WO2016208433A1 - Far-infrared lens system, imaging optical apparatus, and digital device - Google Patents

Far-infrared lens system, imaging optical apparatus, and digital device Download PDF

Info

Publication number
WO2016208433A1
WO2016208433A1 PCT/JP2016/067491 JP2016067491W WO2016208433A1 WO 2016208433 A1 WO2016208433 A1 WO 2016208433A1 JP 2016067491 W JP2016067491 W JP 2016067491W WO 2016208433 A1 WO2016208433 A1 WO 2016208433A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
far
infrared
lens system
infinity
Prior art date
Application number
PCT/JP2016/067491
Other languages
French (fr)
Japanese (ja)
Inventor
杭迫 真奈美
敦司 山下
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2016208433A1 publication Critical patent/WO2016208433A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation

Definitions

  • the present invention relates to a far-infrared lens system, an imaging optical device, and a digital device.
  • an imaging lens system used in the far-infrared band (wavelength 8 to 12 ⁇ m band), and particularly has a brightness with a peripheral light amount ratio of 50% or more even at a wide angle where the half angle of view ⁇ is greater than 30 °
  • a far-infrared lens system that can be used in an inexpensive camera system an imaging optical device that captures far-infrared images obtained by the far-infrared lens system with a far-infrared sensor, and a digital device with an image input function equipped with a far-infrared lens system , About.
  • Patent Documents 1 to 4 propose a relatively wide-angle infrared lens system including three lenses.
  • JP 2011-253006 A JP-A-4-128709 Japanese Unexamined Patent Publication No. 2009-63942 US2010 / 0232013 A1
  • the lens system described in Patent Document 1 is a three-element far-infrared lens system that covers a wide range from a standard angle of view to a wide angle with a half angle of view ⁇ of 30 ° or more.
  • the peripheral light amount ratio can be 50% or more if the off-axis light beam is restricted only by the diaphragm and is configured without vignetting.
  • the focal length of the second lens is shorter than the focal length of the entire system, and the second lens has a shorter focal length than the third lens, the half angle of view ⁇ is 30 ° or more.
  • the off-axis light beam becomes thin, and the angle at which the off-axis chief ray reaches the image plane is tilted to the same angle as the field angle. It becomes impossible to make it 50% or more.
  • the peripheral light amount ratio is about 25% to 40%.
  • the lens system described in Patent Document 4 is a lens system for near infrared rays, it has the same focal length ratio of the second lens and that of the second and third lenses as those described in Patent Document 1. Yes. Therefore, in the lens system having a half angle of view ⁇ of 30 ° or more, the peripheral light amount ratio is similarly less than 50%.
  • the focal length of the second lens is slightly longer, but this is not sufficient from the viewpoint of the peripheral light quantity ratio.
  • the peripheral light amount ratio is not a problem when the angle of view is from standard to telephoto.
  • the lens is used in a wide-angle lens system having a half angle of view ⁇ of 30 ° or more, the peripheral light amount ratio is less than 50%, which is not desirable as a lens system specification.
  • a material having a refractive index smaller than 2.9 is used for the first lens.
  • the first lens cannot have a very strong curvature, and the interval between the first lens and the second lens is narrowed to ensure performance.
  • a lens system having a half angle of view ⁇ of 30 ° or less can ensure a sufficient peripheral light amount ratio and lens performance.
  • the half angle of view ⁇ is greater than 30 °
  • the off-axis light flux does not pass through a position higher than the optical axis in the first lens, and therefore, off-axis due to a local refractive power difference between the on-axis and the periphery.
  • the effect of enlarging the pupil is hardly obtained, and the peripheral light amount ratio falls below 50%.
  • a diaphragm is arranged in the foreground in a three-lens lens system.
  • the front lens diameter can be reduced even with a wide-angle lens system.
  • the angle of view is determined by the cos 4th power law.
  • the peripheral light amount ratio is reduced by that amount.
  • the third lens has a strong convex surface facing the image side.
  • the angle at which the off-axis light beam reaches the image plane can be easily controlled, but the off-axis light beam passes through a high position on the rear surface of the third lens and is refracted rapidly.
  • An external coma aberration is generated and distortion is greatly negative, which is not preferable for a thermo camera.
  • the present invention has been made in view of such a situation.
  • the object of the present invention is to have a peripheral light quantity ratio of 50% or more while the half angle of view ⁇ is a wide angle larger than 30 ° and as few as three.
  • An object of the present invention is to provide a high-performance and inexpensive far-infrared lens system in which aberrations are favorably corrected even with the number of lenses, an imaging optical device and a digital device including the same.
  • the far-infrared lens system of the first invention is a lens system used in the far-infrared band,
  • the lens is composed of three single lenses of a first lens having negative power, a second lens having positive power, and a third lens having positive power.
  • the following conditional expression ( 1) is satisfied, and the half angle of view is larger than 30 °.
  • f2 focal length of the second lens
  • f focal length of the entire far-infrared lens system, It is.
  • a far-infrared lens system according to a second invention is characterized in that, in the first invention, the first lens is made of a material having a refractive index larger than 2.9 at a wavelength of 10 ⁇ m.
  • a far-infrared lens system is characterized in that, in the first or second aspect, the first lens has a negative meniscus shape having a convex surface facing the object side.
  • the far-infrared lens system of the fourth invention is characterized in that, in the third invention, the following conditional expression (2) is satisfied. 3.0 ⁇ d2 / f ⁇ 9.0 (2) However, d2: axial distance between the image side surface of the first lens and the object side surface of the second lens, f: focal length of the entire far-infrared lens system, It is.
  • a far-infrared lens system is characterized in that, in any one of the first to fourth inventions, the second lens has a positive meniscus shape or plano-convex shape with a convex surface facing the object side. To do.
  • a far-infrared lens system is characterized in that, in any one of the first to fifth inventions, a diaphragm is provided between an image side surface of the first lens and an object side of the third lens.
  • a far-infrared lens system is the bi-convex lens according to any one of the first to sixth inventions, wherein the third lens has a convex surface having a stronger power directed toward the object side when both surfaces are compared. It has a shape or a positive meniscus shape with a convex surface facing the object side.
  • the far-infrared lens system of the eighth invention is characterized in that, in any one of the first to seventh inventions, the following conditional expression (3) is satisfied. 1.7 ⁇ f23 / f ⁇ 2.8 (3) However, f23: composite focal length of the second lens and the third lens, f: focal length of the entire far-infrared lens system, It is.
  • the far-infrared lens system of the ninth invention is characterized in that, in any one of the first to eighth inventions, the following conditional expression (4) is satisfied. 1.45 ⁇ f2 / f3 ⁇ 8.0 (4) However, f2: focal length of the second lens, f3: focal length of the third lens, It is.
  • An imaging optical device is a far-infrared lens system according to any one of the first to ninth inventions, and a far-infrared optical image formed on the imaging surface is converted to an electrical signal.
  • An infrared sensor, and the far-infrared lens system is provided so that a far-infrared optical image of a subject is formed on an imaging surface of the far-infrared sensor.
  • the digital apparatus is characterized in that at least one of a still image photographing and a moving image photographing function of a subject is added by including the imaging optical device according to the tenth aspect.
  • a far-infrared camera system includes the far-infrared lens system according to any one of the first to ninth aspects.
  • three bright and high-performance far-infrared lens systems capable of obtaining a peripheral light amount ratio of 50% or more while having a distortion within ⁇ 5% and a half angle of view ⁇ larger than 30 ° are provided.
  • a wide-angle far-infrared lens system suitable for a thermo camera that requires temperature detection can be provided at a low cost. Therefore, it is possible to realize an inexpensive but high-performance far-infrared lens system and an imaging optical device including the same.
  • the far-infrared lens system or the imaging optical device according to the present invention in a digital device such as a night vision device, a thermography, a portable terminal, a camera system (for example, a digital camera, a surveillance camera, a security camera, an in-vehicle camera). Therefore, it is possible to add a high-performance far-infrared image input function to a digital device at a low cost and in a compact manner.
  • FIG. 6 is an aberration diagram of Example 1.
  • FIG. 6 is an aberration diagram of Example 2.
  • FIG. 6 is an aberration diagram of Example 3.
  • FIG. 6 is an aberration diagram of Example 4.
  • FIG. 6 is an aberration diagram of Example 5.
  • FIG. 10 is an aberration diagram of Example 6.
  • FIG. 10 is an aberration diagram of Example 7.
  • FIG. 10 is an aberration diagram of Example 8.
  • FIG. 10 is an aberration diagram of Example 9.
  • FIG. 10 is an aberration diagram of Example 10.
  • FIG. 10 shows aberration diagrams of Example 11.
  • FIG. 10 is an aberration diagram of Example 12.
  • Aberration diagram of Example 13 The lens block diagram of 14th Embodiment (Example 14).
  • FIG. 18 shows aberration diagrams of Example 15.
  • Aberration diagram of Example 16 The lens block diagram of 17th Embodiment (Example 17).
  • the schematic diagram which shows the schematic structural example of the digital apparatus carrying a far-infrared lens system.
  • the far-infrared lens system according to the present invention is a lens system used in the far-infrared band, and in order from the object side, a first lens having a negative power, a second lens having a positive power, and a positive lens It consists of three single lenses with a third lens that has power (power: an amount defined by the reciprocal of the focal length), satisfies the following conditional expression (1), and has a half angle of view ⁇ of 30 ° It is also characterized by being large. 3.2 ⁇ f2 / f ⁇ 17 (1) However, f2: focal length of the second lens, f: focal length of the entire far-infrared lens system, It is.
  • Far infrared rays are mainly infrared rays having a wavelength in the range of 7 to 14 ⁇ m.
  • the body temperature of humans and animals is emitted light having a wavelength of 8 to 12 ⁇ m, and most of the far infrared optical system is used at a wavelength of 8 to 12 ⁇ m.
  • the far-infrared region with a wavelength of 8 to 12 ⁇ m is the range in which the temperature of a substance can be detected, and there are many things that can be applied, such as temperature measurement, human detection in the dark, and security.
  • far-infrared sensor manufacturing technology has advanced, and inexpensive thermopiles, uncooled microbolometers, and the like have been manufactured, and an inexpensive lens system that is compatible with these is desired.
  • a lineup of far-infrared lens systems applicable to various fields is also desired, and in particular, a wide-angle lens system having a half angle of view ⁇ larger than 30 ° is required.
  • peripheral light amount ratio the image plane by the axial light beam.
  • the decrease in the peripheral light amount ratio due to the angle of view is known as the cosine fourth law (cosine fourth law).
  • cosine fourth law the angle of the light beam incident on the lens system is ⁇ , and the ratio of the light amount to the axis.
  • it decreases to the fourth power of cos ⁇ (theoretical value).
  • the distance from the object to the lens is off-axis and cos ⁇ times on the axis, and the amount of light decreases in proportion to the square of the object distance.
  • the entrance pupil area in the case of an ideal lens
  • the area is reduced by a factor of cos ⁇ and the amount of incident light is reduced.
  • the image plane arrival angle in the case of an ideal lens
  • the amount of light when the lens reaches obliquely decreases by a factor of cos ⁇ .
  • it is reduced to the fourth power of cos ⁇ .
  • the difference in the object distance between the on-axis and the off-axis, the entrance pupil area viewed obliquely, and the oblique incidence of the off-axis light beam on the image plane are combined to reduce the amount of light corresponding to the cos 4th power of the angle of view. .
  • the peripheral light quantity ratio is 56% or less even when the aperture efficiency is 100%, and in a lens system with a wider angle, it is less than 50%. Since the far-infrared lens system detects heat, a decrease in the peripheral light amount ratio is detected by the far-infrared sensor as a pseudo heat amount decrease.
  • the resolution with respect to the temperature change differs between the on-axis and the periphery by performing the correction. This difference becomes more significant as the angle of view of the lens system becomes wider. Particularly, when the half angle of view ⁇ is larger than 30 °, sufficient resolution cannot be obtained for use as a thermo camera for measuring temperature.
  • the half field angle ⁇ of the far-infrared lens system is larger than 30 ° in order to enable application to various fields.
  • Most conventional far-infrared sensors are expensive and can accurately display temperature resolution.
  • non-cooled sensors such as microbolometers that do not require cooling can be manufactured at low cost. Therefore, even a far-infrared lens system having a wide angle of half field angle ⁇ greater than 30 ° can be realized.
  • the reason why the first lens has negative power is to secure a sufficient lens back with a wide-angle lens system in which the half angle of view ⁇ is larger than 30 °.
  • a cover glass is disposed and sealed in front of the light receiving surface to maintain the resolving power, and a vacuum is formed between the light receiving surface and the cover glass. For this reason, a space is required between the light receiving surface and the lens.
  • the principal point can be brought behind the final surface of the lens system, and a sufficient lens back can be secured even at a wide angle.
  • the off-axis luminous flux width is set. It is possible to keep the lens system wide behind the lens system, and a lens system having a peripheral light amount ratio of 50% or more can be realized even with a lens system having a half angle of view ⁇ wider than 30 °.
  • f2 / f larger than the lower limit of conditional expression (1), it becomes possible to keep the off-axis luminous flux width large to the rear of the lens system, the half angle of view ⁇ is larger than 30 °, and distortion is caused.
  • the peripheral light amount ratio can be brightened to 50% or more.
  • the angle at which the off-axis chief ray reaches the image plane can be made nearly vertical, an effect of increasing the peripheral light amount ratio can be obtained.
  • the power of the third lens can be prevented from becoming too strong, and the coma aberration of the off-axis light beam can be suppressed to provide a high-performance lens system.
  • the arrival angle of the off-axis principal ray on the image plane can be prevented from being swung from the vertical direction to the reverse direction, and the light quantity ratio can be kept high.
  • a bright and high-performance far-infrared lens system capable of obtaining a peripheral light quantity ratio of 50% or more while having a distortion within ⁇ 5% and a half angle of view ⁇ larger than 30 °, This can be realized with a small number of three, and a wide-angle far-infrared lens system suitable for a thermocamera that requires temperature detection can be provided at low cost. Therefore, it is possible to realize an inexpensive but high-performance far-infrared lens system and an imaging optical device including the same.
  • the far-infrared lens system for camera systems such as digital cameras, surveillance cameras, security cameras, and in-vehicle cameras, or by using imaging optical devices for digital devices such as portable terminals, night vision devices, and thermography, It is possible to realize a high-performance far-infrared image input function at a low cost and in a compact manner, contributing to its compactness, high performance, and high functionality.
  • the following describes how to obtain these effects in a well-balanced manner, as well as setting conditions for achieving higher optical performance, securing a peripheral light amount ratio, widening the angle, downsizing, and the like.
  • conditional expression (1a) it is desirable to satisfy the following conditional expression (1a), and it is more desirable to satisfy the conditional expression (1b).
  • conditional expression (1a) and (1b) define more preferable condition ranges based on the above viewpoints, etc., among the condition ranges defined by the conditional expression (1). Therefore, the above effect can be further enhanced by preferably satisfying conditional expression (1a), more preferably satisfying conditional expression (1b).
  • the peripheral light quantity ratio can be further increased by exceeding the lower limit of the conditional expression (1a) or (1b).
  • the first lens is preferably made of a material having a refractive index larger than 2.9 at a wavelength of 10 ⁇ m.
  • the refractive index is the ratio of the traveling speed of light in the material to the vacuum, and is displayed for the d-line (587 nm) in the visible region.
  • the refractive index for a wavelength of 10 ⁇ m is typically representative.
  • Zinc halide 2.407 or the like. Furthermore, sodium chloride (NaCl) or potassium bromide (KBr) having a refractive index of around 1.5, metallic materials having a refractive index larger than 2.9, and the like are included, and there are many variations in the refractive index.
  • the curvature of the lens surface can be relaxed. For this reason, even when the off-axis light beam passes through a high position from the optical axis, the coma aberration is suppressed to be small, and the distortion is also suppressed to be not greatly negative. Therefore, a lens system with good optical performance can be realized.
  • the first lens can be disposed relatively apart, the pupil size of the off-axis light beam can be controlled.
  • the distance between the first lens and the second lens can be made longer than before, so that the first lens Due to the effect of expanding the pupil of the off-axis light beam passing through a high position, it becomes possible to realize a lens system having a higher peripheral light amount ratio.
  • the first lens has a negative meniscus shape with a convex surface facing the object side.
  • the off-axis light beam passes through a high position from the optical axis.
  • the pupil becomes larger as it is off-axis, so that the peripheral light amount ratio can be effectively increased.
  • conditional expression (2) It is desirable to satisfy the following conditional expression (2), and it is further desirable to satisfy the conditional expression (2) using a negative meniscus lens having a convex surface facing the object side as the first lens. 3.0 ⁇ d2 / f ⁇ 9.0 (2) However, d2: axial distance between the image side surface of the first lens and the object side surface of the second lens, f: focal length of the entire far-infrared lens system, It is.
  • the peripheral light amount ratio can be further increased.
  • d2 / f is made larger than the lower limit of conditional expression (2), the off-axis light beam passes through a high position from the optical axis of the first lens.
  • the object side surface of the first lens has a strong convex shape, the local refractive power is stronger than on the axis at a position higher than the optical axis of the convex surface. For this reason, it is possible to increase the pupil diameter with respect to the off-axis light beam, and the effect of increasing the peripheral light amount ratio is given, so that the peripheral light amount ratio can be effectively increased to 50% or more.
  • conditional expression (2a) defines a more preferable condition range based on the above viewpoints, etc., among the condition ranges defined by the conditional expression (2). Therefore, the above effect can be further increased preferably by satisfying conditional expression (2a). For example, the peripheral light amount ratio can be further increased by exceeding the lower limit of the conditional expression (2a).
  • the second lens has a positive meniscus shape or plano-convex shape with a convex surface facing the object side. Since the first lens has negative power, the light flux is converged for the first time by the second lens. By converging the light beam on the first surface of the second lens, it is possible to suppress the spherical aberration and the curvature of field without reducing the light beam width too much.
  • the second lens can have a strong positive power.
  • the second lens needs to have a strong power. There is not much sex.
  • the power of the second lens is not so strong, if the object side surface is first given a positive power as described above, the image side surface is inevitably weakened to correct spherical aberration and field curvature. Or it has weak negative power.
  • a material having a higher refractive index has a smaller surface curvature and a smaller aberration
  • a material having a higher refractive index than 2.9, such as Ge and Si is used in each of the examples described later.
  • a design using a lens material having a low refractive index there is a case where it is necessary to give positive power to both surfaces even if the power of the second lens is within the range of the conditional expression (1). Conceivable.
  • the object side of the first lens is also conceivable as the position where the aperture is placed.
  • the diaphragm is placed on the object side of the first lens, if the off-axis light beam is incident obliquely, the pupil is reduced by cos times the incident angle, even if there is no vignetting by the lens, and the peripheral light quantity ratio is reduced. Resulting in.
  • the stop closer to the image side than the first lens the first lens or the first lens and the second lens can increase the pupil diameter with respect to the off-axis light beam, and the peripheral light amount ratio is increased. It becomes.
  • the position of the stop is set to be the second lens than 1/2 of the interval between the first lens and the second lens. It is more preferable to be close to.
  • the third lens has a biconvex shape in which the convex surface with the higher power is directed toward the object side when comparing both surfaces, or a positive meniscus shape with the convex surface directed toward the object side.
  • the shape of the third lens having a relatively strong positive power is a biconvex shape in which the strong convex surface of both convex surfaces having positive power faces the object side, or the convex surface faces the object side.
  • a positive meniscus shape is desirable.
  • the positive power concentrates behind the lens system.
  • the lens system is larger than 30 ° and has a wide angle and a short focal length.
  • f23 / f smaller than the upper limit of conditional expression (3), a short focal length can be realized, and a lens system with a small front lens diameter can be obtained even at a wide angle so that the total lens length does not become too large. This is possible, and the configuration is such that off-axis coma and distortion are reduced.
  • f23 / f larger than the lower limit of conditional expression (3), it is possible to prevent the positive power concentrated behind the lens system from becoming too strong, and to reduce spherical aberration and curvature of field. It becomes.
  • conditional expression (3a) It is more desirable to satisfy the following conditional expression (3a). 2.0 ⁇ f23 / f ⁇ 2.7 (3a)
  • This conditional expression (3a) defines a more preferable condition range based on the above viewpoints, etc., among the condition ranges defined by the conditional expression (3). Therefore, the above effect can be further increased preferably by satisfying conditional expression (3a).
  • the power ratio f2 / f3 between the second lens and the third lens is set within a predetermined range so as to satisfy the conditional expression (4), an off-axis principal ray image plane that is closely related to the peripheral light amount ratio is obtained. It is possible to control the angle of arrival. For this reason, even if the half angle of view ⁇ is a wide angle of 30 ° or more and the distortion is within ⁇ 5%, it is possible to obtain a configuration in which the peripheral light amount ratio is sufficiently secured.
  • the peripheral light amount ratio and the angle of light rays reaching the image plane have a deep relationship as indicated by the cos 4th law. That is, if the light rays reaching the image plane are close to vertical, the decrease in the peripheral light amount ratio can be reduced.
  • the off-axis light beam is refracted behind the lens system, and the off-axis principal ray reaches at an angle close to the image plane.
  • the arrival angle of the off-axis principal ray on the image plane can be prevented from deviating from vertical in the reverse direction. Further, the configuration is such that the off-axis coma aberration is reduced by preventing the third lens power from becoming too strong.
  • the aperture image is formed at a position far from the light receiving surface, so that ghosting due to the aperture can be prevented, which is suitable for a far infrared camera. It becomes a lens type.
  • conditional expression (4a) defines a more preferable condition range based on the above viewpoints, etc., among the condition ranges defined by the conditional expression (4). Therefore, the above effect can be further increased preferably by satisfying conditional expression (4a). For example, when the lower limit of conditional expression (4a) is exceeded, the off-axis principal ray arrives at an angle that is closer to the image plane, and the reduction in the peripheral light amount ratio can be further reduced.
  • At least one of the second lens and the third lens is made of a material having a refractive index larger than 2.9 at a wavelength of 10 ⁇ m.
  • the dispersion ⁇ at a wavelength of 8 to 12 ⁇ m is defined by the following formula (FD)
  • FD dispersion ⁇ of the lens material constituting at least one of the first to third lenses
  • (N10-1) / (N8-N12) (FD)
  • N8 refractive index at a wavelength of 8 ⁇ m
  • N10 refractive index at a wavelength of 10 ⁇ m
  • N12 refractive index at a wavelength of 12 ⁇ m
  • the Abbe number ⁇ d of d-line is used for visible light.
  • Nd the refractive index at the d-line
  • Nf the refractive index at the F-line
  • Nc the refractive index at the C-line. Rate.
  • aberration correction may be performed using a diffraction grating as long as the peripheral light amount ratio is not significantly reduced.
  • a diffraction grating By providing a diffraction grating, it is possible to satisfactorily correct axial chromatic aberration and the like.
  • a cross-sectional shape of the diffraction grating a step shape or a kinoform may be used in addition to the binary shape.
  • the far-infrared lens system according to the present invention is suitable as an imaging lens system for a far-infrared camera system.
  • the reason why there are few wide-angle lenses in the conventional far-infrared lens system is considered to be that the peripheral light amount ratio is lowered by the angle of view as described above.
  • a simple three-lens lens system as described above a lens system having a high peripheral light amount ratio can be obtained even at a wide angle.
  • an inexpensive system that can be used for a thermocamera even at a wide angle can be configured.
  • far-infrared lens systems or imaging optical devices for digital devices such as night vision devices, thermography, portable terminals, camera systems (for example, digital cameras, surveillance cameras, security cameras, in-vehicle cameras) makes high performance for digital devices.
  • a far-infrared image input function with high performance can be added at a low cost and in a compact manner, contributing to the compactness, high performance, high functionality, and the like.
  • One of the reasons why far-infrared cameras are not widespread is that the lens material and lens processing are expensive. Therefore, by using a simple three-lens lens system as the far-infrared lens system, Therefore, it is possible to realize an inexpensive camera system.
  • the far-infrared lens system according to the present invention is suitable for use as an imaging optical system for a digital device with a far-infrared image input function (for example, a portable terminal, a drive recorder, etc.). By combining them, it is possible to configure a far-infrared imaging optical device that optically captures a far-infrared image of a subject and outputs it as an electrical signal.
  • the imaging optical device is an optical device that constitutes a main component of a camera used for still image shooting or moving image shooting of a subject. For example, a far-infrared ray that forms a far-infrared optical image of an object in order from the object (that is, subject) side.
  • It comprises a lens system and a far infrared sensor (imaging device) that converts a far infrared optical image formed by the far infrared lens system into an electrical signal.
  • the far-infrared lens system having the above-described characteristic configuration is arranged so that the far-infrared optical image of the subject is formed on the light-receiving surface (that is, the imaging surface) of the far-infrared sensor. Therefore, it is possible to realize an imaging optical device having high performance and a digital device including the same.
  • Examples of digital devices with a far-infrared image input function include camera systems such as infrared cameras, surveillance cameras, security cameras, in-vehicle cameras, aircraft cameras, digital cameras, video cameras, videophone cameras, and personal computers. , Night vision devices, thermography, portable digital devices (for example, small and portable information device terminals such as mobile phones, smart phones (high-function mobile phones), tablet terminals, mobile computers, etc.), and peripheral devices (scanners, printers) , Mouse, etc.), other digital devices (drive recorders, defense devices, etc.), etc., which have a camera function built in or externally mounted.
  • camera systems such as infrared cameras, surveillance cameras, security cameras, in-vehicle cameras, aircraft cameras, digital cameras, video cameras, videophone cameras, and personal computers.
  • Night vision devices thermography
  • portable digital devices for example, small and portable information device terminals such as mobile phones, smart phones (high-function mobile phones), tablet terminals, mobile computers, etc.
  • peripheral devices scanners, printers
  • an infrared camera system by using an imaging optical device for far infrared rays, but also to provide an infrared camera function and a night vision function by installing the imaging optical device in various devices.
  • a temperature measurement function can be added.
  • a digital device having a far-infrared image input function such as a smartphone with an infrared camera can be configured.
  • FIG. 35 shows a schematic configuration example of the digital device DU in a schematic cross section.
  • the imaging optical device LU mounted on the digital device DU shown in FIG. 35 is a far-infrared lens system LN (AX: light) that forms a far-infrared optical image (image plane) IM of an object in order from the object (that is, subject) side.
  • Axis and a far infrared sensor (imaging device) SR that converts an optical image IM formed on the light receiving surface (imaging surface) SS by the far infrared lens system LN into an electrical signal.
  • the imaging optical device LU On the image plane IM side of the far-infrared lens system LN, the cover glass of the far-infrared sensor SR, an optical filter arranged as necessary, and the like are positioned as parallel plates (not shown).
  • the imaging optical device LU When a digital device DU with an image input function is constituted by this imaging optical device LU, the imaging optical device LU is usually arranged inside the body, but when necessary to realize the camera function, a form as necessary is adopted. Is possible.
  • the unitized imaging optical device LU can be configured to be detachable or rotatable with respect to the main body of the digital device DU.
  • the far-infrared lens system LN is a three-lens single focal point lens composed of three lenses of the first to third lenses in order from the object side.
  • the light-receiving surface SS of the far-infrared sensor SR As described above, the light-receiving surface SS of the far-infrared sensor SR.
  • An optical image IM composed of far infrared rays is formed on the top.
  • the far-infrared sensor SR for example, a far-infrared image sensor (thermosensor or the like) having a plurality of pixels (for example, several thousand to several hundred thousand pixels) and using a wavelength of about 8 to 12 ⁇ m is used.
  • the far-infrared lens system LN is provided so that the optical image IM of the subject is formed on the light receiving surface SS which is a photoelectric conversion unit of the far-infrared sensor SR, the optical image formed by the far-infrared lens system LN. IM is converted into an electrical signal by the far-infrared sensor SR.
  • the far infrared sensor SR include a pyroelectric sensor, a microbolometer, and a thermopile.
  • the pyroelectric sensor uses a pyroelectric effect in which ceramic containing lead zirconate titanate or the like spontaneously polarizes due to a change in temperature. In most cases, the pyroelectric sensor has a single light receiving surface and is an inexpensive temperature sensor.
  • the microbolometer is a temperature sensor that has a light receiving surface in which heat sensitive materials such as amorphous silicon and vanadium oxide are two-dimensionally arranged by a microfabrication technique and detects a change in resistance value due to a temperature rise.
  • thermopile is a temperature sensor that uses thermocouples capable of converting heat into electric energy in series or in parallel to form a sensor surface, and is the second cheapest sensor after a pyroelectric sensor.
  • the digital device DU includes a signal processing unit 1, a control unit 2, a memory 3, an operation unit 4, a display unit 5 and the like in addition to the imaging optical device LU.
  • the signal generated by the far-infrared sensor SR is subjected to predetermined digital image processing, image compression processing, and the like as required by the signal processing unit 1 and recorded as a digital video signal in the memory 3 (semiconductor memory, optical disk, etc.).
  • the signal is transmitted to another device via a cable or converted into an infrared signal or the like (for example, a communication function of a mobile phone).
  • the control unit 2 is composed of a microcomputer, and performs control of functions such as a photographing function (still image photographing function, moving image photographing function, etc.), an image reproduction function, and the like; and a lens moving mechanism for focusing.
  • the control unit 2 controls the imaging optical device LU so as to perform at least one of still image shooting and moving image shooting of a subject.
  • the display unit 5 includes a display such as a liquid crystal monitor, and performs image display using an image signal converted by the far infrared sensor SR or image information recorded in the memory 3.
  • the operation unit 4 is a part including operation members such as an operation button (for example, a release button) and an operation dial (for example, a shooting mode dial), and transmits information input by the operator to the control unit 2.
  • FIGS. 1, 3,..., 31 and 33 show first to seventeenth embodiments of the far-infrared lens system LN in an infinitely focused state in optical cross sections.
  • the far-infrared lens system LN includes, in order from the object side, a first lens L1 having negative power, a second lens L2 having positive power, and a third lens L3 having positive power. It consists of.
  • a parallel plate PT corresponding to the protective cover glass of the far infrared sensor SR is disposed on the image plane IM side of each far infrared lens system LN.
  • the far-infrared lens system LN of the first and eighth embodiments includes, in order from the object side, a negative power first lens L1, an aperture stop ST, and a positive power second lens L2. And a third lens L3 having a positive power.
  • the first lens L1 is a negative meniscus lens convex toward the object side
  • the second lens L2 is a positive meniscus lens convex toward the object side
  • the third lens L3 is A positive meniscus lens convex toward the object side.
  • the object side surface of the first lens L1, the object side surface of the second lens L2, and the image side surface of the third lens L3 are aspheric.
  • the far-infrared lens systems LN of the second to seventh, tenth, and eleventh embodiments in order from the object side, the first lens L1 having a negative power, the aperture stop ST, , A positive power second lens L2 and a positive power third lens L3.
  • the first lens L1 is a negative meniscus lens convex toward the object side
  • the second lens L2 is a positive meniscus lens convex toward the object side
  • the third lens L3 is A positive meniscus lens convex toward the object side.
  • the object side surface of the first lens L1, the object side surface of the second lens L2, and both surfaces of the third lens L3 are aspherical surfaces.
  • the second lens L2 in the eleventh embodiment can be said to have a plano-convex shape because the image side surface has a meniscus shape close to a planar shape.
  • the object side surface of the first lens L1 is an aspheric surface for each zone.
  • the far-infrared lens systems LN of the ninth, twelfth, and thirteenth embodiments are, in order from the object side, the negative lens first lens L1, the aperture stop ST, and the positive power first lens L1.
  • the first lens L1 is a negative meniscus lens convex toward the object side
  • the second lens L2 is a positive meniscus lens convex toward the object side
  • the third lens L3 is A positive meniscus lens convex toward the object side.
  • Both sides of the first lens L1, both sides of the second lens L2, and the image side surface of the third lens L3 are aspheric.
  • the far-infrared lens system LN of the fourteenth to sixteenth embodiments includes, in order from the object side, a negative power first lens L1, an aperture stop ST, a positive power second lens L2, And a third lens L3 having a positive power.
  • the first lens L1 is a negative meniscus lens convex toward the object side
  • the second lens L2 is a positive meniscus lens convex toward the object side
  • the third lens L3 is It is a biconvex positive lens. Both sides of the first lens L1, both sides of the second lens L2, and the image side surface of the third lens L3 are aspheric.
  • the far-infrared lens system LN includes, in order from the object side, a negative lens first lens L1, a positive power second lens L2, an aperture stop ST, and a positive power third lens. And a lens L3.
  • the first lens L1 is a negative meniscus lens convex toward the object side
  • the second lens L2 is a positive meniscus lens convex toward the object side
  • the third lens L3 is A positive meniscus lens convex toward the object side.
  • the second lens L2 can be said to have a plano-convex shape because the image side surface has a meniscus shape close to a planar shape.
  • the image side surface of the second lens L2 forms an aperture stop ST at the edge portion.
  • Both sides of the first lens L1, both sides of the second lens L2, and the image side surface of the third lens L3 are aspheric.
  • Examples 1 to 17 (EX1 to 17) listed here are numerical examples corresponding to the first to seventeenth embodiments, respectively, and are lens configuration diagrams showing the first to seventeenth embodiments. (FIG. 1, FIG. 3,..., FIG. 33) show optical configurations such as the lens cross-sectional shape and lens arrangement of the corresponding Examples 1 to 17, respectively.
  • the surface with * in the surface number i is an aspheric surface, and the surface shape is defined by the following formula (AS) using a local orthogonal coordinate system (x, y, z) with the surface vertex as the origin.
  • z (c ⁇ h 2 ) / [1 + ⁇ ⁇ 1 ⁇ (1 + K) ⁇ c 2 ⁇ h 2 ⁇ ] + ⁇ (Aj ⁇ h j ) (AS)
  • z the amount of sag in the direction of the optical axis AX at the position of the height h (based on the surface vertex)
  • c curvature at the surface vertex (reciprocal of paraxial radius of curvature r)
  • K conic constant
  • Aj j-order aspheric coefficient ( ⁇ represents the sum of the fourth to ⁇ orders for j), It is.
  • the aspheric surface for each zone is also expressed by the above formula (AS) in the same way as a normal aspheric surface.
  • the radius of curvature R (mm) and the aspherical coefficient Aj take different values for each zone according to the height h (mm) from the optical axis AX, and j is a zero-order and fourth-order or higher natural number of a constant term. take.
  • the refractive index and dispersion data of the optical material constituting each lens are as follows: Show.
  • the parallel plate PT in front of the image plane IM is a silicon protective plate (cover glass) of the far-infrared sensor SR.
  • the spherical aberration diagram (A) shows the amount of spherical aberration at a design wavelength (evaluation wavelength) of 10000 nm indicated by a solid line, the amount of spherical aberration at a wavelength of 8000 nm indicated by an alternate long and short dash line, and the amount of spherical aberration at a wavelength of 12000 nm indicated by a broken line.
  • the vertical axis represents a value obtained by normalizing the incident height to the pupil by the maximum height (that is, the relative pupil height).
  • the broken line T is the tangential image plane at the design wavelength of 10000 nm
  • the solid line S is the sagittal image plane at the design wavelength of 10000 nm
  • the vertical axis represents the image height (IMG HT, mm).
  • the horizontal axis represents distortion (%) at a design wavelength of 10,000 nm
  • the vertical axis represents image height (IMG HT, mm).
  • the maximum value of the image height IMG HT corresponds to half the diagonal length of the light receiving surface SS of the far infrared sensor SR.
  • Example 1 Unit mm Surface data i r (mm) d (mm) N10 ⁇ OB INFINITY INFINITY 1 * 19.97442 4.259916 4.004 1251 2 11.34338 24.142077 3 (ST) INFINITY 0.500000 4 * 30.58615 1.500000 4.004 1251 5 63.48804 12.450600 6 18.06938 7.000000 4.004 1251 7 * 33.47349 3.247407 8 INFINITY 1.000000 3.4178 1860 9 INFINITY 0.900000 IM INFINITY 0.000000
  • Example 2 Unit mm Surface data i r (mm) d (mm) N10 ⁇ OB INFINITY INFINITY 1 * 18.98745 3.933550 4.004 1251 2 11.39073 21.941429 3 (ST) INFINITY 3.188808 4 * 31.63379 1.500000 4.004 1251 5 61.27521 12.046530 6 * 18.51782 7.000000 4.004 1251 7 * 40.54304 3.489683 8 INFINITY 1.000000 3.4178 1860 9 INFINITY 0.900001 IM INFINITY 0.000000
  • Example 3 Unit mm Surface data i r (mm) d (mm) N10 ⁇ OB INFINITY INFINITY 1 * 18.98745 3.937538 4.004 1251 2 11.26822 22.848958 3 (ST) INFINITY 1.946879 4 * 31.24766 1.500000 4.004 1251 5 59.99565 12.389216 6 * 17.88176 7.000000 4.004 1251 7 * 35.04051 3.477409 8 INFINITY 1.000000 3.4178 1860 9 INFINITY 0.899996 IM INFINITY 0.000000
  • Example 4 Unit mm Surface data i r (mm) d (mm) N10 ⁇ OB INFINITY INFINITY 1 * 18.98128 3.937538 4.004 1251 2 11.25300 22.848958 3 (ST) INFINITY 1.946879 4 * 32.38273 1.500000 4.004 1251 5 64.92274 12.389216 6 * 17.92470 7.000000 4.004 1251 7 * 35.04051 3.477409 8 INFINITY 1.000000 3.4178 1860 9 INFINITY 0.899995 IM INFINITY 0.000000
  • Example 5 Unit mm Surface data i r (mm) d (mm) N10 ⁇ OB INFINITY INFINITY 1 * 18.95171 3.937538 4.004 1251 2 11.21692 22.848958 3 (ST) INFINITY 1.946879 4 * 32.51597 1.500000 4.004 1251 5 65.92705 12.389216 6 * 17.97350 7.000000 4.004 1251 7 * 35.04051 3.477409 8 INFINITY 1.000000 3.4178 1860 9 INFINITY 0.900000 IM INFINITY 0.000000
  • Example 6 Unit mm Surface data i r (mm) d (mm) N10 ⁇ OB INFINITY INFINITY 1 * 18.95450 3.937538 4.004 1251 2 11.23809 22.848958 3 (ST) INFINITY 1.946879 4 * 33.05246 1.500000 4.004 1251 5 67.89601 12.389216 6 * 17.93397 7.000000 4.004 1251 7 * 35.04051 3.477409 8 INFINITY 1.000000 3.4178 1860 9 INFINITY 0.900000 IM INFINITY 0.000000
  • Zone 1 Zone 1 (0 ⁇ h ⁇ 1.5)
  • A4 2.0606E-04
  • A6 -9.5905E-05
  • A8 1.4866E-05 Zone 2 (1.5 ⁇ h ⁇ 8.0)
  • A8 4.9068E-11 Zone 3 (8.0 ⁇ h)
  • A8 2.3819E-10
  • Example 7 Unit mm Surface data i r (mm) d (mm) N10 ⁇ OB INFINITY INFINITY 1 * 18.98744 3.263229 4.004 1251 2 11.95292 23.301818 3 (ST) INFINITY 3.628419 4 * 22.64137 1.500000 4.004 1251 5 33.26157 11.303538 6 * 17.80384 6.518600 4.004 1251 7 * 35.04051 3.584397 8 INFINITY 1.000000 3.4178 1860 9 INFINITY 0.900018 IM INFINITY 0.000000
  • Example 8 Unit mm Surface data i r (mm) d (mm) N10 ⁇ OB INFINITY INFINITY 1 * 19.28986 4.067793 3.4178 1860 2 10.86650 20.951878 3 (ST) INFINITY 7.291065 4 * 19.72855 1.500000 3.4178 1860 5 34.10096 10.213553 6 17.43825 5.567141 3.4178 1860 7 * 44.22484 3.508571 8 INFINITY 1.000000 3.4178 1860 9 INFINITY 0.900420 IM INFINITY 0.000000
  • Example 9 Unit mm Surface data i r (mm) d (mm) N10 ⁇ OB INFINITY INFINITY 1 * 18.98744 4.338460 3.4178 1860 2 * 10.58949 19.728667 3 (ST) INFINITY 0.500000 4 * 17.26847 1.899319 3.4178 1860 5 * 26.38188 7.365513 6 16.63593 7.000000 3.4178 1860 7 * 71.59766 2.918293 8 INFINITY 1.000000 3.4178 1860 9 INFINITY 0.900000 IM INFINITY 0.000000
  • Example 10 Unit mm Surface data i r (mm) d (mm) N10 ⁇ OB INFINITY INFINITY 1 * 22.09903 2.000000 4.004 1251 2 15.10708 27.821632 3 (ST) INFINITY 6.655555 4 * 22.64186 1.500 160 4.004 1251 5 29.55163 11.833675 6 * 20.26530 7.908087 4.004 1251 7 * 45.21025 4.054555 8 INFINITY 1.000000 3.4178 1860 9 INFINITY 0.910996 IM INFINITY 0.000000
  • Example 11 Unit mm Surface data i r (mm) d (mm) N10 ⁇ OB INFINITY INFINITY 1 * 18.72159 7.000000 4.004 1251 2 8.68331 17.091768 3 (ST) INFINITY 0.500000 4 * 37.85306 7.000000 4.004 1251 5 2247.90524 8.688493 6 * 13.95820 1.515826 4.004 1251 7 * 28.79085 3.541168 8 INFINITY 1.000000 3.4178 1860 9 INFINITY 0.899200 IM INFINITY 0.000000
  • Example 12 Unit mm Surface data i r (mm) d (mm) N10 ⁇ OB INFINITY INFINITY 1 * 18.98747 5.077222 3.4178 1860 2 * 10.15611 17.724169 3 (ST) INFINITY 0.500000 4 * 18.97666 1.952454 3.4178 1860 5 * 31.84518 6.794438 6 16.53191 6.952777 3.4178 1860 7 * 90.71964 2.879810 8 INFINITY 1.000000 3.4178 1860 9 INFINITY 0.900078 IM INFINITY 0.000000
  • Example 13 Unit mm Surface data i r (mm) d (mm) N10 ⁇ OB INFINITY INFINITY 1 * 15.08506 3.774564 3.4178 1860 2 * 9.21001 16.941609 3 (ST) INFINITY 0.500000 4 * 25.58510 4.521797 3.4178 1860 5 * 53.02554 8.801469 6 17.86752 7.000000 3.4178 1860 7 * 55.36084 3.180317 8 INFINITY 1.000000 3.4178 1860 9 INFINITY 1.381468 IM INFINITY 0.000000
  • Example 14 Unit mm Surface data i r (mm) d (mm) N10 ⁇ OB INFINITY INFINITY 1 * 18.98744 3.218035 3.4178 1860 2 * 11.32068 22.063256 3 (ST) INFINITY 0.754851 4 * 15.53320 2.536553 3.4178 1860 5 * 16.77402 6.079129 6 26.23256 7.000000 3.4178 1860 7 * -61.42566 3.305275 8 INFINITY 1.000000 3.4178 1860 9 INFINITY 3.045988 IM INFINITY 0.000000
  • Example 15 Unit mm Surface data i r (mm) d (mm) N10 ⁇ OB INFINITY INFINITY 1 * 18.98744 3.089206 3.4178 1860 2 * 11.30298 22.560322 3 (ST) INFINITY 0.500000 4 * 24.07684 6.694275 3.4178 1860 5 * 24.49200 4.479898 6 29.72505 7.000000 3.4178 1860 7 * -40.03624 3.305275 8 INFINITY 1.000000 3.4178 1860 9 INFINITY 3.482869 IM INFINITY 0.000000
  • Example 16 Unit mm Surface data i r (mm) d (mm) N10 ⁇ OB INFINITY INFINITY 1 * 18.98744 2.893883 3.4178 1860 2 * 11.45425 23.077726 3 (ST) INFINITY 0.500000 4 * 34.18158 7.000000 3.4178 1860 5 * 37.66610 4.601597 6 33.24701 7.000000 3.4178 1860 7 * -39.88293 3.305275 8 INFINITY 1.000000 3.4178 1860 9 INFINITY 4.266405 IM INFINITY 0.000000
  • Example 17 Unit mm Surface data i r (mm) d (mm) N10 ⁇ OB INFINITY INFINITY 1 * 19.61551 4.689940 3.4178 1860 2 * 11.19901 22.125190 3 * 26.04935 5.578011 3.4178 1860 4 * 71.54092 0.079921 3 (ST) INFINITY 6.487793 6 18.00186 6.727592 3.4178 1860 7 * 45.70953 2.8613 8 INFINITY 1.000000 3.4178 1860 9 INFINITY 0.900000 IM INFINITY 0.000000

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

The far-infrared lens system according to the present invention is a lens system used in the far-infrared band, and is configured from, in order from the object side, three single lenses including a first lens having a negative power, a second lens having a positive power, and a third lens having a positive power, the conditional expression 3.2 < f2/f < 17 (where f2 is the focal distance of the second lens and f is the focal distance of the far-infrared lens system as a whole) being satisfied, and the half field angle being greater than 30°.

Description

遠赤外線レンズ系,撮像光学装置及びデジタル機器Far-infrared lens system, imaging optical device and digital equipment
 本発明は、遠赤外線レンズ系,撮像光学装置及びデジタル機器に関するものである。例えば、遠赤外線帯(波長8~12μm帯)で使用される撮像レンズ系であって、特に半画角ωが30°よりも大きい広角でも周辺光量比が50%以上の明るさを有し、安価なカメラシステムに使用可能な遠赤外線レンズ系と、遠赤外線レンズ系により得られた遠赤外線映像を遠赤外線センサーで取り込む撮像光学装置と、遠赤外線レンズ系を搭載した画像入力機能付きデジタル機器と、に関するものである。 The present invention relates to a far-infrared lens system, an imaging optical device, and a digital device. For example, an imaging lens system used in the far-infrared band (wavelength 8 to 12 μm band), and particularly has a brightness with a peripheral light amount ratio of 50% or more even at a wide angle where the half angle of view ω is greater than 30 °, A far-infrared lens system that can be used in an inexpensive camera system, an imaging optical device that captures far-infrared images obtained by the far-infrared lens system with a far-infrared sensor, and a digital device with an image input function equipped with a far-infrared lens system , About.
 監視カメラや防犯カメラ等の普及に伴い、安価で小型の遠赤外線レンズ系が必要とされている。遠赤外線レンズ系に用いられるレンズ材料は、一般的な光学ガラスに比べて高価であるため、レンズ体積が小さいほどコストは抑えられる。そのため、光学性能等とのバランスの観点から、レンズ3枚で構成された比較的広角な赤外線用レンズ系が、特許文献1~4で提案されている。 With the spread of surveillance cameras and security cameras, an inexpensive and small far-infrared lens system is required. Since the lens material used for the far-infrared lens system is more expensive than general optical glass, the smaller the lens volume, the lower the cost. Therefore, from the viewpoint of balance with optical performance and the like, Patent Documents 1 to 4 propose a relatively wide-angle infrared lens system including three lenses.
特開2011-253006号公報JP 2011-253006 A 特開平4-128709号公報JP-A-4-128709 特開2009-63942号公報Japanese Unexamined Patent Publication No. 2009-63942 US2010/0232013 A1US2010 / 0232013 A1
 特許文献1に記載のレンズ系は、標準画角から半画角ωが30°以上の広角までを広くカバーする3枚構成の遠赤外線レンズ系である。標準画角の場合、軸外光束をほぼ絞りだけで規制してヴィネッティングのない構成にすれば、周辺光量比が50%以上となるようにすることができる。しかし、第2レンズの焦点距離が全系の焦点距離と比べて短く、第2レンズと第3レンズとを比べると第2レンズの方が焦点距離が短いため、半画角ωが30°以上の広角なレンズ系を構成した場合、軸外光束が細くなり、軸外主光線が像面に到達する角度が画角と同程度に傾いてしまい、その結果、cos4乗則によって周辺光量比を50%以上とすることができなくなる。通常、このような焦点距離を第2レンズが有すると、周辺光量比は25%~40%程度となってしまう。 The lens system described in Patent Document 1 is a three-element far-infrared lens system that covers a wide range from a standard angle of view to a wide angle with a half angle of view ω of 30 ° or more. In the case of the standard angle of view, the peripheral light amount ratio can be 50% or more if the off-axis light beam is restricted only by the diaphragm and is configured without vignetting. However, since the focal length of the second lens is shorter than the focal length of the entire system, and the second lens has a shorter focal length than the third lens, the half angle of view ω is 30 ° or more. When the wide-angle lens system is configured, the off-axis light beam becomes thin, and the angle at which the off-axis chief ray reaches the image plane is tilted to the same angle as the field angle. It becomes impossible to make it 50% or more. Normally, when the second lens has such a focal length, the peripheral light amount ratio is about 25% to 40%.
 特許文献4に記載のものは近赤外線用のレンズ系であるが、特許文献1に記載のものと同程度の第2レンズの焦点距離と第2,第3レンズの焦点距離比とを持っている。したがって、半画角ωが30°以上のレンズ系においては、同様に周辺光量比が50%を下回ってしまう。 Although the lens system described in Patent Document 4 is a lens system for near infrared rays, it has the same focal length ratio of the second lens and that of the second and third lenses as those described in Patent Document 1. Yes. Therefore, in the lens system having a half angle of view ω of 30 ° or more, the peripheral light amount ratio is similarly less than 50%.
 特許文献2に記載の3枚構成の赤外線用レンズ系では、第2レンズの焦点距離が少し長いが、周辺光量比の観点からすると十分ではない。このタイプのレンズ系では、画角が標準から望遠の場合、周辺光量比は問題ない。しかし、半画角ωが30°以上の広角なレンズ系に用いようとすれば周辺光量比が50%を下回ってしまうため、レンズ系の仕様として望ましくない。 In the three-lens infrared lens system described in Patent Document 2, the focal length of the second lens is slightly longer, but this is not sufficient from the viewpoint of the peripheral light quantity ratio. In this type of lens system, the peripheral light amount ratio is not a problem when the angle of view is from standard to telephoto. However, if the lens is used in a wide-angle lens system having a half angle of view ω of 30 ° or more, the peripheral light amount ratio is less than 50%, which is not desirable as a lens system specification.
 また、特許文献1~4に記載のレンズ系では、第1レンズに屈折率が2.9よりも小さい材料を使用している。このため、第1レンズにはあまり強い曲率を持たせることができず、性能を確保するために第1レンズと第2レンズとの間隔を狭くしている。このように構成した場合、半画角ωが30°以下のレンズ系では、十分な周辺光量比とレンズ性能を確保することが可能である。しかし、半画角ωが30°よりも大きいレンズ系では、第1レンズにおいて光軸から高い位置を軸外光束が通らないので、軸上と周辺との局所的な屈折力の差によって軸外瞳を大きくする効果がほとんど得られず、周辺光量比が50%を下回ってしまうことになる。 Further, in the lens systems described in Patent Documents 1 to 4, a material having a refractive index smaller than 2.9 is used for the first lens. For this reason, the first lens cannot have a very strong curvature, and the interval between the first lens and the second lens is narrowed to ensure performance. When configured in this manner, a lens system having a half angle of view ω of 30 ° or less can ensure a sufficient peripheral light amount ratio and lens performance. However, in a lens system in which the half angle of view ω is greater than 30 °, the off-axis light flux does not pass through a position higher than the optical axis in the first lens, and therefore, off-axis due to a local refractive power difference between the on-axis and the periphery. The effect of enlarging the pupil is hardly obtained, and the peripheral light amount ratio falls below 50%.
 特許文献3に記載の遠赤外線レンズ系では、3枚構成のレンズ系で絞りを最前面に配置している。このような構成をとることによって広角なレンズ系でも前玉径を小さくすることができるが、軸外光束は斜めから見た瞳面積の減少をレンズによって補正できないので、cos4乗則によって画角の分だけ周辺光量比が低下してしまう。 In the far-infrared lens system described in Patent Document 3, a diaphragm is arranged in the foreground in a three-lens lens system. By adopting such a configuration, the front lens diameter can be reduced even with a wide-angle lens system. However, since the off-axis light beam cannot be corrected by the lens for the reduction of the pupil area viewed from an oblique direction, the angle of view is determined by the cos 4th power law. The peripheral light amount ratio is reduced by that amount.
 特許文献1及び2に記載のレンズ系では、第3レンズが強い凸面を像側に向けている。このような構成にすると、軸外光線が像面に到達する角度はコントロールしやすくなるが、軸外光束が第3レンズの後面で高い位置を通過し急激に屈折されることになるため、軸外のコマ収差が発生し、歪曲が大きくマイナスに発生してしまい、サーモカメラとしては好ましくない。 In the lens systems described in Patent Documents 1 and 2, the third lens has a strong convex surface facing the image side. With this configuration, the angle at which the off-axis light beam reaches the image plane can be easily controlled, but the off-axis light beam passes through a high position on the rear surface of the third lens and is refracted rapidly. An external coma aberration is generated and distortion is greatly negative, which is not preferable for a thermo camera.
 本発明はこのような状況に鑑みてなされたものであって、その目的は、半画角ωが30°よりも大きい広角でありながら50%以上の周辺光量比を有するとともに、3枚という少ないレンズ枚数でも良好に収差補正された、高性能で安価な遠赤外線レンズ系、それを備えた撮像光学装置及びデジタル機器を提供することにある。 The present invention has been made in view of such a situation. The object of the present invention is to have a peripheral light quantity ratio of 50% or more while the half angle of view ω is a wide angle larger than 30 ° and as few as three. An object of the present invention is to provide a high-performance and inexpensive far-infrared lens system in which aberrations are favorably corrected even with the number of lenses, an imaging optical device and a digital device including the same.
 上記目的を達成するために、第1の発明の遠赤外線レンズ系は、遠赤外線帯で使用されるレンズ系であって、
 物体側から順に、負のパワーを持つ第1レンズと、正のパワーを持つ第2レンズと、正のパワーを持つ第3レンズと、の3枚の単レンズで構成され、以下の条件式(1)を満足し、半画角が30°よりも大きいことを特徴とする。
3.2<f2/f<17 …(1)
 ただし、
f2:第2レンズの焦点距離、
f:遠赤外線レンズ系全体の焦点距離、
である。
To achieve the above object, the far-infrared lens system of the first invention is a lens system used in the far-infrared band,
In order from the object side, the lens is composed of three single lenses of a first lens having negative power, a second lens having positive power, and a third lens having positive power. The following conditional expression ( 1) is satisfied, and the half angle of view is larger than 30 °.
3.2 <f2 / f <17 (1)
However,
f2: focal length of the second lens,
f: focal length of the entire far-infrared lens system,
It is.
 第2の発明の遠赤外線レンズ系は、上記第1の発明において、前記第1レンズは、波長10μmでの屈折率が2.9よりも大きい材料からなることを特徴とする。 A far-infrared lens system according to a second invention is characterized in that, in the first invention, the first lens is made of a material having a refractive index larger than 2.9 at a wavelength of 10 μm.
 第3の発明の遠赤外線レンズ系は、上記第1又は第2の発明において、前記第1レンズが物体側に凸面を向けた負メニスカス形状を有することを特徴とする。 A far-infrared lens system according to a third aspect of the present invention is characterized in that, in the first or second aspect, the first lens has a negative meniscus shape having a convex surface facing the object side.
 第4の発明の遠赤外線レンズ系は、上記第3の発明において、以下の条件式(2)を満足することを特徴とする。
3.0<d2/f<9.0 …(2)
 ただし、
d2:第1レンズの像側面と第2レンズの物体側面との軸上間隔、
f:遠赤外線レンズ系全体の焦点距離、
である。
The far-infrared lens system of the fourth invention is characterized in that, in the third invention, the following conditional expression (2) is satisfied.
3.0 <d2 / f <9.0 (2)
However,
d2: axial distance between the image side surface of the first lens and the object side surface of the second lens,
f: focal length of the entire far-infrared lens system,
It is.
 第5の発明の遠赤外線レンズ系は、上記第1~第4のいずれか1つの発明において、前記第2レンズが物体側に凸面を向けた正メニスカス形状又は平凸形状を有することを特徴とする。 A far-infrared lens system according to a fifth invention is characterized in that, in any one of the first to fourth inventions, the second lens has a positive meniscus shape or plano-convex shape with a convex surface facing the object side. To do.
 第6の発明の遠赤外線レンズ系は、上記第1~第5のいずれか1つの発明において、前記第1レンズの像側面から前記第3レンズの物体側までの間に絞りを有することを特徴とする。 A far-infrared lens system according to a sixth invention is characterized in that, in any one of the first to fifth inventions, a diaphragm is provided between an image side surface of the first lens and an object side of the third lens. And
 第7の発明の遠赤外線レンズ系は、上記第1~第6のいずれか1つの発明において、前記第3レンズが、両面を比較したときパワーの強い方の凸面を物体側に向けた両凸形状を有するか、又は凸面を物体側に向けた正メニスカス形状を有することを特徴とする。 A far-infrared lens system according to a seventh invention is the bi-convex lens according to any one of the first to sixth inventions, wherein the third lens has a convex surface having a stronger power directed toward the object side when both surfaces are compared. It has a shape or a positive meniscus shape with a convex surface facing the object side.
 第8の発明の遠赤外線レンズ系は、上記第1~第7のいずれか1つの発明において、以下の条件式(3)を満足することを特徴とする。
1.7<f23/f<2.8 …(3)
 ただし、
f23:第2レンズと第3レンズとの合成焦点距離、
f:遠赤外線レンズ系全体の焦点距離、
である。
The far-infrared lens system of the eighth invention is characterized in that, in any one of the first to seventh inventions, the following conditional expression (3) is satisfied.
1.7 <f23 / f <2.8 (3)
However,
f23: composite focal length of the second lens and the third lens,
f: focal length of the entire far-infrared lens system,
It is.
 第9の発明の遠赤外線レンズ系は、上記第1~第8のいずれか1つの発明において、以下の条件式(4)を満足することを特徴とする。
1.45<f2/f3<8.0 …(4)
 ただし、
f2:第2レンズの焦点距離、
f3:第3レンズの焦点距離、
である。
The far-infrared lens system of the ninth invention is characterized in that, in any one of the first to eighth inventions, the following conditional expression (4) is satisfied.
1.45 <f2 / f3 <8.0 (4)
However,
f2: focal length of the second lens,
f3: focal length of the third lens,
It is.
 第10の発明の撮像光学装置は、上記第1~第9のいずれか1つの発明に係る遠赤外線レンズ系と、撮像面上に形成された遠赤外線光学像を電気的な信号に変換する遠赤外線センサーと、を備え、前記遠赤外線センサーの撮像面上に被写体の遠赤外線光学像が形成されるように前記遠赤外線レンズ系が設けられていることを特徴とする。 An imaging optical device according to a tenth aspect of the invention is a far-infrared lens system according to any one of the first to ninth inventions, and a far-infrared optical image formed on the imaging surface is converted to an electrical signal. An infrared sensor, and the far-infrared lens system is provided so that a far-infrared optical image of a subject is formed on an imaging surface of the far-infrared sensor.
 第11の発明のデジタル機器は、上記第10の発明に係る撮像光学装置を備えることにより、被写体の静止画撮影,動画撮影のうちの少なくとも一方の機能が付加されたことを特徴とする。 The digital apparatus according to an eleventh aspect is characterized in that at least one of a still image photographing and a moving image photographing function of a subject is added by including the imaging optical device according to the tenth aspect.
 第12の発明の遠赤外線用カメラシステムは、上記第1~第9のいずれか1つの発明に係る遠赤外線レンズ系を備えたことを特徴とする。 A far-infrared camera system according to a twelfth aspect includes the far-infrared lens system according to any one of the first to ninth aspects.
 本発明によれば、歪曲が±5%以内で半画角ωが30°よりも大きい広角でありながら、50%以上の周辺光量比が得られる明るく高性能な遠赤外線レンズ系を、3枚という少ない枚数で実現することができ、温度検知を必要とするサーモカメラに適した広角な遠赤外線レンズ系を安価に提供することができる。したがって、安価でも高性能な遠赤外線レンズ系と、それを備えた撮像光学装置を実現することができる。そして、本発明に係る遠赤外線レンズ系又は撮像光学装置を、暗視装置,サーモグラフィー,携帯端末,カメラシステム(例えば、デジタルカメラ,監視カメラ,防犯カメラ,車載カメラ)等のデジタル機器に用いることによって、デジタル機器に対し高性能の遠赤外線画像入力機能を安価でコンパクトに付加することが可能となる。 According to the present invention, three bright and high-performance far-infrared lens systems capable of obtaining a peripheral light amount ratio of 50% or more while having a distortion within ± 5% and a half angle of view ω larger than 30 ° are provided. Thus, a wide-angle far-infrared lens system suitable for a thermo camera that requires temperature detection can be provided at a low cost. Therefore, it is possible to realize an inexpensive but high-performance far-infrared lens system and an imaging optical device including the same. By using the far-infrared lens system or the imaging optical device according to the present invention in a digital device such as a night vision device, a thermography, a portable terminal, a camera system (for example, a digital camera, a surveillance camera, a security camera, an in-vehicle camera). Therefore, it is possible to add a high-performance far-infrared image input function to a digital device at a low cost and in a compact manner.
第1の実施の形態(実施例1)のレンズ構成図。The lens block diagram of 1st Embodiment (Example 1). 実施例1の収差図。FIG. 6 is an aberration diagram of Example 1. 第2の実施の形態(実施例2)のレンズ構成図。The lens block diagram of 2nd Embodiment (Example 2). 実施例2の収差図。FIG. 6 is an aberration diagram of Example 2. 第3の実施の形態(実施例3)のレンズ構成図。The lens block diagram of 3rd Embodiment (Example 3). 実施例3の収差図。FIG. 6 is an aberration diagram of Example 3. 第4の実施の形態(実施例4)のレンズ構成図。The lens block diagram of 4th Embodiment (Example 4). 実施例4の収差図。FIG. 6 is an aberration diagram of Example 4. 第5の実施の形態(実施例5)のレンズ構成図。The lens block diagram of 5th Embodiment (Example 5). 実施例5の収差図。FIG. 6 is an aberration diagram of Example 5. 第6の実施の形態(実施例6)のレンズ構成図。The lens block diagram of 6th Embodiment (Example 6). 実施例6の収差図。FIG. 10 is an aberration diagram of Example 6. 第7の実施の形態(実施例7)のレンズ構成図。The lens block diagram of 7th Embodiment (Example 7). 実施例7の収差図。FIG. 10 is an aberration diagram of Example 7. 第8の実施の形態(実施例8)のレンズ構成図。The lens block diagram of 8th Embodiment (Example 8). 実施例8の収差図。FIG. 10 is an aberration diagram of Example 8. 第9の実施の形態(実施例9)のレンズ構成図。The lens block diagram of 9th Embodiment (Example 9). 実施例9の収差図。FIG. 10 is an aberration diagram of Example 9. 第10の実施の形態(実施例10)のレンズ構成図。The lens block diagram of 10th Embodiment (Example 10). 実施例10の収差図。FIG. 10 is an aberration diagram of Example 10. 第11の実施の形態(実施例11)のレンズ構成図。The lens block diagram of 11th Embodiment (Example 11). 実施例11の収差図。FIG. 10 shows aberration diagrams of Example 11. 第12の実施の形態(実施例12)のレンズ構成図。The lens block diagram of 12th Embodiment (Example 12). 実施例12の収差図。FIG. 10 is an aberration diagram of Example 12. 第13の実施の形態(実施例13)のレンズ構成図。The lens block diagram of 13th Embodiment (Example 13). 実施例13の収差図。Aberration diagram of Example 13. 第14の実施の形態(実施例14)のレンズ構成図。The lens block diagram of 14th Embodiment (Example 14). 実施例14の収差図。Aberration diagram of Example 14. 第15の実施の形態(実施例15)のレンズ構成図。The lens block diagram of 15th Embodiment (Example 15). 実施例15の収差図。FIG. 18 shows aberration diagrams of Example 15. 第16の実施の形態(実施例16)のレンズ構成図。The lens block diagram of 16th Embodiment (Example 16). 実施例16の収差図。Aberration diagram of Example 16. 第17の実施の形態(実施例17)のレンズ構成図。The lens block diagram of 17th Embodiment (Example 17). 実施例17の収差図。Aberration diagram of Example 17. 遠赤外線レンズ系を搭載したデジタル機器の概略構成例を示す模式図。The schematic diagram which shows the schematic structural example of the digital apparatus carrying a far-infrared lens system.
 以下、本発明に係る遠赤外線レンズ系,撮像光学装置,デジタル機器等を説明する。本発明に係る遠赤外線レンズ系は、遠赤外線帯で使用されるレンズ系であって、物体側から順に、負のパワーを持つ第1レンズと、正のパワーを持つ第2レンズと、正のパワーを持つ第3レンズと、の3枚の単レンズで構成され(パワー:焦点距離の逆数で定義される量)、以下の条件式(1)を満足し、半画角ωが30°よりも大きいことを特徴としている。
3.2<f2/f<17 …(1)
 ただし、
f2:第2レンズの焦点距離、
f:遠赤外線レンズ系全体の焦点距離、
である。
Hereinafter, the far-infrared lens system, the imaging optical device, the digital device, and the like according to the present invention will be described. The far-infrared lens system according to the present invention is a lens system used in the far-infrared band, and in order from the object side, a first lens having a negative power, a second lens having a positive power, and a positive lens It consists of three single lenses with a third lens that has power (power: an amount defined by the reciprocal of the focal length), satisfies the following conditional expression (1), and has a half angle of view ω of 30 ° It is also characterized by being large.
3.2 <f2 / f <17 (1)
However,
f2: focal length of the second lens,
f: focal length of the entire far-infrared lens system,
It is.
 遠赤外線は、主として波長7~14μmの範囲の赤外線である。人や動物の体温は波長8~12μmの放射光であり、遠赤外線光学系はほとんどが波長8~12μmで使用される。波長8~12μm帯の遠赤外線領域は物質の温度を検知できる範囲であり、温度測定,暗闇での人検知,セキュリティ等、応用できるものは多い。最近では遠赤外線センサーの製造技術が進み、安価なサーモパイルや非冷却式マイクロボロメータ等も製造されるようになり、これらと適合するような安価なレンズ系が望まれている。また、いろいろな分野に応用可能な遠赤外線レンズ系のラインナップも望まれており、特に半画角ωが30°よりも大きい広角なレンズ系が必要とされている。 Far infrared rays are mainly infrared rays having a wavelength in the range of 7 to 14 μm. The body temperature of humans and animals is emitted light having a wavelength of 8 to 12 μm, and most of the far infrared optical system is used at a wavelength of 8 to 12 μm. The far-infrared region with a wavelength of 8 to 12 μm is the range in which the temperature of a substance can be detected, and there are many things that can be applied, such as temperature measurement, human detection in the dark, and security. Recently, far-infrared sensor manufacturing technology has advanced, and inexpensive thermopiles, uncooled microbolometers, and the like have been manufactured, and an inexpensive lens system that is compatible with these is desired. In addition, a lineup of far-infrared lens systems applicable to various fields is also desired, and in particular, a wide-angle lens system having a half angle of view ω larger than 30 ° is required.
 しかしながら、現在のところ遠赤外線レンズ系で広角なものは少なく、その理由としては、レンズ系の画角による周辺光量比の低下を防げないことが挙げられる(周辺光量比:軸上光束によって像面に到達した光量に対する最軸外光束によって像面に到達した光量の比。)。画角による周辺光量比の低下はcos4乗則(コサイン4乗則)として知られており、cos4乗則によれば、レンズ系に入射する光束の角度をθとすると、軸上に対する光量の比が理想レンズではcosθの4乗倍に低下する(理論値)。 However, at present, there are few far-infrared lens systems with a wide angle, and the reason is that it is not possible to prevent the decrease in the peripheral light amount ratio due to the angle of view of the lens system (peripheral light amount ratio: the image plane by the axial light beam). The ratio of the amount of light that reaches the image plane by the most off-axis light flux to the amount of light that reaches. The decrease in the peripheral light amount ratio due to the angle of view is known as the cosine fourth law (cosine fourth law). According to the cosine fourth law, the angle of the light beam incident on the lens system is θ, and the ratio of the light amount to the axis. However, in an ideal lens, it decreases to the fourth power of cos θ (theoretical value).
 物体からレンズまでの距離は軸外で軸上のcosθ倍となり、光量は物体距離の2乗に比例して低下する。入射瞳面積(理想レンズの場合)は、斜めから見ることで面積がcosθ倍に低下して入射光量が減少する。像面到達角度(理想レンズの場合)はθとなり、斜め到達時の光量はcosθ倍に低下する。合わせてcosθの4乗倍に低下することになる。つまり、軸上と軸外との物体距離の差、斜めから見た入射瞳面積、及び像面に対する軸外光束の斜め入射が合わされることによって、画角のcos4乗に相当する光量低下が起こる。 The distance from the object to the lens is off-axis and cos θ times on the axis, and the amount of light decreases in proportion to the square of the object distance. When the entrance pupil area (in the case of an ideal lens) is viewed obliquely, the area is reduced by a factor of cos θ and the amount of incident light is reduced. The image plane arrival angle (in the case of an ideal lens) is θ, and the amount of light when the lens reaches obliquely decreases by a factor of cos θ. At the same time, it is reduced to the fourth power of cos θ. That is, the difference in the object distance between the on-axis and the off-axis, the entrance pupil area viewed obliquely, and the oblique incidence of the off-axis light beam on the image plane are combined to reduce the amount of light corresponding to the cos 4th power of the angle of view. .
 例えば、半画角ωが30°のレンズ系では、開口効率が100%であっても周辺光量比は56%以下になり、これよりも広角なレンズ系では50%を下回ってしまう。遠赤外線レンズ系は、熱を検知するものであるので、周辺光量比の低下が疑似的に熱量低下として遠赤外線センサーに検知されることになる。レンズ系毎のキャリブレーションによって周辺光量比の低下を考慮した温度補正を行うことは可能であるが、補正を行うことにより温度変化に対する分解能は軸上と周辺とで異なることになる。この違いはレンズ系の画角が広角になるほど著しく、特に半画角ωが30°よりも大きくなると、温度測定を行うためのサーモカメラとして使用するのに十分な分解能が得られない。 For example, in a lens system with a half angle of view ω of 30 °, the peripheral light quantity ratio is 56% or less even when the aperture efficiency is 100%, and in a lens system with a wider angle, it is less than 50%. Since the far-infrared lens system detects heat, a decrease in the peripheral light amount ratio is detected by the far-infrared sensor as a pseudo heat amount decrease. Although it is possible to perform temperature correction in consideration of a decrease in the peripheral light amount ratio by calibration for each lens system, the resolution with respect to the temperature change differs between the on-axis and the periphery by performing the correction. This difference becomes more significant as the angle of view of the lens system becomes wider. Particularly, when the half angle of view ω is larger than 30 °, sufficient resolution cannot be obtained for use as a thermo camera for measuring temperature.
 画角による周辺光量比の低下を補う方法として、歪曲をマイナス方向に発生させることが考えられる。マイナス方向の歪曲を発生させた場合、画像は周辺に行くほど縮小されて投影される。これは広い範囲の熱をより小さな範囲に結像するもので、歪曲の分だけ光量比は高くなり、画面全体では周辺光量比の低下を抑えることができる。例えば、半画角ωが30°の場合、マイナス15%の歪曲を持たせれば、一般的なレンズ系でも周辺光量比の低下が5%程度のレンズ系を構成できる。しかし、半画角ωが30°よりも大きくなると周辺光量比をほぼ均一にするために出さなくてはならない歪曲が極端に大きくなり、画像から撮影物体の形を判別したり、撮影物体の位置を正確に特定することが困難となってしまい、サーモカメラの用途としては望ましくない。 As a method of compensating for the decrease in the peripheral light amount ratio due to the angle of view, it is conceivable to generate distortion in the negative direction. When distortion in the minus direction is generated, the image is reduced and projected toward the periphery. In this method, a wide range of heat is imaged in a smaller range, the light amount ratio is increased by the amount of distortion, and a decrease in the peripheral light amount ratio can be suppressed over the entire screen. For example, when the half angle of view ω is 30 °, a lens system in which the decrease in the peripheral light amount ratio is about 5% can be configured even with a general lens system by providing a distortion of minus 15%. However, when the half angle of view ω is larger than 30 °, the distortion that must be generated in order to make the peripheral light amount ratio substantially uniform becomes extremely large. Therefore, it is difficult to specify accurately, which is not desirable for the application of a thermo camera.
 前述したように、いろいろな分野への応用を可能とするため、遠赤外線レンズ系の半画角ωは30°より大きいことが望ましい。従来の遠赤外線センサーは、温度分解能を精密に表示することのできる高価なものがほとんどである。このようなセンサーでは、温度分解能を十分に発揮させるため、センサー回りを液体窒素等の冷媒で冷却する必要がある。したがって、冷却するための空間が必要となるので、レンズバックが比較的短くなりやすい広角なレンズ系はほとんど製造されてこなかった。しかしながら、もっと広い視野を見たいというニーズがあり、しかも近年では冷却を必要としないマイクロボロメータ等の非冷却センサーが安価に作製できるようになってきている。このため、半画角ωが30°より大きい広角な遠赤外線レンズ系であっても実現は可能である。 As described above, it is desirable that the half field angle ω of the far-infrared lens system is larger than 30 ° in order to enable application to various fields. Most conventional far-infrared sensors are expensive and can accurately display temperature resolution. In such a sensor, it is necessary to cool the periphery of the sensor with a refrigerant such as liquid nitrogen in order to sufficiently exhibit temperature resolution. Therefore, since a space for cooling is required, a wide-angle lens system in which the lens back tends to be relatively short has hardly been manufactured. However, there is a need to view a wider field of view, and in recent years, non-cooled sensors such as microbolometers that do not require cooling can be manufactured at low cost. Therefore, even a far-infrared lens system having a wide angle of half field angle ω greater than 30 ° can be realized.
 第1レンズに負のパワーを持たせているのは、半画角ωが30°よりも大きい広角なレンズ系で十分なレンズバックを確保するためである。遠赤外線用の安価な非冷却センサーでは、解像力を保つため受光面の前にカバーガラスを配置して封止し、受光面とカバーガラスとの間を真空にしている。このため、受光面とレンズとの間には空間が必要であり、広角な焦点距離の短いレンズ系では主点をなるべく後方に持っていく必要がある。第1レンズを負レンズとすることで主点をレンズ系の最終面の後ろに持っていくことができ、広角でも十分なレンズバックを確保することができる。 The reason why the first lens has negative power is to secure a sufficient lens back with a wide-angle lens system in which the half angle of view ω is larger than 30 °. In an inexpensive uncooled sensor for far infrared rays, a cover glass is disposed and sealed in front of the light receiving surface to maintain the resolving power, and a vacuum is formed between the light receiving surface and the cover glass. For this reason, a space is required between the light receiving surface and the lens. In a lens system with a wide angle and a short focal length, it is necessary to bring the principal point as far back as possible. By making the first lens a negative lens, the principal point can be brought behind the final surface of the lens system, and a sufficient lens back can be secured even at a wide angle.
 負正正のレンズ3枚構成において条件式(1)を満たすように、規格化した第2レンズの焦点距離f2/fを従来よりも長い所定の範囲内に設定すると、軸外の光束幅をレンズ系の後方まで広く保つことが可能になり、半画角ωが30°よりも広角なレンズ系でも周辺光量比が50%以上のレンズ系を実現することができる。f2/fを条件式(1)の下限よりも大きくすることにより、軸外光束幅をレンズ系の後方まで大きく保つことが可能となり、半画角ωが30°よりも大きく、かつ、歪曲が±5%以内でも、周辺光量比を50%以上に明るくすることができる。また、軸外主光線が像面に到達する角度を垂直に近くすることができるため、周辺光量比を上げる効果も得られる。f2/fを条件式(1)の上限よりも小さくすることにより、第3レンズのパワーが強くなりすぎるのを防ぎ、軸外光束のコマ収差を抑えて性能の良いレンズ系とすることができる。また、軸外主光線の像面到達角度も、垂直から逆方向の角度に振れてしまうのを防ぎ、光量比を高い状態に保つことができる。 When the focal length f2 / f of the standardized second lens is set within a predetermined range longer than the conventional one so as to satisfy the conditional expression (1) in the configuration of three negative and positive lenses, the off-axis luminous flux width is set. It is possible to keep the lens system wide behind the lens system, and a lens system having a peripheral light amount ratio of 50% or more can be realized even with a lens system having a half angle of view ω wider than 30 °. By making f2 / f larger than the lower limit of conditional expression (1), it becomes possible to keep the off-axis luminous flux width large to the rear of the lens system, the half angle of view ω is larger than 30 °, and distortion is caused. Even within ± 5%, the peripheral light amount ratio can be brightened to 50% or more. In addition, since the angle at which the off-axis chief ray reaches the image plane can be made nearly vertical, an effect of increasing the peripheral light amount ratio can be obtained. By making f2 / f smaller than the upper limit of conditional expression (1), the power of the third lens can be prevented from becoming too strong, and the coma aberration of the off-axis light beam can be suppressed to provide a high-performance lens system. . Further, the arrival angle of the off-axis principal ray on the image plane can be prevented from being swung from the vertical direction to the reverse direction, and the light quantity ratio can be kept high.
 上述した特徴的構成によると、歪曲が±5%以内で半画角ωが30°よりも大きい広角でありながら、50%以上の周辺光量比が得られる明るく高性能な遠赤外線レンズ系を、3枚という少ない枚数で実現することができ、温度検知を必要とするサーモカメラに適した広角な遠赤外線レンズ系を安価に提供することができる。したがって、安価でも高性能な遠赤外線レンズ系と、それを備えた撮像光学装置を実現することができる。そして、その遠赤外線レンズ系をデジタルカメラ,監視カメラ,防犯カメラ,車載カメラ等のカメラシステムに用いたり、撮像光学装置を携帯端末,暗視装置,サーモグラフィー等のデジタル機器に用いたりすることによって、高性能の遠赤外線画像入力機能を安価でコンパクトに実現することが可能となり、そのコンパクト化,高性能化,高機能化等に寄与することができる。こういった効果をバランス良く得るとともに、更に高い光学性能,周辺光量比の確保,広角化,小型化等を達成するための条件設定等を以下に説明する。 According to the above-described characteristic configuration, a bright and high-performance far-infrared lens system capable of obtaining a peripheral light quantity ratio of 50% or more while having a distortion within ± 5% and a half angle of view ω larger than 30 °, This can be realized with a small number of three, and a wide-angle far-infrared lens system suitable for a thermocamera that requires temperature detection can be provided at low cost. Therefore, it is possible to realize an inexpensive but high-performance far-infrared lens system and an imaging optical device including the same. And by using the far-infrared lens system for camera systems such as digital cameras, surveillance cameras, security cameras, and in-vehicle cameras, or by using imaging optical devices for digital devices such as portable terminals, night vision devices, and thermography, It is possible to realize a high-performance far-infrared image input function at a low cost and in a compact manner, contributing to its compactness, high performance, and high functionality. The following describes how to obtain these effects in a well-balanced manner, as well as setting conditions for achieving higher optical performance, securing a peripheral light amount ratio, widening the angle, downsizing, and the like.
 第2レンズの焦点距離に関して、以下の条件式(1a)を満たすことが望ましく、条件式(1b)を満たすことが更に望ましい。
3.2<f2/f<9 …(1a)
4.3<f2/f<5.6 …(1b)
 これらの条件式(1a),(1b)は、前記条件式(1)が規定している条件範囲のなかでも、前記観点等に基づいた更に好ましい条件範囲を規定している。したがって、好ましくは条件式(1a)、更に好ましくは条件式(1b)を満たすことにより、上記効果をより一層大きくすることができる。例えば、条件式(1a)又は(1b)の下限を上回ることにより、周辺光量比を更に高くすることができる。
Regarding the focal length of the second lens, it is desirable to satisfy the following conditional expression (1a), and it is more desirable to satisfy the conditional expression (1b).
3.2 <f2 / f <9 (1a)
4.3 <f2 / f <5.6 (1b)
These conditional expressions (1a) and (1b) define more preferable condition ranges based on the above viewpoints, etc., among the condition ranges defined by the conditional expression (1). Therefore, the above effect can be further enhanced by preferably satisfying conditional expression (1a), more preferably satisfying conditional expression (1b). For example, the peripheral light quantity ratio can be further increased by exceeding the lower limit of the conditional expression (1a) or (1b).
 前記第1レンズは、波長10μmでの屈折率が2.9よりも大きい材料からなることが望ましい。屈折率は真空に対する物質中の光の進む速度の比であり、可視領域ではd線(587nm)に対して表示される。しかし、この値は遠赤外線領域では意味を持たないので、波長10μmに対する屈折率を代表的に示す場合が多い。例えば、従来より用いられている遠赤外線光学材料の波長10μmでの屈折率は、ゲルマニウム(Ge)=4.004、シリコン(Si)=3.418、硫化亜鉛(ZnS)=2.200、セレン化亜鉛(ZnSe)=2.407等である。さらに、屈折率が1.5前後の塩化ナトリウム(NaCl)や臭化カリウム(KBr)、屈折率が2.9よりも大きい金属系材料等も挙げられ、屈折率のバリエーションは多い。 The first lens is preferably made of a material having a refractive index larger than 2.9 at a wavelength of 10 μm. The refractive index is the ratio of the traveling speed of light in the material to the vacuum, and is displayed for the d-line (587 nm) in the visible region. However, since this value has no meaning in the far-infrared region, the refractive index for a wavelength of 10 μm is typically representative. For example, the refractive index at a wavelength of 10 μm of far-infrared optical materials used conventionally is germanium (Ge) = 4.004, silicon (Si) = 3.418, zinc sulfide (ZnS) = 2.200, selenium. Zinc halide (ZnSe) = 2.407 or the like. Furthermore, sodium chloride (NaCl) or potassium bromide (KBr) having a refractive index of around 1.5, metallic materials having a refractive index larger than 2.9, and the like are included, and there are many variations in the refractive index.
 第1レンズに屈折率の高い材料を用いることにより、レンズ面の曲率を緩くすることができる。このため、軸外光束が光軸から高い位置を通ってもコマ収差は小さくなるように抑えられ、歪曲もマイナスに大きく出ないように抑えられる。したがって、光学性能の良好なレンズ系を実現することができる。また、第1レンズが相対的に離れた配置にすることができるため、軸外光束の瞳の大きさをコントロールすることができるようになる。つまり、第1レンズに波長10μmでの屈折率が2.9よりも大きい材料を用いることにより、第1レンズと第2レンズとの間隔を従来よりも長くすることができるので、第1レンズの高い位置を通過する軸外光束の瞳の拡大効果によって、周辺光量比のより一層高いレンズ系を実現することが可能になる。 By using a material with a high refractive index for the first lens, the curvature of the lens surface can be relaxed. For this reason, even when the off-axis light beam passes through a high position from the optical axis, the coma aberration is suppressed to be small, and the distortion is also suppressed to be not greatly negative. Therefore, a lens system with good optical performance can be realized. In addition, since the first lens can be disposed relatively apart, the pupil size of the off-axis light beam can be controlled. That is, by using a material having a refractive index greater than 2.9 at a wavelength of 10 μm for the first lens, the distance between the first lens and the second lens can be made longer than before, so that the first lens Due to the effect of expanding the pupil of the off-axis light beam passing through a high position, it becomes possible to realize a lens system having a higher peripheral light amount ratio.
 前記第1レンズが物体側に凸面を向けた負メニスカス形状を有することが望ましい。第1レンズが物体側に凸面を向けることによって、光軸から高い位置を軸外光束が通ることになる。その結果、軸外ほど瞳が大きくなるため、周辺光量比を効果的に高くすることが可能になる。 It is desirable that the first lens has a negative meniscus shape with a convex surface facing the object side. When the first lens has a convex surface directed toward the object side, the off-axis light beam passes through a high position from the optical axis. As a result, the pupil becomes larger as it is off-axis, so that the peripheral light amount ratio can be effectively increased.
 以下の条件式(2)を満足することが望ましく、第1レンズとして物体側に凸面を向けた負メニスカスレンズを用いて条件式(2)を満足することが更に望ましい。
3.0<d2/f<9.0 …(2)
 ただし、
d2:第1レンズの像側面と第2レンズの物体側面との軸上間隔、
f:遠赤外線レンズ系全体の焦点距離、
である。
It is desirable to satisfy the following conditional expression (2), and it is further desirable to satisfy the conditional expression (2) using a negative meniscus lens having a convex surface facing the object side as the first lens.
3.0 <d2 / f <9.0 (2)
However,
d2: axial distance between the image side surface of the first lens and the object side surface of the second lens,
f: focal length of the entire far-infrared lens system,
It is.
 条件式(2)を満たすように、規格化した第1,第2レンズ間隔d2/fを所定の範囲内に設定すると、周辺光量比をより一層高くすることができる。d2/fを条件式(2)の下限よりも大きくすると、軸外光束は第1レンズの光軸から高い位置を通ることになる。第1レンズの物体側面が強い凸形状になっていると、凸面の光軸から高い位置では局所的な屈折力が軸上よりも強くなっている。このため、軸外の光束に対する瞳径を大きくすることが可能であり、周辺光量比を大きくする効果が与えられて、周辺光量比を効果的に50%以上にすることができる。d2/fを条件式(2)の上限よりも小さくすることにより、軸外光束が第1レンズの高すぎる位置を通過するのを防ぎ、強い凸面によって大きくコマ収差が出たり歪曲が大きくならないように構成することができる。 If the standardized first and second lens intervals d2 / f are set within a predetermined range so as to satisfy the conditional expression (2), the peripheral light amount ratio can be further increased. When d2 / f is made larger than the lower limit of conditional expression (2), the off-axis light beam passes through a high position from the optical axis of the first lens. When the object side surface of the first lens has a strong convex shape, the local refractive power is stronger than on the axis at a position higher than the optical axis of the convex surface. For this reason, it is possible to increase the pupil diameter with respect to the off-axis light beam, and the effect of increasing the peripheral light amount ratio is given, so that the peripheral light amount ratio can be effectively increased to 50% or more. By making d2 / f smaller than the upper limit of the conditional expression (2), it is possible to prevent the off-axis light beam from passing through a position that is too high on the first lens, and to prevent a large coma aberration or distortion from being caused by a strong convex surface. Can be configured.
 以下の条件式(2a)を満足することが更に望ましい。
4.3<d2/f<7.3 …(2a)
 この条件式(2a)は、前記条件式(2)が規定している条件範囲のなかでも、前記観点等に基づいた更に好ましい条件範囲を規定している。したがって、好ましくは条件式(2a)を満たすことにより、上記効果をより一層大きくすることができる。例えば、条件式(2a)の下限を上回ることにより、周辺光量比を更に高くすることができる。
It is more desirable to satisfy the following conditional expression (2a).
4.3 <d2 / f <7.3 (2a)
This conditional expression (2a) defines a more preferable condition range based on the above viewpoints, etc., among the condition ranges defined by the conditional expression (2). Therefore, the above effect can be further increased preferably by satisfying conditional expression (2a). For example, the peripheral light amount ratio can be further increased by exceeding the lower limit of the conditional expression (2a).
 前記第2レンズが物体側に凸面を向けた正メニスカス形状又は平凸形状を有することが望ましい。第1レンズは負のパワーを持っているため、第2レンズで初めて光束を収束させることになる。第2レンズの最初の面で光束を収束させることにより、光束幅を大きくしすぎることがなく、球面収差及び像面湾曲を小さくするように抑えることが可能になる。 It is desirable that the second lens has a positive meniscus shape or plano-convex shape with a convex surface facing the object side. Since the first lens has negative power, the light flux is converged for the first time by the second lens. By converging the light beam on the first surface of the second lens, it is possible to suppress the spherical aberration and the curvature of field without reducing the light beam width too much.
 もし、第2レンズを両凸形状にすると、第2レンズにより強い正のパワーを持たせることが可能になるが、条件式(1)の規定からすると、第2レンズに強いパワーを持たせる必要性はあまり無い。第2レンズのパワーがあまり強くない場合、上記のようにまず物体側面に正のパワーを持たせると、球面収差及び像面湾曲を補正するには必然的に像側の面は弱くなって平面又は弱い負のパワーを持つようになる。また、屈折率の高い材料の方が面の曲率が緩くなり収差が小さくなるので、後述する各実施例では、GeやSiのように屈折率が2.9よりも大きい材料を用いている。なお、レンズ材料に屈折率の低いものを使用するような設計では、第2レンズのパワーが条件式(1)の範囲内にあっても、両面に正のパワーを持たせる必要がある場合も考えられる。 If the second lens has a biconvex shape, the second lens can have a strong positive power. However, from the condition (1), the second lens needs to have a strong power. There is not much sex. When the power of the second lens is not so strong, if the object side surface is first given a positive power as described above, the image side surface is inevitably weakened to correct spherical aberration and field curvature. Or it has weak negative power. In addition, since a material having a higher refractive index has a smaller surface curvature and a smaller aberration, a material having a higher refractive index than 2.9, such as Ge and Si, is used in each of the examples described later. In a design using a lens material having a low refractive index, there is a case where it is necessary to give positive power to both surfaces even if the power of the second lens is within the range of the conditional expression (1). Conceivable.
 前記第1レンズの像側面から前記第3レンズの物体側までの間に絞りを有することが望ましい。絞りを置く位置としては、第1レンズの物体側も考えられる。しかし、絞りを第1レンズの物体側に置いた場合、軸外光束が斜めに入射すると、レンズによる口径食がなくても、入射角のcos倍だけ瞳が小さくなることから周辺光量比が低下してしまう。絞りを第1レンズよりも像側に置くことで、第1レンズ又は、第1レンズ及び第2レンズによって、軸外光束に対する瞳径を大きくすることが可能になり、周辺光量比を高くする構成となる。さらに、第1レンズの高い位置を軸外光束が通ることによる瞳の拡大効果を十分に得るため、絞りの位置は、第1レンズと第2レンズとの間隔の1/2よりも第2レンズに近い方が更に好ましい。 It is desirable to have a stop between the image side surface of the first lens and the object side of the third lens. The object side of the first lens is also conceivable as the position where the aperture is placed. However, when the diaphragm is placed on the object side of the first lens, if the off-axis light beam is incident obliquely, the pupil is reduced by cos times the incident angle, even if there is no vignetting by the lens, and the peripheral light quantity ratio is reduced. Resulting in. By placing the stop closer to the image side than the first lens, the first lens or the first lens and the second lens can increase the pupil diameter with respect to the off-axis light beam, and the peripheral light amount ratio is increased. It becomes. Further, in order to sufficiently obtain the pupil enlargement effect due to the off-axis light beam passing through the high position of the first lens, the position of the stop is set to be the second lens than 1/2 of the interval between the first lens and the second lens. It is more preferable to be close to.
 前記第3レンズが、両面を比較したときパワーの強い方の凸面を物体側に向けた両凸形状を有するか、又は凸面を物体側に向けた正メニスカス形状を有することが望ましい。つまり、比較的強い正のパワーを持った第3レンズの形状は、正パワーを持った両方の凸面のうちの強い方の凸面を物体側に向けた両凸形状、あるいは凸面を物体側に向けた正メニスカス形状であることが望ましい。このような形状をとることにより、第3レンズまで大きな光束幅で到達した光束を収差が最小になる形状で集光させることが可能となる。第3レンズにより発生する球面収差とコマ収差を小さくすることができるので、第1レンズの負のパワーによって効率良く収差補正を行うことが可能となる。 It is desirable that the third lens has a biconvex shape in which the convex surface with the higher power is directed toward the object side when comparing both surfaces, or a positive meniscus shape with the convex surface directed toward the object side. In other words, the shape of the third lens having a relatively strong positive power is a biconvex shape in which the strong convex surface of both convex surfaces having positive power faces the object side, or the convex surface faces the object side. A positive meniscus shape is desirable. By adopting such a shape, it is possible to condense a light beam that reaches the third lens with a large light beam width in a shape that minimizes aberration. Since spherical aberration and coma generated by the third lens can be reduced, aberration correction can be performed efficiently by the negative power of the first lens.
 以下の条件式(3)を満足することが望ましい。
1.7<f23/f<2.8 …(3)
 ただし、
f23:第2レンズと第3レンズとの合成焦点距離、
f:遠赤外線レンズ系全体の焦点距離、
である。
It is desirable to satisfy the following conditional expression (3).
1.7 <f23 / f <2.8 (3)
However,
f23: composite focal length of the second lens and the third lens,
f: focal length of the entire far-infrared lens system,
It is.
 条件式(3)を満たすように、規格化した第2,第3合成焦点距離f23/fを所定の範囲内に設定すると、正のパワーがレンズ系の後方に集中するため、半画角ωが30°よりも大きく広角で焦点距離の短いレンズ系でありながら、レンズバックを確保することが可能となる。f23/fを条件式(3)の上限よりも小さくすることにより、短い焦点距離を実現し、かつ、レンズ全長が大きくなりすぎないようにして広角でも前玉径の小さいレンズ系とすることが可能となり、軸外のコマ収差や歪曲を小さくするように抑える構成となる。f23/fを条件式(3)の下限よりも大きくすることにより、レンズ系の後方に集中している正のパワーが強くなりすぎるのを防ぎ、球面収差や像面湾曲を小さくすることが可能となる。 When the normalized second and third combined focal lengths f23 / f are set within a predetermined range so as to satisfy the conditional expression (3), the positive power concentrates behind the lens system. However, it is possible to secure a lens back while the lens system is larger than 30 ° and has a wide angle and a short focal length. By making f23 / f smaller than the upper limit of conditional expression (3), a short focal length can be realized, and a lens system with a small front lens diameter can be obtained even at a wide angle so that the total lens length does not become too large. This is possible, and the configuration is such that off-axis coma and distortion are reduced. By making f23 / f larger than the lower limit of conditional expression (3), it is possible to prevent the positive power concentrated behind the lens system from becoming too strong, and to reduce spherical aberration and curvature of field. It becomes.
 以下の条件式(3a)を満足することが更に望ましい。
2.0<f23/f<2.7 …(3a)
 この条件式(3a)は、前記条件式(3)が規定している条件範囲のなかでも、前記観点等に基づいた更に好ましい条件範囲を規定している。したがって、好ましくは条件式(3a)を満たすことにより、上記効果をより一層大きくすることができる。
It is more desirable to satisfy the following conditional expression (3a).
2.0 <f23 / f <2.7 (3a)
This conditional expression (3a) defines a more preferable condition range based on the above viewpoints, etc., among the condition ranges defined by the conditional expression (3). Therefore, the above effect can be further increased preferably by satisfying conditional expression (3a).
 以下の条件式(4)を満足することが望ましい。
1.45<f2/f3<8.0 …(4)
 ただし、
f2:第2レンズの焦点距離、
f3:第3レンズの焦点距離、
である。
It is desirable to satisfy the following conditional expression (4).
1.45 <f2 / f3 <8.0 (4)
However,
f2: focal length of the second lens,
f3: focal length of the third lens,
It is.
 条件式(4)を満たすように、第2レンズと第3レンズとのパワー比f2/f3を所定の範囲内に設定すると、周辺光量比に関係の深い、軸外の主光線の像面に到達する角度をコントロールすることが可能になる。このため、半画角ωが30°以上と広角であって、歪曲も±5%以内であっても、周辺光量比がより十分に確保された構成とすることが可能になる。周辺光量比と像面に到達する光線の角度とは、cos4乗則が示しているように深い関係がある。つまり、像面に到達する光線が垂直に近ければ、周辺光量比の低下を小さくすることができる。 When the power ratio f2 / f3 between the second lens and the third lens is set within a predetermined range so as to satisfy the conditional expression (4), an off-axis principal ray image plane that is closely related to the peripheral light amount ratio is obtained. It is possible to control the angle of arrival. For this reason, even if the half angle of view ω is a wide angle of 30 ° or more and the distortion is within ± 5%, it is possible to obtain a configuration in which the peripheral light amount ratio is sufficiently secured. The peripheral light amount ratio and the angle of light rays reaching the image plane have a deep relationship as indicated by the cos 4th law. That is, if the light rays reaching the image plane are close to vertical, the decrease in the peripheral light amount ratio can be reduced.
 f2/f3を条件式(4)の下限よりも大きくすることにより、軸外光束はレンズ系の後方で屈折され、軸外主光線が像面に対して垂直に近い角度で到達する。f2/f3を条件式(4)の上限よりも小さくすることにより、軸外主光線の像面への到達角度が、逆方向に垂直からずれてしまうのを防ぐことができる。さらに、第3レンズのパワーが相対的に強くなりすぎないようにすることで、軸外のコマ収差を小さくするように抑える構成になる。また、軸外主光線の像面への到達角度が垂直に近い場合、絞りの像が受光面から遠い位置に形成されるため、絞りによるゴーストを防ぐことができ、遠赤外線用カメラに好適なレンズタイプとなる。 By making f2 / f3 larger than the lower limit of conditional expression (4), the off-axis light beam is refracted behind the lens system, and the off-axis principal ray reaches at an angle close to the image plane. By making f2 / f3 smaller than the upper limit of conditional expression (4), the arrival angle of the off-axis principal ray on the image plane can be prevented from deviating from vertical in the reverse direction. Further, the configuration is such that the off-axis coma aberration is reduced by preventing the third lens power from becoming too strong. In addition, when the angle of arrival of the off-axis chief ray on the image plane is nearly vertical, the aperture image is formed at a position far from the light receiving surface, so that ghosting due to the aperture can be prevented, which is suitable for a far infrared camera. It becomes a lens type.
 以下の条件式(4a)を満足することが更に望ましい。
1.9<f2/f3<2.3 …(4a)
 この条件式(4a)は、前記条件式(4)が規定している条件範囲のなかでも、前記観点等に基づいた更に好ましい条件範囲を規定している。したがって、好ましくは条件式(4a)を満たすことにより、上記効果をより一層大きくすることができる。例えば、条件式(4a)の下限を上回ると、軸外主光線が像面に対してより垂直に近い角度で到達するため、周辺光量比の低下をより一層小さくすることができる。
It is more desirable to satisfy the following conditional expression (4a).
1.9 <f2 / f3 <2.3 (4a)
The conditional expression (4a) defines a more preferable condition range based on the above viewpoints, etc., among the condition ranges defined by the conditional expression (4). Therefore, the above effect can be further increased preferably by satisfying conditional expression (4a). For example, when the lower limit of conditional expression (4a) is exceeded, the off-axis principal ray arrives at an angle that is closer to the image plane, and the reduction in the peripheral light amount ratio can be further reduced.
 前記第2レンズと第3レンズのうちの少なくとも一方は、波長10μmでの屈折率が2.9よりも大きい材料からなることが望ましい。前述したように半画角ωが30°よりも大きい広角なレンズ系を想定した場合、全系の焦点距離は短くなり、正レンズである第2レンズと第3レンズのパワーも強くなりやすい。このため、レンズの曲率が緩くても強いパワーが得られる屈折率の高い材料を用いれば、正レンズによる収差を小さくすることができるので、光学性能の良好なレンズ系が実現しやすくなる。 It is desirable that at least one of the second lens and the third lens is made of a material having a refractive index larger than 2.9 at a wavelength of 10 μm. As described above, when a wide-angle lens system in which the half angle of view ω is larger than 30 ° is assumed, the focal length of the entire system becomes short, and the powers of the second lens and the third lens, which are positive lenses, tend to be strong. For this reason, if a material having a high refractive index capable of obtaining a strong power even if the lens has a gentle curvature, the aberration due to the positive lens can be reduced, so that a lens system with good optical performance can be easily realized.
 波長8~12μmでの分散νを以下の式(FD)で定義すると、前記第1~第3レンズのうちの少なくとも1つを構成するレンズ材料の分散νが100よりも大きいことが望ましい。
ν=(N10-1)/(N8-N12) …(FD)
 ただし、
N8:波長8μmでの屈折率、
N10:波長10μmでの屈折率、
N12:波長12μmでの屈折率、
である。
When the dispersion ν at a wavelength of 8 to 12 μm is defined by the following formula (FD), it is desirable that the dispersion ν of the lens material constituting at least one of the first to third lenses is larger than 100.
ν = (N10-1) / (N8-N12) (FD)
However,
N8: refractive index at a wavelength of 8 μm,
N10: refractive index at a wavelength of 10 μm,
N12: refractive index at a wavelength of 12 μm,
It is.
 分散の性質を表す値として、可視光線ではd線のアッベ数νdが用いられる。このアッベ数は、νd=(Nd-1)/(Nf-Nc)で表される(ただし、Ndはd線での屈折率、NfはF線での屈折率、NcはC線での屈折率、である。)。しかし、この値は遠赤外線領域では意味を持たないので、前記遠赤外線レンズ系では、分散の性質を表す値として、式(FD):ν=(N10-1)/(N8-N12)で表される値νを用いている。この値νが大きいほど色による屈折率の差が小さいので、分散が小さいということになる。例えば、従来より用いられている遠赤外線光学材料の分散は、Ge=1250程度、Si=1860、ZnS=23(色消しに使う。)、ZnSe=57(色消しに使う。)等である。 As a value representing the nature of dispersion, the Abbe number νd of d-line is used for visible light. This Abbe number is expressed by νd = (Nd−1) / (Nf−Nc) (where Nd is the refractive index at the d-line, Nf is the refractive index at the F-line, and Nc is the refractive index at the C-line. Rate.). However, since this value has no meaning in the far-infrared region, in the far-infrared lens system, it is expressed by the formula (FD): ν = (N10-1) / (N8-N12) as a value representing the nature of dispersion. The value ν is used. The larger the value ν, the smaller the difference in refractive index due to color, and the smaller the dispersion. For example, dispersions of far-infrared optical materials conventionally used are Ge = 1250, Si = 1860, ZnS = 23 (used for achromatic), ZnSe = 57 (used for achromatic), and the like.
 遠赤外線レンズ系では、どのような温度を計測する場合でも広い波長範囲の収差補正が必要となる。望遠レンズ系においては、正レンズと負レンズとで分散の異なる材料を使うことにより色補正が行われるが、焦点距離の短い広角レンズ系では各々のレンズで最も色収差が小さくなる構成とすれば組み合わせによる色補正は不要となる。しかし、今後これまでよりも高精細の遠赤外線センサーが開発されれば、望遠レンズ系と同じように、正レンズに分散の値νが大きい材料(すなわち低分散の材料)を用いて色補正を行う必要がある。上記のように分散νが100よりも大きいレンズ材料(例えば、Ge,Si)を用いれば、これに対応することが可能となる。 In the far-infrared lens system, it is necessary to correct aberrations in a wide wavelength range when measuring any temperature. In the telephoto lens system, color correction is performed by using materials with different dispersions for the positive lens and the negative lens, but in a wide-angle lens system with a short focal length, a combination of chromatic aberrations that minimizes each lens. Color correction by is not necessary. However, if a far-infrared sensor with higher definition than ever is developed in the future, as in the telephoto lens system, color correction will be performed using a material with a large dispersion value ν (ie, a low dispersion material) for the positive lens. There is a need to do. As described above, if a lens material (for example, Ge, Si) having a dispersion ν larger than 100 is used, this can be dealt with.
 遠赤外線レンズ系において、周辺光量比を著しく低下させない程度であれば、回折格子を用いて収差補正を行ってもよい。回折格子を設けることにより、軸上色収差等の補正を良好に行うことが可能となる。回折格子の断面形状としては、バイナリ形状の他にステップ(階段)形状やキノフォームを用いてもよい。 In the far-infrared lens system, aberration correction may be performed using a diffraction grating as long as the peripheral light amount ratio is not significantly reduced. By providing a diffraction grating, it is possible to satisfactorily correct axial chromatic aberration and the like. As a cross-sectional shape of the diffraction grating, a step shape or a kinoform may be used in addition to the binary shape.
 本発明に係る遠赤外線レンズ系は、遠赤外線用カメラシステムの撮像レンズ系として好適である。従来の遠赤外線レンズ系で広角なものが少ないのは、前述したように画角によって周辺光量比が低下してしまうためと考えられる。上記のように簡単な3枚構成のレンズ系とすることで、広角であっても周辺光量比の高いレンズ系が得られる。また、安価な遠赤外線センサーと組み合わせることで、広角であってもサーモカメラに使用できる安価なシステムを構成することができる。 The far-infrared lens system according to the present invention is suitable as an imaging lens system for a far-infrared camera system. The reason why there are few wide-angle lenses in the conventional far-infrared lens system is considered to be that the peripheral light amount ratio is lowered by the angle of view as described above. By using a simple three-lens lens system as described above, a lens system having a high peripheral light amount ratio can be obtained even at a wide angle. In combination with an inexpensive far-infrared sensor, an inexpensive system that can be used for a thermocamera even at a wide angle can be configured.
 上述したように条件設定された各構成を、単独で又は必要に応じ組み合わせて採用することにより、3枚という少ないレンズ枚数でも軸上光束及び軸外光束に対して積極的な収差補正を行うことができるようになる。このため、良好な収差補正により高い周辺光量比での広角化を高性能化や高精細化と両立させながらレンズ3枚でも達成することが可能となり、新たに製造されてきている安価な遠赤外線センサーにも対応可能となる。したがって、安価でも高性能な遠赤外線レンズ系と、それを備えた撮像光学装置を実現することができる。 By adopting each of the conditions set as described above alone or in combination as necessary, positive aberration correction can be performed on the on-axis light beam and off-axis light beam even with a small number of three lenses. Will be able to. For this reason, it is possible to achieve a wide angle with a high peripheral light quantity ratio with good aberration correction, while achieving both high performance and high definition, even with three lenses, and the newly manufactured inexpensive far-infrared rays The sensor can also be used. Therefore, it is possible to realize an inexpensive but high-performance far-infrared lens system and an imaging optical device including the same.
 遠赤外線レンズ系又は撮像光学装置を、暗視装置,サーモグラフィー,携帯端末,カメラシステム(例えば、デジタルカメラ,監視カメラ,防犯カメラ,車載カメラ)等のデジタル機器に用いることによって、デジタル機器に対し高性能の遠赤外線画像入力機能を安価でコンパクトに付加することが可能となり、そのコンパクト化,高性能化,高機能化等に寄与することができる。遠赤外線用のカメラが普及していない原因の1つにはレンズ材料やレンズ加工が高価であることが挙げられるので、簡単な3枚構成のレンズ系を遠赤外線レンズ系として用いることにより、レンズの加工コスト等が抑えられ安価なカメラシステムを実現することが可能となる。 Using far-infrared lens systems or imaging optical devices for digital devices such as night vision devices, thermography, portable terminals, camera systems (for example, digital cameras, surveillance cameras, security cameras, in-vehicle cameras) makes high performance for digital devices. A far-infrared image input function with high performance can be added at a low cost and in a compact manner, contributing to the compactness, high performance, high functionality, and the like. One of the reasons why far-infrared cameras are not widespread is that the lens material and lens processing are expensive. Therefore, by using a simple three-lens lens system as the far-infrared lens system, Therefore, it is possible to realize an inexpensive camera system.
 本発明に係る遠赤外線レンズ系は、遠赤外線画像入力機能付きデジタル機器(例えば携帯端末,ドライブレコーダー等)用の撮像光学系としての使用に適しており、これを撮像用の遠赤外線センサー等と組み合わせることにより、被写体の遠赤外線映像を光学的に取り込んで電気的な信号として出力する遠赤外線用撮像光学装置を構成することができる。撮像光学装置は、被写体の静止画撮影や動画撮影に用いられるカメラの主たる構成要素を成す光学装置であり、例えば、物体(すなわち被写体)側から順に、物体の遠赤外線光学像を形成する遠赤外線レンズ系と、その遠赤外線レンズ系により形成された遠赤外線光学像を電気的な信号に変換する遠赤外線センサー(撮像素子)と、を備えることにより構成される。そして、遠赤外線センサーの受光面(すなわち撮像面)上に被写体の遠赤外線光学像が形成されるように、前述した特徴的構成を有する遠赤外線レンズ系が配置されることにより、小型・低コストで高い性能を有する撮像光学装置やそれを備えたデジタル機器を実現することができる。 The far-infrared lens system according to the present invention is suitable for use as an imaging optical system for a digital device with a far-infrared image input function (for example, a portable terminal, a drive recorder, etc.). By combining them, it is possible to configure a far-infrared imaging optical device that optically captures a far-infrared image of a subject and outputs it as an electrical signal. The imaging optical device is an optical device that constitutes a main component of a camera used for still image shooting or moving image shooting of a subject. For example, a far-infrared ray that forms a far-infrared optical image of an object in order from the object (that is, subject) side. It comprises a lens system and a far infrared sensor (imaging device) that converts a far infrared optical image formed by the far infrared lens system into an electrical signal. The far-infrared lens system having the above-described characteristic configuration is arranged so that the far-infrared optical image of the subject is formed on the light-receiving surface (that is, the imaging surface) of the far-infrared sensor. Therefore, it is possible to realize an imaging optical device having high performance and a digital device including the same.
 遠赤外線画像入力機能付きデジタル機器の例としては、赤外線カメラ,監視カメラ,防犯カメラ,車載カメラ,航空機カメラ,デジタルカメラ,ビデオカメラ,テレビ電話用カメラ等のカメラシステムが挙げられ、また、パーソナルコンピューター,暗視装置,サーモグラフィー,携帯用デジタル機器(例えば、携帯電話,スマートフォン(高機能携帯電話),タブレット端末,モバイルコンピューター等の小型で携帯可能な情報機器端末),これらの周辺機器(スキャナー,プリンター,マウス等),その他のデジタル機器(ドライブレコーダー,防衛機器等)等に内蔵又は外付けによりカメラ機能が搭載されたものが挙げられる。これらの例から分かるように、遠赤外線用の撮像光学装置を用いることにより赤外線カメラシステムを構成することができるだけでなく、その撮像光学装置を各種機器に搭載することにより赤外線カメラ機能,暗視機能,温度測定機能等を付加することが可能である。例えば、赤外線カメラ付きスマートフォン等の遠赤外線画像入力機能を備えたデジタル機器を構成することが可能である。 Examples of digital devices with a far-infrared image input function include camera systems such as infrared cameras, surveillance cameras, security cameras, in-vehicle cameras, aircraft cameras, digital cameras, video cameras, videophone cameras, and personal computers. , Night vision devices, thermography, portable digital devices (for example, small and portable information device terminals such as mobile phones, smart phones (high-function mobile phones), tablet terminals, mobile computers, etc.), and peripheral devices (scanners, printers) , Mouse, etc.), other digital devices (drive recorders, defense devices, etc.), etc., which have a camera function built in or externally mounted. As can be seen from these examples, it is possible not only to configure an infrared camera system by using an imaging optical device for far infrared rays, but also to provide an infrared camera function and a night vision function by installing the imaging optical device in various devices. , A temperature measurement function can be added. For example, a digital device having a far-infrared image input function such as a smartphone with an infrared camera can be configured.
 遠赤外線画像入力機能付きデジタル機器の一例として、図35にデジタル機器DUの概略構成例を模式的断面で示す。図35に示すデジタル機器DUに搭載されている撮像光学装置LUは、物体(すなわち被写体)側から順に、物体の遠赤外線光学像(像面)IMを形成する遠赤外線レンズ系LN(AX:光軸)と、遠赤外線レンズ系LNにより受光面(撮像面)SS上に形成された光学像IMを電気的な信号に変換する遠赤外線センサー(撮像素子)SRと、を備えている。遠赤外線レンズ系LNの像面IM側には、遠赤外線センサーSRのカバーガラス,必要に応じて配置される光学フィルター等が、平行平板(不図示)として位置することになる。この撮像光学装置LUで画像入力機能付きデジタル機器DUを構成する場合、通常そのボディ内部に撮像光学装置LUを配置することになるが、カメラ機能を実現する際には必要に応じた形態を採用することが可能である。例えば、ユニット化した撮像光学装置LUをデジタル機器DUの本体に対して着脱可能又は回動可能に構成することが可能である。 As an example of a digital device with a far-infrared image input function, FIG. 35 shows a schematic configuration example of the digital device DU in a schematic cross section. The imaging optical device LU mounted on the digital device DU shown in FIG. 35 is a far-infrared lens system LN (AX: light) that forms a far-infrared optical image (image plane) IM of an object in order from the object (that is, subject) side. Axis) and a far infrared sensor (imaging device) SR that converts an optical image IM formed on the light receiving surface (imaging surface) SS by the far infrared lens system LN into an electrical signal. On the image plane IM side of the far-infrared lens system LN, the cover glass of the far-infrared sensor SR, an optical filter arranged as necessary, and the like are positioned as parallel plates (not shown). When a digital device DU with an image input function is constituted by this imaging optical device LU, the imaging optical device LU is usually arranged inside the body, but when necessary to realize the camera function, a form as necessary is adopted. Is possible. For example, the unitized imaging optical device LU can be configured to be detachable or rotatable with respect to the main body of the digital device DU.
 遠赤外線レンズ系LNは、物体側から順に、第1~第3レンズの3枚のレンズで構成された3枚構成の単焦点レンズであり、前述したように、遠赤外線センサーSRの受光面SS上に遠赤外線からなる光学像IMを形成する構成になっている。遠赤外線センサーSRとしては、例えば複数の画素(例えば、数千~数十万画素)を有し、8~12μm程度の波長を利用する遠赤外線用のイメージセンサー(サーモセンサー等)が用いられる。遠赤外線レンズ系LNは、遠赤外線センサーSRの光電変換部である受光面SS上に被写体の光学像IMが形成されるように設けられているので、遠赤外線レンズ系LNによって形成された光学像IMは、遠赤外線センサーSRによって電気的な信号に変換される。 The far-infrared lens system LN is a three-lens single focal point lens composed of three lenses of the first to third lenses in order from the object side. As described above, the light-receiving surface SS of the far-infrared sensor SR. An optical image IM composed of far infrared rays is formed on the top. As the far-infrared sensor SR, for example, a far-infrared image sensor (thermosensor or the like) having a plurality of pixels (for example, several thousand to several hundred thousand pixels) and using a wavelength of about 8 to 12 μm is used. Since the far-infrared lens system LN is provided so that the optical image IM of the subject is formed on the light receiving surface SS which is a photoelectric conversion unit of the far-infrared sensor SR, the optical image formed by the far-infrared lens system LN. IM is converted into an electrical signal by the far-infrared sensor SR.
 遠赤外線センサーSRの具体例としては、焦電センサー,マイクロボロメータ,サーモパイル等が挙げられる。焦電センサーは、チタン酸ジルコン酸鉛等を含むセラミックが温度の変化によって自発分極する焦電効果を使ったものであり、ほとんどの場合単一の受光面を持ち、安価な温度センサーである。マイクロボロメータは、アモルファスシリコンや酸化バナジウム等の感熱材料を微細加工技術によって2次元配列した受光面を持ち、温度上昇によって抵抗値が変化することを検知する温度センサーである。現在使用されている一般的なマイクロボロメータは画素数が80×80,320×240,640×480等である。従来は温度分解能を十分発揮させるため、センサーの周囲を液体窒素等で冷却するものがほとんどであったが、近年では製造技術が進み、冷却しなくてもある程度温度検知能力の高いものが製造されてきている。サーモパイルは、熱を電気エネルギーに変換することのできる熱電対を直列又は並列に並べてセンサー面とした温度センサーで、焦電センサーに次いで安価なものである。 Specific examples of the far infrared sensor SR include a pyroelectric sensor, a microbolometer, and a thermopile. The pyroelectric sensor uses a pyroelectric effect in which ceramic containing lead zirconate titanate or the like spontaneously polarizes due to a change in temperature. In most cases, the pyroelectric sensor has a single light receiving surface and is an inexpensive temperature sensor. The microbolometer is a temperature sensor that has a light receiving surface in which heat sensitive materials such as amorphous silicon and vanadium oxide are two-dimensionally arranged by a microfabrication technique and detects a change in resistance value due to a temperature rise. Common microbolometers currently used have 80 × 80, 320 × 240, 640 × 480 and the like. In the past, most of the sensors were cooled with liquid nitrogen to provide sufficient temperature resolution. However, in recent years, manufacturing technology has advanced, and products with a high temperature detection capability have been manufactured without cooling. It is coming. The thermopile is a temperature sensor that uses thermocouples capable of converting heat into electric energy in series or in parallel to form a sensor surface, and is the second cheapest sensor after a pyroelectric sensor.
 デジタル機器DUは、撮像光学装置LUの他に、信号処理部1,制御部2,メモリー3,操作部4,表示部5等を備えている。遠赤外線センサーSRで生成した信号は、信号処理部1で所定のデジタル画像処理や画像圧縮処理等が必要に応じて施され、デジタル映像信号としてメモリー3(半導体メモリー,光ディスク等)に記録されたり、場合によってはケーブルを介したり赤外線信号等に変換されたりして他の機器に伝送される(例えば携帯電話の通信機能)。制御部2はマイクロコンピューターからなっており、撮影機能(静止画撮影機能,動画撮影機能等),画像再生機能等の機能の制御;フォーカシングのためのレンズ移動機構の制御等を集中的に行う。例えば、被写体の静止画撮影,動画撮影のうちの少なくとも一方を行うように、制御部2により撮像光学装置LUに対する制御が行われる。表示部5は液晶モニター等のディスプレイを含む部分であり、遠赤外線センサーSRによって変換された画像信号あるいはメモリー3に記録されている画像情報を用いて画像表示を行う。操作部4は、操作ボタン(例えばレリーズボタン),操作ダイヤル(例えば撮影モードダイヤル)等の操作部材を含む部分であり、操作者が操作入力した情報を制御部2に伝達する。 The digital device DU includes a signal processing unit 1, a control unit 2, a memory 3, an operation unit 4, a display unit 5 and the like in addition to the imaging optical device LU. The signal generated by the far-infrared sensor SR is subjected to predetermined digital image processing, image compression processing, and the like as required by the signal processing unit 1 and recorded as a digital video signal in the memory 3 (semiconductor memory, optical disk, etc.). In some cases, the signal is transmitted to another device via a cable or converted into an infrared signal or the like (for example, a communication function of a mobile phone). The control unit 2 is composed of a microcomputer, and performs control of functions such as a photographing function (still image photographing function, moving image photographing function, etc.), an image reproduction function, and the like; and a lens moving mechanism for focusing. For example, the control unit 2 controls the imaging optical device LU so as to perform at least one of still image shooting and moving image shooting of a subject. The display unit 5 includes a display such as a liquid crystal monitor, and performs image display using an image signal converted by the far infrared sensor SR or image information recorded in the memory 3. The operation unit 4 is a part including operation members such as an operation button (for example, a release button) and an operation dial (for example, a shooting mode dial), and transmits information input by the operator to the control unit 2.
 図1,図3,…,図31,図33に、無限遠合焦状態にある遠赤外線レンズ系LNの第1~第17の実施の形態を光学断面でそれぞれ示す。第1~第17の実施の形態の遠赤外線レンズ系LNは、物体側より順に、負パワーを有する第1レンズL1と、正パワーを有する第2レンズL2と、正パワーを有する第3レンズL3と、からなっている。各実施の形態では、各遠赤外線レンズ系LNの像面IM側に遠赤外線センサーSRの保護用カバーガラスに相当する平行平板PTが配置されている。 FIGS. 1, 3,..., 31 and 33 show first to seventeenth embodiments of the far-infrared lens system LN in an infinitely focused state in optical cross sections. The far-infrared lens system LN according to the first to seventeenth embodiments includes, in order from the object side, a first lens L1 having negative power, a second lens L2 having positive power, and a third lens L3 having positive power. It consists of. In each embodiment, a parallel plate PT corresponding to the protective cover glass of the far infrared sensor SR is disposed on the image plane IM side of each far infrared lens system LN.
 第1,第8の実施の形態(EX1,8)の遠赤外線レンズ系LNは、物体側から順に、負パワーの第1レンズL1と、開口絞りSTと、正パワーの第2レンズL2と、正パワーの第3レンズL3と、から構成されている。近軸の面形状で各レンズを見た場合、第1レンズL1は物体側に凸の負メニスカスレンズであり、第2レンズL2は物体側に凸の正メニスカスレンズであり、第3レンズL3は物体側に凸の正メニスカスレンズである。第1レンズL1の物体側面と、第2レンズL2の物体側面と、第3レンズL3の像側面は、非球面である。 The far-infrared lens system LN of the first and eighth embodiments (EX1, 8) includes, in order from the object side, a negative power first lens L1, an aperture stop ST, and a positive power second lens L2. And a third lens L3 having a positive power. When viewing each lens with a paraxial surface shape, the first lens L1 is a negative meniscus lens convex toward the object side, the second lens L2 is a positive meniscus lens convex toward the object side, and the third lens L3 is A positive meniscus lens convex toward the object side. The object side surface of the first lens L1, the object side surface of the second lens L2, and the image side surface of the third lens L3 are aspheric.
 第2~第7,第10,第11の実施の形態(EX2~7,10,11)の遠赤外線レンズ系LNは、物体側から順に、負パワーの第1レンズL1と、開口絞りSTと、正パワーの第2レンズL2と、正パワーの第3レンズL3と、から構成されている。近軸の面形状で各レンズを見た場合、第1レンズL1は物体側に凸の負メニスカスレンズであり、第2レンズL2は物体側に凸の正メニスカスレンズであり、第3レンズL3は物体側に凸の正メニスカスレンズである。第1レンズL1の物体側面と、第2レンズL2の物体側面と、第3レンズL3の両面は、非球面である。第11の実施の形態における第2レンズL2は、像側面が平面形状に近いメニスカス形状であるため、平凸形状を有するものといえる。第4~第7の実施の形態では、第1レンズL1の物体側面がゾーン別非球面となっている。 The far-infrared lens systems LN of the second to seventh, tenth, and eleventh embodiments (EX2 to 7, 10, and 11), in order from the object side, the first lens L1 having a negative power, the aperture stop ST, , A positive power second lens L2 and a positive power third lens L3. When viewing each lens with a paraxial surface shape, the first lens L1 is a negative meniscus lens convex toward the object side, the second lens L2 is a positive meniscus lens convex toward the object side, and the third lens L3 is A positive meniscus lens convex toward the object side. The object side surface of the first lens L1, the object side surface of the second lens L2, and both surfaces of the third lens L3 are aspherical surfaces. The second lens L2 in the eleventh embodiment can be said to have a plano-convex shape because the image side surface has a meniscus shape close to a planar shape. In the fourth to seventh embodiments, the object side surface of the first lens L1 is an aspheric surface for each zone.
 第9,第12,第13の実施の形態(EX9,12,13)の遠赤外線レンズ系LNは、物体側から順に、負パワーの第1レンズL1と、開口絞りSTと、正パワーの第2レンズL2と、正パワーの第3レンズL3と、から構成されている。近軸の面形状で各レンズを見た場合、第1レンズL1は物体側に凸の負メニスカスレンズであり、第2レンズL2は物体側に凸の正メニスカスレンズであり、第3レンズL3は物体側に凸の正メニスカスレンズである。第1レンズL1の両面と、第2レンズL2の両面と、第3レンズL3の像側面は、非球面である。 The far-infrared lens systems LN of the ninth, twelfth, and thirteenth embodiments (EX9, 12, and 13) are, in order from the object side, the negative lens first lens L1, the aperture stop ST, and the positive power first lens L1. 2 lenses L2 and a positive power third lens L3. When viewing each lens with a paraxial surface shape, the first lens L1 is a negative meniscus lens convex toward the object side, the second lens L2 is a positive meniscus lens convex toward the object side, and the third lens L3 is A positive meniscus lens convex toward the object side. Both sides of the first lens L1, both sides of the second lens L2, and the image side surface of the third lens L3 are aspheric.
 第14~第16の実施の形態(EX14~16)の遠赤外線レンズ系LNは、物体側から順に、負パワーの第1レンズL1と、開口絞りSTと、正パワーの第2レンズL2と、正パワーの第3レンズL3と、から構成されている。近軸の面形状で各レンズを見た場合、第1レンズL1は物体側に凸の負メニスカスレンズであり、第2レンズL2は物体側に凸の正メニスカスレンズであり、第3レンズL3は両凸の正レンズである。第1レンズL1の両面と、第2レンズL2の両面と、第3レンズL3の像側面は、非球面である。 The far-infrared lens system LN of the fourteenth to sixteenth embodiments (EX14 to 16) includes, in order from the object side, a negative power first lens L1, an aperture stop ST, a positive power second lens L2, And a third lens L3 having a positive power. When viewing each lens with a paraxial surface shape, the first lens L1 is a negative meniscus lens convex toward the object side, the second lens L2 is a positive meniscus lens convex toward the object side, and the third lens L3 is It is a biconvex positive lens. Both sides of the first lens L1, both sides of the second lens L2, and the image side surface of the third lens L3 are aspheric.
 第17の実施の形態(EX17)の遠赤外線レンズ系LNは、物体側から順に、負パワーの第1レンズL1と、正パワーの第2レンズL2と、開口絞りSTと、正パワーの第3レンズL3と、から構成されている。近軸の面形状で各レンズを見た場合、第1レンズL1は物体側に凸の負メニスカスレンズであり、第2レンズL2は物体側に凸の正メニスカスレンズであり、第3レンズL3は物体側に凸の正メニスカスレンズである。第2レンズL2は、像側面が平面形状に近いメニスカス形状であるため、平凸形状を有するものといえる。また、第2レンズL2の像側面は、コバ部分で開口絞りSTを構成している。第1レンズL1の両面と、第2レンズL2の両面と、第3レンズL3の像側面は、非球面である。 The far-infrared lens system LN according to the seventeenth embodiment (EX17) includes, in order from the object side, a negative lens first lens L1, a positive power second lens L2, an aperture stop ST, and a positive power third lens. And a lens L3. When viewing each lens with a paraxial surface shape, the first lens L1 is a negative meniscus lens convex toward the object side, the second lens L2 is a positive meniscus lens convex toward the object side, and the third lens L3 is A positive meniscus lens convex toward the object side. The second lens L2 can be said to have a plano-convex shape because the image side surface has a meniscus shape close to a planar shape. The image side surface of the second lens L2 forms an aperture stop ST at the edge portion. Both sides of the first lens L1, both sides of the second lens L2, and the image side surface of the third lens L3 are aspheric.
 以下、本発明を実施した遠赤外線レンズ系の構成等を、実施例のコンストラクションデータ等を挙げて更に具体的に説明する。ここで挙げる実施例1~17(EX1~17)は、前述した第1~第17の実施の形態にそれぞれ対応する数値実施例であり、第1~第17の実施の形態を表すレンズ構成図(図1,図3,…,図33)は、対応する実施例1~17のレンズ断面形状,レンズ配置等の光学構成をそれぞれ示している。 Hereinafter, the configuration and the like of the far-infrared lens system embodying the present invention will be described more specifically with reference to the construction data of the examples. Examples 1 to 17 (EX1 to 17) listed here are numerical examples corresponding to the first to seventeenth embodiments, respectively, and are lens configuration diagrams showing the first to seventeenth embodiments. (FIG. 1, FIG. 3,..., FIG. 33) show optical configurations such as the lens cross-sectional shape and lens arrangement of the corresponding Examples 1 to 17, respectively.
 各実施例のコンストラクションデータでは、面データとして、左側の欄から順に、面番号i(OB:物面,ST:絞り面,IM:像面),近軸における曲率半径r(mm),軸上面間隔d(mm),設計波長λ0:10μmでの屈折率N10,及び波長8~12μmでの分散νを示す(無し:空気)。 In the construction data of each embodiment, as surface data, in order from the left column, surface number i (OB: object surface, ST: aperture surface, IM: image surface), radius of curvature r (mm) in paraxial, axial upper surface An interval d (mm), a refractive index N10 at a design wavelength λ0 of 10 μm, and a dispersion ν at a wavelength of 8 to 12 μm are shown (none: air).
 面番号iに*が付された面は非球面であり、その面形状は面頂点を原点とするローカルな直交座標系(x,y,z)を用いた以下の式(AS)で定義される。非球面データとして、非球面係数等を示す。なお、各実施例の非球面データにおいて表記の無い項の係数は0であり、すべてのデータに関してE-n=×10-nである。
z=(c・h2)/[1+√{1-(1+K)・c2・h2}]+Σ(Aj・hj) …(AS)
 ただし、
h:z軸(光軸AX)に対して垂直な方向の高さ(h2=x2+y2)、
z:高さhの位置での光軸AX方向のサグ量(面頂点基準)、
c:面頂点での曲率(近軸曲率半径rの逆数)、
K:円錐定数、
Aj:j次の非球面係数(Σはjについて4次から∞次の総和を表す。)、
である。
The surface with * in the surface number i is an aspheric surface, and the surface shape is defined by the following formula (AS) using a local orthogonal coordinate system (x, y, z) with the surface vertex as the origin. The As aspheric data, an aspheric coefficient or the like is shown. It should be noted that the coefficient of the term not described in the aspherical data of each embodiment is 0, and En = × 10 −n for all data.
z = (c · h 2 ) / [1 + √ {1− (1 + K) · c 2 · h 2 }] + Σ (Aj · h j ) (AS)
However,
h: height in the direction perpendicular to the z axis (optical axis AX) (h 2 = x 2 + y 2 ),
z: the amount of sag in the direction of the optical axis AX at the position of the height h (based on the surface vertex),
c: curvature at the surface vertex (reciprocal of paraxial radius of curvature r),
K: conic constant,
Aj: j-order aspheric coefficient (Σ represents the sum of the fourth to ∞ orders for j),
It is.
 ゾーン別非球面も、通常の非球面と同様に前記式(AS)で表される。ただし、曲率半径R(mm)と非球面係数Ajは光軸AXからの高さh(mm)に応じたゾーンごとに異なる値を取り、jは定数項の0次と4次以上の自然数を取る。 The aspheric surface for each zone is also expressed by the above formula (AS) in the same way as a normal aspheric surface. However, the radius of curvature R (mm) and the aspherical coefficient Aj take different values for each zone according to the height h (mm) from the optical axis AX, and j is a zero-order and fourth-order or higher natural number of a constant term. take.
 各レンズ等を構成する光学材料の屈折率及び分散データとして、波長10μmでの屈折率N10と、波長8~12μmでの分散ν=(N10-1)/(N8-N12)と、を以下に示す。なお、像面IMの前の平行平板PTは、遠赤外線センサーSRのシリコン製保護板(カバーガラス)である。
ゲルマニウム(Ge) …N10=4.004 ,ν=1251
シリコン(Si)   …N10=3.4178,ν=1860
As the refractive index and dispersion data of the optical material constituting each lens, the refractive index N10 at a wavelength of 10 μm and the dispersion ν = (N10-1) / (N8-N12) at a wavelength of 8 to 12 μm are as follows: Show. The parallel plate PT in front of the image plane IM is a silicon protective plate (cover glass) of the far-infrared sensor SR.
Germanium (Ge) ... N10 = 4.004, ν = 1251
Silicon (Si): N10 = 3.4178, ν = 1860
 各種データ(スペック)として、設計波長λ0(nm),全系の焦点距離f(mm),Fナンバー(FNO),全長TL(レンズ最前面から像面IMまでの距離(ただし、平行平板PTは実寸法),mm)及び半画角ω(°)を示す。また、表1に各実施例の条件式対応値及びその関連データを示す。 As various data (specs), the design wavelength λ 0 (nm), the focal length f (mm) of the entire system, the F number (FNO), the total length TL (the distance from the lens front surface to the image plane IM (however, the parallel plate PT is Actual dimensions), mm) and half angle of view ω (°). Table 1 shows values corresponding to the conditional expressions of each example and related data.
 図2,図4,図6,…,図32,図34は、実施例1~17(EX1~17)にそれぞれ対応する収差図であり、(A)は球面収差図、(B)は非点収差図、(C)は歪曲収差図である。球面収差図(A)は、実線で示す設計波長(評価波長)10000nmにおける球面収差量、一点鎖線で示す波長8000nmにおける球面収差量、破線で示す波長12000nmにおける球面収差量を、それぞれ近軸像面からの光軸AX方向のズレ量(mm)で表しており、縦軸は瞳への入射高さをその最大高さで規格化した値(すなわち相対瞳高さ)を表している。非点収差図(B)において、破線Tは設計波長10000nmにおけるタンジェンシャル像面、実線Sは設計波長10000nmにおけるサジタル像面を、近軸像面からの光軸AX方向のズレ量(mm)で表しており、縦軸は像高(IMG HT,mm)を表している。歪曲収差図(C)において、横軸は設計波長10000nmにおける歪曲(%)を表しており、縦軸は像高(IMG HT,mm)を表している。なお、像高IMG HTの最大値は、遠赤外線センサーSRの受光面SSの対角長の半分に相当する。 2, 4, 6,..., 32, and 34 are aberration diagrams corresponding to Examples 1 to 17 (EX1 to 17), respectively, (A) is a spherical aberration diagram, and (B) is a non-aberration diagram. Point aberration diagram, (C) is a distortion diagram. The spherical aberration diagram (A) shows the amount of spherical aberration at a design wavelength (evaluation wavelength) of 10000 nm indicated by a solid line, the amount of spherical aberration at a wavelength of 8000 nm indicated by an alternate long and short dash line, and the amount of spherical aberration at a wavelength of 12000 nm indicated by a broken line. The vertical axis represents a value obtained by normalizing the incident height to the pupil by the maximum height (that is, the relative pupil height). In the astigmatism diagram (B), the broken line T is the tangential image plane at the design wavelength of 10000 nm, the solid line S is the sagittal image plane at the design wavelength of 10000 nm, and the deviation (mm) in the optical axis AX direction from the paraxial image plane. The vertical axis represents the image height (IMG HT, mm). In the distortion diagram (C), the horizontal axis represents distortion (%) at a design wavelength of 10,000 nm, and the vertical axis represents image height (IMG HT, mm). The maximum value of the image height IMG HT corresponds to half the diagonal length of the light receiving surface SS of the far infrared sensor SR.
 実施例1
単位:mm
 面データ
 i           r(mm)           d(mm)          N10      ν
OB        INFINITY        INFINITY
 1*       19.97442        4.259916        4.004    1251
 2        11.34338       24.142077
 3(ST)    INFINITY        0.500000
 4*       30.58615        1.500000        4.004    1251
 5        63.48804       12.450600
 6        18.06938        7.000000        4.004    1251
 7*       33.47349        3.247407
 8        INFINITY        1.000000        3.4178   1860
 9        INFINITY        0.900000
IM        INFINITY        0.000000
Example 1
Unit: mm
Surface data i r (mm) d (mm) N10 ν
OB INFINITY INFINITY
1 * 19.97442 4.259916 4.004 1251
2 11.34338 24.142077
3 (ST) INFINITY 0.500000
4 * 30.58615 1.500000 4.004 1251
5 63.48804 12.450600
6 18.06938 7.000000 4.004 1251
7 * 33.47349 3.247407
8 INFINITY 1.000000 3.4178 1860
9 INFINITY 0.900000
IM INFINITY 0.000000
 各種データ
λ0 =  10000.0nm
f   =  3.9450
FNO =  1.3000
TL  = 55.0
ω  = 52.0179°
Various data λ0 = 10000.0nm
f = 3.9450
FNO = 1.3000
TL = 55.0
ω = 52.0179 °
 非球面データ
非球面:i=1*
K  =  0.000000
A4 =  0.112980E-04
A6 = -0.115701E-07
A8 =  0.127064E-09
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 1 *
K = 0.000000
A4 = 0.112980E-04
A6 = -0.115701E-07
A8 = 0.127064E-09
A10 = 0.000000E + 00
 非球面データ
非球面:i=4*
K  =  0.000000
A4 =  0.000000E+00
A6 = -0.136039E-05
A8 =  0.434985E-07
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 4 *
K = 0.000000
A4 = 0.000000E + 00
A6 = -0.136039E-05
A8 = 0.434985E-07
A10 = 0.000000E + 00
 非球面データ
非球面:i=7*
K  = -1.003103
A4 =  0.756826E-04
A6 =  0.000000E+00
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 7 *
K = -1.003103
A4 = 0.756826E-04
A6 = 0.000000E + 00
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 実施例2
単位:mm
 面データ
 i           r(mm)           d(mm)          N10      ν
OB        INFINITY        INFINITY
 1*       18.98745        3.933550        4.004    1251
 2        11.39073       21.941429
 3(ST)    INFINITY        3.188808
 4*       31.63379        1.500000        4.004    1251
 5        61.27521       12.046530
 6*       18.51782        7.000000        4.004    1251
 7*       40.54304        3.489683
 8        INFINITY        1.000000        3.4178   1860
 9        INFINITY        0.900001
IM        INFINITY        0.000000
Example 2
Unit: mm
Surface data i r (mm) d (mm) N10 ν
OB INFINITY INFINITY
1 * 18.98745 3.933550 4.004 1251
2 11.39073 21.941429
3 (ST) INFINITY 3.188808
4 * 31.63379 1.500000 4.004 1251
5 61.27521 12.046530
6 * 18.51782 7.000000 4.004 1251
7 * 40.54304 3.489683
8 INFINITY 1.000000 3.4178 1860
9 INFINITY 0.900001
IM INFINITY 0.000000
 各種データ
λ0 =  10000.0nm
f   =  3.9588
FNO =  1.3000
TL  = 55.0
ω  = 51.9210°
Various data λ0 = 10000.0nm
f = 3.9588
FNO = 1.3000
TL = 55.0
ω = 51.9210 °
 非球面データ
非球面:i=1*
K  =  0.000000
A4 =  0.117838E-04
A6 = -0.317272E-07
A8 =  0.240204E-09
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 1 *
K = 0.000000
A4 = 0.117838E-04
A6 = -0.317272E-07
A8 = 0.240204E-09
A10 = 0.000000E + 00
 非球面データ
非球面:i=4*
K  = -2.088591
A4 = -0.109544E-04
A6 =  0.356402E-06
A8 = -0.549585E-08
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 4 *
K = -2.088591
A4 = -0.109544E-04
A6 = 0.356402E-06
A8 = -0.549585E-08
A10 = 0.000000E + 00
 非球面データ
非球面:i=6*
K  =  0.520593
A4 = -0.809827E-05
A6 =  0.153916E-08
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 6 *
K = 0.520593
A4 = -0.809827E-05
A6 = 0.153916E-08
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 非球面データ
非球面:i=7*
K  = -2.244124
A4 =  0.720723E-04
A6 =  0.000000E+00
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 7 *
K = -2.244124
A4 = 0.720723E-04
A6 = 0.000000E + 00
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 実施例3
単位:mm
 面データ
 i           r(mm)           d(mm)          N10      ν
OB        INFINITY        INFINITY
 1*       18.98745        3.937538        4.004    1251
 2        11.26822       22.848958
 3(ST)    INFINITY        1.946879
 4*       31.24766        1.500000        4.004    1251
 5        59.99565       12.389216
 6*       17.88176        7.000000        4.004    1251
 7*       35.04051        3.477409
 8        INFINITY        1.000000        3.4178   1860
 9        INFINITY        0.899996
IM        INFINITY        0.000000
Example 3
Unit: mm
Surface data i r (mm) d (mm) N10 ν
OB INFINITY INFINITY
1 * 18.98745 3.937538 4.004 1251
2 11.26822 22.848958
3 (ST) INFINITY 1.946879
4 * 31.24766 1.500000 4.004 1251
5 59.99565 12.389216
6 * 17.88176 7.000000 4.004 1251
7 * 35.04051 3.477409
8 INFINITY 1.000000 3.4178 1860
9 INFINITY 0.899996
IM INFINITY 0.000000
 各種データ
λ0 =  10000.0nm
f   =  3.9588
FNO =  1.3000
TL  = 55.0
ω  = 51.9211°
Various data λ0 = 10000.0nm
f = 3.9588
FNO = 1.3000
TL = 55.0
ω = 51.9211 °
 非球面データ
非球面:i=1*
K  =  0.000000
A4 =  0.129183E-04
A6 = -0.346024E-07
A8 =  0.252758E-09
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 1 *
K = 0.000000
A4 = 0.129183E-04
A6 = -0.346024E-07
A8 = 0.252758E-09
A10 = 0.000000E + 00
 非球面データ
非球面:i=4*
K  = -2.031676
A4 = -0.109474E-04
A6 =  0.465683E-06
A8 = -0.882319E-08
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 4 *
K = -2.031676
A4 = -0.109474E-04
A6 = 0.465683E-06
A8 = -0.882319E-08
A10 = 0.000000E + 00
 非球面データ
非球面:i=6*
K  =  0.558144
A4 = -0.113023E-04
A6 = -0.322402E-07
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 6 *
K = 0.558144
A4 = -0.113023E-04
A6 = -0.322402E-07
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 非球面データ
非球面:i=7*
K  = -0.872388
A4 =  0.649402E-04
A6 =  0.000000E+00
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 7 *
K = -0.872388
A4 = 0.649402E-04
A6 = 0.000000E + 00
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 実施例4
単位:mm
 面データ
 i           r(mm)           d(mm)          N10      ν
OB        INFINITY        INFINITY
 1*       18.98128        3.937538        4.004    1251
 2        11.25300       22.848958
 3(ST)    INFINITY        1.946879
 4*       32.38273        1.500000        4.004    1251
 5        64.92274       12.389216
 6*       17.92470        7.000000        4.004    1251
 7*       35.04051        3.477409
 8        INFINITY        1.000000        3.4178   1860
 9        INFINITY        0.899995
IM        INFINITY        0.000000
Example 4
Unit: mm
Surface data i r (mm) d (mm) N10 ν
OB INFINITY INFINITY
1 * 18.98128 3.937538 4.004 1251
2 11.25300 22.848958
3 (ST) INFINITY 1.946879
4 * 32.38273 1.500000 4.004 1251
5 64.92274 12.389216
6 * 17.92470 7.000000 4.004 1251
7 * 35.04051 3.477409
8 INFINITY 1.000000 3.4178 1860
9 INFINITY 0.899995
IM INFINITY 0.000000
 各種データ
λ0 =  10000.0nm
f   =  3.9588
FNO =  1.3000
TL  = 55.0
ω  = 51.9211°
Various data λ0 = 10000.0nm
f = 3.9588
FNO = 1.3000
TL = 55.0
ω = 51.9211 °
 非球面データ
ゾーン別非球面:i=1*
ゾーン1(0≦h≦1.5000)
R  = 18.98128
A0 =  0.0000E+00
A4 =  2.4117E-04
A6 = -1.1648E-04
A8 =  1.8285E-05
ゾーン2(1.5000≦h≦8.0000)
R  =  1.8907E+01
A0 =  7.9089E-05
A4 =  1.0107E-05
A6 =  7.8539E-09
A8 =  1.2421E-11
ゾーン3(8.0000≦h)
R  =  1.8866E+01
A0 = -2.3935E-03
A4 =  1.0861E-05
A6 = -2.4951E-08
A8 =  2.2983E-10
Aspheric surfaces by aspheric data zone: i = 1 *
Zone 1 (0 ≦ h ≦ 1.5000)
R = 18.98128
A0 = 0.0000E + 00
A4 = 2.4117E-04
A6 = -1.1648E-04
A8 = 1.8285E-05
Zone 2 (1.5000 ≦ h ≦ 8.0000)
R = 1.8907E + 01
A0 = 7.9089E-05
A4 = 1.0107E-05
A6 = 7.8539E-09
A8 = 1.2421E-11
Zone 3 (8.0000 ≦ h)
R = 1.8866E + 01
A0 = -2.3935E-03
A4 = 1.0861E-05
A6 = -2.4951E-08
A8 = 2.2983E-10
 非球面データ
非球面:i=4*
K  =  0.478972
A4 = -0.237710E-04
A6 =  0.674554E-06
A8 = -0.132720E-07
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 4 *
K = 0.478972
A4 = -0.237710E-04
A6 = 0.674554E-06
A8 = -0.132720E-07
A10 = 0.000000E + 00
 非球面データ
非球面:i=6*
K  =  0.734098
A4 = -0.147960E-04
A6 = -0.760821E-07
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 6 *
K = 0.734098
A4 = -0.147960E-04
A6 = -0.760821E-07
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 非球面データ
非球面:i=7*
K  = -1.527333
A4 =  0.629146E-04
A6 =  0.000000E+00
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 7 *
K = -1.527333
A4 = 0.629146E-04
A6 = 0.000000E + 00
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 実施例5
単位:mm
 面データ
 i           r(mm)           d(mm)          N10      ν
OB        INFINITY        INFINITY
 1*       18.95171        3.937538        4.004    1251
 2        11.21692       22.848958
 3(ST)    INFINITY        1.946879
 4*       32.51597        1.500000        4.004    1251
 5        65.92705       12.389216
 6*       17.97350        7.000000        4.004    1251
 7*       35.04051        3.477409
 8        INFINITY        1.000000        3.4178   1860
 9        INFINITY        0.900000
IM        INFINITY        0.000000
Example 5
Unit: mm
Surface data i r (mm) d (mm) N10 ν
OB INFINITY INFINITY
1 * 18.95171 3.937538 4.004 1251
2 11.21692 22.848958
3 (ST) INFINITY 1.946879
4 * 32.51597 1.500000 4.004 1251
5 65.92705 12.389216
6 * 17.97350 7.000000 4.004 1251
7 * 35.04051 3.477409
8 INFINITY 1.000000 3.4178 1860
9 INFINITY 0.900000
IM INFINITY 0.000000
 各種データ
λ0 =  10000.0nm
f   =  3.9588
FNO =  1.3000
TL  = 55.0
ω  = 51.9211°
Various data λ0 = 10000.0nm
f = 3.9588
FNO = 1.3000
TL = 55.0
ω = 51.9211 °
 非球面データ
ゾーン別非球面:i=1*
ゾーン1(0≦h≦1.5000)
R  = 18.95171
A0 =  0.0000E+00
A4 =  2.4022E-04
A6 = -1.1577E-04
A8 =  1.8163E-05
ゾーン2(1.5000≦h≦8.0000)
R  =  1.8878E+01
A0 =  7.7705E-05
A4 =  1.0204E-05
A6 =  5.7692E-09
A8 =  3.1249E-11
ゾーン3(8.0000≦h)
R  =  1.8880E+01
A0 = -1.1137E-03
A4 =  1.2098E-05
A6 = -3.2803E-08
A8 =  2.5595E-10
Aspheric surfaces by aspheric data zone: i = 1 *
Zone 1 (0 ≦ h ≦ 1.5000)
R = 18.95171
A0 = 0.0000E + 00
A4 = 2.4022E-04
A6 = -1.1577E-04
A8 = 1.8163E-05
Zone 2 (1.5000 ≦ h ≦ 8.0000)
R = 1.8878E + 01
A0 = 7.7705E-05
A4 = 1.0204E-05
A6 = 5.7692E-09
A8 = 3.1249E-11
Zone 3 (8.0000 ≦ h)
R = 1.8880E + 01
A0 = -1.1137E-03
A4 = 1.2098E-05
A6 = -3.2803E-08
A8 = 2.5595E-10
 非球面データ
非球面:i=4*
K  =  0.444630
A4 = -0.238076E-04
A6 =  0.694811E-06
A8 = -0.138261E-07
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 4 *
K = 0.444630
A4 = -0.238076E-04
A6 = 0.694811E-06
A8 = -0.138261E-07
A10 = 0.000000E + 00
 非球面データ
非球面:i=6*
K  =  0.877702
A4 = -0.158038E-04
A6 = -0.102131E-06
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 6 *
K = 0.877702
A4 = -0.158038E-04
A6 = -0.102131E-06
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 非球面データ
非球面:i=7*
K  = -1.233054
A4 =  0.674509E-04
A6 =  0.000000E+00
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 7 *
K = -1.233054
A4 = 0.674509E-04
A6 = 0.000000E + 00
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 実施例6
単位:mm
 面データ
 i           r(mm)           d(mm)          N10      ν
OB        INFINITY        INFINITY
 1*       18.95450        3.937538        4.004    1251
 2        11.23809       22.848958
 3(ST)    INFINITY        1.946879
 4*       33.05246        1.500000        4.004    1251
 5        67.89601       12.389216
 6*       17.93397        7.000000        4.004    1251
 7*       35.04051        3.477409
 8        INFINITY        1.000000        3.4178   1860
 9        INFINITY        0.900000
IM        INFINITY        0.000000
Example 6
Unit: mm
Surface data i r (mm) d (mm) N10 ν
OB INFINITY INFINITY
1 * 18.95450 3.937538 4.004 1251
2 11.23809 22.848958
3 (ST) INFINITY 1.946879
4 * 33.05246 1.500000 4.004 1251
5 67.89601 12.389216
6 * 17.93397 7.000000 4.004 1251
7 * 35.04051 3.477409
8 INFINITY 1.000000 3.4178 1860
9 INFINITY 0.900000
IM INFINITY 0.000000
 各種データ
λ0 =  10000.0nm
f   =  3.9588
FNO =  1.3000
TL  = 55.0
ω  = 51.9211°
Various data λ0 = 10000.0nm
f = 3.9588
FNO = 1.3000
TL = 55.0
ω = 51.9211 °
 非球面データ
ゾーン別非球面1*
ゾーン1(0≦h≦1.5)
R  = 18.95450
A0 =  0.0000E+00
A4 =  2.0606E-04
A6 = -9.5905E-05
A8 =  1.4866E-05
ゾーン2(1.5≦h≦8.0)
R  =  1.8882E+01
A0 =  5.0511E-05
A4 =  1.0004E-05
A6 =  4.1273E-09
A8 =  4.9068E-11
ゾーン3(8.0≦h)
R  =  1.8877E+01
A0 = -1.1443E-03
A4 =  1.1441E-05
A6 = -2.7680E-08
A8 =  2.3819E-10
Aspheric Data Zone 1 *
Zone 1 (0 ≦ h ≦ 1.5)
R = 18.95450
A0 = 0.0000E + 00
A4 = 2.0606E-04
A6 = -9.5905E-05
A8 = 1.4866E-05
Zone 2 (1.5 ≦ h ≦ 8.0)
R = 1.8882E + 01
A0 = 5.0511E-05
A4 = 1.0004E-05
A6 = 4.1273E-09
A8 = 4.9068E-11
Zone 3 (8.0 ≦ h)
R = 1.8877E + 01
A0 = -1.1443E-03
A4 = 1.1441E-05
A6 = -2.7680E-08
A8 = 2.3819E-10
 非球面データ
非球面:i=4*
K  =  0.649039
A4 = -0.230427E-04
A6 =  0.561985E-06
A8 = -0.999886E-08
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 4 *
K = 0.649039
A4 = -0.230427E-04
A6 = 0.561985E-06
A8 = -0.999886E-08
A10 = 0.000000E + 00
 非球面データ
非球面:i=6*
K  =  0.667460
A4 = -0.109646E-04
A6 = -0.551889E-07
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 6 *
K = 0.667460
A4 = -0.109646E-04
A6 = -0.551889E-07
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 非球面データ
非球面:i=7*
K  = -0.841862
A4 =  0.704026E-04
A6 =  0.000000E+00
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 7 *
K = -0.841862
A4 = 0.704026E-04
A6 = 0.000000E + 00
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 実施例7
単位:mm
 面データ
 i           r(mm)           d(mm)          N10      ν
OB        INFINITY        INFINITY
 1*       18.98744        3.263229        4.004    1251
 2        11.95292       23.301818
 3(ST)    INFINITY        3.628419
 4*       22.64137        1.500000        4.004    1251
 5        33.26157       11.303538
 6*       17.80384        6.518600        4.004    1251
 7*       35.04051        3.584397
 8        INFINITY        1.000000        3.4178   1860
 9        INFINITY        0.900018
IM        INFINITY        0.000000
Example 7
Unit: mm
Surface data i r (mm) d (mm) N10 ν
OB INFINITY INFINITY
1 * 18.98744 3.263229 4.004 1251
2 11.95292 23.301818
3 (ST) INFINITY 3.628419
4 * 22.64137 1.500000 4.004 1251
5 33.26157 11.303538
6 * 17.80384 6.518600 4.004 1251
7 * 35.04051 3.584397
8 INFINITY 1.000000 3.4178 1860
9 INFINITY 0.900018
IM INFINITY 0.000000
 各種データ
λ0 =  10000.0nm
f   =  3.9588
FNO =  1.3000
TL  = 55.0
ω  = 51.9211°
Various data λ0 = 10000.0nm
f = 3.9588
FNO = 1.3000
TL = 55.0
ω = 51.9211 °
 非球面データ
ゾーン別非球面:i=1*
ゾーン1(0≦h≦1.5000)
R  = 18.98744
A0 =  0.0000E+00
A4 =  2.1536E-04
A6 = -9.9496E-05
A8 =  1.5308E-05
ゾーン2(1.5000≦h≦8.0000)
R  =  1.8904E+01
A0 =  4.3477E-05
A4 =  8.3934E-06
A6 =  1.3349E-08
A8 =  1.9987E-11
ゾーン3(8.0000≦h)
R  =  1.9031E+01
A0 =  2.4671E-03
A4 =  1.3479E-05
A6 = -4.1061E-08
A8 =  2.6257E-10
Aspheric surfaces by aspheric data zone: i = 1 *
Zone 1 (0 ≦ h ≦ 1.5000)
R = 18.98744
A0 = 0.0000E + 00
A4 = 2.1536E-04
A6 = -9.9496E-05
A8 = 1.5308E-05
Zone 2 (1.5000 ≦ h ≦ 8.0000)
R = 1.8904E + 01
A0 = 4.3477E-05
A4 = 8.3934E-06
A6 = 1.3349E-08
A8 = 1.9987E-11
Zone 3 (8.0000 ≦ h)
R = 1.9031E + 01
A0 = 2.4671E-03
A4 = 1.3479E-05
A6 = -4.1061E-08
A8 = 2.6257E-10
 非球面データ
非球面:i=4*
K  =  0.168718
A4 = -0.252402E-04
A6 =  0.506894E-06
A8 = -0.765910E-08
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 4 *
K = 0.168718
A4 = -0.252402E-04
A6 = 0.506894E-06
A8 = -0.765910E-08
A10 = 0.000000E + 00
 非球面データ
非球面:i=6*
K  =  0.879655
A4 = -0.835647E-05
A6 = -0.105864E-06
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 6 *
K = 0.879655
A4 = -0.835647E-05
A6 = -0.105864E-06
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 非球面データ
非球面:i=7*
K  = -1.277704
A4 =  0.943038E-04
A6 =  0.000000E+00
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 7 *
K = -1.277704
A4 = 0.943038E-04
A6 = 0.000000E + 00
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 実施例8
単位:mm
 面データ
 i           r(mm)           d(mm)          N10      ν
OB        INFINITY        INFINITY
 1*       19.28986        4.067793        3.4178   1860
 2        10.86650       20.951878
 3(ST)    INFINITY        7.291065
 4*       19.72855        1.500000        3.4178   1860
 5        34.10096       10.213553
 6        17.43825        5.567141        3.4178   1860
 7*       44.22484        3.508571
 8        INFINITY        1.000000        3.4178   1860
 9        INFINITY        0.900420
IM        INFINITY        0.000000
Example 8
Unit: mm
Surface data i r (mm) d (mm) N10 ν
OB INFINITY INFINITY
1 * 19.28986 4.067793 3.4178 1860
2 10.86650 20.951878
3 (ST) INFINITY 7.291065
4 * 19.72855 1.500000 3.4178 1860
5 34.10096 10.213553
6 17.43825 5.567141 3.4178 1860
7 * 44.22484 3.508571
8 INFINITY 1.000000 3.4178 1860
9 INFINITY 0.900420
IM INFINITY 0.000000
 各種データ
λ0 =  10000.0nm
f   =  3.9450
FNO =  1.3000
TL  = 55.0
ω  = 51.9787°
Various data λ0 = 10000.0nm
f = 3.9450
FNO = 1.3000
TL = 55.0
ω = 51.9787 °
 非球面データ
非球面:i=1*
K  =  0.000000
A4 =  0.142209E-04
A6 = -0.461850E-07
A8 =  0.322518E-09
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 1 *
K = 0.000000
A4 = 0.142209E-04
A6 = -0.461850E-07
A8 = 0.322518E-09
A10 = 0.000000E + 00
 非球面データ
非球面:i=4*
K  =  0.000000
A4 = -0.205992E-04
A6 =  0.139786E-06
A8 = -0.101871E-08
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 4 *
K = 0.000000
A4 = -0.205992E-04
A6 = 0.139786E-06
A8 = -0.101871E-08
A10 = 0.000000E + 00
 非球面データ
非球面:i=7*
K  = -1.595049
A4 =  0.943232E-04
A6 =  0.000000E+00
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 7 *
K = -1.595049
A4 = 0.943232E-04
A6 = 0.000000E + 00
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 実施例9
単位:mm
 面データ
 i           r(mm)           d(mm)          N10      ν
OB        INFINITY        INFINITY
 1*       18.98744        4.338460        3.4178   1860
 2*       10.58949       19.728667
 3(ST)    INFINITY        0.500000
 4*       17.26847        1.899319        3.4178   1860
 5*       26.38188        7.365513
 6        16.63593        7.000000        3.4178   1860
 7*       71.59766        2.918293
 8        INFINITY        1.000000        3.4178   1860
 9        INFINITY        0.900000
IM        INFINITY        0.000000
Example 9
Unit: mm
Surface data i r (mm) d (mm) N10 ν
OB INFINITY INFINITY
1 * 18.98744 4.338460 3.4178 1860
2 * 10.58949 19.728667
3 (ST) INFINITY 0.500000
4 * 17.26847 1.899319 3.4178 1860
5 * 26.38188 7.365513
6 16.63593 7.000000 3.4178 1860
7 * 71.59766 2.918293
8 INFINITY 1.000000 3.4178 1860
9 INFINITY 0.900000
IM INFINITY 0.000000
 各種データ
λ0 =  10000.0nm
f   =  3.9588
FNO =  1.3000
TL  = 44.7503
ω  = 51.4362°
Various data λ0 = 10000.0nm
f = 3.9588
FNO = 1.3000
TL = 44.7503
ω = 51.4362 °
 非球面データ
非球面:i=1*
K  =  0.000000
A4 =  0.724807E-04
A6 = -0.175182E-07
A8 =  0.136875E-09
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 1 *
K = 0.000000
A4 = 0.724807E-04
A6 = -0.175182E-07
A8 = 0.136875E-09
A10 = 0.000000E + 00
 非球面データ
非球面:i=2*
K  =  0.000000
A4 =  0.180666E-03
A6 =  0.136761E-05
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 2 *
K = 0.000000
A4 = 0.180666E-03
A6 = 0.136761E-05
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 非球面データ
非球面:i=4*
K  =  0.756983
A4 =  0.313930E-04
A6 = -0.199210E-05
A8 = -0.230607E-07
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 4 *
K = 0.756983
A4 = 0.313930E-04
A6 = -0.199210E-05
A8 = -0.230607E-07
A10 = 0.000000E + 00
 非球面データ
非球面:i=5*
K  =  0.000000
A4 =  0.113532E-03
A6 = -0.361963E-05
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 5 *
K = 0.000000
A4 = 0.113532E-03
A6 = -0.361963E-05
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 非球面データ
非球面:i=7*
K  = 50.000000
A4 =  0.122205E-03
A6 =  0.000000E+00
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 7 *
K = 50.000000
A4 = 0.122205E-03
A6 = 0.000000E + 00
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 実施例10
単位:mm
 面データ
 i           r(mm)           d(mm)          N10      ν
OB        INFINITY        INFINITY
 1*       22.09903        2.000000        4.004    1251
 2        15.10708       27.821632
 3(ST)    INFINITY        6.655555
 4*       22.64186        1.500160        4.004    1251
 5        29.55163       11.833675
 6*       20.26530        7.908087        4.004    1251
 7*       45.21025        4.054555
 8        INFINITY        1.000000        3.4178   1860
 9        INFINITY        0.910996
IM        INFINITY        0.000000
Example 10
Unit: mm
Surface data i r (mm) d (mm) N10 ν
OB INFINITY INFINITY
1 * 22.09903 2.000000 4.004 1251
2 15.10708 27.821632
3 (ST) INFINITY 6.655555
4 * 22.64186 1.500 160 4.004 1251
5 29.55163 11.833675
6 * 20.26530 7.908087 4.004 1251
7 * 45.21025 4.054555
8 INFINITY 1.000000 3.4178 1860
9 INFINITY 0.910996
IM INFINITY 0.000000
 各種データ
λ0 =  10000.0nm
f   =  3.9600
FNO =  1.3000
TL  = 63.6847
ω  = 51.1586°
Various data λ0 = 10000.0nm
f = 3.9600
FNO = 1.3000
TL = 63.6847
ω = 51.1586 °
 非球面データ
非球面:i=1*
K  =  0.000000
A4 =  0.950632E-05
A6 = -0.510581E-08
A8 =  0.310007E-10
A10=  0.636941E-13
Aspheric data Aspheric surface: i = 1 *
K = 0.000000
A4 = 0.950632E-05
A6 = -0.510581E-08
A8 = 0.310007E-10
A10 = 0.636941E-13
 非球面データ
非球面:i=4*
K  = -1.194268
A4 = -0.658200E-05
A6 =  0.244872E-06
A8 = -0.193847E-08
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 4 *
K = -1.194268
A4 = -0.658200E-05
A6 = 0.244872E-06
A8 = -0.193847E-08
A10 = 0.000000E + 00
 非球面データ
非球面:i=6*
K  =  1.383115
A4 =  0.202002E-04
A6 = -0.556347E-07
A8 =  0.568506E-10
A10= -0.107270E-11
Aspheric data Aspheric surface: i = 6 *
K = 1.383115
A4 = 0.202002E-04
A6 = -0.556347E-07
A8 = 0.568506E-10
A10 = -0.107270E-11
 非球面データ
非球面:i=7*
K  = 27.756396
A4 =  0.155446E-03
A6 =  0.000000E+00
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 7 *
K = 27.756396
A4 = 0.155446E-03
A6 = 0.000000E + 00
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 実施例11
単位:mm
 面データ
 i           r(mm)           d(mm)          N10      ν
OB        INFINITY        INFINITY
 1*       18.72159        7.000000        4.004    1251
 2         8.68331       17.091768
 3(ST)    INFINITY        0.500000
 4*       37.85306        7.000000        4.004    1251
 5      2247.90524        8.688493
 6*       13.95820        1.515826        4.004    1251
 7*       28.79085        3.541168
 8        INFINITY        1.000000        3.4178   1860
 9        INFINITY        0.899200
IM        INFINITY        0.000000
Example 11
Unit: mm
Surface data i r (mm) d (mm) N10 ν
OB INFINITY INFINITY
1 * 18.72159 7.000000 4.004 1251
2 8.68331 17.091768
3 (ST) INFINITY 0.500000
4 * 37.85306 7.000000 4.004 1251
5 2247.90524 8.688493
6 * 13.95820 1.515826 4.004 1251
7 * 28.79085 3.541168
8 INFINITY 1.000000 3.4178 1860
9 INFINITY 0.899200
IM INFINITY 0.000000
 各種データ
λ0 =  10000.0nm
f   =  3.9586
FNO =  1.3000
TL  = 47.2365
ω  = 51.9214°
Various data λ0 = 10000.0nm
f = 3.9586
FNO = 1.3000
TL = 47.2365
ω = 51.9214 °
 非球面データ
非球面:i=1*
K  =  0.000000
A4 =  0.100503E-04
A6 = -0.121120E-07
A8 =  0.147112E-09
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 1 *
K = 0.000000
A4 = 0.100503E-04
A6 = -0.121120E-07
A8 = 0.147112E-09
A10 = 0.000000E + 00
 非球面データ
非球面:i=4*
K  = -8.763694
A4 = -0.978501E-05
A6 =  0.109269E-05
A8 = -0.306888E-07
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 4 *
K = -8.763694
A4 = -0.978501E-05
A6 = 0.109269E-05
A8 = -0.306888E-07
A10 = 0.000000E + 00
 非球面データ
非球面:i=6*
K  =  0.545783
A4 = -0.339683E-05
A6 = -0.700369E-07
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 6 *
K = 0.545783
A4 = -0.339683E-05
A6 = -0.700369E-07
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 非球面データ
非球面:i=7*
K  =  0.035719
A4 =  0.804669E-04
A6 =  0.000000E+00
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 7 *
K = 0.035719
A4 = 0.804669E-04
A6 = 0.000000E + 00
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 実施例12
単位:mm
 面データ
 i           r(mm)           d(mm)          N10      ν
OB        INFINITY        INFINITY
 1*       18.98747        5.077222        3.4178   1860
 2*       10.15611       17.724169
 3(ST)    INFINITY        0.500000
 4*       18.97666        1.952454        3.4178   1860
 5*       31.84518        6.794438
 6        16.53191        6.952777        3.4178   1860
 7*       90.71964        2.879810
 8        INFINITY        1.000000        3.4178   1860
 9        INFINITY        0.900078
IM        INFINITY        0.000000
Example 12
Unit: mm
Surface data i r (mm) d (mm) N10 ν
OB INFINITY INFINITY
1 * 18.98747 5.077222 3.4178 1860
2 * 10.15611 17.724169
3 (ST) INFINITY 0.500000
4 * 18.97666 1.952454 3.4178 1860
5 * 31.84518 6.794438
6 16.53191 6.952777 3.4178 1860
7 * 90.71964 2.879810
8 INFINITY 1.000000 3.4178 1860
9 INFINITY 0.900078
IM INFINITY 0.000000
 各種データ
λ0 =  10000.0nm
f   =  3.9863
FNO =  1.3000
TL  = 43.7809
ω  = 51.7279°
Various data λ0 = 10000.0nm
f = 3.9863
FNO = 1.3000
TL = 43.7809
ω = 51.7279 °
 非球面データ
非球面:i=1*
K  =  0.000000
A4 =  0.610326E-04
A6 = -0.165222E-07
A8 =  0.154246E-09
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 1 *
K = 0.000000
A4 = 0.610326E-04
A6 = -0.165222E-07
A8 = 0.154246E-09
A10 = 0.000000E + 00
 非球面データ
非球面:i=2*
K  =  0.000000
A4 =  0.183727E-03
A6 =  0.144326E-05
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 2 *
K = 0.000000
A4 = 0.183727E-03
A6 = 0.144326E-05
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 非球面データ
非球面:i=4*
K  = -0.720252
A4 =  0.754406E-07
A6 = -0.326664E-05
A8 = -0.448511E-07
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 4 *
K = -0.720252
A4 = 0.754406E-07
A6 = -0.326664E-05
A8 = -0.448511E-07
A10 = 0.000000E + 00
 非球面データ
非球面:i=5*
K  =  0.000000
A4 =  0.370447E-04
A6 = -0.571978E-05
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 5 *
K = 0.000000
A4 = 0.370447E-04
A6 = -0.571978E-05
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 非球面データ
非球面:i=7*
K  = 50.000000
A4 =  0.154209E-03
A6 =  0.000000E+00
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 7 *
K = 50.000000
A4 = 0.154209E-03
A6 = 0.000000E + 00
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 実施例13
単位:mm
 面データ
 i           r(mm)           d(mm)          N10      ν
OB        INFINITY        INFINITY
 1*       15.08506        3.774564        3.4178   1860
 2*        9.21001       16.941609
 3(ST)    INFINITY        0.500000
 4*       25.58510        4.521797        3.4178   1860
 5*       53.02554        8.801469
 6        17.86752        7.000000        3.4178   1860
 7*       55.36084        3.180317
 8        INFINITY        1.000000        3.4178   1860
 9        INFINITY        1.381468
IM        INFINITY        0.000000
Example 13
Unit: mm
Surface data i r (mm) d (mm) N10 ν
OB INFINITY INFINITY
1 * 15.08506 3.774564 3.4178 1860
2 * 9.21001 16.941609
3 (ST) INFINITY 0.500000
4 * 25.58510 4.521797 3.4178 1860
5 * 53.02554 8.801469
6 17.86752 7.000000 3.4178 1860
7 * 55.36084 3.180317
8 INFINITY 1.000000 3.4178 1860
9 INFINITY 1.381468
IM INFINITY 0.000000
 各種データ
λ0 =  10000.0nm
f   =  5.6328
FNO =  1.3000
TL  = 47.1012
ω  = 41.5050°
Various data λ0 = 10000.0nm
f = 5.6328
FNO = 1.3000
TL = 47.1012
ω = 41.5050 °
 非球面データ
非球面:i=1*
K  =  0.000000
A4 =  0.506985E-04
A6 = -0.330441E-06
A8 =  0.110154E-08
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 1 *
K = 0.000000
A4 = 0.506985E-04
A6 = -0.330441E-06
A8 = 0.110154E-08
A10 = 0.000000E + 00
 非球面データ
非球面:i=2*
K  =  0.000000
A4 =  0.125451E-03
A6 = -0.136292E-05
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 2 *
K = 0.000000
A4 = 0.125451E-03
A6 = -0.136292E-05
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 非球面データ
非球面:i=4*
K  = -0.179898
A4 = -0.156811E-05
A6 = -0.309452E-06
A8 = -0.332867E-08
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 4 *
K = -0.179898
A4 = -0.156811E-05
A6 = -0.309452E-06
A8 = -0.332867E-08
A10 = 0.000000E + 00
 非球面データ
非球面:i=5*
K  =  0.000000
A4 =  0.180058E-04
A6 = -0.713969E-06
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 5 *
K = 0.000000
A4 = 0.180058E-04
A6 = -0.713969E-06
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 非球面データ
非球面:i=7*
K  = -0.958318
A4 =  0.991081E-04
A6 =  0.000000E+00
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 7 *
K = -0.958318
A4 = 0.991081E-04
A6 = 0.000000E + 00
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 実施例14
単位:mm
 面データ
 i           r(mm)           d(mm)          N10      ν
OB        INFINITY        INFINITY
 1*       18.98744        3.218035        3.4178   1860
 2*       11.32068       22.063256
 3(ST)    INFINITY        0.754851
 4*       15.53320        2.536553        3.4178   1860
 5*       16.77402        6.079129
 6        26.23256        7.000000        3.4178   1860
 7*      -61.42566        3.305275
 8        INFINITY        1.000000        3.4178   1860
 9        INFINITY        3.045988
IM        INFINITY        0.000000
Example 14
Unit: mm
Surface data i r (mm) d (mm) N10 ν
OB INFINITY INFINITY
1 * 18.98744 3.218035 3.4178 1860
2 * 11.32068 22.063256
3 (ST) INFINITY 0.754851
4 * 15.53320 2.536553 3.4178 1860
5 * 16.77402 6.079129
6 26.23256 7.000000 3.4178 1860
7 * -61.42566 3.305275
8 INFINITY 1.000000 3.4178 1860
9 INFINITY 3.045988
IM INFINITY 0.000000
 各種データ
λ0 =  10000.0nm
f   =  3.9450
FNO =  1.3000
TL  = 49.0031
ω  = 52.0172°
Various data λ0 = 10000.0nm
f = 3.9450
FNO = 1.3000
TL = 49.0031
ω = 52.0172 °
 非球面データ
非球面:i=1*
K  =  0.000000
A4 =  0.911643E-04
A6 =  0.987159E-07
A8 = -0.173836E-09
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 1 *
K = 0.000000
A4 = 0.911643E-04
A6 = 0.987159E-07
A8 = -0.173836E-09
A10 = 0.000000E + 00
 非球面データ
非球面:i=2*
K  =  0.000000
A4 =  0.166507E-03
A6 =  0.175796E-05
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 2 *
K = 0.000000
A4 = 0.166507E-03
A6 = 0.175796E-05
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 非球面データ
非球面:i=4*
K  = -0.430051
A4 = -0.851999E-05
A6 = -0.321128E-05
A8 = -0.327390E-07
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 4 *
K = -0.430051
A4 = -0.851999E-05
A6 = -0.321128E-05
A8 = -0.327390E-07
A10 = 0.000000E + 00
 非球面データ
非球面:i=5*
K  =  0.000000
A4 =  0.509101E-04
A6 = -0.702033E-05
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 5 *
K = 0.000000
A4 = 0.509101E-04
A6 = -0.702033E-05
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 非球面データ
非球面:i=7*
K  = 16.929357
A4 =  0.732062E-04
A6 =  0.000000E+00
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 7 *
K = 16.929357
A4 = 0.732062E-04
A6 = 0.000000E + 00
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 実施例15
単位:mm
 面データ
 i           r(mm)           d(mm)          N10      ν
OB        INFINITY        INFINITY
 1*       18.98744        3.089206        3.4178   1860
 2*       11.30298       22.560322
 3(ST)    INFINITY        0.500000
 4*       24.07684        6.694275        3.4178   1860
 5*       24.49200        4.479898
 6        29.72505        7.000000        3.4178   1860
 7*      -40.03624        3.305275
 8        INFINITY        1.000000        3.4178   1860
 9        INFINITY        3.482869
IM        INFINITY        0.000000
Example 15
Unit: mm
Surface data i r (mm) d (mm) N10 ν
OB INFINITY INFINITY
1 * 18.98744 3.089206 3.4178 1860
2 * 11.30298 22.560322
3 (ST) INFINITY 0.500000
4 * 24.07684 6.694275 3.4178 1860
5 * 24.49200 4.479898
6 29.72505 7.000000 3.4178 1860
7 * -40.03624 3.305275
8 INFINITY 1.000000 3.4178 1860
9 INFINITY 3.482869
IM INFINITY 0.000000
 各種データ
λ0 =  10000.0nm
f   =  3.9448
FNO =  1.3000
TL  = 52.1118
ω  = 52.0203°
Various data λ0 = 10000.0nm
f = 3.9448
FNO = 1.3000
TL = 52.1118
ω = 52.0203 °
 非球面データ
非球面:i=1*
K  =  0.000000
A4 =  0.960046E-04
A6 =  0.435981E-07
A8 = -0.762702E-10
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 1 *
K = 0.000000
A4 = 0.960046E-04
A6 = 0.435981E-07
A8 = -0.762702E-10
A10 = 0.000000E + 00
 非球面データ
非球面:i=2*
K  =  0.000000
A4 =  0.172197E-03
A6 =  0.150421E-05
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 2 *
K = 0.000000
A4 = 0.172197E-03
A6 = 0.150421E-05
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 非球面データ
非球面:i=4*
K  = -1.933623
A4 = -0.378265E-04
A6 = -0.740384E-06
A8 = -0.269592E-07
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 4 *
K = -1.933623
A4 = -0.378265E-04
A6 = -0.740384E-06
A8 = -0.269592E-07
A10 = 0.000000E + 00
 非球面データ
非球面:i=5*
K  =  0.000000
A4 = -0.283749E-05
A6 = -0.317907E-05
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 5 *
K = 0.000000
A4 = -0.283749E-05
A6 = -0.317907E-05
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 非球面データ
非球面:i=7*
K  = -0.453093
A4 =  0.618267E-04
A6 =  0.000000E+00
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 7 *
K = -0.453093
A4 = 0.618267E-04
A6 = 0.000000E + 00
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 実施例16
単位:mm
 面データ
 i           r(mm)           d(mm)          N10      ν
OB        INFINITY        INFINITY
 1*       18.98744        2.893883        3.4178   1860
 2*       11.45425       23.077726
 3(ST)    INFINITY        0.500000
 4*       34.18158        7.000000        3.4178   1860
 5*       37.66610        4.601597
 6        33.24701        7.000000        3.4178   1860
 7*      -39.88293        3.305275
 8        INFINITY        1.000000        3.4178   1860
 9        INFINITY        4.266405
IM        INFINITY        0.000000
Example 16
Unit: mm
Surface data i r (mm) d (mm) N10 ν
OB INFINITY INFINITY
1 * 18.98744 2.893883 3.4178 1860
2 * 11.45425 23.077726
3 (ST) INFINITY 0.500000
4 * 34.18158 7.000000 3.4178 1860
5 * 37.66610 4.601597
6 33.24701 7.000000 3.4178 1860
7 * -39.88293 3.305275
8 INFINITY 1.000000 3.4178 1860
9 INFINITY 4.266405
IM INFINITY 0.000000
 各種データ
λ0 =  10000.0nm
f   =  3.9450
FNO =  1.3000
TL  = 53.6449
ω  = 52.0181°
Various data λ0 = 10000.0nm
f = 3.9450
FNO = 1.3000
TL = 53.6449
ω = 52.0181 °
 非球面データ
非球面:i=1*
K  =  0.000000
A4 =  0.101912E-03
A6 =  0.693718E-07
A8 = -0.164873E-09
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 1 *
K = 0.000000
A4 = 0.101912E-03
A6 = 0.693718E-07
A8 = -0.164873E-09
A10 = 0.000000E + 00
 非球面データ
非球面:i=2*
K  =  0.000000
A4 =  0.174291E-03
A6 =  0.160023E-05
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 2 *
K = 0.000000
A4 = 0.174291E-03
A6 = 0.160023E-05
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 非球面データ
非球面:i=4*
K  = -6.566177
A4 = -0.586856E-04
A6 = -0.664538E-06
A8 = -0.363904E-07
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 4 *
K = -6.566177
A4 = -0.586856E-04
A6 = -0.664538E-06
A8 = -0.363904E-07
A10 = 0.000000E + 00
 非球面データ
非球面:i=5*
K  =  0.000000
A4 = -0.365029E-04
A6 = -0.218257E-05
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 5 *
K = 0.000000
A4 = -0.365029E-04
A6 = -0.218257E-05
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 非球面データ
非球面:i=7*
K  = -0.428362
A4 =  0.536361E-04
A6 =  0.000000E+00
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 7 *
K = -0.428362
A4 = 0.536361E-04
A6 = 0.000000E + 00
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 実施例17
単位:mm
 面データ
 i           r(mm)           d(mm)          N10      ν
OB        INFINITY        INFINITY
 1*       19.61551        4.689940        3.4178   1860
 2*       11.19901       22.125190
 3*       26.04935        5.578011        3.4178   1860
 4*       71.54092        0.079921
 3(ST)    INFINITY        6.487793
 6        18.00186        6.727592        3.4178   1860
 7*       45.70953        2.868613
 8        INFINITY        1.000000        3.4178   1860
 9        INFINITY        0.900000
IM        INFINITY        0.000000
Example 17
Unit: mm
Surface data i r (mm) d (mm) N10 ν
OB INFINITY INFINITY
1 * 19.61551 4.689940 3.4178 1860
2 * 11.19901 22.125190
3 * 26.04935 5.578011 3.4178 1860
4 * 71.54092 0.079921
3 (ST) INFINITY 6.487793
6 18.00186 6.727592 3.4178 1860
7 * 45.70953 2.868613
8 INFINITY 1.000000 3.4178 1860
9 INFINITY 0.900000
IM INFINITY 0.000000
 各種データ
λ0 =  10000.0nm
f   =  4.7236
FNO =  1.3000
TL  = 50.4571
ω  = 46.5710°
Various data λ0 = 10000.0nm
f = 4.7236
FNO = 1.3000
TL = 50.4571
ω = 46.5710 °
 非球面データ
非球面:i=1*
K  =  0.000000
A4 =  0.568175E-04
A6 =  0.314376E-07
A8 = -0.486950E-10
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 1 *
K = 0.000000
A4 = 0.568175E-04
A6 = 0.314376E-07
A8 = -0.486950E-10
A10 = 0.000000E + 00
 非球面データ
非球面:i=2*
K  =  0.000000
A4 =  0.150067E-03
A6 =  0.127442E-05
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 2 *
K = 0.000000
A4 = 0.150067E-03
A6 = 0.127442E-05
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 非球面データ
非球面:i=3*
K  = -1.751781
A4 = -0.182176E-04
A6 = -0.367494E-06
A8 = -0.111601E-07
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 3 *
K = -1.751781
A4 = -0.182176E-04
A6 = -0.367494E-06
A8 = -0.111601E-07
A10 = 0.000000E + 00
 非球面データ
非球面:i=4*
K  =  0.000000
A4 = -0.190607E-04
A6 = -0.122023E-05
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 4 *
K = 0.000000
A4 = -0.190607E-04
A6 = -0.122023E-05
A8 = 0.000000E + 00
A10 = 0.000000E + 00
 非球面データ
非球面:i=7*
K  = 50.000000
A4 =  0.669433E-04
A6 =  0.000000E+00
A8 =  0.000000E+00
A10=  0.000000E+00
Aspheric data Aspheric surface: i = 7 *
K = 50.000000
A4 = 0.669433E-04
A6 = 0.000000E + 00
A8 = 0.000000E + 00
A10 = 0.000000E + 00
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 DU  デジタル機器(カメラシステム)
 LU  撮像光学装置
 LN  遠赤外線レンズ系
 L1  第1レンズ
 L2  第2レンズ
 L3  第3レンズ
 ST  開口絞り(絞り)
 SR  遠赤外線センサー(撮像素子)
 SS  受光面(撮像面)
 IM  像面(光学像)
 AX  光軸
 1  信号処理部
 2  制御部
 3  メモリー
 4  操作部
 5  表示部
DU digital equipment (camera system)
LU imaging optical device LN far infrared lens system L1 first lens L2 second lens L3 third lens ST aperture stop (stop)
SR far-infrared sensor (image sensor)
SS Photosensitive surface (imaging surface)
IM image plane (optical image)
AX Optical axis 1 Signal processing unit 2 Control unit 3 Memory 4 Operation unit 5 Display unit

Claims (12)

  1.  遠赤外線帯で使用されるレンズ系であって、
     物体側から順に、負のパワーを持つ第1レンズと、正のパワーを持つ第2レンズと、正のパワーを持つ第3レンズと、の3枚の単レンズで構成され、以下の条件式(1)を満足し、半画角が30°よりも大きいことを特徴とする遠赤外線レンズ系;
    3.2<f2/f<17 …(1)
     ただし、
    f2:第2レンズの焦点距離、
    f:遠赤外線レンズ系全体の焦点距離、
    である。
    A lens system used in the far-infrared band,
    In order from the object side, the lens is composed of three single lenses, a first lens having negative power, a second lens having positive power, and a third lens having positive power. The following conditional expression ( 1) and a far-infrared lens system characterized by having a half angle of view larger than 30 °;
    3.2 <f2 / f <17 (1)
    However,
    f2: focal length of the second lens,
    f: focal length of the entire far-infrared lens system,
    It is.
  2.  前記第1レンズは、波長10μmでの屈折率が2.9よりも大きい材料からなることを特徴とする請求項1記載の遠赤外線レンズ系。 The far-infrared lens system according to claim 1, wherein the first lens is made of a material having a refractive index larger than 2.9 at a wavelength of 10 µm.
  3.  前記第1レンズが物体側に凸面を向けた負メニスカス形状を有することを特徴とする請求項1又は2記載の遠赤外線レンズ系。 The far-infrared lens system according to claim 1 or 2, wherein the first lens has a negative meniscus shape with a convex surface facing the object side.
  4.  以下の条件式(2)を満足することを特徴とする請求項3記載の遠赤外線レンズ系;
    3.0<d2/f<9.0 …(2)
     ただし、
    d2:第1レンズの像側面と第2レンズの物体側面との軸上間隔、
    f:遠赤外線レンズ系全体の焦点距離、
    である。
    The far-infrared lens system according to claim 3, wherein the following conditional expression (2) is satisfied:
    3.0 <d2 / f <9.0 (2)
    However,
    d2: axial distance between the image side surface of the first lens and the object side surface of the second lens,
    f: focal length of the entire far-infrared lens system,
    It is.
  5.  前記第2レンズが物体側に凸面を向けた正メニスカス形状又は平凸形状を有することを特徴とする請求項1~4のいずれか1項に記載の遠赤外線レンズ系。 The far-infrared lens system according to any one of claims 1 to 4, wherein the second lens has a positive meniscus shape or plano-convex shape with a convex surface facing the object side.
  6.  前記第1レンズの像側面から前記第3レンズの物体側までの間に絞りを有することを特徴とする請求項1~5のいずれか1項に記載の遠赤外線レンズ系。 The far-infrared lens system according to any one of claims 1 to 5, further comprising a stop between an image side surface of the first lens and an object side of the third lens.
  7.  前記第3レンズが、両面を比較したときパワーの強い方の凸面を物体側に向けた両凸形状を有するか、又は凸面を物体側に向けた正メニスカス形状を有することを特徴とする請求項1~6のいずれか1項に記載の遠赤外線レンズ系。 The third lens has a biconvex shape in which a convex surface having a higher power is directed toward the object side or a positive meniscus shape in which the convex surface is directed toward the object side when comparing both surfaces. The far-infrared lens system according to any one of 1 to 6.
  8.  以下の条件式(3)を満足することを特徴とする請求項1~7のいずれか1項に記載の遠赤外線レンズ系;
    1.7<f23/f<2.8 …(3)
     ただし、
    f23:第2レンズと第3レンズとの合成焦点距離、
    f:遠赤外線レンズ系全体の焦点距離、
    である。
    The far-infrared lens system according to any one of claims 1 to 7, wherein the following conditional expression (3) is satisfied:
    1.7 <f23 / f <2.8 (3)
    However,
    f23: composite focal length of the second lens and the third lens,
    f: focal length of the entire far-infrared lens system,
    It is.
  9.  以下の条件式(4)を満足することを特徴とする請求項1~8のいずれか1項に記載の遠赤外線レンズ系;
    1.45<f2/f3<8.0 …(4)
     ただし、
    f2:第2レンズの焦点距離、
    f3:第3レンズの焦点距離、
    である。
    The far-infrared lens system according to any one of claims 1 to 8, wherein the following conditional expression (4) is satisfied:
    1.45 <f2 / f3 <8.0 (4)
    However,
    f2: focal length of the second lens,
    f3: focal length of the third lens,
    It is.
  10.  請求項1~9のいずれか1項に記載の遠赤外線レンズ系と、撮像面上に形成された遠赤外線光学像を電気的な信号に変換する遠赤外線センサーと、を備え、前記遠赤外線センサーの撮像面上に被写体の遠赤外線光学像が形成されるように前記遠赤外線レンズ系が設けられていることを特徴とする撮像光学装置。 A far-infrared lens system according to any one of claims 1 to 9, and a far-infrared sensor that converts a far-infrared optical image formed on an imaging surface into an electrical signal. An imaging optical apparatus, wherein the far-infrared lens system is provided so that a far-infrared optical image of a subject is formed on the imaging surface.
  11.  請求項10記載の撮像光学装置を備えることにより、被写体の静止画撮影,動画撮影のうちの少なくとも一方の機能が付加されたことを特徴とするデジタル機器。 11. A digital apparatus comprising the imaging optical device according to claim 10 to which at least one function of still image shooting and moving image shooting of a subject is added.
  12.  請求項1~9のいずれか1項に記載の遠赤外線レンズ系を備えたことを特徴とする遠赤外線用カメラシステム。 A far-infrared camera system comprising the far-infrared lens system according to any one of claims 1 to 9.
PCT/JP2016/067491 2015-06-24 2016-06-13 Far-infrared lens system, imaging optical apparatus, and digital device WO2016208433A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015126264 2015-06-24
JP2015-126264 2015-06-24

Publications (1)

Publication Number Publication Date
WO2016208433A1 true WO2016208433A1 (en) 2016-12-29

Family

ID=57584889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067491 WO2016208433A1 (en) 2015-06-24 2016-06-13 Far-infrared lens system, imaging optical apparatus, and digital device

Country Status (1)

Country Link
WO (1) WO2016208433A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111856708A (en) * 2019-04-29 2020-10-30 光芒光学股份有限公司 Image capturing lens and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066750A1 (en) * 2010-11-15 2012-05-24 富士フイルム株式会社 Image pickup lens and image pickup device
JP2012234099A (en) * 2011-05-06 2012-11-29 Kyocera Corp Imaging lens
JP2013228539A (en) * 2012-04-25 2013-11-07 Tamron Co Ltd Optical system for infrared rays

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066750A1 (en) * 2010-11-15 2012-05-24 富士フイルム株式会社 Image pickup lens and image pickup device
JP2012234099A (en) * 2011-05-06 2012-11-29 Kyocera Corp Imaging lens
JP2013228539A (en) * 2012-04-25 2013-11-07 Tamron Co Ltd Optical system for infrared rays

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111856708A (en) * 2019-04-29 2020-10-30 光芒光学股份有限公司 Image capturing lens and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP6845484B2 (en) Imaging optical system, lens unit and imaging device
US9986157B2 (en) Imaging optical system, camera apparatus and stereo camera apparatus
JP4032667B2 (en) Shooting lens
JP6425028B2 (en) Imaging lens, lens unit, imaging device, digital still camera and portable terminal
JP6583407B2 (en) Infrared optical system, imaging optical device, and digital equipment
JP6149410B2 (en) Far-infrared imaging optical system, imaging optical device, and digital equipment
WO2017090495A1 (en) Infrared optical system, image pickup optical device, and digital apparatus
JP6191628B2 (en) Imaging optical system, imaging optical device and digital equipment
WO2016121857A1 (en) Far-infrared lens system, optical imaging device, and digital apparatus
WO2016027786A1 (en) Far-infrared lens, imaging optical device and digital equipment
US20200285027A1 (en) Imaging optical lens assembly, image capturing unit and electronic device
JP6848967B2 (en) Infrared optics, imaging optics and digital equipment
JP6222116B2 (en) Imaging optical system, imaging optical device and digital equipment
JP2014149431A (en) Image forming optical system for far infrared ray, imaging optical device, and digital equipment
WO2015029645A1 (en) Far infrared lens, photographing lens system and camera system
WO2016208433A1 (en) Far-infrared lens system, imaging optical apparatus, and digital device
WO2016072294A1 (en) Far infrared optical system, image-capturing optical device, and digital equipment
JP6608738B2 (en) Imaging lens, imaging optical device, and digital device
JP2016139093A (en) Lens, far-infrared lens system, image capturing optical device, and digital device
WO2016027783A1 (en) Far-infrared lens, image-acquisition optical device, and digital equipment
WO2016027784A1 (en) Far-infrared lens, image-acquisition optical device, and digital equipment
JP2018044987A (en) Reflection optical device, far-infrared ray imaging system, and gas detection system
WO2021069982A1 (en) Imaging optical system and camera
WO2017195731A1 (en) Infrared optical system, imaging optical device and digital device
WO2019159709A1 (en) Imaging lens and imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP