WO2018042864A1 - Method for producing semiconductor substrate - Google Patents

Method for producing semiconductor substrate Download PDF

Info

Publication number
WO2018042864A1
WO2018042864A1 PCT/JP2017/024308 JP2017024308W WO2018042864A1 WO 2018042864 A1 WO2018042864 A1 WO 2018042864A1 JP 2017024308 W JP2017024308 W JP 2017024308W WO 2018042864 A1 WO2018042864 A1 WO 2018042864A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
outer diameter
semiconductor
slicing
silicon carbide
Prior art date
Application number
PCT/JP2017/024308
Other languages
French (fr)
Japanese (ja)
Inventor
松本 直樹
松島 彰
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2018042864A1 publication Critical patent/WO2018042864A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present disclosure relates to a method for manufacturing a semiconductor substrate.
  • This application claims priority based on Japanese Patent Application No. 2016-169518, which is a Japanese patent application filed on August 31, 2016. All the descriptions described in the Japanese patent application are incorporated herein by reference.
  • Patent Document 1 discloses a wire diameter detecting device capable of measuring the outer diameter of a fixed abrasive wire while traveling.
  • the operation of the ingot cutting device can be stopped when the outer diameter of the wire becomes a predetermined value or less.
  • the semiconductor substrate manufacturing method includes the following steps.
  • the semiconductor is sliced by using the wire while measuring the outer diameter of the wire in which the diamond abrasive grains are fixed to the core wire. Based on the measured outer diameter, the semiconductor slicing conditions are adjusted.
  • FIG. 1 is a schematic perspective view showing a configuration of a semiconductor substrate manufactured by the method for manufacturing a semiconductor substrate according to the present embodiment.
  • FIG. 2 is a schematic perspective view illustrating a configuration of a cutting device used in the method for manufacturing a semiconductor substrate according to the present embodiment.
  • FIG. 3 is a schematic cross-sectional view showing the configuration of a wire used in the method for manufacturing a semiconductor substrate according to this embodiment.
  • FIG. 4 is a first flowchart showing a method for manufacturing a semiconductor substrate according to the present embodiment.
  • FIG. 5 is a second flowchart showing the method for manufacturing the semiconductor substrate according to the present embodiment.
  • FIG. 6 is a diagram for explaining the reciprocal travel of the wire.
  • FIG. 7 is a diagram for explaining a method of measuring the outer diameter of the wire.
  • FIG. 8 is a diagram for explaining a method of calculating the outer diameter of the wire.
  • FIG. 9 is a diagram illustrating an example of a method for adjusting the new wire supply amount.
  • a semiconductor substrate manufacturing method includes the following steps.
  • the semiconductor is sliced by using the wire while measuring the outer diameter of the wire in which the diamond abrasive grains are fixed to the core wire. Based on the measured outer diameter, the semiconductor slicing conditions are adjusted.
  • the outer diameter of the wire decreases due to wear of the diamond abrasive grains.
  • the cutting margin of the semiconductor ingot changes. Therefore, the change in the outer diameter of the wire affects the processing quality such as the thickness distribution of the semiconductor substrate cut out from the semiconductor ingot.
  • the inventors measured the outer diameter of the wire after slicing the semiconductor ingot and found that the outer diameter of the wire became smaller as the slicing progressed. In addition, as a result of investigating the distribution of the thickness of the semiconductor substrate cut out from the semiconductor ingot, the inventors have found that the thickness of the semiconductor substrate increases as the slicing progresses. That is, it is considered that the thickness of the semiconductor substrate is increased by reducing the outer diameter of the wire. Based on the above findings, the inventors conceived of measuring the outer diameter of the wire in real time while slicing the semiconductor ingot and adjusting the slicing conditions based on the measured outer diameter. Thereby, since the semiconductor ingot is sliced under the slicing condition corresponding to the outer diameter of the wire, the processing quality of the semiconductor substrate can be improved.
  • the step of slicing the semiconductor in the step of slicing the semiconductor, the step of slicing the semiconductor by sending the wire in the forward direction and the step of slicing the semiconductor by sending the wire in the backward direction And the step of performing may be repeated alternately.
  • the slicing condition may be a new wire supply amount obtained by subtracting an amount of feeding the wire in the backward direction from an amount of feeding the wire in the forward direction.
  • a semiconductor substrate 10 manufactured by the method for manufacturing a semiconductor substrate according to this embodiment includes a first main surface 11, a second main surface 13 opposite to the first main surface 11, It mainly has a peripheral edge 30.
  • Semiconductor substrate 10 is made of, for example, a silicon carbide single crystal.
  • the first main surface 11 is a surface in which, for example, the ⁇ 0001 ⁇ plane or the ⁇ 0001 ⁇ plane is inclined in the off direction.
  • the first main surface 11 is a surface in which, for example, the (0001) plane or the (0001) plane is inclined by more than 0 ° and not more than 8 °.
  • the inclination direction (off direction) of the first main surface 11 is, for example, the ⁇ 11-20> direction.
  • the off direction may be, for example, a ⁇ 1-100> direction, or a direction including a ⁇ 11-20> direction component and a ⁇ 1-100> direction component.
  • the inclination angle (off angle) from the (0001) plane may be 1 ° or more, or 2 ° or more.
  • the off angle may be 7 ° or less, or 6 ° or less.
  • the peripheral portion 30 includes, for example, a first orientation flat 31 (hereinafter also referred to as a first flat), a second orientation flat 32 (hereinafter also referred to as a second flat), and a curved surface portion 33.
  • the first flat 31 extends, for example, along the ⁇ 11-20> direction.
  • the first flat 31 is, for example, a (1-100) plane.
  • the second flat 32 extends, for example, along the ⁇ 1-100> direction.
  • the second flat 32 is, for example, the (11-20) plane.
  • the polytype of the silicon carbide single crystal is, for example, 4H—SiC. 4H—SiC is superior to other polytypes in terms of electron mobility, dielectric breakdown field strength, and the like.
  • Silicon carbide substrate 10 includes an n-type impurity such as nitrogen, for example.
  • the diameter of the first major surface 11 is 100 mm or more. The diameter may be 150 mm or more, 200 mm or more, or 250 mm or more. The upper limit of the diameter is not particularly limited. The upper limit of the diameter may be 300 mm, for example.
  • the semiconductor substrate is made of silicon carbide.
  • the semiconductor substrate is not limited to the case made of silicon carbide.
  • the semiconductor substrate may be made of, for example, gallium nitride (GaN), silicon (Si), sapphire, gallium arsenide (GaAs), indium phosphide (InP), or the like.
  • the cutting device 5 includes a first guide roller 52, a second guide roller 55, a wire 2, a first nozzle 54, a second nozzle 56, a wire supply unit 3, and a wire. It mainly has a recovery unit 4 and an outer diameter measuring device 40.
  • the semiconductor ingot 1 is disposed between the first guide roller 52 and the second guide roller 55.
  • the first guide roller 52 and the second guide roller 55 are made of resin, for example.
  • a V-shaped wire guide groove 53 is provided on the outer peripheral surface of each of the first guide roller 52 and the second guide roller 55. The thickness of the semiconductor substrate 10 can be adjusted by adjusting the distance between the wire guide grooves 53.
  • the wire supply unit 3 supplies the wire 2 toward the first guide roller 52.
  • the wire collection unit 4 collects the wire 2 from the second guide roller 55.
  • the wire 2 is supplied from the wire supply unit 3 and is recovered by the wire recovery unit 4 after cutting the semiconductor ingot 1.
  • the outer diameter measuring instrument 40 is disposed, for example, between the second guide roller 55 and the wire recovery unit 4.
  • the outer diameter measuring device 40 includes a light projecting unit 41 and a light receiving unit 42.
  • the light projecting unit 41 is disposed on the opposite side of the light receiving unit 42 with respect to the wire 2. In other words, the wire 2 is disposed between the light projecting unit 41 and the light receiving unit 42.
  • a cover glass (not shown) is provided on the light projecting unit 41 and the light receiving unit 42 in order to prevent the cutting fluid or chips adhering to the wire 2 from being scattered during the slicing and adhering to the light emitting device and the light receiving device. May be provided.
  • the installation place of the outer diameter measuring device 40 is not particularly limited, but the outer diameter measuring device 40 is preferably installed in a place where the scattering of the cutting fluid is small.
  • the wire 2 is wound around each of the first guide roller 52 and the second guide roller 55 along the wire guide groove 53.
  • the first nozzle 54 is provided between the semiconductor ingot 1 and the first guide roller 52.
  • the second nozzle 56 is provided between the semiconductor ingot 1 and the second guide roller 55, for example.
  • Tension is applied to the wire 2.
  • tensile_strength of the wire 2 is 70% or less of the breaking tension of the wire 2, for example, Preferably it is 60% or less, More preferably, it is 50% or less.
  • the tension of the wire 2 is large, the wire 2 may be broken.
  • tension of wire 2 is small, wire 2 bends and warpage of silicon carbide substrate 10 cut out from semiconductor ingot 1 increases.
  • the breaking tension of the wire can be measured, for example, according to the method described in JIS Z2241 of Japanese Industrial Standard.
  • the wire 2 includes a core wire 21, diamond abrasive grains 22, and a fixing layer 23.
  • the fixing layer 23 is, for example, a nickel (Ni) plating layer.
  • the fixing layer 23 may be a resin.
  • the plurality of diamond abrasive grains 22 are fixed to the outer peripheral surface of the core wire 21 through, for example, a fixing layer 23.
  • the core wire 21 is obtained by, for example, brass-plating a piano wire made of carbon steel or the like.
  • the wire 2 is, for example, a fixed abrasive wire in which diamond abrasive grains 22 are fixed to the core wire 21.
  • the outer diameter W of the wire 2 is, for example, 250 ⁇ m or less, preferably 120 ⁇ m or less, and more preferably 80 ⁇ m or less. Although the minimum of the outer diameter W of the wire 2 is not specifically limited, The outer diameter W of the wire 2 is 70 micrometers or more, for example. The number of wires depends on the thickness of the semiconductor ingot to be sliced, but is, for example, 20 or more and 30 or less.
  • the average particle diameter of the diamond abrasive grains 22 is, for example, 50 ⁇ m or less, preferably 15 ⁇ m or less, and more preferably 10 ⁇ m or less. Although the minimum of the average particle diameter of the diamond abrasive grain 22 is not specifically limited, For example, it is 4 micrometers or more.
  • silicon carbide ingot 1 is manufactured by a sublimation method.
  • a seed crystal composed of single crystal silicon carbide and a silicon carbide raw material composed of solid polycrystalline silicon carbide powder are placed in a container composed of graphite.
  • a silicon carbide ingot grows on the seed crystal by sublimation of the silicon carbide raw material and sublimation on the seed crystal.
  • nitrogen serving as a donor is introduced while the silicon carbide ingot is growing.
  • the silicon carbide ingot contains nitrogen.
  • the silicon carbide ingot is made of, for example, a silicon carbide single crystal having a polytype of 4H.
  • the silicon carbide ingot 1 is formed into a substantially cylindrical shape.
  • graphite base 60 (see FIG. 2) is fixed to silicon carbide ingot 1.
  • a step of slicing the semiconductor while measuring the outer diameter of the wire (S1: FIG. 4) and a step of adjusting the semiconductor slicing conditions based on the measured outer diameter (S2: FIG. 4) are performed.
  • a target wire outer diameter is set (S10: FIG. 5). Specifically, a value smaller than the outer diameter of the wire before slicing the semiconductor is set as the target wire outer diameter.
  • the target wire outer diameter is preferably 5 ⁇ m or less than the outer diameter of the wire before the start of slicing. For example, when the average value of the wire outer diameter before the start of slicing is 240 ⁇ m, the target wire outer diameter can be set to 235 ⁇ m.
  • semiconductor slicing is started (S11: FIG. 5). Specifically, silicon carbide ingot 1 approaches wire 2 in a state where wire 2 reciprocates in the longitudinal direction 50 of wire 2. When silicon carbide ingot 1 comes into contact with wire 2, cutting of silicon carbide ingot 1 is started. That is, silicon carbide ingot 1 is cut by wire 2 (see FIG. 2).
  • the first guide roller 52 and the second guide roller 55 alternately repeat forward rotation and reverse rotation along the direction of the arrow 51.
  • the wire 2 reciprocates along the longitudinal direction 50 of the wire 2.
  • the silicon carbide ingot 1 is cut by contacting the silicon carbide ingot 1 while the wire 2 reciprocates.
  • the maximum linear velocity of the wire 2 is, for example, 1000 m / min or more, preferably 1500 m / min or more, and more preferably 2000 m / min or more.
  • the forward direction is a direction in which the wire moves from the wire supply unit 3 toward the wire recovery unit 4.
  • the forward direction is a direction in which the wire moves so that the number of turns of the wire of the wire supply unit 3 decreases and the number of turns of the wire of the wire recovery unit 4 increases.
  • the advance direction of the wire is a direction in which the wire advances substantially.
  • the backward direction is a direction in which the wire moves from the wire recovery unit 4 toward the wire supply unit 3.
  • the backward direction is a direction in which the wire moves so that the number of turns of the wire of the wire supply unit 3 increases and the number of turns of the wire of the wire recovery unit 4 decreases.
  • the backward direction of the wire is the direction opposite to the forward direction.
  • X (m) is sent out from the wire supply unit 3 toward the wire recovery unit 4.
  • the wire is rewound Y (m) from the wire recovery unit 4 toward the wire supply unit 3.
  • the wire 2 is sent out from the time T0 to the time T3. From time T3 to time T6, the wire 2 is rewound. Between the time point T0 and the time point T1, the linear velocity in the delivery direction of the wire 2 increases.
  • the linear velocity in the delivery direction of the wire 2 is substantially constant.
  • the linear velocity in the delivery direction of the wire 2 is, for example, 1500 m / min.
  • the linear velocity in the delivery direction of the wire 2 decreases.
  • the linear velocity of the wire 2 becomes zero.
  • the wire speed in the unwinding direction of the wire 2 increases from time T3 to time T4. From time T4 to time T5, the linear velocity of the wire 2 in the unwinding direction is substantially constant.
  • the linear velocity in the unwinding direction of the wire 2 is, for example, 1500 m / min. Between the time T5 and the time T6, the linear velocity in the unwinding direction of the wire 2 decreases. As described above, feeding and rewinding are repeated a plurality of times as one cycle.
  • the feed amount X of the wire 2 is set larger than the unwinding amount Y of the wire 2. Therefore, the wire moves in the forward direction by (XY) (m) substantially during one cycle.
  • the substantial wire travel (XY) (m) is called the new wire feed.
  • the new wire supply amount is obtained by subtracting the amount of feeding the wire 2 in the backward direction from the amount of feeding the wire 2 in the forward direction. In this way, the wire 2 is gradually fed in the forward direction while repeating the forward and backward movements.
  • the wire 2 slices the silicon carbide ingot 1, the wire 2 and the silicon carbide ingot 1 swing so that the wire 2 makes point contact with the silicon carbide ingot 1.
  • the grinding fluid is sprayed from the first nozzle 54 and the second nozzle 56 to the contact portion between the wire 2 and the silicon carbide ingot 1.
  • a water-soluble grinding fluid is used as the grinding fluid.
  • the outer diameter of the wire is measured (S12: FIG. 5).
  • an ultra-high speed and high precision dimension measuring instrument LS-9006MR manufactured by Keyence Corporation is used for the measurement of the outer diameter of the wire.
  • green LED light 43 is projected from the light projecting unit 41 onto the wire 2 that is traveling reciprocally, and the LED light 43 is received by the light receiving unit 42.
  • the diameter of the LED light 43 projected from the light projecting unit 41 (in other words, the width of the LED light in a plane perpendicular to the traveling direction of the LED light) is larger than the outer diameter of the wire 2. Therefore, the LED light 43 blocked by the wire 2 does not reach the light receiving unit 42. On the contrary, the LED light 43 not blocked by the wire 2 reaches the light receiving unit 42. Thereby, the outer shape (shadow) of the wire 2 is observed by the light receiving unit 42.
  • FIG. 8 is an image of the shadow of the wire 2 obtained by the light receiving unit 42.
  • the dimension L in the horizontal direction of the measured image is, for example, about 1 mm to 2 mm.
  • the measurement of the outer diameter of the wire is performed, for example, every second.
  • the outer diameter of the wire may be measured by projecting LED light on the wire from different directions and observing shadows in different directions.
  • the cutting fluid or chips adhering to the wire 2 during slicing are scattered and adhered to the light emitting element of the light projecting unit 41 and the light receiving element of the light receiving unit 42, thereby preventing the measurement accuracy of the outer diameter of the wire 2 from deteriorating. Therefore, an air purge may be performed on the wire 2.
  • the air purge for the wire 2 is performed before measuring the outer diameter of the wire 2.
  • the cutting fluid adhering to the wire 2 can be removed. Therefore, the outer diameter of the wire 2 can be measured with high accuracy.
  • the measurement of the outer diameter of the wire may be any method that does not contact the wire, and is not limited to an optical method using an LED or a laser.
  • the outer diameter of the wire may be measured by an electrical method using, for example, capacitance or eddy current.
  • the average value of the outer diameters of the wires is calculated (S13: FIG. 5).
  • the period (cycle) of sending and unwinding the wire 2 is, for example, about 120 seconds.
  • the measurement period of the outer diameter of the wire is 1 second
  • the outer diameter of the wire 2 is measured 120 times during one cycle.
  • the average value of the 120 outer diameters of the wire is calculated.
  • the calculation method of the average value of the outer diameter of the wire is not limited to the above method. For example, an average value of the outer diameter of a part of a wire during one cycle (for example, only during feeding or only during unwinding) may be calculated, or an average value of the outer diameter of the wire during a plurality of cycles May be calculated.
  • the average value of the outer diameter of the wire is larger than the set value (S14: FIG. 5). Specifically, the average value of the outer diameter of the wire in one cycle of the reciprocating traveling of the wire 2 is compared with the value (set value) of the target wire outer diameter set in step S10. When the average value of the outer diameter of the wire is larger than the set value, it is considered that the wear of the wire is small. Therefore, the new wire supply amount is reduced (S15: FIG. 5). On the other hand, when the average value of the outer diameters of the wires is smaller than the set value, it is considered that the wear of the wires is progressing. Therefore, the new wire supply amount is increased (S16: FIG. 5).
  • the new wire supply amount which is one of the slice conditions of the semiconductor ingot 1 is adjusted. Specifically, the new wire supply amount is adjusted so that a change with time in the outer diameter of the wire is minimized. Thereby, a semiconductor substrate with a small TTV can be obtained while reducing the amount of wire used.
  • the wire feed amount and the wire rewind amount in the Nth cycle are X n and Y n , respectively.
  • the new wire supply amount is X n ⁇ Y n .
  • the average value of the outer diameter of the wire was measured in the slice of the N-th cycle is Z n.
  • Z 1 is the average value of the outer diameter of the wire in the first cycle is smaller than the set value, in the next cycle, the supply amount of the new wire is increased.
  • the transmission amount X 2 of the wire in the second cycle the first increases than transmission amount X 1 of the wire at the cycle. This increases the new wire supply.
  • the rewinding amount Y 2 wires in the second cycle it may be reduced from the rewinding amount Y 1 of the wire at the first cycle.
  • the wire feed rate in the second cycle is such that the new wire feed rate X 2 -Y 2 in the second cycle is greater than the new wire feed rate X 1 -Y 1 in the first cycle.
  • Both X 2 and the rewind amount Y 2 may be changed so as to be different from the wire feed amount X 1 and the rewind amount Y 1 in the first cycle.
  • the rewinding amount Y 2 wires in the second cycle may be increased from the rewinding amount Y 1 of the wire at the first cycle.
  • the wire feed rate in the second cycle is such that the new wire feed rate X 2 -Y 2 in the second cycle is smaller than the new wire feed rate X 1 -Y 1 in the first cycle.
  • Both X 2 and the rewind amount Y 2 may be changed so as to be different from the wire feed amount X 1 and the rewind amount Y 1 in the first cycle.
  • the supply amount of the new wire may not change in the next cycle.
  • each of the plurality of silicon carbide substrates obtained by slicing the ingot is mechanically polished using, for example, diamond abrasive grains.
  • chemical mechanical polishing is performed on the surface of the silicon carbide substrate using, for example, colloidal silica. Thereby, silicon carbide substrate 10 is obtained (see FIG. 1).
  • the semiconductor ingot 1 is sliced using the wire 2 while measuring the outer diameter of the wire 2. Based on the measured outer diameter of the wire 2, the slice condition of the semiconductor ingot 1 is adjusted.
  • the slice condition is the new wire supply amount.
  • the slicing condition may be, for example, the linear speed of the wire 2, the tension of the wire 2, the swing angle of the wire 2, or the swing speed of the wire 2.
  • the feed rate of the semiconductor ingot may be used.
  • the semiconductor ingot was comprised from silicon carbide
  • the semiconductor ingot may be made of, for example, gallium nitride (GaN), silicon (Si), sapphire, gallium arsenide (GaAs), indium phosphide (InP), or the like.
  • 1 semiconductor ingot (silicon carbide ingot), 2 wires, 3 wire supply unit, 4 wire recovery unit, 5 cutting device, 10 semiconductor substrate (silicon carbide substrate), 11 first main surface, 13 second main surface, 21 core wire, 22 diamond abrasive grains, 23 fixed layer, 30 peripheral portion, 31 first orientation flat (first flat), 32 second orientation flat (second flat), 33 curved surface portion, 40 outer diameter measuring device, 41 light projecting portion, 42 light-receiving part, 43 LED light, 50 longitudinal direction, 52 1st guide roller, 53 wire guide groove, 54 1st nozzle, 55 2nd guide roller, 56 2nd nozzle, 60 base part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

This method for producing a semiconductor substrate comprises the following steps. While measuring the outer diameter of a wire wherein diamond abrasive grains are fixed to a core wire, a semiconductor is sliced with the wire. A condition for slicing the semiconductor is adjusted on the basis of the measured outer diameter.

Description

半導体基板の製造方法Manufacturing method of semiconductor substrate
 本開示は、半導体基板の製造方法に関する。本出願は、2016年8月31日に出願した日本特許出願である特願2016-169518号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。 The present disclosure relates to a method for manufacturing a semiconductor substrate. This application claims priority based on Japanese Patent Application No. 2016-169518, which is a Japanese patent application filed on August 31, 2016. All the descriptions described in the Japanese patent application are incorporated herein by reference.
 特開平11-188599号公報(特許文献1)には、走行中の固定砥粒ワイヤの外径を測定することが可能なワイヤ径検出装置が開示されている。当該ワイヤ径検出装置においては、ワイヤの外径が所定の値以下になった場合に、インゴット切断装置の運転を停止することができる。 Japanese Patent Application Laid-Open No. 11-188599 (Patent Document 1) discloses a wire diameter detecting device capable of measuring the outer diameter of a fixed abrasive wire while traveling. In the wire diameter detection device, the operation of the ingot cutting device can be stopped when the outer diameter of the wire becomes a predetermined value or less.
特開平11-188599号公報Japanese Patent Laid-Open No. 11-188599
 本開示に係る半導体基板の製造方法は以下の工程を備えている。ダイヤモンド砥粒が芯線に固着されたワイヤの外径を測定しながら、ワイヤを用いて半導体がスライスされる。測定された外径に基づいて、半導体のスライス条件が調節される。 The semiconductor substrate manufacturing method according to the present disclosure includes the following steps. The semiconductor is sliced by using the wire while measuring the outer diameter of the wire in which the diamond abrasive grains are fixed to the core wire. Based on the measured outer diameter, the semiconductor slicing conditions are adjusted.
図1は、本実施形態に係る半導体基板の製造方法により製造された半導体基板の構成を示す斜視模式図である。FIG. 1 is a schematic perspective view showing a configuration of a semiconductor substrate manufactured by the method for manufacturing a semiconductor substrate according to the present embodiment. 図2は、本実施形態に係る半導体基板の製造方法に使用される切断装置の構成を示す斜視模式図である。FIG. 2 is a schematic perspective view illustrating a configuration of a cutting device used in the method for manufacturing a semiconductor substrate according to the present embodiment. 図3は、本実施形態に係る半導体基板の製造方法に使用されるワイヤの構成を示す断面模式図である。FIG. 3 is a schematic cross-sectional view showing the configuration of a wire used in the method for manufacturing a semiconductor substrate according to this embodiment. 図4は、本実施形態に係る半導体基板の製造方法を示す第1フロー図である。FIG. 4 is a first flowchart showing a method for manufacturing a semiconductor substrate according to the present embodiment. 図5は、本実施形態に係る半導体基板の製造方法を示す第2フロー図である。FIG. 5 is a second flowchart showing the method for manufacturing the semiconductor substrate according to the present embodiment. 図6は、ワイヤの往復走行を説明する図である。FIG. 6 is a diagram for explaining the reciprocal travel of the wire. 図7は、ワイヤの外径を測定する方法を説明する図である。FIG. 7 is a diagram for explaining a method of measuring the outer diameter of the wire. 図8は、ワイヤの外径を算出する方法を説明する図である。FIG. 8 is a diagram for explaining a method of calculating the outer diameter of the wire. 図9は、新ワイヤ供給量の調節方法の一例を説明する図である。FIG. 9 is a diagram illustrating an example of a method for adjusting the new wire supply amount.
 [本開示の実施形態の概要]
 まず、本開示の実施形態の概要について説明する。本明細書中の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。負の指数については、結晶学上、”-”(バー)を数字の上に付けることになっているが、本明細書中では、数字の前に負の符号を付けている。
[Outline of Embodiment of the Present Disclosure]
First, an overview of an embodiment of the present disclosure will be described. In the crystallographic description in this specification, the individual orientation is indicated by [], the collective orientation is indicated by <>, the individual plane is indicated by () and the collective plane is indicated by {}. As for the negative index, “−” (bar) is attached on the number in crystallography, but in this specification, a negative sign is attached before the number.
 (1)本開示に係る半導体基板の製造方法は以下の工程を備えている。ダイヤモンド砥粒が芯線に固着されたワイヤの外径を測定しながら、ワイヤを用いて半導体がスライスされる。測定された外径に基づいて、半導体のスライス条件が調節される。 (1) A semiconductor substrate manufacturing method according to the present disclosure includes the following steps. The semiconductor is sliced by using the wire while measuring the outer diameter of the wire in which the diamond abrasive grains are fixed to the core wire. Based on the measured outer diameter, the semiconductor slicing conditions are adjusted.
 ダイヤモンド砥粒が芯線に固着されたワイヤを用いて半導体インゴットをスライスしていくと、ダイヤモンド砥粒が摩耗することにより、ワイヤの外径が小さくなる。ワイヤの外径が変化すると、半導体インゴットの切り代が変化する。そのため、ワイヤの外径の変化は、半導体インゴットから切り出された半導体基板の厚み分布などの加工品質に影響を与える。 When the semiconductor ingot is sliced using a wire in which diamond abrasive grains are fixed to a core wire, the outer diameter of the wire decreases due to wear of the diamond abrasive grains. When the outer diameter of the wire changes, the cutting margin of the semiconductor ingot changes. Therefore, the change in the outer diameter of the wire affects the processing quality such as the thickness distribution of the semiconductor substrate cut out from the semiconductor ingot.
 発明者らは、半導体インゴットをスライスした後のワイヤの外径を測定した結果、スライスが進行するに従ってワイヤの外径が小さくなっていることが判明した。また発明者らは、半導体インゴットから切り出された半導体基板の厚みの分布を調査した結果、スライスが進行するに従って半導体基板の厚みが大きくなっていることが判明した。つまり、ワイヤの外径が小さくなることで、半導体基板の厚みが大きくなっていると考えられる。上記知見に基づき、発明者らは、半導体インゴットをスライスしている間、リアルタイムでワイヤの外径を測定し、測定された外径に基づいてスライス条件を調節することを着想した。これにより、ワイヤの外径に応じたスライス条件で半導体インゴットがスライスされるので、半導体基板の加工品質を向上することができる。 The inventors measured the outer diameter of the wire after slicing the semiconductor ingot and found that the outer diameter of the wire became smaller as the slicing progressed. In addition, as a result of investigating the distribution of the thickness of the semiconductor substrate cut out from the semiconductor ingot, the inventors have found that the thickness of the semiconductor substrate increases as the slicing progresses. That is, it is considered that the thickness of the semiconductor substrate is increased by reducing the outer diameter of the wire. Based on the above findings, the inventors conceived of measuring the outer diameter of the wire in real time while slicing the semiconductor ingot and adjusting the slicing conditions based on the measured outer diameter. Thereby, since the semiconductor ingot is sliced under the slicing condition corresponding to the outer diameter of the wire, the processing quality of the semiconductor substrate can be improved.
 (2)上記(1)に係る半導体基板の製造方法において、半導体をスライスする工程においては、ワイヤを前進方向に送ることにより半導体をスライスする工程と、ワイヤを後退方向に送ることにより半導体をスライスする工程とが交互に繰り返されてもよい。スライス条件は、ワイヤを前進方向に送る量からワイヤを後退方向に送る量を引いて求められる新ワイヤ供給量であってもよい。これにより、ワイヤの使用量を低減しつつ、半導体基板のTTV(Total Thickness Variation)を低減することができる。 (2) In the semiconductor substrate manufacturing method according to the above (1), in the step of slicing the semiconductor, the step of slicing the semiconductor by sending the wire in the forward direction and the step of slicing the semiconductor by sending the wire in the backward direction And the step of performing may be repeated alternately. The slicing condition may be a new wire supply amount obtained by subtracting an amount of feeding the wire in the backward direction from an amount of feeding the wire in the forward direction. Thereby, TTV (Total Thickness Variation) of the semiconductor substrate can be reduced while reducing the amount of wire used.
 [本開示の実施形態の詳細]
 以下、図面に基づいて本開示の実施形態(以降、本実施形態とも称する)の詳細について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。
[Details of Embodiment of the Present Disclosure]
Hereinafter, details of an embodiment of the present disclosure (hereinafter also referred to as the present embodiment) will be described based on the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 まず、本実施形態に係る半導体基板の製造方法により製造された炭化珪素基板の構成について説明する。 First, the configuration of a silicon carbide substrate manufactured by the method for manufacturing a semiconductor substrate according to the present embodiment will be described.
 図1に示されるように、本実施形態に係る半導体基板の製造方法により製造された半導体基板10は、第1主面11と、第1主面11と反対側の第2主面13と、周縁部30とを主に有している。半導体基板10は、たとえば炭化珪素単結晶から構成される。第1主面11は、たとえば{0001}面または{0001}面がオフ方向に傾斜した面である。第1主面11は、たとえば(0001)面または(0001)面が0°超8°以下傾斜した面である。第1主面11の傾斜方向(オフ方向)は、たとえば<11-20>方向である。オフ方向は、たとえば<1-100>方向であってもよいし、<11-20>方向成分と<1-100>方向成分とを含む方向であってもよい。(0001)面からの傾斜角(オフ角)は、1°以上であってもよいし、2°以上であってもよい。オフ角は、7°以下であってもよいし、6°以下であってもよい。 As shown in FIG. 1, a semiconductor substrate 10 manufactured by the method for manufacturing a semiconductor substrate according to this embodiment includes a first main surface 11, a second main surface 13 opposite to the first main surface 11, It mainly has a peripheral edge 30. Semiconductor substrate 10 is made of, for example, a silicon carbide single crystal. The first main surface 11 is a surface in which, for example, the {0001} plane or the {0001} plane is inclined in the off direction. The first main surface 11 is a surface in which, for example, the (0001) plane or the (0001) plane is inclined by more than 0 ° and not more than 8 °. The inclination direction (off direction) of the first main surface 11 is, for example, the <11-20> direction. The off direction may be, for example, a <1-100> direction, or a direction including a <11-20> direction component and a <1-100> direction component. The inclination angle (off angle) from the (0001) plane may be 1 ° or more, or 2 ° or more. The off angle may be 7 ° or less, or 6 ° or less.
 周縁部30は、たとえば、第1オリエンテーションフラット31(以降、第1フラットとも称する)と、第2オリエンテーションフラット32(以降、第2フラットとも称する)と、曲面部33とを有している。第1フラット31は、たとえば<11-20>方向に沿って延在する。第1フラット31は、たとえば(1-100)面である。第2フラット32は、たとえば<1-100>方向に沿って延在する。第2フラット32は、たとえば(11-20)面である。 The peripheral portion 30 includes, for example, a first orientation flat 31 (hereinafter also referred to as a first flat), a second orientation flat 32 (hereinafter also referred to as a second flat), and a curved surface portion 33. The first flat 31 extends, for example, along the <11-20> direction. The first flat 31 is, for example, a (1-100) plane. The second flat 32 extends, for example, along the <1-100> direction. The second flat 32 is, for example, the (11-20) plane.
 炭化珪素単結晶のポリタイプは、たとえば4H-SiCである。4H-SiCは、電子移動度、絶縁破壊電界強度等において他のポリタイプより優れている。炭化珪素基板10は、たとえば窒素などのn型不純物を含んでいる。第1主面11の直径は、100mm以上である。直径は150mm以上でもよいし、200mm以上でもよいし、250mm以上でもよい。直径の上限は特に限定されない。直径の上限は、たとえば300mmであってもよい。 The polytype of the silicon carbide single crystal is, for example, 4H—SiC. 4H—SiC is superior to other polytypes in terms of electron mobility, dielectric breakdown field strength, and the like. Silicon carbide substrate 10 includes an n-type impurity such as nitrogen, for example. The diameter of the first major surface 11 is 100 mm or more. The diameter may be 150 mm or more, 200 mm or more, or 250 mm or more. The upper limit of the diameter is not particularly limited. The upper limit of the diameter may be 300 mm, for example.
 なお上記においては、半導体基板が炭化珪素から構成される場合について説明したが、半導体基板は炭化珪素から構成される場合に限定されない。半導体基板は、たとえば窒化ガリウム(GaN)、シリコン(Si)、サファイア、ヒ化ガリウム(GaAs)またはリン化インジウム(InP)などで構成されていてもよい。 In the above description, the case where the semiconductor substrate is made of silicon carbide has been described. However, the semiconductor substrate is not limited to the case made of silicon carbide. The semiconductor substrate may be made of, for example, gallium nitride (GaN), silicon (Si), sapphire, gallium arsenide (GaAs), indium phosphide (InP), or the like.
 次に、本実施形態に係る半導体基板の製造方法に使用される切断装置の構成について説明する。 Next, the configuration of a cutting device used in the method for manufacturing a semiconductor substrate according to this embodiment will be described.
 図2に示されるように、切断装置5は、第1ガイドローラ52と、第2ガイドローラ55と、ワイヤ2と、第1ノズル54と、第2ノズル56と、ワイヤ供給部3と、ワイヤ回収部4と、外径測定器40とを主に有している。第1ガイドローラ52と第2ガイドローラ55の間に、半導体インゴット1が配置される。第1ガイドローラ52および第2ガイドローラ55は、たとえば樹脂製である。第1ガイドローラ52および第2ガイドローラ55の各々の外周面には、V字状のワイヤ案内溝53が設けられている。ワイヤ案内溝53の間隔を調整することで、半導体基板10の厚みを調整することができる。 As shown in FIG. 2, the cutting device 5 includes a first guide roller 52, a second guide roller 55, a wire 2, a first nozzle 54, a second nozzle 56, a wire supply unit 3, and a wire. It mainly has a recovery unit 4 and an outer diameter measuring device 40. The semiconductor ingot 1 is disposed between the first guide roller 52 and the second guide roller 55. The first guide roller 52 and the second guide roller 55 are made of resin, for example. A V-shaped wire guide groove 53 is provided on the outer peripheral surface of each of the first guide roller 52 and the second guide roller 55. The thickness of the semiconductor substrate 10 can be adjusted by adjusting the distance between the wire guide grooves 53.
 ワイヤ供給部3は、第1ガイドローラ52に向かってワイヤ2を供給する。ワイヤ回収部4は、第2ガイドローラ55からワイヤ2を回収する。ワイヤ2は、ワイヤ供給部3から供給され、半導体インゴット1を切断した後、ワイヤ回収部4によって回収される。外径測定器40は、たとえば第2ガイドローラ55と、ワイヤ回収部4との間に配置されている。外径測定器40は、投光部41と、受光部42とを有する。投光部41は、ワイヤ2に対して、受光部42と反対側に配置される。言い換えれば、ワイヤ2は、投光部41と受光部42との間に配置される。スライス中にワイヤ2に付着した切削液または切粉が飛散して、発光素子および受光素子に付着することを防止するために、投光部41および受光部42にはカバーガラス(図示せず)が設けられていてもよい。外径測定器40の設置場所は特に限定されないが、外径測定器40は、切削液の飛散が少ない場所に設置することが望ましい。 The wire supply unit 3 supplies the wire 2 toward the first guide roller 52. The wire collection unit 4 collects the wire 2 from the second guide roller 55. The wire 2 is supplied from the wire supply unit 3 and is recovered by the wire recovery unit 4 after cutting the semiconductor ingot 1. The outer diameter measuring instrument 40 is disposed, for example, between the second guide roller 55 and the wire recovery unit 4. The outer diameter measuring device 40 includes a light projecting unit 41 and a light receiving unit 42. The light projecting unit 41 is disposed on the opposite side of the light receiving unit 42 with respect to the wire 2. In other words, the wire 2 is disposed between the light projecting unit 41 and the light receiving unit 42. A cover glass (not shown) is provided on the light projecting unit 41 and the light receiving unit 42 in order to prevent the cutting fluid or chips adhering to the wire 2 from being scattered during the slicing and adhering to the light emitting device and the light receiving device. May be provided. The installation place of the outer diameter measuring device 40 is not particularly limited, but the outer diameter measuring device 40 is preferably installed in a place where the scattering of the cutting fluid is small.
 ワイヤ2は、ワイヤ案内溝53に沿って、第1ガイドローラ52および第2ガイドローラ55の各々に巻かれている。第1ノズル54は、たとえば半導体インゴット1と第1ガイドローラ52との間に設けられている。同様に、第2ノズル56は、たとえば半導体インゴット1と第2ガイドローラ55との間に設けられている。 The wire 2 is wound around each of the first guide roller 52 and the second guide roller 55 along the wire guide groove 53. For example, the first nozzle 54 is provided between the semiconductor ingot 1 and the first guide roller 52. Similarly, the second nozzle 56 is provided between the semiconductor ingot 1 and the second guide roller 55, for example.
 ワイヤ2に対しては張力が加えられている。ワイヤ2の張力は、たとえばワイヤ2の破断張力の70%以下であり、好ましくは60%以下であり、より好ましくは50%以下である。ワイヤ2の張力が大きいと、ワイヤ2が破断するおそれがある。一方、ワイヤ2の張力が小さいと、ワイヤ2が撓み、半導体インゴット1から切り出される炭化珪素基板10の反りが大きくなる。ワイヤの破断張力は、たとえば日本工業規格のJIS Z2241に記載の方法に準拠して測定することができる。 Tension is applied to the wire 2. The tension | tensile_strength of the wire 2 is 70% or less of the breaking tension of the wire 2, for example, Preferably it is 60% or less, More preferably, it is 50% or less. When the tension of the wire 2 is large, the wire 2 may be broken. On the other hand, when tension of wire 2 is small, wire 2 bends and warpage of silicon carbide substrate 10 cut out from semiconductor ingot 1 increases. The breaking tension of the wire can be measured, for example, according to the method described in JIS Z2241 of Japanese Industrial Standard.
 図3に示されるように、ワイヤ2は、芯線21と、ダイヤモンド砥粒22と、固着層23とを有する。固着層23は、たとえばニッケル(Ni)メッキ層である。固着層23は、レジンであってもよい。複数のダイヤモンド砥粒22は、たとえば固着層23を介して、芯線21の外周面に固着されている。芯線21は、たとえば炭素鋼などで作製されたピアノ線を真鍮メッキしたものである。ワイヤ2は、たとえばダイヤモンド砥粒22が芯線21に固着された固定砥粒ワイヤである。 As shown in FIG. 3, the wire 2 includes a core wire 21, diamond abrasive grains 22, and a fixing layer 23. The fixing layer 23 is, for example, a nickel (Ni) plating layer. The fixing layer 23 may be a resin. The plurality of diamond abrasive grains 22 are fixed to the outer peripheral surface of the core wire 21 through, for example, a fixing layer 23. The core wire 21 is obtained by, for example, brass-plating a piano wire made of carbon steel or the like. The wire 2 is, for example, a fixed abrasive wire in which diamond abrasive grains 22 are fixed to the core wire 21.
 ワイヤ2の外径Wは、たとえば250μm以下であり、好ましくは120μm以下であり、より好ましくは80μm以下である。ワイヤ2の外径Wの下限は特に限定されないが、ワイヤ2の外径Wは、たとえば70μm以上である。ワイヤの本数は、スライスする半導体インゴットの厚みによるが、たとえば20本以上30本以下である。ダイヤモンド砥粒22の平均粒径は、たとえば50μm以下であり、好ましくは15μm以下であり、より好ましくは10μm以下である。ダイヤモンド砥粒22の平均粒径の下限は特に限定されないが、たとえば4μm以上である。 The outer diameter W of the wire 2 is, for example, 250 μm or less, preferably 120 μm or less, and more preferably 80 μm or less. Although the minimum of the outer diameter W of the wire 2 is not specifically limited, The outer diameter W of the wire 2 is 70 micrometers or more, for example. The number of wires depends on the thickness of the semiconductor ingot to be sliced, but is, for example, 20 or more and 30 or less. The average particle diameter of the diamond abrasive grains 22 is, for example, 50 μm or less, preferably 15 μm or less, and more preferably 10 μm or less. Although the minimum of the average particle diameter of the diamond abrasive grain 22 is not specifically limited, For example, it is 4 micrometers or more.
 次に、本実施形態に係る半導体基板の製造方法について説明する。
 まず、半導体インゴット準備工程が実施される。たとえば昇華法により、炭化珪素インゴット1が製造される。たとえば、グラファイトから構成された容器内に、単結晶炭化珪素から構成された種結晶と、固体状の多結晶炭化珪素粉末から構成された炭化珪素原料とが配置される。炭化珪素原料が昇華し、種結晶上に昇華することにより、種結晶上に炭化珪素インゴットが成長する。炭化珪素インゴットが成長している間、たとえばドナーとなる窒素が導入される。結果として、炭化珪素インゴットは、窒素を含む。炭化珪素インゴットは、たとえばポリタイプが4Hの炭化珪素単結晶から構成される。次に、炭化珪素インゴット1に対して整形加工が実施されることで、炭化珪素インゴット1が略円柱状に成形される。次に、たとえばグラファイト製のベース部60(図2参照)が炭化珪素インゴット1に固定される。
Next, a method for manufacturing a semiconductor substrate according to the present embodiment will be described.
First, a semiconductor ingot preparation process is performed. For example, silicon carbide ingot 1 is manufactured by a sublimation method. For example, a seed crystal composed of single crystal silicon carbide and a silicon carbide raw material composed of solid polycrystalline silicon carbide powder are placed in a container composed of graphite. A silicon carbide ingot grows on the seed crystal by sublimation of the silicon carbide raw material and sublimation on the seed crystal. For example, nitrogen serving as a donor is introduced while the silicon carbide ingot is growing. As a result, the silicon carbide ingot contains nitrogen. The silicon carbide ingot is made of, for example, a silicon carbide single crystal having a polytype of 4H. Next, by shaping the silicon carbide ingot 1, the silicon carbide ingot 1 is formed into a substantially cylindrical shape. Next, for example, graphite base 60 (see FIG. 2) is fixed to silicon carbide ingot 1.
 次に、ワイヤの外径を測定しながら半導体をスライスする工程(S1:図4)と、測定された外径に基づいて半導体のスライス条件を調節する工程(S2:図4)とが実施される。まず、目標ワイヤ外径が設定される(S10:図5)。具体的には、半導体をスライスする前のワイヤの外径よりも小さい値が、目標ワイヤ外径として設定される。目標ワイヤ外径は、スライス開始前のワイヤの外径よりも5μm以下であることが好ましい。たとえばスライス開始前のワイヤ外径の平均値が240μmである場合、目標ワイヤ外径は235μmに設定され得る。 Next, a step of slicing the semiconductor while measuring the outer diameter of the wire (S1: FIG. 4) and a step of adjusting the semiconductor slicing conditions based on the measured outer diameter (S2: FIG. 4) are performed. The First, a target wire outer diameter is set (S10: FIG. 5). Specifically, a value smaller than the outer diameter of the wire before slicing the semiconductor is set as the target wire outer diameter. The target wire outer diameter is preferably 5 μm or less than the outer diameter of the wire before the start of slicing. For example, when the average value of the wire outer diameter before the start of slicing is 240 μm, the target wire outer diameter can be set to 235 μm.
 次に、半導体のスライスが開始される(S11:図5)。具体的には、ワイヤ2が、ワイヤ2の長手方向50に往復運動した状態で、炭化珪素インゴット1がワイヤ2に接近する。炭化珪素インゴット1がワイヤ2と接触することで、炭化珪素インゴット1の切断が開始される。つまり、ワイヤ2によって炭化珪素インゴット1が切断される(図2参照)。 Next, semiconductor slicing is started (S11: FIG. 5). Specifically, silicon carbide ingot 1 approaches wire 2 in a state where wire 2 reciprocates in the longitudinal direction 50 of wire 2. When silicon carbide ingot 1 comes into contact with wire 2, cutting of silicon carbide ingot 1 is started. That is, silicon carbide ingot 1 is cut by wire 2 (see FIG. 2).
 図2に示されるように、第1ガイドローラ52および第2ガイドローラ55は、矢印51の方向に沿って正回転と逆回転とを交互に繰り返す。これにより、ワイヤ2は、ワイヤ2の長手方向50に沿って往復運動を行う。ワイヤ2が往復運動をしながら、炭化珪素インゴット1に接触することで、炭化珪素インゴット1が切断される。ワイヤ2の最大線速は、たとえば1000m/分以上であり、好ましくは1500m/分以上であり、より好ましくは2000m/分以上である。 As shown in FIG. 2, the first guide roller 52 and the second guide roller 55 alternately repeat forward rotation and reverse rotation along the direction of the arrow 51. As a result, the wire 2 reciprocates along the longitudinal direction 50 of the wire 2. The silicon carbide ingot 1 is cut by contacting the silicon carbide ingot 1 while the wire 2 reciprocates. The maximum linear velocity of the wire 2 is, for example, 1000 m / min or more, preferably 1500 m / min or more, and more preferably 2000 m / min or more.
 半導体をスライスする工程(S1:図4)においては、ワイヤを前進方向に送ることにより半導体をスライスする工程と、ワイヤを後退方向に送ることにより半導体をスライスする工程とが交互に繰り返される。図2に示されるように、前進方向とは、ワイヤがワイヤ供給部3からワイヤ回収部4に向かって移動する方向である。言い換えれば、前進方向とは、ワイヤ供給部3のワイヤの巻数が減少しかつワイヤ回収部4のワイヤの巻数が増加するようにワイヤが移動する方向である。なお、ワイヤの前進方向とは、実質的にワイヤが前進する方向である。反対に、後退方向とは、ワイヤがワイヤ回収部4からワイヤ供給部3に向かって移動する方向である。言い換えれば、後退方向とは、ワイヤ供給部3のワイヤの巻数が増加しかつワイヤ回収部4のワイヤの巻数が減少するようにワイヤが移動する方向である。なお、ワイヤの後退方向とは、前進方向と反対の方向である。図6に示されるように、たとえばワイヤ供給部3からワイヤ回収部4に向かって、ワイヤがX(m)送り出される。次に、ワイヤ回収部4からワイヤ供給部3に向かって、ワイヤがY(m)巻き戻される。時点T0から時点T3までの間、ワイヤ2が送り出される。時点T3から時点T6までの間、ワイヤ2が巻き戻される。時点T0から時点T1までの間、ワイヤ2の送り出し方向の線速は増加する。時点T1から時点T2までの間、ワイヤ2の送り出し方向の線速はほぼ一定である。ワイヤ2の送り出し方向の線速は、たとえば1500m/分である。時点T2から時点T3までの間、ワイヤ2の送り出し方向の線速は減少する。時点T3において、ワイヤ2の線速は0になる。 In the step of slicing the semiconductor (S1: FIG. 4), the step of slicing the semiconductor by sending the wire in the forward direction and the step of slicing the semiconductor by sending the wire in the backward direction are alternately repeated. As shown in FIG. 2, the forward direction is a direction in which the wire moves from the wire supply unit 3 toward the wire recovery unit 4. In other words, the forward direction is a direction in which the wire moves so that the number of turns of the wire of the wire supply unit 3 decreases and the number of turns of the wire of the wire recovery unit 4 increases. In addition, the advance direction of the wire is a direction in which the wire advances substantially. On the contrary, the backward direction is a direction in which the wire moves from the wire recovery unit 4 toward the wire supply unit 3. In other words, the backward direction is a direction in which the wire moves so that the number of turns of the wire of the wire supply unit 3 increases and the number of turns of the wire of the wire recovery unit 4 decreases. Note that the backward direction of the wire is the direction opposite to the forward direction. As shown in FIG. 6, for example, X (m) is sent out from the wire supply unit 3 toward the wire recovery unit 4. Next, the wire is rewound Y (m) from the wire recovery unit 4 toward the wire supply unit 3. The wire 2 is sent out from the time T0 to the time T3. From time T3 to time T6, the wire 2 is rewound. Between the time point T0 and the time point T1, the linear velocity in the delivery direction of the wire 2 increases. From the time point T1 to the time point T2, the linear velocity in the delivery direction of the wire 2 is substantially constant. The linear velocity in the delivery direction of the wire 2 is, for example, 1500 m / min. Between the time T2 and the time T3, the linear velocity in the delivery direction of the wire 2 decreases. At the time T3, the linear velocity of the wire 2 becomes zero.
 同様に、時点T3から時点T4までの間、ワイヤ2の巻き戻し方向の線速は増加する。時点T4から時点T5までの間、ワイヤ2の巻き戻し方向の線速はほぼ一定である。ワイヤ2の巻き戻し方向の線速は、たとえば1500m/分である。時点T5から時点T6までの間、ワイヤ2の巻き戻し方向の線速は減少する。以上のように、送り出しおよび巻き戻しが1サイクルとして、複数回繰り返される。 Similarly, the wire speed in the unwinding direction of the wire 2 increases from time T3 to time T4. From time T4 to time T5, the linear velocity of the wire 2 in the unwinding direction is substantially constant. The linear velocity in the unwinding direction of the wire 2 is, for example, 1500 m / min. Between the time T5 and the time T6, the linear velocity in the unwinding direction of the wire 2 decreases. As described above, feeding and rewinding are repeated a plurality of times as one cycle.
 通常、ワイヤ2の送り出し量Xは、ワイヤ2の巻き戻し量Yよりも大きく設定される。そのため、実質的には1サイクルの間に、ワイヤが(X-Y)(m)だけ前進方向に移動する。実質的なワイヤの移動量(X-Y)(m)は、新ワイヤ供給量と呼ばれる。言い換えれば、新ワイヤ供給量は、ワイヤ2を前進方向に送る量からワイヤ2を後退方向に送る量を引いて求められる。このように、ワイヤ2は、前進と後退とを繰り返しながら、徐々に前進方向に送られる。 Usually, the feed amount X of the wire 2 is set larger than the unwinding amount Y of the wire 2. Therefore, the wire moves in the forward direction by (XY) (m) substantially during one cycle. The substantial wire travel (XY) (m) is called the new wire feed. In other words, the new wire supply amount is obtained by subtracting the amount of feeding the wire 2 in the backward direction from the amount of feeding the wire 2 in the forward direction. In this way, the wire 2 is gradually fed in the forward direction while repeating the forward and backward movements.
 ワイヤ2が炭化珪素インゴット1をスライスしている間、ワイヤ2が炭化珪素インゴット1と点接触するように、ワイヤ2および炭化珪素インゴット1は揺動を行う。ワイヤ2が炭化珪素インゴット1を切断している間、第1ノズル54および第2ノズル56からワイヤ2と炭化珪素インゴット1との接触部に対して研削液が噴射されている。研削液として、たとえば水溶性研削液が用いられる。 While the wire 2 slices the silicon carbide ingot 1, the wire 2 and the silicon carbide ingot 1 swing so that the wire 2 makes point contact with the silicon carbide ingot 1. While the wire 2 is cutting the silicon carbide ingot 1, the grinding fluid is sprayed from the first nozzle 54 and the second nozzle 56 to the contact portion between the wire 2 and the silicon carbide ingot 1. For example, a water-soluble grinding fluid is used as the grinding fluid.
 図7に示されるように、ワイヤ2が炭化珪素インゴット1をスライスしている間、ワイヤの外径が測定される(S12:図5)。ワイヤの外径の測定には、たとえばキーエンス社の超高速・高精度寸法測定器LS-9006MRが使用される。具体的には、往復走行を行っているワイヤ2に対して、投光部41からたとえば緑色のLED光43がワイヤに投光され、受光部42によりLED光43が受光される。投光部41から投光されるLED光43の直径(言い換えれば、LED光の進行方向に対して垂直な平面におけるLED光の幅)は、ワイヤ2の外径よりも大きい。そのため、ワイヤ2により遮られたLED光43は、受光部42に到達しない。反対に、ワイヤ2により遮られなかったLED光43は、受光部42に到達する。これにより、ワイヤ2の外形(影)が受光部42により観察される。 7, while the wire 2 is slicing the silicon carbide ingot 1, the outer diameter of the wire is measured (S12: FIG. 5). For the measurement of the outer diameter of the wire, for example, an ultra-high speed and high precision dimension measuring instrument LS-9006MR manufactured by Keyence Corporation is used. Specifically, for example, green LED light 43 is projected from the light projecting unit 41 onto the wire 2 that is traveling reciprocally, and the LED light 43 is received by the light receiving unit 42. The diameter of the LED light 43 projected from the light projecting unit 41 (in other words, the width of the LED light in a plane perpendicular to the traveling direction of the LED light) is larger than the outer diameter of the wire 2. Therefore, the LED light 43 blocked by the wire 2 does not reach the light receiving unit 42. On the contrary, the LED light 43 not blocked by the wire 2 reaches the light receiving unit 42. Thereby, the outer shape (shadow) of the wire 2 is observed by the light receiving unit 42.
 図8は、受光部42により得られたワイヤ2の影の画像である。ワイヤ2の長手方向に対して垂直な方向における影の寸法を測定することにより、ワイヤ2の外径Wを求めることができる。測定された画像の横方向(言い換えれば、ワイヤ2の往復方向)の寸法Lは、たとえば1mm以上2mm以下程度である。ワイヤの外径の測定は、たとえば1秒毎に実施される。ワイヤの外径の測定精度を向上するために、異なる方向からワイヤに対してLED光を投光し、異なる方向における影を観測することによりワイヤの外径が測定されてもよい。 FIG. 8 is an image of the shadow of the wire 2 obtained by the light receiving unit 42. By measuring the size of the shadow in the direction perpendicular to the longitudinal direction of the wire 2, the outer diameter W of the wire 2 can be obtained. The dimension L in the horizontal direction of the measured image (in other words, the reciprocating direction of the wire 2) is, for example, about 1 mm to 2 mm. The measurement of the outer diameter of the wire is performed, for example, every second. In order to improve the measurement accuracy of the outer diameter of the wire, the outer diameter of the wire may be measured by projecting LED light on the wire from different directions and observing shadows in different directions.
 スライス中にワイヤ2に付着した切削液または切粉が飛散して投光部41の発光素子および受光部42の受光素子に付着し、ワイヤ2の外径の測定精度が劣化することを防止するために、ワイヤ2に対してエアパージが行われてもよい。ワイヤ2に対するエアパージは、ワイヤ2の外径の測定前に行われる。これにより、ワイヤ2に付着した切削液を除去することができる。よって、ワイヤ2の外径を精度良く測定することができる。なおワイヤの外径の測定は、ワイヤに対して非接触な方法であればよく、LEDやレーザーを用いた光学的な方法に限定されない。ワイヤの外径は、たとえば静電容量または渦電流を用いた電気的な方法により測定されてもよい。 The cutting fluid or chips adhering to the wire 2 during slicing are scattered and adhered to the light emitting element of the light projecting unit 41 and the light receiving element of the light receiving unit 42, thereby preventing the measurement accuracy of the outer diameter of the wire 2 from deteriorating. Therefore, an air purge may be performed on the wire 2. The air purge for the wire 2 is performed before measuring the outer diameter of the wire 2. Thereby, the cutting fluid adhering to the wire 2 can be removed. Therefore, the outer diameter of the wire 2 can be measured with high accuracy. Note that the measurement of the outer diameter of the wire may be any method that does not contact the wire, and is not limited to an optical method using an LED or a laser. The outer diameter of the wire may be measured by an electrical method using, for example, capacitance or eddy current.
 次に、ワイヤの外径の平均値が算出される(S13:図5)。ワイヤ2の送り出しおよび巻き戻しの周期(サイクル)は、たとえば約120秒である。ワイヤの外径の測定周期が1秒の場合、ワイヤ2の外径が、1サイクルの間に120回測定される。たとえば当該120回分のワイヤの外径の平均値が算出される。ワイヤの外径の平均値の算出方法は、上記方法に限定されない。たとえば1サイクルの間の一部(たとえば送り出しのみの間または巻き戻しのみの間)のワイヤの外径の平均値が算出されてもよいし、複数のサイクルの間のワイヤの外径の平均値が算出されてもよい。 Next, the average value of the outer diameters of the wires is calculated (S13: FIG. 5). The period (cycle) of sending and unwinding the wire 2 is, for example, about 120 seconds. When the measurement period of the outer diameter of the wire is 1 second, the outer diameter of the wire 2 is measured 120 times during one cycle. For example, the average value of the 120 outer diameters of the wire is calculated. The calculation method of the average value of the outer diameter of the wire is not limited to the above method. For example, an average value of the outer diameter of a part of a wire during one cycle (for example, only during feeding or only during unwinding) may be calculated, or an average value of the outer diameter of the wire during a plurality of cycles May be calculated.
 次に、ワイヤの外径の平均値が設定値よりも大きいかどうかが判断される(S14:図5)。具体的には、ワイヤ2の往復走行の1サイクルにおけるワイヤの外径の平均値と、上記工程S10で設定された目標ワイヤ外径の値(設定値)とが比較される。ワイヤの外径の平均値が設定値よりも大きい場合は、ワイヤの摩耗が少ないと考えられる。そのため、新ワイヤ供給量が低減される(S15:図5)。反対に、ワイヤの外径の平均値が設定値よりも小さい場合は、ワイヤの摩耗が進行していると考えられる。そのため、新ワイヤ供給量は増加される(S16:図5)。以上のように、測定されたワイヤ2の外径に基づいて、半導体インゴット1のスライス条件の一つである新ワイヤ供給量が調節される。具体的には、ワイヤの外径の経時的な変化ができるだけ少なくなるように、新ワイヤ供給量が調節される。これにより、ワイヤの使用量を低減しつつ、TTVが小さい半導体基板が得られる。 Next, it is determined whether or not the average value of the outer diameter of the wire is larger than the set value (S14: FIG. 5). Specifically, the average value of the outer diameter of the wire in one cycle of the reciprocating traveling of the wire 2 is compared with the value (set value) of the target wire outer diameter set in step S10. When the average value of the outer diameter of the wire is larger than the set value, it is considered that the wear of the wire is small. Therefore, the new wire supply amount is reduced (S15: FIG. 5). On the other hand, when the average value of the outer diameters of the wires is smaller than the set value, it is considered that the wear of the wires is progressing. Therefore, the new wire supply amount is increased (S16: FIG. 5). As described above, based on the measured outer diameter of the wire 2, the new wire supply amount which is one of the slice conditions of the semiconductor ingot 1 is adjusted. Specifically, the new wire supply amount is adjusted so that a change with time in the outer diameter of the wire is minimized. Thereby, a semiconductor substrate with a small TTV can be obtained while reducing the amount of wire used.
 次に、新ワイヤ供給量の調節方法の一例について説明する。
 図9に示されるように、第Nサイクル目における、ワイヤの送出量およびワイヤの巻戻量は、それぞれXおよびYである。この場合、新ワイヤ供給量は、X-Yである。第Nサイクル目のスライス中に測定されたワイヤの外径の平均値はZである。第1サイクル目におけるワイヤの外径の平均値であるZが設定値よりも小さい場合、次のサイクルにおいて、新ワイヤの供給量が増やされる。たとえば第2サイクル目におけるワイヤの巻戻量Yと第1サイクル目におけるワイヤの巻戻量Yとを同じ値で維持しつつ、第2サイクル目におけるワイヤの送出量Xが、第1サイクル目におけるワイヤの送出量Xよりも増加する。これにより、新ワイヤ供給量が増加する。代替的に、第2サイクル目におけるワイヤの送出量Xと第1サイクル目におけるワイヤの送出量Xとを同じ値で維持しつつ、第2サイクル目におけるワイヤの巻戻量Yが、第1サイクル目におけるワイヤの巻戻量Yよりも減少してもよい。代替的に、第2サイクル目における新ワイヤ供給量X-Yが、第1サイクル目における新ワイヤ供給量X-Yよりも大きくなるように、第2サイクル目におけるワイヤの送出量Xおよび巻戻量Yの双方を、第1サイクル目におけるワイヤの送出量Xおよび巻戻量Yと異なるように変化させてもよい。
Next, an example of a method for adjusting the new wire supply amount will be described.
As shown in FIG. 9, the wire feed amount and the wire rewind amount in the Nth cycle are X n and Y n , respectively. In this case, the new wire supply amount is X n −Y n . The average value of the outer diameter of the wire was measured in the slice of the N-th cycle is Z n. When Z 1 is the average value of the outer diameter of the wire in the first cycle is smaller than the set value, in the next cycle, the supply amount of the new wire is increased. For example, while maintaining rewind amount of the wire in the second cycle Y 2 and the rewinding amount Y 1 of the wire at the first cycle at the same value, the transmission amount X 2 of the wire in the second cycle, the first increases than transmission amount X 1 of the wire at the cycle. This increases the new wire supply. Alternatively, while maintaining delivery rate of the wire in the second cycle X 2 and the transmission amount X 1 of the wire at the first cycle at the same value, the rewinding amount Y 2 wires in the second cycle, it may be reduced from the rewinding amount Y 1 of the wire at the first cycle. Alternatively, the wire feed rate in the second cycle is such that the new wire feed rate X 2 -Y 2 in the second cycle is greater than the new wire feed rate X 1 -Y 1 in the first cycle. Both X 2 and the rewind amount Y 2 may be changed so as to be different from the wire feed amount X 1 and the rewind amount Y 1 in the first cycle.
 反対に、第1サイクル目におけるワイヤの外径の平均値であるZが設定値よりも大きい場合、次のサイクルにおいて、新ワイヤの供給量が減らされる。たとえば第2サイクル目におけるワイヤの巻戻量Yと第1サイクル目におけるワイヤの巻戻量Yとを同じ値で維持しつつ、第2サイクル目におけるワイヤの送出量Xが、第1サイクル目におけるワイヤの送出量Xよりも低減する。これにより、新ワイヤ供給量が減少する。代替的に、第2サイクル目におけるワイヤの送出量Xと第1サイクル目におけるワイヤの送出量Xとを同じ値で維持しつつ、第2サイクル目におけるワイヤの巻戻量Yが、第1サイクル目におけるワイヤの巻戻量Yよりも増加してもよい。代替的に、第2サイクル目における新ワイヤ供給量X-Yが、第1サイクル目における新ワイヤ供給量X-Yよりも小さくなるように、第2サイクル目におけるワイヤの送出量Xおよび巻戻量Yの双方を、第1サイクル目におけるワイヤの送出量Xおよび巻戻量Yと異なるように変化させてもよい。なお、あるサイクルにおけるワイヤの外径の平均値が設定値と同じ場合は、次のサイクルにおいて、新ワイヤの供給量が変化しなくてもよい。 Conversely, when Z 1 is an average value of the outer diameter of the wire in the first cycle is greater than the set value, in the next cycle, the supply amount of the new wire is reduced. For example, while maintaining rewind amount of the wire in the second cycle Y 2 and the rewinding amount Y 1 of the wire at the first cycle at the same value, the transmission amount X 2 of the wire in the second cycle, the first reducing than transmission amount X 1 of the wire at the cycle. This reduces the new wire supply. Alternatively, while maintaining delivery rate of the wire in the second cycle X 2 and the transmission amount X 1 of the wire at the first cycle at the same value, the rewinding amount Y 2 wires in the second cycle, it may be increased from the rewinding amount Y 1 of the wire at the first cycle. Alternatively, the wire feed rate in the second cycle is such that the new wire feed rate X 2 -Y 2 in the second cycle is smaller than the new wire feed rate X 1 -Y 1 in the first cycle. Both X 2 and the rewind amount Y 2 may be changed so as to be different from the wire feed amount X 1 and the rewind amount Y 1 in the first cycle. In addition, when the average value of the outer diameter of the wire in a certain cycle is the same as the set value, the supply amount of the new wire may not change in the next cycle.
 次に、インゴットをスライスすることにより得られた複数の炭化珪素基板の各々の表面が、たとえばダイヤモンド砥粒を用いて機械研磨される。次に、たとえばコロイダルシリカを用いて、炭化珪素基板の表面に対して化学的機械研磨が行われる。これにより、炭化珪素基板10が得られる(図1参照)。 Next, the surface of each of the plurality of silicon carbide substrates obtained by slicing the ingot is mechanically polished using, for example, diamond abrasive grains. Next, chemical mechanical polishing is performed on the surface of the silicon carbide substrate using, for example, colloidal silica. Thereby, silicon carbide substrate 10 is obtained (see FIG. 1).
 以上のように、ワイヤ2の外径を測定しながら、ワイヤ2を用いて半導体インゴット1がスライスされる。測定されたワイヤ2の外径に基づいて、半導体インゴット1のスライス条件が調節される。上記においては、スライス条件が新ワイヤ供給量である場合について説明したが、スライス条件は新ワイヤ供給量に限定されない。スライス条件は、たとえばワイヤ2の線速であってもよいし、ワイヤ2の張力であってもよいし、ワイヤ2の揺動角度であってもよいし、ワイヤ2の揺動速度であってもよいし、半導体インゴットの送り速度であってもよい。 As described above, the semiconductor ingot 1 is sliced using the wire 2 while measuring the outer diameter of the wire 2. Based on the measured outer diameter of the wire 2, the slice condition of the semiconductor ingot 1 is adjusted. In the above description, the case where the slice condition is the new wire supply amount has been described. However, the slice condition is not limited to the new wire supply amount. The slicing condition may be, for example, the linear speed of the wire 2, the tension of the wire 2, the swing angle of the wire 2, or the swing speed of the wire 2. Alternatively, the feed rate of the semiconductor ingot may be used.
 なお上記においては、半導体インゴットが炭化珪素から構成される場合について説明したが、半導体インゴットは炭化珪素から構成される場合に限定されない。半導体インゴットは、たとえば窒化ガリウム(GaN)、シリコン(Si)、サファイア、ヒ化ガリウム(GaAs)またはリン化インジウム(InP)などで構成されていてもよい。 In addition, in the above, although the case where the semiconductor ingot was comprised from silicon carbide was demonstrated, it is not limited to the case where a semiconductor ingot is comprised from silicon carbide. The semiconductor ingot may be made of, for example, gallium nitride (GaN), silicon (Si), sapphire, gallium arsenide (GaAs), indium phosphide (InP), or the like.
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiment disclosed this time is illustrative in all respects and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1 半導体インゴット(炭化珪素インゴット)、2 ワイヤ、3 ワイヤ供給部、4 ワイヤ回収部、5 切断装置、10 半導体基板(炭化珪素基板)、11 第1主面、13 第2主面、21 芯線、22 ダイヤモンド砥粒、23 固着層、30 周縁部、31 第1オリエンテーションフラット(第1フラット)、32 第2オリエンテーションフラット(第2フラット)、33 曲面部、40 外径測定器、41 投光部、42 受光部、43 LED光、50 長手方向、52 第1ガイドローラ、53 ワイヤ案内溝、54 第1ノズル、55 第2ガイドローラ、56 第2ノズル、60 ベース部。 1 semiconductor ingot (silicon carbide ingot), 2 wires, 3 wire supply unit, 4 wire recovery unit, 5 cutting device, 10 semiconductor substrate (silicon carbide substrate), 11 first main surface, 13 second main surface, 21 core wire, 22 diamond abrasive grains, 23 fixed layer, 30 peripheral portion, 31 first orientation flat (first flat), 32 second orientation flat (second flat), 33 curved surface portion, 40 outer diameter measuring device, 41 light projecting portion, 42 light-receiving part, 43 LED light, 50 longitudinal direction, 52 1st guide roller, 53 wire guide groove, 54 1st nozzle, 55 2nd guide roller, 56 2nd nozzle, 60 base part.

Claims (2)

  1.  ダイヤモンド砥粒が芯線に固着されたワイヤの外径を測定しながら、前記ワイヤを用いて半導体をスライスする工程と、
     測定された前記外径に基づいて、前記半導体のスライス条件を調節する工程とを備えた、半導体基板の製造方法。
    Slicing the semiconductor with the wire while measuring the outer diameter of the wire with diamond abrasive grains fixed to the core; and
    Adjusting the slice condition of the semiconductor based on the measured outer diameter.
  2.  前記半導体をスライスする工程においては、前記ワイヤを前進方向に送ることにより前記半導体をスライスする工程と、前記ワイヤを後退方向に送ることにより前記半導体をスライスする工程とが交互に繰り返され、
     前記スライス条件は、前記ワイヤを前記前進方向に送る量から前記ワイヤを前記後退方向に送る量を引いて求められる新ワイヤ供給量である、請求項1に記載の半導体基板の製造方法。
    In the step of slicing the semiconductor, the step of slicing the semiconductor by sending the wire in the forward direction and the step of slicing the semiconductor by sending the wire in the backward direction are alternately repeated,
    2. The method of manufacturing a semiconductor substrate according to claim 1, wherein the slicing condition is a new wire supply amount obtained by subtracting an amount of feeding the wire in the backward direction from an amount of feeding the wire in the forward direction.
PCT/JP2017/024308 2016-08-31 2017-07-03 Method for producing semiconductor substrate WO2018042864A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-169518 2016-08-31
JP2016169518 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018042864A1 true WO2018042864A1 (en) 2018-03-08

Family

ID=61300717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024308 WO2018042864A1 (en) 2016-08-31 2017-07-03 Method for producing semiconductor substrate

Country Status (1)

Country Link
WO (1) WO2018042864A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08174402A (en) * 1994-12-27 1996-07-09 Nippei Toyama Corp Wire-saw device
JPH0970822A (en) * 1995-09-07 1997-03-18 Sumitomo Metal Mining Co Ltd Method for measuring diameter of wire and multi-wire saw using the same
JPH1086140A (en) * 1996-09-20 1998-04-07 Tokyo Seimitsu Co Ltd Method of controlling wire travel of wire-saw
JP2006116636A (en) * 2004-10-20 2006-05-11 Noritake Super Abrasive:Kk Cutter
JP2008149455A (en) * 2006-12-13 2008-07-03 Siltronic Ag Method for slicing a large number of wafers from workpiece
JP2013094959A (en) * 2011-10-28 2013-05-20 Applied Materials Switzerland Sarl Wire saw control system and wire saw

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08174402A (en) * 1994-12-27 1996-07-09 Nippei Toyama Corp Wire-saw device
JPH0970822A (en) * 1995-09-07 1997-03-18 Sumitomo Metal Mining Co Ltd Method for measuring diameter of wire and multi-wire saw using the same
JPH1086140A (en) * 1996-09-20 1998-04-07 Tokyo Seimitsu Co Ltd Method of controlling wire travel of wire-saw
JP2006116636A (en) * 2004-10-20 2006-05-11 Noritake Super Abrasive:Kk Cutter
JP2008149455A (en) * 2006-12-13 2008-07-03 Siltronic Ag Method for slicing a large number of wafers from workpiece
JP2013094959A (en) * 2011-10-28 2013-05-20 Applied Materials Switzerland Sarl Wire saw control system and wire saw

Similar Documents

Publication Publication Date Title
US9876078B2 (en) Method for slicing semiconductor single crystal ingot
JP5104830B2 (en) substrate
CN104786376B (en) The cutting-off method using multi-wire saw of high hardness material
US11772301B2 (en) Method for manufacturing hexagonal semiconductor plate crystal
JP6572827B2 (en) Cutting method of single crystal ingot
JP2011077325A (en) Method of manufacturing group iii nitride semiconductor substrate
EP2559791A1 (en) Single-crystal substrate, single-crystal substrate having crystalline film, crystalline film, method for producing single-crystal substrate having crystalline film, method for producing crystalline substrate, and method for producing element
US9597819B2 (en) Method for cutting high-hardness material by multi-wire saw
JP2013258243A (en) Manufacturing method and manufacturing device of compound semiconductor substrate
CN101752240B (en) Group III nitride semiconductor substrate production method, and group III nitride semiconductor substrate
JP6230112B2 (en) Wafer manufacturing method and wafer manufacturing apparatus
JP5569167B2 (en) Method for producing group III nitride single crystal substrate
JP6722578B2 (en) Method for manufacturing SiC wafer
WO2018042864A1 (en) Method for producing semiconductor substrate
JP2019188510A (en) Method for manufacturing silicon carbide substrate
KR20140090906A (en) Wire saw and method for slicing ingot using the same
US20150249184A1 (en) Semiconductor Multilayer Structure And Semiconductor Element
JP2016179649A (en) Cutting method of sapphire single crystal
JP2001122700A (en) Semiconductor wafer, method of producing light emitting diode, and method and device for evaluating fracture strength of semiconductor wafer
JP4325655B2 (en) Method for manufacturing compound semiconductor substrate
WO2012147472A1 (en) Compound semiconductor single crystal substrate and method for manufacturing same
JP7150199B1 (en) METHOD FOR MANUFACTURING GALLIUM NITRIDE SINGLE CRYSTAL SUBSTRATE AND METHOD FOR MANUFACTURING GROUP 13 NITRIDE NITORIED SINGLE CRYSTAL SUBSTRATE OF PERIODIC TABLE
US20150249189A1 (en) Semiconductor Multilayer Structure And Semiconductor Element
TWI770957B (en) Method for cutting crystal ingot and crystal ingot cutting tool
JP2014152076A (en) Group 13 nitride crystal substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17845874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP