JP6723610B2 - 熱伝導性シート - Google Patents

熱伝導性シート Download PDF

Info

Publication number
JP6723610B2
JP6723610B2 JP2017525240A JP2017525240A JP6723610B2 JP 6723610 B2 JP6723610 B2 JP 6723610B2 JP 2017525240 A JP2017525240 A JP 2017525240A JP 2017525240 A JP2017525240 A JP 2017525240A JP 6723610 B2 JP6723610 B2 JP 6723610B2
Authority
JP
Japan
Prior art keywords
heat conductive
carbon fiber
conductive layer
insulating
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017525240A
Other languages
English (en)
Other versions
JPWO2016208458A1 (ja
Inventor
泰佳 渡部
泰佳 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Polymatech Co Ltd
Original Assignee
Sekisui Polymatech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Polymatech Co Ltd filed Critical Sekisui Polymatech Co Ltd
Publication of JPWO2016208458A1 publication Critical patent/JPWO2016208458A1/ja
Application granted granted Critical
Publication of JP6723610B2 publication Critical patent/JP6723610B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/10Layered products comprising a layer of natural or synthetic rubber next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/20Layered products comprising a layer of natural or synthetic rubber comprising silicone rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/04Layered products comprising a layer of synthetic resin as impregnant, bonding, or embedding substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/30Fillers, e.g. particles, powders, beads, flakes, spheres, chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/06Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes composite, e.g. polymers with fillers or fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

本発明は、発熱体と放熱体の間に配置して用いられる熱伝導性シートに関する。
コンピュータや自動車部品等の電子機器では、半導体素子や機械部品等の発熱体から生じる熱を放熱するためヒートシンクなどの放熱体が用いられており、この放熱体への熱の伝達効率を高める目的で発熱体と放熱体の間に熱伝導性シートを配置することがある。こうした熱伝導性シートとして、例えば、炭素繊維を熱伝導材として充填し配向させた熱伝導性シートが特開2005−146057号公報(特許文献1)に開示されている。
ところで、このような炭素繊維を配向した熱伝導性シートは厚み方向に高い熱伝導性を有しているものの、炭素繊維が導電性を有しているため高い絶縁性が要求される用途へは使用することができなかった。こうした問題に対して、炭素繊維を熱伝導材として充填し配向させた熱伝導性シートの一方面に電気絶縁層用組成物でなる電気絶縁層を形成した熱伝導性シートが特開2001−315244号公報(特許文献2)に開示されている。
特開2005−146057号公報 特開2001−315244号公報
しかしながら、炭素繊維を配向させた熱伝導性シートに電気絶縁層を形成した前記熱伝導性シートは、電気絶縁層を設けなかった熱伝導性シートと比較すると熱伝導性が大きく損なわれるため、高い熱伝導性が求められる用途には採用し難いという問題があった。また、硬化した電気絶縁層は表面が硬く被着体への固定が困難で取扱い性が悪いという問題もあった。
そこで本発明は、上記問題点に鑑みてなされたもので、絶縁性を備えつつ熱伝導性が高い熱伝導性シートの提供を目的とする。また本発明は、取扱い性にも優れた熱伝導性シートの提供を目的とする。
上記目的を達成する本発明の熱伝導性シートは以下のとおり構成される。
即ち、高分子マトリクスに繊維軸がシートの厚み方向に配向している炭素繊維粉末を含む炭素繊維配向熱伝導層と、高分子マトリクスに絶縁性熱伝導性充填材が分散しており熱伝導性と絶縁性とを備える絶縁熱伝導層と、を積層した熱伝導性シートである。
高分子マトリクスに繊維軸がシートの厚み方向に配向している炭素繊維粉末を含む炭素繊維配向熱伝導層を備えるため、シートの厚み方向の熱伝導性に優れるが、シートの側面方向へは熱を伝えにくく、熱伝導性の異方性に優れる。
鱗片状黒鉛粉末を配向した熱伝導性シートと比較すると、鱗片状黒鉛粉末を用いた場合は一方向に限定されない鱗片状黒鉛粉末の面の広がり方向に熱伝導性を発揮するのに対して、炭素繊維粉末を用いた場合は、面方向ではない、繊維軸の軸方向への熱伝導性を高めることができる。そのため、繊維軸方向以外の方向への熱伝導を抑制することができる。
また、鱗片状黒鉛粉末を用いた場合は、鱗片状黒鉛粉末の面と面とが重なり黒鉛粉末どうしが接触する確率が高いため、導電性を高める要因となっていた。一方、炭素繊維粉末を用いた場合は、炭素繊維粉末どうしは接触する確率が低く、むしろ熱伝導性充填材を介して接触するため、導電性が低いという特徴がある。
そして、高分子マトリクスに絶縁性熱伝導性充填材が分散しており熱伝導性と絶縁性とを備える絶縁熱伝導層を備えるため、炭素繊維配向熱伝導層のみからなる熱伝導性シートと比較して熱伝導性を大きく低下させることなく、絶縁性を高めることができる。そのため、高い絶縁性が要求される用途に対して好適に利用することができる。
前記高分子マトリクスは、液状シリコーンの主剤と硬化剤の硬化体からなるものとすることができる。
高分子マトリクスを液状シリコーンの主剤と硬化剤の硬化体からなる熱伝導性シートとすれば、硬化させて高分子マトリクスとする前の高分子組成物の段階では粘度を低く抑えることができ、炭素繊維粉末や熱伝導性充填材の充填を容易に行うことができる。そのため、配向性能の高い熱伝導性シートとすることができる。
炭素繊維配向熱伝導層は、日本工業規格であるJIS K6253のタイプE硬度計によって測定される値(「E硬度」という)が5〜60であり、絶縁熱伝導層は、炭素繊維配向熱伝導層よりも硬く、且つE硬度が70以下であり、厚みが0.15〜1.5mmである熱伝導性シートとすることができる。
炭素繊維配向熱伝導層を日本工業規格であるJIS K6253のタイプE硬度計によって測定されるE硬度を5〜60としたため、圧縮性に優れ、被着体へ密着させることができるため、熱抵抗を低く抑えて高い熱伝導性をもたらすことができる。そして、絶縁熱伝導層は炭素繊維配向熱伝導層よりも硬いため、圧縮時に絶縁熱伝導層が過剰に圧縮されることなく絶縁性を維持し易い。その絶縁熱伝導層の硬さは、E硬度で70以下であるため、被着体との密着性にも優れ、硬すぎた場合に密着性が悪化して熱伝導性も悪化するといった状態になり難い。さらに、絶縁熱伝導層の厚みが0.15〜1.5mmであるため、薄すぎた場合に生じ易いピンホールの発生を抑え、厚すぎた場合に生じ易い熱伝達阻害を起こし難い。
前記絶縁熱伝導層の硬さはE硬度で20以上とすることができる。
絶縁熱伝導層の硬さをE硬度で20以上とすれば、圧縮時にも絶縁熱伝導層が過剰に潰されることなく熱伝導性シートの絶縁性が安定する。硬さの上限がE硬度で70以下であるため、被着体へ追従する柔軟性も合わせ持ち熱抵抗を低くすることができる。
前記炭素繊維配向熱伝導層のシートの厚み方向の熱伝導率が7W/m・K以上で30W/m・K以下であり、前記絶縁熱伝導層の熱伝導率が2W/m・K以上で7W/m・K未満である熱伝導性シートとすることができる。
熱伝導率が7W/m・K以上で30W/m・K以下の炭素繊維配向熱伝導層と、熱伝導率が2W/m・K以上で7W/m・K未満の絶縁熱伝導層とすることで、熱伝導性シートの熱伝導率を炭素繊維配向熱伝導層の熱伝導率に近い値にすることができる。そのため、絶縁熱伝導層を付加することによる熱伝導性シートの熱伝導率の低下を低く抑えることができる。
絶縁熱伝導層の熱伝導率は、5W/m・K以上であることが好ましい。
熱伝導率を5W/m・K以上とすれば、絶縁熱伝導層の厚みを1.5mm程度にまで厚膜にしても、熱伝導性シートの熱伝導率の低下を抑え、高い熱伝導性を維持することができる。
絶縁熱伝導層の熱伝導率(W)(単位:W/m・K)と厚み(T)(単位:mm)とが、次の式(1)の関係を満たす熱伝導性シートとすることができる。
0<T≦0.20W−0.19 ・・・ 式(1)
絶縁熱伝導層について、熱伝導率(W)と厚み(T)とが式(1)を満たすものとすれば、熱伝導率の高い熱伝導性シートとすることができる。
前記絶縁熱伝導層の厚みは炭素繊維配向熱伝導層の厚みよりも薄くすることができる。
絶縁熱伝導層の方の厚みを薄くすることで、熱伝導性シートの熱伝導率の低下を抑えることができる。また、相対的に厚くなる炭素繊維配向熱伝導層を確実に圧縮して熱抵抗を低下させることができる。
前記炭素繊維配向熱伝導層にはアスペクト比が2以下の熱伝導性充填材を含ませることができる。
炭素繊維配向熱伝導層にアスペクト比が2以下の熱伝導性充填材を含むことで、炭素繊維粉末を単独で充填させた場合に比べて、炭素繊維粉末とそれ以外の熱伝導性充填材の両者を高充填させることができる。そのため、高い熱伝導性を得ることができる。
本発明の熱伝導性シートによれば、高い熱伝導性とともに絶縁性を併せ持つ熱伝導性シートである。また、本発明の熱伝導性シートによれば、被着体に固定し易く取扱い性に優れている。
針入度とE硬度の関係を示すグラフ図である。 熱伝導性シートの熱伝導率と絶縁熱伝導層の厚みとの関係を示すグラフ図である。 絶縁熱伝導層の厚みと熱伝導率の相関を示すグラフ図である。
実施形態に即してさらに詳しく説明する。なお、各実施形態において同一の材質、組成、製法、作用、効果等については重複説明を省略する。
第1実施形態: 第1実施形態として示す熱伝導性シートは、シート状に形成された炭素繊維配向熱伝導層と絶縁熱伝導層とが積層した構成からなる。
<炭素繊維配向熱伝導層>
炭素繊維配向熱伝導層は、高分子マトリクスとなる液状の高分子組成物に、炭素繊維粉末や、炭素繊維粉末以外の熱伝導性充填材を配合した混合組成物を硬化してシート状に形成した層であり、炭素繊維粉末は、その繊維軸が高分子マトリクス中でシートの厚み方向に配向している。この炭素繊維粉末の厚み方向の配向をより具体的に説明すると、シートの厚み方向に対して繊維軸のなす角度が30°未満の炭素繊維粉末の数の割合が50%を超える状態にあることをいう。
炭素繊維配向熱伝導層の硬さは、日本工業規格であるJIS K6253のタイプE硬度計によって測定されるE硬度で5〜60とすることが好ましい。
E硬度が60を超える場合は、実際の使用時に、炭素繊維配向熱伝導層の圧縮性が悪化するため、積層した絶縁熱伝導層が過剰に圧縮されて絶縁熱伝導層が想定よりも薄厚になるまで潰されることや、その変形に伴う亀裂の発生などに起因して絶縁性が低下するおそれがある。絶縁熱伝導層をより硬質にすれば絶縁性の低下は抑制できるが、そうすると熱伝導性シート全体が硬くなり、発熱体や放熱体の形状への追従性が悪化し、発熱体や放熱体と熱伝導性シートとの密着性が低下して熱伝導性が低下するおそれがある。それに対してE硬度が60以下の場合には、絶縁熱伝導層に対する過剰圧縮のおそれが少なく、発熱体や放熱体の形状に沿って熱伝導性シートが良好に追従するため、発熱体や放熱体と熱伝導性シートとの密着性を十分に確保することができる。
そうした一方で、E硬度が5未満の場合には、形状の保持が難しいことから圧縮により炭素繊維の配向が乱れ、熱伝導性が損なわれるおそれがある。E硬度が5以上であれば、形状が保持され易くなり取扱い性が向上する。
なお、炭素繊維配向熱伝導層の硬さは、炭素繊維粉末や熱伝導性充填材の充填量を高めることによって硬くなるため、炭素繊維配向熱伝導層の硬さを好ましい範囲にするために、高分子マトリクスには炭素繊維配向熱伝導層としたときの所望の硬さよりも柔らかいものを選択する。
炭素繊維配向熱伝導層の厚みは、0.25〜10mmとすることが好ましい。厚みが0.25mm未満では、金型内で炭素繊維粉末を配向させる際に、金型によって炭素繊維粉末の回転のための空間が不十分になり、回転が阻害されることで配向が不十分となるおそれがある。一方、10mmを超える場合には、熱抵抗が大きくなるおそれがある。
炭素繊維配向熱伝導層の厚み方向、即ち、炭素繊維粉末の配向方向の熱伝導率は、7W/m・K以上で30W/m・K以下の範囲とすることができる。熱伝導率は大きいほど良いが、絶縁熱伝導層の熱伝導率に対してその差が大きくなるに従って熱伝導性シートの熱伝導率を高め難くなる傾向がある。そのため、30W/m・Kを超えると絶縁熱伝導層に対する熱伝導率差が大きくなりすぎ、炭素繊維配向熱伝導層の熱伝導率を高めても、熱伝導性シートの熱伝導率がほとんど変わらなくなるからである。この熱伝導率は、後に説明する実験例の方法を用いて算出することができる。なお、本発明において単に熱伝導率という場合には、断りのない限りシートの厚み方向(炭素繊維粉末の配向方向)の熱伝導率をいうものとする。
炭素繊維配向熱伝導層は、配向した炭素繊維粉末を含有するため導電性を備える。その導電性の指標としては、体積抵抗率が10〜10Ω・cmであることが好ましい。導電性と熱伝導率は、ある程度相関があり、導電性が10〜10Ω・cmの範囲にある炭素繊維配向熱伝導層は、高い熱伝導率を備えるためである。体積抵抗率は、炭素繊維配向熱伝導層を金メッキした金属板に挟み、初期厚みを10%に圧縮したときの抵抗値をテスターで測定して求めることができる。
次に炭素繊維配向熱伝導層を構成する各成分について説明する。
高分子マトリクス:
高分子マトリクスは、樹脂やゴム等の高分子であり、好ましくは主剤と硬化剤のような混合系からなる液状の高分子組成物を硬化して形成したものとすることができる。したがってこの高分子組成物は、例えば、未架橋ゴムと架橋剤を含むものであったり、架橋剤を含む未架橋ゴムと架橋促進剤を含むものであったりすることができる。また、その硬化反応は常温硬化であっても熱硬化であっても良い。高分子マトリクスがシリコーンゴムであれば、アルケニル基含有オルガノポリシロキサンとオルガノハイドロジェンポリシロキサンなどが例示できる。また、ポリエステル系熱可塑性エラストマーであれば、ジオールとジカルボン酸とすることができ、ポリウレタン系熱可塑性エラストマーであれば、ジイソシアネートとジオールとすることができる。このような高分子組成物(硬化前高分子マトリクス)の中でも、硬化後の高分子マトリクスが特に柔軟であり、熱伝導性充填材の充填性が良い付加反応型のシリコーンゴムを用いることが好ましい。
炭素繊維粉末:
高分子マトリクスの中に含ませる炭素繊維粉末は、繊維状、棒状、針状等の炭素繊維粉末を含むものである。炭素繊維粉末はグラファイトの結晶面が繊維軸方向に連なっており、その繊維軸方向に極めて高い熱伝導率を備える。そのため、その繊維軸方向を所定の方向に揃えることで、特定方向の熱伝導率を高めることができる。
本発明で用いる炭素繊維は黒鉛化されたものであり、その原料としては、例えば、ナフタレン等の縮合多環炭化水素化合物、PAN(ポリアクリロニトリル)、ピッチ等の縮合複素環化合物等が挙げられるが、特にメソフェーズピッチを用いることが好ましい。メソフェーズピッチを用いることにより、後述する紡糸工程において、ピッチがその異方性により繊維軸方向に配向され、その繊維軸方向へ優れた熱伝導性を有する黒鉛化炭素繊維を得ることができる。このメソフェーズピッチは、紡糸可能ならば特に限定されるものではなく、一種を単独で用いても、二種以上を適宜組み合わせて用いてもよいが、メソフェーズピッチを単独で用いること、すなわち、メソフェーズピッチ含有量100%の黒鉛化炭素繊維が、高熱伝導化、紡糸性及び品質の安定性の面から最も好ましい。
炭素繊維は、紡糸、不融化及び炭化の各処理を順次行い、所定の粒径に粉砕又は切断した後に黒鉛化したものや、炭化後に粉砕又は切断した後に黒鉛化したものを用いることができる。黒鉛化前に粉砕又は切断する場合には、粉砕で新たに表面に露出した表面において黒鉛化処理時に縮重合反応、環化反応が進みやすくなるため、黒鉛化度を高めて、より一層熱伝導性を向上させた黒鉛化炭素繊維を得ることができる。一方、紡糸した炭素繊維を黒鉛化した後に粉砕する場合は、黒鉛化後の炭素繊維が剛いため粉砕し易く、短時間の粉砕で比較的繊維長分布の狭い炭素繊維粉末を得ることができる。
炭素繊維の繊維直径は、特に限定されないが、好ましくは5〜20μmである。繊維直径は5〜20μmの範囲が工業的に生産しやすく、得られる炭素繊維配向熱伝導層の熱伝導性を大きくすることができる。一方、繊維直径が5μmよりも小さく、或いは20μmよりも大きいと、生産性が低下する。
炭素繊維の平均繊維長は、好ましくは10〜500μm、より好ましくは15〜200μm、特に好ましくは15〜120μmである。平均繊維長が10μmより短いと、高分子マトリクス中において黒鉛化炭素繊維同士の接触が少なくなり、熱の伝達経路が不充分となって得られる炭素繊維配向熱伝導層の熱伝導性が低下する。一方、平均繊維長が500μmよりも長いと、炭素繊維が嵩高くなり、高分子マトリクス中に高充填することが困難になる。また、炭素繊維配向熱伝導層の導電性が高まるおそれがある。なお、上記の平均繊維長は、炭素繊維を顕微鏡で観察した粒度分布から算出することができる。
また、炭素繊維の平均繊維長は、炭素繊維配向熱伝導層の厚さの50%以下が好ましく、且つ炭素繊維配向熱伝導層の厚みの80%を超える繊維長の炭素繊維の含有量が5質量%以下であることが好ましい。炭素繊維配向熱伝導層の厚みの80%を超える繊維長の炭素繊維の含有量が5質量%を超えると、熱伝導性シートを圧縮したときに、炭素繊維がその圧縮厚みを超える長さとなり、絶縁熱伝導層に大きく侵入するおそれがあるためである。絶縁熱伝導層に炭素繊維が侵入すれば、絶縁性を高めるための厚みが薄くなるため絶縁性が低下するおそれがあり、炭素繊維が絶縁熱伝導層を貫通すると、絶縁性が損なわれる。こうした意味から、炭素繊維の平均繊維長もまた炭素繊維配向熱伝導層の厚みの50%以下であれば、圧縮時にも炭素繊維配向熱伝導層の厚みを超える炭素繊維の量を少なくすることができる。また、こうした懸念を考慮すると、炭素繊維の粒度分布は狭い方が好ましく、熱伝導率を高めることができるという理由から、異なる粒度分布を備える複数の炭素繊維を混合して用いることが好ましい。
また、炭素繊維粉末のアスペクト比は2を超えることが好ましい。アスペクト比が2以下では、炭素繊維粉末を特定方向に配向させることが困難で熱伝導性を高め難いためである。より好ましくはアスペクト比が5以上である。なお、ここでいうアスペクト比は炭素繊維粉末の「繊維の長さ/繊維の直径」の値である。
炭素繊維の熱伝導率は、特に限定されないが、繊維軸方向における熱伝導率が、好ましくは400W/m・K以上、より好ましくは800W/m・K以上、特に好ましくは1000W/m・K以上である。
炭素繊維粉末の含有量は、高分子マトリクス100質量部に対して75〜150質量部であることが好ましい。75質量部未満では熱伝導性を高め難く、150質量部を超えると、混合組成物の粘度が高くなり配向性が悪くなるおそれがある。
熱伝導性充填材:
熱伝導性充填材は、炭素繊維配向熱伝導層において炭素繊維粉末とは別に含有されることが好ましく、炭素繊維粉末とともに高分子マトリクスに熱伝導性を付与する材料である。特にアスペクト比が2以下の熱伝導性充填材が含まれることが好ましい。
炭素繊維粉末がシートの厚み方向に配向し、かつ好ましくはこれ以外の熱伝導性充填材、より好ましくはアスペクト比が小さい熱伝導性充填材を含むことで、配向した炭素繊維粉末の面どうしの隙間に熱伝導性充填材が好適に介在し、熱伝導率の高い炭素繊維配向熱伝導層が得られる。
熱伝導性充填材には、例えば、金属、金属酸化物、金属窒化物、金属炭化物、金属水酸化物などの球状や不定形の粉末、球状黒鉛などが挙げられる。金属としては、アルミニウム、銅、ニッケルなど、金属酸化物としては、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、石英など、金属窒化物としては、窒化ホウ素、及び窒化アルミニウムなどを例示することができる。また、金属炭化物としては、炭化ケイ素が挙げられ、金属水酸化物としては、水酸化アルミニウムが挙げられる。これらの熱伝導性充填材の中でも、酸化アルミニウムやアルミニウムは、熱伝導率が高く、球状のものが入手しやすい点で好ましく、水酸化アルミニウムは入手し易く熱伝導性シートの難燃性を高めることができる点で好ましい。
このような熱伝導性充填材は、アスペクト比が2以下であることが好ましい。アスペクト比が2を超えると、粘度が上昇しやすく高充填し難いためである。こうした理由から、熱伝導性充填材の形状は球状であることが好ましい。
熱伝導性充填材の平均粒径は0.5〜35μmであることが好ましい。平均粒径が35μmを超えると、炭素繊維粉末の大きさに近づきその炭素繊維粉末の配向を乱すおそれがある。一方、平均粒径が0.5μm未満の熱伝導性充填材は、比表面積が大きくなるため粘度が上昇し易く高充填し難くなる。但し、充填性に悪影響がない場合は、0.5μm未満の熱伝導性充填材を含んでもよい。熱伝導性充填材の平均粒径は、レーザ回折散乱法(JIS R1629)により測定した粒度分布の体積平均粒径で示すことができる。
熱伝導性充填材は、高分子マトリクス100質量部に対して、250〜800質量部の範囲で添加することが好ましく、350〜700質量部の範囲で添加することがより好ましい。250質量部未満の場合には、炭素繊維粒子どうしの隙間に介在する量が不足し熱伝導性が悪くなるおそれがある。一方、800質量部を超えても、熱伝導性を高める効果が上がることがなくなり、かえって炭素繊維粉末による熱伝導を阻害するおそれがある。そして350〜700質量部の範囲では、熱伝導性に優れ混合組成物の粘度も好適である。
添加剤:
熱伝導性シートとしての機能を損なわない範囲で種々の添加剤を含ませることができる。例えば、可塑剤、分散剤、カップリング剤、粘着剤などの有機成分を含んでも良い。またその他の成分として難燃剤、酸化防止剤、着色剤などを適宜添加してもよい。
炭素繊維配向熱伝導層は、炭素繊維粉末とともに熱伝導性充填材を含むことで炭素繊維の含有量が比較的少ない柔軟性とシート表面のタック性に優れたシートとすることができる。そのため、発熱体と放熱体との間に挟んで加圧しても、圧縮応力が小さく、基板が歪んだり過剰な圧力がかかったりするおそれが低い。また、炭素繊維配向熱伝導層の表面を熱伝導性シートの表面に露出させれば、発熱体や放熱体に固定しやすく作業性に優れた熱伝導性シートとなる。さらに、絶縁熱伝導層と積層する際に炭素繊維配向熱伝導層がタック性を有しているため、接着層を設けることなく絶縁熱伝導層と一体化しやすい。よって、接着層を設けるコストがかからず、接着層によって熱伝導性が低下する懸念もない。
<絶縁熱伝導層>
絶縁熱伝導層は、高分子マトリクスとなる液状の高分子組成物に、絶縁性熱伝導性充填材を配合した混合組成物を硬化してシート状に形成した層であり、絶縁性を有し、炭素繊維配向熱伝導層と積層した熱伝導性シートに対して絶縁性を付与している。
このように絶縁熱伝導層は熱伝導性シートに絶縁性を付与するため、所定の絶縁破壊電圧を備えていることが好ましい。絶縁破壊電圧とは、2つの電極の間に電気絶縁性を有する試料を挟み込んだ後、電圧を徐々に上げていくと電流が急激に増加し、試料の一部が溶けて孔が空いたり炭化したりして通電するようになる際の電圧をいい、より具体的には、JIS K6249に基づき、耐電圧試験器(TOS8650、菊水電子工業株式会社製)を用いて測定した絶縁破壊電圧で3kV/mm以上であることが好ましく、5kV/mm以上であることがより好ましい。
高分子マトリクスに絶縁性熱伝導性充填材が配合された絶縁熱伝導層は、炭素繊維配向熱伝導層よりも硬く、且つ日本工業規格であるJIS K 6253のタイプE硬度計によるE硬度で70以下であり、かつ20以上であることが好ましい。
絶縁熱伝導層の硬さが、炭素繊維配向熱伝導層よりも柔らかい場合には、実際の使用時に絶縁熱伝導層が過剰に圧縮されて絶縁性が損なわれるおそれがある。一方、絶縁熱伝導層の硬さがE硬度70を超えると、硬さの上昇により被着体との間の密着性が悪化し熱抵抗の増加が懸念される。
また、絶縁熱伝導層の硬さをE硬度で20以上とすれば、強度のある絶縁熱伝導層とすることができ、圧縮されても安定した絶縁性を保持できる。そして、被着体へ追従する柔軟性も合わせ持つため熱抵抗を低くすることができる。
絶縁熱伝導層の厚みは0.15〜1.5mmとすることが好ましく、0.25〜1.5mmとすることがより好ましい。厚みが0.15mm未満では、ピンホールができるおそれがあるとともに、薄すぎて絶縁性が損なわれるおそれがある。一方、厚みが1.5mmを超えると、絶縁熱伝導層による熱伝達阻害の影響が大きくなるおそれがある。また、厚みが0.25mm以上であれば絶縁破壊電圧が高く安定した絶縁性が得られる。
絶縁熱伝導層の熱伝導率は2W/m・K以上で7W/m・K未満であることが好ましく、5W/m・K以上で7W/m・K未満であることがより好ましい。熱伝導率が2W/m・K未満の場合には、熱伝導性シートの熱伝導率を大きく下げてしまうおそれがある。一方、7W/m・K以上とすると含有させる絶縁性熱伝導性充填材の量が多くなることで絶縁熱伝導層が脆くなり、圧縮や変形によって絶縁性が損なわれるおそれがある。5W/m・K以上で7W/m・K未満とすることで熱伝導率の低下を少なくすることができる。
別途断りのない限り絶縁熱伝導層の熱伝導率も、厚み方向の熱伝導率を示すものとする。例えば窒化硼素など形状異方性のある絶縁性熱伝導性充填材の長軸を厚み方向に配向することで、厚み方向の熱伝導率を高めることができる。一方、形状異方性のない球状等の絶縁性熱伝導性充填材を配合した場合には、絶縁熱伝導層は等方的な熱伝導率を有するものとなる。
絶縁熱伝導層の熱伝導率(W)(単位:W/m・K)と厚み(T)(単位:mm)との間には次の式(1)の関係を満たすことが好ましい。
0<T≦0.20W−0.19 ・・・ 式(1)
この関係式を満たす場合には、高い熱伝導率を備える熱伝導性シートとすることができる。
絶縁熱伝導層を構成する各成分のうち、高分子マトリクスや添加剤については炭素繊維配向熱伝導層で説明した種類の材質を用いることができる。こうして例示した高分子マトリクスの中で、炭素繊維配向熱伝導層に採用した高分子マトリクスと同一の高分子マトリクスを絶縁熱伝導層にも用いることができ、その場合は、化学構造が同じであるため炭素繊維配向熱伝導層と絶縁熱伝導層との密着性に優れた熱伝導性シートとすることができる。また、使用する材料が共通し生産管理が容易になるというメリットがある。
そうした一方で、炭素繊維配向熱伝導層に採用した高分子マトリクスとは異なる材料の高分子マトリクスを採用して絶縁熱伝導層に用いることもできる。例えば放熱体に接触させる側の層にはシリコーンを用い、基板などの電子機器に接触させる側の層には非シリコーン系材料を用いることで、基板側へのシリコーンのブリードアウトを抑制し、低分子シロキサンの蒸散を低減することができる。別の例としては、被着体の素材に応じてそれぞれの被着体に密着し易い材質の高分子マトリクスを選択したりするなど、被着体ごとに対応した材質を炭素繊維配向熱伝導層と絶縁熱伝導層のそれぞれの層で選択することができる。
絶縁性熱伝導性充填材は、絶縁熱伝導層において高分子マトリクスに熱伝導性を付与する材料であり、炭素繊維配向熱伝導層で説明した種類の材質のうち絶縁性のある材料を絶縁熱伝導層にも用いることができる。
こうした絶縁性熱伝導性充填材の中でも、熱伝導率が高く、球状である点で酸化アルミニウムが好ましく、熱伝導性シートの難燃性を高めることができる点で水酸化アルミニウムが好ましい。球状のものは粘度が上昇し難く、高充填し易い。酸化アルミニウムや水酸化アルミニウムは、入手の容易さの観点からも好ましい。
絶縁性熱伝導性充填材の平均粒径は0.5〜50μmであることが好ましい。平均粒径が50μmを超えると、成形性が著しく低下する。一方、平均粒径が0.5μm未満の熱伝導性充填材は、比表面積が大きくなるため粘度が上昇し易く高充填し難くなる。但し、充填性に悪影響がない場合は、0.5μm未満の熱伝導性充填材を含んでもよい。
絶縁性熱伝導性充填材は、高分子マトリクス100質量部に対して、300〜2000質量部の範囲で添加することが好ましく、500〜2000質量部の範囲で添加することがより好ましい。300質量部未満の場合には、熱伝導性が低くなるおそれがある。一方、2000質量部を超えても、熱伝導性を高める効果に乏しく、かえって成形性が低下することにより薄い絶縁熱伝導層の形成が困難になる。そして500〜1500質量部の範囲では、熱伝導性に優れ、硬化して絶縁熱伝導層とする前の液状組成物の粘度も好適である。
絶縁熱伝導層は、絶縁性熱伝導性充填材を含み炭素繊維粉末を含まないことで、熱伝導性があり絶縁性の高いシートとすることができる。そのため、熱伝導性シートに絶縁性を付与することができる。また、炭素繊維配向熱伝導層よりも硬い一方である程度の柔らかさを有するため、発熱体と放熱体との間に挟んで加圧しても、炭素繊維配向熱伝導層ほどには潰されにくく絶縁性を保持し易い一方で、被着体への密着性も高い。
<熱伝導性シート>
炭素繊維配向熱伝導層と絶縁熱伝導層とを積層した熱伝導性シートは以下の性質を備える。
まず、熱伝導性シートの熱伝導率は、3〜30W/m・K程度であり、10W/m・K以上が好ましい。10W/m・K以上であれば熱伝導性シートとして要求される熱伝導性を備えるからである。
炭素繊維配向熱伝導層の好ましい熱伝導率は7W/m・K以上で30W/m・K以下であり、絶縁熱伝導層の好ましい熱伝導率は2W/m・K以上で7W/m・K未満であるが、両者の熱伝導率の差は小さい方が好ましい。熱伝導率差が大きくなるに従って熱伝導性シートの熱伝導率を高め難くなる傾向があるため、炭素繊維配向熱伝導層の絶縁熱伝導層に対する熱伝導率差が大きくなりすぎると、炭素繊維配向熱伝導層の熱伝導率を高めても、熱伝導性シートの熱伝導率はほとんど変わらなくなるからである。こうした観点から炭素繊維配向熱伝導層の熱伝導率を絶縁熱伝導層の熱伝導率に対する比率でみると5倍以下であることが好ましい。
熱伝導性シートは上述の熱伝導率を有する一方で所定の絶縁性も備える。具体的には、5kV/mm以上となる絶縁破壊電圧を備える絶縁熱伝導層を有することで、熱伝導性シートの絶縁破壊電圧もまた5kV/mm以上とすることができる。
炭素繊維配向熱伝導層の厚みと絶縁熱伝導層の厚みの比は、炭素繊維配向熱伝導層の厚みを1としたときに、絶縁熱伝導層の厚みは、1〜0.015の範囲である。“炭素繊維配向熱伝導層の厚み”:“絶縁熱伝導層の厚み”=1:1を超えて絶縁熱伝導層を厚くすると、熱伝導性シートの熱伝導率に対して、絶縁熱伝導層の寄与が大きくなり、熱伝導率が低くなるおそれがある。一方、この比が1:0.015を超えて絶縁熱伝導層を薄くすると、絶縁性が低下するか、炭素繊維配向熱伝導層が厚くなり熱抵抗が大きくなりすぎるおそれがある。
<熱伝導性シートの製造方法>
熱伝導性シートの製造方法の一例として、炭素繊維配向熱伝導層と絶縁熱伝導層とを別々に製造し、それらを貼合せる方法がある。
炭素繊維配向熱伝導層を製造するには、第1に、液状の高分子組成物と炭素繊維粉末、熱伝導性充填材を含む混合組成物を磁場に置き、炭素繊維粉末を磁場に沿って配向させた後、高分子組成物を硬化させることで炭素繊維配向熱伝導層を得る磁場配向製法が挙げられる。
液状の高分子組成物に炭素繊維粉末と熱伝導性充填材とを均質に分散させた混合組成物を構成する各成分は、高分子組成物100質量部に対し、炭素繊維粉末75〜150質量部と、熱伝導性充填材250〜800質量部とを含むことが好ましい。この添加割合を体積%に換算すると、高分子組成物30〜50体積%に対して、炭素繊維粉末10〜25体積%、熱伝導性充填材25〜60体積%におよそ相当する。これに適宜、添加剤等を含ませることができる。
磁場配向させるために、混合組成物の粘度は、10〜300Pa・sであることが好ましい。10Pa・s未満では炭素繊維粉末や熱伝導性充填材が沈降するおそれがあり、300Pa・sを超えると流動性が低すぎて磁場で炭素繊維粉末が配向しないか、配向に時間がかかりすぎるためである。しかしながら、沈降し難い熱伝導性充填材を用いたり、沈降防止剤等の添加剤を組合せたりすることによって10Pa・s未満にできる場合もある。
磁場配向製法において、磁力線を印加するための磁力線発生源としては、超電導磁石、永久磁石、電磁石、コイル等が挙げられるが、高い磁束密度の磁場を発生することができる点で超電導磁石が好ましい。これらの磁力線発生源から発生する磁場の磁束密度は、好ましくは1〜30テスラである。この磁束密度が1テスラ未満であると、炭素繊維粉末を配向させることが難しくなる。一方、30テスラを超える磁束密度は実用上得られにくい。
磁場配向製法において得られた成形体は、そのまま炭素繊維配向熱伝導層として用いても良いし、スライスやカットを行い最終的な形状に加工してもよい。金型で成形された炭素繊維配向熱伝導層は、シートの表面に高分子マトリクスからなる極薄いスキン層が形成されることがある。このスキン層は炭素繊維粉末や熱伝導性充填材の脱落を抑制する効果がある。
炭素繊維配向熱伝導層を製造するには、第2に、混合組成物に剪断力をかけて薄板状にした予備的シートを製造し、これを複数枚積層して硬化させた積層ブロックを製造し、そしてその積層ブロックを裁断する積層スライス製法がある。
積層スライス製法は、まず、液状の高分子組成物に炭素繊維粉末と熱伝導性充填材、必要により種々の添加剤を混入し攪拌し、混入させた固形物が均質に分散した混合組成物を調製する。混合組成物は、シート状に伸長させるときに剪断力がかかるように比較的高粘度である10〜1,000Pa・sであることが好ましい。
次に、混合組成物に対して剪断力を付与しながら平たく伸長させてシート状に成形する。剪断力をかけることで、炭素繊維粉末を剪断方向に配向させることができる。シートの成形手段として、例えば、バーコータやドクターブレード等の塗布用アプリケータ、もしくは、押出成形やノズルからの吐出等により、基材フィルム上に混合組成物を塗工する方法が挙げられる。このときのシート厚は50〜250μm程度が好ましい。こうして予備的シート得ることができる。この予備的シートは、炭素繊維粉末がシートの面内で一方向に配向している。
そして、この予備的シートを、配向方向が同じになるように複数枚重ねて積層した後、紫外線照射や熱プレス等の高分子組成物を硬化させるための適切な硬化手段を用いて混合組成物を硬化させて積層ブロックを形成する。最後に、炭素繊維粉末の配向方向と直交する方向に積層ブロックを切断し、シート状の炭素繊維配向熱伝導層を得る。
第1の磁場配向製法と第2の積層スライス製法とを比較する。
積層スライス製法では、柔軟で薄い炭素繊維配向熱伝導層の作製が難しい。例えばOO硬度が50以下程度の場合は可能な限り鋭い刃を用いても、シートが柔らかすぎるためスライスによる押圧力でシートの変形が大きく、品質のよい薄膜シートを得ることが困難である。この問題への対策として冷凍してスライスする方法が挙げられる。しかし、冷凍する方法は例えばアクリルゲルなどでは有効であるが、シリコーンを高分子マトリクスとするシートでは、−40℃に冷凍しても硬さがほとんど変わらないため、スライス時の硬さを改善できない。さらに低温まで(実際には−60℃程度まで)冷やせば硬くすることができるが、−40℃を超えて低い温度まで冷やすためには特殊な装置が必要となり、またスライス時の摩擦熱で冷却が阻害されることなども加味すると現実的には採用が難しい。
また、熱伝導性シートは、一般に被着体どうしの確実な密着と熱抵抗を下げる目的で10〜40%程度圧縮して使用される。このとき熱伝導性シートが柔軟であれば圧縮のための応力が小さくなるため、応力によって被着体である基板が歪むおそれが低くなる。ところが積層スライス製法では、硬さの制限を受けるため、非常に柔軟な熱伝導性シートを得ることが難しい。
加えて、積層スライス製法では、熱伝導性シートの面方向の物性や熱伝導性に異方性が発生するという問題や、表面の粘着性が損なわれるため、被着体に固定しにくく作業性が悪いという問題がある。また、積層して貼り合せる工程やスライスする工程が増えるため、コストアップの要因ともなる。さらに、熱伝導性シートを発熱体と放熱体の間に配置する際に、シートどうしの貼り合せ面が倒れ込む方向に加圧力が働き、この結果、貼り合せ面が剥がれたり炭素繊維粉末どうしが剥離したりするおそれがある。
こうした積層スライス製法と比較して磁場配向製法では、複数のシートを貼り合わせた貼り合せ面を備えないため、その貼り合せ面が剥離し易いといった問題も生じない。さらに、絶縁熱伝導層と積層する際には表面に粘着性がある方が好ましいが、そうした粘着性のある表面を形成し易い。したがって、以上のような理由から、磁場配向製法により製造する方が好ましい。
なお、磁場配向製法でも積層スライス製法でも、配向方向に垂直な平面でスライスやカットをすることで、カット面に炭素繊維粉末や熱伝導性充填材が表出するため、これらの炭素繊維粉末や熱伝導性充填材が被着体に広い面積で接触するため、熱伝導性を高めることができる。
次に絶縁熱伝導層の製造方法について説明する。
絶縁熱伝導層は、液状の高分子組成物と、熱伝導性充填材を含む混合組成物を調製し、次いで高分子組成物を硬化させる。混合組成物を構成する各成分は、高分子組成物100質量部に対し、熱伝導性充填材300〜2000質量部を含むことが好ましい。この添加割合を体積%に換算すると、高分子組成物中で熱伝導性充填材およそ50〜90体積%に相当する。これに適宜添加剤等を含ませることができる。
絶縁熱伝導層の成形方法としては、バーコータ法、ドクターブレード法、押出成形法(Tダイ法等)、カレンダー成形法、プレス成形法、注型法等が挙げられる。したがって、混合組成物の粘度は、これらの方法で薄膜を形成できる範囲とすることが好ましい。
炭素繊維配向熱伝導層と絶縁熱伝導層との貼合せは、炭素繊維配向熱伝導層と絶縁熱伝導層の少なくとも一方が高分子マトリクスに由来する粘着性を備えていればそのまま貼合せることで一体化することができる。この貼り合わせの観点からは、炭素繊維配向熱伝導層と絶縁熱伝導層の両方に粘着性があることが好ましい。炭素繊維配向熱伝導層も絶縁熱伝導層も所定の柔らかさを有することから、その表面もそのまま互いに貼り合わせすることができる程度に粘着性がある場合が多いが、こうした粘着性がない場合には、粘着剤等を介して積層することもできる。
熱伝導性シートの製造方法の別の例としては、炭素繊維配向熱伝導層をまずシート状に形成し、その上に絶縁熱伝導層となる混合組成物を塗布してその高分子組成物を硬化させる方法がある。この製造方法によれば、炭素繊維配向熱伝導層の表面で絶縁熱伝導層を硬化させるため、両者を貼り合わせる手順を省略することができる。
炭素繊維配向熱伝導層の表面に高分子マトリクスからなるスキン層が形成されている場合には、表面をスライスやカットをすることで炭素繊維粉末や熱伝導性充填材を表出させた後に、その上に絶縁熱伝導層となる混合組成物を塗布してその高分子組成物を硬化させることとしてもよい。こうすることで層間に介在するスキン層が無くなり熱伝導性シートの熱伝導率を高くすることができる。
熱伝導性シートの製造方法のさらに別の例としては、先ず絶縁熱伝導層をシート状に形成し、その上に炭素繊維配向熱伝導層となる混合組成物を塗布し、磁場配向製法により炭素繊維粉末を配向するとともに高分子組成物を硬化させる方法がある。この製造方法によっても、絶縁熱伝導層の表面で炭素繊維配向熱伝導層を硬化させるため、両者を貼り合わせる手順を省略することができる利点がある。
なお、これらの製造方法は一例であって、これら以外に公知の製造方法を採用することもできる。
第2実施形態: 第2実施形態として示す熱伝導性シートは、炭素繊維配向熱伝導層の両面に絶縁熱伝導層が積層したシート状の熱伝導性シートである。本実施形態によれば、導電性粉末である炭素繊維を含む炭素繊維配向熱伝導層が絶縁熱伝導層で挟まれるため、炭素繊維の脱落を防ぎ、回路の短絡を抑制することができる。
第3実施形態: 第3実施形態として示す熱伝導性シートは、絶縁熱伝導層の両面に炭素繊維配向熱伝導層が積層したシート状の熱伝導性シートである。炭素繊維配向熱伝導層を上述の積層スライス製法で作製する、もしくは炭素繊維配向熱伝導層の表面をスライスやカットして炭素繊維粉末や熱伝導性充填材を表出させれば、表面のタック性を低減することができるが、こうした滑り性の良い表面を両面に備えた熱伝導性シートとすることができる。
各実施形態の特徴的な構成は、不具合のない範囲で組合せることができ、例えば、第1実施形態で示した熱伝導性シート2枚を積層するような構成とすることもできる。
より具体的な実施例を示して本発明をさらに説明する。
炭素繊維配向熱伝導層の作製
以下に示す炭素繊維配向熱伝導層1〜4を作製した。
<炭素繊維配向熱伝導層1>
液状の高分子組成物として付加反応型シリコーンであって、アルケニル基含有ポリオルガノシロキサン(主剤)とオルガノハイドロジェンポリシロキサン(硬化剤)の混合物(比重:1.0)に、炭素繊維粉末(平均繊維長:100μm、比重:2.2)、熱伝導性充填材1として粒径3μmでアスペクト比が略1である球状酸化アルミニウム(比重:4.0)と、熱伝導性充填材2として粒径10μmでアスペクト比が略1である球状酸化アルミニウム(比重:4.0)とを表1に示す割合(それぞれ質量部で示す)で配合して、この組成物が均一になるように混合攪拌した後に脱泡して炭素繊維配向熱伝導層1用の混合組成物を調製した。なお、炭素繊維粉末と熱伝導性充填材は予めシランカップリング剤で表面処理したものを用いた。
続いて、この混合組成物を、金型成形でシート状に成形した。そして、磁力線をシートの厚み方向に印加するように、超電導磁石による8テスラの磁場中に10分間静置した。次に、120℃で30分間加熱し炭素繊維配向熱伝導層1を得た。この炭素繊維配向熱伝導層1は厚みが2.0mmおよび10.0mmの試験片として作製した。
なお、熱伝導性充填材の平均粒径は、レーザ回折散乱法(JIS R1629)により測定した粒度分布の体積平均粒径を示したものである。また、熱伝導性充填材のアスペクト比は、電子顕微鏡で観察したものである。熱伝導性充填材1,2および後述する熱伝導性充填材3のアスペクト比は略1.0であった。
<炭素繊維配向熱伝導層2〜4>
炭素繊維配向熱伝導層1を製造した際の混合組成物中の各成分の配合を変更して、炭素繊維配向熱伝導層1と同様の方法で炭素繊維配向熱伝導層2〜4を作製した。炭素繊維配向熱伝導層2〜4となる混合組成物中の各成分の配合(質量部)を表1に示す。この炭素繊維配向熱伝導層2〜4も厚みが2.0mmおよび10.0mmの試験片として作製した。
Figure 0006723610
絶縁熱伝導層の作製
以下に示す絶縁熱伝導層1〜8を作製した。
<絶縁熱伝導層1>
液状の高分子組成物として炭素繊維配向熱伝導層1に用いたものと同じ付加反応型シリコーン(主剤および硬化剤)に、絶縁性熱伝導性充填材として前記熱伝導性充填材1と同じ粒径3μmでアスペクト比が略1である球状酸化アルミニウム(比重:4.0)と、絶縁性熱伝導性充填材3として粒径40μmでアスペクト比が略1である球状酸化アルミニウム(比重:4.0)とを表2で示す割合(それぞれ質量部で示す)で配合し、攪拌混合した後に脱泡して絶縁熱伝導層1用の混合組成物を調製した。絶縁性熱伝導性充填材も予めシランカップリング剤で表面処理したものを用いた。続いて、この混合組成物を、金型成形でシート状に成形し、120℃で30分間加熱して絶縁熱伝導層1を得た。この絶縁熱伝導層1は厚みが0.10mm、0.15mm、0.25mm、0.50mm、0.75mm、10.0mmの各試験片として作製した。
<絶縁熱伝導層2〜8>
絶縁熱伝導層1を製造した際の混合組成物の配合を表2に示す配合(質量部)に変更して、絶縁熱伝導層1と同様の方法で絶縁熱伝導層2〜8を作製した。絶縁熱伝導層4,5に添加した可塑剤は、ジメチルポリシロキサン(シリコーンオイル)(粘度100mPa・s)である。
絶縁熱伝導層2〜8は厚みが0.5mmおよび10.0mmの試験片として作製したが、絶縁熱伝導層6については、厚みが0.25mm、0.75mmの試験片も作製した。
Figure 0006723610
熱伝導性シートの作製
以下に示す熱伝導性シート1〜21を作製した。
<熱伝導性シート1〜19>
上記炭素繊維配向熱伝導層1〜4と、絶縁熱伝導層1〜8から、次の表3〜5で示すように、炭素繊維配向熱伝導層と絶縁熱伝導層を選択し、その選択した炭素繊維配向熱伝導層と絶縁熱伝導層とを積層して熱伝導性シート1〜19を作製した。
炭素繊維配向熱伝導層1〜4と絶縁熱伝導層1〜8は、何れも表面が微粘着性を有しており、直接重ねるだけで容易に剥がれることはなく一体化することができる。
<熱伝導性シート20>
炭素繊維配向熱伝導層1に、絶縁熱伝導層を設けなかったものを熱伝導性シート20とした。
<熱伝導性シート21>
炭素繊維配向熱伝導層1に、絶縁熱伝導層との比較としてのポリイミドフィルム(熱伝導率が0.16W/m・Kで、厚みが50μm)を積層したものを熱伝導性シート21とした。
Figure 0006723610
Figure 0006723610
Figure 0006723610
各種特性の試験
<硬さの測定>
炭素繊維配向熱伝導層1〜4については、タイプEデュロメータを用いて厚みが10.0mmの試験片のE硬度を測定した。その結果を表3〜5に示す。また、絶縁熱伝導層1〜8については、タイプEデュロメータを用いて厚みが10.0mmの試験片のE硬度を測定した。その結果も表3〜5に示す。(注:表3〜5で示す炭素繊維配向熱伝導層や絶縁熱伝導層の厚みは10.0mmではないが、E硬度は原則として厚みに依存しないため10.0mm厚での測定結果を記した)
<針入度の測定>
上記硬さとは別の硬さの指標とするため針入度を測定した。より具体的には、熱機械分析装置(島津製作所製、TMA−50)にて直径0.5mmの円柱状の突起を備えた針入用プローブを用い、縦10mm×横10mmにカットした各試験片をセットした後、荷重レートを1g/min、目標荷重を0.5gとして23℃で3分間(即ち、荷重は最初の30秒で0から0.5gに上昇し、30秒から3分まで0.5gで一定である)のプローブの沈み込み深さを測定した。その結果を表3〜5に示す。
この結果の一部から、実測した針入度の値と、その試験片と同じ構成で厚みが10.0mmの試験片から実測したE硬度の値とを対比して図1に示す。より具体的には、厚みが2mmと0.5mmの試験片について測定した針入度の値と、その試験片と同じ構成で厚みが10.0mmの試験片のE硬度の値とをグラフ上にプロットし、それらのプロットから厚みごとの関係式(図1における2つの曲線)を導いたものである。
この図1で示すように、針入度は試験片厚みの影響を受けるが、こうした関係式を導いておけば、ある厚みの試験片の針入度を測定することで、この関係式を利用してE硬度を推測することができる。即ち、厚みが2mmや0.5mmの試験片であれば、図1で示される2つの関係式に実測した針入度を代入すればE硬度が求められる。また、厚みが2mmや0.5mm以外であっても、この両関係式と同様にして予め特定の長さに対する関係式を作成しておけば、その関係式に実測した針入度を代入してE硬度を推測することができる。
また、炭素繊維配向熱伝導層と絶縁熱伝導層とを積層した熱伝導性シートの針入度は、その熱伝導性シートと同じ厚みで炭素繊維配向熱伝導層単独でなる試験片の針入度と、その熱伝導性シートと同じ厚みで絶縁熱伝導層単独でなる試験片の針入度の間の値となる。
この間の値はまた、炭素繊維配向熱伝導層側から測定した針入度と、絶縁熱伝導層側から測定した針入度で異なり、炭素繊維配向熱伝導層よりも絶縁熱伝導層が硬ければ、絶縁熱伝導層側から測定した針入度の方が低い(硬い)値となる。
したがって、これらの知見を総合すれば、厚みがLmmの試験片の表裏両面から針入度を測定し、表面側の針入度がAμmであり、裏面側の針入度がBμmであり、A>Bである場合に、表面側の層は、図1から厚みがLmmとして針入度から換算したE硬度よりも柔らかいE硬度からなる層であることがわかり、裏面側の層は、図1から厚みがLmmとして針入度から換算したE硬度よりも硬いE硬度からなる層であることがわかる。
<熱抵抗値の測定と熱伝導率の算出>
縦10mm×横10mmにカットした試験片を、発熱基板(発熱量Q:25W)とヒートシンク(株式会社アルファ製「FH60−30」)との間に挟み、ヒートシンクに一定の荷重(2kgf/cm)を加えた。このヒートシンクの上部には、冷却ファン(風量0.01kg/sec、風圧49Pa)が取り付けられており、ヒートシンク及び発熱基板には温度センサが接続されている。冷却ファンを作動させた状態で、発熱基板に通電する。通電の開始後、5分経過した時点で、発熱基板の温度(T1)及びヒートシンクの温度(T2)を測定し、各温度を次の式(2)に代入することにより各試験片の熱抵抗値を算出した。
熱抵抗値(℃/W)=(T1−T2)/発熱量Q ・・・ 式(2)
そして次の式(3)によって熱抵抗値から熱伝導率へ換算した。
熱抵抗値(℃/W)=熱通過方向厚み(m)/(熱通過断面積(m)×熱伝導率(W/m・K))・・・式(3)
こうして得た熱伝導率の値を表3〜5に示す。
<絶縁破壊電圧の測定>
絶縁性の評価の指標となる絶縁破壊電圧を測定した。2つの電極の間に試験片を挟み込んだ後に200gの荷重をかけた状態で電圧を徐々に上げていくと、電流が急激に増加し、試験片の一部が溶けて孔が空いたり炭化したりして通電するようになるが、この際の電圧が絶縁破壊電圧である。より具体的には、JIS K6249に基づき、耐電圧試験器(TOS8650、菊水電子工業株式会社製)を用いて絶縁破壊電圧を測定した。試験片はそれぞれ5つ準備して5回試験を行った。表3〜5には5回の平均値を示す。
<粘着性の試験>
熱伝導性シート表面の粘着性を試験した。水平に配置したステンレス板の上に、縦10mm×横10mmにカットした熱伝導性シートの試験片を置き、その上に剥離フィルムを介して200gの重りを10秒間置いて熱伝導性シートをステンレス板に押し付けた。その後、ステンレス板を180度反転させたときに、10秒の間に試験片が剥離して落下するか否かを試験した。なお、ステンレス板としては、表面仕上げが2Bのものを用い、ステンレス板へ熱伝導性シートを置く際には、炭素繊維配向熱伝導層側を置く場合と、絶縁熱伝導層側を置く場合の両方で試験を行った。表3〜5には炭素繊維配向熱伝導層側を置いた場合/絶縁熱伝導層側を置いた場合、の順に評価結果を示す。
各種特性の評価
<硬さ>
硬さがE30の炭素繊維配向熱伝導層に種々の硬さの絶縁熱伝導層を積層した熱伝導性シート1〜6を比較すると、最も柔軟な硬さE10の絶縁熱伝導層を積層した熱伝導性シート2は、熱伝導率では最も良い結果であったが、絶縁破壊電圧が0kV/mmとなり所望の絶縁性を備えていなかった。また、硬さがE18の絶縁熱伝導層を積層した熱伝導性シート5は、絶縁破壊電圧の平均値は4kV/mmであるが、5回のうちの1回だけ0kV/mmという測定結果となった。また、硬さがE25、E40、E70、E80の絶縁熱伝導層を積層した熱伝導性シート1、3、4、6は、何れも絶縁破壊電圧が5kV/mmを超えていた。こうした結果から絶縁熱伝導層が柔らかいほど熱伝導率が高くなる傾向が見られた。
次に、硬さをE60、E75に変更した炭素繊維配向熱伝導層に、種々の硬さの絶縁熱伝導層を積層した熱伝導性シート7,8をみると、熱伝導性シート7,8は、5kV/mmを超える絶縁破壊電圧を備えていた。また、熱伝導率については、熱伝導性シート8の熱伝導率がやや低かった。
絶縁破壊電圧が所望の値にならなかった熱伝導性シート2は、炭素繊維配向熱伝導層よりも絶縁熱伝導層の硬さの方が柔らかい組合せであり、電極で挟み圧縮した試験片を見ると、絶縁熱伝導層が周囲にはみ出して広がる様子が見られた。このことから、炭素繊維配向熱伝導層よりも絶縁熱伝導層の方が柔らかいと、圧縮したときに絶縁熱伝導層が過剰に圧縮されて絶縁性が低下することがわかる。
一方、熱伝導性シート5で、N=5のうち1回だけ0kV/mmという測定結果になった理由は、圧縮により絶縁熱伝導層に亀裂等が入り絶縁性が低下したものと考えられる。絶縁熱伝導層の硬さは、炭素繊維配向熱伝導層よりもやや硬いもののE18とかなり柔軟であったため、強度的には弱く脆かったものと考えられる。
炭素繊維配向熱伝導層の硬さがE75の熱伝導性シート8や、絶縁熱伝導層の硬さがE80の熱伝導性シート4で熱伝導率が低くなる傾向があったことから、炭素繊維配向熱伝導層の硬さはE60以下が好ましく、絶縁熱伝導層の硬さはE70以下が好ましいことがわかる。
<熱伝導率>
種々の熱伝導率の炭素繊維配向熱伝導層と絶縁熱伝導層とを組合せた熱伝導性シート1、9〜13を比較する。熱伝導性シート1、9、10は、熱伝導率が12.9W/m・Kの炭素繊維配向熱伝導層に、それぞれ熱伝導率が5.0W/m・K、1.5W/m・K、2.5W/m・Kの絶縁熱伝導層を積層した熱伝導性シートである。熱伝導率が5.0W/m・Kの絶縁熱伝導層を積層した熱伝導性シート1は、熱伝導率が高いだけでなく、絶縁熱伝導層を積層したことによる熱伝導率の低下が小さく、炭素繊維配向熱伝導層の熱伝導率に極めて近い熱伝導率を備えることがわかる。このことは、熱伝導率が11.5W/m・Kの炭素繊維配向熱伝導層に、熱伝導率がそれぞれ1.5W/m・K、2.5W/m・K、5.0W/m・Kの絶縁熱伝導層を積層した熱伝導性シート11〜13でも同様であった。
<絶縁熱伝導層の厚み>
熱伝導性シート14、15は、厚みが0.10mm、0.15mmの絶縁熱伝導層を積層したものである。絶縁熱伝導層の厚みが0.15mmの熱伝導性シート15は、3.0kV/mmの絶縁破壊電圧を備えていたが、厚みが0.10mmの熱伝導性シート14は、絶縁破壊電圧が1.5kV/mmまで低下していた。このことから、絶縁熱伝導層の厚みは、0.15mm以上であることが好ましいことがわかる。
<絶縁熱伝導層の熱伝導率と厚みの関係>
熱伝導性シート16〜19と、熱伝導性シート1、9は、熱伝導率が12.9W/m・Kで厚みが2mmの炭素繊維配向熱伝導層に、熱伝導率が1.5W/m・Kまたは5.0W/m・Kの絶縁熱伝導層について、厚みを0.25mm、0.50mm、0.75mmと変化させたものを積層した熱伝導性シートである。
これらの絶縁熱伝導層の厚みをx軸に、熱伝導性シートの熱伝導率をy軸にプロットしたグラフを図2に示す。
図2のプロットより、「(1)熱伝導率1.5W/m・Kの絶縁熱伝導層を積層した熱伝導性シートの熱伝導率が11.0W/m・Kとなる厚み」、「(2)熱伝導率5.0W/m・Kの絶縁熱伝導層を積層した熱伝導性シートの熱伝導率が11.0W/m・Kとなる厚み」を求めると、それぞれ(1)が0.11mm、(2)が0.84mmとなった。
次に、絶縁熱伝導層の熱伝導率をx軸に、ここで求めた熱伝導性シートの熱伝導率が11.0W/m・Kとなる各絶縁熱伝導層の厚みをy軸としたグラフを図3に示す。
この図3より、近似式としてy=0.20x−0.19を導き出すことができた。
そして、上式から、熱伝導率が11.0W/m・K以上の熱伝導性シートを得るための絶縁熱伝導層の熱伝導率W(x)(単位:W/m・K)と厚さT(y)(単位:mm)
との関係を表す次の式(1)を導出した。
0<T≦0.20W−0.19 ・・・ 式(1)
<絶縁破壊電圧>
絶縁破壊電圧については、3kV/mm以上のものについて“○”、3kV/mm未満のものについて“×”と評価した。この結果も表3〜5に示す。
<絶縁安定性>
絶縁破壊電圧の測定において、測定結果のばらつきの大きさを評価した。より具体的には、平均値が3kV/mmを超えるものの、5回の測定のうち1回以上0kV/mmとなったものを“×”とし、そうでないものを“○”とした。
<熱伝導率の低下率>
熱伝導率の高い炭素繊維配向熱伝導層に対してそれよりは熱伝導率が低い絶縁熱伝導層を積層したことによる熱伝導率の低下の程度を評価した。即ち、次の式(4)で示すように炭素繊維配向熱伝導層の熱伝導率から熱伝導性シートの熱伝導率を引き、炭素繊維配向熱伝導層の熱伝導率で割ったものを、炭素繊維配向熱伝導層に対する熱伝導性シートの熱伝導率の低下率(以下単に「熱伝導率の低下率」)と定義し、算出した。
熱伝導率の低下率=(炭素繊維配向熱伝導層の熱伝導率−熱伝導性シートの熱伝導率)/炭素繊維配向熱伝導層の熱伝導率・・・式(4)
こうして求めた熱伝導率の低下率の値を表3〜5に示す。また、この値が15%未満のものは、炭素繊維配向熱伝導層単独の場合に比べて熱伝導率の低下が少なく絶縁熱伝導層を設けたことの悪影響を抑制できたとして“○”、15%以上35%未満のものは、絶縁熱伝導層を設けたことの悪影響をやや抑制できたとして“△”、35%以上のものは、炭素繊維配向熱伝導層単独の場合に比べて熱伝導率の低下が甚だしいとして“×”と評価した。この結果も併せて表3〜5に示す。
<取扱い性(粘着性)>
熱伝導性シートは、表面に粘着性を有することで被着体に固定することができ、電子機器への装着作業が容易になる。そこで、この被着体への固定の可否を取扱い性という観点から評価した。上記粘着性の試験において、10秒の間に熱伝導性シートの試験片が剥離して落下したものを取扱い性が悪いとして“×”、落下しなかったものを “○”と評価した。
表3〜5で示すように、取扱い性試験の結果、熱伝導性シート3の絶縁熱伝導層側が“△”となり取扱い性がやや悪く、熱伝導性シート4の絶縁熱伝導層側は“×”となり、被着体に固着しない結果となった。このことから、絶縁熱伝導層の硬さはE70以下が好ましいことがわかる。また、熱伝導性シート7、8の取扱い性の評価結果は、炭素繊維配向熱伝導層側について硬さがE60の熱伝導性シート7でやや悪く、硬さがE75の熱伝導性シート8では熱伝導性シートが被着体に固着しない結果となった。このことから、炭素繊維配向熱伝導層の硬さはE60以下が好ましいことがわかる。
<熱伝導性と絶縁性についての総合評価>
以上のように、種々の観点からの評価を総合した総合評価を各熱伝導性シートについて行った。絶縁性の全くない(絶縁破壊電圧の評価が×)熱伝導性シート2、14、20、および熱伝導率の低下率と取扱い性について×であった熱伝導性シート21は、総合評価を×とした。そうした一方で何れの評価についても×がなかったものを“◎”とした。また、評価に△があるものを“○”、さらに、絶縁破壊電圧の評価以外の何れかの評価に×があるものを“△”と評価した。こうした総合評価も表3〜5に示す。
以上より、取扱い性が悪く絶縁性または熱伝導率の低下率の激しい樹脂フィルムを用いる熱伝導性シートと比較して、炭素繊維配向熱伝導層と絶縁熱伝導層を積層した熱伝導性シートはそれらの2つ以上の特性が悪いということはない。また、所定の硬さや、厚み、熱伝導率等を備える熱伝導性シートは、取扱い性も熱伝導性も良く優れた性質を備えた熱伝導性シートである。

Claims (8)

  1. 高分子マトリクスに繊維軸がシートの厚み方向に配向している炭素繊維粉末を含む炭素繊維配向熱伝導層と、高分子マトリクスに絶縁性熱伝導性充填材が分散しており熱伝導性と絶縁性とを備える絶縁熱伝導層と、を積層し、
    炭素繊維配向熱伝導層は、日本工業規格であるJIS K6253のタイプEの硬度計によって測定されるE硬度が5〜60であり、
    絶縁熱伝導層は、炭素繊維配向熱伝導層よりも硬く、E硬度が70以下であり、且つ厚みが0.15〜1.5mmである熱伝導性シート。
  2. 高分子マトリクスに繊維軸がシートの厚み方向に配向している炭素繊維粉末を含む炭素繊維配向熱伝導層と、高分子マトリクスに絶縁性熱伝導性充填材が分散しており熱伝導性と絶縁性とを備える絶縁熱伝導層と、を積層し、
    炭素繊維配向熱伝導層のシートの厚み方向の熱伝導率が7W/m・K以上で30W/m・K以下であり、絶縁熱伝導層の熱伝導率が2W/m・K以上で7W/m・K未満であり、炭素繊維配向熱伝導層の厚み方向の熱伝導率を絶縁熱伝導層の熱伝導率よりも高くした熱伝導性シート。
  3. 高分子マトリクスに繊維軸がシートの厚み方向に配向している炭素繊維粉末を含む炭素繊維配向熱伝導層と、高分子マトリクスに絶縁性熱伝導性充填材が分散しており熱伝導性と絶縁性とを備える絶縁熱伝導層と、を積層し、
    絶縁熱伝導層の熱伝導率(W)(単位:W/m・K)と、厚み(T)(単位:mm)とが、次の式(1)の関係を満たす熱伝導性シート。
    0<T≦0.20W−0.19 ・・・ 式(1)
  4. 高分子マトリクスが液状シリコーンの主剤と硬化剤の硬化体からなるものである請求項1〜請求項3何れか1項記載の熱伝導性シート。
  5. 絶縁熱伝導層の厚みが炭素繊維配向熱伝導層の厚みよりも薄い請求項1〜請求項4何れか1項記載の熱伝導性シート。
  6. 絶縁熱伝導層の熱伝導率が5W/m・K以上である請求項1〜請求項5何れか1項記載の熱伝導性シート。
  7. 絶縁熱伝導層の硬さがE硬度で20以上である請求項1〜請求項6何れか1項記載の熱伝導性シート。
  8. 炭素繊維配向熱伝導層にアスペクト比が2以下の熱伝導性充填材を含む請求項1〜請求項7何れか1項記載の熱伝導性シート。
JP2017525240A 2015-06-25 2016-06-14 熱伝導性シート Active JP6723610B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015127338 2015-06-25
JP2015127338 2015-06-25
PCT/JP2016/067674 WO2016208458A1 (ja) 2015-06-25 2016-06-14 熱伝導性シート

Publications (2)

Publication Number Publication Date
JPWO2016208458A1 JPWO2016208458A1 (ja) 2018-05-24
JP6723610B2 true JP6723610B2 (ja) 2020-07-15

Family

ID=57586363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017525240A Active JP6723610B2 (ja) 2015-06-25 2016-06-14 熱伝導性シート

Country Status (5)

Country Link
US (1) US10591229B2 (ja)
JP (1) JP6723610B2 (ja)
CN (1) CN107851623B (ja)
DE (1) DE112016000807B4 (ja)
WO (1) WO2016208458A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016190258A1 (ja) 2015-05-28 2016-12-01 ポリマテック・ジャパン株式会社 熱伝導性シート
JP6484156B2 (ja) * 2015-10-08 2019-03-13 川崎重工業株式会社 鉄道車両用台車の無線通信機能付き温度センサユニット
JP6480374B2 (ja) * 2016-04-01 2019-03-06 株式会社巴川製紙所 熱伝導シート
WO2019004150A1 (ja) * 2017-06-27 2019-01-03 積水ポリマテック株式会社 熱伝導性シート
US11401451B2 (en) 2017-11-20 2022-08-02 L&P Property Management Company Fiber reinforced flexible foams
JP6984391B2 (ja) * 2017-12-20 2021-12-17 住友ベークライト株式会社 構造体および内装材
US11610829B2 (en) 2018-02-14 2023-03-21 Sekisui Polymatech Co., Ltd. Heat-conductive sheet
CN112368826A (zh) 2018-06-22 2021-02-12 积水保力马科技株式会社 热传导性片
CN108943921A (zh) * 2018-07-20 2018-12-07 四川大学 一种多层绝缘热界面材料及其制备方法
WO2020067141A1 (ja) 2018-09-26 2020-04-02 積水ポリマテック株式会社 熱伝導性シート
CN109318561A (zh) * 2018-09-28 2019-02-12 深圳市宝力科技有限公司 一种软硬结合导热垫片及其制备方法
JP6874225B2 (ja) * 2019-03-27 2021-05-19 住友理工株式会社 静電容量結合方式センサ
JP2020176182A (ja) * 2019-04-16 2020-10-29 信越化学工業株式会社 自己粘着性を有する異方性熱伝導性シート
CN110229367A (zh) * 2019-05-22 2019-09-13 深圳市鸿富诚屏蔽材料有限公司 一种各向异性绝缘导热性片材及其制备方法
KR102564309B1 (ko) 2020-02-21 2023-08-07 세키수이 폴리머텍 가부시키가이샤 열전도성 시트 및 그 제조 방법
CN112712944B (zh) * 2020-12-24 2022-04-08 武汉肯达科讯科技有限公司 一种高导热绝缘垫片及其制备方法
CN117070183B (zh) * 2023-08-04 2024-04-16 常州宏巨电子科技有限公司 一种多层结构的复合绝缘导热胶膜及其制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6517744B1 (en) 1999-11-16 2003-02-11 Jsr Corporation Curing composition for forming a heat-conductive sheet, heat-conductive sheet, production thereof and heat sink structure
JP2001315244A (ja) 2000-05-01 2001-11-13 Jsr Corp 熱伝導性シート、その製造方法およびその熱伝導性シートを用いた放熱構造
JP4714371B2 (ja) * 2001-06-06 2011-06-29 ポリマテック株式会社 熱伝導性成形体及びその製造方法
JP4268778B2 (ja) 2001-12-27 2009-05-27 ポリマテック株式会社 発熱電子部品の冷却方法及びそれに用いる熱伝導性シート
EP1501135B1 (en) * 2003-07-22 2011-06-15 Polymatech Co., Ltd. Thermally conductive holder
JP2005056837A (ja) * 2003-07-22 2005-03-03 Polymatech Co Ltd 熱伝導性ホルダー
JP2005146057A (ja) 2003-11-12 2005-06-09 Polymatech Co Ltd 高熱伝導性成形体及びその製造方法
JP4897360B2 (ja) 2006-06-08 2012-03-14 ポリマテック株式会社 熱伝導性成形体及びその製造方法
US20100073882A1 (en) * 2006-11-01 2010-03-25 Tooru Yoshikawa Thermally conductive sheet, process for producing the same, and radiator utilizing thermally conductive sheet
JP5140302B2 (ja) * 2007-03-29 2013-02-06 ポリマテック株式会社 熱伝導性シート
JP5042899B2 (ja) 2008-03-31 2012-10-03 ポリマテック株式会社 熱伝導性シート及びその製造方法
JP2011082423A (ja) * 2009-10-09 2011-04-21 Polymatech Co Ltd 熱伝導性シート
JP2011165792A (ja) 2010-02-08 2011-08-25 Teijin Dupont Films Japan Ltd 放熱性二軸延伸フィルム
JP2011249682A (ja) 2010-05-28 2011-12-08 Sony Chemical & Information Device Corp 熱伝導性シート及び半導体装置
JP5114597B1 (ja) * 2012-03-27 2013-01-09 積水化学工業株式会社 積層体及び切断積層体

Also Published As

Publication number Publication date
US20180292148A1 (en) 2018-10-11
CN107851623B (zh) 2021-04-16
JPWO2016208458A1 (ja) 2018-05-24
DE112016000807T5 (de) 2017-11-30
CN107851623A (zh) 2018-03-27
DE112016000807B4 (de) 2022-05-25
US10591229B2 (en) 2020-03-17
WO2016208458A1 (ja) 2016-12-29

Similar Documents

Publication Publication Date Title
JP6723610B2 (ja) 熱伝導性シート
JP6846641B2 (ja) 熱伝導性シート
JP6671735B2 (ja) 熱伝導性シートの製造方法
TWI577959B (zh) 導熱薄片,導熱薄片之製作方法,及放熱裝置
JP6646836B2 (ja) 熱伝導性シート
KR102614679B1 (ko) 열전도성 시트
CN111699090B (zh) 导热性片
JP7281093B2 (ja) 熱伝導性シート
JP5516034B2 (ja) 絶縁性の高い熱伝導シート及びこれを用いた放熱装置
US11987686B2 (en) Thermally conductive sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200619

R150 Certificate of patent or registration of utility model

Ref document number: 6723610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250