WO2015029645A1 - Far infrared lens, photographing lens system and camera system - Google Patents

Far infrared lens, photographing lens system and camera system Download PDF

Info

Publication number
WO2015029645A1
WO2015029645A1 PCT/JP2014/069343 JP2014069343W WO2015029645A1 WO 2015029645 A1 WO2015029645 A1 WO 2015029645A1 JP 2014069343 W JP2014069343 W JP 2014069343W WO 2015029645 A1 WO2015029645 A1 WO 2015029645A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
far
infrared
coating layer
wavelength
Prior art date
Application number
PCT/JP2014/069343
Other languages
French (fr)
Japanese (ja)
Inventor
杭迫 真奈美
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015534083A priority Critical patent/JPWO2015029645A1/en
Publication of WO2015029645A1 publication Critical patent/WO2015029645A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms
    • G02B5/189Structurally combined with optical elements not having diffractive power
    • G02B5/1895Structurally combined with optical elements not having diffractive power such optical elements having dioptric power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to a far-infrared lens, a photographing lens system, and a camera system.
  • the far-infrared lens as an optical element used in the far-infrared band (wavelength 8 to 12 ⁇ m band) and the light-receiving of an imaging element
  • the present invention relates to a far-infrared photographing lens system for forming a far-infrared optical image of a subject on a surface, and a far-infrared camera system (for example, a night vision device, a thermography, etc.) on which the photographing lens system is mounted.
  • Patent Document 1 describes an optical material in which an inorganic crystal material (including deliquescent materials) is moisture-proof by coating with a resin material (polyvinylidene chloride, phenol resin, benzene resin, etc.). Although the thickness of the coating material is 0.05 to 1 ⁇ m or less, the deliquescent inorganic crystal material can be moisture-proof to prevent the transmittance from decreasing.
  • a resin material polyvinylidene chloride, phenol resin, benzene resin, etc.
  • Patent Document 2 describes a lens base material prepared by mixing an inorganic crystal material having a particle size of 500 nm or less with a polyethylene resin.
  • the transmittance of the far-infrared band is as low as about 30% for the polyethylene resin, but 95% or more for NaCl or KBr of the inorganic crystal material. For this reason, by mixing the inorganic crystal material, the transmittance can be made higher than that of the resin-only material.
  • Patent Document 3 describes an optical element in which a flat plate or plano-convex lens made of NaCl or the like is covered with polyethylene or the like and a Fresnel surface is formed on the plane.
  • the thickness of polyethylene covering the surface is ⁇ / 4 ( ⁇ : wavelength), and is about 1.7 ⁇ m at a wavelength of 10 ⁇ m. If the Fresnel surface is used, it is possible to reduce the thickness by dividing the surface of the thick lens into an annular zone. Therefore, the Fresnel surface is effective for manufacturing a lens using a material having low transmittance.
  • the inorganic crystal material as described in Patent Document 1 has a considerably lower refractive index than that of Ge, Si, ZnSe, and ZnS conventionally used for far-infrared lenses, and the dispersion is also compared with that of Ge and Si. And pretty big.
  • Such optical characteristics are disadvantageous for aberration correction in designing a lens system.
  • simply applying a moisture-proof coating to an inorganic crystal material to prevent deliquescence will cause aberrations that are too large to use in place of conventional lenses, and will sufficiently correct aberrations even when the number of lenses is increased. I can't.
  • the crystal material used as the substrate is difficult to process, it is difficult to produce an aspherical surface or a diffraction grating surface.
  • a thin organic material coating under harsh usage conditions may only be able to withstand a moisture-proof effect for about one to two years.
  • the low transmittance of polyethylene is improved by the high transmittance of inorganic crystal material by mixing nano-sized inorganic crystal material (NaCl or KBr) in polyethylene. Yes.
  • the proportion of polyethylene as a base material cannot be made 30% or less. For this reason, the transmittance increases only to about 65%. If a single lens does not have a transmittance of 80% or more, when a system composed of a plurality of lenses is configured, such as a photographing lens system of a camera, no resolution is obtained.
  • a thick lens is indispensable for increasing the curvature.
  • an increase in curvature due to the low refractive index of the lens material leads to an increase in aberrations, and the aberration correction effect is determined by the position of the lens surface in the lens system. Absent. In other words, in order to compensate for the low refractive index and large dispersion of the inorganic crystal material, it is necessary to provide a correction effect on the surface where the power (power: the amount defined by the reciprocal of the focal length) is large and the aberration is greatly generated. In addition, even if aberration correction is performed on a surface with low power, a sufficient effect cannot be obtained. Accordingly, it is not sufficient to provide a Fresnel surface or a diffraction grating surface on the plane, and sufficient aberration correction cannot be realized in a lens system using such an optical element.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a lens that is inexpensive and easy to process, has excellent far-infrared transmittance, and has high aberration correction capability, and a photographic lens system including the same. And providing a camera system.
  • the far-infrared lens of the first invention is a lens used in the far-infrared band, A lens core made of an inorganic crystal material having a refractive index with respect to a wavelength of 10 ⁇ m of 1.74 or less, and a coating layer made of an organic material that covers the entire lens core relatively thinly; At least one surface of the lens core is a spherical surface, and a diffraction grating is provided on the surface of the coating layer located on at least one spherical surface.
  • the far-infrared lens of the second invention is a lens used in the far-infrared band, A lens core made of an inorganic crystal material having a refractive index with respect to a wavelength of 10 ⁇ m of 1.74 or less, and a coating layer made of an organic material that covers the entire lens core relatively thinly; Both surfaces of the lens core are spherical surfaces, and an aspherical surface is provided on the surface of the coating layer located on at least one spherical surface.
  • the far-infrared lens of the third invention is characterized in that, in the first or second invention, the thickness of the coating layer is 10 ⁇ m or more at the thinnest and 500 ⁇ m or less at the thickest. .
  • a far-infrared lens according to a fourth aspect of the invention is characterized in that, in the second aspect of the invention, the aspherical surface provided on the surface of the coating layer has a shape in which the positive power decreases as the distance from the optical axis increases.
  • a far-infrared lens according to a fifth invention is characterized in that, in any one of the first to fourth inventions, the inorganic crystal material constituting the lens core is made of a substantially pure crystal. .
  • a far-infrared imaging lens system includes a lens core made of an inorganic crystal material having a refractive index of 1.74 or less with respect to a wavelength of 10 ⁇ m, and a coating layer made of an organic material that covers the entire lens core relatively thinly. And at least one of them includes the lens according to any one of the first to fifth inventions.
  • a far-infrared camera system is characterized by including the photographing lens system according to the sixth aspect of the invention.
  • a far-infrared lens that is inexpensive, easy to process, has excellent far-infrared transmittance, and has high aberration correction capability, and a far-infrared imaging lens system and camera system including the same (For example, night vision devices, thermography, etc.) can be realized.
  • the photographic lens system according to the present invention is used in a camera system such as a digital camera, a surveillance camera, a security camera, and an in-vehicle camera, or the camera system according to the present invention is used in a digital device such as a portable terminal. It is possible to realize a far-infrared image input function with low cost.
  • the schematic diagram which shows the example of a manufacturing process of a far-infrared lens in cross section The schematic diagram which shows in cross section the specific example of the far-infrared lens by which the diffraction grating was given to the surface of the coating layer.
  • 1 is an optical configuration diagram of a first embodiment (Example 1) of a taking lens system.
  • FIG. Aberration diagram of Example 1 of the photographing lens system.
  • Aberration diagram of Example 2 of the photographing lens system The schematic diagram which shows the example of a manufacturing process of a far-infrared lens in cross section.
  • FIG. 10 is an optical configuration diagram of a fifth embodiment (Example 5) of the taking lens system. Aberration diagram of Example 5 of the photographing lens system.
  • the schematic diagram which shows the schematic structural example of the camera system for far infrared rays.
  • the far-infrared lens according to the present invention is a lens used in the far-infrared band, and compares the entire lens core with a lens core made of an inorganic crystal material having a refractive index with respect to a wavelength of 10 ⁇ m of 1.74 or less. And a far-infrared lens as an optical element having a coating layer made of an organic material that is thinly covered.
  • the first type of lens is characterized in that at least one surface of the lens core is a spherical surface, and a diffraction grating is provided on the surface of the covering layer located on at least one spherical surface.
  • the second type lens is characterized in that both surfaces of the lens core are spherical and an aspheric surface is provided on the surface of the coating layer located on at least one of the spherical surfaces.
  • the lens core is a portion whose shape and material are the basis of the lens, and when considering a single lens, it is a small portion except for a thin material layer such as a coating, a diffraction grating, and an aspherical portion.
  • a thin material layer such as a coating, a diffraction grating, and an aspherical portion.
  • both surfaces of the lens core are spherical. This is to make it possible to correct other aberrations as much as possible even in the presence of chromatic aberration.
  • the edge shape is not particularly defined, but may be any shape that is easy to make.
  • the coating layer that covers the entire lens core relatively thinly is thicker than a general antireflection coating in the visible region and thinner than the lens core.
  • a general antireflection coating in the visible region it is not in the nm unit because it is used in the far-infrared band having a long wavelength and also for maintaining the moisture-proof effect for a long time.
  • the antireflection coating represented by 10 ⁇ m of far-infrared is about 3 ⁇ m for ⁇ / 4 polyethylene, but it is thick because it is insufficient for moisture prevention.
  • the refractive index of the organic material (for example, polyethylene) which comprises a coating layer is low, the reflection prevention of a far-infrared lens is unnecessary.
  • Refractive index is the ratio of the traveling speed of light in the substance to the vacuum, and is displayed for the d-line (587 nm) in the visible region.
  • the refractive index for a wavelength of 10 ⁇ m is typically representative.
  • N10 Refractive index at a wavelength of 10 ⁇ m
  • N8 Refractive index at a wavelength of 8 ⁇ m
  • N12 Refractive index at a wavelength of 12 ⁇ m
  • the larger this value the smaller the difference in refractive index between colors, and the smaller the dispersion.
  • Far infrared rays are mainly infrared rays having a wavelength in the range of 7 to 14 ⁇ m.
  • the body temperature of humans and animals is 8 to 12 ⁇ m, and most of far-infrared optical systems are used at 8 to 12 ⁇ m.
  • the far-infrared region in the wavelength band 8-12 ⁇ m is the range in which the temperature of a substance can be detected, and there are many things that can be applied such as temperature measurement, human detection in the dark, and security.
  • the reason why far-infrared cameras are not widely used at present is that the lens material that transmits far-infrared rays is an expensive crystal material, or the processing is difficult and the cost is high.
  • inorganic crystal materials having a refractive index with respect to a wavelength of 10 ⁇ m of 1.74 or less all materials considered as far-infrared lens materials have a transmittance with respect to a wavelength of 10 ⁇ m of 90% or more.
  • inorganic crystal materials NaCl (sodium chloride), KCl (potassium chloride), KBr (potassium bromide), CsI (cesium iodide), CsBr (cesium bromide) and the like have a refractive index of a wavelength of 10 ⁇ m of 1.74 or less. Are relatively inexpensive and non-toxic, or few if any.
  • these materials have a high internal transmittance of 90% or more in the far-infrared band, but have deliquescence, and the surface transmittance decreases with the passage of time unless cut off from air and moisture.
  • organic materials polyethylene and the like are stable in the air, but the internal transmittance of far infrared rays is as low as about 30%. Even if the permeability is improved by increasing the molecular weight, it seems to be about 50%. For this reason, it cannot be used for thick lenses.
  • a thick lens shape is made of an inorganic crystal material having a high transmittance, and the entire surface is thinly covered with a stable organic material. It can be produced. Further, since the refractive index of the organic material is about 1.4 to 1.6, there is almost no reflection or refraction at the interface with the inorganic crystal material having a refractive index of 1.74 or less, which is optically preferable.
  • the inorganic crystal material having a refractive index of 1.74 or less which is optically preferable.
  • Ge (germanium) and Si (silicon) which have been used conventionally, have a high refractive index (3.0 or more) and have a very large surface reflection at the interface with air.
  • the organic material constituting the coating layer is preferable because the refractive index is low as described above and the surface reflection at the interface with air is small.
  • An inexpensive inorganic crystal material has a refractive index lower than 1.74. Therefore, Ge (germanium), Si (silicon), ZnSe (zinc selenide), ZnS (zinc sulfide), which have been used for far-infrared lenses. ) Etc., the curvature of each surface must be increased to achieve the same focal length. When the curvature is large (that is, the curvature radius is small), spherical aberration and other aberrations increase. In addition, since the inclination increases near the periphery of the surface and the incident angle of the light beam also increases, the reflectance at the air interface increases. Therefore, if a diffraction grating is provided to supplement the refractive power as in the first type of lens and thereby the tilt angle around the surface is reduced, a lens with reduced aberration and reduced surface reflection can be produced. .
  • Inorganic crystal materials that are cheaper than Ge, Si, ZnSe, and ZnS conventionally used for far-infrared lenses have a low refractive index, and as described above, to achieve the same focal length as these lenses.
  • the curvature must be increased. When the curvature is large (that is, the curvature radius is small), spherical aberration and other aberrations become large, so that it is difficult to manufacture a lens having sufficient performance. Therefore, in the second type of lens, first, the lens core is formed into a double-sided spherical shape, and aberration correction is shared between both sides, thereby preventing the performance from being reduced.
  • an aspheric surface is formed on the surface, thereby making it possible to suppress aberrations to a small level.
  • This aspherical surface can be produced in the same manner as when a resin aspherical surface is formed on the glass surface.
  • the organic material has a refractive index in the vicinity of a wavelength of 10 ⁇ m and is close to that of these inorganic crystal materials, and performance comparable to that obtained when an inorganic crystal material is directly aspherically processed can be obtained. Since it is difficult to process the aspherical surface of the crystal material, it may be processed into a spherical surface.
  • the first type of lens includes a lens core made of an inorganic crystal material having a refractive index with respect to a wavelength of 10 ⁇ m of 1.74 or less, and a coating layer made of an organic material that covers the entire lens core relatively thinly.
  • the lens core has a configuration in which at least one surface of the lens core is a spherical surface, and a diffraction grating is provided on the surface of the covering layer located on at least one of the spherical surfaces.
  • An inexpensive far-infrared lens can be produced by constituting most of the lens with a material having a high far-infrared transmittance of 90% or more and a low price.
  • the deliquescence which is a defect of these materials can be prevented by covering the entire lens core with a coating layer made of a stable organic material.
  • the disadvantage of aberration correction due to the use of a low refractive index material is compensated by applying a diffraction grating to the coating layer on the spherical surface, and the same focus as a lens made of a conventional material with a high refractive index but an expensive price. A distance lens is obtained.
  • the inclination around the surface can be kept small, and a lens with higher transmittance can be realized by reducing the surface reflectance.
  • the second type of lens includes a lens core made of an inorganic crystal material having a refractive index with respect to a wavelength of 10 ⁇ m of 1.74 or less, and a coating layer made of an organic material that covers the entire lens core relatively thinly.
  • the lens core has a spherical surface, and an aspheric surface is provided on the surface of the coating layer located on at least one spherical surface.
  • an inexpensive far-infrared lens can be produced by constituting most of the lens with a material having a high far-infrared transmittance of 90% or more and an inexpensive price.
  • the aberration is corrected by applying an aspherical surface to the coating layer on the spherical surface.
  • an inorganic crystal material having a refractive index close to that of an organic material an effect comparable to that obtained when an aspheric surface is directly made of an inorganic crystal material can be obtained.
  • Most of organic materials have a refractive index of 1.49 to 1.75, but far-infrared lens materials of inorganic crystal materials of 1.74 or more do not have a refractive index of 2.2 or more. It can be said that the refractive index is close to the organic material.
  • the lens materials Ge, Si, ZnSe, and ZnS that have been used for far infrared rays are expensive, but the refractive index is high as 2.2 to 4.0, so that the curvature of the surface can be relaxed. It is effective for the production of small lenses.
  • Disadvantages of inexpensive materials NaCl, KCl, KBr, CsI, and CsBr include low refractive index and deliquescence. However, as described above, the deliquescence is compensated by applying an organic material coating layer. It is possible.
  • the aberration reduction due to the low refractive index and strong curvature is corrected by applying a diffraction grating or an aspherical surface to the surface of the coating layer on the spherical surface.
  • a far-infrared lens that is highly inexpensive and stable while having high optical performance, like a lens made of a conventional high refractive index material.
  • These lenses have considerably higher transmittance than organic materials that are transparent to far-infrared rays, and the same performance as conventional lenses made of expensive materials can be obtained in terms of transmittance.
  • constructing a lens system including at least one of these lenses it is possible to obtain a lens system that is comparable to a conventional lens system composed of an expensive material having a high refractive index.
  • an inexpensive camera system can be manufactured.
  • a far-infrared lens that is inexpensive, easy to process, has excellent far-infrared transmittance, and has high aberration correction capability, and a far-infrared photographing lens system and camera system (for example, dark Visual devices, thermography, etc.).
  • a photographing lens system for a camera system such as a digital camera, a surveillance camera, a security camera, and a vehicle-mounted camera, or using a far-infrared camera system for a digital device such as a portable terminal, a high-performance far-infrared ray
  • the image input function can be realized at low cost, and can contribute to the downsizing, high performance, high functionality, and the like. The conditions for achieving such effects in a well-balanced manner and achieving higher optical performance, downsizing, etc. will be described below.
  • the thickness of the coating layer is 10 ⁇ m or more at the thinnest and 500 ⁇ m or less at the thickest.
  • the coating layer In order to shield and protect the inorganic crystal material from air and moisture, the coating layer must have a certain thickness. The thicker the coating layer, the better the air barrier property, but the higher the molecular weight and the higher the density, the better the barrier property, so the thickness may be about 10 ⁇ m, and the smaller molecular weight must be thicker than this. Don't be. However, if the coating layer is thicker than 500 ⁇ m, the far-infrared transmittance deteriorates and is not suitable for lenses.
  • the diffraction grating for the far-infrared wavelength of 10 ⁇ m needs a depth of about 10 ⁇ m. Therefore, when a diffraction grating is applied to the surface of the coating layer, the thickness of the coating layer must be 10 ⁇ m or more. Further, when an aspheric surface is applied to the surface of the coating layer, the surface is molded using a mold or the like. At this time, molding is performed by applying a certain amount of pressure. However, if the coating layer is too thin, it is difficult to apply pressure so that the lens core is not broken, and molding becomes difficult. Therefore, the coating layer needs to have a minimum thickness of about 10 ⁇ m.
  • the internal transmittance of organic materials such as polyethylene around a wavelength of 10 ⁇ m is about 30% at a thickness of about 3 mm.
  • the overall transmittance is required to be about 80%.
  • the thickness of the organic material must be a maximum of 800 ⁇ m at the distance that the light passes. Don't be.
  • the transmittance on the other side must be less than 500 ⁇ m at most. Cannot be secured.
  • the aspherical surface provided on the surface of the coating layer has a shape in which the positive power becomes weaker as the distance from the optical axis increases.
  • a lens in which a lens core is made of an inorganic crystal material and the surface thereof is covered with an organic material has a low refractive index and thus has a large surface curvature, and thus has a large aberration.
  • the inclination around the surface is large, and the surface reflectance is also high.
  • the positive power becomes weaker toward the periphery (away from the optical axis) of the aspherical shape applied to the surface of the coating layer made of the organic material. Like that.
  • Concave surfaces generally have a light incident angle on the surface close to 90 ° when a lens system is configured. Therefore, even if the concave shape becomes somewhat tight for aberration correction, the incident angle on the surface of the light beam does not become too large. The reflectivity does not change much.
  • the inorganic crystal material constituting the lens core is made of a substantially pure crystal.
  • inexpensive inorganic crystal materials such as NaCl, KCl, KBr, CsI, and CsBr have deliquescence properties, but it is known that the liquefaction property is weakened as the material is pure and large crystals. This is because water molecules are less likely to enter the interior by reducing the surface area of the material as much as possible and reducing crystal defects.
  • a lens core that is difficult to deliquesce with a substantially pure material is manufactured, and a lens that is stable over a long period of time can be obtained by covering the surface with an organic material as described above.
  • the far-infrared photographing lens system includes a lens core made of an inorganic crystal material having a refractive index of 1.74 or less with respect to a wavelength of 10 ⁇ m, and a coating layer made of an organic material that covers the entire lens core relatively thinly. It is preferable that the lens includes at least one lens, and at least one of them includes the first and second type lenses. Since the inorganic crystal material has a thin coating layer covering its surface, it determines most of its optical properties.
  • the inorganic crystal materials have a refractive index of 1.74 or less and a dispersion of 70 or less, the optical performance is improved as compared with materials having a refractive index of 3 or more and a dispersion of 700 or more, such as Si and Ge. Is disadvantageous. Nevertheless, the material is inexpensive, and it is suitable when it is desired to manufacture a far-infrared lens system at a low cost.
  • the surface is covered with an organic material, and a diffraction grating or an aspheric surface is applied to the surface to reduce the aberration of a single lens, and a lens system composed of a plurality of single lenses including such a single lens is adopted.
  • a lens system composed of a plurality of single lenses including such a single lens is adopted.
  • the photographic lens system may include a lens that is not provided with a diffraction grating or an aspherical surface.
  • it may include a lens having a coating layer in which both the diffraction grating and the aspheric surface are applied to the same surface, or may include a lens in which at least one of the diffraction grating and the aspheric surface is applied to both surfaces. Good.
  • the far-infrared camera system is preferably provided with the far-infrared imaging lens system.
  • the far-infrared imaging lens system As described above, one of the reasons why far-infrared cameras are not widespread is that lens materials and lens processing are expensive.
  • Low-cost photographic lens system and camera system by covering the lens core made of inorganic crystal material with a coating layer made of organic material and further including a lens system with a diffraction grating or aspherical surface on the surface of the coating layer Can be realized. This is expected to increase the application to fields where far-infrared cameras have not been used.
  • the Ge dispersion is 800 and the Si dispersion is about 1600.
  • the dispersion ⁇ indicates that the larger the value, the smaller the difference in refractive index due to color. Except for special cases, these materials need not be considered for color correction in the far-infrared band, but are expensive materials.
  • the inorganic crystal material has a dispersion ⁇ of 70 or less, the cost becomes considerably low, but correction of chromatic aberration is necessary. Therefore, it is possible to correct chromatic aberration by giving a part of positive power to the diffraction grating. In contrast to the refracting surface, the diffraction grating surface has a positive power to generate negative chromatic aberration.
  • polyethylene polyolefin resins, polyvinylidene chloride, phenol resins, benzene resins, and the like can be used as the organic material. At that time, it is important to determine the maximum thickness according to the internal transmittance of each organic material.
  • a highly toxic material such as ZnS or ZnSe is covered with an organic material to protect it, and a lens having a diffraction grating on the surface of the coating layer may be manufactured in order to correct the dispersion being larger than that of Ge or the like. Is possible. Since ZnS and ZnSe have large dispersion, it is preferable to use a diffraction grating mainly for color correction and to produce a positive lens. Since the refractive index is relatively high, there is little need for aberration correction.
  • crystal materials used in the near infrared (wavelength 800 nm to 1 ⁇ m) and mid infrared (wavelength 1 to 7 ⁇ m) it can be protected by coating an organic material on a material that is vulnerable to impact and difficult to process.
  • These materials include CaF 2 (fluorite), BaF 2 (barium fluoride), MgF 2 (magnesium fluoride), etc., but it is difficult to process them into an aspherical surface. Even with such a material, first, a spherical lens shape is processed, the whole is covered with an organic material, and the surface thereof is aspherical.
  • FIG. 1 is a cross-sectional view showing a manufacturing process example of a far-infrared lens.
  • a crystal of an inorganic material NaCl, KBr, etc.
  • the lens shape is not limited to a biconvex shape, and may be a positive meniscus shape or a negative meniscus shape.
  • the core thickness is about 1.5 to 4.5 mm.
  • high-density polyethylene as an organic material is coated on the lens core CR by dip coating or the like, and the entire lens core CR is covered with a coating layer CT1 by about 10 ⁇ m as shown in FIG.
  • high-density polyethylene can be applied by spin coating.
  • the application may be repeated a plurality of times.
  • the second coating is performed before the surface transmittance of the inorganic crystal material decreases due to deliquescence.
  • the coating layer CT2 made of the same material as the coating layer CT1 is provided on the coating layer CT1, as shown in FIG. 1C, a two-layer coating layer CT made of the same material is obtained. Precise molding is performed on the surface with a mold. At this time, if a die provided with a diffraction grating, an aspherical surface, or both is used on at least one surface, the precise shape is transferred to the lens surface to complete the far-infrared lens LE.
  • the coating thickness of polyethylene is larger than the general coating thickness, the initial coating will cause the lens core CR to be non-uniformly attached. Even when the coating layer CT having a single layer structure is formed by one coating, A uniform polyethylene layer can be obtained by later molding using a mold. Further, since the aspherical surface and the diffraction grating surface are partially uneven in thickness, polyethylene may be further applied to the surface as necessary when the diffraction grating or the aspherical surface is formed.
  • FIG. 2 is a sectional view showing a specific example of the far-infrared lens LE in which the diffraction grating GR is applied to the surface of the coating layer CT.
  • FIG. 2A shows a far-infrared lens LE in which a diffraction grating GR is provided on a high-power convex coating layer CT, and
  • FIG. 2B shows an enlarged main portion P thereof.
  • the diffraction grating GR is a surface relief-like diffraction grating surface formed by pressing a heated mold against the coating layer CT.
  • the cross-sectional shape of the diffraction grating GR is not limited to the binary shape shown in FIG. For example, a step (stair) shape or kinoform may be used. In any case, the phase difference at the diffraction wavelength is, for example, a value calculated from an example described later.
  • FIG. 3 is a cross-sectional view showing a specific example of the far-infrared lens LE in which the surface of the coating layer CT is aspherical AS.
  • 3A shows a state where an aspheric surface is formed on the concave surface side of the spherical lens core CR
  • FIG. 3B shows an aspheric surface formed on the convex surface side of the spherical lens core CR.
  • FIG. 4, FIG. 6, FIG. 8,..., FIG. 18 show first to eighth embodiments of the far-infrared photographing lens system LN in an infinitely focused state in optical cross sections together with optical paths.
  • the photographic lens system LN of the first to fifth embodiments includes three far-infrared lenses LE, which are a first lens L1, a second lens L2, and a third lens L3.
  • a diaphragm (aperture diaphragm) ST is disposed between the lens L2.
  • the photographic lens system LN of the sixth embodiment includes four far-infrared lenses LE, which are a first lens L1, a second lens L2, a third lens L3, and a fourth lens L4.
  • a diaphragm ST is disposed between the third lens L3 and the third lens L3.
  • the photographic lens system LN of the seventh and eighth embodiments is composed of two far-infrared lenses LE, which are a first lens L1 and a second lens L2, between the first lens L1 and the second lens L2.
  • the aperture stop ST is arranged in FIG.
  • a parallel plate PT for example, a parallel plate of Ge crystal
  • corresponding to the protective cover glass of the image sensor far infrared sensor
  • diffraction gratings are provided on the object side surface of the first lens L1 and the object side surface of the second lens L2.
  • a diffraction grating is provided on the object side surface of the first lens L1
  • a diffraction grating and an aspheric surface are provided on the object side surface of the second lens L2.
  • an aspheric surface is provided on the object side surface of the second lens L2.
  • an aspheric surface is provided on the object side surface of the second lens L2.
  • the fifth embodiment FIG.
  • a diffraction grating is provided on the object side surface of the second lens L2.
  • a diffraction grating and an aspheric surface are provided on the object side surfaces of the first lens L1, the second lens L2, and the third lens L3, and the object side surface of the fourth lens L2 is provided.
  • An aspheric surface is provided.
  • aspheric surfaces are provided on both surfaces of the first lens L1 and both surfaces of the second lens L2.
  • the first lens L1 is provided with aspheric surfaces
  • the second lens L2 is provided with diffraction gratings.
  • the far-infrared imaging lens system LN is suitable for use as an imaging optical system for a far-infrared camera system (for example, a night vision device, a thermography, a surveillance camera, a security camera, an in-vehicle camera, etc.).
  • a far-infrared camera system for example, a night vision device, a thermography, a surveillance camera, a security camera, an in-vehicle camera, etc.
  • an image sensor far infrared sensor
  • a far infrared imaging optical device that optically captures a far infrared image of a subject and outputs it as an electrical signal can be configured.
  • the imaging optical device is an optical device that constitutes a main component of a camera used for still image shooting or moving image shooting of a subject, for example, a photographing lens that forms a far-infrared optical image of an object in order from the object (that is, subject) side. And an imaging device (far infrared sensor) that converts a far infrared optical image formed by the photographing lens system into an electrical signal. Then, the photographic lens system LN having the above-described characteristic configuration is arranged so that the far-infrared optical image of the subject is formed on the light receiving surface (that is, the imaging surface) of the imaging element, thereby reducing the size and cost.
  • An imaging optical device having high performance and a camera system including the same can be realized.
  • Examples of digital devices with a far-infrared image input function include cameras such as infrared cameras, surveillance cameras, security cameras, in-vehicle cameras, aircraft cameras, digital cameras, video cameras, and personal computers, portable terminals (for example, For mobile phones, smart phones (high-function mobile phones), small and portable information device terminals such as mobile computers, peripheral devices (scanners, printers, etc.), and other digital devices (drive recorders, defense devices, etc.) An internal or external camera can be mentioned.
  • a night vision device by using an imaging optical device for far infrared rays, but also to add a night vision function by installing the imaging optical device in various devices.
  • a digital device having a far-infrared image input function such as a smartphone with an infrared camera can be configured.
  • FIG. 20 shows a schematic configuration example of the digital device DU in a schematic cross section.
  • the imaging optical device LU mounted on the digital device DU shown in FIG. 20 is an imaging lens system LN (AX: optical axis) that forms a far-infrared optical image (image plane) IM of an object in order from the object (namely, subject) side. ), A parallel plate PT (corresponding to a cover glass of the image sensor SR, an optical filter arranged as necessary), and an optical image formed on the light receiving surface (imaging surface) SS by the photographing lens system LN. And an image sensor SR that converts IM into an electrical signal.
  • AX optical axis
  • the imaging optical device LU When a digital device DU with an image input function is constituted by this imaging optical device LU, the imaging optical device LU is usually arranged inside the body, but when necessary to realize the camera function, a form as necessary is adopted. Is possible.
  • the unitized imaging optical device LU can be configured to be detachable or rotatable with respect to the main body of the digital device DU.
  • the photographing lens system LN is configured to form the optical image IM composed of far infrared rays on the light receiving surface SS of the imaging element SR.
  • the image sensor SR for example, a far-infrared image sensor (thermosensor or the like) having a plurality of pixels (tens of thousands to hundreds of thousands of pixels) and using a wavelength of about 7 to 10 ⁇ m is used. Since the photographic lens system LN is provided so that the optical image IM of the subject is formed on the light receiving surface SS which is a photoelectric conversion unit of the imaging element SR, the optical image IM formed by the photographic lens system LN is It is converted into an electrical signal by the image sensor SR.
  • the digital device DU includes a signal processing unit 1, a control unit 2, a memory 3, an operation unit 4, a display unit 5 and the like in addition to the imaging optical device LU.
  • the signal generated by the image sensor SR is subjected to predetermined digital image processing, image compression processing, and the like in the signal processing unit 1 as necessary, and recorded as a digital video signal in the memory 3 (semiconductor memory, optical disc, etc.) In some cases, it is transmitted to other devices via a cable or converted into an infrared signal or the like (for example, a communication function of a mobile phone).
  • the control unit 2 is composed of a microcomputer, and controls functions such as a shooting function (still image shooting function, moving image shooting function, etc.), an image reproduction function, etc .; a lens moving mechanism for focusing, etc.
  • the control unit 2 controls the imaging optical device LU so as to perform at least one of still image shooting and moving image shooting of a subject.
  • the display unit 5 includes a display such as a liquid crystal monitor, and performs image display using an image signal converted by the image sensor SR or image information recorded in the memory 3.
  • the operation unit 4 is a part including operation members such as an operation button (for example, a release button) and an operation dial (for example, a shooting mode dial), and transmits information input by the operator to the control unit 2.
  • Examples 1 to 8 (EX1 to 8) listed here are numerical examples corresponding to the first to eighth embodiments, respectively, and are optical configuration diagrams showing the first to eighth embodiments. (FIG. 4, FIG. 6, FIG. 8,..., FIG. 16, FIG. 18) respectively show the lens configuration (lens cross-sectional shape, lens arrangement, etc.), optical path, etc. of the corresponding Examples 1 to 8.
  • a surface with * in the surface number is an aspheric surface, and the surface shape is defined by the following expression (AS) using a local orthogonal coordinate system (x, y, z) with the surface vertex as the origin. .
  • AS a local orthogonal coordinate system
  • x, y, z a local orthogonal coordinate system with the surface vertex as the origin.
  • z (C ⁇ h 2 ) / [1 + ⁇ ⁇ 1 ⁇ (1 + K) ⁇ C 2 ⁇ h 2 ⁇ ] + ⁇ (Ai ⁇ h i ) (AS)
  • z the amount of sag in the direction of the optical axis AX at the position of the height h (based on the surface vertex)
  • C curvature at the surface vertex (the reciprocal of the radius of curvature r)
  • K conic constant
  • Ai i-th order aspheric coefficient ( ⁇ represents the sum of 4th order to ⁇ order for i), It is.
  • the surface numbered with # is a diffraction grating surface, and the diffractive structure is expressed by the following equation using a local orthogonal coordinate system (x, y, z) having the surface vertex as the origin, like an aspheric surface. (DS).
  • the diffraction grating is a rotationally symmetric grating with respect to the optical axis, and first-order diffraction with respect to a wavelength of 10 ⁇ m is used, and the shape is given by a phase difference Pz with respect to a wavelength of 10 ⁇ m.
  • diffraction grating surface data a diffraction order, a diffraction wavelength, and a phase coefficient are shown.
  • the parallel plate PT in front of the image plane IM is a protective plate for the far infrared sensor, and is made of Ge (germanium).
  • PE polyethylene
  • Specs indicate design wavelength (nm), focal length (f, mm) of the entire system, F number (FNO), full length (mm), and half angle of view (°).
  • Table 1 shows the focal lengths (f1 to f4, mm) of the first to fourth lenses L1 to L4 and the minimum and maximum thicknesses ( ⁇ m) of the coating layer made of an organic material (PE). .
  • FIG. 7, FIG. 9,..., FIG. 17, and FIG. 19 are aberration diagrams corresponding to Examples 1 to 8 (EX1 to 8), respectively.
  • Point aberration diagram, (C) is a distortion diagram.
  • the spherical aberration diagram shows a spherical aberration amount at a design wavelength (evaluation wavelength) of 10000 nm indicated by a solid line, a spherical aberration amount at a wavelength of 8000 nm indicated by a one-dot chain line, and a spherical aberration amount at a wavelength of 9000 nm indicated by a two-dot chain line (however, only in FIG.
  • the amount of spherical aberration at a wavelength of 7000 nm indicated by a dotted line and the amount of spherical aberration at a wavelength of 12000 nm indicated by a broken line are paraxial images.
  • the amount of displacement (mm) in the optical axis AX direction from the surface is represented, and the vertical axis represents a value obtained by normalizing the height of incidence on the pupil by the maximum height (that is, the relative pupil height).
  • the broken line T represents the tangential image plane at the design wavelength of 10000 nm
  • the solid line S represents the sagittal image plane at the design wavelength of 10000 nm as the amount of deviation (mm) in the optical axis AX direction from the paraxial image plane.
  • the vertical axis represents the half angle of view ⁇ (ANGLE, °).
  • the horizontal axis represents the distortion (%) at the design wavelength of 10000 nm
  • the vertical axis represents the half angle of view ⁇ (ANGLE, °).
  • the maximum value of the half field angle ⁇ corresponds to the maximum image height Y ′ on the image plane IM (half the diagonal length of the light receiving surface SS of the image sensor SR).
  • Example 1 Unit mm Surface data surface number r d Material name OB: ⁇ ⁇ 1 #: 12.42933 0.030000 PE 2: 12.39933 4.720351 NaCl 3: 52.47570 0.010000 PE 4: 52.46570 5.779114 5 (ST): ⁇ 5.555470 6 #: -6.51473 0.030000 PE 7: -6.54473 3.598074 NaCl 8: -8.46453 0.010000 PE 9: -8.47453 1.241609 10: 8.80004 0.010000 PE 11: 8.79004 4.310264 NaCl 12: 590.02108 0.010000 PE 13: 590.01108 0.142410 14: ⁇ 0.782095 Ge 15: ⁇ 3.500000 IM: ⁇ 0.000000
  • Diffraction grating plane data Diffraction grating plane 1 #: Diffraction order: 1.000000 Diffraction wavelength: 10000.00nm
  • Diffraction grating plane 1 # Diffraction order: 1.000000
  • Diffraction wavelength 10000.00nm
  • Diffraction grating plane data Diffraction grating plane 6 #: Diffraction order: 1.000000 Diffraction wavelength: 10000.00nm
  • Example 2 Unit mm Surface data surface number r d Material name OB: ⁇ ⁇ 1 #: 16.52849 0.030000 PE 2: 16.49849 4.000000 NaCl 3: 74.49885 0.010000 PE 4: 74.48885 7.818001 5 (ST): ⁇ 4.752288 6 * #: -9.01426 0.030000 PE 7: -8.34454 4.000000 NaCl 8: -8.70413 0.010000 PE 9: -8.71413 1.727038 10: 10.37919 0.010000 PE 11: 10.36919 4.000000 NaCl 12: 96.57674 0.010000 PE 13: 96.56674 0.472797 14: ⁇ 0.782095 Ge 15: ⁇ 6.037271 IM: ⁇ 0.000000
  • Diffraction grating plane data Diffraction grating plane 1 #: Diffraction order: 1.000000 Diffraction wavelength: 10000.00nm
  • Diffraction grating plane 1 # Diffraction order: 1.000000
  • Diffraction grating plane data Diffraction grating plane 6 #: Diffraction order: 1.000000 Diffraction wavelength: 10000.00nm
  • Example 3 Unit mm Surface data surface number r d Material name OB: ⁇ ⁇ 1: 17.16593 0.010000 PE 2: 17.15593 4.000000 KBr 3: 77.02012 0.010000 PE 4: 77.01012 1.096627 5 (ST): ⁇ 2.888307 6 *: -14.05563 0.030000 PE 7: -11.49406 4.000000 KBr 8: -10.91321 0.010000 PE 9: -10.92321 7.976511 10: 12.57432 0.010000 PE 11: 12.56432 4.500000 KBr 12: 195.56572 0.010000 PE 13: 195.55572 2.401918 14: ⁇ 0.782095 Ge 15: ⁇ 4.452996 IM: ⁇ 0.000000
  • Example 4 Unit mm Surface data surface number r d Material name OB: ⁇ ⁇ 1: 16.16531 0.010000 PE 2: 16.15531 4.000000 KBr 3: 124.87967 0.010000 PE 4: 124.86967 2.637166 5 (ST): ⁇ 4.047532 6 *: -13.83649 0.030000 PE 7: -12.58750 4.000000 NaCl 8: -11.24155 0.010000 PE 9: -11.25155 6.212953 10: 10.88550 0.010000 PE 11: 10.87550 4.500000 KBr 12: 84.64196 0.010000 PE 13: 84.63196 0.833599 14: ⁇ 0.782095 Ge 15: ⁇ 4.766400 IM: ⁇ 0.000000
  • Diffraction grating plane data Diffraction grating plane 6 #: Diffraction order: 1.000000 Diffraction wavelength: 10000.00nm B2: -8.9680E-04
  • Diffraction grating plane data Diffraction grating plane 1 #: Diffraction order: 1.000000 Diffraction wavelength: 10000.00nm
  • Diffraction grating plane 1 # Diffraction order: 1.000000
  • Diffraction grating plane data Diffraction grating plane 5 #: Diffraction order: 1.000000 Diffraction wavelength: 10000.00nm
  • Diffraction grating plane data Diffraction grating plane 10 #: Diffraction order: 1.000000 Diffraction wavelength: 10000.00nm B2: -9.1656E-03
  • Example 7 Unit mm Surface data surface number r d Material name OB: ⁇ ⁇ 1 *: 9.80068 0.030000 PE 2: 9.77068 6.222632 KBr 3: 125.53000 0.030000 PE 4 *: 125.50000 3.466049 5 (ST): ⁇ 0.807162 6 *: -23.30025 0.030000 PE 7: -23.33025 4.500000 KBr 8: -12.44062 0.030000 PE 9 *: -12.47062 2.401918 10: ⁇ 0.782095 Ge 11: ⁇ 5.407036 IM: ⁇ 0.000000
  • Example 8 Unit mm Surface data surface number r d Material name OB: ⁇ ⁇ 1 *: 12.65484 0.030000 PE 2: 12.62484 5.598237 KBr 3: 80.65113 0.030000 PE 4 *: 80.62113 8.197523 5 (ST): ⁇ 4.252863 6 #: 9.77789 0.030000 PE 7: 9.74789 3.890661 KBr 8: 40.06229 0.030000 PE 9 #: 40.03229 0.457441 10: ⁇ 0.782095 Ge 11: ⁇ 3.499998 IM: ⁇ 0.000000
  • Diffraction grating plane data Diffraction grating plane 6 #: Diffraction order: 1.000000 Diffraction wavelength: 10000.00nm
  • Diffraction grating plane data Diffraction grating plane 9 #: Diffraction order: 1.000000 Diffraction wavelength: 10000.00nm B2: 7.9087E-03

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

A far infrared lens has a lens core made of an inorganic crystal material having a refractive index of 1.74 or less at a wavelength of 10 µm, and a coating layer made of an organic material relatively thinly covering the entire surface of the lens core. At least one surface of the lens core is formed into a spherical surface and a diffraction grating is provided on the surface of the coating layer located on at least one spherical surface. Alternatively, both surfaces of the lens core are formed into spherical surfaces and an aspheric surface is provided on the surface of the coating layer located on at least one spherical surface.

Description

遠赤外線用のレンズ,撮影レンズ系及びカメラシステムFar-infrared lens, photographing lens system and camera system
 本発明は、遠赤外線用のレンズ,撮影レンズ系及びカメラシステムに関するものであり、例えば、遠赤外線帯(波長8~12μm帯)で使用される光学素子としての遠赤外線レンズと、撮像素子の受光面上に被写体の遠赤外線光学像を形成するための遠赤外線用撮影レンズ系と、それを搭載した遠赤外線用カメラシステム(例えば、暗視装置,サーモグラフィー等)と、に関するものである。 The present invention relates to a far-infrared lens, a photographing lens system, and a camera system. For example, the far-infrared lens as an optical element used in the far-infrared band (wavelength 8 to 12 μm band) and the light-receiving of an imaging element The present invention relates to a far-infrared photographing lens system for forming a far-infrared optical image of a subject on a surface, and a far-infrared camera system (for example, a night vision device, a thermography, etc.) on which the photographing lens system is mounted.
 監視カメラや防犯カメラ等の普及に伴い、遠赤外線を用いる小型で安価な撮影レンズ系が必要とされている。しかし、遠赤外線用の撮影レンズ系に用いられるレンズ材料は、一般的な光学ガラスに比べて高価である。比較的安価なレンズ材料であっても、透過率や加工性が低かったり、潮解性があるため経時的に透過率が低下したりする等の問題がある。これらの問題点を解決するため、様々なタイプの遠赤外線用のレンズやレンズ材料が特許文献1~3等で提案されている。 With the spread of surveillance cameras and security cameras, there is a need for a small and inexpensive photographic lens system that uses far infrared rays. However, the lens material used in the far-infrared photographing lens system is more expensive than general optical glass. Even a relatively inexpensive lens material has problems such as low transmittance and processability, and depletion due to deliquescence. In order to solve these problems, various types of lenses and lens materials for far infrared rays have been proposed in Patent Documents 1 to 3 and the like.
 特許文献1には、無機結晶材料(潮解性のある物を含む。)を樹脂材料(ポリ塩化ビニリデン,フェノール系樹脂,ベンゼン系樹脂等)でのコーティングにより防湿した光学材料が記載されている。コーティング材料の厚さは0.05~1μm以下であるが、潮解性のある無機結晶材料を防湿して透過率が低下するのを防ぐことができる。 Patent Document 1 describes an optical material in which an inorganic crystal material (including deliquescent materials) is moisture-proof by coating with a resin material (polyvinylidene chloride, phenol resin, benzene resin, etc.). Although the thickness of the coating material is 0.05 to 1 μm or less, the deliquescent inorganic crystal material can be moisture-proof to prevent the transmittance from decreasing.
 特許文献2には、500nm以下の粒径の無機結晶材料をポリエチレン樹脂に混合して作製したレンズ基材が記載されている。遠赤外線帯の透過率は、ポリエチレン樹脂では30%程度と低いが、無機結晶材料のNaClやKBrでは95%以上である。このため、無機結晶材料を混合することによって、樹脂だけの材料よりも透過率を高くすることができる。 Patent Document 2 describes a lens base material prepared by mixing an inorganic crystal material having a particle size of 500 nm or less with a polyethylene resin. The transmittance of the far-infrared band is as low as about 30% for the polyethylene resin, but 95% or more for NaCl or KBr of the inorganic crystal material. For this reason, by mixing the inorganic crystal material, the transmittance can be made higher than that of the resin-only material.
 特許文献3には、NaCl等で作られた平板や平凸レンズをポリエチレン等で覆い、その平面上にフレネル面を形成した光学素子が記載されている。表面を覆うポリエチレン等の厚さはλ/4であり(λ:波長)、波長10μmでは1.7μm程度である。フレネル面を用いれば、厚いレンズの面を輪帯に分割することによって厚みを薄く抑えることが可能である。したがって、フレネル面は透過率の低い材料を使ってレンズを作製するのに有効である。 Patent Document 3 describes an optical element in which a flat plate or plano-convex lens made of NaCl or the like is covered with polyethylene or the like and a Fresnel surface is formed on the plane. The thickness of polyethylene covering the surface is λ / 4 (λ: wavelength), and is about 1.7 μm at a wavelength of 10 μm. If the Fresnel surface is used, it is possible to reduce the thickness by dividing the surface of the thick lens into an annular zone. Therefore, the Fresnel surface is effective for manufacturing a lens using a material having low transmittance.
特開平6-347607号公報JP-A-6-347607 特開2010-204245号公報JP 2010-204245 A US6,441,956US 6,441,956
 特許文献1に記載されているような無機結晶材料は、従来より遠赤外線レンズに使われているGe,Si,ZnSe,ZnSと比べて屈折率がかなり低く、また、分散もGeやSiと比べるとかなり大きい。このような光学特性は、レンズ系を設計する上で収差補正には不利に働く。つまり、無機結晶材料に防湿コートを施して潮解性を防止するだけでは、従来のレンズに代えて使用するにはあまりにも収差が大きくなってしまい、レンズ枚数を増やしても収差を十分に補正することができない。また、基板となる結晶材料は加工が難しいため、非球面や回折格子面を作製することは困難である。さらに、過酷な使用条件下での薄い有機材料のコーティングでは、1~2年程度しか防湿効果が耐久できない可能性もある。 The inorganic crystal material as described in Patent Document 1 has a considerably lower refractive index than that of Ge, Si, ZnSe, and ZnS conventionally used for far-infrared lenses, and the dispersion is also compared with that of Ge and Si. And pretty big. Such optical characteristics are disadvantageous for aberration correction in designing a lens system. In other words, simply applying a moisture-proof coating to an inorganic crystal material to prevent deliquescence will cause aberrations that are too large to use in place of conventional lenses, and will sufficiently correct aberrations even when the number of lenses is increased. I can't. In addition, since the crystal material used as the substrate is difficult to process, it is difficult to produce an aspherical surface or a diffraction grating surface. Furthermore, a thin organic material coating under harsh usage conditions may only be able to withstand a moisture-proof effect for about one to two years.
 特許文献2に記載のレンズでは、ポリエチレンの中にナノサイズの無機結晶材料(NaClやKBr)を混ぜることにより、ポリエチレンの透過率の低さを無機結晶材料の透過率の高さで改善している。しかし、レンズの成形を考えると、基材となるポリエチレンの割合を30%以下にすることはできない。このため、透過率はせいぜい65%程度までしか上がらない。単レンズとして透過率が80%以上無いと、カメラの撮影レンズ系のようにレンズ複数枚からなる系を構成したとき、全く解像しない状況となる。例えば、屈折率が低いこれらの材料では曲率を大きくするために厚いレンズが必須であるが、厚いレンズを作製すると透過率の低下が問題となる。また、NaClやKBrは粒径が小さいほど吸湿しやすく、より空気の遮断性の高いコーティング層が必要であるため、ポリエチレン等で厚く覆うと透過率が更に低下することになる。 In the lens described in Patent Document 2, the low transmittance of polyethylene is improved by the high transmittance of inorganic crystal material by mixing nano-sized inorganic crystal material (NaCl or KBr) in polyethylene. Yes. However, considering lens molding, the proportion of polyethylene as a base material cannot be made 30% or less. For this reason, the transmittance increases only to about 65%. If a single lens does not have a transmittance of 80% or more, when a system composed of a plurality of lenses is configured, such as a photographing lens system of a camera, no resolution is obtained. For example, in these materials having a low refractive index, a thick lens is indispensable for increasing the curvature. However, when a thick lens is manufactured, a decrease in transmittance becomes a problem. In addition, NaCl and KBr are more likely to absorb moisture as the particle size is smaller, and a coating layer with higher air barrier properties is required. Therefore, if the coating layer is thickly covered with polyethylene or the like, the transmittance is further reduced.
 特許文献3に記載のフレネル面では、面の周辺に行くほど面の傾きが大きくなる。これは通常のレンズ面でも同様であるが、フレネル面では周辺の輪帯ほど間隔を狭くする必要があるため加工が難しく、薄くするのにも限界がある。しかも、周辺の面の傾きが大きいことで表面反射率が大きくなるため、材料の屈折率が小さいにもかかわらず全体の透過率が低下してしまうのを防ぐことはできない。 In the Fresnel surface described in Patent Document 3, the inclination of the surface increases toward the periphery of the surface. This is the same for a normal lens surface, but on the Fresnel surface, it is difficult to process because it is necessary to make the interval closer to the peripheral ring zone, and there is a limit to making it thinner. Moreover, since the surface reflectance is increased due to the large inclination of the peripheral surface, it is impossible to prevent the overall transmittance from being lowered even though the refractive index of the material is small.
 また、レンズ材料の屈折率が低いことによる曲率の増大は収差の増加を招き、その収差補正効果はレンズ系内のレンズ面の位置によって決まるので、曲率を持つレンズ面を緩くしないと効果があまりない。つまり、無機結晶材料の低い屈折率と大きな分散を補うには、パワー(パワー:焦点距離の逆数で定義される量)が大きく、かつ、収差を大きく発生させる面に補正効果を持たせる必要があり、パワーの小さい面で収差補正しても充分な効果が得られない。したがって、平面にフレネル面や回折格子面を施したのでは不十分であり、そのような光学素子を使ったレンズ系において十分な収差補正を実現することはできない。 In addition, an increase in curvature due to the low refractive index of the lens material leads to an increase in aberrations, and the aberration correction effect is determined by the position of the lens surface in the lens system. Absent. In other words, in order to compensate for the low refractive index and large dispersion of the inorganic crystal material, it is necessary to provide a correction effect on the surface where the power (power: the amount defined by the reciprocal of the focal length) is large and the aberration is greatly generated. In addition, even if aberration correction is performed on a surface with low power, a sufficient effect cannot be obtained. Accordingly, it is not sufficient to provide a Fresnel surface or a diffraction grating surface on the plane, and sufficient aberration correction cannot be realized in a lens system using such an optical element.
 本発明はこのような状況に鑑みてなされたものであって、その目的は、安価で加工がし易く、遠赤外線の透過率に優れ、収差補正能力の高いレンズ、それを備えた撮影レンズ系及びカメラシステムを提供することにある。 The present invention has been made in view of such a situation, and an object of the present invention is to provide a lens that is inexpensive and easy to process, has excellent far-infrared transmittance, and has high aberration correction capability, and a photographic lens system including the same. And providing a camera system.
 上記目的を達成するために、第1の発明の遠赤外線用のレンズは、遠赤外線帯で使用されるレンズであって、
 波長10μmに対する屈折率が1.74以下の無機結晶材料からなるレンズコアと、前記レンズコアの全体を比較的薄く覆う有機材料からなる被覆層と、を有し、
 前記レンズコアの少なくとも片面が球面からなり、少なくとも一方の球面上に位置する前記被覆層の表面に回折格子が設けられていることを特徴とする。
In order to achieve the above object, the far-infrared lens of the first invention is a lens used in the far-infrared band,
A lens core made of an inorganic crystal material having a refractive index with respect to a wavelength of 10 μm of 1.74 or less, and a coating layer made of an organic material that covers the entire lens core relatively thinly;
At least one surface of the lens core is a spherical surface, and a diffraction grating is provided on the surface of the coating layer located on at least one spherical surface.
 上記目的を達成するために、第2の発明の遠赤外線用のレンズは、遠赤外線帯で使用されるレンズであって、
 波長10μmに対する屈折率が1.74以下の無機結晶材料からなるレンズコアと、前記レンズコアの全体を比較的薄く覆う有機材料からなる被覆層と、を有し、
 前記レンズコアの両面が球面からなり、少なくとも一方の球面上に位置する前記被覆層の表面に非球面が設けられていることを特徴とする。
In order to achieve the above object, the far-infrared lens of the second invention is a lens used in the far-infrared band,
A lens core made of an inorganic crystal material having a refractive index with respect to a wavelength of 10 μm of 1.74 or less, and a coating layer made of an organic material that covers the entire lens core relatively thinly;
Both surfaces of the lens core are spherical surfaces, and an aspherical surface is provided on the surface of the coating layer located on at least one spherical surface.
 第3の発明の遠赤外線用のレンズは、上記第1又は第2の発明において、前記被覆層の厚さが、最も薄いところで10μm以上であり、最も厚いところで500μm以下であることを特徴とする。 The far-infrared lens of the third invention is characterized in that, in the first or second invention, the thickness of the coating layer is 10 μm or more at the thinnest and 500 μm or less at the thickest. .
 第4の発明の遠赤外線用のレンズは、上記第2の発明において、前記被覆層の表面に設けられている非球面が、光軸から離れるほど正のパワーが弱くなる形状を有することを特徴とする。 A far-infrared lens according to a fourth aspect of the invention is characterized in that, in the second aspect of the invention, the aspherical surface provided on the surface of the coating layer has a shape in which the positive power decreases as the distance from the optical axis increases. And
 第5の発明の遠赤外線用のレンズは、上記第1~第4のいずれか1つの発明において、前記レンズコアを構成している無機結晶材料が、ほぼ純粋な結晶からなることを特徴とする。 A far-infrared lens according to a fifth invention is characterized in that, in any one of the first to fourth inventions, the inorganic crystal material constituting the lens core is made of a substantially pure crystal. .
 第6の発明の遠赤外線用の撮影レンズ系は、波長10μmに対する屈折率が1.74以下の無機結晶材料からなるレンズコアと、前記レンズコアの全体を比較的薄く覆う有機材料からなる被覆層と、を有する2枚以上のレンズからなり、そのうちの少なくとも1枚として、上記第1~第5のいずれか1つの発明に係るレンズを含むことを特徴とする。 A far-infrared imaging lens system according to a sixth aspect of the present invention includes a lens core made of an inorganic crystal material having a refractive index of 1.74 or less with respect to a wavelength of 10 μm, and a coating layer made of an organic material that covers the entire lens core relatively thinly. And at least one of them includes the lens according to any one of the first to fifth inventions.
 第7の発明の遠赤外線用のカメラシステムは、上記第6の発明に係る撮影レンズ系を備えたことを特徴とする。 A far-infrared camera system according to a seventh aspect of the invention is characterized by including the photographing lens system according to the sixth aspect of the invention.
 本発明の構成を採用することにより、安価で加工がし易く、遠赤外線の透過率に優れ、収差補正能力の高い遠赤外線用レンズと、それを備えた遠赤外線用の撮影レンズ系及びカメラシステム(例えば、暗視装置,サーモグラフィー等)を実現することができる。そして、本発明に係る撮影レンズ系をデジタルカメラ,監視カメラ,防犯カメラ,車載カメラ等のカメラシステムに用いたり、本発明に係るカメラシステムを携帯端末等のデジタル機器に用いたりすることによって、高性能の遠赤外線画像入力機能を安価に実現することが可能となる。 By adopting the configuration of the present invention, a far-infrared lens that is inexpensive, easy to process, has excellent far-infrared transmittance, and has high aberration correction capability, and a far-infrared imaging lens system and camera system including the same (For example, night vision devices, thermography, etc.) can be realized. The photographic lens system according to the present invention is used in a camera system such as a digital camera, a surveillance camera, a security camera, and an in-vehicle camera, or the camera system according to the present invention is used in a digital device such as a portable terminal. It is possible to realize a far-infrared image input function with low cost.
遠赤外線レンズの作製工程例を断面的に示す模式図。The schematic diagram which shows the example of a manufacturing process of a far-infrared lens in cross section. 被覆層表面に回折格子が施された遠赤外線レンズの具体例を断面的に示す模式図。The schematic diagram which shows in cross section the specific example of the far-infrared lens by which the diffraction grating was given to the surface of the coating layer. 被覆層表面に非球面が施された遠赤外線レンズの具体例を断面的に示す模式図。The schematic diagram which shows in cross section the specific example of the far-infrared lens by which the aspherical surface was given to the surface of the coating layer. 撮影レンズ系の第1の実施の形態(実施例1)の光学構成図。1 is an optical configuration diagram of a first embodiment (Example 1) of a taking lens system. FIG. 撮影レンズ系の実施例1の収差図。Aberration diagram of Example 1 of the photographing lens system. 撮影レンズ系の第2の実施の形態(実施例2)の光学構成図。The optical block diagram of 2nd Embodiment (Example 2) of a photographic lens system. 撮影レンズ系の実施例2の収差図。Aberration diagram of Example 2 of the photographing lens system. 撮影レンズ系の第3の実施の形態(実施例3)の光学構成図。The optical block diagram of 3rd Embodiment (Example 3) of a photographic lens system. 撮影レンズ系の実施例3の収差図。Aberration diagram of Example 3 of the photographing lens system. 撮影レンズ系の第4の実施の形態(実施例4)の光学構成図。The optical block diagram of 4th Embodiment (Example 4) of a photographic lens system. 撮影レンズ系の実施例4の収差図。Aberration diagram of Example 4 of the photographing lens system. 撮影レンズ系の第5の実施の形態(実施例5)の光学構成図。FIG. 10 is an optical configuration diagram of a fifth embodiment (Example 5) of the taking lens system. 撮影レンズ系の実施例5の収差図。Aberration diagram of Example 5 of the photographing lens system. 撮影レンズ系の第6の実施の形態(実施例6)の光学構成図。The optical block diagram of 6th Embodiment (Example 6) of an imaging lens system. 撮影レンズ系の実施例6の収差図。Aberration diagram of Example 6 of the photographing lens system. 撮影レンズ系の第7の実施の形態(実施例7)の光学構成図。The optical block diagram of 7th Embodiment (Example 7) of an imaging lens system. 撮影レンズ系の実施例7の収差図。Aberration diagram of Example 7 of the photographing lens system. 撮影レンズ系の第8の実施の形態(実施例8)の光学構成図。The optical block diagram of 8th Embodiment (Example 8) of a taking lens system. 撮影レンズ系の実施例8の収差図。Aberration diagram of Example 8 of the photographing lens system. 遠赤外線用カメラシステムの概略構成例を示す模式図。The schematic diagram which shows the schematic structural example of the camera system for far infrared rays.
 以下、本発明に係る遠赤外線用のレンズ,撮影レンズ系及びカメラシステム等を説明する。本発明に係る遠赤外線用のレンズは、遠赤外線帯で使用されるレンズであって、波長10μmに対する屈折率が1.74以下の無機結晶材料からなるレンズコアと、前記レンズコアの全体を比較的薄く覆う有機材料からなる被覆層と、を有する、光学素子としての遠赤外線レンズである。そのうち、第1のタイプのレンズは、前記レンズコアの少なくとも片面が球面からなり、少なくとも一方の球面上に位置する前記被覆層の表面に回折格子が設けられていることを特徴としている。また、第2のタイプのレンズは、前記レンズコアの両面が球面からなり、少なくとも一方の球面上に位置する前記被覆層の表面に非球面が設けられていることを特徴としている。 Hereinafter, a far infrared lens, a photographing lens system, a camera system, and the like according to the present invention will be described. The far-infrared lens according to the present invention is a lens used in the far-infrared band, and compares the entire lens core with a lens core made of an inorganic crystal material having a refractive index with respect to a wavelength of 10 μm of 1.74 or less. And a far-infrared lens as an optical element having a coating layer made of an organic material that is thinly covered. Among them, the first type of lens is characterized in that at least one surface of the lens core is a spherical surface, and a diffraction grating is provided on the surface of the covering layer located on at least one spherical surface. The second type lens is characterized in that both surfaces of the lens core are spherical and an aspheric surface is provided on the surface of the coating layer located on at least one of the spherical surfaces.
 レンズコアは、その形状・材料がレンズの基本となる部分であり、1枚のレンズを考えたとき、コーティング,回折格子,非球面部分等の薄い材料層を除いたひとまわり小さい部分である。第1のタイプのレンズではレンズコアの少なくとも片面を球面としているが、第2のタイプのレンズではレンズコアの両面を球面としている。これは、色収差がある状態でも、他の収差をなるべく補正できるようにするためである。なお、コバ形状は特に規定していないが、作りやすい形状であればよい。 The lens core is a portion whose shape and material are the basis of the lens, and when considering a single lens, it is a small portion except for a thin material layer such as a coating, a diffraction grating, and an aspherical portion. In the first type lens, at least one surface of the lens core is spherical, but in the second type lens, both surfaces of the lens core are spherical. This is to make it possible to correct other aberrations as much as possible even in the presence of chromatic aberration. The edge shape is not particularly defined, but may be any shape that is easy to make.
 レンズコアの全体を比較的薄く覆う被覆層は、一般的な可視領域の反射防止コートよりも厚く、レンズコアよりも薄くなっている。ただし、可視領域の反射防止コート等と違ってnm単位にはならないのは、波長の長い遠赤外線帯で使用されるためであり、防湿効果を長時間維持するためでもある。例えば、遠赤外線10μmに代表される反射防止コートはλ/4ポリエチレンでは約3μm程度であるが、これでは防湿に不十分なので厚くしている。なお、被覆層を構成する有機材料(例えばポリエチレン)の屈折率は低いので、遠赤外線レンズの反射防止は不要である。 The coating layer that covers the entire lens core relatively thinly is thicker than a general antireflection coating in the visible region and thinner than the lens core. However, unlike the antireflection coating in the visible region, it is not in the nm unit because it is used in the far-infrared band having a long wavelength and also for maintaining the moisture-proof effect for a long time. For example, the antireflection coating represented by 10 μm of far-infrared is about 3 μm for λ / 4 polyethylene, but it is thick because it is insufficient for moisture prevention. In addition, since the refractive index of the organic material (for example, polyethylene) which comprises a coating layer is low, the reflection prevention of a far-infrared lens is unnecessary.
 屈折率は、真空に対する物質中の光の進む速度の比であり、可視領域ではd線(587nm)に対して表示される。しかし、この値は遠赤外線領域では意味を持たないので、波長10μmに対する屈折率を代表的に示す場合が多い。例えば、従来より用いられている遠赤外線光学材料の波長10μmでの屈折率は、Ge=4.004、Si=3.418、ZnS=2.200、ZnSe=2.407等である。 Refractive index is the ratio of the traveling speed of light in the substance to the vacuum, and is displayed for the d-line (587 nm) in the visible region. However, since this value has no meaning in the far-infrared region, the refractive index for a wavelength of 10 μm is typically representative. For example, the refractive index at a wavelength of 10 μm of far-infrared optical materials conventionally used is Ge = 4.004, Si = 3.418, ZnS = 2.200, ZnSe = 2.407, and the like.
 分散の性質を表す値として、可視光線ではd線のアッベ数νdが用いられる。このアッベ数は、νd=(Nd-1)/(Nf-Nc)で表される(ただし、Nd:d線の屈折率、NfはF線の屈折率、NcはC線の屈折率、である。)。しかし、この値は遠赤外線領域では意味を持たないので、第1,第2のタイプのレンズでは、分散の性質を表す値として、ν=(N10-1)/(N8-N12)を用いることにする(ただし、N10:波長10μmでの屈折率、N8:波長8μmでの屈折率、N12:波長12μmでの屈折率、とする。)。この値が大きいほど色による屈折率の差が小さいので、分散が小さいということになる。例えば、従来より用いられている遠赤外線光学材料の分散は、Ge=785、Si=1860、ZnS=23(色消しに使う。)、ZnSe=57(色消しに使う。)等である。 As a value representing the nature of dispersion, the Abbe number νd of d-line is used for visible light. This Abbe number is expressed by νd = (Nd−1) / (Nf−Nc) (where Nd: refractive index of d-line, Nf is refractive index of F-line, Nc is refractive index of C-line, is there.). However, since this value has no meaning in the far-infrared region, ν = (N10-1) / (N8-N12) is used as a value representing the nature of dispersion in the first and second type lenses. (N10: Refractive index at a wavelength of 10 μm, N8: Refractive index at a wavelength of 8 μm, N12: Refractive index at a wavelength of 12 μm). The larger this value, the smaller the difference in refractive index between colors, and the smaller the dispersion. For example, dispersions of far-infrared optical materials conventionally used are Ge = 785, Si = 1860, ZnS = 23 (used for achromatization), ZnSe = 57 (used for achromatization), and the like.
 遠赤外線は、主として波長7~14μmの範囲の赤外線である。人や動物の体温は8~12μmの放射光であり、遠赤外線光学系はほとんどが8~12μmで使用される。波長8~12μm帯の遠赤外線領域は物質の温度を検知できる範囲であり、温度測定や暗闇での人検知やセキュリティ等、応用できるものは多い。しかし、現在のところ遠赤外線カメラが広く普及していないのは、遠赤外線を透過するレンズ材料が高価な結晶材料であったり、加工が難しくコスト高になってしまったりするからである。 Far infrared rays are mainly infrared rays having a wavelength in the range of 7 to 14 μm. The body temperature of humans and animals is 8 to 12 μm, and most of far-infrared optical systems are used at 8 to 12 μm. The far-infrared region in the wavelength band 8-12 μm is the range in which the temperature of a substance can be detected, and there are many things that can be applied such as temperature measurement, human detection in the dark, and security. However, the reason why far-infrared cameras are not widely used at present is that the lens material that transmits far-infrared rays is an expensive crystal material, or the processing is difficult and the cost is high.
 波長10μmに対する屈折率が1.74以下の無機結晶材料うち、遠赤外線レンズ材料として考えられているものは、すべて波長10μmに対する透過率が90%以上である。無機結晶材料のうち、NaCl(塩化ナトリウム),KCl(塩化カリウム),KBr(臭化カリウム),CsI(ヨウ化セシウム),CsBr(臭化セシウム)等、波長10μmの屈折率が1.74以下のものは、比較的安価で毒性が無いか、あってもわずかである。しかし、これらの材料は遠赤外線帯での内部透過率が90%以上と高い反面、潮解性があり、空気や湿気から遮断しなければ表面透過率が時間の経過とともに低下してしまう。一方、有機材料のうちポリエチレン等は空気中で安定であるが、遠赤外線の内部透過率は30%程度と低い。分子量を高めて透過性を改善したものでも50%程度と思われる。このため、厚いレンズに使用することはできない。 Among the inorganic crystal materials having a refractive index with respect to a wavelength of 10 μm of 1.74 or less, all materials considered as far-infrared lens materials have a transmittance with respect to a wavelength of 10 μm of 90% or more. Among inorganic crystal materials, NaCl (sodium chloride), KCl (potassium chloride), KBr (potassium bromide), CsI (cesium iodide), CsBr (cesium bromide) and the like have a refractive index of a wavelength of 10 μm of 1.74 or less. Are relatively inexpensive and non-toxic, or few if any. However, these materials have a high internal transmittance of 90% or more in the far-infrared band, but have deliquescence, and the surface transmittance decreases with the passage of time unless cut off from air and moisture. On the other hand, among organic materials, polyethylene and the like are stable in the air, but the internal transmittance of far infrared rays is as low as about 30%. Even if the permeability is improved by increasing the molecular weight, it seems to be about 50%. For this reason, it cannot be used for thick lenses.
 第1,第2のタイプのレンズでは、透過率の高い無機結晶材料で厚いレンズ形状を作製し、その表面を安定性のある有機材料で全体を薄く覆うことにより、透過率の高い厚いレンズを作製することが可能となる。また、有機材料は屈折率が1.4~1.6程度なので、屈折率1.74以下の無機結晶材料との界面での反射や屈折がほとんど無く、光学的に好ましい。例えば、従来より使われているGe(ゲルマニウム)やSi(シリコン)は屈折率が高く(3.0以上)、空気との界面で表面反射がかなり大きいが、第1,第2のタイプのレンズにおいて被覆層を構成する有機材料は上記のように屈折率が低く、空気との界面での表面反射が小さいので好ましい。 In the first and second type lenses, a thick lens shape is made of an inorganic crystal material having a high transmittance, and the entire surface is thinly covered with a stable organic material. It can be produced. Further, since the refractive index of the organic material is about 1.4 to 1.6, there is almost no reflection or refraction at the interface with the inorganic crystal material having a refractive index of 1.74 or less, which is optically preferable. For example, Ge (germanium) and Si (silicon), which have been used conventionally, have a high refractive index (3.0 or more) and have a very large surface reflection at the interface with air. In this case, the organic material constituting the coating layer is preferable because the refractive index is low as described above and the surface reflection at the interface with air is small.
 無機結晶材料で安価なものは屈折率が1.74よりも低いため、従来から遠赤外線レンズに使われてきたGe(ゲルマニウム),Si(シリコン),ZnSe(セレン化亜鉛),ZnS(硫化亜鉛)等と同じ焦点距離を実現するには、各面の曲率を大きくしなければならない。曲率が大きい(すなわち曲率半径が小さい)と、球面収差やそのほかの収差が大きくなる。また、面の周辺近くでは傾きが大きくなり、光線の入射角度も大きくなるため、空気界面での反射率が高くなってしまう。そこで、第1のタイプのレンズのように回折格子を設けて屈折力を補い、それによって面周辺での傾き角度を小さくすれば、収差を低減し表面反射を抑えたレンズを作製することができる。 An inexpensive inorganic crystal material has a refractive index lower than 1.74. Therefore, Ge (germanium), Si (silicon), ZnSe (zinc selenide), ZnS (zinc sulfide), which have been used for far-infrared lenses. ) Etc., the curvature of each surface must be increased to achieve the same focal length. When the curvature is large (that is, the curvature radius is small), spherical aberration and other aberrations increase. In addition, since the inclination increases near the periphery of the surface and the incident angle of the light beam also increases, the reflectance at the air interface increases. Therefore, if a diffraction grating is provided to supplement the refractive power as in the first type of lens and thereby the tilt angle around the surface is reduced, a lens with reduced aberration and reduced surface reflection can be produced. .
 従来から遠赤外線レンズに使われてきたGe,Si,ZnSe,ZnSと比較して安価な無機結晶材料は屈折率が低いので、上述したように、これらのレンズと同じ焦点距離を実現するには曲率を大きくしなければならない。曲率が大きい(すなわち曲率半径が小さい)と、球面収差や他の収差が大きくなるため、十分な性能を有するレンズの作製は困難である。そこで第2のタイプのレンズでは、まず、レンズコアを両面球面形状として収差補正を両面で分担することにより、性能の低減を防いでいる。次に、有機材料からなる被覆層でレンズコア全体を覆った後、表面に非球面を形成することにより、収差を小さく抑えることを可能としている。この非球面は、ガラス表面に樹脂非球面を形成する場合と同様に作製することができる。また、有機材料は波長10μm付近での屈折率がこれらの無機結晶材料に近く、無機結晶材料を直接非球面加工した場合と遜色のない性能を得ることができる。結晶材料は非球面の加工が難しいので球面加工しておけばよい。 Inorganic crystal materials that are cheaper than Ge, Si, ZnSe, and ZnS conventionally used for far-infrared lenses have a low refractive index, and as described above, to achieve the same focal length as these lenses. The curvature must be increased. When the curvature is large (that is, the curvature radius is small), spherical aberration and other aberrations become large, so that it is difficult to manufacture a lens having sufficient performance. Therefore, in the second type of lens, first, the lens core is formed into a double-sided spherical shape, and aberration correction is shared between both sides, thereby preventing the performance from being reduced. Next, after covering the entire lens core with a coating layer made of an organic material, an aspheric surface is formed on the surface, thereby making it possible to suppress aberrations to a small level. This aspherical surface can be produced in the same manner as when a resin aspherical surface is formed on the glass surface. The organic material has a refractive index in the vicinity of a wavelength of 10 μm and is close to that of these inorganic crystal materials, and performance comparable to that obtained when an inorganic crystal material is directly aspherically processed can be obtained. Since it is difficult to process the aspherical surface of the crystal material, it may be processed into a spherical surface.
 第1のタイプのレンズは、前述したように、波長10μmに対する屈折率が1.74以下の無機結晶材料からなるレンズコアと、前記レンズコアの全体を比較的薄く覆う有機材料からなる被覆層と、を有する遠赤外線レンズであって、前記レンズコアの少なくとも片面が球面からなり、少なくとも一方の球面上に位置する前記被覆層の表面に回折格子が設けられた構成になっている。レンズの大部分を遠赤外線の透過率が90%以上と高くしかも安価な材料で構成することで、安価な遠赤外線レンズを作製することができる。これらの材料の欠点である潮解性は、安定な有機材料からなる被覆層でレンズコア全体を覆うことにより防止することができる。低屈折率材料を使うことによる収差補正上の不利な点を、球面上の被覆層に回折格子を施すことで補い、高屈折率であるが高価な従来の材料からなるレンズと同程度の焦点距離のレンズが得られる。しかも、面周辺の傾きを小さく押さえることもでき、表面反射率を低下させてより透過率の高いレンズも実現できる。 As described above, the first type of lens includes a lens core made of an inorganic crystal material having a refractive index with respect to a wavelength of 10 μm of 1.74 or less, and a coating layer made of an organic material that covers the entire lens core relatively thinly. The lens core has a configuration in which at least one surface of the lens core is a spherical surface, and a diffraction grating is provided on the surface of the covering layer located on at least one of the spherical surfaces. An inexpensive far-infrared lens can be produced by constituting most of the lens with a material having a high far-infrared transmittance of 90% or more and a low price. The deliquescence which is a defect of these materials can be prevented by covering the entire lens core with a coating layer made of a stable organic material. The disadvantage of aberration correction due to the use of a low refractive index material is compensated by applying a diffraction grating to the coating layer on the spherical surface, and the same focus as a lens made of a conventional material with a high refractive index but an expensive price. A distance lens is obtained. In addition, the inclination around the surface can be kept small, and a lens with higher transmittance can be realized by reducing the surface reflectance.
 第2のタイプのレンズは、前述したように、波長10μmに対する屈折率が1.74以下の無機結晶材料からなるレンズコアと、前記レンズコアの全体を比較的薄く覆う有機材料からなる被覆層と、を有する遠赤外線レンズであって、前記レンズコアの両面が球面からなり、少なくとも一方の球面上に位置する前記被覆層の表面に非球面が設けられた構成になっている。第1のタイプのレンズと同様、レンズの大部分を遠赤外線の透過率が90%以上と高くしかも安価な材料で構成することで、安価な遠赤外線レンズを作製することができる。材料の低い屈折率による収差の悪化を補うため、球面上の被覆層に非球面を施すことで収差を補正している。また、屈折率が有機材料に近い無機結晶材料を用いることで、無機結晶材料で直接非球面を作製した場合と遜色のない効果を得ることができる。有機材料のほとんどは屈折率1.49~1.75であるが、1.74以上の無機結晶材料の遠赤外線レンズ材料は屈折率2.2以上まで無いので、屈折率差0.2以内のものは有機材料に屈折率が近いといえる。 As described above, the second type of lens includes a lens core made of an inorganic crystal material having a refractive index with respect to a wavelength of 10 μm of 1.74 or less, and a coating layer made of an organic material that covers the entire lens core relatively thinly. The lens core has a spherical surface, and an aspheric surface is provided on the surface of the coating layer located on at least one spherical surface. Similar to the first type of lens, an inexpensive far-infrared lens can be produced by constituting most of the lens with a material having a high far-infrared transmittance of 90% or more and an inexpensive price. In order to compensate for the deterioration of the aberration due to the low refractive index of the material, the aberration is corrected by applying an aspherical surface to the coating layer on the spherical surface. In addition, by using an inorganic crystal material having a refractive index close to that of an organic material, an effect comparable to that obtained when an aspheric surface is directly made of an inorganic crystal material can be obtained. Most of organic materials have a refractive index of 1.49 to 1.75, but far-infrared lens materials of inorganic crystal materials of 1.74 or more do not have a refractive index of 2.2 or more. It can be said that the refractive index is close to the organic material.
 従来より遠赤外線で使用されてきたレンズ材料Ge,Si,ZnSe,ZnSは、高価であるが、屈折率が2.2~4.0と高いため面の曲率を緩くでき、結果として、収差の小さいレンズの作製に有効である。安価な材料NaCl,KCl,KBr,CsI,CsBrの欠点としては、屈折率が低いことや潮解性があることが挙げられるが、前述したように有機材料の被覆層を施すことにより潮解性を補うことが可能である。 The lens materials Ge, Si, ZnSe, and ZnS that have been used for far infrared rays are expensive, but the refractive index is high as 2.2 to 4.0, so that the curvature of the surface can be relaxed. It is effective for the production of small lenses. Disadvantages of inexpensive materials NaCl, KCl, KBr, CsI, and CsBr include low refractive index and deliquescence. However, as described above, the deliquescence is compensated by applying an organic material coating layer. It is possible.
 第1,第2のタイプのレンズでは、さらに、屈折率が低く曲率が強いことによる収差低下を、球面上の被覆層表面に回折格子又は非球面を施すことで補正している。このような構成とすることで、従来の高い屈折率材料で作製されたレンズのように、高い光学性能を持ちながらかなり安価で安定した遠赤外線レンズを得ることができる。これらのレンズは遠赤外線に対して透過性のある有機材料よりもかなり透過率が高く、透過率の点でも従来の高価な材料のレンズと遜色のない性能が得られる。そして、これらのレンズを少なくとも1枚含むレンズ系を構成することで、高屈折率で高価な材料から構成される従来のレンズ系と遜色のないレンズ系を得ることができる。また、安価なカメラシステムを作製することもできる。 In the first and second type lenses, the aberration reduction due to the low refractive index and strong curvature is corrected by applying a diffraction grating or an aspherical surface to the surface of the coating layer on the spherical surface. By adopting such a configuration, it is possible to obtain a far-infrared lens that is highly inexpensive and stable while having high optical performance, like a lens made of a conventional high refractive index material. These lenses have considerably higher transmittance than organic materials that are transparent to far-infrared rays, and the same performance as conventional lenses made of expensive materials can be obtained in terms of transmittance. By constructing a lens system including at least one of these lenses, it is possible to obtain a lens system that is comparable to a conventional lens system composed of an expensive material having a high refractive index. In addition, an inexpensive camera system can be manufactured.
 上記特徴的構成によると、安価で加工がし易く、遠赤外線の透過率に優れ、収差補正能力の高い遠赤外線レンズと、それを備えた遠赤外線用の撮影レンズ系及びカメラシステム(例えば、暗視装置,サーモグラフィー等)を実現することができる。そして、その撮影レンズ系をデジタルカメラ,監視カメラ,防犯カメラ,車載カメラ等のカメラシステムに用いたり、遠赤外線用カメラシステムを携帯端末等のデジタル機器に用いたりすることによって、高性能の遠赤外線画像入力機能を安価に実現することが可能となり、そのコンパクト化,高性能化,高機能化等に寄与することができる。こういった効果をバランス良く得るとともに、更に高い光学性能,小型化等を達成するための条件等を以下に説明する。 According to the above characteristic configuration, a far-infrared lens that is inexpensive, easy to process, has excellent far-infrared transmittance, and has high aberration correction capability, and a far-infrared photographing lens system and camera system (for example, dark Visual devices, thermography, etc.). By using the photographing lens system for a camera system such as a digital camera, a surveillance camera, a security camera, and a vehicle-mounted camera, or using a far-infrared camera system for a digital device such as a portable terminal, a high-performance far-infrared ray The image input function can be realized at low cost, and can contribute to the downsizing, high performance, high functionality, and the like. The conditions for achieving such effects in a well-balanced manner and achieving higher optical performance, downsizing, etc. will be described below.
 前記第1,第2のタイプのレンズにおいて、前記被覆層の厚さは、最も薄いところで10μm以上であり、最も厚いところで500μm以下であることが望ましい。無機結晶材料を空気や湿気から遮断して保護するためには、被覆層にある程度厚みがなければならない。被覆層が厚いほど空気の遮断性は良くなるが、分子量を大きくして高密度にした物では遮断性が良いので厚さは10μm程度でよく、分子量が小さいものではこれよりも厚くしなければならない。しかし、被覆層が500μmよりも厚いと、遠赤外線の透過率が悪くなってしまい、レンズには向かないものとなる。 In the first and second type lenses, it is desirable that the thickness of the coating layer is 10 μm or more at the thinnest and 500 μm or less at the thickest. In order to shield and protect the inorganic crystal material from air and moisture, the coating layer must have a certain thickness. The thicker the coating layer, the better the air barrier property, but the higher the molecular weight and the higher the density, the better the barrier property, so the thickness may be about 10 μm, and the smaller molecular weight must be thicker than this. Don't be. However, if the coating layer is thicker than 500 μm, the far-infrared transmittance deteriorates and is not suitable for lenses.
 遠赤外線の波長10μmに対する回折格子には、凹凸の深さが約10μm程度必要である。したがって、被覆層の表面に回折格子を施す場合には、被覆層の厚さは10μm以上でなければならない。また、被覆層の表面に非球面を施す場合、金型等を使って表面を成形することになる。このとき、ある程度の圧力をかけて成形するが、被覆層が余り薄いとレンズコアが割れないように圧力をかけることが難しくなって成形困難となる。したがって、被覆層には最小10μm程度の厚さが必要となる。 The diffraction grating for the far-infrared wavelength of 10 μm needs a depth of about 10 μm. Therefore, when a diffraction grating is applied to the surface of the coating layer, the thickness of the coating layer must be 10 μm or more. Further, when an aspheric surface is applied to the surface of the coating layer, the surface is molded using a mold or the like. At this time, molding is performed by applying a certain amount of pressure. However, if the coating layer is too thin, it is difficult to apply pressure so that the lens core is not broken, and molding becomes difficult. Therefore, the coating layer needs to have a minimum thickness of about 10 μm.
 ポリエチレン等の有機材料の波長10μm付近での内部透過率は、厚さ3mm程度で30%位である。撮影した画像の解像力を考えると、全体の透過率は80%程度必要と考えられる。例えば、NaCl等の無機結晶材料(透過率98%)をポリエチレン等の有機材料で覆ったレンズ1枚からなる系を使用する場合、有機材料の厚さは光線の通る距離で最大800μmとしなければならない。1枚のレンズで有機材料の層は2枚あるので、片方を最も薄い10μmの厚さとしても集光する光線が斜めに通過することを考えると、もう片面はせいぜい500μm以下にしなければ透過率を確保できない。 The internal transmittance of organic materials such as polyethylene around a wavelength of 10 μm is about 30% at a thickness of about 3 mm. Considering the resolving power of the captured image, it is considered that the overall transmittance is required to be about 80%. For example, when using a system consisting of a single lens in which an inorganic crystal material such as NaCl (with a transmittance of 98%) is covered with an organic material such as polyethylene, the thickness of the organic material must be a maximum of 800 μm at the distance that the light passes. Don't be. Since there are two layers of organic material in one lens, even if the thinnest one is 10 μm in thickness, considering that the condensed light beam passes diagonally, the transmittance on the other side must be less than 500 μm at most. Cannot be secured.
 前記第2のタイプのレンズにおいて、前記被覆層の表面に設けられている非球面が、光軸から離れるほど正のパワーが弱くなる形状を有することが望ましい。無機結晶材料でレンズコアを作製し有機材料でその表面を覆ったレンズは、屈折率が低いため面の曲率が大きく、収差の大きいレンズとなる。また、面の周辺での傾きが大きく、表面反射率も高くなってしまう。このようなレンズの収差を改善し少しでも反射率を低減するために、前記有機材料からなる被覆層の表面に施す非球面の形状を周辺ほど(光軸から離れるほど)正のパワーが弱くなるようにする。凸面に非球面を施す場合には、周辺の面の傾きが低減され収差補正とともに面の反射率も低く抑えられる。凹面は、レンズ系を構成したとき、一般に面に入射する光線の角度が90°に近いので、収差補正のため凹形状が多少きつくなっても光線の面への入射角度は余り大きく成らず表面反射率は余り変わらない。 In the second type of lens, it is desirable that the aspherical surface provided on the surface of the coating layer has a shape in which the positive power becomes weaker as the distance from the optical axis increases. A lens in which a lens core is made of an inorganic crystal material and the surface thereof is covered with an organic material has a low refractive index and thus has a large surface curvature, and thus has a large aberration. In addition, the inclination around the surface is large, and the surface reflectance is also high. In order to improve the aberration of the lens and reduce the reflectance as much as possible, the positive power becomes weaker toward the periphery (away from the optical axis) of the aspherical shape applied to the surface of the coating layer made of the organic material. Like that. When an aspheric surface is provided on the convex surface, the inclination of the peripheral surface is reduced, and the reflectance of the surface can be kept low together with aberration correction. Concave surfaces generally have a light incident angle on the surface close to 90 ° when a lens system is configured. Therefore, even if the concave shape becomes somewhat tight for aberration correction, the incident angle on the surface of the light beam does not become too large. The reflectivity does not change much.
 前記第1,第2のタイプのレンズにおいて、前記レンズコアを構成している無機結晶材料は、ほぼ純粋な結晶からなることが望ましい。前述したようにNaCl,KCl,KBr,CsI,CsBr等の安価な無機結晶材料には潮解性があるが、材料が純粋で大きい結晶であるほど潮解性が弱くなることが知られている。これは、材料の表面積をなるべく小さくし、結晶の欠陥も少なくすることで水分子が内部に入り込みにくくなるためである。ほぼ純粋な材料で潮解しにくいレンズコアを作製し、前記のように有機材料で表面を覆うことで長期にわたり安定なレンズを得ることができる。 In the first and second type lenses, it is desirable that the inorganic crystal material constituting the lens core is made of a substantially pure crystal. As described above, inexpensive inorganic crystal materials such as NaCl, KCl, KBr, CsI, and CsBr have deliquescence properties, but it is known that the liquefaction property is weakened as the material is pure and large crystals. This is because water molecules are less likely to enter the interior by reducing the surface area of the material as much as possible and reducing crystal defects. A lens core that is difficult to deliquesce with a substantially pure material is manufactured, and a lens that is stable over a long period of time can be obtained by covering the surface with an organic material as described above.
 遠赤外線用の撮影レンズ系は、波長10μmに対する屈折率が1.74以下の無機結晶材料からなるレンズコアと、前記レンズコアの全体を比較的薄く覆う有機材料からなる被覆層と、を有する2枚以上のレンズからなり、そのうちの少なくとも1枚として、前記第1,第2のタイプのレンズを含むことが望ましい。前記無機結晶材料は、その表面を覆う被覆層が薄いため、光学的性質のほとんどを決めている。また前記無機結晶材料は、屈折率1.74以下で分散70以下となるものがほとんどなので、SiやGeのように屈折率3以上分散700以上の材料と比較すると、光学性能を良好にするには不利である。それでも材料が安価であり、遠赤外線レンズ系を安く作製したい場合には好適である。 The far-infrared photographing lens system includes a lens core made of an inorganic crystal material having a refractive index of 1.74 or less with respect to a wavelength of 10 μm, and a coating layer made of an organic material that covers the entire lens core relatively thinly. It is preferable that the lens includes at least one lens, and at least one of them includes the first and second type lenses. Since the inorganic crystal material has a thin coating layer covering its surface, it determines most of its optical properties. In addition, since most of the inorganic crystal materials have a refractive index of 1.74 or less and a dispersion of 70 or less, the optical performance is improved as compared with materials having a refractive index of 3 or more and a dispersion of 700 or more, such as Si and Ge. Is disadvantageous. Nevertheless, the material is inexpensive, and it is suitable when it is desired to manufacture a far-infrared lens system at a low cost.
 このとき、前述したように有機材料で表面を覆いさらに回折格子や非球面を表面に施すことで単レンズの収差を少なくし、このような単レンズを含む複数の単レンズからなるレンズ系を採用することで、安価な遠赤外線用の撮影レンズ系を良好な収差補正で実現することができる。撮影レンズ系には、前記第1,第2のタイプのレンズのほかに、回折格子や非球面が施されていないレンズを含んでいてもよい。また、回折格子と非球面の両方が同一表面に施された被覆層を有するレンズを含んでもよく、また、回折格子,非球面のうちの少なくとも一方が両面に施されたレンズを含んでいてもよい。 At this time, as described above, the surface is covered with an organic material, and a diffraction grating or an aspheric surface is applied to the surface to reduce the aberration of a single lens, and a lens system composed of a plurality of single lenses including such a single lens is adopted. Thus, an inexpensive far-infrared photographing lens system can be realized with good aberration correction. In addition to the first and second types of lenses, the photographic lens system may include a lens that is not provided with a diffraction grating or an aspherical surface. Further, it may include a lens having a coating layer in which both the diffraction grating and the aspheric surface are applied to the same surface, or may include a lens in which at least one of the diffraction grating and the aspheric surface is applied to both surfaces. Good.
 遠赤外線用のカメラシステムは、前記遠赤外線用の撮影レンズ系を備えたものであることが望ましい。前述したように、遠赤外線カメラが普及していない原因の1つとして、レンズ材料やレンズ加工が高価であることが挙げられる。無機結晶材料からなるレンズコアを有機材料からなる被覆層で覆い、更に被覆層の表面に回折格子や非球面を施したレンズを含むレンズ系を採用することによって、安価な撮影レンズ系とカメラシステムを実現することができる。このことによって、これまで遠赤外線カメラが使われてこなかった分野への応用も増加すると考えられる。 The far-infrared camera system is preferably provided with the far-infrared imaging lens system. As described above, one of the reasons why far-infrared cameras are not widespread is that lens materials and lens processing are expensive. Low-cost photographic lens system and camera system by covering the lens core made of inorganic crystal material with a coating layer made of organic material and further including a lens system with a diffraction grating or aspherical surface on the surface of the coating layer Can be realized. This is expected to increase the application to fields where far-infrared cameras have not been used.
 前記無機結晶材料は、波長8~12μmの分散が70よりも小さいことが好ましい。つまり、条件式:ν=(N10-1)/(N8-N12)<70を満たすことが好ましい。 The inorganic crystal material preferably has a dispersion with a wavelength of 8 to 12 μm smaller than 70. That is, it is preferable that the conditional expression: ν = (N10-1) / (N8−N12) <70 is satisfied.
 従来より主に使われてきた材料のうち、Geの分散は800、Siの分散は1600位である。分散νは、その値が大きいほど色による屈折率の差が小さくなることを示している。これらの材料は、特殊な場合を除き、遠赤外線帯での色補正は考えなくてもよいが、高価な材料である。一方、分散νが70以下の無機結晶材料であれば、かなり安価となるが色収差の補正が必要となる。そこで、正のパワーの一部を回折格子に持たせることにより、色収差の補正が可能となる。回折格子面は、屈折面とは逆に正のパワーを持たせることで負の色収差が発生する。このことを利用すると、遠赤外波長帯で分散の大きい安価な無機結晶材料も、表面に回折格子を施した有機材料で覆うことで分散を小さくすることができる。 Among the materials that have been mainly used conventionally, the Ge dispersion is 800 and the Si dispersion is about 1600. The dispersion ν indicates that the larger the value, the smaller the difference in refractive index due to color. Except for special cases, these materials need not be considered for color correction in the far-infrared band, but are expensive materials. On the other hand, if the inorganic crystal material has a dispersion ν of 70 or less, the cost becomes considerably low, but correction of chromatic aberration is necessary. Therefore, it is possible to correct chromatic aberration by giving a part of positive power to the diffraction grating. In contrast to the refracting surface, the diffraction grating surface has a positive power to generate negative chromatic aberration. By utilizing this, even an inexpensive inorganic crystal material having a large dispersion in the far-infrared wavelength band can be dispersed by covering the surface with an organic material having a diffraction grating on the surface.
 後述する実施例では無機結晶材料としてNaClとKBrを使用しているが、このほかにKCl(N10=1.46,ν=29.98),CsI(N10=1.72,ν=70),CsBr(N10=1.64,ν=65)等も同様に遠赤外線の透過率が高いので使用することが可能である。また、有機材料としてはポリエチレンのほかに、ポリオレフィン系樹脂,ポリ塩化ビニリデン,フェノール系樹脂,ベンゼン系樹脂等も使用することができる。その際、各有機材料の内部透過率に合わせて最大の厚みを決定することが大切である。 In Examples to be described later, NaCl and KBr are used as inorganic crystal materials, but KCl (N10 = 1.46, ν = 29.98), CsI (N10 = 1.72, ν = 70), Similarly, CsBr (N10 = 1.64, ν = 65) and the like can be used because they have a high far-infrared transmittance. In addition to polyethylene, polyolefin resins, polyvinylidene chloride, phenol resins, benzene resins, and the like can be used as the organic material. At that time, it is important to determine the maximum thickness according to the internal transmittance of each organic material.
 また、ZnSやZnSe等の毒性の強い材料を有機材料で覆って保護し、Ge等に比べて分散が大きいことを補正するために、被覆層表面に回折格子を施したレンズを作製することも可能である。ZnSやZnSeは分散が大きいので、回折格子は主として色補正のために用い、正レンズを作製するのがよい。屈折率は比較的高いので、収差補正の必要性は薄い。 In addition, a highly toxic material such as ZnS or ZnSe is covered with an organic material to protect it, and a lens having a diffraction grating on the surface of the coating layer may be manufactured in order to correct the dispersion being larger than that of Ge or the like. Is possible. Since ZnS and ZnSe have large dispersion, it is preferable to use a diffraction grating mainly for color correction and to produce a positive lens. Since the refractive index is relatively high, there is little need for aberration correction.
 近赤外(波長800nm~1μm)、中赤外(波長1~7μm)で使われる結晶材料のうち、衝撃に弱く加工しにくい材料に有機材料をコーティングすることにより保護することもできる。これらの材料としては、CaF2(ホタル石),BaF2(フッ化バリウム),MgF2(フッ化マグネシウム)等が含まれるが、非球面に加工することは困難である。このような材料でも、まず球面のレンズ形状に加工し、全体を有機材料で覆い、その表面に非球面を施せばよい。これらの材料も屈折率が有機材料と近いため界面での反射や屈折はほとんど起こらず、結晶材料で非球面を作製した場合とほぼ同じ効果を得ることができる。近赤外から中赤外でも収差が良好に補正されたレンズ系を得ることができる。その際、有機材料の透過率が使用波長でどれくらいか注意して厚みを決める必要がある。 Of the crystal materials used in the near infrared (wavelength 800 nm to 1 μm) and mid infrared (wavelength 1 to 7 μm), it can be protected by coating an organic material on a material that is vulnerable to impact and difficult to process. These materials include CaF 2 (fluorite), BaF 2 (barium fluoride), MgF 2 (magnesium fluoride), etc., but it is difficult to process them into an aspherical surface. Even with such a material, first, a spherical lens shape is processed, the whole is covered with an organic material, and the surface thereof is aspherical. Since these materials also have a refractive index close to that of an organic material, reflection and refraction at the interface hardly occur, and almost the same effect as that obtained when an aspherical surface is made of a crystalline material can be obtained. It is possible to obtain a lens system in which aberrations are favorably corrected from near infrared to mid infrared. At that time, it is necessary to determine the thickness by paying attention to how much the transmittance of the organic material is at the wavelength used.
 図1に、遠赤外線レンズの作製工程例を断面的に示す。まず、無機材料(NaCl,KBr等)の結晶に切削や研磨を施して、図1(A)に示すように両面が球面のレンズ形状を有するレンズコアCRを作製する。レンズ形状は、両凸形状に限らず、正メニスカス形状や負メニスカス形状でもよい。また、心厚は1.5~4.5mm程度である。 FIG. 1 is a cross-sectional view showing a manufacturing process example of a far-infrared lens. First, a crystal of an inorganic material (NaCl, KBr, etc.) is cut or polished to produce a lens core CR having a spherical lens shape as shown in FIG. The lens shape is not limited to a biconvex shape, and may be a positive meniscus shape or a negative meniscus shape. The core thickness is about 1.5 to 4.5 mm.
 次に、有機材料として高密度ポリエチレンをレンズコアCRにディップコート等でコートして、図1(B)に示すようにレンズコアCR全体を被覆層CT1で約10μm程度覆う。面の曲率が平面に近い場合には、スピンコートで高密度ポリエチレンを塗布することも可能である。また、1回のコーティングで10μmに届かない場合には、塗布を複数回繰り返してもよい。ここでは、無機結晶材料の表面透過率が潮解性によって低下する前に2回目のコーティングを行う。 Next, high-density polyethylene as an organic material is coated on the lens core CR by dip coating or the like, and the entire lens core CR is covered with a coating layer CT1 by about 10 μm as shown in FIG. When the curvature of the surface is close to a flat surface, high-density polyethylene can be applied by spin coating. Moreover, when it does not reach 10 μm by one coating, the application may be repeated a plurality of times. Here, the second coating is performed before the surface transmittance of the inorganic crystal material decreases due to deliquescence.
 被覆層CT1と同じ材料からなる被覆層CT2を被覆層CT1上に設けると、図1(C)に示すように、同じ材料からなる2層構造の被覆層CTが得られるので、被覆層CT2の表面に対して金型で精密形状の成形を施す。このとき、回折格子,非球面又はその両方が施された金型を少なくとも片面に使用すれば、その精密形状がレンズ面に転写されて遠赤外線レンズLEが完成する。 When the coating layer CT2 made of the same material as the coating layer CT1 is provided on the coating layer CT1, as shown in FIG. 1C, a two-layer coating layer CT made of the same material is obtained. Precise molding is performed on the surface with a mold. At this time, if a die provided with a diffraction grating, an aspherical surface, or both is used on at least one surface, the precise shape is transferred to the lens surface to complete the far-infrared lens LE.
 ポリエチレンのコーティング厚は一般的なコーティング厚と比べて大きいので、最初のコーティングではレンズコアCRに不均一に付いてしまうが、1回のコーティングで1層構造の被覆層CTを形成する場合でも、金型を使って後で成形することにより均一なポリエチレン層にすることができる。また、非球面や回折格子面では部分的に不均一な厚みとなるので、回折格子や非球面を成形するとき、必要に応じて更にポリエチレンを表面に塗布してもよい。 Since the coating thickness of polyethylene is larger than the general coating thickness, the initial coating will cause the lens core CR to be non-uniformly attached. Even when the coating layer CT having a single layer structure is formed by one coating, A uniform polyethylene layer can be obtained by later molding using a mold. Further, since the aspherical surface and the diffraction grating surface are partially uneven in thickness, polyethylene may be further applied to the surface as necessary when the diffraction grating or the aspherical surface is formed.
 図2に、被覆層CTの表面に回折格子GRが施された遠赤外線レンズLEの具体例を断面的に示す。図2(A)は、パワーの強い凸面の被覆層CT上に回折格子GRが設けられた遠赤外線レンズLEを示しており、図2(B)はその要部Pを拡大して示している。回折格子GRは、熱せられた金型を被覆層CTに押しつけることにより形成された表面レリーフ状の回折格子面である。回折格子GRの断面形状は、図2(B)に示すバイナリ形状に限らない。例えば、ステップ(階段)形状やキノフォームを用いてもよい。いずれの場合も回折波長での位相差は、例えば後述する実施例から計算される値とする。 FIG. 2 is a sectional view showing a specific example of the far-infrared lens LE in which the diffraction grating GR is applied to the surface of the coating layer CT. FIG. 2A shows a far-infrared lens LE in which a diffraction grating GR is provided on a high-power convex coating layer CT, and FIG. 2B shows an enlarged main portion P thereof. . The diffraction grating GR is a surface relief-like diffraction grating surface formed by pressing a heated mold against the coating layer CT. The cross-sectional shape of the diffraction grating GR is not limited to the binary shape shown in FIG. For example, a step (stair) shape or kinoform may be used. In any case, the phase difference at the diffraction wavelength is, for example, a value calculated from an example described later.
 図3に、被覆層CTの表面に非球面ASが施された遠赤外線レンズLEの具体例を断面的に示す。図3(A)は球面形状のレンズコアCRの凹面側に非球面が形成された状態を示しており、図3(B)は球面形状のレンズコアCRの凸面側に非球面が形成された状態を示している。いずれの被覆層CTも周辺ほど厚くなっているので、被覆層CTの表面に形成されている非球面は、光軸AXから離れるほど正のパワーが弱くなる(負のパワーが強くなる)形状を有している。 FIG. 3 is a cross-sectional view showing a specific example of the far-infrared lens LE in which the surface of the coating layer CT is aspherical AS. 3A shows a state where an aspheric surface is formed on the concave surface side of the spherical lens core CR, and FIG. 3B shows an aspheric surface formed on the convex surface side of the spherical lens core CR. Indicates the state. Since all the covering layers CT are thicker toward the periphery, the aspherical surface formed on the surface of the covering layer CT has a shape in which the positive power becomes weaker (the negative power becomes stronger) as the distance from the optical axis AX increases. Have.
 図4,図6,図8,…,図18に、無限遠合焦状態にある遠赤外線用の撮影レンズ系LNの第1~第8の実施の形態を、光路と共に光学断面でそれぞれ示す。第1~第5の実施の形態の撮影レンズ系LNは第1レンズL1と第2レンズL2と第3レンズL3との3枚の遠赤外線レンズLEからなっており、第1レンズL1と第2レンズL2との間には絞り(開口絞り)STが配置されている。第6の実施の形態の撮影レンズ系LNは第1レンズL1と第2レンズL2と第3レンズL3と第4レンズL4との4枚の遠赤外線レンズLEからなっており、第2レンズL2と第3レンズL3との間には絞りSTが配置されている。第7,第8の実施の形態の撮影レンズ系LNは第1レンズL1と第2レンズL2との2枚の遠赤外線レンズLEからなっており、第1レンズL1と第2レンズL2との間には絞りSTが配置されている。なお、各撮影レンズ系LNの像側には、撮像素子(遠赤外センサー)の保護用カバーガラスに相当する平行平板PT(例えば、Ge結晶の平行平板)が配置されている。 FIG. 4, FIG. 6, FIG. 8,..., FIG. 18 show first to eighth embodiments of the far-infrared photographing lens system LN in an infinitely focused state in optical cross sections together with optical paths. The photographic lens system LN of the first to fifth embodiments includes three far-infrared lenses LE, which are a first lens L1, a second lens L2, and a third lens L3. A diaphragm (aperture diaphragm) ST is disposed between the lens L2. The photographic lens system LN of the sixth embodiment includes four far-infrared lenses LE, which are a first lens L1, a second lens L2, a third lens L3, and a fourth lens L4. A diaphragm ST is disposed between the third lens L3 and the third lens L3. The photographic lens system LN of the seventh and eighth embodiments is composed of two far-infrared lenses LE, which are a first lens L1 and a second lens L2, between the first lens L1 and the second lens L2. The aperture stop ST is arranged in FIG. A parallel plate PT (for example, a parallel plate of Ge crystal) corresponding to the protective cover glass of the image sensor (far infrared sensor) is disposed on the image side of each photographing lens system LN.
 第1の実施の形態(図4)では、第1レンズL1の物体側面と第2レンズL2の物体側面に回折格子が設けられている。第2の実施の形態(図6)では、第1レンズL1の物体側面に回折格子が設けられており、第2レンズL2の物体側面に回折格子と非球面が設けられている。第3の実施の形態(図8)では、第2レンズL2の物体側面に非球面が設けられている。第4の実施の形態(図10)では、第2レンズL2の物体側面に非球面が設けられている。第5の実施の形態(図12)では、第2レンズL2の物体側面に回折格子が設けられている。第6の実施の形態(図14)では、第1レンズL1と第2レンズL2と第3レンズL3の各物体側面に回折格子と非球面が設けられており、第4レンズL2の物体側面に非球面が設けられている。第7の実施の形態(図16)では、第1レンズL1の両面と第2レンズL2の両面に非球面が設けられている。第8の実施の形態(図18)では、第1レンズL1の両面に非球面が設けられており、第2レンズL2の両面に回折格子が設けられている。 In the first embodiment (FIG. 4), diffraction gratings are provided on the object side surface of the first lens L1 and the object side surface of the second lens L2. In the second embodiment (FIG. 6), a diffraction grating is provided on the object side surface of the first lens L1, and a diffraction grating and an aspheric surface are provided on the object side surface of the second lens L2. In the third embodiment (FIG. 8), an aspheric surface is provided on the object side surface of the second lens L2. In the fourth embodiment (FIG. 10), an aspheric surface is provided on the object side surface of the second lens L2. In the fifth embodiment (FIG. 12), a diffraction grating is provided on the object side surface of the second lens L2. In the sixth embodiment (FIG. 14), a diffraction grating and an aspheric surface are provided on the object side surfaces of the first lens L1, the second lens L2, and the third lens L3, and the object side surface of the fourth lens L2 is provided. An aspheric surface is provided. In the seventh embodiment (FIG. 16), aspheric surfaces are provided on both surfaces of the first lens L1 and both surfaces of the second lens L2. In the eighth embodiment (FIG. 18), the first lens L1 is provided with aspheric surfaces, and the second lens L2 is provided with diffraction gratings.
 本発明に係る遠赤外線用の撮影レンズ系LNは、遠赤外線用カメラシステム(例えば、暗視装置,サーモグラフィー,監視カメラ,防犯カメラ,車載カメラ等)用の撮像光学系としての使用に適しており、これを撮像素子(遠赤外センサー)等と組み合わせることにより、被写体の遠赤外線映像を光学的に取り込んで電気的な信号として出力する遠赤外線用撮像光学装置を構成することができる。撮像光学装置は、被写体の静止画撮影や動画撮影に用いられるカメラの主たる構成要素を成す光学装置であり、例えば、物体(すなわち被写体)側から順に、物体の遠赤外線光学像を形成する撮影レンズ系と、その撮影レンズ系により形成された遠赤外線光学像を電気的な信号に変換する撮像素子(遠赤外センサー)と、を備えることにより構成される。そして、撮像素子の受光面(すなわち撮像面)上に被写体の遠赤外線光学像が形成されるように、前述した特徴的構成を有する撮影レンズ系LNが配置されることにより、小型・低コストで高い性能を有する撮像光学装置やそれを備えたカメラシステムを実現することができる。 The far-infrared imaging lens system LN according to the present invention is suitable for use as an imaging optical system for a far-infrared camera system (for example, a night vision device, a thermography, a surveillance camera, a security camera, an in-vehicle camera, etc.). By combining this with an image sensor (far infrared sensor) or the like, a far infrared imaging optical device that optically captures a far infrared image of a subject and outputs it as an electrical signal can be configured. The imaging optical device is an optical device that constitutes a main component of a camera used for still image shooting or moving image shooting of a subject, for example, a photographing lens that forms a far-infrared optical image of an object in order from the object (that is, subject) side. And an imaging device (far infrared sensor) that converts a far infrared optical image formed by the photographing lens system into an electrical signal. Then, the photographic lens system LN having the above-described characteristic configuration is arranged so that the far-infrared optical image of the subject is formed on the light receiving surface (that is, the imaging surface) of the imaging element, thereby reducing the size and cost. An imaging optical device having high performance and a camera system including the same can be realized.
 遠赤外線画像入力機能付きデジタル機器の例としては、赤外線カメラ,監視カメラ,防犯カメラ,車載カメラ,航空機カメラ,デジタルカメラ,ビデオカメラ等のカメラが挙げられ、また、パーソナルコンピュータ,携帯端末(例えば、携帯電話,スマートフォン(高機能携帯電話),モバイルコンピュータ等の小型で携帯可能な情報機器端末),これらの周辺機器(スキャナー,プリンター等),その他のデジタル機器(ドライブレコーダ,防衛機器等)等に内蔵又は外付けされるカメラが挙げられる。これらの例から分かるように、遠赤外線用の撮像光学装置を用いることにより暗視装置を構成することができるだけでなく、その撮像光学装置を各種機器に搭載することにより暗視機能を付加することが可能である。例えば、赤外線カメラ付きスマートフォン等の遠赤外線画像入力機能を備えたデジタル機器を構成することが可能である。 Examples of digital devices with a far-infrared image input function include cameras such as infrared cameras, surveillance cameras, security cameras, in-vehicle cameras, aircraft cameras, digital cameras, video cameras, and personal computers, portable terminals (for example, For mobile phones, smart phones (high-function mobile phones), small and portable information device terminals such as mobile computers, peripheral devices (scanners, printers, etc.), and other digital devices (drive recorders, defense devices, etc.) An internal or external camera can be mentioned. As can be seen from these examples, it is possible not only to configure a night vision device by using an imaging optical device for far infrared rays, but also to add a night vision function by installing the imaging optical device in various devices. Is possible. For example, a digital device having a far-infrared image input function such as a smartphone with an infrared camera can be configured.
 遠赤外線画像入力機能付きデジタル機器の一例として、図20にデジタル機器DUの概略構成例を模式的断面で示す。図20に示すデジタル機器DUに搭載されている撮像光学装置LUは、物体(すなわち被写体)側から順に、物体の遠赤外線光学像(像面)IMを形成する撮影レンズ系LN(AX:光軸)と、平行平板PT(撮像素子SRのカバーガラス、必要に応じて配置される光学フィルター等に相当する。)と、撮影レンズ系LNにより受光面(撮像面)SS上に形成された光学像IMを電気的な信号に変換する撮像素子SRと、を備えている。この撮像光学装置LUで画像入力機能付きデジタル機器DUを構成する場合、通常そのボディ内部に撮像光学装置LUを配置することになるが、カメラ機能を実現する際には必要に応じた形態を採用することが可能である。例えば、ユニット化した撮像光学装置LUをデジタル機器DUの本体に対して着脱可能又は回動可能に構成することができる。 As an example of a digital device with a far-infrared image input function, FIG. 20 shows a schematic configuration example of the digital device DU in a schematic cross section. The imaging optical device LU mounted on the digital device DU shown in FIG. 20 is an imaging lens system LN (AX: optical axis) that forms a far-infrared optical image (image plane) IM of an object in order from the object (namely, subject) side. ), A parallel plate PT (corresponding to a cover glass of the image sensor SR, an optical filter arranged as necessary), and an optical image formed on the light receiving surface (imaging surface) SS by the photographing lens system LN. And an image sensor SR that converts IM into an electrical signal. When a digital device DU with an image input function is constituted by this imaging optical device LU, the imaging optical device LU is usually arranged inside the body, but when necessary to realize the camera function, a form as necessary is adopted. Is possible. For example, the unitized imaging optical device LU can be configured to be detachable or rotatable with respect to the main body of the digital device DU.
 撮影レンズ系LNは、前述したように、撮像素子SRの受光面SS上に遠赤外線からなる光学像IMを形成する構成になっている。撮像素子SRとしては、例えば複数の画素(数万~数十万画素)を有し、7~10μm程度の波長を利用する遠赤外イメージセンサー(サーモセンサー等)が用いられる。撮影レンズ系LNは、撮像素子SRの光電変換部である受光面SS上に被写体の光学像IMが形成されるように設けられているので、撮影レンズ系LNによって形成された光学像IMは、撮像素子SRによって電気的な信号に変換される。 As described above, the photographing lens system LN is configured to form the optical image IM composed of far infrared rays on the light receiving surface SS of the imaging element SR. As the image sensor SR, for example, a far-infrared image sensor (thermosensor or the like) having a plurality of pixels (tens of thousands to hundreds of thousands of pixels) and using a wavelength of about 7 to 10 μm is used. Since the photographic lens system LN is provided so that the optical image IM of the subject is formed on the light receiving surface SS which is a photoelectric conversion unit of the imaging element SR, the optical image IM formed by the photographic lens system LN is It is converted into an electrical signal by the image sensor SR.
 デジタル機器DUは、撮像光学装置LUの他に、信号処理部1,制御部2,メモリー3,操作部4,表示部5等を備えている。撮像素子SRで生成した信号は、信号処理部1で所定のデジタル画像処理や画像圧縮処理等が必要に応じて施され、デジタル映像信号としてメモリー3(半導体メモリー,光ディスク等)に記録されたり、場合によってはケーブルを介したり赤外線信号等に変換されたりして他の機器に伝送される(例えば携帯電話の通信機能)。制御部2はマイクロコンピュータからなっており、撮影機能(静止画撮影機能,動画撮影機能等),画像再生機能等の機能の制御;フォーカシングのためのレンズ移動機構の制御等を集中的に行う。例えば、被写体の静止画撮影,動画撮影のうちの少なくとも一方を行うように、制御部2により撮像光学装置LUに対する制御が行われる。表示部5は液晶モニター等のディスプレイを含む部分であり、撮像素子SRによって変換された画像信号あるいはメモリー3に記録されている画像情報を用いて画像表示を行う。操作部4は、操作ボタン(例えばレリーズボタン),操作ダイヤル(例えば撮影モードダイヤル)等の操作部材を含む部分であり、操作者が操作入力した情報を制御部2に伝達する。 The digital device DU includes a signal processing unit 1, a control unit 2, a memory 3, an operation unit 4, a display unit 5 and the like in addition to the imaging optical device LU. The signal generated by the image sensor SR is subjected to predetermined digital image processing, image compression processing, and the like in the signal processing unit 1 as necessary, and recorded as a digital video signal in the memory 3 (semiconductor memory, optical disc, etc.) In some cases, it is transmitted to other devices via a cable or converted into an infrared signal or the like (for example, a communication function of a mobile phone). The control unit 2 is composed of a microcomputer, and controls functions such as a shooting function (still image shooting function, moving image shooting function, etc.), an image reproduction function, etc .; a lens moving mechanism for focusing, etc. For example, the control unit 2 controls the imaging optical device LU so as to perform at least one of still image shooting and moving image shooting of a subject. The display unit 5 includes a display such as a liquid crystal monitor, and performs image display using an image signal converted by the image sensor SR or image information recorded in the memory 3. The operation unit 4 is a part including operation members such as an operation button (for example, a release button) and an operation dial (for example, a shooting mode dial), and transmits information input by the operator to the control unit 2.
 以下、本発明を実施した遠赤外線用のレンズ及び撮影レンズ系の構成等を、実施例のコンストラクションデータ等を挙げて更に具体的に説明する。ここで挙げる実施例1~8(EX1~8)は、前述した第1~第8の実施の形態にそれぞれ対応する数値実施例であり、第1~第8の実施の形態を表す光学構成図(図4,図6,図8,…,図16,図18)は、対応する実施例1~8のレンズ構成(レンズ断面形状,レンズ配置等),光路等をそれぞれ示している。 Hereinafter, the configuration of the far-infrared lens and the photographing lens system embodying the present invention will be described more specifically with reference to the construction data of the examples. Examples 1 to 8 (EX1 to 8) listed here are numerical examples corresponding to the first to eighth embodiments, respectively, and are optical configuration diagrams showing the first to eighth embodiments. (FIG. 4, FIG. 6, FIG. 8,..., FIG. 16, FIG. 18) respectively show the lens configuration (lens cross-sectional shape, lens arrangement, etc.), optical path, etc. of the corresponding Examples 1 to 8.
 各実施例のコンストラクションデータでは、面データとして、左側の欄から順に、面番号(OB:物体面,ST:絞り面,IM:像面),近軸における曲率半径r(mm),軸上面間隔d(mm),材料名(無し:空気)を示す。 In the construction data of each embodiment, as surface data, in order from the left column, surface number (OB: object surface, ST: aperture surface, IM: image surface), radius of curvature r (mm) in paraxial, axial surface distance d (mm), material name (none: air).
 面番号に*が付された面は非球面であり、その面形状は面頂点を原点とするローカルな直交座標系(x,y,z)を用いた以下の式(AS)で定義される。非球面データとして、非球面係数等を示す。なお、各実施例の非球面データにおいて表記の無い項の係数は0であり、すべてのデータに関してE-n=×10-nである。
z=(C・h2)/[1+√{1-(1+K)・C2・h2}]+Σ(Ai・hi) …(AS)
 ただし、
h:z軸(光軸AX)に対して垂直な方向の高さ(h2=x2+y2)、
z:高さhの位置での光軸AX方向のサグ量(面頂点基準)、
C:面頂点での曲率(曲率半径rの逆数)、
K:円錐定数、
Ai:i次の非球面係数(Σはiについて4次から∞次の総和を表す。)、
である。
A surface with * in the surface number is an aspheric surface, and the surface shape is defined by the following expression (AS) using a local orthogonal coordinate system (x, y, z) with the surface vertex as the origin. . As aspheric data, an aspheric coefficient or the like is shown. It should be noted that the coefficient of the term not described in the aspherical data of each embodiment is 0, and En = × 10 −n for all data.
z = (C · h 2 ) / [1 + √ {1− (1 + K) · C 2 · h 2 }] + Σ (Ai · h i ) (AS)
However,
h: height in the direction perpendicular to the z axis (optical axis AX) (h 2 = x 2 + y 2 ),
z: the amount of sag in the direction of the optical axis AX at the position of the height h (based on the surface vertex),
C: curvature at the surface vertex (the reciprocal of the radius of curvature r),
K: conic constant,
Ai: i-th order aspheric coefficient (Σ represents the sum of 4th order to ∞ order for i),
It is.
 面番号に#が付された面は回折格子面であり、その回折構造は、非球面と同様に面頂点を原点とするローカルな直交座標系(x,y,z)を用いた以下の式(DS)で定義される。回折格子は光軸に対して回転対称な格子であって、波長10μmに対する1次の回折が使用され、形状は波長10μmに対する位相差Pzで与えられる。回折格子面データとして、回折次数,回折波長及び位相係数を示す。なお、各実施例の回折格子面データにおいて表記の無い項の係数は0であり、すべてのデータに関してE-n=×10-nである。
Pz=Σ(Bj・hj) …(DS)
 ただし、
h:z軸(光軸AX)に対して垂直な方向の高さ(h2=x2+y2)、
Pz:位相差、
Bj:j次の位相係数(Σはjについて2次から∞次の総和を表す。)、
である。
The surface numbered with # is a diffraction grating surface, and the diffractive structure is expressed by the following equation using a local orthogonal coordinate system (x, y, z) having the surface vertex as the origin, like an aspheric surface. (DS). The diffraction grating is a rotationally symmetric grating with respect to the optical axis, and first-order diffraction with respect to a wavelength of 10 μm is used, and the shape is given by a phase difference Pz with respect to a wavelength of 10 μm. As diffraction grating surface data, a diffraction order, a diffraction wavelength, and a phase coefficient are shown. It should be noted that the coefficient of the term not described in the diffraction grating plane data of each example is 0, and En = × 10 −n for all data.
Pz = Σ (Bj · h j ) (DS)
However,
h: height in the direction perpendicular to the z axis (optical axis AX) (h 2 = x 2 + y 2 ),
Pz: phase difference,
Bj: j-th order phase coefficient (Σ represents the total from the second order to the ∞ order for j),
It is.
 各レンズ等を構成する光学材料の屈折率及び分散データとして、波長10μmに対する屈折率N10と、波長8~12μmに対する分散ν=(N10-1)/(N8-N12)を以下に示す(N8:波長8μmに対する屈折率,N12:波長12μmに対する屈折率)。なお、像面IMの前の平行平板PTは遠赤外センサーの保護板であり、Ge(ゲルマニウム)で構成されている。
PE(ポリエチレン)    … N10=1.5226,ν=15.10
NaCl(塩化ナトリウム) … N10=1.4947,ν=20.11
KBr(臭化カリウム)   … N10=1.5242,ν=64.72
Ge(ゲルマニウム)    … N10=4.004312,ν=784.54
As the refractive index and dispersion data of the optical material constituting each lens, the refractive index N10 for a wavelength of 10 μm and the dispersion ν = (N10-1) / (N8−N12) for a wavelength of 8 to 12 μm are shown below (N8: Refractive index for wavelength 8 μm, N12: Refractive index for wavelength 12 μm). The parallel plate PT in front of the image plane IM is a protective plate for the far infrared sensor, and is made of Ge (germanium).
PE (polyethylene) N10 = 1.5226, ν = 15.10
NaCl (sodium chloride) N10 = 1.4947, ν = 20.11
KBr (potassium bromide) N10 = 1.5242, ν = 64.72
Ge (germanium): N10 = 4.0004312, ν = 784.54
 スペックとして、設計波長(nm),全系の焦点距離(f,mm),Fナンバー(FNO),全長(mm)及び半画角(°)を示す。また表1に、第1~第4レンズL1~L4の焦点距離(f1~f4,mm)と、有機材料(PE)からなる被覆層の最小厚さ及び最大厚さ(μm)と、を示す。 Specs indicate design wavelength (nm), focal length (f, mm) of the entire system, F number (FNO), full length (mm), and half angle of view (°). Table 1 shows the focal lengths (f1 to f4, mm) of the first to fourth lenses L1 to L4 and the minimum and maximum thicknesses (μm) of the coating layer made of an organic material (PE). .
 図5,図7,図9,…,図17,図19は、実施例1~8(EX1~8)にそれぞれ対応する収差図であり、(A)は球面収差図、(B)は非点収差図、(C)は歪曲収差図である。球面収差図は、実線で示す設計波長(評価波長)10000nmにおける球面収差量、一点鎖線で示す波長8000nmにおける球面収差量、二点鎖線で示す波長9000nmにおける球面収差量(ただし、図15においてのみ二点鎖線で示す波長7000nmにおける球面収差量とする。)、破線で示す波長12000nmにおける球面収差量(ただし、図15においてのみ破線で示す波長13000nmにおける球面収差量とする。)を、それぞれ近軸像面からの光軸AX方向のズレ量(mm)で表しており、縦軸は瞳への入射高さをその最大高さで規格化した値(すなわち相対瞳高さ)を表している。非点収差図において、破線Tは設計波長10000nmにおけるタンジェンシャル像面、実線Sは設計波長10000nmにおけるサジタル像面を、近軸像面からの光軸AX方向のズレ量(mm)で表しており、縦軸は半画角ω(ANGLE,°)を表している。歪曲収差図において、横軸は設計波長10000nmにおける歪曲(%)を表しており、縦軸は半画角ω(ANGLE,°)を表している。なお、半画角ωの最大値は、像面IMにおける最大像高Y’(撮像素子SRの受光面SSの対角長の半分)に相当する。 5, FIG. 7, FIG. 9,..., FIG. 17, and FIG. 19 are aberration diagrams corresponding to Examples 1 to 8 (EX1 to 8), respectively. Point aberration diagram, (C) is a distortion diagram. The spherical aberration diagram shows a spherical aberration amount at a design wavelength (evaluation wavelength) of 10000 nm indicated by a solid line, a spherical aberration amount at a wavelength of 8000 nm indicated by a one-dot chain line, and a spherical aberration amount at a wavelength of 9000 nm indicated by a two-dot chain line (however, only in FIG. 15) The amount of spherical aberration at a wavelength of 7000 nm indicated by a dotted line and the amount of spherical aberration at a wavelength of 12000 nm indicated by a broken line (however, the amount of spherical aberration at a wavelength of 13000 nm indicated by a broken line in FIG. 15) are paraxial images. The amount of displacement (mm) in the optical axis AX direction from the surface is represented, and the vertical axis represents a value obtained by normalizing the height of incidence on the pupil by the maximum height (that is, the relative pupil height). In the astigmatism diagram, the broken line T represents the tangential image plane at the design wavelength of 10000 nm, and the solid line S represents the sagittal image plane at the design wavelength of 10000 nm as the amount of deviation (mm) in the optical axis AX direction from the paraxial image plane. The vertical axis represents the half angle of view ω (ANGLE, °). In the distortion diagram, the horizontal axis represents the distortion (%) at the design wavelength of 10000 nm, and the vertical axis represents the half angle of view ω (ANGLE, °). Note that the maximum value of the half field angle ω corresponds to the maximum image height Y ′ on the image plane IM (half the diagonal length of the light receiving surface SS of the image sensor SR).
 実施例1
単位:mm
 面データ
面番号               r               d            材料名
   OB:              ∞              ∞
    1#:       12.42933        0.030000            PE
    2:        12.39933        4.720351            NaCl
    3:        52.47570        0.010000            PE
    4:        52.46570        5.779114
    5(ST):          ∞        5.555470
    6#:       -6.51473        0.030000            PE
    7:        -6.54473        3.598074            NaCl
    8:        -8.46453        0.010000            PE
    9:        -8.47453        1.241609
   10:         8.80004        0.010000            PE
   11:         8.79004        4.310264            NaCl
   12:       590.02108        0.010000            PE
   13:       590.01108        0.142410
   14:              ∞        0.782095            Ge
   15:              ∞        3.500000
   IM:              ∞        0.000000
Example 1
Unit: mm
Surface data surface number r d Material name OB: ∞ ∞
1 #: 12.42933 0.030000 PE
2: 12.39933 4.720351 NaCl
3: 52.47570 0.010000 PE
4: 52.46570 5.779114
5 (ST): ∞ 5.555470
6 #: -6.51473 0.030000 PE
7: -6.54473 3.598074 NaCl
8: -8.46453 0.010000 PE
9: -8.47453 1.241609
10: 8.80004 0.010000 PE
11: 8.79004 4.310264 NaCl
12: 590.02108 0.010000 PE
13: 590.01108 0.142410
14: ∞ 0.782095 Ge
15: ∞ 3.500000
IM: ∞ 0.000000
 スペック
      設計波長    10000.0nm
      焦点距離f   17.6840
      FNO         1.1000
      全長        26.2294
      半画角      15.5000°
Spec Design wavelength 10000.0nm
Focal length f 17.6840
FNO 1.1000
Total length 26.2294
Half angle of view 15.5000 °
 回折格子面データ
      回折格子面1#:
      回折次数:    1.000000
      回折波長:    10000.00nm
      B2      :    -2.1816E-03
Diffraction grating plane data Diffraction grating plane 1 #:
Diffraction order: 1.000000
Diffraction wavelength: 10000.00nm
B2: -2.1816E-03
 回折格子面データ
      回折格子面6#:
      回折次数:    1.000000
      回折波長:    10000.00nm
      B2      :    -9.5902E-03
Diffraction grating plane data Diffraction grating plane 6 #:
Diffraction order: 1.000000
Diffraction wavelength: 10000.00nm
B2: -9.5902E-03
 実施例2
単位:mm
 面データ
面番号               r               d            材料名
   OB:              ∞              ∞
    1#:       16.52849        0.030000            PE
    2:        16.49849        4.000000            NaCl
    3:        74.49885        0.010000            PE
    4:        74.48885        7.818001
    5(ST):          ∞        4.752288
    6*#:      -9.01426        0.030000            PE
    7:        -8.34454        4.000000            NaCl
    8:        -8.70413        0.010000            PE
    9:        -8.71413        1.727038
   10:        10.37919        0.010000            PE
   11:        10.36919        4.000000            NaCl
   12:        96.57674        0.010000            PE
   13:        96.56674        0.472797
   14:              ∞        0.782095            Ge
   15:              ∞        6.037271
   IM:              ∞        0.000000
Example 2
Unit: mm
Surface data surface number r d Material name OB: ∞ ∞
1 #: 16.52849 0.030000 PE
2: 16.49849 4.000000 NaCl
3: 74.49885 0.010000 PE
4: 74.48885 7.818001
5 (ST): ∞ 4.752288
6 * #: -9.01426 0.030000 PE
7: -8.34454 4.000000 NaCl
8: -8.70413 0.010000 PE
9: -8.71413 1.727038
10: 10.37919 0.010000 PE
11: 10.36919 4.000000 NaCl
12: 96.57674 0.010000 PE
13: 96.56674 0.472797
14: ∞ 0.782095 Ge
15: ∞ 6.037271
IM: ∞ 0.000000
 スペック
      設計波長    10000.0nm
      焦点距離f   17.6840
      FNO         1.1000
      全長        27.6522
      半画角      15.5000°
Spec Design wavelength 10000.0nm
Focal length f 17.6840
FNO 1.1000
Total length 27.6522
Half angle of view 15.5000 °
 非球面データ
      非球面6*:
      K  : 0.000000
      A4 :-0.387423E-03
      A6 : 0.104738E-04
      A8 :-0.271465E-06
     A10 : 0.000000E+00
Aspheric data Aspheric surface 6 *:
K: 0.000000
A4: -0.387423E-03
A6: 0.104738E-04
A8: -0.271465E-06
A10: 0.000000E + 00
 回折格子面データ
      回折格子面1#:
      回折次数:    1.000000
      回折波長:    10000.00nm
      B2      :    -9.1544E-04
Diffraction grating plane data Diffraction grating plane 1 #:
Diffraction order: 1.000000
Diffraction wavelength: 10000.00nm
B2: -9.1544E-04
 回折格子面データ
      回折格子面6#:
      回折次数:    1.000000
      回折波長:    10000.00nm
      B2      :    -4.8603E-03
Diffraction grating plane data Diffraction grating plane 6 #:
Diffraction order: 1.000000
Diffraction wavelength: 10000.00nm
B2: -4.8603E-03
 実施例3
単位:mm
 面データ
面番号               r               d            材料名
   OB:              ∞              ∞
    1:        17.16593        0.010000            PE
    2:        17.15593        4.000000            KBr
    3:        77.02012        0.010000            PE
    4:        77.01012        1.096627
    5(ST):          ∞        2.888307
    6*:      -14.05563        0.030000            PE
    7:       -11.49406        4.000000            KBr
    8:       -10.91321        0.010000            PE
    9:       -10.92321        7.976511
   10:        12.57432        0.010000            PE
   11:        12.56432        4.500000            KBr
   12:       195.56572        0.010000            PE
   13:       195.55572        2.401918
   14:              ∞        0.782095            Ge
   15:              ∞        4.452996
   IM:              ∞        0.000000
Example 3
Unit: mm
Surface data surface number r d Material name OB: ∞ ∞
1: 17.16593 0.010000 PE
2: 17.15593 4.000000 KBr
3: 77.02012 0.010000 PE
4: 77.01012 1.096627
5 (ST): ∞ 2.888307
6 *: -14.05563 0.030000 PE
7: -11.49406 4.000000 KBr
8: -10.91321 0.010000 PE
9: -10.92321 7.976511
10: 12.57432 0.010000 PE
11: 12.56432 4.500000 KBr
12: 195.56572 0.010000 PE
13: 195.55572 2.401918
14: ∞ 0.782095 Ge
15: ∞ 4.452996
IM: ∞ 0.000000
 スペック
      設計波長    10000.0nm
      焦点距離f   17.6840
      FNO         1.1000
      全長        27.7255
      半画角      15.5000°
Spec Design wavelength 10000.0nm
Focal length f 17.6840
FNO 1.1000
Total length 27.7255
Half angle of view 15.5000 °
 非球面データ
      非球面6*:
      K  : 0.000000
      A4 :-0.199777E-03
      A6 : 0.126929E-05
      A8 :-0.259688E-07
     A10 : 0.000000E+00
Aspheric data Aspheric surface 6 *:
K: 0.000000
A4: -0.199777E-03
A6: 0.126929E-05
A8: -0.259688E-07
A10: 0.000000E + 00
 実施例4
単位:mm
 面データ
面番号               r               d            材料名
   OB:              ∞              ∞
    1:        16.16531        0.010000            PE
    2:        16.15531        4.000000            KBr
    3:       124.87967        0.010000            PE
    4:       124.86967        2.637166
    5(ST):          ∞        4.047532
    6*:      -13.83649        0.030000            PE
    7:       -12.58750        4.000000            NaCl
    8:       -11.24155        0.010000            PE
    9:       -11.25155        6.212953
   10:        10.88550        0.010000            PE
   11:        10.87550        4.500000            KBr
   12:        84.64196        0.010000            PE
   13:        84.63196        0.833599
   14:              ∞        0.782095            Ge
   15:              ∞        4.766400
   IM:              ∞        0.000000
Example 4
Unit: mm
Surface data surface number r d Material name OB: ∞ ∞
1: 16.16531 0.010000 PE
2: 16.15531 4.000000 KBr
3: 124.87967 0.010000 PE
4: 124.86967 2.637166
5 (ST): ∞ 4.047532
6 *: -13.83649 0.030000 PE
7: -12.58750 4.000000 NaCl
8: -11.24155 0.010000 PE
9: -11.25155 6.212953
10: 10.88550 0.010000 PE
11: 10.87550 4.500000 KBr
12: 84.64196 0.010000 PE
13: 84.63196 0.833599
14: ∞ 0.782095 Ge
15: ∞ 4.766400
IM: ∞ 0.000000
 スペック
      設計波長    10000.0nm
      焦点距離f   17.6838
      FNO         1.1000
      全長        27.0933
      半画角      15.5000°
Spec Design wavelength 10000.0nm
Focal length f 17.6838
FNO 1.1000
Total length 27.0933
Half angle of view 15.5000 °
 非球面データ
      非球面6*:
      K  : 0.000000
      A4 :-0.220312E-03
      A6 : 0.262848E-05
      A8 :-0.373105E-07
     A10 : 0.000000E+00
Aspheric data Aspheric surface 6 *:
K: 0.000000
A4: -0.220312E-03
A6: 0.262848E-05
A8: -0.373105E-07
A10: 0.000000E + 00
 実施例5
単位:mm
 面データ
面番号               r               d            材料名
   OB:              ∞              ∞
    1:        19.79603        0.010000            PE
    2:        19.78603        4.000000            KBr
    3:       -31.11348        0.010000            PE
    4:       -31.12348        0.100000
    5(ST):          ∞        2.518416
    6#:      -11.54794        0.030000            PE
    7:       -11.57794        2.518416            KBr
    8:       -13.50903        0.010000            PE
    9:       -13.51903        9.622011
   10:         8.99551        0.010000            PE
   11:         8.98551        3.392883            KBr
   12:        44.47568        0.010000            PE
   13:        44.46568        0.628999
   14:              ∞        0.782095            Ge
   15:              ∞        4.209075
   IM:              ∞        0.000000
Example 5
Unit: mm
Surface data surface number r d Material name OB: ∞ ∞
1: 19.79603 0.010000 PE
2: 19.78603 4.000000 KBr
3: -31.11348 0.010000 PE
4: -31.12348 0.100000
5 (ST): ∞ 2.518416
6 #: -11.54794 0.030000 PE
7: -11.57794 2.518416 KBr
8: -13.50903 0.010000 PE
9: -13.51903 9.622011
10: 8.99551 0.010000 PE
11: 8.98551 3.392883 KBr
12: 44.47568 0.010000 PE
13: 44.46568 0.628999
14: ∞ 0.782095 Ge
15: ∞ 4.209075
IM: ∞ 0.000000
 スペック
      設計波長    10000.0nm
      焦点距離f   16.6196
      FNO         1.1000
      全長        23.6428
      半画角      15.5000
Spec Design wavelength 10000.0nm
Focal length f 16.6196
FNO 1.1000
Total length 23.6428
Half angle of view 15.5000
 回折格子面データ
      回折格子面6#:
      回折次数:    1.000000
      回折波長:    10000.00nm
      B2      :    -8.9680E-04
Diffraction grating plane data Diffraction grating plane 6 #:
Diffraction order: 1.000000
Diffraction wavelength: 10000.00nm
B2: -8.9680E-04
 実施例6
単位:mm
 面データ
面番号               r               d            材料名
   OB:              ∞              ∞
    1*#:      38.99978        0.030000            PE
    2:        38.96978        3.085728            NaCl
    3:     -3096.13384        0.010000            PE
    4:     -3096.14384        5.178473
    5*#:      13.63702        0.030000            PE
    6:        13.60702        2.500000            NaCl
    7:        15.71786        0.010000            PE
    8:        15.70786        5.701996
    9(ST):          ∞        7.196684
   10*#:      10.04766        0.030000            PE
   11:         9.96744        2.500000            NaCl
   12:        10.75369        0.010000            PE
   13:        10.74369        0.204423
   14*:       10.75984        0.030000            PE
   15:        10.72984        2.970754            NaCl
   16:      1140.62601        0.010000            PE
   17:      1140.61601        0.219847
   18:              ∞        0.782095            Ge
   19:              ∞        3.503308
   IM:              ∞        0.000000
Example 6
Unit: mm
Surface data surface number r d Material name OB: ∞ ∞
1 * #: 38.99978 0.030000 PE
2: 38.96978 3.085728 NaCl
3: -3096.13384 0.010000 PE
4: -3096.14384 5.178473
5 * #: 13.63702 0.030000 PE
6: 13.60702 2.500000 NaCl
7: 15.71786 0.010000 PE
8: 15.70786 5.701996
9 (ST): ∞ 7.196684
10 * #: 10.04766 0.030000 PE
11: 9.96744 2.500000 NaCl
12: 10.75369 0.010000 PE
13: 10.74369 0.204423
14 *: 10.75984 0.030000 PE
15: 10.72984 2.970754 NaCl
16: 1140.62601 0.010000 PE
17: 1140.61601 0.219847
18: ∞ 0.782095 Ge
19: ∞ 3.503308
IM: ∞ 0.000000
 スペック
      設計波長    10000.0nm
      焦点距離f   17.6879
      FNO         1.1000
      全長        30.5000
      半画角      15.5000°
Spec Design wavelength 10000.0nm
Focal length f 17.6879
FNO 1.1000
Total length 30.5000
Half angle of view 15.5000 °
 非球面データ
      非球面1*:
      K  : 0.000000
      A4 :-0.755616E-05
      A6 :-0.438474E-07
      A8 : 0.175040E-09
     A10 : 0.000000E+00
Aspheric data Aspheric surface 1 *:
K: 0.000000
A4: -0.755616E-05
A6: -0.438474E-07
A8: 0.175040E-09
A10: 0.000000E + 00
 非球面データ
      非球面5*:
      K  : 0.000000
      A4 :-0.594242E-04
      A6 : 0.160824E-05
      A8 :-0.116127E-07
     A10 : 0.000000E+00
Aspheric data Aspheric surface 5 *:
K: 0.000000
A4: -0.594242E-04
A6: 0.160824E-05
A8: -0.116127E-07
A10: 0.000000E + 00
 非球面データ
      非球面10*:
      K  : 0.000000
      A4 : 0.000000E+00
      A6 : 0.700646E-05
      A8 :-0.267079E-06
     A10 : 0.210065E-08
Aspheric data Aspheric surface 10 *:
K: 0.000000
A4: 0.000000E + 00
A6: 0.700646E-05
A8: -0.267079E-06
A10: 0.210065E-08
 非球面データ
      非球面14*:
      K  : 0.000000
      A4 :-0.499437E-03
      A6 : 0.105082E-04
      A8 :-0.319212E-08
     A10 : 0.000000E+00
Aspheric data Aspheric surface 14 *:
K: 0.000000
A4: -0.499437E-03
A6: 0.105082E-04
A8: -0.319212E-08
A10: 0.000000E + 00
 回折格子面データ
      回折格子面1#:
      回折次数:    1.000000
      回折波長:    10000.00nm
      B2      :    -1.7691E-03
Diffraction grating plane data Diffraction grating plane 1 #:
Diffraction order: 1.000000
Diffraction wavelength: 10000.00nm
B2: -1.7691E-03
 回折格子面データ
      回折格子面5#:
      回折次数:    1.000000
      回折波長:    10000.00nm
      B2      :    -2.1959E-03
Diffraction grating plane data Diffraction grating plane 5 #:
Diffraction order: 1.000000
Diffraction wavelength: 10000.00nm
B2: -2.1959E-03
 回折格子面データ
      回折格子面10#:
      回折次数:    1.000000
      回折波長:    10000.00nm
      B2      :    -9.1656E-03
Diffraction grating plane data Diffraction grating plane 10 #:
Diffraction order: 1.000000
Diffraction wavelength: 10000.00nm
B2: -9.1656E-03
 実施例7
単位:mm
 面データ
面番号               r               d            材料名
   OB:              ∞              ∞
    1*:        9.80068        0.030000            PE
    2:         9.77068        6.222632            KBr
    3:       125.53000        0.030000            PE
    4*:      125.50000        3.466049
    5(ST):          ∞        0.807162
    6*:      -23.30025        0.030000            PE
    7:       -23.33025        4.500000            KBr
    8:       -12.44062        0.030000            PE
    9*:      -12.47062        2.401918
   10:              ∞        0.782095            Ge
   11:              ∞        5.407036
   IM:              ∞        0.000000
Example 7
Unit: mm
Surface data surface number r d Material name OB: ∞ ∞
1 *: 9.80068 0.030000 PE
2: 9.77068 6.222632 KBr
3: 125.53000 0.030000 PE
4 *: 125.50000 3.466049
5 (ST): ∞ 0.807162
6 *: -23.30025 0.030000 PE
7: -23.33025 4.500000 KBr
8: -12.44062 0.030000 PE
9 *: -12.47062 2.401918
10: ∞ 0.782095 Ge
11: ∞ 5.407036
IM: ∞ 0.000000
 スペック
      設計波長    10000.0nm
      焦点距離f   17.6840
      FNO         1.1000
      全長        18.2999
      半画角      15.5000°
Spec Design wavelength 10000.0nm
Focal length f 17.6840
FNO 1.1000
Total length 18.2999
Half angle of view 15.5000 °
 非球面データ
      非球面1*:
      K  : 0.000000
      A4 :-0.512773E-04
      A6 : 0.719061E-06
      A8 :-0.159701E-07
     A10 : 0.000000E+00
Aspheric data Aspheric surface 1 *:
K: 0.000000
A4: -0.512773E-04
A6: 0.719061E-06
A8: -0.159701E-07
A10: 0.000000E + 00
 非球面データ
      非球面4*:
      K  : 0.000000
      A4 : 0.134409E-03
      A6 :-0.318764E-05
      A8 : 0.301769E-07
     A10 : 0.000000E+00
Aspheric data Aspheric surface 4 *:
K: 0.000000
A4: 0.134409E-03
A6: -0.318764E-05
A8: 0.301769E-07
A10: 0.000000E + 00
 非球面データ
      非球面6*:
      K  : 0.000000
      A4 : 0.000000E+00
      A6 :-0.170174E-04
      A8 : 0.756780E-06
     A10 :-0.888117E-08
Aspheric data Aspheric surface 6 *:
K: 0.000000
A4: 0.000000E + 00
A6: -0.170174E-04
A8: 0.756780E-06
A10: -0.888117E-08
 非球面データ
      非球面9*:
      K  : 0.000000
      A4 : 0.000000E+00
      A6 : 0.314293E-04
      A8 :-0.121623E-05
     A10 : 0.208014E-07
Aspheric data Aspheric 9 *:
K: 0.000000
A4: 0.000000E + 00
A6: 0.314293E-04
A8: -0.121623E-05
A10: 0.208014E-07
 実施例8
単位:mm
 面データ
面番号               r               d            材料名
   OB:              ∞              ∞
    1*:       12.65484        0.030000            PE
    2:        12.62484        5.598237            KBr
    3:        80.65113        0.030000            PE
    4*:       80.62113        8.197523
    5(ST):          ∞        4.252863
    6#:        9.77789        0.030000            PE
    7:         9.74789        3.890661            KBr
    8:        40.06229        0.030000            PE
    9#:       40.03229        0.457441
   10:              ∞        0.782095            Ge
   11:              ∞        3.499998
   IM:              ∞        0.000000
Example 8
Unit: mm
Surface data surface number r d Material name OB: ∞ ∞
1 *: 12.65484 0.030000 PE
2: 12.62484 5.598237 KBr
3: 80.65113 0.030000 PE
4 *: 80.62113 8.197523
5 (ST): ∞ 4.252863
6 #: 9.77789 0.030000 PE
7: 9.74789 3.890661 KBr
8: 40.06229 0.030000 PE
9 #: 40.03229 0.457441
10: ∞ 0.782095 Ge
11: ∞ 3.499998
IM: ∞ 0.000000
 スペック
      設計波長    10000.0nm
      焦点距離f   17.6842
      FNO         1.1000
      全長        23.2988
      半画角      15.5000
Spec Design wavelength 10000.0nm
Focal length f 17.6842
FNO 1.1000
Total length 23.2988
Half angle of view 15.5000
 非球面データ
      非球面1*:
      K  : 0.000000
      A4 :-0.917199E-05
      A6 : 0.227517E-06
      A8 :-0.440588E-08
     A10 : 0.000000E+00
Aspheric data Aspheric surface 1 *:
K: 0.000000
A4: -0.917199E-05
A6: 0.227517E-06
A8: -0.440588E-08
A10: 0.000000E + 00
 非球面データ
      非球面4*:
      K  : 0.000000
      A4 : 0.884917E-04
      A6 :-0.919709E-06
      A8 : 0.362242E-08
     A10 : 0.000000E+00
Aspheric data Aspheric surface 4 *:
K: 0.000000
A4: 0.884917E-04
A6: -0.919709E-06
A8: 0.362242E-08
A10: 0.000000E + 00
 回折格子面データ
      回折格子面6#:
      回折次数:    1.000000
      回折波長:    10000.00nm
      B2      :    -7.5507E-03
Diffraction grating plane data Diffraction grating plane 6 #:
Diffraction order: 1.000000
Diffraction wavelength: 10000.00nm
B2: -7.5507E-03
 回折格子面データ
      回折格子面9#:
      回折次数:    1.000000
      回折波長:    10000.00nm
      B2      :    7.9087E-03
Diffraction grating plane data Diffraction grating plane 9 #:
Diffraction order: 1.000000
Diffraction wavelength: 10000.00nm
B2: 7.9087E-03
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 LE  遠赤外線レンズ
 CR  レンズコア
 CT  被覆層
 DU  デジタル機器(カメラシステム)
 LU  撮像光学装置
 LN  撮影レンズ系
 L1~L4  第1~第4レンズ(遠赤外線レンズ)
 ST  絞り
 SR  撮像素子
 SS  受光面(撮像面)
 IM  像面(光学像)
 AX  光軸
 1  信号処理部
 2  制御部
 3  メモリー
 4  操作部
 5  表示部
LE Far-infrared lens CR Lens core CT Coating layer DU Digital equipment (camera system)
LU imaging optical device LN photographing lens system L1 to L4 first to fourth lens (far infrared lens)
ST Aperture SR Image sensor SS Photosensitive surface
IM image plane (optical image)
AX Optical axis 1 Signal processing unit 2 Control unit 3 Memory 4 Operation unit 5 Display unit

Claims (7)

  1.  遠赤外線帯で使用されるレンズであって、
     波長10μmに対する屈折率が1.74以下の無機結晶材料からなるレンズコアと、前記レンズコアの全体を比較的薄く覆う有機材料からなる被覆層と、を有し、
     前記レンズコアの少なくとも片面が球面からなり、少なくとも一方の球面上に位置する前記被覆層の表面に回折格子が設けられていることを特徴とするレンズ。
    A lens used in the far-infrared band,
    A lens core made of an inorganic crystal material having a refractive index with respect to a wavelength of 10 μm of 1.74 or less, and a coating layer made of an organic material that covers the entire lens core relatively thinly;
    A lens, wherein at least one surface of the lens core is a spherical surface, and a diffraction grating is provided on a surface of the coating layer located on at least one spherical surface.
  2.  遠赤外線帯で使用されるレンズであって、
     波長10μmに対する屈折率が1.74以下の無機結晶材料からなるレンズコアと、前記レンズコアの全体を比較的薄く覆う有機材料からなる被覆層と、を有し、
     前記レンズコアの両面が球面からなり、少なくとも一方の球面上に位置する前記被覆層の表面に非球面が設けられていることを特徴とするレンズ。
    A lens used in the far-infrared band,
    A lens core made of an inorganic crystal material having a refractive index with respect to a wavelength of 10 μm of 1.74 or less, and a coating layer made of an organic material that covers the entire lens core relatively thinly;
    2. The lens according to claim 1, wherein both surfaces of the lens core are spherical surfaces, and an aspheric surface is provided on a surface of the covering layer located on at least one spherical surface.
  3.  前記被覆層の厚さが、最も薄いところで10μm以上であり、最も厚いところで500μm以下であることを特徴とする請求項1又は2記載のレンズ。 3. The lens according to claim 1, wherein the thickness of the coating layer is 10 μm or more at the thinnest and 500 μm or less at the thickest.
  4.  前記被覆層の表面に設けられている非球面が、光軸から離れるほど正のパワーが弱くなる形状を有することを特徴とする請求項2記載のレンズ。 3. The lens according to claim 2, wherein the aspherical surface provided on the surface of the covering layer has a shape in which the positive power becomes weaker as the distance from the optical axis increases.
  5.  前記レンズコアを構成している無機結晶材料が、ほぼ純粋な結晶からなることを特徴とする請求項1~4のいずれか1項に記載のレンズ。 The lens according to any one of claims 1 to 4, wherein the inorganic crystal material constituting the lens core is made of a substantially pure crystal.
  6.  波長10μmに対する屈折率が1.74以下の無機結晶材料からなるレンズコアと、前記レンズコアの全体を比較的薄く覆う有機材料からなる被覆層と、を有する2枚以上のレンズからなり、そのうちの少なくとも1枚として、請求項1~5のいずれか1項に記載のレンズを含むことを特徴とする撮影レンズ系。 It comprises two or more lenses having a lens core made of an inorganic crystal material having a refractive index with respect to a wavelength of 10 μm of 1.74 or less, and a coating layer made of an organic material that covers the entire lens core relatively thinly, of which A photographic lens system comprising at least one lens according to any one of claims 1 to 5.
  7.  請求項6記載の撮影レンズ系を備えたことを特徴とするカメラシステム。 A camera system comprising the photographic lens system according to claim 6.
PCT/JP2014/069343 2013-08-28 2014-07-22 Far infrared lens, photographing lens system and camera system WO2015029645A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015534083A JPWO2015029645A1 (en) 2013-08-28 2014-07-22 Far-infrared lens, photographing lens system and camera system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-177092 2013-08-28
JP2013177092 2013-08-28

Publications (1)

Publication Number Publication Date
WO2015029645A1 true WO2015029645A1 (en) 2015-03-05

Family

ID=52586220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069343 WO2015029645A1 (en) 2013-08-28 2014-07-22 Far infrared lens, photographing lens system and camera system

Country Status (2)

Country Link
JP (1) JPWO2015029645A1 (en)
WO (1) WO2015029645A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017211581A (en) * 2016-05-27 2017-11-30 三菱電機株式会社 Image forming optical system
EP3385768A4 (en) * 2015-12-03 2018-12-05 Kyocera Optec Co., Ltd. Infrared image-forming lens
WO2023013574A1 (en) * 2021-08-03 2023-02-09 日本電気硝子株式会社 Lens unit, optical system, and spectral characteristic measuring device
WO2023032551A1 (en) * 2021-08-31 2023-03-09 日本電気硝子株式会社 Lens unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6441956B1 (en) * 1999-07-08 2002-08-27 C.R.F. Societa Consortile Per Azione Optical element designed to operate in transmission in the infrared spectrum, provided with a high-density-polyethylene coating
JP2010204245A (en) * 2009-03-02 2010-09-16 Panasonic Corp Infrared optical element
JP2013080130A (en) * 2011-10-04 2013-05-02 Sony Corp Infrared optical system and infrared imaging device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6441956B1 (en) * 1999-07-08 2002-08-27 C.R.F. Societa Consortile Per Azione Optical element designed to operate in transmission in the infrared spectrum, provided with a high-density-polyethylene coating
JP2010204245A (en) * 2009-03-02 2010-09-16 Panasonic Corp Infrared optical element
JP2013080130A (en) * 2011-10-04 2013-05-02 Sony Corp Infrared optical system and infrared imaging device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3385768A4 (en) * 2015-12-03 2018-12-05 Kyocera Optec Co., Ltd. Infrared image-forming lens
US11119298B2 (en) 2015-12-03 2021-09-14 Kyocera Corporation Infrared imaging lens system
JP2017211581A (en) * 2016-05-27 2017-11-30 三菱電機株式会社 Image forming optical system
WO2023013574A1 (en) * 2021-08-03 2023-02-09 日本電気硝子株式会社 Lens unit, optical system, and spectral characteristic measuring device
WO2023032551A1 (en) * 2021-08-31 2023-03-09 日本電気硝子株式会社 Lens unit

Also Published As

Publication number Publication date
JPWO2015029645A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
US7957074B2 (en) Imaging lens system and imaging apparatus using the imaging lens system
JP5335710B2 (en) Imaging lens and imaging apparatus
US8611024B2 (en) Image pickup lens and image pickup apparatus
JP5466569B2 (en) Imaging lens and imaging apparatus
JP5566780B2 (en) Infrared imaging lens and imaging device
JP5152879B2 (en) Wide-angle imaging lens and optical device
JP6066424B2 (en) Imaging lens and imaging apparatus
JP2011138083A (en) Imaging lens and imaging apparatus
JP5450023B2 (en) Imaging lens and imaging apparatus using the imaging lens
JP5102096B2 (en) Imaging lens and imaging apparatus using the imaging lens
JP2011107593A (en) Imaging lens and imaging device
JP6191628B2 (en) Imaging optical system, imaging optical device and digital equipment
JP2011158868A (en) Imaging lens and imaging device
JP5517568B2 (en) Optical element and optical system having the same
JPWO2009153953A1 (en) Two-disc imaging optical system and imaging apparatus including the same
WO2017090495A1 (en) Infrared optical system, image pickup optical device, and digital apparatus
KR101157398B1 (en) Photographic lens optical system
KR20120094729A (en) Photographic lens optical system
JP2010276752A (en) Wide angle lens
WO2015029645A1 (en) Far infrared lens, photographing lens system and camera system
JP2015132710A (en) Far-infrared lens, image capturing lens system, and camera system
WO2016121857A1 (en) Far-infrared lens system, optical imaging device, and digital apparatus
JP6848967B2 (en) Infrared optics, imaging optics and digital equipment
JP6222116B2 (en) Imaging optical system, imaging optical device and digital equipment
JP6145888B2 (en) Imaging lens and imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840169

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534083

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14840169

Country of ref document: EP

Kind code of ref document: A1