schematic side view for demonstrating the process of adjusting the attitude | position of a several ingot. 複数のインゴットの姿勢を測定する工程を説明するための概略側面図である。It is a schematic side view for demonstrating the process of measuring the attitude | position of several ingots. 複数のインゴットの姿勢を測定する工程を説明するための概略正面図である。It is a schematic front view for demonstrating the process of measuring the attitude | position of a several ingot. 複数のインゴットの配置を説明するための概略側面図である。It is a schematic side view for demonstrating arrangement | positioning of a several ingot. 複数のインゴットの配置を説明するための概略平面図である。It is a schematic plan view for demonstrating arrangement | positioning of a several ingot. 結晶構造が六方晶のインゴットを切断する工程を説明するための概略正面図である。It is a schematic front view for demonstrating the process of cut | disconnecting the ingot whose crystal structure is a hexagonal crystal. 結晶構造が立方晶のインゴットを切断する工程を説明するための概略正面図である。It is a schematic front view for demonstrating the process of cut | disconnecting the ingot whose crystal structure is a cubic crystal.
 以下、図面に基づいて本発明の実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 また、本明細書中の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。また、負の指数については、結晶学上、”-”(バー)を数字の上に付けることになっているが、本明細書中では、数字の前に負の符号を付けている。また角度の記載には、全方位角を360度とする系を用いている。 In the crystallographic description in this specification, the individual orientation is indicated by [], the collective orientation is indicated by <>, the individual plane is indicated by (), and the collective plane is indicated by {}. As for the negative index, “−” (bar) is added on the number in crystallography, but in the present specification, a negative sign is attached before the number. The angle is described using a system in which the omnidirectional angle is 360 degrees.
 図1を参照して、本実施の形態に係る化合物半導体基板の製造装置の構成について説明する。 Referring to FIG. 1, the configuration of the compound semiconductor substrate manufacturing apparatus according to the present embodiment will be described.
 図1に示すように、本実施の形態に係る化合物半導体基板の製造装置100は、保持部5と、ワイヤWと、ローラR1、R2、R3とを主に有している。保持部5は化合物半導体のインゴット1を保持するためのものである。保持部5は、インゴット1を保持する保持面5dを有している。保持面5d上にはインゴット1を直接保持するための台座4が配置されている。台座4はたとえばカーボンからなる。 As shown in FIG. 1, the compound semiconductor substrate manufacturing apparatus 100 according to the present embodiment mainly includes a holding unit 5, a wire W, and rollers R1, R2, and R3. The holding part 5 is for holding the compound semiconductor ingot 1. The holding part 5 has a holding surface 5 d that holds the ingot 1. A pedestal 4 for directly holding the ingot 1 is disposed on the holding surface 5d. The pedestal 4 is made of carbon, for example.
 ローラR1、R2、R3には、一本のワイヤWが螺旋状に巻きつけられている。ワイヤWはインゴットを切断するための切断部である。保持部5の上方において、複数本のワイヤWが略平行に配置されたワイヤW列が形成されている。インゴット1を搭載した保持部5が複数のワイヤWの方向に接近し、ワイヤWと接触することによりインゴット1が切断されて複数枚の半導体基板を得ることができる。 A single wire W is spirally wound around the rollers R1, R2, and R3. The wire W is a cutting part for cutting the ingot. Above the holding part 5, a wire W row in which a plurality of wires W are arranged substantially in parallel is formed. When the holding portion 5 on which the ingot 1 is mounted approaches the direction of the plurality of wires W and comes into contact with the wires W, the ingot 1 is cut and a plurality of semiconductor substrates can be obtained.
 ワイヤWは、ローラR1、R2、R3の各々が同一方向に回転することにより、移動可能に構成されている。また、ローラR1、R2、R3は正回転および逆回転を交互に繰り返すことによって、ローラR1およびローラR2の間に張られたワイヤWは保持部5上において略水平方向Mに沿って往復走行可能に構成されている。これにより、ワイヤWはインゴット1を切断可能に構成されている。インゴット1とワイヤWとが相対的に近づくことにより、インゴット1が切断方向SDに沿って切断される。 The wire W is configured to be movable as each of the rollers R1, R2, and R3 rotates in the same direction. In addition, the rollers R1, R2, and R3 alternately repeat forward rotation and reverse rotation so that the wire W stretched between the rollers R1 and R2 can reciprocate along the substantially horizontal direction M on the holding unit 5. It is configured. Thereby, the wire W is comprised so that the ingot 1 can be cut | disconnected. When the ingot 1 and the wire W are relatively close to each other, the ingot 1 is cut along the cutting direction SD.
 図2を参照して、インゴットの形状について説明する。図2に示すように、インゴット1は、たとえば炭化珪素からなり略円柱状の形状を有している。本実施の形態の化合物半導体基板の製造方法に用いられるインゴット1には、結晶の成長方向に沿ってOF(オリエンテーションフラット)およびIF(インデックスフラット)が形成されている。インゴット1の結晶端面3はたとえば{0001}面ジャストもしくは4~8度オフした面である。図2における破線はインゴット1の切断面を示している。破線に沿ってインゴット1が切断されることにより、化合物半導体基板10が切り出される。 The shape of the ingot will be described with reference to FIG. As shown in FIG. 2, ingot 1 is made of, for example, silicon carbide and has a substantially cylindrical shape. OF (orientation flat) and IF (index flat) are formed along the crystal growth direction in the ingot 1 used in the method for manufacturing the compound semiconductor substrate of the present embodiment. The crystal end face 3 of the ingot 1 is, for example, a {0001} face just or a face off by 4 to 8 degrees. A broken line in FIG. 2 indicates a cut surface of the ingot 1. The compound semiconductor substrate 10 is cut out by cutting the ingot 1 along the broken line.
 図3を参照して、化合物半導体基板10について説明する。化合物半導体基板10は、主面2と、側面とを有しており、側面にはOF面とIF面が形成されている。化合物半導体基板10は直径Dおよび厚みTを有している。厚みTは、複数のワイヤWの間隔に対応している。化合物半導体基板10の主面2の面方位は、インゴット1の結晶端面3の面方位と同じであっても構わないし、異なっていても構わない。 The compound semiconductor substrate 10 will be described with reference to FIG. The compound semiconductor substrate 10 has a main surface 2 and side surfaces, and an OF surface and an IF surface are formed on the side surfaces. The compound semiconductor substrate 10 has a diameter D and a thickness T. The thickness T corresponds to the interval between the plurality of wires W. The plane orientation of the main surface 2 of the compound semiconductor substrate 10 may be the same as or different from the plane orientation of the crystal end face 3 of the ingot 1.
 図4を参照して、保持部5の下方にはSUS部6が設けられている。SUS部6をワイヤソーのステージ7の内壁面7aに接触させ、クランプねじ8でSUS部6をステージ7の内壁面7aに押し付けることにより、保持部5はステージ7に固定されている。ステージ7は、ワイヤWに対して接近する方向に移動可能に構成されている。ステージ7がワイヤWに接近することで、インゴット1がワイヤWと接触し、インゴット1がワイヤWによって切断方向SDに沿って切断される。なお、本実施の形態において、ステージ7がワイヤWに近づく例を挙げて説明したが、ワイヤWがステージ7に近づくことにより、インゴット1が切断されても構わない。 Referring to FIG. 4, a SUS unit 6 is provided below the holding unit 5. The holding unit 5 is fixed to the stage 7 by bringing the SUS unit 6 into contact with the inner wall surface 7 a of the stage 7 of the wire saw and pressing the SUS unit 6 against the inner wall surface 7 a of the stage 7 with the clamp screw 8. The stage 7 is configured to be movable in a direction approaching the wire W. When the stage 7 approaches the wire W, the ingot 1 comes into contact with the wire W, and the ingot 1 is cut along the cutting direction SD by the wire W. In the present embodiment, the example where the stage 7 approaches the wire W has been described. However, the ingot 1 may be cut when the wire W approaches the stage 7.
 次に、保持部5としてのゴニオメータの構成について説明する。ゴニオメータは、保持面5dを有し、保持面5d上にインゴット1が配置される。ゴニオメータは、保持面5dの角度を変化させることにより、保持面5d上に配置されたインゴット1の姿勢を調整可能に構成されている。 Next, the configuration of the goniometer as the holding unit 5 will be described. The goniometer has a holding surface 5d, and the ingot 1 is disposed on the holding surface 5d. The goniometer is configured to be capable of adjusting the posture of the ingot 1 disposed on the holding surface 5d by changing the angle of the holding surface 5d.
 ゴニオメータは、保持面5dの法線を回転軸として保持面5dを回転可能に構成されている。また、当該法線と直交する線を回転軸として保持面5dを回転可能に構成されている。つまり、保持面5dを2軸で回転可能である。 The goniometer is configured to be able to rotate the holding surface 5d around the normal line of the holding surface 5d. Further, the holding surface 5d is configured to be rotatable with a line orthogonal to the normal line as a rotation axis. That is, the holding surface 5d can be rotated about two axes.
 図5を参照して、インゴット1の結晶端面3の面方位のずれ角度を測定するX線測定部について説明する。図5に示すように、測定部としてのX線測定部11は、照射部12と検出部13とを有している。照射部12により結晶端面3に対してX線を照射してX線の反射角を検出部13により検出することで、結晶端面3の面方位の所望の面に対するずれ角度を測定可能である。なお、当該ずれ角度は、後述するように、インゴット1の結晶端面3の水平方向(x方向)および垂直方向(y方向)に対して測定される。 With reference to FIG. 5, an X-ray measurement unit that measures the deviation angle of the plane orientation of the crystal end face 3 of the ingot 1 will be described. As shown in FIG. 5, the X-ray measurement unit 11 as a measurement unit includes an irradiation unit 12 and a detection unit 13. By irradiating the crystal end surface 3 with X-rays by the irradiation unit 12 and detecting the X-ray reflection angle with the detection unit 13, the deviation angle of the crystal orientation of the crystal end surface 3 with respect to a desired surface can be measured. The deviation angle is measured with respect to the horizontal direction (x direction) and the vertical direction (y direction) of the crystal end face 3 of the ingot 1 as described later.
 次に、本実施の形態に係る化合物半導体基板の製造方法について説明する。
 まず、保持部準備工程(S10:図6)が実施される。具体的には、保持面5dの傾きを調整可能な保持部5としてのゴニオメータが複数準備される。上述のように、ゴニオメータは、保持面5dの法線を回転軸として保持面5dを回転可能であり、かつ、当該法線と直交する線を回転軸として保持面5dを回転可能である。
Next, a method for manufacturing the compound semiconductor substrate according to the present embodiment will be described.
First, a holding part preparation process (S10: FIG. 6) is implemented. Specifically, a plurality of goniometers as the holding unit 5 capable of adjusting the inclination of the holding surface 5d are prepared. As described above, the goniometer can rotate the holding surface 5d with the normal line of the holding surface 5d as the rotation axis, and can rotate the holding surface 5d with the line orthogonal to the normal line as the rotation axis.
 次に、インゴット保持工程(S20:図6)が実施される。具体的には、図4を参照して、化合物半導体からなる複数のインゴットのそれぞれが複数のゴニオメータの保持面5d上に保持される。 Next, an ingot holding step (S20: FIG. 6) is performed. Specifically, referring to FIG. 4, each of a plurality of ingots made of a compound semiconductor is held on holding surfaces 5d of a plurality of goniometers.
 次に、インゴットの結晶端面の面方位ずれ角度測定工程(S30:図6)が実施される。具体的には、図5に示すように、インゴット1がX線測定部11の照射部12により結晶端面3に対してX線を照射して、X線の反射角を検出部13により検出することで、結晶端面3の面方位の所望の主面2に対するずれ角度が測定される。結晶端面3の面方位の所望の主面2に対するずれ角度は、水平方向および垂直方向に沿って測定される。つまり、図5に示すように、X線の照射方向がy方向の成分を有するようにインゴット1の結晶端面3にX線を照射し、第1の方位ずれ角度を測定する。次に、たとえばインゴットをz軸を回転軸として90°回転させる。X線の照射方向がx方向の成分を有するようにインゴット1の結晶端面3にX線を照射し、第2の方位ずれ角度を測定する。上記のようにして、結晶端面3の面方位の所望の主面2に対するずれ角度が、水平方向(x方向)および垂直方向(y方向)に対して測定される。当該第1の方位ずれ角度および第2の方位ずれ角度は座標変換した数値に計算される。 Next, the step of measuring the orientation error angle of the crystal end face of the ingot (S30: FIG. 6) is performed. Specifically, as shown in FIG. 5, the ingot 1 irradiates the crystal end surface 3 with X-rays by the irradiation unit 12 of the X-ray measurement unit 11, and the X-ray reflection angle is detected by the detection unit 13. Thus, the deviation angle of the crystal orientation of the crystal end face 3 with respect to the desired main surface 2 is measured. The deviation angle of the crystal orientation of the crystal end face 3 with respect to the desired main surface 2 is measured along the horizontal direction and the vertical direction. In other words, as shown in FIG. 5, the crystal end face 3 of the ingot 1 is irradiated with X-rays so that the X-ray irradiation direction has a y-direction component, and the first misorientation angle is measured. Next, for example, the ingot is rotated 90 ° about the z axis as a rotation axis. The crystal end face 3 of the ingot 1 is irradiated with X-rays so that the X-ray irradiation direction has a component in the x direction, and the second misorientation angle is measured. As described above, the deviation angle of the crystal orientation of the crystal end face 3 with respect to the desired main surface 2 is measured with respect to the horizontal direction (x direction) and the vertical direction (y direction). The first azimuth deviation angle and the second azimuth deviation angle are calculated as coordinate-converted numerical values.
 なお、インゴット1が切断される際に、切り出された化合物半導体基板10の主面2が所望の面方位を有するように、X線測定時におけるインゴットの配置は、切断時におけるインゴットの配置と同じになるように原点調整が成されている。 In addition, when the ingot 1 is cut, the arrangement of the ingot at the time of X-ray measurement is the same as the arrangement of the ingot at the time of cutting so that the main surface 2 of the compound semiconductor substrate 10 cut out has a desired plane orientation. The origin is adjusted so that
 次に、インゴットの結晶端面の水平方向(x方向)および垂直方向(y方向)のずれ角度検知工程が実施される。具体的には、図9および図10を参照して、たとえば垂直方向に沿って配置された2つのマイクロメータS1、S2を使用して、インゴット1の結晶端面3の垂直方向(y方向)の切断面に対するずれ角度(第1のずれ角度)が測定される。また、水平方向(x方向)に沿って配置された2つのマイクロメータS3、S4を使用して、インゴット1の結晶端面3の水平方向の切断面に対するずれ角度(第2のずれ角度)が測定される。なお、上記切断面とは、インゴット1がワイヤWにより切断される場合におけるワイヤWが移動する面のことである。 Next, a step of detecting a deviation angle in the horizontal direction (x direction) and the vertical direction (y direction) of the crystal end face of the ingot is performed. Specifically, referring to FIG. 9 and FIG. 10, for example, using two micrometers S <b> 1 and S <b> 2 arranged along the vertical direction, the vertical direction (y direction) of the crystal end surface 3 of the ingot 1 is used. A deviation angle (first deviation angle) with respect to the cut surface is measured. Further, using two micrometers S3 and S4 arranged along the horizontal direction (x direction), a deviation angle (second deviation angle) of the crystal end face 3 of the ingot 1 with respect to the horizontal cut surface is measured. Is done. The cut surface is a surface on which the wire W moves when the ingot 1 is cut by the wire W.
 当該ずれ角度の検出は、たとえば、第1のマイクロメータS1とインゴット1の結晶端面3との第1の距離および、第2のマイクロメータS2とインゴット1の結晶端面との第2の距離が測定されることにより行われる。第1の距離と第2の距離との差分を計算することにより、インゴット1の結晶端面3のずれ角度が計算される。なお、ずれ角度の測定はレーザセンサを用いて行われても構わない。 The detection of the deviation angle is performed, for example, by measuring the first distance between the first micrometer S1 and the crystal end face 3 of the ingot 1 and the second distance between the second micrometer S2 and the crystal end face of the ingot 1. Is done. By calculating the difference between the first distance and the second distance, the deviation angle of the crystal end face 3 of the ingot 1 is calculated. The measurement of the deviation angle may be performed using a laser sensor.
 次に、インゴットの姿勢調整工程(S40:図6)が実施される。本工程において、複数のゴニオメータの各々の保持面5dの傾きを変化させることにより、当該保持面に保持されている複数のインゴット1の姿勢が各々調整される。インゴット1の姿勢の調整は、X線測定部11により測定された第1の方位ずれ角度および第2の方位ずれ角度に基づいて行われる。好ましくは、インゴット1の姿勢の調整は、第1の方位ずれ角度および第2の方位ずれ角度に加え、上記第1のマイクロメータS1~S4により測定された第1のずれ角度および第2のずれ角度とに基づいて行われる。 Next, an ingot posture adjustment step (S40: FIG. 6) is performed. In this step, the postures of the plurality of ingots 1 held on the holding surfaces are adjusted by changing the inclinations of the holding surfaces 5d of the plurality of goniometers. The adjustment of the posture of the ingot 1 is performed based on the first azimuth deviation angle and the second azimuth deviation angle measured by the X-ray measurement unit 11. Preferably, the adjustment of the posture of the ingot 1 is performed in addition to the first azimuth deviation angle and the second azimuth deviation angle, and the first deviation angle and the second deviation measured by the first micrometers S1 to S4. Based on the angle.
 図7を参照して、ゴニオメータにより保持面5dを保持面5d(xz面)内で回転させることにより、インゴット1の姿勢を角度θだけ変化させる。また、図8を参照して、ゴニオメータにより保持面5dを保持面5dに垂直な面(yz面)内で回転させることにより、インゴット1の姿勢を角度γだけ変化させる。なお、図7および図8において、z方向はインゴット1が成長する方向である。このようにして、インゴット1が切断される際に、切り出された化合物半導体基板10の主面2が所望の面方位を有するようにインゴット1の姿勢が2軸で調整される。 Referring to FIG. 7, the posture of ingot 1 is changed by angle θ by rotating holding surface 5d within holding surface 5d (xz plane) with a goniometer. In addition, referring to FIG. 8, the posture of ingot 1 is changed by angle γ by rotating holding surface 5 d in a plane (yz plane) perpendicular to holding surface 5 d by a goniometer. 7 and 8, the z direction is a direction in which the ingot 1 grows. In this way, when the ingot 1 is cut, the posture of the ingot 1 is adjusted biaxially so that the main surface 2 of the cut out compound semiconductor substrate 10 has a desired plane orientation.
 図11および図12を参照して、基板切り出し工程(S50:図6)が実施される。まず、複数のインゴット1の各々が、インゴット1の結晶の成長方向(z方向)に沿って配置される。本実施の形態において、3つのインゴット1a、1b、1cがインゴット1の結晶の成長方向に沿って直列に配置される。3つのインゴット1a、1b、1cの各々は、ワイヤWによってインゴット1が切断されたときに、化合物半導体基板10の主面2が所望の面方位を有するようにインゴット1a、1b、1cの各々の姿勢が調整された状態で配置されている。なお、複数のインゴット1は、横方向(x方向)に並べて配置されても構わない。 Referring to FIG. 11 and FIG. 12, a substrate cutting process (S50: FIG. 6) is performed. First, each of the plurality of ingots 1 is arranged along the crystal growth direction (z direction) of the ingot 1. In the present embodiment, three ingots 1 a, 1 b, 1 c are arranged in series along the crystal growth direction of ingot 1. Each of the three ingots 1a, 1b, and 1c is configured so that when the ingot 1 is cut by the wire W, the main surface 2 of the compound semiconductor substrate 10 has a desired plane orientation. It is arranged with the posture adjusted. The plurality of ingots 1 may be arranged side by side in the horizontal direction (x direction).
 複数のインゴット1の各々は図12の破線で示す方向に沿って複数のワイヤWにより同時に切断される。これにより、所望の主面2を有する複数の化合物半導体基板10が切り出される。 Each of the plurality of ingots 1 is simultaneously cut by the plurality of wires W along the direction indicated by the broken line in FIG. Thereby, a plurality of compound semiconductor substrates 10 having the desired main surface 2 are cut out.
 次に、インゴット1の切断方向について説明する。
 図13は、インゴットを形成する化合物半導体の結晶構造が六方晶の場合のインゴットを成長方向から見た模式図である。紙面に平行な結晶面は{0001}面である。インゴット1を形成する化合物半導体の結晶構造が六方晶の場合、複数のインゴットの各々は、<1-100>方位から(15°±30°×n(ここでnは整数))±5°傾けた方向に沿って切断されることが好ましい。つまり、図13において示された破線に沿った方向で切断されることである。望ましい切断方向SDは、xy面内において30°毎ずれた方向である。たとえば、六方晶の炭化珪素単結晶の場合、通常<1-100>方位と<11-20>方位では異方性を有している。異方性を有しているとは、通常方向によって性質が異なることをいう。そこで、<1-100>方位と<11-20>方位との中間位置に沿ってインゴットを切断することで、加工ダメージによる歪を拮抗させ、スライス後の反り量を低減することができる。
Next, the cutting direction of the ingot 1 will be described.
FIG. 13 is a schematic view of an ingot viewed from the growth direction when the crystal structure of the compound semiconductor forming the ingot is a hexagonal crystal. The crystal plane parallel to the paper is the {0001} plane. When the crystal structure of the compound semiconductor forming the ingot 1 is a hexagonal crystal, each of the plurality of ingots is tilted from the <1-100> orientation by (15 ° ± 30 ° × n (where n is an integer)) ± 5 °. It is preferable to cut along the direction. That is, it is cut in the direction along the broken line shown in FIG. A desirable cutting direction SD is a direction shifted by 30 ° in the xy plane. For example, a hexagonal silicon carbide single crystal usually has anisotropy in the <1-100> orientation and the <11-20> orientation. Having anisotropy means that the properties differ depending on the normal direction. Therefore, by cutting the ingot along the intermediate position between the <1-100> orientation and the <11-20> orientation, it is possible to antagonize distortion due to processing damage and reduce the amount of warping after slicing.
 図14は、インゴットを形成する化合物半導体の結晶構造が立方晶の場合のインゴットを成長方向から見た模式図である。紙面に平行な結晶面は{001}面である。インゴットを形成する化合物半導体の結晶構造が立方晶の場合、複数のインゴットの各々は、<011>方位から(45°±90°×n(ここでnは整数))±5°傾けた方向に沿って切断されることが好ましい。つまり、図14において示された破線に沿った方向で切断されることである。望ましい切断方向SDは、xy面内において90°毎ずれた方向である。たとえば、立方晶の炭化珪素単結晶の場合、通常<011>方位と<0-11>方位では異方性を有している。異方性を有しているとは、通常方向によって性質が異なることをいう。そこで、<011>方位と<0-11>方位との中間位置に沿ってインゴットを切断することで、加工ダメージによる歪を拮抗させ、スライス後の反り量を低減することができる。 FIG. 14 is a schematic view of an ingot viewed from the growth direction when the crystal structure of the compound semiconductor forming the ingot is a cubic crystal. The crystal plane parallel to the paper is the {001} plane. When the crystal structure of the compound semiconductor forming the ingot is a cubic crystal, each of the plurality of ingots is inclined in the direction inclined by ± 5 ° (45 ° ± 90 ° × n (where n is an integer)) from the <011> orientation. Preferably cut along. That is, it is cut in the direction along the broken line shown in FIG. A desirable cutting direction SD is a direction shifted by 90 ° in the xy plane. For example, a cubic silicon carbide single crystal usually has anisotropy in the <011> orientation and the <0-11> orientation. Having anisotropy means that the properties differ depending on the normal direction. Therefore, by cutting the ingot along an intermediate position between the <011> direction and the <0-11> direction, it is possible to antagonize distortion due to processing damage and reduce the amount of warping after slicing.
 なお、本実施の形態においては、インゴット1を形成する化合物半導体材料として炭化珪素(SiC)を例に挙げて説明したがこれに限定されない。インゴット1を形成する材料としては、たとえば、GaN、GaAs、GaP、InP、SiGeなどであってもよいし、その他の材料であってもよい。 In the present embodiment, silicon carbide (SiC) has been described as an example of the compound semiconductor material forming ingot 1, but is not limited thereto. The material forming the ingot 1 may be, for example, GaN, GaAs, GaP, InP, SiGe, or other materials.
 次に、本実施の形態に係る半導体基板の製造方法の作用効果について説明する。
 本実施の形態に係る化合物半導体基板の製造方法によれば、複数のインゴット1の各々の姿勢が調整されて、複数のインゴット1の各々が同時に切断される。それゆえ、簡易な方法で、所望の面方位を有し、かつ反り量の小さい化合物半導体基板10を製造することができる。
Next, functions and effects of the semiconductor substrate manufacturing method according to the present embodiment will be described.
According to the method for manufacturing a compound semiconductor substrate according to the present embodiment, the postures of the plurality of ingots 1 are adjusted, and each of the plurality of ingots 1 is cut simultaneously. Therefore, the compound semiconductor substrate 10 having a desired plane orientation and a small amount of warpage can be manufactured by a simple method.
 また、本実施の形態に係る化合物半導体基板の製造方法によれば、複数のインゴット1の各々の結晶端面3の面方位の所望の主面2に対するずれ角度が測定される。その後、当該ずれ角度に基づいて複数のインゴット1の各々の姿勢が調整される。これにより、インゴット1の姿勢が精度良く調整されるため、精度良く所望の面方位を有し、かつ反り量の小さい化合物半導体基板を製造することができる。 Further, according to the method for manufacturing the compound semiconductor substrate according to the present embodiment, the deviation angle of the crystal orientation of each crystal end face 3 of the plurality of ingots 1 with respect to the desired principal surface 2 is measured. Thereafter, the postures of the plurality of ingots 1 are adjusted based on the deviation angle. Thereby, since the attitude | position of the ingot 1 is adjusted with a sufficient precision, the compound semiconductor substrate which has a desired surface orientation and a small curvature amount with a sufficient precision can be manufactured.
 さらに、本実施の形態に係る化合物半導体基板の製造方法によれば、化合物半導体は炭化珪素である。炭化珪素は高硬度材料であるため、インゴットを切断するために長時間を必要とする。本実施の形態に係る化合物半導体基板の製造方法によれば、インゴット1を1本ずつ切断する場合と比較して、インゴット1の切断時間を大幅に短縮することができる。 Furthermore, according to the method for manufacturing a compound semiconductor substrate according to the present embodiment, the compound semiconductor is silicon carbide. Since silicon carbide is a high-hardness material, it takes a long time to cut the ingot. According to the method for manufacturing a compound semiconductor substrate according to the present embodiment, the cutting time of the ingot 1 can be significantly shortened as compared with the case where the ingots 1 are cut one by one.
 さらに、本実施の形態に係る化合物半導体基板の製造方法によれば、複数のインゴット1の各々の結晶構造は六方晶であって、化合物半導体基板10を切り出す工程において、複数のインゴットの各々は、<1-100>方位から(15°±30°×n(ここでnは整数))±5°傾けた方向に沿って切断される。 Furthermore, according to the method for manufacturing a compound semiconductor substrate according to the present embodiment, each of the plurality of ingots 1 has a hexagonal crystal structure, and in the step of cutting the compound semiconductor substrate 10, each of the plurality of ingots is It is cut along a direction inclined by (15 ° ± 30 ° × n (where n is an integer)) ± 5 ° from the <1-100> orientation.
 六方晶の炭化珪素単結晶の場合、通常<1-100>方位と<11-20>方位では異方性を有している。そこで、<1-100>方位と<11-20>方位との中間位置に沿ってインゴット1を切断することで、加工ダメージによる歪を拮抗させ、スライス後の化合物半導体基板10の反り量を低減することができる。 A hexagonal silicon carbide single crystal usually has anisotropy in the <1-100> and <11-20> orientations. Therefore, by cutting the ingot 1 along an intermediate position between the <1-100> orientation and the <11-20> orientation, the distortion due to processing damage is antagonized, and the warpage amount of the compound semiconductor substrate 10 after slicing is reduced. can do.
 さらに、本実施の形態に係る化合物半導体基板の製造方法によれば、複数のインゴット1の各々の結晶構造は立方晶であって、化合物半導体基板を切り出す工程において、複数のインゴット1の各々は、<011>方位から(45°±90°×n(ここでnは整数))±5°傾けた方向に沿って切断される。 Furthermore, according to the method for manufacturing a compound semiconductor substrate according to the present embodiment, each of the plurality of ingots 1 has a cubic crystal structure, and in the step of cutting the compound semiconductor substrate, each of the plurality of ingots 1 It is cut along a direction inclined by (45 ° ± 90 ° × n (where n is an integer)) ± 5 ° from the <011> orientation.
 立方晶の炭化珪素単結晶の場合、通常<011>方位と<0-11>方位では異方性を有している。そこで、<011>方位と<0-11>方位との中間位置に沿ってインゴット1を切断することで、加工ダメージによる歪を拮抗させ、スライス後の反り量の少ない化合物半導体基板10を製造することができる。 A cubic silicon carbide single crystal usually has anisotropy in the <011> and <0-11> orientations. Therefore, by cutting the ingot 1 along the intermediate position between the <011> direction and the <0-11> direction, the distortion due to processing damage is antagonized, and the compound semiconductor substrate 10 with a small amount of warping after slicing is manufactured. be able to.
 さらに、本実施の形態に係る化合物半導体基板の製造装置は、保持面5dの傾きを調整可能な複数の保持部5と、複数のインゴット1の各々を同時にスライス可能な切断部としてのワイヤWとを有している。それゆえ、簡易な方法で、所望の面方位を有し、かつ反り量の小さい化合物半導体基板10を製造することができる。 Furthermore, the compound semiconductor substrate manufacturing apparatus according to the present embodiment includes a plurality of holding portions 5 that can adjust the inclination of the holding surface 5d, and a wire W as a cutting portion that can simultaneously slice each of the plurality of ingots 1. have. Therefore, the compound semiconductor substrate 10 having a desired plane orientation and a small amount of warpage can be manufactured by a simple method.
 さらに、本実施の形態に係る化合物半導体基板の製造装置は、複数の保持部5の各々の保持面5dは、保持面5dの法線を軸として回転可能であり、かつ法線と直交する線を軸として回転可能である。これにより、インゴット1の姿勢を精度よく調整することができる。 Further, in the compound semiconductor substrate manufacturing apparatus according to the present embodiment, each holding surface 5d of the plurality of holding portions 5 is rotatable about the normal line of the holding surface 5d and is orthogonal to the normal line. Can be rotated around the axis. Thereby, the attitude | position of the ingot 1 can be adjusted accurately.
 さらに、本実施の形態に係る化合物半導体基板の製造装置は、複数のインゴット1の各々の結晶端面3の面方位のずれ角度を測定するためのX線測定部11をさらに有している。これにより、面方位のずれ角度に基づいて、インゴット1の姿勢を精度よく調整することができる。 Furthermore, the compound semiconductor substrate manufacturing apparatus according to the present embodiment further includes an X-ray measurement unit 11 for measuring the deviation angle of the crystal orientation of each crystal end face 3 of the plurality of ingots 1. Thereby, the attitude | position of the ingot 1 can be accurately adjusted based on the deviation | shift angle of a surface orientation.
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiment disclosed this time is illustrative in all respects and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 インゴット、2 主面、3 結晶端面、4 台座、5 保持部、5d 保持面、6 SUS部、7 ステージ、7a 側壁面、8 クランプねじ、10 化合物半導体基板、11 X線測定部、12 照射部、13 検出部。 1 ingot, 2 main surface, 3 crystal end surface, 4 pedestal, 5 holding part, 5d holding surface, 6 SUS part, 7 stage, 7a side wall surface, 8 clamp screw, 10 compound semiconductor substrate, 11 X-ray measuring part, 12 irradiation Part, 13 detection part.

Claims (8)

  1.  保持面を有し、前記保持面の傾きを調整可能な複数の保持部を準備する工程と、
     化合物半導体から成る複数のインゴットのそれぞれを前記複数の保持部により保持する工程と、
     前記複数の保持部の前記保持面の各々の傾きを調整することにより、前記複数のインゴットの各々の姿勢を調整する工程と、
     前記複数のインゴットの各々を同時に切断することにより、所望の主面を有する化合物半導体基板を切り出す工程とを備えた、化合物半導体基板の製造方法。
    Preparing a plurality of holding portions having a holding surface and capable of adjusting the inclination of the holding surface;
    A step of holding each of a plurality of ingots made of a compound semiconductor by the plurality of holding portions;
    Adjusting the posture of each of the plurality of ingots by adjusting the inclination of each of the holding surfaces of the plurality of holding portions; and
    And a step of cutting a compound semiconductor substrate having a desired main surface by simultaneously cutting each of the plurality of ingots.
  2.  前記複数のインゴットの各々の結晶端面の面方位の前記所望の主面に対するずれ角度を測定する工程をさらに備え、
     前記複数のインゴットの各々の姿勢を調整する工程では、前記ずれ角度に基づいて前記複数のインゴットの各々の姿勢が調整される、請求項1に記載の化合物半導体基板の製造方法。
    Measuring the angle of deviation of the crystal orientation of each of the plurality of ingots with respect to the desired principal plane,
    2. The method of manufacturing a compound semiconductor substrate according to claim 1, wherein in the step of adjusting the postures of the plurality of ingots, the postures of the plurality of ingots are adjusted based on the shift angle.
  3.  前記化合物半導体は炭化珪素である、請求項1または2に記載の化合物半導体基板の製造方法。 The method of manufacturing a compound semiconductor substrate according to claim 1 or 2, wherein the compound semiconductor is silicon carbide.
  4.  前記複数のインゴットの各々の結晶構造は六方晶であって、
     前記化合物半導体基板を切り出す工程において、前記複数のインゴットの各々は、<1-100>方位から(15°±30°×n(ここでnは整数))±5°傾けた方向に沿って切断される、請求項1~3のいずれか1項に記載の化合物半導体基板の製造方法。
    Each of the plurality of ingots has a hexagonal crystal structure,
    In the step of cutting out the compound semiconductor substrate, each of the plurality of ingots is cut along a direction tilted by (15 ° ± 30 ° × n (where n is an integer)) ± 5 ° from the <1-100> orientation. The method for producing a compound semiconductor substrate according to any one of claims 1 to 3, wherein:
  5.  前記複数のインゴットの各々の結晶構造は立方晶であって、
     前記化合物半導体基板を切り出す工程において、前記複数のインゴットの各々は、<011>方位から(45°±90°×n(ここでnは整数))±5°傾けた方向に沿って切断される、請求項1~3のいずれか1項に記載の化合物半導体基板の製造方法。
    Each of the plurality of ingots has a cubic crystal structure,
    In the step of cutting out the compound semiconductor substrate, each of the plurality of ingots is cut along a direction inclined by (45 ° ± 90 ° × n (where n is an integer)) ± 5 ° from the <011> orientation. The method for producing a compound semiconductor substrate according to any one of claims 1 to 3.
  6.  保持面を有し、前記保持面の傾きを調整可能であって、化合物半導体から成る複数のインゴットの各々を保持するための複数の保持部と、
     前記複数のインゴットの各々を同時にスライス可能な切断部とを備えた、化合物半導体基板の製造装置。
    A plurality of holding portions for holding each of a plurality of ingots made of a compound semiconductor, each having a holding surface, the inclination of the holding surface being adjustable;
    An apparatus for manufacturing a compound semiconductor substrate, comprising: a cutting section capable of simultaneously slicing each of the plurality of ingots.
  7.  前記複数の保持部の各々の前記保持面は、前記保持面の法線を軸として回転可能であり、かつ前記法線と直交する線を軸として回転可能である、請求項6に記載の化合物半導体基板の製造装置。 The compound according to claim 6, wherein the holding surface of each of the plurality of holding portions is rotatable about a normal line of the holding surface and is rotatable about a line orthogonal to the normal line. Semiconductor substrate manufacturing equipment.
  8.  前記複数のインゴットの各々の結晶端面の面方位のずれ角度を測定するための測定部をさらに備えた、請求項6または7に記載の化合物半導体基板の製造装置。 The apparatus for manufacturing a compound semiconductor substrate according to claim 6 or 7, further comprising a measurement unit for measuring a deviation angle of a plane orientation of each crystal end face of each of the plurality of ingots.
PCT/JP2013/075145 2013-09-18 2013-09-18 Device for producing and method for producing compound semiconductor substrate WO2015040695A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/075145 WO2015040695A1 (en) 2013-09-18 2013-09-18 Device for producing and method for producing compound semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/075145 WO2015040695A1 (en) 2013-09-18 2013-09-18 Device for producing and method for producing compound semiconductor substrate

Publications (1)

Publication Number Publication Date
WO2015040695A1 true WO2015040695A1 (en) 2015-03-26

Family

ID=52688381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075145 WO2015040695A1 (en) 2013-09-18 2013-09-18 Device for producing and method for producing compound semiconductor substrate

Country Status (1)

Country Link
WO (1) WO2015040695A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11147217A (en) * 1997-11-17 1999-06-02 Nippei Toyama Corp Adjusting method for work crystallizing direction
JPH11147218A (en) * 1997-11-17 1999-06-02 Nippei Toyama Corp Wire saw
JP2004311726A (en) * 2003-04-07 2004-11-04 Dowa Mining Co Ltd Working method of single crystal ingot
JP2013089937A (en) * 2011-10-24 2013-05-13 Sumitomo Electric Ind Ltd Method of manufacturing silicon carbide substrate, and silicon carbide substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11147217A (en) * 1997-11-17 1999-06-02 Nippei Toyama Corp Adjusting method for work crystallizing direction
JPH11147218A (en) * 1997-11-17 1999-06-02 Nippei Toyama Corp Wire saw
JP2004311726A (en) * 2003-04-07 2004-11-04 Dowa Mining Co Ltd Working method of single crystal ingot
JP2013089937A (en) * 2011-10-24 2013-05-13 Sumitomo Electric Ind Ltd Method of manufacturing silicon carbide substrate, and silicon carbide substrate

Similar Documents

Publication Publication Date Title
US9876078B2 (en) Method for slicing semiconductor single crystal ingot
US8282761B2 (en) Method for simultaneously cutting a compound rod of semiconductor material into a multiplicity of wafers
JP2013258243A (en) Manufacturing method and manufacturing device of compound semiconductor substrate
CN110468447B (en) Chamfered silicon carbide substrate and chamfering method
TWI580500B (en) Workpiece cutting method and workpiece to maintain a rule
TW201005135A (en) Epitaxially coated silicon wafer with&lt;110&gt;orientation and method for producing it
JP2013089937A (en) Method of manufacturing silicon carbide substrate, and silicon carbide substrate
JP6230112B2 (en) Wafer manufacturing method and wafer manufacturing apparatus
JPWO2019167100A1 (en) Semiconductor single crystal ingot slicing method
WO2015040695A1 (en) Device for producing and method for producing compound semiconductor substrate
US20220025545A1 (en) Sic crystalline substrates with an optimal orientation of lattice planes for fissure reduction and method of producing same
JP6722578B2 (en) Method for manufacturing SiC wafer
JPH0687691A (en) Production of diamond and diamond single crystal substrate used in the same
JP5638452B2 (en) Method for producing single crystal sapphire substrate
JP7150199B1 (en) METHOD FOR MANUFACTURING GALLIUM NITRIDE SINGLE CRYSTAL SUBSTRATE AND METHOD FOR MANUFACTURING GROUP 13 NITRIDE NITORIED SINGLE CRYSTAL SUBSTRATE OF PERIODIC TABLE
TWI809766B (en) Manufacturing method of GaAs wafer and GaAs wafer group
JP2015202986A (en) Nitride semiconductor substrate, substrate lot and method for forming orientation flat
JP6424703B2 (en) Method of manufacturing silicon wafer
JP2019112261A (en) METHOD FOR PROCESSING SiC SINGLE CRYSTAL AND METHOD FOR MANUFACTURING SiC INGOT
US20220025546A1 (en) Sic crystals with an optimal orientation of lattice planes for fissure reduction and method of producing same
JP6614298B2 (en) Silicon wafer manufacturing method
RU2539903C2 (en) Method for refinement of substrate orientation for diamond epitaxy
WO2018042864A1 (en) Method for producing semiconductor substrate
JP2015205354A (en) Cutting method by wire saw and positioning jig group used in this method
JP2013183046A (en) Manufacturing method of semiconductor substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP