WO2016208458A1 - 熱伝導性シート - Google Patents

熱伝導性シート Download PDF

Info

Publication number
WO2016208458A1
WO2016208458A1 PCT/JP2016/067674 JP2016067674W WO2016208458A1 WO 2016208458 A1 WO2016208458 A1 WO 2016208458A1 JP 2016067674 W JP2016067674 W JP 2016067674W WO 2016208458 A1 WO2016208458 A1 WO 2016208458A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat conductive
conductive layer
carbon fiber
insulating
thermal
Prior art date
Application number
PCT/JP2016/067674
Other languages
English (en)
French (fr)
Inventor
泰佳 渡部
Original Assignee
ポリマテック・ジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリマテック・ジャパン株式会社 filed Critical ポリマテック・ジャパン株式会社
Priority to JP2017525240A priority Critical patent/JP6723610B2/ja
Priority to US15/557,876 priority patent/US10591229B2/en
Priority to CN201680014112.XA priority patent/CN107851623B/zh
Priority to DE112016000807.4T priority patent/DE112016000807B4/de
Publication of WO2016208458A1 publication Critical patent/WO2016208458A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/10Layered products comprising a layer of natural or synthetic rubber next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/20Layered products comprising a layer of natural or synthetic rubber comprising silicone rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/04Layered products comprising a layer of synthetic resin as impregnant, bonding, or embedding substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/30Fillers, e.g. particles, powders, beads, flakes, spheres, chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/06Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes composite, e.g. polymers with fillers or fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones

Definitions

  • the present invention relates to a heat conductive sheet used by being disposed between a heat generator and a heat radiator.
  • heat sinks such as heat sinks are used to dissipate the heat generated by heating elements such as semiconductor elements and machine parts.
  • a heat conductive sheet may be disposed between the heat generator and the heat radiator.
  • a heat conductive sheet for example, a heat conductive sheet in which carbon fibers are filled and oriented as a heat conductive material is disclosed in Japanese Patent Application Laid-Open No. 2005-146057 (Patent Document 1).
  • the thermal conductive sheet in which the electrical insulating layer is formed on the thermal conductive sheet in which the carbon fibers are oriented has a high thermal conductivity as compared with the thermal conductive sheet in which the electrical insulating layer is not provided.
  • the cured electrical insulating layer has a problem that it has a hard surface and is difficult to fix to an adherend and is not easy to handle.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a heat conductive sheet having an insulating property and high heat conductivity. Another object of the present invention is to provide a heat conductive sheet having excellent handling properties.
  • the thermally conductive sheet of the present invention that achieves the above object is configured as follows. That is, a carbon fiber oriented heat conductive layer containing carbon fiber powder with fiber axes oriented in the thickness direction of the sheet in the polymer matrix, and an insulating heat conductive filler dispersed in the polymer matrix. And a heat conductive sheet in which an insulating heat conductive layer having insulating properties is laminated.
  • the polymer matrix is provided with a carbon fiber oriented heat conductive layer containing carbon fiber powder with fiber axes oriented in the thickness direction of the sheet, it has excellent thermal conductivity in the thickness direction of the sheet. It is difficult to transmit and has excellent thermal conductivity anisotropy.
  • the heat conductive sheet oriented flaky graphite powder when using graphite flake powder, it is not limited to one direction, while it exhibits thermal conductivity in the spreading direction of the surface of the flaky graphite powder, carbon fiber When powder is used, the thermal conductivity in the axial direction of the fiber axis, not in the plane direction, can be increased. Therefore, heat conduction in directions other than the fiber axis direction can be suppressed.
  • the surface of the flaky graphite powder overlapped and the probability that the graphite powders were in contact with each other was high, which was a factor for increasing the conductivity.
  • carbon fiber powder when carbon fiber powder is used, there is a low probability of contact between the carbon fiber powders, but rather, the carbon fiber powders are in contact with each other via a thermally conductive filler.
  • the insulating heat conductive filler is dispersed in the polymer matrix and the insulating heat conductive layer having the heat conductivity and the insulating property is provided, it is compared with the heat conductive sheet composed only of the carbon fiber oriented heat conductive layer.
  • the insulating property can be improved without greatly reducing the thermal conductivity. Therefore, it can be suitably used for applications that require high insulation.
  • the polymer matrix may be composed of a liquid silicone main ingredient and a cured product of a curing agent.
  • the polymer matrix is a heat conductive sheet composed of a liquid silicone main ingredient and a cured product of a curing agent, the viscosity can be kept low at the stage of the polymer composition before being cured to form a polymer matrix. Filling with fiber powder or a heat conductive filler can be performed easily. Therefore, it can be set as a heat conductive sheet with high orientation performance.
  • the carbon fiber oriented thermal conductive layer has a value (referred to as “E hardness”) measured by a Japanese Industrial Standard JIS K6253 type E hardness tester (referred to as “E hardness”) of 5 to 60, and the insulating thermal conductive layer has carbon fiber oriented thermal conductivity.
  • E hardness measured by a Japanese Industrial Standard JIS K6253 type E hardness tester
  • the insulating thermal conductive layer has carbon fiber oriented thermal conductivity.
  • a thermally conductive sheet that is harder than the layer, has an E hardness of 70 or less, and a thickness of 0.15 to 1.5 mm can be obtained.
  • the carbon fiber oriented heat conductive layer has an E hardness measured by a Japanese Industrial Standard JIS K6253 type E hardness tester of 5 to 60, so that it has excellent compressibility and can be closely attached to an adherend. Can be kept low to provide high thermal conductivity. And since an insulation heat conductive layer is harder than a carbon fiber orientation heat conduction layer, it is easy to maintain insulation, without an insulation heat conduction layer being compressed excessively at the time of compression. Since the hardness of the insulating heat conductive layer is 70 or less in terms of E hardness, it has excellent adhesion to the adherend, and when it is too hard, the adhesion deteriorates and the heat conductivity deteriorates. It ’s hard to be.
  • the thickness of the insulating heat conductive layer is 0.15 to 1.5 mm, the generation of pinholes that are likely to occur when the insulating heat conductive layer is too thin is suppressed, and the heat transfer that tends to occur when the insulating heat conductive layer is too thick is less likely to occur.
  • the hardness of the insulating heat conductive layer can be 20 or more in terms of E hardness.
  • the hardness of the insulating heat conductive layer is 20 or more in terms of E hardness, the insulating heat conductive layer is not excessively crushed even during compression, and the insulating property of the heat conductive sheet is stabilized. Since the upper limit of the hardness is 70 or less in terms of E hardness, the thermal resistance can be lowered with the flexibility to follow the adherend.
  • the thermal conductivity in the thickness direction of the sheet of the carbon fiber oriented thermal conductive layer is 7 W / m ⁇ K or more and 30 W / m ⁇ K or less, and the insulating thermal conductive layer has a thermal conductivity of 2 W / m ⁇ K or more. It can be set as the heat conductive sheet which is less than 7 W / m * K.
  • the thermal conductivity of the insulating heat conductive layer is preferably 5 W / m ⁇ K or more.
  • the thermal conductivity is 5 W / m ⁇ K or more, even if the thickness of the insulating thermal conductive layer is increased to about 1.5 mm, the decrease in the thermal conductivity of the thermal conductive sheet is suppressed and high thermal conductivity is achieved. Can be maintained.
  • the heat conductivity sheet (W) (unit: W / m ⁇ K) and thickness (T) (unit: mm) of the insulating heat conductive layer should satisfy the relationship of the following formula (1). Can do. 0 ⁇ T ⁇ 0.20W ⁇ 0.19 Expression (1)
  • thermal conductivity (W) and the thickness (T) satisfy the formula (1) for the insulating thermal conductive layer, a thermally conductive sheet with high thermal conductivity can be obtained.
  • the thickness of the insulating heat conductive layer can be made thinner than the thickness of the carbon fiber oriented heat conductive layer.
  • the thickness of the insulating heat conductive layer By reducing the thickness of the insulating heat conductive layer, it is possible to suppress a decrease in the thermal conductivity of the heat conductive sheet. Moreover, the carbon fiber orientation heat conductive layer which becomes relatively thick can be reliably compressed to reduce the thermal resistance.
  • the carbon fiber oriented heat conductive layer may include a heat conductive filler having an aspect ratio of 2 or less.
  • the carbon fiber powder and other heat conductive fillers can be compared with the case where the carbon fiber powder is filled alone. Both can be highly filled. Therefore, high thermal conductivity can be obtained.
  • the heat conductive sheet of the present invention is a heat conductive sheet having both high heat conductivity and insulation. Moreover, according to the heat conductive sheet of this invention, it is easy to fix to a to-be-adhered body and is excellent in the handleability.
  • the heat conductive sheet shown as 1st Embodiment consists of the structure on which the carbon fiber orientation heat conductive layer and insulation heat conductive layer which were formed in the sheet form were laminated
  • the carbon fiber oriented thermal conductive layer is formed into a sheet by curing a mixed composition in which carbon fiber powder or a thermal conductive filler other than carbon fiber powder is blended into a liquid polymer composition that becomes a polymer matrix.
  • the carbon fiber powder has a fiber axis oriented in the thickness direction of the sheet in the polymer matrix. More specifically describing the orientation of the carbon fiber powder in the thickness direction, the ratio of the number of carbon fiber powders having an angle of the fiber axis with respect to the thickness direction of the sheet of less than 30 ° exceeds 50%.
  • the hardness of the carbon fiber oriented heat conductive layer is preferably 5 to 60 in terms of E hardness as measured by a Japanese Industrial Standard JIS K6253 type E hardness tester.
  • the compressibility of the carbon fiber oriented heat conductive layer deteriorates during actual use, so the laminated insulating heat conductive layer is excessively compressed and the insulating heat conductive layer becomes thinner than expected. There is a possibility that the insulating property may be lowered due to being crushed until it becomes or due to the occurrence of cracks accompanying the deformation. If the insulating heat conductive layer is made harder, the deterioration of the insulation can be suppressed, but then the entire heat conductive sheet becomes hard, the followability to the shape of the heating element and the heat sink deteriorates, and the heating element and the heat sink Adhesiveness with a heat conductive sheet may fall and heat conductivity may fall.
  • the E hardness is less than 5, since it is difficult to maintain the shape, the orientation of the carbon fibers is disturbed by compression, and the thermal conductivity may be impaired. If the E hardness is 5 or more, the shape is easily retained and the handleability is improved.
  • the hardness of the carbon fiber oriented heat conductive layer is hardened by increasing the filling amount of the carbon fiber powder and the heat conductive filler, in order to bring the hardness of the carbon fiber oriented heat conductive layer to a preferable range.
  • a material that is softer than the desired hardness when the carbon fiber oriented heat conductive layer is formed is selected.
  • the thickness of the carbon fiber oriented heat conductive layer is preferably 0.25 to 10 mm.
  • the thickness is less than 0.25 mm, when the carbon fiber powder is oriented in the mold, the space for the rotation of the carbon fiber powder is insufficient by the mold, and the rotation is hindered so that the orientation is insufficient. There is a risk of becoming. On the other hand, if it exceeds 10 mm, the thermal resistance may increase.
  • the thermal conductivity in the thickness direction of the carbon fiber orientation heat conductive layer can be in the range of 7 W / m ⁇ K to 30 W / m ⁇ K.
  • the thermal conductivity of the thermal conductive sheet tends to be difficult to increase as the difference increases with respect to the thermal conductivity of the insulating thermal conductive layer. Therefore, if it exceeds 30 W / m ⁇ K, the thermal conductivity difference with respect to the insulating thermal conductive layer becomes too large, and even if the thermal conductivity of the carbon fiber oriented thermal conductive layer is increased, the thermal conductivity of the thermal conductive sheet is almost unchanged. Because it disappears.
  • This thermal conductivity can be calculated using a method of an experimental example described later.
  • the term “thermal conductivity” refers to the thermal conductivity in the thickness direction of the sheet (the orientation direction of the carbon fiber powder) unless otherwise specified.
  • the carbon fiber oriented thermal conductive layer has conductivity because it contains oriented carbon fiber powder.
  • the volume resistivity is preferably 10 4 to 10 6 ⁇ ⁇ cm. This is because the conductivity and the thermal conductivity have a certain degree of correlation, and the carbon fiber oriented thermal conductive layer having a conductivity in the range of 10 4 to 10 6 ⁇ ⁇ cm has a high thermal conductivity.
  • the volume resistivity can be obtained by measuring the resistance value with a tester when the carbon fiber oriented heat conductive layer is sandwiched between gold-plated metal plates and the initial thickness is compressed to 10%.
  • the polymer matrix is a polymer such as resin or rubber, and can be preferably formed by curing a liquid polymer composition comprising a mixed system such as a main agent and a curing agent.
  • the polymer composition can contain, for example, uncrosslinked rubber and a crosslinking agent, or can contain uncrosslinked rubber containing a crosslinking agent and a crosslinking accelerator.
  • the curing reaction may be room temperature curing or heat curing. If the polymer matrix is silicone rubber, alkenyl group-containing organopolysiloxane and organohydrogenpolysiloxane can be exemplified.
  • thermoplastic elastomer if it is a polyester-type thermoplastic elastomer, it can be set as diol and dicarboxylic acid, and if it is a polyurethane-type thermoplastic elastomer, it can be set as diisocyanate and diol.
  • polymer compositions polymer matrix before curing
  • silicone rubber in which the polymer matrix after curing is particularly flexible and the filling property of the heat conductive filler is good.
  • Carbon fiber powder included in the polymer matrix includes carbon fiber powders such as fibers, rods, and needles.
  • the crystal plane of graphite is continuous in the fiber axis direction, and has a very high thermal conductivity in the fiber axis direction. Therefore, the thermal conductivity in a specific direction can be increased by aligning the fiber axis direction in a predetermined direction.
  • the carbon fiber used in the present invention is graphitized, and examples of the raw material include condensed polycyclic hydrocarbon compounds such as naphthalene, condensed heterocyclic compounds such as PAN (polyacrylonitrile) and pitch, and the like.
  • a mesophase pitch By using the mesophase pitch, it is possible to obtain graphitized carbon fiber having a thermal conductivity excellent in the fiber axis direction in which the pitch is oriented in the fiber axis direction due to the anisotropy in the spinning step described later.
  • This mesophase pitch is not particularly limited as long as it can be spun.
  • mesophase pitch may be used alone, that is, mesophase pitch.
  • a graphitized carbon fiber having a content of 100% is most preferable from the viewpoints of high thermal conductivity, spinnability and quality stability.
  • the carbon fiber there can be used a carbon fiber that has been subjected to spinning, infusibilization, and carbonization in order and pulverized or cut into a predetermined particle size and then graphitized, or a carbon fiber that has been crushed or cut after carbonization and then graphitized.
  • the polycondensation reaction and the cyclization reaction are more likely to proceed during the graphitization process on the surface newly exposed to the pulverization.
  • Graphitized carbon fiber with improved properties can be obtained.
  • the spun carbon fiber is graphitized and then pulverized
  • the carbon fiber after graphitization is stiff and easy to pulverize, and a carbon fiber powder having a relatively narrow fiber length distribution can be obtained by short-time pulverization.
  • the fiber diameter of the carbon fiber is not particularly limited, but is preferably 5 to 20 ⁇ m.
  • the fiber diameter is in the range of 5 to 20 ⁇ m, it is easy to produce industrially, and the thermal conductivity of the obtained carbon fiber oriented heat conductive layer can be increased.
  • the fiber diameter is smaller than 5 ⁇ m or larger than 20 ⁇ m, the productivity is lowered.
  • the average fiber length of the carbon fibers is preferably 10 to 500 ⁇ m, more preferably 15 to 200 ⁇ m, and particularly preferably 15 to 120 ⁇ m.
  • the average fiber length is shorter than 10 ⁇ m, the contact between the graphitized carbon fibers is reduced in the polymer matrix, and the heat conductivity of the carbon fiber oriented heat conductive layer obtained due to insufficient heat transfer path is lowered.
  • the average fiber length is longer than 500 ⁇ m, the carbon fiber becomes bulky, and it becomes difficult to highly fill the polymer matrix.
  • the electroconductivity of a carbon fiber orientation heat conductive layer may increase.
  • said average fiber length is computable from the particle size distribution which observed the carbon fiber with the microscope.
  • the average fiber length of the carbon fibers is preferably 50% or less of the thickness of the carbon fiber oriented heat conductive layer, and the content of carbon fibers having a fiber length exceeding 80% of the thickness of the carbon fiber oriented heat conductive layer is 5%. It is preferable that it is below mass%.
  • the content of carbon fiber having a fiber length exceeding 80% of the thickness of the carbon fiber oriented heat conductive layer exceeds 5% by mass, the carbon fiber becomes a length exceeding the compression thickness when the heat conductive sheet is compressed. This is because there is a risk of large intrusion into the insulating heat conductive layer. If the carbon fiber penetrates into the insulating heat conductive layer, the thickness for increasing the insulating property becomes thin and the insulating property may be lowered.
  • the carbon fiber penetrates the insulating heat conductive layer, the insulating property is impaired.
  • the average fiber length of the carbon fibers is also 50% or less of the thickness of the carbon fiber oriented heat conductive layer, the amount of carbon fibers exceeding the thickness of the carbon fiber oriented heat conductive layer can be reduced even during compression. it can.
  • the carbon fiber has a narrow particle size distribution, and it is preferable to use a mixture of a plurality of carbon fibers having different particle size distributions because the thermal conductivity can be increased.
  • the aspect ratio of the carbon fiber powder is preferably more than 2.
  • the aspect ratio is 2 or less, it is difficult to orient the carbon fiber powder in a specific direction and it is difficult to increase the thermal conductivity. More preferably, the aspect ratio is 5 or more.
  • the aspect ratio is a value of “fiber length / fiber diameter” of the carbon fiber powder.
  • the thermal conductivity of the carbon fiber is not particularly limited, but the thermal conductivity in the fiber axis direction is preferably 400 W / m ⁇ K or more, more preferably 800 W / m ⁇ K or more, particularly preferably 1000 W / m ⁇ K or more. It is.
  • the content of the carbon fiber powder is preferably 75 to 150 parts by mass with respect to 100 parts by mass of the polymer matrix. If the amount is less than 75 parts by mass, it is difficult to increase the thermal conductivity. If the amount exceeds 150 parts by mass, the viscosity of the mixed composition may increase and the orientation may deteriorate.
  • Thermally conductive filler is preferably contained separately from the carbon fiber powder in the carbon fiber oriented heat conductive layer, and is a material that imparts heat conductivity to the polymer matrix together with the carbon fiber powder. In particular, it is preferable that a thermally conductive filler having an aspect ratio of 2 or less is included.
  • the carbon fiber powder is oriented in the thickness direction of the sheet, and preferably includes other heat conductive fillers, more preferably a heat conductive filler having a small aspect ratio, so that the surfaces of the oriented carbon fiber powders are aligned.
  • a heat conductive filler is suitably interposed in the gap, and a carbon fiber oriented heat conductive layer having high heat conductivity can be obtained.
  • thermally conductive filler examples include spherical and amorphous powders such as metals, metal oxides, metal nitrides, metal carbides, and metal hydroxides, and spherical graphite.
  • the metal examples include aluminum, copper, and nickel.
  • the metal oxide examples include aluminum oxide, magnesium oxide, zinc oxide, and quartz.
  • the metal nitride examples include boron nitride and aluminum nitride.
  • the metal carbide examples include silicon carbide, and examples of the metal hydroxide include aluminum hydroxide.
  • thermally conductive fillers aluminum oxide and aluminum are preferable because they have high thermal conductivity and spherical ones are easily available, and aluminum hydroxide is easily available and increases the flame retardancy of the thermally conductive sheet. It is preferable in that it can be performed.
  • Such an electrically conductive filler preferably has an aspect ratio of 2 or less. This is because when the aspect ratio exceeds 2, the viscosity is likely to increase and it is difficult to achieve high filling. For these reasons, the shape of the heat conductive filler is preferably spherical.
  • the average particle diameter of the heat conductive filler is preferably 0.5 to 35 ⁇ m. When the average particle size exceeds 35 ⁇ m, the size of the carbon fiber powder may approach and the orientation of the carbon fiber powder may be disturbed. On the other hand, a thermally conductive filler having an average particle size of less than 0.5 ⁇ m has a large specific surface area, so that its viscosity is likely to increase and it is difficult to fill it with a high degree. However, if there is no adverse effect on the fillability, a heat conductive filler of less than 0.5 ⁇ m may be included.
  • the average particle diameter of the thermally conductive filler can be represented by a volume average particle diameter of a particle size distribution measured by a laser diffraction scattering method (JIS R1629).
  • the heat conductive filler is preferably added in the range of 250 to 800 parts by mass, more preferably in the range of 350 to 700 parts by mass with respect to 100 parts by mass of the polymer matrix. If the amount is less than 250 parts by mass, the amount intervening in the gap between the carbon fiber particles may be insufficient, and the thermal conductivity may be deteriorated. On the other hand, even if it exceeds 800 parts by mass, the effect of increasing the thermal conductivity is not increased, and there is a possibility that the heat conduction by the carbon fiber powder may be hindered. In the range of 350 to 700 parts by mass, the heat conductivity is excellent and the viscosity of the mixed composition is also suitable.
  • additives can be included as long as the function as a heat conductive sheet is not impaired.
  • organic components such as a plasticizer, a dispersant, a coupling agent, and an adhesive may be included.
  • the carbon fiber oriented heat conductive layer can be made into a sheet having a relatively low carbon fiber content and excellent tackiness on the sheet surface by including a heat conductive filler together with carbon fiber powder. For this reason, even if the pressure is applied between the heating element and the heat dissipation element, the compressive stress is small, and the substrate is less likely to be distorted or excessive pressure is applied. Further, if the surface of the carbon fiber oriented heat conductive layer is exposed on the surface of the heat conductive sheet, the heat conductive sheet can be easily fixed to the heat generating body or the heat radiating body and has excellent workability.
  • the carbon fiber oriented heat conductive layer has tackiness when laminated with the insulating heat conductive layer, it can be easily integrated with the insulating heat conductive layer without providing an adhesive layer. Therefore, there is no cost for providing the adhesive layer, and there is no concern that the thermal conductivity is lowered by the adhesive layer.
  • the insulating heat conductive layer is a layer formed by curing a mixed composition in which an insulating heat conductive filler is blended into a liquid polymer composition serving as a polymer matrix, and has an insulating property.
  • the insulating property is imparted to the heat conductive sheet laminated with the carbon fiber oriented heat conductive layer.
  • the insulating heat conductive layer preferably has a predetermined dielectric breakdown voltage in order to impart insulation to the heat conductive sheet. Dielectric breakdown voltage means that when a sample having electrical insulation is sandwiched between two electrodes and then the voltage is gradually increased, the current increases rapidly, causing a part of the sample to melt and a hole to form or carbonize.
  • the dielectric breakdown voltage measured by using a withstand voltage tester (TOS8650, manufactured by Kikusui Electronics Co., Ltd.) based on JIS K6249 is 3 kV. / Mm or more is preferable, and 5 kV / mm or more is more preferable.
  • An insulating heat conductive layer in which an insulating heat conductive filler is blended into a polymer matrix is harder than a carbon fiber oriented heat conductive layer and has an E hardness of 70 according to a Japanese Industrial Standard JIS K-6253 type E hardness meter. It is below and it is preferable that it is 20 or more.
  • the insulating heat conductive layer When the hardness of the insulating heat conductive layer is softer than that of the carbon fiber oriented heat conductive layer, the insulating heat conductive layer may be excessively compressed during actual use and the insulating property may be impaired. On the other hand, when the hardness of the insulating heat conductive layer exceeds E hardness 70, the adhesion with the adherend deteriorates due to the increase in hardness, and there is a concern about an increase in thermal resistance.
  • the hardness of the insulating heat conductive layer is 20 or more in terms of E hardness, a strong insulating heat conductive layer can be obtained, and stable insulation can be maintained even when compressed. And since it has the softness
  • the thickness of the insulating heat conductive layer is preferably 0.15 to 1.5 mm, and more preferably 0.25 to 1.5 mm. If the thickness is less than 0.15 mm, a pinhole may be formed, and the insulating property may be impaired due to being too thin. On the other hand, when the thickness exceeds 1.5 mm, the influence of heat transfer inhibition by the insulating heat conductive layer may be increased. Moreover, if the thickness is 0.25 mm or more, the dielectric breakdown voltage is high and stable insulation can be obtained.
  • the thermal conductivity of the insulating heat conductive layer is preferably 2 W / m ⁇ K or more and less than 7 W / m ⁇ K, more preferably 5 W / m ⁇ K or more and less than 7 W / m ⁇ K. If the thermal conductivity is less than 2 W / m ⁇ K, the thermal conductivity of the thermal conductive sheet may be greatly reduced. On the other hand, if the amount is 7 W / m ⁇ K or more, the amount of the insulating heat conductive filler to be contained increases, so that the insulating heat conductive layer becomes brittle, and the insulation may be impaired by compression or deformation. By making it 5 W / m ⁇ K or more and less than 7 W / m ⁇ K, a decrease in thermal conductivity can be reduced.
  • the thermal conductivity of the insulating thermal conductive layer also indicates the thermal conductivity in the thickness direction.
  • the thermal conductivity in the thickness direction can be increased by orienting the long axis of the insulating heat conductive filler having shape anisotropy such as boron nitride in the thickness direction.
  • shape anisotropy such as boron nitride
  • the insulating heat conductive layer has an isotropic heat conductivity.
  • the polymer matrix and the additive can be made of the types of materials described in the carbon fiber oriented heat conductive layer.
  • the same polymer matrix as the polymer matrix employed for the carbon fiber oriented heat conductive layer can be used for the insulating heat conductive layer, in which case the chemical structure is the same. Therefore, it can be set as the heat conductive sheet excellent in the adhesiveness of a carbon fiber orientation heat conductive layer and an insulation heat conductive layer.
  • a polymer matrix made of a material different from the polymer matrix used for the carbon fiber oriented heat conductive layer can be used for the insulating heat conductive layer.
  • silicone is used for the layer on the side that comes into contact with the heat sink, and non-silicone material is used for the layer on the side that comes into contact with an electronic device such as a substrate.
  • the transpiration of molecular siloxane can be reduced.
  • the carbon fiber oriented heat conductive layer may be made of a material corresponding to each adherend, such as selecting a polymer matrix that easily adheres to each adherend according to the material of the adherend.
  • the insulating heat conductive layer is made of a material corresponding to each adherend.
  • the insulating thermal conductive filler is a material that imparts thermal conductivity to the polymer matrix in the insulating thermal conductive layer, and insulates the insulating material among the types of materials described in the carbon fiber oriented thermal conductive layer. It can also be used for the conductive layer.
  • aluminum oxide is preferable because of its high thermal conductivity and spherical shape
  • aluminum hydroxide is preferable because it can enhance the flame retardancy of the heat conductive sheet.
  • Spherical ones do not easily increase in viscosity and are easily filled with high viscosity.
  • Aluminum oxide and aluminum hydroxide are also preferable from the viewpoint of availability.
  • the average particle size of the insulating heat conductive filler is preferably 0.5 to 50 ⁇ m. When the average particle size exceeds 50 ⁇ m, the moldability is significantly lowered. On the other hand, a thermally conductive filler having an average particle size of less than 0.5 ⁇ m has a large specific surface area, so that its viscosity is likely to increase and it is difficult to fill it with a high degree. However, if there is no adverse effect on the fillability, a heat conductive filler of less than 0.5 ⁇ m may be included.
  • the insulating heat conductive filler is preferably added in the range of 300 to 2000 parts by mass, more preferably in the range of 500 to 2000 parts by mass with respect to 100 parts by mass of the polymer matrix. If it is less than 300 parts by mass, the thermal conductivity may be lowered. On the other hand, even if it exceeds 2000 parts by mass, the effect of increasing the thermal conductivity is poor, and on the contrary, the formability is lowered, so that it is difficult to form a thin insulating heat conductive layer. In the range of 500 to 1500 parts by mass, the heat conductivity is excellent, and the viscosity of the liquid composition before being cured to form an insulating heat conductive layer is also suitable.
  • the insulating heat conductive layer includes an insulating heat conductive filler and does not include carbon fiber powder, so that a sheet having high heat conductivity and high insulation can be obtained. Therefore, insulation can be imparted to the heat conductive sheet.
  • it is harder than the carbon fiber oriented heat conductive layer, but has a certain degree of softness. While it is easy to maintain the property, the adhesion to the adherend is also high.
  • a heat conductive sheet obtained by laminating a carbon fiber oriented heat conductive layer and an insulating heat conductive layer has the following properties.
  • the thermal conductivity of the heat conductive sheet is about 3 to 30 W / m ⁇ K, preferably 10 W / m ⁇ K or more. This is because if it is 10 W / m ⁇ K or more, it has thermal conductivity required as a thermal conductive sheet.
  • the preferred thermal conductivity of the carbon fiber oriented thermal conductive layer is 7 W / m ⁇ K to 30 W / m ⁇ K, and the preferred thermal conductivity of the insulating thermal conductive layer is 2 W / m ⁇ K to 7 W / m ⁇ K.
  • the difference in thermal conductivity between the two is preferably smaller. As the thermal conductivity difference increases, it tends to be difficult to increase the thermal conductivity of the thermal conductive sheet. Therefore, if the thermal conductivity difference of the carbon fiber orientation thermal conduction layer with respect to the insulating thermal conduction layer becomes too large, the carbon fiber orientation This is because even if the thermal conductivity of the thermal conductive layer is increased, the thermal conductivity of the thermal conductive sheet hardly changes. From this point of view, it is preferable that the thermal conductivity of the carbon fiber oriented thermal conductive layer is 5 times or less in terms of the ratio to the thermal conductivity of the insulating thermal conductive layer.
  • the thermal conductive sheet has the above-described thermal conductivity, but also has a predetermined insulating property.
  • the dielectric breakdown voltage of the thermally conductive sheet can also be set to 5 kV / mm or more by having an insulating heat conductive layer having a dielectric breakdown voltage of 5 kV / mm or more.
  • the ratio of the thickness of the carbon fiber oriented heat conductive layer to the thickness of the insulating heat conductive layer is such that when the thickness of the carbon fiber oriented heat conductive layer is 1, the thickness of the insulating heat conductive layer is in the range of 1 to 0.015. is there.
  • “Thickness of carbon fiber oriented thermal conductive layer”: “Thickness of insulating thermal conductive layer” 1: When the insulating thermal conductive layer is made thicker than 1: 1, the insulating thermal conductive layer is compared with the thermal conductivity of the thermal conductive sheet. There is a possibility that the contribution of the increase becomes greater and the thermal conductivity is lowered. On the other hand, if this ratio exceeds 1: 0.015 and the insulating heat conductive layer is thinned, the insulating property may be lowered, or the carbon fiber oriented heat conductive layer may be thick and the thermal resistance may be too high.
  • the manufacturing method of a heat conductive sheet As an example of the manufacturing method of a heat conductive sheet, there exists the method of manufacturing a carbon fiber orientation heat conductive layer and an insulation heat conductive layer separately, and bonding them.
  • a liquid polymer composition, a carbon fiber powder, and a mixed composition containing a heat conductive filler are placed in a magnetic field, and the carbon fiber powder is placed along the magnetic field.
  • the magnetic field alignment manufacturing method include obtaining a carbon fiber alignment heat conductive layer by curing the polymer composition after the alignment.
  • Each component constituting the mixed composition in which the carbon fiber powder and the heat conductive filler are uniformly dispersed in the liquid polymer composition is 75 to 150 masses of the carbon fiber powder with respect to 100 mass parts of the polymer composition. And 250 to 800 parts by mass of the thermally conductive filler.
  • this addition ratio is converted to volume%, it corresponds approximately to 10 to 25 volume% of carbon fiber powder and 25 to 60 volume% of heat conductive filler with respect to 30 to 50 volume% of the polymer composition. Additives and the like can be appropriately added to this.
  • the viscosity of the mixed composition is preferably 10 to 300 Pa ⁇ s. If it is less than 10 Pa ⁇ s, the carbon fiber powder or the thermally conductive filler may be precipitated, and if it exceeds 300 Pa ⁇ s, the fluidity is too low and the carbon fiber powder is not oriented in the magnetic field, or it takes too much time for orientation. It is. However, in some cases, the heat conductivity can be reduced to less than 10 Pa ⁇ s by using a thermally conductive filler that is difficult to settle or by combining an additive such as an anti-settling agent.
  • examples of the magnetic force lines generating source for applying the magnetic force lines include superconducting magnets, permanent magnets, electromagnets, coils, and the like.
  • Superconducting magnets are preferable in that a magnetic field with high magnetic flux density can be generated.
  • the magnetic flux density of the magnetic field generated from these lines of magnetic force is preferably 1 to 30 Tesla. If the magnetic flux density is less than 1 Tesla, it becomes difficult to orient the carbon fiber powder. On the other hand, a magnetic flux density exceeding 30 Tesla is difficult to obtain practically.
  • the molded body obtained in the magnetic field orientation manufacturing method may be used as it is as a carbon fiber orientation heat conductive layer, or may be sliced or cut into a final shape.
  • a carbon fiber orientation heat conductive layer formed with a mold an extremely thin skin layer made of a polymer matrix may be formed on the surface of the sheet. This skin layer has an effect of suppressing the dropping of the carbon fiber powder and the heat conductive filler.
  • a preliminary sheet made of a thin plate by applying a shearing force to the mixed composition is manufactured, and a laminated block in which a plurality of these sheets are laminated and cured is manufactured.
  • a laminated slice manufacturing method in which the laminated block is cut.
  • a carbon fiber powder, a heat conductive filler, and various additives as necessary are mixed in a liquid polymer composition and stirred, and a mixed composition in which the mixed solid is uniformly dispersed is prepared.
  • the mixed composition preferably has a relatively high viscosity of 10 to 1,000 Pa ⁇ s so that a shearing force is applied when it is stretched into a sheet form.
  • the mixture composition is stretched flat while applying a shearing force to be formed into a sheet shape.
  • a shearing force By applying a shearing force, the carbon fiber powder can be oriented in the shearing direction.
  • a sheet forming means for example, a coating applicator such as a bar coater or a doctor blade, or a method of applying the mixed composition on the base film by extrusion molding or ejection from a nozzle can be used.
  • the sheet thickness at this time is preferably about 50 to 250 ⁇ m.
  • a preliminary sheet can be obtained. In this preliminary sheet, the carbon fiber powder is oriented in one direction within the plane of the sheet.
  • the mixed composition is used by using an appropriate curing means for curing the polymer composition such as ultraviolet irradiation or hot pressing. Is cured to form a laminated block. Finally, a laminated block is cut
  • the first magnetic field orientation manufacturing method and the second laminated slice manufacturing method are compared.
  • the laminated slice manufacturing method it is difficult to produce a flexible and thin carbon fiber oriented heat conductive layer.
  • the OO hardness is about 50 or less, even if a blade that is as sharp as possible is used, the sheet is too soft, so that the deformation of the sheet is large due to the pressing force by slicing, and it is difficult to obtain a high-quality thin film sheet.
  • the method of freezing is effective, for example, for acrylic gels
  • the hardness when slicing cannot be improved in a sheet using silicone as a polymer matrix because the hardness hardly changes even when frozen at ⁇ 40 °. .
  • It can be hardened by cooling to a lower temperature (actually to about -60 °), but a special device is required to cool it to a lower temperature beyond -40 °, and it is cooled by frictional heat at the time of slicing. In practice, it is difficult to adopt this, taking into account the fact that it is obstructed.
  • the heat conductive sheet is generally used after being compressed by about 10 to 40% for the purpose of surely adhering adherends and lowering the heat resistance. At this time, if the heat conductive sheet is flexible, the stress for compression becomes small, so that the substrate as the adherend is less likely to be distorted by the stress. However, in the laminated slice manufacturing method, since the hardness is limited, it is difficult to obtain a very flexible heat conductive sheet.
  • the magnetic field orientation manufacturing method does not include a bonding surface on which a plurality of sheets are bonded, and therefore, the problem that the bonding surface easily peels does not occur. Furthermore, when it is laminated with the insulating heat conductive layer, it is preferable that the surface is sticky, but such a sticky surface is easily formed. Therefore, it is preferable to manufacture by the magnetic field orientation manufacturing method for the reasons as described above.
  • the carbon fiber powder and the heat conductive filler are exposed on the cut surface by slicing or cutting on a plane perpendicular to the orientation direction. Since the thermally conductive filler is in contact with the adherend over a wide area, the thermal conductivity can be increased.
  • a mixed composition containing a liquid polymer composition and a heat conductive filler is prepared, and then the polymer composition is cured.
  • Each component constituting the mixed composition preferably contains 300 to 2000 parts by mass of a thermally conductive filler with respect to 100 parts by mass of the polymer composition.
  • this addition ratio is converted to volume%, it corresponds to approximately 50 to 90 volume% of the heat conductive filler in the polymer composition. Additives and the like can be appropriately added to this.
  • Examples of the method for forming the insulating heat conductive layer include a bar coater method, a doctor blade method, an extrusion molding method (T-die method, etc.), a calendar molding method, a press molding method, and a casting method. Therefore, it is preferable that the viscosity of the mixed composition be within a range where a thin film can be formed by these methods.
  • the bonding between the carbon fiber alignment heat conductive layer and the insulating heat conductive layer can be performed by bonding as long as at least one of the carbon fiber alignment heat conductive layer and the insulating heat conductive layer has adhesiveness derived from the polymer matrix. Can be integrated. From the viewpoint of this bonding, it is preferable that both the carbon fiber orientation heat conductive layer and the insulating heat conductive layer have adhesiveness. Since both the carbon fiber orientation heat conduction layer and the insulating heat conduction layer have a predetermined softness, the surfaces are often sticky enough to be bonded together, but in the absence of such stickiness Can also be laminated via an adhesive or the like.
  • a carbon fiber oriented heat conductive layer is first formed into a sheet shape, and a mixed composition to be an insulating heat conductive layer is applied thereon, and then the polymer composition is applied. There is a method of curing. According to this manufacturing method, since the insulating heat conductive layer is cured on the surface of the carbon fiber oriented heat conductive layer, the procedure of bonding them together can be omitted.
  • an insulating heat conductive layer is first formed into a sheet shape, and a mixed composition that becomes a carbon fiber alignment heat conductive layer is applied thereon, and then carbon is formed by a magnetic field alignment manufacturing method.
  • the heat conductive sheet shown as the second embodiment is a sheet-like heat conductive sheet in which insulating heat conductive layers are laminated on both surfaces of a carbon fiber oriented heat conductive layer. According to this embodiment, since the carbon fiber orientation heat conductive layer containing the carbon fiber which is electroconductive powder is pinched
  • a thermally conductive sheet shown as a third embodiment is a sheet-like thermally conductive sheet in which carbon fiber oriented thermally conductive layers are laminated on both sides of an insulating thermally conductive layer. If the carbon fiber oriented heat conductive layer is produced by the above-mentioned laminated slice manufacturing method, or the surface of the carbon fiber oriented heat conductive layer is sliced or cut to expose the carbon fiber powder or the heat conductive filler, the surface tack However, it is possible to obtain a thermally conductive sheet having both surfaces having good slipperiness.
  • each embodiment can be combined within a range where there is no problem, and for example, the two heat conductive sheets shown in the first embodiment can be stacked.
  • Carbon fiber orientation heat conductive layer 1 It is an addition reaction type silicone as a liquid polymer composition, and a mixture of alkenyl group-containing polyorganosiloxane (main agent) and organohydrogenpolysiloxane (curing agent) (specific gravity: 1.0) is mixed with carbon fiber powder (average Fiber length: 100 ⁇ m, specific gravity: 2.2), spherical aluminum oxide (specific gravity: 4.0) having a particle size of 3 ⁇ m and an aspect ratio of approximately 1 as the heat conductive filler 1, and particles as the heat conductive filler 2 Spherical aluminum oxide (specific gravity: 4.0) having a diameter of 10 ⁇ m and an aspect ratio of approximately 1 was blended in the proportions shown in Table 1 (each expressed in parts by mass), and mixed and stirred so that the composition became uniform. Then, defoaming was performed to prepare a mixed composition for the carbon fiber oriented heat conductive layer 1. In addition, the carbon fiber powder and the heat conductive filler used what surface-treated with the silane
  • this mixed composition was molded into a sheet by mold molding. And it left still for 10 minutes in the magnetic field of 8 Tesla by a superconducting magnet so that a magnetic force line might be applied to the thickness direction of a sheet
  • This carbon fiber oriented heat conductive layer 1 was prepared as a test piece having a thickness of 2.0 mm and 10.0 mm.
  • the average particle diameter of the heat conductive filler indicates the volume average particle diameter of the particle size distribution measured by a laser diffraction scattering method (JIS R1629).
  • JIS R1629 The aspect ratio of the thermally conductive filler is observed with an electron microscope.
  • the aspect ratio of the heat conductive fillers 1 and 2 and the heat conductive filler 3 described later was approximately 1.0.
  • the carbon fiber aligned heat conductive layers 2 to 4 were prepared in the same manner as the carbon fiber aligned heat conductive layer 1 by changing the composition of each component in the mixed composition when the carbon fiber aligned heat conductive layer 1 was manufactured. .
  • Table 1 shows the composition (parts by mass) of each component in the mixed composition to be the carbon fiber oriented heat conductive layers 2 to 4.
  • the carbon fiber oriented heat conductive layers 2 to 4 were also prepared as test pieces having thicknesses of 2.0 mm and 10.0 mm.
  • Insulating heat conduction layer Insulating heat conductive layers 1 to 8 shown below were produced.
  • ⁇ Insulating heat conductive layer 1> The same addition reaction type silicone (main agent and curing agent) as that used for the carbon fiber oriented heat conductive layer 1 as a liquid polymer composition, and the same particles as the heat conductive filler 1 as an insulating heat conductive filler Spherical aluminum oxide having a diameter of 3 ⁇ m and an aspect ratio of approximately 1 (specific gravity: 4.0) and a spherical aluminum oxide having a particle diameter of 40 ⁇ m and an aspect ratio of approximately 1 as the insulating thermal conductive filler 3 (specific gravity: 4. 0) were mixed in the proportions shown in Table 2 (respectively expressed in parts by mass), stirred and mixed, and then defoamed to prepare a mixed composition for the insulating heat conductive layer 1.
  • the insulating heat conductive filler was also subjected to surface treatment with a silane coupling agent in advance. Subsequently, this mixed composition was molded into a sheet by mold molding and heated at 120 ° C. for 30 minutes to obtain an insulating heat conductive layer 1.
  • This insulating heat conductive layer 1 was produced as each test piece having a thickness of 0.10 mm, 0.15 mm, 0.25 mm, 0.50 mm, 0.75 mm, and 10.0 mm.
  • Insulating heat conductive layers 2 to 8 were produced in the same manner as the insulating heat conductive layer 1 by changing the composition of the mixed composition at the time of manufacturing the insulating heat conductive layer 1 to the composition (parts by mass) shown in Table 2. .
  • the plasticizer added to the insulating heat conductive layers 4 and 5 is dimethylpolysiloxane (silicone oil) (viscosity 100 mPa ⁇ s).
  • the insulating heat conductive layers 2 to 8 were prepared as test pieces having thicknesses of 0.5 mm and 10.0 mm, but the insulating heat conductive layer 6 was also prepared as test pieces having thicknesses of 0.25 mm and 0.75 mm.
  • thermal conductive sheet The following heat conductive sheets 1 to 21 were prepared.
  • the carbon fiber-oriented heat conductive layer 1 without an insulating heat conductive layer was used as a heat conductive sheet 20.
  • a heat conductive sheet 21 is formed by laminating a carbon film oriented heat conductive layer 1 and a polyimide film (thermal conductivity is 0.16 W / m ⁇ K, thickness is 50 ⁇ m) as a comparison with the insulating heat conductive layer. .
  • the penetration was measured in order to use it as an index of hardness different from the above hardness. More specifically, each test cut into 10 mm in length ⁇ 10 mm in width using a probe for insertion with a cylindrical projection having a diameter of 0.5 mm using a thermomechanical analyzer (manufactured by Shimadzu Corporation, TMA-50) After setting the piece, set the load rate to 1g / min and target load to 0.5g at 23 ° C for 3 minutes (ie, the load increases from 0 to 0.5g in the first 30 seconds, from 30 seconds to 3 minutes) The probe subsidence depth (which is constant at 0.5 g) was measured. The results are shown in Tables 3-5.
  • FIG. 1 shows a comparison of a measured penetration value and a measured E hardness value from a test piece having the same configuration as that of the test piece and a thickness of 10.0 mm. More specifically, the penetration value measured for the test pieces having a thickness of 2 mm and 0.5 mm and the E hardness value of the test piece having the same configuration as the test piece and a thickness of 10.0 mm are shown on the graph. The relational expressions for each thickness (two curves in FIG. 1) are derived from these plots. As shown in FIG. 1, the penetration is affected by the thickness of the test piece. If such a relational expression is derived, this relational expression can be used by measuring the penetration of a specimen having a certain thickness. Thus, E hardness can be estimated.
  • the E hardness is obtained by substituting the actually measured penetration into the two relational expressions shown in FIG. Even if the thickness is other than 2 mm or 0.5 mm, if a relational expression for a specific length is created in advance in the same manner as both relational expressions, the measured penetration is substituted into the relational expression. Thus, E hardness can be estimated.
  • the penetration of the heat conductive sheet in which the carbon fiber oriented heat conductive layer and the insulating heat conductive layer are laminated is the same as that of the heat conductive sheet. It is a value between the degree of penetration and the penetration of a test piece made of an insulating heat conductive layer alone with the same thickness as the heat conductive sheet. The value between these values is also different for the penetration measured from the carbon fiber oriented thermal conductive layer side and the penetration measured from the insulating thermal conductive layer side, and the insulating thermal conductive layer is harder than the carbon fiber oriented thermal conductive layer. For example, the penetration measured from the insulating heat conductive layer side is a lower (hard) value.
  • the penetration is measured from both the front and back surfaces of a test piece having a thickness of Lmm
  • the penetration on the front side is A ⁇ m
  • the penetration on the back side is B ⁇ m
  • the layer on the front surface side is a layer having an E hardness that is softer than the E hardness converted from the penetration with a thickness of Lmm.
  • this is a layer having an E hardness that is harder than the E hardness converted from the penetration when the thickness is L mm.
  • a test piece cut to a length of 10 mm and a width of 10 mm is sandwiched between a heat generating substrate (heat generation amount Q: 25 W) and a heat sink (“FH60-30” manufactured by Alpha Co., Ltd.), and a constant load (2 kgf / cm 2 ) is applied to the heat sink. ) was added.
  • a cooling fan air flow 0.01 kg / sec, wind pressure 49 Pa
  • the heating substrate is energized with the cooling fan activated.
  • Thermal resistance value (° C./W) Thickness in the heat passage direction (m) / (Heat passage cross-sectional area (m 2 ) ⁇ Thermal conductivity (W / m ⁇ K)) Equation (3)
  • the values of thermal conductivity thus obtained are shown in Tables 3 to 5.
  • Dielectric breakdown voltage which is an index for evaluating insulation, was measured.
  • the voltage is gradually increased with a 200 g load applied after the test piece is sandwiched between the two electrodes, the current increases rapidly, and a part of the test piece melts, causing a hole or carbonization.
  • the voltage at this time is the dielectric breakdown voltage. More specifically, the dielectric breakdown voltage was measured using a withstand voltage tester (TOS8650, manufactured by Kikusui Electronics Co., Ltd.) based on JIS K6249. Five test pieces were prepared and tested five times. Tables 3 to 5 show average values of 5 times.
  • the heat conductive sheet 5 in which the insulating heat conductive layer having the hardness of E18 is laminated has an average value of the dielectric breakdown voltage of 4 kV / mm, but the measurement result is 0 kV / mm only once out of 5 times. became.
  • stacked the insulating heat conductive layer of hardness E25, E40, E70, and E80 all had a dielectric breakdown voltage exceeding 5 kV / mm. From these results, it was found that the softer the insulating heat conductive layer, the higher the thermal conductivity.
  • the heat conductive sheets 7 and 8 in which the insulating heat conductive layers of various hardnesses are laminated on the carbon fiber oriented heat conductive layer whose hardness is changed to E60 and E75 are seen, the heat conductive sheets 7 and 8 Had a breakdown voltage exceeding 5 kV / mm. Moreover, about heat conductivity, the heat conductivity of the heat conductive sheet 8 was a little low.
  • the heat conductive sheet 2 whose dielectric breakdown voltage did not reach the desired value is a combination in which the hardness of the insulating heat conductive layer is softer than that of the carbon fiber oriented heat conductive layer. As a result, it was observed that the insulating heat conductive layer protruded and spread out. From this, it can be seen that if the insulating heat conductive layer is softer than the carbon fiber oriented heat conductive layer, the insulating heat conductive layer is excessively compressed when compressed, resulting in a decrease in insulation.
  • the hardness of the insulating heat conductive layer is somewhat harder than that of the carbon fiber oriented heat conductive layer, but it was quite flexible with E18, so that it was considered weak and brittle in strength.
  • the thermal conductivity of the carbon fiber oriented thermal conductive layer is E75, and the thermal conductivity of the insulating thermal conductive layer is E80, the thermal conductivity tends to be low. It can be seen that the hardness of the oriented heat conductive layer is preferably E60 or less, and the hardness of the insulating heat conductive layer is preferably E70 or less.
  • the heat conductive sheets 1 and 9 to 13 in which the carbon fiber oriented heat conductive layer and the insulating heat conductive layer having various heat conductivities are combined will be compared.
  • the thermal conductive sheets 1, 9, and 10 have thermal conductivity of 5.0 W / m ⁇ K and 1.5 W / m ⁇ on the carbon fiber oriented thermal conductive layer with thermal conductivity of 12.9 W / m ⁇ K, respectively. It is a heat conductive sheet in which an insulating heat conductive layer of K, 2.5 W / m ⁇ K is laminated.
  • the heat conductive sheet 1 laminated with an insulating heat conductive layer having a thermal conductivity of 5.0 W / m ⁇ K not only has high heat conductivity, but also has a decrease in heat conductivity due to the laminated heat conductive layer. It can be seen that it has a thermal conductivity that is small and very close to the thermal conductivity of the carbon fiber oriented thermal conductive layer. This means that the thermal conductivity is 1.5 W / m ⁇ K, 2.5 W / m ⁇ K, and 5.0 W / m for the carbon fiber oriented thermal conductive layer having a thermal conductivity of 11.5 W / m ⁇ K, respectively. The same applies to the heat conductive sheets 11 to 13 each having the K insulating heat conductive layer laminated.
  • the heat conductive sheets 14 and 15 are obtained by laminating insulating heat conductive layers having thicknesses of 0.10 mm and 0.15 mm.
  • the thermal conductive sheet 15 having a thickness of the insulating heat conductive layer of 0.15 mm was provided with a dielectric breakdown voltage of 3.0 kV / mm, whereas the thermal conductive sheet 14 having a thickness of 0.10 mm had a dielectric breakdown voltage. It decreased to 1.5 kV / mm. This shows that the thickness of the insulating heat conductive layer is preferably 0.15 mm or more.
  • the heat conductive sheets 16 to 19 and the heat conductive sheets 1 and 9 have a heat conductivity of 1.5 W / m on a carbon fiber oriented heat conductive layer having a heat conductivity of 12.9 W / m ⁇ K and a thickness of 2 mm.
  • the insulating heat conductive layer of m ⁇ K or 5.0 W / m ⁇ K is a heat conductive sheet in which the thickness is changed to 0.25 mm, 0.50 mm, and 0.75 mm.
  • FIG. 2 is a graph in which the thicknesses of these insulating heat conductive layers are plotted on the x axis and the thermal conductivity of the heat conductive sheet is plotted on the y axis.
  • the thermal conductivity of the insulating thermal conductive layer is taken as the x axis, and the thickness of each insulating thermal conductive layer at which the thermal conductivity of the thermal conductive sheet obtained here becomes 11.0 W / m ⁇ K is taken as the y axis.
  • T (y) (unit: mm) The following equation (1) representing the relationship between 0 ⁇ T ⁇ 0.20W ⁇ 0.19 Expression (1)
  • ⁇ Dielectric breakdown voltage> The dielectric breakdown voltage was evaluated as “ ⁇ ” for 3 kV / mm or more and “x” for less than 3 kV / mm. The results are also shown in Tables 3-5.
  • the values of the decrease rate of the thermal conductivity thus obtained are shown in Tables 3 to 5.
  • the value is less than 15%, the deterioration of the thermal conductivity is small compared to the case of the carbon fiber oriented thermal conductive layer alone, and the adverse effect of providing the insulating thermal conductive layer can be suppressed. 15% or more and less than 35% can suppress the adverse effect of the provision of the insulating heat conductive layer to be somewhat “ ⁇ ”, and 35% or more is more heat-resistant than the carbon fiber oriented heat conductive layer alone. It was evaluated as “x” because of a significant decrease in conductivity. The results are also shown in Tables 3 to 5.
  • the heat conductive sheet can be fixed to the adherend by having adhesiveness on the surface, and the mounting operation to the electronic device becomes easy. Therefore, the possibility of fixing to the adherend was evaluated from the viewpoint of handleability.
  • the test piece of the heat conductive sheet that was peeled off and dropped within 10 seconds was evaluated as “X” because the handleability was poor, and the test piece that did not fall was evaluated as “ ⁇ ”.
  • the insulating heat conductive layer side of the heat conductive sheet 3 is “ ⁇ ” and the handleability is slightly bad, and the insulating heat conductive layer side of the heat conductive sheet 4 is “ ⁇ ”. ", And the result did not adhere to the adherend. From this, it is understood that the hardness of the insulating heat conductive layer is preferably E70 or less.
  • the evaluation results of the handling properties of the heat conductive sheets 7 and 8 are slightly worse in the heat conductive sheet 7 having a hardness of E60 on the carbon fiber oriented heat conductive layer side, and in the heat conductive sheet 8 having a hardness of E75. As a result, the heat conductive sheet did not adhere to the adherend. This shows that the hardness of the carbon fiber oriented heat conductive layer is preferably E70 or less.
  • the heat conductive sheet in which the carbon fiber oriented heat conductive layer and the insulating heat conductive layer are laminated is Their two or more characteristics are not bad. Further, a heat conductive sheet having a predetermined hardness, thickness, heat conductivity, etc. is a heat conductive sheet having excellent properties such as good handleability and heat conductivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

絶縁性を備えつつ熱伝導性が高い熱伝導性シートを提供すること。 高分子マトリクスに繊維軸がシートの厚み方向に配向している炭素繊維粉末を含む炭素繊維配向熱伝導層と、高分子マトリクスに絶縁性熱伝導性充填材が分散しており熱伝導性と絶縁性とを備える絶縁熱伝導層と、を積層した熱伝導性シートとした。この熱伝導性シートは高い熱伝導性と、絶縁性を併せ持ち、また、被着体に固定し易く取扱い性にも優れている。

Description

熱伝導性シート
 本発明は、発熱体と放熱体の間に配置して用いられる熱伝導性シートに関する。
 コンピュータや自動車部品等の電子機器では、半導体素子や機械部品等の発熱体から生じる熱を放熱するためヒートシンクなどの放熱体が用いられており、この放熱体への熱の伝達効率を高める目的で発熱体と放熱体の間に熱伝導性シートを配置することがある。こうした熱伝導性シートとして、例えば、炭素繊維を熱伝導材として充填し配向させた熱伝導性シートが特開2005-146057号公報(特許文献1)に開示されている。
 ところで、このような炭素繊維を配向した熱伝導性シートは厚み方向に高い熱伝導性を有しているものの、炭素繊維が導電性を有しているため高い絶縁性が要求される用途へは使用することができなかった。こうした問題に対して、炭素繊維を熱伝導材として充填し配向させた熱伝導性シートの一方面に電気絶縁層用組成物でなる電気絶縁層を形成した熱伝導性シートが特開2001-315244号公報(特許文献2)に開示されている。
特開2005-146057号公報 特開2001-315244号公報
 しかしながら、炭素繊維を配向させた熱伝導性シートに電気絶縁層を形成した前記熱伝導性シートは、電気絶縁層を設けなかった熱伝導性シートと比較すると熱伝導性が大きく損なわれるため、高い熱伝導性が求められる用途には採用し難いという問題があった。また、硬化した電気絶縁層は表面が硬く被着体への固定が困難で取扱い性が悪いという問題もあった。
 そこで本発明は、上記問題点に鑑みてなされたもので、絶縁性を備えつつ熱伝導性が高い熱伝導性シートの提供を目的とする。また本発明は、取扱い性にも優れた熱伝導性シートの提供を目的とする。
 上記目的を達成する本発明の熱伝導性シートは以下のとおり構成される。
 即ち、高分子マトリクスに繊維軸がシートの厚み方向に配向している炭素繊維粉末を含む炭素繊維配向熱伝導層と、高分子マトリクスに絶縁性熱伝導性充填材が分散しており熱伝導性と絶縁性とを備える絶縁熱伝導層と、を積層した熱伝導性シートである。
 高分子マトリクスに繊維軸がシートの厚み方向に配向している炭素繊維粉末を含む炭素繊維配向熱伝導層を備えるため、シートの厚み方向の熱伝導性に優れるが、シートの側面方向へは熱を伝えにくく、熱伝導性の異方性に優れる。
 鱗片状黒鉛粉末を配向した熱伝導性シートと比較すると、鱗片黒鉛粉末を用いた場合は一方向に限定されない鱗片黒鉛粉末の面の広がり方向に熱伝導性を発揮するのに対して、炭素繊維粉末を用いた場合は、面方向ではない、繊維軸の軸方向への熱伝導性を高めることができる。そのため、繊維軸方向以外の方向への熱伝導を抑制することができる。
 また、鱗片状黒鉛粉末を用いた場合は、鱗片状黒鉛粉末の面と面とが重なり黒鉛粉末どうしが接触する確率が高いため、導電性を高める要因となっていた。一方、炭素繊維粉末を用いた場合は、炭素繊維粉末どうしは接触する確率が低く、むしろ熱伝導性充填材を介して接触するため、導電性が低いという特徴がある。
 そして、高分子マトリクスに絶縁性熱伝導性充填材が分散しており熱伝導性と絶縁性とを備える絶縁熱伝導層を備えるため、炭素繊維配向熱伝導層のみからなる熱伝導性シートと比較して熱伝導性を大きく低下させることなく、絶縁性を高めることができる。そのため、高い絶縁性が要求される用途に対して好適に利用することができる。
 前記高分子マトリクスは、液状シリコーンの主剤と硬化剤の硬化体からなるものとすることができる。
 高分子マトリクスを液状シリコーンの主剤と硬化剤の硬化体からなる熱伝導性シートとすれば、硬化させて高分子マトリクスとする前の高分子組成物の段階では粘度を低く抑えることができ、炭素繊維粉末や熱伝導性充填材の充填を容易に行うことができる。そのため、配向性能の高い熱伝導性シートとすることができる。
 炭素繊維配向熱伝導層は、日本工業規格であるJIS K6253のタイプE硬度計によって測定される値(「E硬度」という)が5~60であり、絶縁熱伝導層は、炭素繊維配向熱伝導層よりも硬く、且つE硬度が70以下であり、厚みが0.15~1.5mmである熱伝導性シートとすることができる。
 炭素繊維配向熱伝導層を日本工業規格であるJIS K6253のタイプE硬度計によって測定されるE硬度を5~60としたため、圧縮性に優れ、被着体へ密着させることができるため、熱抵抗を低く抑えて高い熱伝導性をもたらすことができる。そして、絶縁熱伝導層は炭素繊維配向熱伝導層よりも硬いため、圧縮時に絶縁熱伝導層が過剰に圧縮されることなく絶縁性を維持し易い。その絶縁熱伝導層の硬さは、E硬度で70以下であるため、被着体との密着性にも優れ、硬すぎた場合に密着性が悪化して熱伝導性も悪化するといった状態になり難い。さらに、絶縁熱伝導層の厚みが0.15~1.5mmであるため、薄すぎた場合に生じ易いピンホールの発生を抑え、厚すぎた場合に生じ易い熱伝達阻害を起こし難い。
 前記絶縁熱伝導層の硬さはE硬度で20以上とすることができる。
 絶縁熱伝導層の硬さをE硬度で20以上とすれば、圧縮時にも絶縁熱伝導層が過剰に潰されることなく熱伝導性シートの絶縁性が安定する。硬さの上限がE硬度で70以下であるため、被着体へ追従する柔軟性も合わせ持ち熱抵抗を低くすることができる。
 前記炭素繊維配向熱伝導層のシートの厚み方向の熱伝導率が7W/m・K以上で30W/m・K以下であり、前記絶縁熱伝導層の熱伝導率が2W/m・K以上で7W/m・K未満である熱伝導性シートとすることができる。
 熱伝導率が7W/m・K以上で30W/m・K以下の炭素繊維配向熱伝導層と、熱伝導率が2W/m・K以上で7W/m・K未満の絶縁熱伝導層とすることで、熱伝導性シートの熱伝導率を炭素繊維配向熱伝導層の熱伝導率に近い値にすることができる。そのため、絶縁熱伝導層を付加することによる熱伝導性シートの熱伝導率の低下を低く抑えることができる。
 絶縁熱伝導層の熱伝導率は、5W/m・K以上であることが好ましい。
 熱伝導率を5W/m・K以上とすれば、絶縁熱伝導層の厚みを1.5mm程度にまで厚膜にしても、熱伝導性シートの熱伝導率の低下を抑え、高い熱伝導性を維持することができる。
 絶縁熱伝導層の熱伝導率(W)(単位:W/m・K)と厚み(T)(単位:mm)とが、次の式(1)の関係を満たす熱伝導性シートとすることができる。
 0<T≦0.20W-0.19 ・・・ 式(1)
 絶縁熱伝導層について、熱伝導率(W)と厚み(T)とが式(1)を満たすものとすれば、熱伝導率の高い熱伝導性シートとすることができる。
 前記絶縁熱伝導層の厚みは炭素繊維配向熱伝導層の厚みよりも薄くすることができる。
 絶縁熱伝導層の方の厚みを薄くすることで、熱伝導性シートの熱伝導率の低下を抑えることができる。また、相対的に厚くなる炭素繊維配向熱伝導層を確実に圧縮して熱抵抗を低下させることができる。
 前記炭素繊維配向熱伝導層にはアスペクト比が2以下の熱伝導性充填材を含ませることができる。
 炭素繊維配向熱伝導層にアスペクト比が2以下の熱伝導性充填材を含むことで、炭素繊維粉末を単独で充填させた場合に比べて、炭素繊維粉末とそれ以外の熱伝導性充填材の両者を高充填させることができる。そのため、高い熱伝導性を得ることができる。
 本発明の熱伝導性シートによれば、高い熱伝導性とともに絶縁性を併せ持つ熱伝導性シートである。また、本発明の熱伝導性シートによれば、被着体に固定し易く取扱い性に優れている。
針入度とE硬度の関係を示すグラフ図である。 熱伝導性シートの熱伝導率と絶縁熱伝導層の厚みとの関係を示すグラフ図である。 絶縁熱伝導層の厚みと熱伝導率の相関を示すグラフ図である。
 実施形態に即してさらに詳しく説明する。なお、各実施形態において同一の材質、組成、製法、作用、効果等については重複説明を省略する。
 第1実施形態: 第1実施形態として示す熱伝導性シートは、シート状に形成された炭素繊維配向熱伝導層と絶縁熱伝導層とが積層した構成からなる。
 <炭素繊維配向熱伝導層>
 炭素繊維配向熱伝導層は、高分子マトリクスとなる液状の高分子組成物に、炭素繊維粉末や、炭素繊維粉末以外の熱伝導性充填材を配合した混合組成物を硬化してシート状に形成した層であり、炭素繊維粉末は、その繊維軸が高分子マトリクス中でシートの厚み方向に配向している。この炭素繊維粉末の厚み方向の配向をより具体的に説明すると、シートの厚み方向に対して繊維軸のなす角度が30°未満の炭素繊維粉末の数の割合が50%を超える状態にあることをいう。
 炭素繊維配向熱伝導層の硬さは、日本工業規格であるJIS K6253のタイプE硬度計によって測定されるE硬度で5~60とすることが好ましい。
 E硬度が60を超える場合は、実際の使用時に、炭素繊維配向熱伝導層の圧縮性が悪化するため、積層した絶縁熱伝導層が過剰に圧縮されて絶縁熱伝導層が想定よりも薄厚になるまで潰されることや、その変形に伴う亀裂の発生などに起因して絶縁性が低下するおそれがある。絶縁熱伝導層をより硬質にすれば絶縁性の低下は抑制できるが、そうすると熱伝導性シート全体が硬くなり、発熱体や放熱体の形状への追従性が悪化し、発熱体や放熱体と熱伝導性シートとの密着性が低下して熱伝導性が低下するおそれがある。それに対してE硬度が60以下の場合には、絶縁熱伝導層に対する過剰圧縮のおそれが少なく、発熱体や放熱体の形状に沿って熱伝導性シートが良好に追従するため、発熱体や放熱体と熱伝導性シートとの密着性を十分に確保することができる。
 そうした一方で、E硬度が5未満の場合には、形状の保持が難しいことから圧縮により炭素繊維の配向が乱れ、熱伝導性が損なわれるおそれがある。E硬度が5以上であれば、形状が保持され易くなり取扱い性が向上する。
 なお、炭素繊維配向熱伝導層の硬さは、炭素繊維粉末や熱伝導性充填材の充填量を高めることによって硬くなるため、炭素繊維配向熱伝導層の硬さを好ましい範囲にするために、高分子マトリクスには炭素繊維配向熱伝導層としたときの所望の硬さよりも柔らかいものを選択する。
 炭素繊維配向熱伝導層の厚みは、0.25~10mmとすることが好ましい。厚みが0.25mm未満では、金型内で炭素繊維粉末を配向させる際に、金型によって炭素繊維粉末の回転のための空間が不十分になり、回転が阻害されることで配向が不十分となるおそれがある。一方、10mmを超える場合には、熱抵抗が大きくなるおそれがある。
 炭素繊維配向熱伝導層の厚み方向、即ち、炭素繊維粉末の配向方向の熱伝導率は、7W/m・K以上で30W/m・K以下の範囲とすることができる。熱伝導率は大きいほど良いが、絶縁熱伝導層の熱伝導率に対してその差が大きくなるに従って熱伝導性シートの熱伝導率を高め難くなる傾向がある。そのため、30W/m・Kを超えると絶縁熱伝導層に対する熱伝導率差が大きくなりすぎ、炭素繊維配向熱伝導層の熱伝導率を高めても、熱伝導性シートの熱伝導率がほとんど変わらなくなるからである。この熱伝導率は、後に説明する実験例の方法を用いて算出することができる。なお、本発明において単に熱伝導率という場合には、断りのない限りシートの厚み方向(炭素繊維粉末の配向方向)の熱伝導率をいうものとする。
 炭素繊維配向熱伝導層は、配向した炭素繊維粉末を含有するため導電性を備える。その導電性の指標としては、体積抵抗率が10~10Ω・cmであることが好ましい。導電性と熱伝導率は、ある程度相関があり、導電性が10~10Ω・cmの範囲にある炭素繊維配向熱伝導層は、高い熱伝導率を備えるためである。体積抵抗率は、炭素繊維配向熱伝導層を金メッキした金属板に挟み、初期厚みを10%に圧縮したときの抵抗値をテスターで測定して求めることができる。
 次に炭素繊維配向熱伝導層を構成する各成分について説明する。
 高分子マトリクス:
 高分子マトリクスは、樹脂やゴム等の高分子であり、好ましくは主剤と硬化剤のような混合系からなる液状の高分子組成物を硬化して形成したものとすることができる。したがってこの高分子組成物は、例えば、未架橋ゴムと架橋剤を含むものであったり、架橋剤を含む未架橋ゴムと架橋促進剤を含むものであったりすることができる。また、その硬化反応は常温硬化であっても熱硬化であっても良い。高分子マトリクスがシリコーンゴムであれば、アルケニル基含有オルガノポリシロキサンとオルガノハイドロジェンポリシロキサンなどが例示できる。また、ポリエステル系熱可塑性エラストマーであれば、ジオールとジカルボン酸とすることができ、ポリウレタン系熱可塑性エラストマーであれば、ジイソシアネートとジオールとすることができる。このような高分子組成物(硬化前高分子マトリクス)の中でも、硬化後の高分子マトリクスが特に柔軟であり、熱伝導性充填材の充填性が良い付加反応型のシリコーンゴムを用いることが好ましい。
 炭素繊維粉末:
 高分子マトリクスの中に含ませる炭素繊維粉末は、繊維状、棒状、針状等の炭素繊維粉末を含むものである。炭素繊維粉末はグラファイトの結晶面が繊維軸方向に連なっており、その繊維軸方向に極めて高い熱伝導率を備える。そのため、その繊維軸方向を所定の方向に揃えることで、特定方向の熱伝導率を高めることができる。
本発明で用いる炭素繊維は黒鉛化されたものであり、その原料としては、例えば、ナフタレン等の縮合多環炭化水素化合物、PAN(ポリアクリロニトリル)、ピッチ等の縮合複素環化合物等が挙げられるが、特にメソフェーズピッチを用いることが好ましい。メソフェーズピッチを用いることにより、後述する紡糸工程において、ピッチがその異方性により繊維軸方向に配向され、その繊維軸方向へ優れた熱伝導性を有する黒鉛化炭素繊維を得ることができる。このメソフェーズピッチは、紡糸可能ならば特に限定されるものではなく、一種を単独で用いても、二種以上を適宜組み合わせて用いてもよいが、メソフェーズピッチを単独で用いること、すなわち、メソフェーズピッチ含有量100%の黒鉛化炭素繊維が、高熱伝導化、紡糸性及び品質の安定性の面から最も好ましい。
 炭素繊維は、紡糸、不融化及び炭化の各処理を順次行い、所定の粒径に粉砕又は切断した後に黒鉛化したものや、炭化後に粉砕又は切断した後に黒鉛化したものを用いることができる。黒鉛化前に粉砕又は切断する場合には、粉砕で新たに表面に露出した表面において黒鉛化処理時に縮重合反応、環化反応が進みやすくなるため、黒鉛化度を高めて、より一層熱伝導性を向上させた黒鉛化炭素繊維を得ることができる。一方、紡糸した炭素繊維を黒鉛化した後に粉砕する場合は、黒鉛化後の炭素繊維が剛いため粉砕し易く、短時間の粉砕で比較的繊維長分布の狭い炭素繊維粉末を得ることができる。
 炭素繊維の繊維直径は、特に限定されないが、好ましくは5~20μmである。繊維直径は5~20μmの範囲が工業的に生産しやすく、得られる炭素繊維配向熱伝導層の熱伝導性を大きくすることができる。一方、繊維直径が5μmよりも小さく、或いは20μmよりも大きいと、生産性が低下する。
 炭素繊維の平均繊維長は、好ましくは10~500μm、より好ましくは15~200μm、特に好ましくは15~120μmである。平均繊維長が10μmより短いと、高分子マトリクス中において黒鉛化炭素繊維同士の接触が少なくなり、熱の伝達経路が不充分となって得られる炭素繊維配向熱伝導層の熱伝導性が低下する。一方、平均繊維長が500μmよりも長いと、炭素繊維が嵩高くなり、高分子マトリクス中に高充填することが困難になる。また、炭素繊維配向熱伝導層の導電性が高まるおそれがある。なお、上記の平均繊維長は、炭素繊維を顕微鏡で観察した粒度分布から算出することができる。
 また、炭素繊維の平均繊維長は、炭素繊維配向熱伝導層の厚さの50%以下が好ましく、且つ炭素繊維配向熱伝導層の厚みの80%を超える繊維長の炭素繊維の含有量が5質量%以下であることが好ましい。炭素繊維配向熱伝導層の厚みの80%を超える繊維長の炭素繊維の含有量が5質量%を超えると、熱伝導性シートを圧縮したときに、炭素繊維がその圧縮厚みを超える長さとなり、絶縁熱伝導層に大きく侵入するおそれがあるためである。絶縁熱伝導層に炭素繊維が侵入すれば、絶縁性を高めるための厚みが薄くなるため絶縁性が低下するおそれがあり、炭素繊維が絶縁熱伝導層を貫通すると、絶縁性が損なわれる。こうした意味から、炭素繊維の平均繊維長もまた炭素繊維配向熱伝導層の厚みの50%以下であれば、圧縮時にも炭素繊維配向熱伝導層の厚みを超える炭素繊維の量を少なくすることができる。また、こうした懸念を考慮すると、炭素繊維の粒度分布は狭い方が好ましく、熱伝導率を高めることができるという理由から、異なる粒度分布を備える複数の炭素繊維を混合して用いることが好ましい。
 また、炭素繊維粉末のアスペクト比は2を超えることが好ましい。アスペクト比が2以下では、炭素繊維粉末を特定方向に配向させることが困難で熱伝導性を高め難いためである。より好ましくはアスペクト比が5以上である。なお、ここでいうアスペクト比は炭素繊維粉末の「繊維の長さ/繊維の直径」の値である。
 炭素繊維の熱伝導率は、特に限定されないが、繊維軸方向における熱伝導率が、好ましくは400W/m・K以上、より好ましくは800W/m・K以上、特に好ましくは1000W/m・K以上である。
 炭素繊維粉末の含有量は、高分子マトリクス100質量部に対して75~150質量部であることが好ましい。75質量部未満では熱伝導性を高め難く、150質量部を超えると、混合組成物の粘度が高くなり配向性が悪くなるおそれがある。
 熱伝導性充填材:
 熱伝導性充填材は、炭素繊維配向熱伝導層において炭素繊維粉末とは別に含有されることが好ましく、炭素繊維粉末とともに高分子マトリクスに熱伝導性を付与する材料である。特にアスペクト比が2以下の熱伝導性充填材が含まれることが好ましい。
 炭素繊維粉末がシートの厚み方向に配向し、かつ好ましくはこれ以外の熱伝導性充填材、より好ましくはアスペクト比が小さい熱伝導性充填材を含むことで、配向した炭素繊維粉末の面どうしの隙間に熱伝導性充填材が好適に介在し、熱伝導率の高い炭素繊維配向熱伝導層が得られる。
 熱伝導性充填材には、例えば、金属、金属酸化物、金属窒化物、金属炭化物、金属水酸化物などの球状や不定形の粉末、球状黒鉛などが挙げられる。金属としては、アルミニウム、銅、ニッケルなど、金属酸化物としては、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、石英など、金属窒化物としては、窒化ホウ素、及び窒化アルミニウムなどを例示することができる。また、金属炭化物としては、炭化ケイ素が挙げられ、金属水酸化物としては、水酸化アルミニウムが挙げられる。これらの熱伝導性充填材の中でも、酸化アルミニウムやアルミニウムは、熱伝導率が高く、球状のものが入手しやすい点で好ましく、水酸化アルミニウムは入手し易く熱伝導性シートの難燃性を高めることができる点で好ましい。
 このような熱伝導性充填材は、アスペクト比が2以下であることが好ましい。アスペクト比が2を超えると、粘度が上昇しやすく高充填し難いためである。こうした理由から、熱伝導性充填材の形状は球状であることが好ましい。
 熱伝導性充填材の平均粒径は0.5~35μmであることが好ましい。平均粒径が35μmを超えると、炭素繊維粉末の大きさに近づきその炭素繊維粉末の配向を乱すおそれがある。一方、平均粒径が0.5μm未満の熱伝導性充填材は、比表面積が大きくなるため粘度が上昇し易く高充填し難くなる。但し、充填性に悪影響がない場合は、0.5μm未満の熱伝導性充填材を含んでもよい。熱伝導性充填材の平均粒径は、レーザ回折散乱法(JIS R1629)により測定した粒度分布の体積平均粒径で示すことができる。
 熱伝導性充填材は、高分子マトリクス100質量部に対して、250~800質量部の範囲で添加することが好ましく、350~700質量部の範囲で添加することがより好ましい。250質量部未満の場合には、炭素繊維粒子どうしの隙間に介在する量が不足し熱伝導性が悪くなるおそれがある。一方、800質量部を超えても、熱伝導性を高める効果が上がることがなくなり、かえって炭素繊維粉末による熱伝導を阻害するおそれがある。そして350~700質量部の範囲では、熱伝導性に優れ混合組成物の粘度も好適である。
 添加剤:
 熱伝導性シートとしての機能を損なわない範囲で種々の添加剤を含ませることができる。例えば、可塑剤、分散剤、カップリング剤、粘着剤などの有機成分を含んでも良い。またその他の成分として難燃剤、酸化防止剤、着色剤などを適宜添加してもよい。
 炭素繊維配向熱伝導層は、炭素繊維粉末とともに熱伝導性充填材を含むことで炭素繊維の含有量が比較的少ない柔軟性とシート表面のタック性に優れたシートとすることができる。そのため、発熱体と放熱体との間に挟んで加圧しても、圧縮応力が小さく、基板が歪んだり過剰な圧力がかかったりするおそれが低い。また、炭素繊維配向熱伝導層の表面を熱伝導性シートの表面に露出させれば、発熱体や放熱体に固定しやすく作業性に優れた熱伝導性シートとなる。さらに、絶縁熱伝導層と積層する際に炭素繊維配向熱伝導層がタック性を有しているため、接着層を設けることなく絶縁熱伝導層と一体化しやすい。よって、接着層を設けるコストがかからず、接着層によって熱伝導性が低下する懸念もない。
 <絶縁熱伝導層>
 絶縁熱伝導層は、高分子マトリクスとなる液状の高分子組成物に、絶縁性熱伝導性充填材を配合した混合組成物を硬化してシート状に形成した層であり、絶縁性を有し、炭素繊維配向熱伝導層と積層した熱伝導性シートに対して絶縁性を付与している。
 このように絶縁熱伝導層は熱伝導性シートに絶縁性を付与するため、所定の絶縁破壊電圧を備えていることが好ましい。絶縁破壊電圧とは、2つの電極の間に電気絶縁性を有する試料を挟み込んだ後、電圧を徐々に上げていくと電流が急激に増加し、試料の一部が溶けて孔が空いたり炭化したりして通電するようになる際の電圧をいい、より具体的には、JIS K6249に基づき、耐電圧試験器(TOS8650、菊水電子工業株式会社製)を用いて測定した絶縁破壊電圧で3kV/mm以上であることが好ましく、5kV/mm以上であることがより好ましい。
 高分子マトリクスに絶縁性熱伝導性充填材が配合された絶縁熱伝導層は、炭素繊維配向熱伝導層よりも硬く、且つ日本工業規格であるJIS K 6253のタイプE硬度計によるE硬度で70以下であり、かつ20以上であることが好ましい。
 絶縁熱伝導層の硬さが、炭素繊維配向熱伝導層よりも柔らかい場合には、実際の使用時に絶縁熱伝導層が過剰に圧縮されて絶縁性が損なわれるおそれがある。一方、絶縁熱伝導層の硬さがE硬度70を超えると、硬さの上昇により被着体との間の密着性が悪化し熱抵抗の増加が懸念される。
 また、絶縁熱伝導層の硬さをE硬度で20以上とすれば、強度のある絶縁熱伝導層とすることができ、圧縮されても安定した絶縁性を保持できる。そして、被着体へ追従する柔軟性も合わせ持つため熱抵抗を低くすることができる。
 絶縁熱伝導層の厚みは0.15~1.5mmとすることが好ましく、0.25~1.5mmとすることがより好ましい。厚みが0.15mm未満では、ピンホールができるおそれがあるとともに、薄すぎて絶縁性が損なわれるおそれがある。一方、厚みが1.5mmを超えると、絶縁熱伝導層による熱伝達阻害の影響が大きくなるおそれがある。また、厚みが0.25mm以上であれば絶縁破壊電圧が高く安定した絶縁性が得られる。
 絶縁熱伝導層の熱伝導率は2W/m・K以上で7W/m・K未満であることが好ましく、5W/m・K以上で7W/m・K未満であることがより好ましい。熱伝導率が2W/m・K未満の場合には、熱伝導性シートの熱伝導率を大きく下げてしまうおそれがある。一方、7W/m・K以上とすると含有させる絶縁性熱伝導性充填材の量が多くなることで絶縁熱伝導層が脆くなり、圧縮や変形によって絶縁性が損なわれるおそれがある。5W/m・K以上で7W/m・K未満とすることで熱伝導率の低下を少なくすることができる。
 別途断りのない限り絶縁熱伝導層の熱伝導率も、厚み方向の熱伝導率を示すものとする。例えば窒化硼素など形状異方性のある絶縁性熱伝導性充填材の長軸を厚み方向に配向することすることで、厚み方向の熱伝導率を高めることができる。一方、形状異方性のない球状等の絶縁性熱伝導性充填材を配合した場合には、絶縁熱伝導層は等方的な熱伝率を有するものとなる。
 絶縁熱伝導層の熱伝導率(W)(単位:W/m・K)と厚み(T)(単位:mm)との間には次の式(1)の関係を満たすことが好ましい。
    0<T≦0.20W-0.19 ・・・ 式(1)
 この関係式を満たす場合には、高い熱伝導率を備える熱伝導性シートとすることができる。
 絶縁熱伝導層を構成する各成分のうち、高分子マトリクスや添加剤については炭素繊維配向熱伝導層で説明した種類の材質を用いることができる。こうして例示した高分子マトリクスの中で、炭素繊維配向熱伝導層に採用した高分子マトリクスと同一の高分子マトリクスを絶縁熱伝導層にも用いることができ、その場合は、化学構造が同じであるため炭素繊維配向熱伝導層と絶縁熱伝導層との密着性に優れた熱伝導性シートとすることができる。また、使用する材料が共通し生産管理が容易になるというメリットがある。
 そうした一方で、炭素繊維配向熱伝導層に採用した高分子マトリクスとは異なる材料の高分子マトリクスを採用して絶縁熱伝導層に用いることもできる。例えば放熱体に接触させる側の層にはシリコーンを用い、基板などの電子機器に接触させる側の層には非シリコーン系材料を用いることで、基板側へのシリコーンのブリードアウトを抑制し、低分子シロキサンの蒸散を低減することができる。別の例としては、被着体の素材に応じてそれぞれの被着体に密着し易い材質の高分子マトリクスを選択したりするなど、被着体ごとに対応した材質を炭素繊維配向熱伝導層と絶縁熱伝導層のそれぞれの層で選択することができる。
 絶縁性熱伝導性充填材は、絶縁熱伝導層において高分子マトリクスに熱伝導性を付与する材料であり、炭素繊維配向熱伝導層で説明した種類の材質のうち絶縁性のある材料を絶縁熱伝導層にも用いることができる。
 こうした絶縁性熱伝導性充填材の中でも、熱伝導率が高く、球状である点で酸化アルミニウムが好ましく、熱伝導性シートの難燃性を高めることができる点で水酸化アルミニウムが好ましい。球状のものは粘度が上昇し難く、高充填し易い。酸化アルミニウムや水酸化アルミニウムは、入手の容易さの観点からも好ましい。
 絶縁性熱伝導性充填材の平均粒径は0.5~50μmであることが好ましい。平均粒径が50μmを超えると、成形性が著しく低下する。一方、平均粒径が0.5μm未満の熱伝導性充填材は、比表面積が大きくなるため粘度が上昇し易く高充填し難くなる。但し、充填性に悪影響がない場合は、0.5μm未満の熱伝導性充填材を含んでもよい。
 絶縁性熱伝導性充填材は、高分子マトリクス100質量部に対して、300~2000質量部の範囲で添加することが好ましく、500~2000質量部の範囲で添加することがより好ましい。300質量部未満の場合には、熱伝導性が低くなるおそれがある。一方、2000質量部を超えても、熱伝導性を高める効果に乏しく、かえって成形性が低下することにより薄い絶縁熱伝導層の形成が困難になる。そして500~1500質量部の範囲では、熱伝導性に優れ、硬化して絶縁熱伝導層とする前の液状組成物の粘度も好適である。
 絶縁熱伝導層は、絶縁性熱伝導性充填材を含み炭素繊維粉末を含まないことで、熱伝導性があり絶縁性の高いシートとすることができる。そのため、熱伝導性シートに絶縁性を付与することができる。また、炭素繊維配向熱伝導層よりも硬い一方である程度の柔らかさを有するため、発熱体と放熱体との間に挟んで加圧しても、炭素繊維配向熱伝導層ほどには潰されにくく絶縁性を保持し易い一方で、被着体への密着性も高い。
 <熱伝導性シート>
 炭素繊維配向熱伝導層と絶縁熱伝導層とを積層した熱伝導性シートは以下の性質を備える。
 まず、熱伝導性シートの熱伝導率は、3~30W/m・K程度であり、10W/m・K以上が好ましい。10W/m・K以上であれば熱伝導性シートとして要求される熱伝導性を備えるからである。
 炭素繊維配向熱伝導層の好ましい熱伝導率は7W/m・K以上で30W/m・K以下であり、絶縁熱伝導層の好ましい熱伝導率は2W/m・K以上で7W/m・K未満であるが、両者の熱伝導率の差は小さい方が好ましい。熱伝導率差が大きくなるに従って熱伝導性シートの熱伝導率を高め難くなる傾向があるため、炭素繊維配向熱伝導層の絶縁熱伝導層に対する熱伝導率差が大きくなりすぎると、炭素繊維配向熱伝導層の熱伝導率を高めても、熱伝導性シートの熱伝導率はほとんど変わらなくなるからである。こうした観点から炭素繊維配向熱伝導層の熱伝導率を絶縁熱伝導層の熱伝導率に対する比率でみると5倍以下であることが好ましい。
 熱伝導性シートは上述の熱伝導率を有する一方で所定の絶縁性も備える。具体的には、5kV/mm以上となる絶縁破壊電圧を備える絶縁熱伝導層を有することで、熱伝導性シートの絶縁破壊電圧もまた5kV/mm以上とすることができる。
 炭素繊維配向熱伝導層の厚みと絶縁熱伝導層の厚みの比は、炭素繊維配向熱伝導層の厚みを1としたときに、絶縁熱伝導層の厚みは、1~0.015の範囲である。“炭素繊維配向熱伝導層の厚み”:“絶縁熱伝導層の厚み”=1:1を超えて絶縁熱伝導層を厚くすると、熱伝導性シートの熱伝導率に対して、絶縁熱伝導層の寄与が大きくなり、熱伝導率が低くなるおそれがある。一方、この比が1:0.015を超えて絶縁熱伝導層を薄くすると、絶縁性が低下するか、炭素繊維配向熱伝導層が厚くなり熱抵抗が大きくなりすぎるおれがある。
 <熱伝導性シートの製造方法>
 熱伝導性シートの製造方法の一例として、炭素繊維配向熱伝導層と絶縁熱伝導層とを別々に製造し、それらを貼合せる方法がある。
 炭素繊維配向熱伝導層を製造するには、第1に、液状の高分子組成物と炭素繊維粉末、熱伝導性充填材を含む混合組成物を磁場に置き、炭素繊維粉末を磁場に沿って配向させた後、高分子組成物を硬化させることで炭素繊維配向熱伝導層を得る磁場配向製法が挙げられる。
 液状の高分子組成物に炭素繊維粉末と熱伝導性充填材とを均質に分散させた混合組成物を構成する各成分は、高分子組成物100質量部に対し、炭素繊維粉末75~150質量部と、熱伝導性充填材250~800質量部とを含むことが好ましい。この添加割合を体積%に換算すると、高分子組成物30~50体積%に対して、炭素繊維粉末10~25体積%、熱伝導性充填材25~60体積%におよそ相当する。これに適宜、添加剤等を含ませることができる。
 磁場配向させるために、混合組成物の粘度は、10~300Pa・sであることが好ましい。10Pa・s未満では炭素繊維粉末や熱伝導性充填材が沈降するおそれがあり、300Pa・sを超えると流動性が低すぎて磁場で炭素繊維粉末が配向しないか、配向に時間がかかりすぎるためである。しかしながら、沈降し難い熱伝導性充填材を用いたり、沈降防止剤等の添加剤を組合せたりすることによって10Pa・s未満にできる場合もある。
 磁場配向製法において、磁力線を印加するための磁力線発生源としては、超電導磁石、永久磁石、電磁石、コイル等が挙げられるが、高い磁束密度の磁場を発生することができる点で超電導磁石が好ましい。これらの磁力線発生源から発生する磁場の磁束密度は、好ましくは1~30テスラである。この磁束密度が1テスラ未満であると、炭素繊維粉末を配向させることが難しくなる。一方、30テスラを超える磁束密度は実用上得られにくい。
 磁場配向製法において得られた成形体は、そのまま炭素繊維配向熱伝導層として用いても良いし、スライスやカットを行い最終的な形状に加工してもよい。金型で成形された炭素繊維配向熱伝導層は、シートの表面に高分子マトリクスからなる極薄いスキン層が形成されることがある。このスキン層は炭素繊維粉末や熱伝導性充填材の脱落を抑制する効果がある。
 炭素繊維配向熱伝導層を製造するには、第2に、混合組成物に剪断力をかけて薄板状にした予備的シートを製造し、これを複数枚積層して硬化させた積層ブロックを製造し、そしてその積層ブロックを裁断する積層スライス製法がある。
 積層スライス製法は、まず、液状の高分子組成物に炭素繊維粉末と熱伝導性充填材、必要により種々の添加剤を混入し攪拌し、混入させた固形物が均質に分散した混合組成物を調製する。混合組成物は、シート状に伸長させるときに剪断力がかかるように比較的高粘度である10~1,000Pa・sであることが好ましい。
 次に、混合組成物に対して剪断力を付与しながら平たく伸長させてシート状に成形する。剪断力をかけることで、炭素繊維粉末を剪断方向に配向させることができる。シートの成形手段として、例えば、バーコータやドクターブレード等の塗布用アプリケータ、もしくは、押出成形やノズルからの吐出等により、基材フィルム上に混合組成物を塗工する方法が挙げられる。このときのシート厚は50~250μm程度が好ましい。こうして予備的シート得ることができる。この予備的シートは、炭素繊維粉末がシートの面内で一方向に配向している。
 そして、この予備的シートを、配向方向が同じになるように複数枚重ねて積層した後、紫外線照射や熱プレス等の高分子組成物を硬化させるための適切な硬化手段を用いて混合組成物を硬化させて積層ブロックを形成する。最後に、炭素繊維粉末の配向方向と直交する方向に積層ブロックを切断し、シート状の炭素繊維配向熱伝導層を得る。
 第1の磁場配向製法と第2の積層スライス製法とを比較する。
 積層スライス製法では、柔軟で薄い炭素繊維配向熱伝導層の作製が難しい。例えばOO硬度が50以下程度の場合は可能な限り鋭い刃を用いても、シートが柔らかすぎるためスライスによる押圧力でシートの変形が大きく、品質のよい薄膜シートを得ることが困難である。この問題への対策として冷凍してスライスする方法が挙げられる。しかし、冷凍する方法は例えばアクリルゲルなどでは有効であるが、シリコーンを高分子マトリクスとするシートでは、-40°に冷凍しても硬さがほとんど変わらないため、スライス時の硬さを改善できない。さらに低温まで(実際には-60°程度まで)冷やせば硬くすることができるが、-40°を超えて低い温度まで冷やすためには特殊な装置が必要となり、またスライス時の摩擦熱で冷却が阻害されることなども加味すると現実的には採用が難しい。
 また、熱伝導性シートは、一般に被着体どうしの確実な密着と熱抵抗を下げる目的で10~40%程度圧縮して使用される。このとき熱伝導性シートが柔軟であれば圧縮のための応力が小さくなるため、応力によって被着体である基板が歪むおそれが低くなる。ところが積層スライス製法では、硬さの制限を受けるため、非常に柔軟な熱伝導性シートを得ることが難しい。
 加えて、積層スライス製法では、熱伝導性シートの面方向の物性や熱伝導性に異方性が発生するという問題や、表面の粘着性が損なわれるため、被着体に固定しにくく作業性が悪いという問題がある。また、積層して貼り合せる工程やスライスする工程が増えるため、コストアップの要因ともなる。さらに、熱伝導性シートを発熱体と放熱体の間に配置する際に、シートどうしの貼り合せ面が倒れ込む方向に加圧力が働き、この結果、貼り合せ面が剥がれたり炭素繊維粉末どうしが剥離したりするおそれがある。
 こうした積層スライス製法と比較して磁場配向製法では、複数のシートを貼り合わせた貼り合せ面を備えないため、その貼り合せ面が剥離し易いといった問題も生じない。さらに、絶縁熱伝導層と積層する際には表面に粘着性がある方が好ましいが、そうした粘着性のある表面を形成し易い。したがって、以上のような理由から、磁場配向製法により製造する方が好ましい。
 なお、磁場配向製法でも積層スライス製法でも、配向方向に垂直な平面でスライスやカットをすることで、カット面に炭素繊維粉末や熱伝導性充填材が表出するため、これらの炭素繊維粉末や熱伝導性充填材が被着体に広い面積で接触するため、熱伝導性を高めることができる。
 次に絶縁熱伝導層の製造方法について説明する。
 絶縁熱伝導層は、液状の高分子組成物と、熱伝導性充填材を含む混合組成物を調製し、次いで高分子組成物を硬化させる。混合組成物を構成する各成分は、高分子組成物100質量部に対し、熱伝導性充填材300~2000質量部を含むことが好ましい。この添加割合を体積%に換算すると、高分子組成物中で熱伝導性充填材およそ50~90体積%に相当する。これに適宜添加剤等を含ませることができる。
 絶縁熱伝導層の成形方法としては、バーコータ法、ドクターブレード法、押出成形法(Tダイ法等)、カレンダー成形法、プレス成形法、注型法等が挙げられる。したがって、混合組成物の粘度は、これらの方法で薄膜を形成できる範囲とすることが好ましい。
 炭素繊維配向熱伝導層と絶縁熱伝導層との貼合せは、炭素繊維配向熱伝導層と絶縁熱伝導層の少なくとも一方が高分子マトリクスに由来する粘着性を備えていればそのまま貼合せることで一体化することができる。この貼り合わせの観点からは、炭素繊維配向熱伝導層と絶縁熱伝導層の両方に粘着性があることが好ましい。炭素繊維配向熱伝導層も絶縁熱伝導層も所定の柔らかさを有することから、その表面もそのまま互いに貼り合わせすることができる程度に粘着性がある場合が多いが、こうした粘着性がない場合には、粘着剤等を介して積層することもできる。
 熱伝導性シートの製造方法の別の例としては、炭素繊維配向熱伝導層をまずシート状に形成し、その上に絶縁熱伝導層となる混合組成物を塗布してその高分子組成物を硬化させる方法がある。この製造方法によれば、炭素繊維配向熱伝導層の表面で絶縁熱伝導層を硬化させるため、両者を貼り合わせる手順を省略することができる。
 炭素繊維配向熱伝導層の表面に高分子マトリクスからなるスキン層が形成されている場合には、表面をスライスやカットをすることで炭素繊維粉末や熱伝導性充填材を表出させた後に、その上に絶縁熱伝導層となる混合組成物を塗布してその高分子組成物を硬化させることとしてもよい。こうすることで層間に介在するスキン層が無くなり熱伝導性シートの熱伝導率を高くすることができる。
 熱伝導性シートの製造方法のさらに別の例としては、先ず絶縁熱伝導層をシート状に形成し、その上に炭素繊維配向熱伝導層となる混合組成物を塗布し、磁場配向製法により炭素繊維粉末を配向するとともに高分子組成物を硬化させる方法がある。この製造方法によっても、絶縁熱伝導層の表面で炭素繊維配向熱伝導層を硬化させるため、両者を貼り合わせる手順を省略することができる利点がある。
 なお、これらの製造方法は一例であって、これら以外に公知の製造方法を採用することもできる。
 第2実施形態: 第2実施形態として示す熱伝導性シートは、炭素繊維配向熱伝導層の両面に絶縁熱伝導層が積層したシート状の熱伝導性シートである。本実施形態によれば、導電性粉末である炭素繊維を含む炭素繊維配向熱伝導層が絶縁熱伝導層で挟まれるため、炭素繊維の脱落を防ぎ、回路の短絡を抑制することができる。
 第3実施形態: 第3実施形態として示す熱伝導性シートは、絶縁熱伝導層の両面に炭素繊維配向熱伝導層が積層したシート状の熱伝導性シートである。炭素繊維配向熱伝導層を上述の積層スライス製法で作製する、もしくは炭素繊維配向熱伝導層の表面をスライスやカットして炭素繊維粉末や熱伝導性充填材を表出させれば、表面のタック性を低減することができるが、こうした滑り性の良い表面を両面に備えた熱伝導性シートとすることができる。
 各実施形態の特徴的な構成は、不具合のない範囲で組合せることができ、例えば、第1実施形態で示した熱伝導性シート2枚を積層するような構成とすることもできる。
 より具体的な実施例を示して本発明をさらに説明する。
  炭素繊維配向熱伝導層の作製
 以下に示す炭素繊維配向熱伝導層1~4を作製した。
 <炭素繊維配向熱伝導層1>
 液状の高分子組成物として付加反応型シリコーンであって、アルケニル基含有ポリオルガノシロキサン(主剤)とオルガノハイドロジェンポリシロキサン(硬化剤)の混合物(比重:1.0)に、炭素繊維粉末(平均繊維長:100μm、比重:2.2)、熱伝導性充填材1として粒径3μmでアスペクト比が略1である球状酸化アルミニウム(比重:4.0)と、熱伝導性充填材2として粒径10μmでアスペクト比が略1である球状酸化アルミニウム(比重:4.0)とを表1に示す割合(それぞれ質量部で示す)で配合して、この組成物が均一になるように混合攪拌した後に脱泡して炭素繊維配向熱伝導層1用の混合組成物を調製した。なお、炭素繊維粉末と熱伝導性充填材は予めシランカップリング剤で表面処理したものを用いた。
 続いて、この混合組成物を、金型成形でシート状に成形した。そして、磁力線をシートの厚み方向に印加するように、超電導磁石による8テスラの磁場中に10分間静置した。次に、120℃で30分間加熱し炭素繊維配向熱伝導層1を得た。この炭素繊維配向熱伝導層1は厚みが2.0mmおよび10.0mmの試験片として作製した。
 なお、熱伝導性充填材の平均粒径は、レーザ回折散乱法(JIS R1629)により測定した粒度分布の体積平均粒径を示したものである。また、熱伝導性充填材のアスペクト比は、電子顕微鏡で観察したものである。熱伝導性充填材1,2および後述する熱伝導性充填材3のアスペクト比は略1.0であった。
 <炭素繊維配向熱伝導層2~4>
 炭素繊維配向熱伝導層1を製造した際の混合組成物中の各成分の配合を変更して、炭素繊維配向熱伝導層1と同様の方法で炭素繊維配向熱伝導層2~4を作製した。炭素繊維配向熱伝導層2~4となる混合組成物中の各成分の配合(質量部)を表1に示す。この炭素繊維配向熱伝導層2~4も厚みが2.0mmおよび10.0mmの試験片として作製した。
Figure JPOXMLDOC01-appb-T000001
  絶縁熱伝導層の作製
 以下に示す絶縁熱伝導層1~8を作製した。
 <絶縁熱伝導層1>
 液状の高分子組成物として炭素繊維配向熱伝導層1に用いたものと同じ付加反応型シリコーン(主剤および硬化剤)に、絶縁性熱伝導性充填材として前記熱伝導性充填材1と同じ粒径3μmでアスペクト比が略1である球状酸化アルミニウム(比重:4.0)と、絶縁性熱伝導性充填材3として粒径40μmでアスペクト比が略1である球状酸化アルミニウム(比重:4.0)とを表2で示す割合(それぞれ質量部で示す)で配合し、攪拌混合した後に脱泡して絶縁熱伝導層1用の混合組成物を調製した。絶縁性熱伝導性充填材も予めシランカップリング剤で表面処理したものを用いた。続いて、この混合組成物を、金型成形でシート状に成形し、120℃で30分間加熱して絶縁熱伝導層1を得た。この絶縁熱伝導層1は厚みが0.10mm、0.15mm、0.25mm、0.50mm、0.75mm、10.0mmの各試験片として作製した。
 <絶縁熱伝導層2~8>
 絶縁熱伝導層1を製造した際の混合組成物の配合を表2に示す配合(質量部)に変更して、絶縁熱伝導層1と同様の方法で絶縁熱伝導層2~8を作製した。絶縁熱伝導層4,5に添加した可塑剤は、ジメチルポリシロキサン(シリコーンオイル)(粘度100mPa・s)である。
 絶縁熱伝導層2~8は厚みが0.5mmおよび10.0mmの試験片として作製したが、絶縁熱伝導層6については、厚みが0.25mm、0.75mmの試験片も作製した。
Figure JPOXMLDOC01-appb-T000002
  熱伝導性シートの作製
 以下に示す熱伝導性シート1~21を作製した。
 <熱伝導性シート1~19>
 上記炭素繊維配向熱伝導層1~4と、絶縁熱伝導層1~8から、次の表3~5で示すように、炭素繊維配向熱伝導層と絶縁熱伝導層を選択し、その選択した炭素繊維配向熱伝導層と絶縁熱伝導層とを積層して熱伝導性シート1~19を作製した。
 炭素繊維配向熱伝導層1~4と絶縁熱伝導層1~8は、何れも表面が微粘着性を有しており、直接重ねるだけで容易に剥がれることはなく一体化することができる。
 <熱伝導性シート20>
 炭素繊維配向熱伝導層1に、絶縁熱伝導層を設けなかったものを熱伝導シート20とした。
 <熱伝導性シート21>
 炭素繊維配向熱伝導層1に、絶縁熱伝導層との比較としてのポリイミドフィルム(熱伝導率が0.16W/m・Kで、厚みが50μm)を積層したものを熱伝導性シート21とした。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 各種特性の試験
 <硬さの測定>
 炭素繊維配向熱伝導層1~4については、タイプEデュロメータを用いて厚みが10.0mmの試験片のE硬度を測定した。その結果を表3~5に示す。また、絶縁熱伝導層1~8については、タイプEデュロメータを用いて厚みが10.0mmの試験片のE硬度を測定した。その結果も表3~5に示す。(注:表3~5で示す炭素繊維配向熱伝導層や絶縁熱伝導層の厚みは10.0mmではないが、E硬度は原則として厚みに依存しないため10.0mm厚での測定結果を記した)
 <針入度の測定>
 上記硬さとは別の硬さの指標とするため針入度を測定した。より具体的には、熱機械分析装置(島津製作所製、TMA-50)にて直径0.5mmの円柱状の突起を備えた針入用プローブを用い、縦10mm×横10mmにカットした各試験片をセットした後、荷重レートを1g/min、目標荷重を0.5gとして23℃で3分間(即ち、荷重は最初の30秒で0から0.5gに上昇し、30秒から3分まで0.5gで一定である)のプローブの沈み込み深さを測定した。その結果を表3~5に示す。
 この結果の一部から、実測した針入度の値と、その試験片と同じ構成で厚みが10.0mmの試験片から実測したE硬度の値とを対比して図1に示す。より具体的には、厚みが2mmと0.5mmの試験片について測定した針入度の値と、その試験片と同じ構成で厚みが10.0mmの試験片のE硬度の値とをグラフ上にプロットし、それらのプロットから厚みごとの関係式(図1における2つの曲線)を導いたものである。
 この図1で示すように、針入度は試験片厚みの影響を受けるが、こうした関係式を導いておけば、ある厚みの試験片の針入度を測定することで、この関係式を利用してE硬度を推測することができる。即ち、厚みが2mmや0.5mmの試験片であれば、図1で示される2つの関係式に実測した針入度を代入すればE硬度が求められる。また、厚みが2mmや0.5mm以外であっても、この両関係式と同様にして予め特定の長さに対する関係式を作成しておけば、その関係式に実測した針入度を代入してE硬度を推測することができる。
 また、炭素繊維配向熱伝導層と絶縁熱伝導層とを積層した熱伝導性シートの針入度は、その熱伝導性シートと同じ厚みで炭素繊維配向熱伝導層単独でなる試験片の針入度と、その熱伝導性シートと同じ厚みで絶縁熱伝導層単独でなる試験片の針入度の間の値となる。
 この間の値はまた、炭素繊維配向熱伝導層側から測定した針入度と、絶縁熱伝導層側から測定した針入度で異なり、炭素繊維配向熱伝導層よりも絶縁熱伝導層が硬ければ、絶縁熱伝導層側から測定した針入度の方が低い(硬い)値となる。
 したがって、これらの知見を総合すれば、厚みがLmmの試験片の表裏両面から針入度を測定し、表面側の針入度がAμmであり、裏面側の針入度がBμmであり、A>Bである場合に、表面側の層は、図1から厚みがLmmとして針入度から換算したE硬度よりも柔らかいE硬度からなる層であることがわかり、裏面側の層は、図1から厚みがLmmとして針入度から換算したE硬度よりも硬いE硬度からなる層であることがわかる。
 <熱抵抗値の測定と熱伝導率の算出>
 縦10mm×横10mmにカットした試験片を、発熱基板(発熱量Q:25W)とヒートシンク(株式会社アルファ製「FH60-30」)との間に挟み、ヒートシンクに一定の荷重(2kgf/cm)を加えた。このヒートシンクの上部には、冷却ファン(風量0.01kg/sec、風圧49Pa)が取り付けられており、ヒートシンク及び発熱基板には温度センサが接続されている。冷却ファンを作動させた状態で、発熱基板に通電する。通電の開始後、5分経過した時点で、発熱基板の温度(T1)及びヒートシンクの温度(T2)を測定し、各温度を次の式(2)に代入することにより各試験片の熱抵抗値を算出した。
  熱抵抗値(℃/W)=(T1-T2)/発熱量Q ・・・ 式(2)
 そして次の式(3)によって熱抵抗値から熱伝導率へ換算した。
  熱抵抗値(℃/W)=熱通過方向厚み(m)/(熱通過断面積(m)×熱伝導率(W/m・K))・・・式(3)
 こうして得た熱伝導率の値を表3~5に示す。
 <絶縁破壊電圧の測定>
 絶縁性の評価の指標となる絶縁破壊電圧を測定した。2つの電極の間に試験片を挟み込んだ後に200gの荷重をかけた状態で電圧を徐々に上げていくと、電流が急激に増加し、試験片の一部が溶けて孔が空いたり炭化したりして通電するようになるが、この際の電圧が絶縁破壊電圧である。より具体的には、JIS K6249に基づき、耐電圧試験器(TOS8650、菊水電子工業株式会社製)を用いて絶縁破壊電圧を測定した。試験片はそれぞれ5つ準備して5回試験を行った。表3~5には5回の平均値を示す。
 <粘着性の試験>
 熱伝導性シート表面の粘着性を試験した。水平に配置したステンレス板の上に、縦10mm×横10mmにカットした熱伝導性シートの試験片を置き、その上に剥離フィルムを介して200gの重りを10秒間置いて熱伝導性シートをステンレス板に押し付けた。その後、ステンレス板を180度反転させたときに、10秒の間に試験片が剥離して落下するか否かを試験した。なお、ステンレス板としては、表面仕上げが2Bのものを用い、ステンレス板へ熱伝導性シートを置く際には、炭素繊維配向熱伝導層側を置く場合と、絶縁熱伝導層側を置く場合の両方で試験を行った。表3~5には炭素繊維配向熱伝導層側を置いた場合/絶縁熱伝導層側を置いた場合、の順に評価結果を示す。
 各種特性の評価
 <硬さ>
 硬さがE30の炭素繊維配向熱伝導層に種々の硬さの絶縁熱伝導層を積層した熱伝導性シート1~6を比較すると、最も柔軟な硬さE10の絶縁熱伝導層を積層した熱伝導性シート2は、熱伝導率では最も良い結果であったが、絶縁破壊電圧が0kV/mmとなり所望の絶縁性を備えていなかった。また、硬さがE18の絶縁熱伝導層を積層した熱伝導性シート5は、絶縁破壊電圧の平均値は4kV/mmであるが、5回のうちの1回だけ0kV/mmという測定結果となった。また、硬さがE25、E40、E70、E80の絶縁熱伝導層を積層した熱伝導性シート1、3、4、6は、何れも絶縁破壊電圧が5kV/mmを超えていた。こうした結果から絶縁熱伝導層が柔らかいほど熱伝導率が高くなる傾向が見られた。
 次に、硬さをE60、E75に変更した炭素繊維配向熱伝導層に、種々の硬さの絶縁熱伝導層を積層した熱伝導性シート7,8をみると、熱伝導性シート7,8は、5kV/mmを超える絶縁破壊電圧を備えていた。また、熱伝導率については、熱伝導性シート8の熱伝導率がやや低かった。
 絶縁破壊電圧が所望の値にならなかった熱伝導性シート2は、炭素繊維配向熱伝導層よりも絶縁熱伝導層の硬さの方が柔らかい組合せであり、電極で挟み圧縮した試験片を見ると、絶縁熱伝導層が周囲にはみ出して広がる様子が見られた。このことから、炭素繊維配向熱伝導層よりも絶縁熱伝導層の方が柔らかいと、圧縮したときに絶縁熱伝導層が過剰に圧縮されて絶縁性が低下することがわかる。
 一方、熱伝導性シート5で、N=5のうち1回だけ0kV/mmという測定結果になった理由は、圧縮により絶縁熱伝導層に亀裂等が入り絶縁性が低下したものと考えられる。絶縁熱伝導層の硬さは、炭素繊維配向熱伝導層よりもやや硬いもののE18とかなり柔軟であったため、強度的には弱く脆かったものと考えられる。
 炭素繊維配向熱伝導層の硬さがE75の熱伝導性シート8や、絶縁熱伝導層の硬さがE80の熱伝導性シート4で熱伝導率が低くなる傾向があったことから、炭素繊維配向熱伝導層の硬さはE60以下が好ましく、絶縁熱伝導層の硬さはE70以下が好ましいことがわかる。
 <熱伝導率>
 種々の熱伝導率の炭素繊維配向熱伝導層と絶縁熱伝導層とを組合せた熱伝導性シート1、9~13を比較する。熱伝導性シート1、9、10は、熱伝導率が12.9W/m・Kの炭素繊維配向熱伝導層に、それぞれ熱伝導率が5.0W/m・K、1.5W/m・K、2.5W/m・Kの絶縁熱伝導層を積層した熱伝導性シートである。熱伝導率が5.0W/m・Kの絶縁熱伝導層を積層した熱伝導性シート1は、熱伝導率が高いだけでなく、絶縁熱伝導層を積層したことによる熱伝導率の低下が小さく、炭素繊維配向熱伝導層の熱伝導率に極めて近い熱伝導率を備えることがわかる。このことは、熱伝導率が11.5W/m・Kの炭素繊維配向熱伝導層に、熱伝導率がそれぞれ1.5W/m・K、2.5W/m・K、5.0W/m・Kの絶縁熱伝導層を積層した熱伝導性シート11~13でも同様であった。
 <絶縁熱伝導層の厚み>
 熱伝導性シート14、15は、厚みが0.10mm、0.15mmの絶縁熱伝導層を積層したものである。絶縁熱伝導層の厚みが0.15mmの熱伝導性シート15は、3.0kV/mmの絶縁破壊電圧を備えていたが、厚みが0.10mmの熱伝導性シート14は、絶縁破壊電圧が1.5kV/mmまで低下していた。このことから、絶縁熱伝導層の厚みは、0.15mm以上であることが好ましいことがわかる。
 <絶縁熱伝導層の熱伝導率と厚みの関係>
 熱伝導性シート16~19と、熱伝導性シート1、9は、熱伝導率が12.9W/m・Kで厚みが2mmの炭素繊維配向熱伝導層に、熱伝導率が1.5W/m・Kまたは5.0W/m・Kの絶縁熱伝導層について、厚みを0.25mm、0.50mm、0.75mmと変化させたものを積層した熱伝導性シートである。
 これらの絶縁熱伝導層の厚みをx軸に、熱伝導性シートの熱伝導率をy軸にプロットしたグラフを図2に示す。
 図2のプロットより、「(1)熱伝導率1.5W/m・Kの絶縁熱伝導層を積層した熱伝導性シートの熱伝導率が11.0W/m・Kとなる厚み」、「(2)熱伝導率5.0W/m・Kの絶縁熱伝導層を積層した熱伝導性シートの熱伝導率が11.0W/m・Kとなる厚み」を求めると、それぞれ(1)が0.11mm、(2)が0.84mmとなった。
 次に、絶縁熱伝導層の熱伝導率をx軸に、ここで求めた熱伝導性シートの熱伝導率が11.0W/m・Kとなる各絶縁熱伝導層の厚みをy軸としたグラフを図3に示す。
 この図3より、近似式としてy=0.20x-0.19を導き出すことができた。
 そして、上式から、熱伝導率が11.0W/m・K以上の熱伝導性シートを得るための絶縁熱伝導層の熱伝導率W(x)(単位:W/m・K)と厚さT(y)(単位:mm)
との関係を表す次の式(1)を導出した。
 0<T≦0.20W-0.19 ・・・ 式(1)
 <絶縁破壊電圧>
 絶縁破壊電圧については、3kV/mm以上のものについて“○”、3kV/mm未満のものについて“×”と評価した。この結果も表3~5に示す。
 <絶縁安定性>
 絶縁破壊電圧の測定において、測定結果のばらつきの大きさを評価した。より具体的には、平均値が3kV/mmを超えるものの、5回の測定のうち1回以上0kV/mmとなったものを“×”とし、そうでないものを“○”とした。
 <熱伝導率の低下率>
 熱伝導率の高い炭素繊維配向熱伝導層に対してそれよりは熱伝導率が低い絶縁熱伝導層を積層したことによる熱伝導率の低下の程度を評価した。即ち、次の式(4)で示すように炭素繊維配向熱伝導層の熱伝導率から熱伝導性シートの熱伝導率を引き、炭素繊維配向熱伝導層の熱伝導率で割ったものを、炭素繊維配向熱伝導層に対する熱伝導性シートの熱伝導率の低下率(以下単に「熱伝導率の低下率」)と定義し、算出した。
熱伝導率の低下率=(炭素繊維配向熱伝導層の熱伝導率-熱伝導性シートの熱伝導率)/炭素繊維配向熱伝導層の熱伝導率・・・式(4)
 こうして求めた熱伝導率の低下率の値を表3~5に示す。また、この値が15%未満のものは、炭素繊維配向熱伝導層単独の場合に比べて熱伝導率の低下が少なく絶縁熱伝導層を設けたことの悪影響を抑制できたとして“○”、15%以上35%未満のものは、絶縁熱伝導層を設けたことの悪影響をやや抑制できたとして“△”、35%以上のものは、炭素繊維配向熱伝導層単独の場合に比べて熱伝導率の低下が甚だしいとして“×”と評価した。この結果も併せて表3~5に示す。
 <取扱い性(粘着性)>
 熱伝導性シートは、表面に粘着性を有することで被着体に固定することができ、電子機器への装着作業が容易になる。そこで、この被着体への固定の可否を取扱い性という観点から評価した。上記粘着性の試験において、10秒の間に熱伝導性シートの試験片が剥離して落下したものを取扱い性が悪いとして“×”、落下しなかったものを “○”と評価した。
 表3~5で示すように、取扱い性試験の結果、熱伝導性シート3の絶縁熱伝導層側が“△”となり取扱い性がやや悪く、熱伝導性シート4の絶縁熱伝導層側は“×”となり、被着体に固着しない結果となった。このことから、絶縁熱伝導層の硬さはE70以下が好ましいことがわかる。また、熱伝導性シート7、8の取扱い性の評価結果は、炭素繊維配向熱伝導層側について硬さがE60の熱伝導性シート7でやや悪く、硬さがE75の熱伝導性シート8では熱伝導性シートが被着体に固着しない結果となった。このことから、炭素繊維配向熱伝導層の硬さはE70以下が好ましいことがわかる。
 <熱伝導性と絶縁性についての総合評価>
 以上のように、種々の観点からの評価を総合した総合評価を各熱伝導性シートについて行った。絶縁性の全くない(絶縁破壊電圧の評価が×)熱伝導性シート2、14、20、および熱伝導率の低下率と取扱い性について×であった熱伝導性シート21は、総合評価を×とした。そうした一方で何れの評価についても×がなかったものを“◎”とした。また、評価に△があるものを“○”、さらに、絶縁破壊電圧の評価以外の何れかの評価に×があるものを“△”と評価した。こうした総合評価も表3~5に示す。
 以上より、取扱い性が悪く絶縁性または熱伝導率の低下率の激しい樹脂フィルムを用いる熱伝導性シートと比較して、炭素繊維配向熱伝導層と絶縁熱伝導層を積層した熱伝導性シートはそれらの2つ以上の特性が悪いということはない。また、所定の硬さや、厚み、熱伝導率等を備える熱伝導性シートは、取扱い性も熱伝導性も良く優れた性質を備えた熱伝導性シートである。

Claims (9)

  1.  高分子マトリクスに繊維軸がシートの厚み方向に配向している炭素繊維粉末を含む炭素繊維配向熱伝導層と、高分子マトリクスに絶縁性熱伝導性充填材が分散しており熱伝導性と絶縁性とを備える絶縁熱伝導層と、を積層した熱伝導性シート。
  2.  高分子マトリクスが液状シリコーンの主剤と硬化剤の硬化体からなるものである請求項1記載の熱伝導性シート。
  3.  炭素繊維配向熱伝導層は、日本工業規格であるJIS K6253のタイプEの硬度計によって測定されるE硬度が5~60であり、
     絶縁熱伝導層は、炭素繊維配向熱伝導層よりも硬く、E硬度が70以下であり、且つ厚みが0.15~1.5mmである請求項1または請求項2記載の熱伝導性シート。
  4.  炭素繊維配向熱伝導層のシートの厚み方向の熱伝導率が7W/m・K以上で30W/m・K以下であり、絶縁熱伝導層の熱伝導率が2W/m・K以上で7W/m・K未満であり、炭素繊維配向熱伝導層の厚み方向の熱伝導率を絶縁熱伝導層の熱伝導率よりも高くした請求項1~請求項3何れか1項記載の熱伝導性シート。
  5.  絶縁熱伝導層の熱伝導率(W)(単位:W/m・K)と、厚み(T)(単位:mm)とが、次の式(1)の関係を満たす請求項1~請求項4何れか1項記載の熱伝導性シート。
     0<T≦0.20W-0.19 ・・・ 式(1)
  6.  絶縁熱伝導層の厚みが炭素繊維配向熱伝導層の厚みよりも薄い請求項1~請求項5何れか1項記載の熱伝導性シート。
  7.  絶縁熱伝導層の熱伝導率が5W/m・K以上である請求項1~請求項6何れか1項記載の熱伝導性シート。
  8.  絶縁熱伝導層の硬さがE硬度で20以上である請求項1~請求項7何れか1項記載の熱伝導性シート。
  9.  炭素繊維配向熱伝導層にアスペクト比が2以下の熱伝導性充填材を含む請求項1~請求項8何れか1項記載の熱伝導性シート。
PCT/JP2016/067674 2015-06-25 2016-06-14 熱伝導性シート WO2016208458A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017525240A JP6723610B2 (ja) 2015-06-25 2016-06-14 熱伝導性シート
US15/557,876 US10591229B2 (en) 2015-06-25 2016-06-14 Thermally conductive sheet
CN201680014112.XA CN107851623B (zh) 2015-06-25 2016-06-14 导热片
DE112016000807.4T DE112016000807B4 (de) 2015-06-25 2016-06-14 Thermisch leitfähige Folie

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015127338 2015-06-25
JP2015-127338 2015-06-25

Publications (1)

Publication Number Publication Date
WO2016208458A1 true WO2016208458A1 (ja) 2016-12-29

Family

ID=57586363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067674 WO2016208458A1 (ja) 2015-06-25 2016-06-14 熱伝導性シート

Country Status (5)

Country Link
US (1) US10591229B2 (ja)
JP (1) JP6723610B2 (ja)
CN (1) CN107851623B (ja)
DE (1) DE112016000807B4 (ja)
WO (1) WO2016208458A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017185642A (ja) * 2016-04-01 2017-10-12 株式会社巴川製紙所 熱伝導シート
JP2019111656A (ja) * 2017-12-20 2019-07-11 住友ベークライト株式会社 構造体および内装材
WO2019160004A1 (ja) 2018-02-14 2019-08-22 積水ポリマテック株式会社 熱伝導性シート
US20200332064A1 (en) * 2019-04-16 2020-10-22 Shin-Etsu Chemical Co., Ltd. Anisotropic heat-conductive sheet having self-adhesiveness
DE112020005651T5 (de) 2020-02-21 2022-10-13 Sekisui Polymatech Co., Ltd. Wärmeleitende folie und verfahren, um diese zu erzeugen
US11987686B2 (en) 2018-06-22 2024-05-21 Sekisui Polymatech Co., Ltd. Thermally conductive sheet
US11987687B2 (en) 2018-09-26 2024-05-21 Sekisui Polymatech Co., Ltd. Heat conductive sheet

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10689556B2 (en) 2015-05-28 2020-06-23 Sekisui Polymatch Co., Ltd. Thermally conductive sheet
JP6484156B2 (ja) * 2015-10-08 2019-03-13 川崎重工業株式会社 鉄道車両用台車の無線通信機能付き温度センサユニット
KR102592111B1 (ko) * 2017-06-27 2023-10-20 세키수이 폴리머텍 가부시키가이샤 열전도성 시트
US11401451B2 (en) 2017-11-20 2022-08-02 L&P Property Management Company Fiber reinforced flexible foams
CN108943921A (zh) * 2018-07-20 2018-12-07 四川大学 一种多层绝缘热界面材料及其制备方法
CN109318561A (zh) * 2018-09-28 2019-02-12 深圳市宝力科技有限公司 一种软硬结合导热垫片及其制备方法
JP6874225B2 (ja) * 2019-03-27 2021-05-19 住友理工株式会社 静電容量結合方式センサ
CN110229367A (zh) * 2019-05-22 2019-09-13 深圳市鸿富诚屏蔽材料有限公司 一种各向异性绝缘导热性片材及其制备方法
EP4223829A1 (en) * 2020-09-30 2023-08-09 Sekisui Polymatech Co., Ltd. Thermally conductive sheet
CN112712944B (zh) * 2020-12-24 2022-04-08 武汉肯达科讯科技有限公司 一种高导热绝缘垫片及其制备方法
CN117070183B (zh) * 2023-08-04 2024-04-16 常州宏巨电子科技有限公司 一种多层结构的复合绝缘导热胶膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003198166A (ja) * 2001-12-27 2003-07-11 Polymatech Co Ltd 発熱電子部品の冷却方法及びそれに用いる熱伝導性シート
JP2005056837A (ja) * 2003-07-22 2005-03-03 Polymatech Co Ltd 熱伝導性ホルダー
JP2007326976A (ja) * 2006-06-08 2007-12-20 Polymatech Co Ltd 熱伝導性成形体及びその製造方法
JP2011082423A (ja) * 2009-10-09 2011-04-21 Polymatech Co Ltd 熱伝導性シート
JP2011165792A (ja) * 2010-02-08 2011-08-25 Teijin Dupont Films Japan Ltd 放熱性二軸延伸フィルム
JP2013199103A (ja) * 2012-03-27 2013-10-03 Sekisui Chem Co Ltd 積層体及び切断積層体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001315244A (ja) 2000-05-01 2001-11-13 Jsr Corp 熱伝導性シート、その製造方法およびその熱伝導性シートを用いた放熱構造
US6517744B1 (en) 1999-11-16 2003-02-11 Jsr Corporation Curing composition for forming a heat-conductive sheet, heat-conductive sheet, production thereof and heat sink structure
JP4714371B2 (ja) * 2001-06-06 2011-06-29 ポリマテック株式会社 熱伝導性成形体及びその製造方法
EP1501135B1 (en) * 2003-07-22 2011-06-15 Polymatech Co., Ltd. Thermally conductive holder
JP2005146057A (ja) 2003-11-12 2005-06-09 Polymatech Co Ltd 高熱伝導性成形体及びその製造方法
JP5381102B2 (ja) * 2006-11-01 2014-01-08 日立化成株式会社 熱伝導シート、その製造方法及び熱伝導シートを用いた放熱装置
JP5140302B2 (ja) * 2007-03-29 2013-02-06 ポリマテック株式会社 熱伝導性シート
JP5042899B2 (ja) 2008-03-31 2012-10-03 ポリマテック株式会社 熱伝導性シート及びその製造方法
JP2011249682A (ja) 2010-05-28 2011-12-08 Sony Chemical & Information Device Corp 熱伝導性シート及び半導体装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003198166A (ja) * 2001-12-27 2003-07-11 Polymatech Co Ltd 発熱電子部品の冷却方法及びそれに用いる熱伝導性シート
JP2005056837A (ja) * 2003-07-22 2005-03-03 Polymatech Co Ltd 熱伝導性ホルダー
JP2007326976A (ja) * 2006-06-08 2007-12-20 Polymatech Co Ltd 熱伝導性成形体及びその製造方法
JP2011082423A (ja) * 2009-10-09 2011-04-21 Polymatech Co Ltd 熱伝導性シート
JP2011165792A (ja) * 2010-02-08 2011-08-25 Teijin Dupont Films Japan Ltd 放熱性二軸延伸フィルム
JP2013199103A (ja) * 2012-03-27 2013-10-03 Sekisui Chem Co Ltd 積層体及び切断積層体

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017185642A (ja) * 2016-04-01 2017-10-12 株式会社巴川製紙所 熱伝導シート
JP2019111656A (ja) * 2017-12-20 2019-07-11 住友ベークライト株式会社 構造体および内装材
WO2019160004A1 (ja) 2018-02-14 2019-08-22 積水ポリマテック株式会社 熱伝導性シート
US11610829B2 (en) 2018-02-14 2023-03-21 Sekisui Polymatech Co., Ltd. Heat-conductive sheet
US11987686B2 (en) 2018-06-22 2024-05-21 Sekisui Polymatech Co., Ltd. Thermally conductive sheet
US11987687B2 (en) 2018-09-26 2024-05-21 Sekisui Polymatech Co., Ltd. Heat conductive sheet
US20200332064A1 (en) * 2019-04-16 2020-10-22 Shin-Etsu Chemical Co., Ltd. Anisotropic heat-conductive sheet having self-adhesiveness
JP2020176182A (ja) * 2019-04-16 2020-10-29 信越化学工業株式会社 自己粘着性を有する異方性熱伝導性シート
DE112020005651T5 (de) 2020-02-21 2022-10-13 Sekisui Polymatech Co., Ltd. Wärmeleitende folie und verfahren, um diese zu erzeugen

Also Published As

Publication number Publication date
JP6723610B2 (ja) 2020-07-15
JPWO2016208458A1 (ja) 2018-05-24
DE112016000807T5 (de) 2017-11-30
DE112016000807B4 (de) 2022-05-25
CN107851623B (zh) 2021-04-16
US20180292148A1 (en) 2018-10-11
US10591229B2 (en) 2020-03-17
CN107851623A (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
JP6723610B2 (ja) 熱伝導性シート
JP6846641B2 (ja) 熱伝導性シート
JP6671735B2 (ja) 熱伝導性シートの製造方法
TWI577959B (zh) 導熱薄片,導熱薄片之製作方法,及放熱裝置
JP6646836B2 (ja) 熱伝導性シート
KR102614679B1 (ko) 열전도성 시트
CN111699090B (zh) 导热性片
JP7281093B2 (ja) 熱伝導性シート
US20190092995A1 (en) Thermally conductive composition, thermally conductive sheet, and method for producing thermally conductive sheet
JP5516034B2 (ja) 絶縁性の高い熱伝導シート及びこれを用いた放熱装置
JP2017059704A (ja) 熱伝導組成物、熱伝導シート、熱伝導シートの製造方法、及び部材
US11987686B2 (en) Thermally conductive sheet
US20230323181A1 (en) Heat-conductive sheet, method for attaching same and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814229

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15557876

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016000807

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2017525240

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16814229

Country of ref document: EP

Kind code of ref document: A1