WO2017090495A1 - Infrared optical system, image pickup optical device, and digital apparatus - Google Patents

Infrared optical system, image pickup optical device, and digital apparatus Download PDF

Info

Publication number
WO2017090495A1
WO2017090495A1 PCT/JP2016/083967 JP2016083967W WO2017090495A1 WO 2017090495 A1 WO2017090495 A1 WO 2017090495A1 JP 2016083967 W JP2016083967 W JP 2016083967W WO 2017090495 A1 WO2017090495 A1 WO 2017090495A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
infrared
group
image
Prior art date
Application number
PCT/JP2016/083967
Other languages
French (fr)
Japanese (ja)
Inventor
誠 神
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017552374A priority Critical patent/JPWO2017090495A1/en
Publication of WO2017090495A1 publication Critical patent/WO2017090495A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to an infrared optical system, an imaging optical device, and a digital device.
  • an infrared optical system for gas detection used as a photographing optical system in the infrared region of the wavelength band of 3 to 5 ⁇ m
  • an imaging optical device that captures an infrared image obtained by the infrared optical system with an imaging sensor such as a cooling sensor
  • a digital device with an image input function equipped with an infrared optical system.
  • the absorption wavelength band peculiar to hydrocarbon substances such as methane, ethane, propane, and butane is gathered around the wavelength range of 3 to 5 ⁇ m.
  • these hydrocarbon-based substances are gases at room temperature and there is a danger of ignition, handling is required with care. Therefore, in recent years, it has been performed to detect a gas leak or the like that cannot be captured by visible light by photographing the contrast difference due to the absorption with an infrared camera.
  • the wavelength range of 3 to 5 ⁇ m is a region where the amount of light from sunlight is small and the amount of light emitted from an object is also small, so that even a small amount of light can be taken with high sensitivity by cooling the sensor. ing. Therefore, an infrared optical system that can be mounted on a cooling sensor and has good S / N ratio and optical performance is desired.
  • Patent Document 2 proposes an infrared optical system including four or five lenses, and a cold shield is disposed between the third lens and the image plane in order to cope with a cooling sensor. Also, in order to achieve a wide field angle of 2 ⁇ 120 degrees, the first lens has strong power to bend off-axis rays strongly, and spherical aberration, astigmatism, distortion, etc. generated there. Is corrected by a second lens as an aberration correction plate.
  • the present invention has been made in view of such a situation, and an object of the present invention is to be mounted on a cooling sensor and achieve a high S / N ratio and high optical performance with a relatively small number of lenses of three. It is an object of the present invention to provide an infrared optical system, an imaging optical device including the infrared optical system, and a digital apparatus.
  • an infrared optical system includes, in order from an object side to an image side, a first group having negative power and a second group having positive power. Because A diaphragm is disposed between the second group and the image plane;
  • the first group includes a first lens composed of a negative single lens having an aspheric surface on at least one surface,
  • the second group includes a second lens composed of a positive meniscus lens concave on the object side, and a third lens composed of a positive meniscus lens convex on the object side, The following conditional expressions (1) and (2) are satisfied.
  • An imaging optical device of the present invention includes the infrared optical system and an imaging sensor that converts an infrared optical image formed on an imaging surface into an electrical signal, and an object on the imaging surface of the imaging sensor.
  • the infrared optical system is provided so that an infrared optical image is formed.
  • the digital apparatus is characterized in that at least one of a still image shooting and a moving image shooting of a subject is added by providing the imaging optical device.
  • the infrared camera system according to the present invention includes the infrared optical system.
  • an infrared optical system and an imaging optical device that can be mounted on a cooling sensor and achieve a high S / N ratio and high optical performance with a relatively small number of lenses of three. it can.
  • the infrared optical system or the imaging optical device according to the present invention is used in a digital device such as a gas detection device or a camera system (for example, a monitoring camera or an aircraft camera), thereby enabling high-performance infrared image input to the digital device. Functions can be added at low cost.
  • FIG. 6 is an aberration diagram of Example 1.
  • FIG. 6 is an aberration diagram of Example 2.
  • FIG. 6 is an aberration diagram of Example 3.
  • FIG. 6 is an aberration diagram of Example 4.
  • FIG. 6 is an aberration diagram of Example 5.
  • FIG. 10 is an aberration diagram of Example 6.
  • FIG. 10 is an aberration diagram of Example 7.
  • FIG. 10 is an aberration diagram of Example 8.
  • Sectional drawing which shows the schematic structural example of a cold shield. Sectional drawing for demonstrating the infrared cut by a cold door aperture.
  • the schematic diagram which shows the schematic structural example of the digital apparatus carrying the optical system for infrared rays.
  • An infrared optical system is an infrared imaging optical system including a first group having negative power and a second group having positive power in order from the object side to the image side. (Power: an amount defined by the reciprocal of the focal length), a stop is disposed between the second group and the image plane, and the first group is composed of a negative single lens having an aspheric surface on at least one surface.
  • the second lens unit includes a second lens made up of a positive meniscus lens that is concave on the object side, and a third lens made up of a positive meniscus lens that is convex on the object side. It is characterized by satisfying the expressions (1) and (2). 1 ⁇ f23 / FL ⁇ 1.2 (1) 0.9 ⁇ t2 / FL ⁇ 1.7 (2) However, f23: focal length of the second group, FL: focal length of the entire system, t2: the distance on the optical axis from the image side surface of the first lens to the object side surface of the second lens, It is.
  • a diaphragm can be disposed between the third lens and the image plane.
  • the infrared optical system examples include an infrared photographing optical system using a wavelength band of 3 to 5 ⁇ m.
  • infrared rays in the 3-5 ⁇ m wavelength band are significantly less than visible light in the light emitted from the sun, and in the 8-14 ⁇ m wavelength band in the light emitted from the surrounding environment such as the ground.
  • the so-called far infrared Therefore, it is difficult to shoot using a so-called uncooled sensor used for shooting in the visible light or far-infrared region, and it is necessary to detect a small amount of light using the cooling sensor.
  • Specific examples of the cooling sensor include so-called quantum sensors using indium antimonide (InSb), platinum silicon (PtSi), cadmium mercury telluride (HgCdTe), or the like as element materials.
  • FIG. 17 shows a schematic configuration example of the cold shield.
  • the cold shield CS is composed of a vacuum vessel, and a diaphragm ST is formed by a part of the cold shield CS.
  • the aperture stop ST, the band pass filter BPF, and the cooling sensor SR are set and cooled in a cold shield CS sealed by a window WI that transmits infrared rays.
  • a window WI transmits infrared rays.
  • Structuring the first lens with a single lens has an effect of suppressing the occurrence of inter-surface reflection.
  • Light rays are incident on the first group at various angles from the outside. If a plurality of lenses are arranged here, inter-surface reflection is likely to occur. It may enter the imaging sensor and cause a decrease in the S / N ratio. If the first lens is a single lens, this can be prevented.
  • the second lens and the third lens have an effect of correcting spherical aberration and coma with a good balance.
  • the second lens and the third lens have a bright F value and are arranged relatively close to the stop. Therefore, there is not much difference between the passing positions of the on-axis light beam and the off-axis light beam.
  • the surface shapes of the second and third lenses are set as described above, it is possible to make a difference in the passing state of the surface of the axial light beam and the off-axis light beam, so that it is easy to correct the axial aberration and the off-axis aberration at the same time. . Therefore, even when the stop is disposed between the third lens and the image plane, it is possible to achieve both correction of spherical aberration and coma aberration.
  • aspherical surfaces There are two types of preferable aspherical surfaces arranged on the first lens.
  • an aspherical surface is disposed on one side of the first lens (Examples 2, 3, and 6 to be described later)
  • the curvature becomes gentler (that is, the radius of curvature becomes larger) from the center of the first lens to the periphery.
  • An aspheric surface having such a shape is preferable.
  • aspherical surfaces are disposed on both surfaces of the first lens (Examples 1, 4, 5, 7, and 8 to be described later)
  • the curvature of each surface increases toward the periphery (that is, the radius of curvature decreases).
  • An aspheric surface having such a shape is preferable.
  • Conditional expression (1) defines the condition range regarding the power of the second group. If the upper limit of conditional expression (1) is not reached, an appropriate power can be given to the second lens group, and the effect of configuring retrofocus can be obtained without increasing the overall length. If the lower limit of conditional expression (1) is surpassed, the power of the second group is suppressed, so that an effect of suppressing the occurrence of aberrations occurring in the second group and correcting favorably only by the first group is obtained. Further, when the power of the second group is within the range of the conditional expression (1), the distance between the first group and the second group can be appropriately maintained while ensuring a sufficient back focus. If the distance between the first group and the second group is too narrow, inter-surface reflection occurs, and the S / N ratio deteriorates in a highly sensitive cooling sensor.
  • Conditional expression (2) defines a condition range regarding the first and second lens intervals. When less than the upper limit of conditional expression (2), the effect of suppressing the increase in the total length is obtained. If the lower limit of conditional expression (2) is exceeded, the lens interval between the first group and the second group is moderately separated, so that an effect of suppressing the occurrence of inter-surface reflection can be obtained. Further, if the distance between the first and second lenses is within the range of the conditional expression (2), it is possible to secure the back focus without increasing the power of each group excessively or increasing the total length. Become.
  • an infrared optical system that can be mounted on a cooling sensor and achieves a high S / N ratio and high optical performance with a relatively small number of lenses, such as three, and an imaging optical device including the same Can be realized.
  • the infrared optical system or imaging optical device is used in a digital device such as a gas detection device or a camera system (for example, a surveillance camera or an aircraft camera), thereby providing a high-performance infrared image input function for the digital device at a low price. It is possible to contribute to the reduction in cost, performance and functionality of digital equipment.
  • An infrared optical system compatible with a cooling sensor can be realized with three lenses while achieving a good balance between S / N ratio and optical performance as described above. Desirable condition settings and the like for achieving light weight and downsizing will be described below.
  • the first lens is an aspheric lens made of germanium (Ge) or silicon (Si), and the second and third lenses are both spherical lenses made of silicon.
  • a material having a high refractive index such as silicon or germanium is used, an incident angle and a reflection angle with respect to the lens can be reduced, and an effect of suppressing the amount of aberration generated on each lens surface can be obtained. If the amount of aberration generated on each lens surface is large, it is necessary to arrange a large number of lenses in order to correct the aberration. As a result, the inter-surface reflection increases and the S / N ratio deteriorates.
  • a glass material having a high transmittance and refractive index in the wavelength band of 3 to 5 ⁇ m it is germanium or silicon.
  • aspherical processing is performed on germanium or silicon, it is necessary to perform grinding processing, which increases processing time and costs. Since a spherical lens can be polished, mass production is possible while reducing costs.
  • the first lens is a negative meniscus lens.
  • a negative meniscus lens has the functions of both a positive lens and a negative lens. By using this, the generation of spherical aberration can be suppressed. And there exists an effect which prevents that correction
  • Conditional expression (3) defines a preferable condition range regarding the power ratio between the negative first group and the positive second group. If the upper limit of conditional expression (3) is exceeded, the power of the first group can be appropriately given to the second group, and the effect of reducing the distance between the first group and the second group can be obtained. If the lower limit of conditional expression (3) is exceeded, the occurrence of aberrations in the second group can be suppressed, and aberrations can be corrected favorably in the first group. Further, when the negative / positive power ratio is within the range of the conditional expression (3), it is possible to suppress the entire length while reducing the occurrence of distortion.
  • Conditional expression (4) defines a preferable condition range regarding back focus. If the upper limit of conditional expression (4) is not reached, the power of each group constituting the retrofocus can be suppressed, and as a result, the occurrence of aberrations in each group can be effectively suppressed. If the lower limit of conditional expression (4) is exceeded, a sufficient space for arranging the cold shield between the lens and the sensor can be effectively secured. If the back focus is within the range of the conditional expression (4), it is easy to secure a space for arranging the cold shield between the lens and the sensor, and conversely, aberration caused by intentionally extending the back focus. There is relatively little deterioration.
  • a band pass filter is disposed between the third lens and the image plane, and the band pass filter has a characteristic of transmitting only light having a wavelength of 3.1 to 3.5 ⁇ m.
  • the wavelength band of 3-5 ⁇ m there are absorption wavelength bands for various hydrocarbon substances such as methane.
  • an optical system in this wavelength band is required. is necessary.
  • the band pass filter can be disposed in the vicinity of the cold aperture, so that the band pass filter can be cooled in the same manner as the cold aperture. It becomes possible. By cooling the bandpass filter, the effect of reducing the emitted light from the bandpass filter to a minimum can be obtained. Therefore, a band pass filter may be arranged on the image side of the cold door aperture, and a band pass filter may be arranged on the object side of the cold door aperture.
  • the bandpass filter has a characteristic of transmitting only light having a wavelength of 3.2 to 3.4 ⁇ m. If it is a band-pass filter having this transmission characteristic, the effect based on the above viewpoint can be further increased.
  • the F-number is smaller than 1.7 (Fno ⁇ 1.7) for an infrared imaging optical system using a wavelength band of 3 to 5 ⁇ m.
  • none of the surfaces of the first, second, and third lenses have a surface relief-like diffractive surface or a Fresnel surface.
  • chromatic aberration is corrected using a diffractive surface.
  • diffracted light due to higher-order terms tends to become ghost light and flare components.
  • a standing wall is inevitably generated.
  • reflection and refraction at the standing wall cause ghost light and flare components similar to those described above. Since the cooling sensor has high sensitivity, the unnecessary light may cause a large noise and reduce the S / N ratio. This is not limited to a surface relief-like diffractive surface, but also applies to a Fresnel surface.
  • An infrared optical system is suitable for use as an imaging optical system for a digital device with an infrared image input function (for example, a gas leak detection system with an infrared camera).
  • an infrared imaging optical device that optically captures an infrared image of a subject and outputs it as an electrical signal can be configured.
  • the imaging optical device is an optical device that constitutes a main component of a camera used for still image shooting or moving image shooting of an object.
  • an infrared optical device that forms an infrared optical image of an object in order from the object (ie, object) side.
  • an imaging sensor e.g., corresponding to a cooling sensor
  • an imaging sensor that converts an infrared optical image formed by the infrared optical system into an electrical signal.
  • the infrared optical system having the above-described characteristic configuration is arranged so that an infrared optical image of the subject is formed on the light receiving surface (that is, the imaging surface) of the imaging sensor.
  • An imaging optical device having performance and a digital device including the same can be realized.
  • Examples of digital devices with an infrared image input function include infrared cameras, surveillance cameras, aircraft cameras, marine cameras, fire detection cameras, etc., as well as gas detection devices, gas leak detection systems, night vision devices, and thermography. , Infrastructure monitoring systems (high-voltage power lines, monitoring of abnormal heat sources in factories and plants, monitoring of deterioration of structures, etc.).
  • an infrared camera system be configured by using an imaging optical device for infrared rays, but also an infrared camera function, night vision function, It is possible to add a temperature measurement function or the like.
  • a gas detector with an infrared camera equipped with an infrared image input function that captures the contrast difference due to infrared absorption in the absorption wavelength band specific to hydrocarbon substances (methane, ethane, propane, butane, etc.) By doing so, it is possible to detect a gas leak or the like that cannot be captured by visible light.
  • FIG. 19 shows a schematic configuration example of the digital device DU in a schematic cross section.
  • the imaging optical device LU mounted on the digital device DU shown in FIG. 19 includes an infrared optical system LN (AX: optical axis) that forms an infrared optical image (image plane) IM of an object in order from the object (namely, subject) side. ) And an imaging sensor (cooling sensor) SR that converts the optical image IM formed on the light receiving surface (imaging surface) SS by the infrared optical system LN into an electrical signal.
  • AX optical axis
  • a plane parallel plate other than the bandpass filter built in the infrared optical system LN may be arranged as necessary.
  • a window WI (FIGS. 17 and 18) may be disposed in the vicinity of the cold door aperture in order to seal the cold shield CS (FIGS. 17 and 18) constituting the cooling unit CU.
  • a cover member or window material that transmits infrared light having a wavelength of 3 to 5 ⁇ m may be disposed outside the first lens located closest to the object side.
  • the imaging optical device LU is usually disposed inside the body. It is possible to adopt.
  • the unitized imaging optical device LU can be configured to be detachable or rotatable with respect to the main body of the digital device DU.
  • the digital device DU includes a signal processing unit 1, a control unit 2, a memory 3, an operation unit 4, a display unit 5 and the like in addition to the imaging optical device LU.
  • the signal generated by the image sensor SR is subjected to predetermined digital image processing, image compression processing, and the like as required by the signal processing unit 1 and recorded as a digital video signal in the memory 3 (semiconductor memory, optical disk, etc.) In some cases, it is transmitted to other devices via a cable or converted into an infrared signal or the like (for example, a communication function of a mobile phone).
  • the control unit 2 is composed of a microcomputer, and controls functions such as a shooting function (still image shooting function, moving image shooting function, etc.), an image reproduction function, etc .; control of a lens moving mechanism for focusing, etc. .
  • the control unit 2 controls the imaging optical device LU so as to perform at least one of still image shooting and moving image shooting of a subject.
  • the display unit 5 includes a display such as a liquid crystal monitor, and performs image display using an image signal converted by the imaging sensor SR or image information recorded in the memory 3.
  • the operation unit 4 is a part including operation members such as an operation button (for example, a release button) and an operation dial (for example, a shooting mode dial), and transmits information input by the operator to the control unit 2.
  • the second lens L2 is made of silicon.
  • the first lens L2 is made of silicon.
  • the lens L1 is made of germanium.
  • the first lens L1 is made of silicon.
  • aspheric surfaces are arranged on both surfaces of the first lens L1, and in the second, third, and sixth embodiments, An aspherical surface is disposed only on the object side surface of one lens L1.
  • the first lens L1 is a negative meniscus lens convex toward the object side.
  • the first lens L1 is concave toward the object side.
  • the first group includes a first lens composed of a negative single lens having an aspheric surface on at least one surface
  • the second group includes a second lens composed of a positive meniscus lens concave on the object side, and a third lens composed of a positive meniscus lens convex on the object side,
  • An infrared optical system satisfying the following conditional expressions (1) and (2); 1 ⁇ f23 / FL ⁇ 1.2 (1) 0.9 ⁇ t2 / FL ⁇ 1.7 (2)
  • f23 focal length of the second group
  • FL focal length of the entire system
  • t2 the distance on the optical axis from the image side surface of the first lens to the object side surface of the second lens
  • (# 2) The infrared ray according to (# 1), wherein the first lens is an aspherical lens made of germanium or silicon, and the second and third lenses are both spherical lenses made of silicon.
  • Optical system The infrared ray according to (# 1), wherein the first lens is an aspherical lens made of germanium or silicon, and the second and third lenses are both spherical lenses made of silicon.
  • (# 3) The infrared optical system according to (# 1) or (# 2), wherein the first lens is a negative meniscus lens.
  • (# 5) The infrared optical system according to any one of (# 1) to (# 4), wherein the following conditional expression (4) is satisfied; 1.0 ⁇ BF / FL ⁇ 1.8 (4) However, BF: air conversion length from the image side surface of the third lens to the image surface, FL: focal length of the entire system, It is.
  • a band-pass filter is disposed between the third lens and the image plane, and the band-pass filter has a characteristic of transmitting only light having a wavelength of 3.1 to 3.5 ⁇ m.
  • the infrared optical system according to any one of (# 1) to (# 5).
  • (# 8) The infrared optical system according to any one of (# 1) to (# 7), wherein the aperture is a cold door aperture formed of a part of a cold shield.
  • (# 9) the infrared optical system according to any one of (# 1) to (# 8), an imaging sensor that converts an infrared optical image formed on the imaging surface into an electrical signal, And an infrared optical system is provided so that an infrared optical image of a subject is formed on an imaging surface of the imaging sensor.
  • (# 10) A digital apparatus provided with the imaging optical device according to (# 9), to which at least one function of still image shooting and moving image shooting of a subject is added.
  • (# 11) An infrared camera system comprising the infrared optical system according to any one of (# 1) to (# 8).
  • Examples 1 to 8 (EX1 to 8) listed here are numerical examples corresponding to the first to eighth embodiments, respectively, and are lens configuration diagrams showing the first to eighth embodiments. (FIG. 1, FIG. 3,..., FIG. 15) show the lens cross-sectional shape, lens arrangement, and the like of the corresponding Examples 1 to 8, respectively.
  • the dispersion value ⁇ for a wavelength of 3 to 5 ⁇ m.
  • Table 1 shows refractive indexes N5, N4, N3.3, N3 and dispersion value ⁇ of silicon (Si) and germanium (Ge).
  • z (C ⁇ h 2 ) / [1 + ⁇ ⁇ 1 ⁇ (1 + K) ⁇ C 2 ⁇ h 2 ⁇ ] + ⁇ (Ai ⁇ h i ) (AS)
  • z the amount of sag in the direction of the optical axis AX at the position of the height h (based on the surface vertex)
  • C curvature at the surface vertex (reciprocal of paraxial radius of curvature R)
  • K conic constant
  • Ai i-th order aspheric coefficient ( ⁇ represents the sum of 4th order to ⁇ order for i), It is.
  • Table 2 shows various data as focal length FL (mm), F number (Fno), total angle of view 2 ⁇ (°), total lens length TT (mm), back focus BF (mm), and image height Y ′.
  • Mm focal length f1 (mm) of the first lens L1, focal length f2 (mm) of the second lens L2, focal length f3 (mm) of the third lens L3, focal length f23 of the second group Gr2 (mm) ), And a distance t2 (mm) between the first lens L1 and the second lens L2, and Table 3 shows values corresponding to the conditional expressions of the respective examples (all are values at a wavelength of 3.3 ⁇ m).
  • the back focus BF in Table 2 expresses the distance from the lens final surface to the paraxial image plane by the air conversion length (the flat portions such as the window WI and the bandpass filter BPF are converted to the air conversion length. )),
  • the total lens length TT is obtained by adding the back focus BF to the distance from the lens front surface (the object side surface of the first lens L1) to the lens final surface.
  • FIG. 16 are aberration diagrams corresponding to Examples 1 to 8 (EX1 to 8), respectively, (A) is a spherical aberration diagram, (B) is an astigmatism diagram, and (C ) Is a distortion diagram.
  • the spherical aberration diagram shows the amount of spherical aberration at the design wavelength (evaluation wavelength) of 3.3 ⁇ m indicated by the solid line, the amount of spherical aberration at the wavelength of 3.0 ⁇ m indicated by the alternate long and short dash line, and the amount of spherical aberration at the wavelength of 3.5 ⁇ m indicated by the broken line.
  • the vertical axis represents the F number.
  • the broken line T is the tangential image plane at the design wavelength of 3.3 ⁇ m
  • the solid line S is the sagittal image plane at the design wavelength of 3.3 ⁇ m
  • the vertical axis represents the half angle of view ⁇ (°).
  • the horizontal axis represents the distortion (%) at the design wavelength of 3.3 ⁇ m
  • the vertical axis represents the half angle of view ⁇ (°).
  • Example 1 Unit mm Surface data Surface number R d N3.3 ⁇ 1 (OB) ⁇ ⁇ 2 * 50.203 4.000 4.036 103 3 * 37.945 37.244 4 -133.554 9.300 3.433 234 5 -68.805 0.200 6 95.739 3.216 3.433 234 7 336.082 14.000 8 ⁇ 1.000 3.433 234 (WI) 9 ⁇ 1.500 10 ⁇ 0.500 3.433 234 (BPF) 11 ⁇ 0.000 12 (ST) ⁇ 19.040 13 (IM) ⁇
  • Example 2 Unit mm Surface data Surface number R d N3.3 ⁇ 1 (OB) ⁇ ⁇ 2 * -35.370 3.000 4.036 103 3 -61.939 19.364 4 -59.293 5.000 3.433 234 5 -44.123 0.300 6 58.917 4.824 3.433 234 7 164.599 13.500 8 ⁇ 1.500 3.433 234 (WI) 9 ⁇ 1.500 10 (ST) ⁇ 0.000 11 ⁇ 1.000 3.433 234 (BPF) 12 ⁇ 19.500 13 (IM) ⁇
  • Example 4 Unit mm Surface data Surface number R d N3.3 ⁇ 1 (OB) ⁇ ⁇ 2 * 51.871 4.241 4.036 103 3 * 38.722 34.748 4 -84.015 7.015 3.433 234 5 -48.319 0.300 6 48.870 6.197 3.433 234 7 60.274 10.000 8 ⁇ 1.000 3.433 234 (WI) 9 ⁇ 1.500 10 ⁇ 0.500 3.433 234 (BPF) 11 ⁇ 0.000 12 (ST) ⁇ 19.500 13 (IM) ⁇
  • Example 6 Unit mm Surface data Surface number R d N3.3 ⁇ 1 (OB) ⁇ ⁇ 2 * 188.402 3.000 4.036 103 3 71.688 24.959 4 -86.152 4.660 3.433 234 5 -43.985 0.300 6 35.913 8.524 3.433 234 7 34.731 10.000 8 ⁇ 1.000 3.433 234 (WI) 9 ⁇ 1.500 10 ⁇ 0.500 3.433 234 (BPF) 11 ⁇ 0.000 12 (ST) ⁇ 19.071 13 (IM) ⁇
  • Example 7 Unit mm Surface data Surface number R d N3.3 ⁇ 1 (OB) ⁇ ⁇ 2 * 70.573 5.803 4.036 103 3 * 47.633 30.267 4 -48.733 3.480 3.433 234 5 -33.906 0.300 6 46.064 2.787 3.433 234 7 67.615 8.000 8 ⁇ 1.000 3.433 234 (WI) 9 ⁇ 1.500 10 ⁇ 0.500 3.433 234 (BPF) 11 ⁇ 0.000 12 (ST) ⁇ 19.000 13 (IM) ⁇
  • Example 8 Unit mm Surface data Surface number R d N3.3 ⁇ 1 (OB) ⁇ ⁇ 2 * 140.751 3.000 4.036 103 3 * 102.721 28.393 4 -91.480 2.860 3.433 234 5 -46.503 0.300 6 31.616 5.288 3.433 234 7 30.324 8.000 8 ⁇ 1.000 3.433 234 (WI) 9 ⁇ 1.500 10 ⁇ 0.500 3.433 234 (BPF) 11 ⁇ 0.000 12 (ST) ⁇ 19.159 13 (IM) ⁇
  • Cooling unit LN Infrared optical system Gr1 First group Gr2 Second group L1 First lens L2 Second lens L3 Third lens ST Aperture (cold aperture) CS Cold shield WI Window BPF Bandpass filter SR Imaging sensor (cooling sensor) SS Photosensitive surface (imaging surface) IM image plane (optical image) AX Optical axis 1 Signal processing unit 2 Control unit 3 Memory 4 Operation unit 5 Display unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Lenses (AREA)
  • Lens Barrels (AREA)
  • Blocking Light For Cameras (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)

Abstract

An infrared optical system of the present invention is configured from a negative first group and a positive second group, which are sequentially disposed from the object side to the image side. A diaphragm is disposed between the second group and an image surface, the first group consists of a first lens configured from a negative single lens having at least one aspheric surface, the second group consists of a second lens configured from a positive meniscus lens having a concave surface on the object side, and a third lens configured from a positive meniscus lens having a convex surface on the object side, and conditional formulae of 1<f23/FL<1.2 and 0.9<t2/FL<1.7 (f23: focal point distance of the second group, FL: focal point distance of the whole system, t2: on-optical axis distance from the first lens image-side surface to the second lens object-side surface) are satisfied.

Description

赤外線用光学系,撮像光学装置及びデジタル機器Infrared optical system, imaging optical device, and digital equipment
 本発明は、赤外線用光学系,撮像光学装置及びデジタル機器に関するものである。例えば、波長3~5μm帯の赤外線領域で撮影光学系として使用されるガス検知用の赤外線用光学系と、赤外線用光学系により得られた赤外線映像を冷却センサー等の撮像センサーで取り込む撮像光学装置と、赤外線用光学系を搭載した画像入力機能付きデジタル機器と、に関するものである。 The present invention relates to an infrared optical system, an imaging optical device, and a digital device. For example, an infrared optical system for gas detection used as a photographing optical system in the infrared region of the wavelength band of 3 to 5 μm, and an imaging optical device that captures an infrared image obtained by the infrared optical system with an imaging sensor such as a cooling sensor And a digital device with an image input function equipped with an infrared optical system.
 メタン,エタン,プロパン,ブタン等の炭化水素系の物質に特有の吸収波長帯は、波長3~5μm帯のあたりに集まっていることが知られている。また、これらの炭化水素系の物質は、常温で気体でありかつ引火の危険性があるため、取り扱いには注意を要する。そのため近年では、これらの吸収によるコントラスト差を赤外線カメラで撮影することにより、可視光では捕らえられないガス漏れ等を検知することが行われつつある。また、波長3~5μm帯は、太陽光からの光量が少なく物体から放射される光量も少ない領域であるため、センサーを冷却することで少量の光であっても感度良く撮影することが行われている。そこで、冷却センサーに搭載可能でS/N比及び光学性能の良好な赤外線用光学系が望まれている。 It is known that the absorption wavelength band peculiar to hydrocarbon substances such as methane, ethane, propane, and butane is gathered around the wavelength range of 3 to 5 μm. In addition, since these hydrocarbon-based substances are gases at room temperature and there is a danger of ignition, handling is required with care. Therefore, in recent years, it has been performed to detect a gas leak or the like that cannot be captured by visible light by photographing the contrast difference due to the absorption with an infrared camera. In addition, the wavelength range of 3 to 5 μm is a region where the amount of light from sunlight is small and the amount of light emitted from an object is also small, so that even a small amount of light can be taken with high sensitivity by cooling the sensor. ing. Therefore, an infrared optical system that can be mounted on a cooling sensor and has good S / N ratio and optical performance is desired.
 赤外線用光学系としては、例えば特許文献1,2に記載のものが挙げられる。特許文献1には、物体側に凸の負メニスカス形状を有する第1レンズと、物体側に凹の正メニスカス形状を有する第2レンズと、物体側に凸の正メニスカス形状を有する第3レンズと、の3枚で構成された赤外線用光学系が提案されている。絞りは第2,第3レンズ間に配置されており、8~14μmのいわゆる遠赤外線帯で良好な光学性能を達成している。 Examples of infrared optical systems include those described in Patent Documents 1 and 2. Patent Document 1 discloses a first lens having a negative meniscus shape convex on the object side, a second lens having a positive meniscus shape concave on the object side, and a third lens having a positive meniscus shape convex on the object side. An optical system for infrared rays composed of three is proposed. The diaphragm is disposed between the second and third lenses, and achieves good optical performance in a so-called far infrared band of 8 to 14 μm.
 特許文献2には、レンズ4枚又は5枚で構成された赤外線用光学系が提案されており、冷却センサーに対応するため、第3レンズと像面と間にコールドシールドが配置されている。また、全画角2ω≒120度という広画角化を達成するため、第1レンズに強いパワーを持たせて軸外光線を強く曲げるとともに、そこで発生した球面収差,非点色収差,歪曲収差等を、収差補正板としての第2レンズで補正している。 Patent Document 2 proposes an infrared optical system including four or five lenses, and a cold shield is disposed between the third lens and the image plane in order to cope with a cooling sensor. Also, in order to achieve a wide field angle of 2ω≈120 degrees, the first lens has strong power to bend off-axis rays strongly, and spherical aberration, astigmatism, distortion, etc. generated there. Is corrected by a second lens as an aberration correction plate.
特開2013-228539号公報JP 2013-228539 A US5,446,581US 5,446,581
 特許文献1に記載の赤外線用光学系では、絞りが第2,第3レンズ間に配置されているため、絞りをコールドシールド内に搭載することができない。そのため、鏡胴(特に絞りから像面部に配置されている部分)からの放射がセンサーに入射してしまい、S/N比が悪化するという課題がある。特許文献2に記載の赤外線用光学系では、各収差をバランス良く補正するために、第1,第2レンズ間隔と第2,第3レンズ間隔を十分に確保する必要があるため、レンズユニットの長大化を招くという課題がある。 In the infrared optical system described in Patent Document 1, since the diaphragm is arranged between the second and third lenses, the diaphragm cannot be mounted in the cold shield. Therefore, there is a problem that radiation from the lens barrel (particularly, a portion arranged from the stop to the image plane portion) enters the sensor, and the S / N ratio deteriorates. In the infrared optical system described in Patent Document 2, it is necessary to sufficiently secure the first and second lens intervals and the second and third lens intervals in order to correct each aberration in a balanced manner. There is a problem of incurring an increase in length.
 本発明はこのような状況に鑑みてなされたものであって、その目的は、冷却センサーに搭載可能であって、3枚という比較的少ないレンズ枚数で高いS/N比と高い光学性能が達成された赤外線用光学系、それを備えた撮像光学装置及びデジタル機器を提供することにある。 The present invention has been made in view of such a situation, and an object of the present invention is to be mounted on a cooling sensor and achieve a high S / N ratio and high optical performance with a relatively small number of lenses of three. It is an object of the present invention to provide an infrared optical system, an imaging optical device including the infrared optical system, and a digital apparatus.
 上記目的を達成するために、本発明の赤外線用光学系は、物体側から像側へ順に、負パワーを有する第1群と、正パワーを有する第2群と、からなる赤外線用撮影光学系であって、
 前記第2群と像面との間に絞りが配置され、
 前記第1群が、少なくとも1面に非球面を有する負の単レンズからなる第1レンズで構成され、
 前記第2群が、物体側に凹の正メニスカスレンズからなる第2レンズと、物体側に凸の正メニスカスレンズからなる第3レンズと、で構成され、
 以下の条件式(1)及び(2)を満足することを特徴とする。
1<f23/FL<1.2 …(1)
0.9<t2/FL<1.7 …(2)
 ただし、
f23:第2群の焦点距離、
FL:全系の焦点距離、
t2:第1レンズの像側面から第2レンズの物体側面までの光軸上での距離、
である。
In order to achieve the above object, an infrared optical system according to the present invention includes, in order from an object side to an image side, a first group having negative power and a second group having positive power. Because
A diaphragm is disposed between the second group and the image plane;
The first group includes a first lens composed of a negative single lens having an aspheric surface on at least one surface,
The second group includes a second lens composed of a positive meniscus lens concave on the object side, and a third lens composed of a positive meniscus lens convex on the object side,
The following conditional expressions (1) and (2) are satisfied.
1 <f23 / FL <1.2 (1)
0.9 <t2 / FL <1.7 (2)
However,
f23: focal length of the second group,
FL: focal length of the entire system,
t2: the distance on the optical axis from the image side surface of the first lens to the object side surface of the second lens,
It is.
 本発明の撮像光学装置は、前記赤外線用光学系と、撮像面上に形成された赤外線光学像を電気的な信号に変換する撮像センサーと、を備え、前記撮像センサーの撮像面上に被写体の赤外線光学像が形成されるように前記赤外線用光学系が設けられていることを特徴とする。 An imaging optical device of the present invention includes the infrared optical system and an imaging sensor that converts an infrared optical image formed on an imaging surface into an electrical signal, and an object on the imaging surface of the imaging sensor. The infrared optical system is provided so that an infrared optical image is formed.
 本発明のデジタル機器は、前記撮像光学装置を備えることにより、被写体の静止画撮影,動画撮影のうちの少なくとも一方の機能が付加されたことを特徴とする。 The digital apparatus according to the present invention is characterized in that at least one of a still image shooting and a moving image shooting of a subject is added by providing the imaging optical device.
 本発明の赤外線用カメラシステムは、前記赤外線用光学系を備えたことを特徴とする。 The infrared camera system according to the present invention includes the infrared optical system.
 本発明によれば、冷却センサーに搭載可能であって、3枚という比較的少ないレンズ枚数で高いS/N比と高い光学性能が達成された赤外線用光学系及び撮像光学装置を実現することができる。そして、本発明に係る赤外線用光学系又は撮像光学装置を、ガス検知装置,カメラシステム(例えば、監視カメラ,航空機カメラ)等のデジタル機器に用いることによって、デジタル機器に対し高性能の赤外線画像入力機能を安価に付加することが可能となる。 According to the present invention, it is possible to realize an infrared optical system and an imaging optical device that can be mounted on a cooling sensor and achieve a high S / N ratio and high optical performance with a relatively small number of lenses of three. it can. The infrared optical system or the imaging optical device according to the present invention is used in a digital device such as a gas detection device or a camera system (for example, a monitoring camera or an aircraft camera), thereby enabling high-performance infrared image input to the digital device. Functions can be added at low cost.
第1の実施の形態(実施例1)のレンズ構成図。The lens block diagram of 1st Embodiment (Example 1). 実施例1の収差図。FIG. 6 is an aberration diagram of Example 1. 第2の実施の形態(実施例2)のレンズ構成図。The lens block diagram of 2nd Embodiment (Example 2). 実施例2の収差図。FIG. 6 is an aberration diagram of Example 2. 第3の実施の形態(実施例3)のレンズ構成図。The lens block diagram of 3rd Embodiment (Example 3). 実施例3の収差図。FIG. 6 is an aberration diagram of Example 3. 第4の実施の形態(実施例4)のレンズ構成図。The lens block diagram of 4th Embodiment (Example 4). 実施例4の収差図。FIG. 6 is an aberration diagram of Example 4. 第5の実施の形態(実施例5)のレンズ構成図。The lens block diagram of 5th Embodiment (Example 5). 実施例5の収差図。FIG. 6 is an aberration diagram of Example 5. 第6の実施の形態(実施例6)のレンズ構成図。The lens block diagram of 6th Embodiment (Example 6). 実施例6の収差図。FIG. 10 is an aberration diagram of Example 6. 第7の実施の形態(実施例7)のレンズ構成図。The lens block diagram of 7th Embodiment (Example 7). 実施例7の収差図。FIG. 10 is an aberration diagram of Example 7. 第8の実施の形態(実施例8)のレンズ構成図。The lens block diagram of 8th Embodiment (Example 8). 実施例8の収差図。FIG. 10 is an aberration diagram of Example 8. コールドシールドの概略構成例を示す断面図。Sectional drawing which shows the schematic structural example of a cold shield. コールドアパーチャーによる赤外カットを説明するための断面図。Sectional drawing for demonstrating the infrared cut by a cold door aperture. 赤外線用光学系を搭載したデジタル機器の概略構成例を示す模式図。The schematic diagram which shows the schematic structural example of the digital apparatus carrying the optical system for infrared rays.
 以下、本発明の実施の形態に係る赤外線用光学系,撮像光学装置,デジタル機器等を説明する。本発明の実施の形態に係る赤外線用光学系は、物体側から像側へ順に、負パワーを有する第1群と、正パワーを有する第2群と、からなる赤外線用撮影光学系であって(パワー:焦点距離の逆数で定義される量)、前記第2群と像面との間に絞りが配置され、前記第1群が、少なくとも1面に非球面を有する負の単レンズからなる第1レンズで構成され、前記第2群が、物体側に凹の正メニスカスレンズからなる第2レンズと、物体側に凸の正メニスカスレンズからなる第3レンズと、で構成され、以下の条件式(1)及び(2)を満足することを特徴としている。
1<f23/FL<1.2 …(1)
0.9<t2/FL<1.7 …(2)
 ただし、
f23:第2群の焦点距離、
FL:全系の焦点距離、
t2:第1レンズの像側面から第2レンズの物体側面までの光軸上での距離、
である。
Hereinafter, an infrared optical system, an imaging optical device, a digital device, and the like according to embodiments of the present invention will be described. An infrared optical system according to an embodiment of the present invention is an infrared imaging optical system including a first group having negative power and a second group having positive power in order from the object side to the image side. (Power: an amount defined by the reciprocal of the focal length), a stop is disposed between the second group and the image plane, and the first group is composed of a negative single lens having an aspheric surface on at least one surface. The second lens unit includes a second lens made up of a positive meniscus lens that is concave on the object side, and a third lens made up of a positive meniscus lens that is convex on the object side. It is characterized by satisfying the expressions (1) and (2).
1 <f23 / FL <1.2 (1)
0.9 <t2 / FL <1.7 (2)
However,
f23: focal length of the second group,
FL: focal length of the entire system,
t2: the distance on the optical axis from the image side surface of the first lens to the object side surface of the second lens,
It is.
 上記のように第1レンズと第2レンズで負正のパワー配置にすると、いわゆるレトロフォーカスとなり、焦点距離よりも長いバックフォーカスを確保することができる。その結果、第3レンズと像面との間に絞り(コールドアパーチャー)を配置することが可能となる。 As described above, when the first lens and the second lens have a negative and positive power arrangement, so-called retrofocus is achieved, and a back focus longer than the focal length can be secured. As a result, a diaphragm (cold aperture) can be disposed between the third lens and the image plane.
 上記赤外線用光学系としては、例えば、波長3~5μm帯を使用する赤外線用撮影光学系が挙げられる。波長3~5μm帯の赤外線は、プランクの法則から容易に分かるとおり、太陽から放射される光では可視光よりも大幅に少なく、また地面等の周辺環境から放射される光では波長8~14μm帯のいわゆる遠赤外線よりも大幅に少ない。そのため、可視光や遠赤外線の領域での撮影に用いられる、いわゆる非冷却センサーを使用して撮影することが困難であり、冷却センサーを用いてわずかな光を検知することが必要になる。その冷却センサーの具体例としては、アンチモン化インジウム(InSb),プラチナシリコン(PtSi),テルル化カドミウム水銀(HgCdTe)等を素子素材とする、いわゆる量子型センサーが挙げられる。 Examples of the infrared optical system include an infrared photographing optical system using a wavelength band of 3 to 5 μm. As is easily understood from Planck's law, infrared rays in the 3-5 μm wavelength band are significantly less than visible light in the light emitted from the sun, and in the 8-14 μm wavelength band in the light emitted from the surrounding environment such as the ground. Significantly less than the so-called far infrared. Therefore, it is difficult to shoot using a so-called uncooled sensor used for shooting in the visible light or far-infrared region, and it is necessary to detect a small amount of light using the cooling sensor. Specific examples of the cooling sensor include so-called quantum sensors using indium antimonide (InSb), platinum silicon (PtSi), cadmium mercury telluride (HgCdTe), or the like as element materials.
 赤外線用の撮像センサーは、赤外光(放射熱)を受光するとそれ自身が熱を持ち、それがノイズの原因となる。冷却センサーは、センサー自体を-200℃程度の極低温まで冷却することでこの現象を抑えている。しかし、冷却センサーはわずかな放射光も検知するため、絞りやレンズの保持部材等から放射される光も無視することができない。それらがセンサーに入射することは大きなノイズ源となり、画質のS/N比が大きく悪化することになる。これを防ぐため、レンズ系と撮像センサーとの間にコールドシールドを配置することが求められている。 ¡When an infrared image sensor receives infrared light (radiant heat), it has its own heat, which causes noise. The cooling sensor suppresses this phenomenon by cooling the sensor itself to an extremely low temperature of about −200 ° C. However, since the cooling sensor detects even a small amount of emitted light, the light emitted from the diaphragm or the lens holding member cannot be ignored. When they enter the sensor, it becomes a large noise source, and the S / N ratio of image quality is greatly deteriorated. In order to prevent this, it is required to arrange a cold shield between the lens system and the image sensor.
 図17に、コールドシールドの概略構成例を示す。コールドシールドCSは真空容器からなっており、コールドシールドCSの一部で絞りSTが構成されている。絞りSTとバンドパスフィルターBPFと冷却センサーSRは、赤外線を透過するウィンドウWIで密閉されたコールドシールドCS内にセットされて冷却される。第3レンズL3と像面IMとの間に絞りSTを配置し、かつ、その絞りSTを冷却して、いわゆるコールドアパーチャーとすることにより、正規光以外のセンサーへの入射光をカットすることができる。つまり、絞りSTからの放射光の発生を抑えるとともに、レンズ保持部材からの放射光を遮断することが可能となる。図18に、レンズ保持部材である鏡胴BLからの赤外光を絞りSTでカットする様子を示す。 FIG. 17 shows a schematic configuration example of the cold shield. The cold shield CS is composed of a vacuum vessel, and a diaphragm ST is formed by a part of the cold shield CS. The aperture stop ST, the band pass filter BPF, and the cooling sensor SR are set and cooled in a cold shield CS sealed by a window WI that transmits infrared rays. By disposing the stop ST between the third lens L3 and the image plane IM and cooling the stop ST to form a so-called cold aperture, light incident on the sensor other than the regular light can be cut. it can. That is, it is possible to suppress the generation of radiated light from the aperture stop ST and block the radiated light from the lens holding member. FIG. 18 shows a state where infrared light from the lens barrel BL, which is a lens holding member, is cut by the stop ST.
 第1レンズを単レンズで構成することには、面間反射の発生を抑える効果がある。第1群には外部から色々な角度で光線が入射するが、ここに複数のレンズが配置されていると面間反射が起きやすくなる。それが撮像センサーに入射してS/N比の低下をもたらすことがある。第1レンズを単レンズで構成すれば、これを防止することができる。 Structuring the first lens with a single lens has an effect of suppressing the occurrence of inter-surface reflection. Light rays are incident on the first group at various angles from the outside. If a plurality of lenses are arranged here, inter-surface reflection is likely to occur. It may enter the imaging sensor and cause a decrease in the S / N ratio. If the first lens is a single lens, this can be prevented.
 第2レンズを物体側に凹の正メニスカスレンズとし、第3レンズを物体側に凸の正メニスカスレンズとすることには、球面収差とコマ収差をバランス良く補正する効果がある。第2レンズと第3レンズは、F値が明るく絞りから比較的近い位置に配置されている。そのため、軸上光束と軸外光束の通過位置の差があまりない。第2,第3レンズの面形状を上記のようにすると、軸上光束と軸外光束の面の通過状態に違いを与えることができるため、軸上収差と軸外収差を同時に補正しやすくなる。したがって、絞りを第3レンズと像面との間に配置しても、球面収差とコマ収差との補正を両立させることが可能となる。 Using the second lens as a positive meniscus lens concave on the object side and the third lens as a positive meniscus lens convex on the object side has an effect of correcting spherical aberration and coma with a good balance. The second lens and the third lens have a bright F value and are arranged relatively close to the stop. Therefore, there is not much difference between the passing positions of the on-axis light beam and the off-axis light beam. When the surface shapes of the second and third lenses are set as described above, it is possible to make a difference in the passing state of the surface of the axial light beam and the off-axis light beam, so that it is easy to correct the axial aberration and the off-axis aberration at the same time. . Therefore, even when the stop is disposed between the third lens and the image plane, it is possible to achieve both correction of spherical aberration and coma aberration.
 コールドシールドを配置できるようにバックフォーカスを十分確保するためには、レトロフォーカス度合いを強くする必要がある。具体的には、第1群の負パワーと第2群の正パワーを上げつつ、第1,第2レンズ間隔を広げる必要がある。第1レンズのパワーを上げることで発生する非点収差や球面収差は、第1レンズに配置した非球面で抑えることができる。つまり、第1レンズに非球面を配置することで、第1レンズに強いパワーを持たせながら非点収差や球面収差の発生量を抑えることができる。その結果、第2,第3レンズ間隔を短縮することで、全長を短くすることが可能である。 ¡In order to ensure sufficient back focus so that a cold shield can be placed, it is necessary to increase the degree of retrofocus. Specifically, it is necessary to increase the distance between the first and second lenses while increasing the negative power of the first group and the positive power of the second group. Astigmatism and spherical aberration generated by increasing the power of the first lens can be suppressed by the aspherical surface disposed on the first lens. That is, by arranging an aspherical surface on the first lens, it is possible to suppress the amount of astigmatism and spherical aberration generated while giving strong power to the first lens. As a result, the total length can be shortened by shortening the distance between the second and third lenses.
 第1レンズに配置される好ましい非球面としては、2つのタイプが挙げられる。例えば、第1レンズの片面に非球面が配置されている場合(後述する実施例2,3,6)、第1レンズの中心から周辺にいくにつれて曲率が緩くなる(すなわち曲率半径が大きくなる)ような形状の非球面が好ましい。第1レンズの両面に非球面が配置されている場合(後述する実施例1,4,5,7,8)、いずれの面も周辺に行くに従って曲率がきつくなる(すなわち曲率半径が小さくなる)ような形状の非球面が好ましい。 There are two types of preferable aspherical surfaces arranged on the first lens. For example, when an aspherical surface is disposed on one side of the first lens (Examples 2, 3, and 6 to be described later), the curvature becomes gentler (that is, the radius of curvature becomes larger) from the center of the first lens to the periphery. An aspheric surface having such a shape is preferable. When aspherical surfaces are disposed on both surfaces of the first lens (Examples 1, 4, 5, 7, and 8 to be described later), the curvature of each surface increases toward the periphery (that is, the radius of curvature decreases). An aspheric surface having such a shape is preferable.
 条件式(1)は、第2群のパワーに関する条件範囲を規定している。条件式(1)の上限を下回ると、第2群に適度なパワーを与えることができるため、全長を増大させることなくレトロフォーカスを構成する効果が得られる。条件式(1)の下限を上回ると、第2群のパワーが抑えられるので、第2群で発生する収差発生を抑えて第1群のみで良好に補正できる効果が得られる。また、第2群のパワーが条件式(1)の範囲内であれば、十分なバックフォーカスを確保しながら適度に第1群と第2群との間隔を保持することができる。第1群と第2群との間隔が狭すぎることは、面間反射が発生する原因となり、高感度の冷却センサーではS/N比が悪化する要因となる。 Conditional expression (1) defines the condition range regarding the power of the second group. If the upper limit of conditional expression (1) is not reached, an appropriate power can be given to the second lens group, and the effect of configuring retrofocus can be obtained without increasing the overall length. If the lower limit of conditional expression (1) is surpassed, the power of the second group is suppressed, so that an effect of suppressing the occurrence of aberrations occurring in the second group and correcting favorably only by the first group is obtained. Further, when the power of the second group is within the range of the conditional expression (1), the distance between the first group and the second group can be appropriately maintained while ensuring a sufficient back focus. If the distance between the first group and the second group is too narrow, inter-surface reflection occurs, and the S / N ratio deteriorates in a highly sensitive cooling sensor.
 条件式(2)は、第1,第2レンズ間隔に関する条件範囲を規定している。条件式(2)の上限を下回ると、全長の増大を抑える効果が得られる。条件式(2)の下限を上回ると、第1群と第2群とのレンズ間隔が適度に離れるので、面間反射の発生を抑える効果が得られる。また、第1,第2レンズ間隔が条件式(2)の範囲内であれば、各群のパワーを強くしすぎることも全長の増大を招くこともなく、バックフォーカスを確保することが可能となる。 Conditional expression (2) defines a condition range regarding the first and second lens intervals. When less than the upper limit of conditional expression (2), the effect of suppressing the increase in the total length is obtained. If the lower limit of conditional expression (2) is exceeded, the lens interval between the first group and the second group is moderately separated, so that an effect of suppressing the occurrence of inter-surface reflection can be obtained. Further, if the distance between the first and second lenses is within the range of the conditional expression (2), it is possible to secure the back focus without increasing the power of each group excessively or increasing the total length. Become.
 上記特徴的構成によると、冷却センサーに搭載可能であって、3枚という比較的少ないレンズ枚数で高いS/N比と高い光学性能が達成された赤外線用光学系及びそれを備えた撮像光学装置を実現することができる。そして、その赤外線用光学系又は撮像光学装置を、ガス検知装置,カメラシステム(例えば、監視カメラ,航空機カメラ)等のデジタル機器に用いることによって、デジタル機器に対し高性能の赤外線画像入力機能を安価に付加することが可能となり、デジタル機器の低コスト化,高性能化,高機能化等に寄与することができる。冷却センサー対応の赤外線用光学系を、上記のようにS/N比と光学性能を良好に両立させながらレンズ3枚でも実現可能とし、こういった効果をバランス良く得るとともに、更に高い光学性能,軽量・小型化等を達成するうえで望ましい条件設定等を以下に説明する。 According to the above characteristic configuration, an infrared optical system that can be mounted on a cooling sensor and achieves a high S / N ratio and high optical performance with a relatively small number of lenses, such as three, and an imaging optical device including the same Can be realized. The infrared optical system or imaging optical device is used in a digital device such as a gas detection device or a camera system (for example, a surveillance camera or an aircraft camera), thereby providing a high-performance infrared image input function for the digital device at a low price. It is possible to contribute to the reduction in cost, performance and functionality of digital equipment. An infrared optical system compatible with a cooling sensor can be realized with three lenses while achieving a good balance between S / N ratio and optical performance as described above. Desirable condition settings and the like for achieving light weight and downsizing will be described below.
 前記第1レンズがゲルマニウム(Ge)又はシリコン(Si)からなる非球面レンズであり、前記第2,第3レンズがいずれもシリコンからなる球面レンズであることが望ましい。シリコンやゲルマニウムのような高い屈折率の材料を使用すると、レンズに対する入射角・反射角を小さくすることができ、各レンズ面での収差発生量を抑える効果が得られる。各レンズ面での収差発生量が多いと、その収差補正のためにレンズを多数配置する必要があり、その結果、面間反射が増えてS/N比が悪化することになる。波長3~5μm帯で透過率及び屈折率が高い硝材と言えば、ゲルマニウムやシリコンということになる。ゲルマニウムやシリコンを非球面加工する場合、研削加工する必要があるため、加工時間がかかりコストも高くなる。球面レンズであれば研磨加工にすることができるため、コストを抑えつつ大量生産も可能になる。 Preferably, the first lens is an aspheric lens made of germanium (Ge) or silicon (Si), and the second and third lenses are both spherical lenses made of silicon. When a material having a high refractive index such as silicon or germanium is used, an incident angle and a reflection angle with respect to the lens can be reduced, and an effect of suppressing the amount of aberration generated on each lens surface can be obtained. If the amount of aberration generated on each lens surface is large, it is necessary to arrange a large number of lenses in order to correct the aberration. As a result, the inter-surface reflection increases and the S / N ratio deteriorates. Speaking of a glass material having a high transmittance and refractive index in the wavelength band of 3 to 5 μm, it is germanium or silicon. When aspherical processing is performed on germanium or silicon, it is necessary to perform grinding processing, which increases processing time and costs. Since a spherical lens can be polished, mass production is possible while reducing costs.
 前記第1レンズが負メニスカスレンズであることが望ましい。負のメニスカスレンズは、正レンズと負レンズの作用を併せ持っており、これを使用することで、球面収差の発生を抑えることができる。そして、他の収差の補正と球面収差の補正がトレードオフ状態になることを防ぐ効果がある。 It is desirable that the first lens is a negative meniscus lens. A negative meniscus lens has the functions of both a positive lens and a negative lens. By using this, the generation of spherical aberration can be suppressed. And there exists an effect which prevents that correction | amendment of another aberration and correction | amendment of spherical aberration will be in a trade-off state.
 以下の条件式(3)を満足することが望ましい。
-4.9<f1/f23<-1.3 …(3)
 ただし、
f1:第1群の焦点距離、
f23:第2群の焦点距離、
である。
It is desirable to satisfy the following conditional expression (3).
-4.9 <f1 / f23 <-1.3 (3)
However,
f1: focal length of the first group,
f23: focal length of the second group,
It is.
 条件式(3)は、負の第1群と正の第2群とのパワー比に関する好ましい条件範囲を規定している。条件式(3)の上限を下回ると、第2群に対して第1群のパワーを適切に与えることができ、第1群と第2群と間の距離を小さくする効果が得られる。条件式(3)の下限を上回ると、第2群での収差発生を抑えることができ、第1群で収差を良好に補正することができる。また、負正のパワー比が条件式(3)の範囲内であれば、歪曲の発生を少なくしつつ全長を抑えることができる。 Conditional expression (3) defines a preferable condition range regarding the power ratio between the negative first group and the positive second group. If the upper limit of conditional expression (3) is exceeded, the power of the first group can be appropriately given to the second group, and the effect of reducing the distance between the first group and the second group can be obtained. If the lower limit of conditional expression (3) is exceeded, the occurrence of aberrations in the second group can be suppressed, and aberrations can be corrected favorably in the first group. Further, when the negative / positive power ratio is within the range of the conditional expression (3), it is possible to suppress the entire length while reducing the occurrence of distortion.
 以下の条件式(4)を満足することが望ましい。
1.0<BF/FL<1.8 …(4)
 ただし、
BF:第3レンズの像側面から像面までの空気換算長、
FL:全系の焦点距離、
である。
It is desirable to satisfy the following conditional expression (4).
1.0 <BF / FL <1.8 (4)
However,
BF: air conversion length from the image side surface of the third lens to the image surface,
FL: focal length of the entire system,
It is.
 条件式(4)は、バックフォーカスに関する好ましい条件範囲を規定している。条件式(4)の上限を下回ると、レトロフォーカスを構成する各群のパワーを抑えることができ、その結果、各群での収差発生を効果的に抑制することができる。条件式(4)の下限を上回ると、レンズ-センサー間にコールドシールドを配置する十分なスペースを効果的に確保することができる。また、バックフォーカスが条件式(4)の範囲内であると、レンズ-センサー間にコールドシールドを配置するスペースの確保が容易になるとともに、逆にバックフォーカスを作為的に伸ばすことに起因する収差の悪化も比較的少なくて済む。 Conditional expression (4) defines a preferable condition range regarding back focus. If the upper limit of conditional expression (4) is not reached, the power of each group constituting the retrofocus can be suppressed, and as a result, the occurrence of aberrations in each group can be effectively suppressed. If the lower limit of conditional expression (4) is exceeded, a sufficient space for arranging the cold shield between the lens and the sensor can be effectively secured. If the back focus is within the range of the conditional expression (4), it is easy to secure a space for arranging the cold shield between the lens and the sensor, and conversely, aberration caused by intentionally extending the back focus. There is relatively little deterioration.
 前記第3レンズと像面との間にバンドパスフィルターが配置され、前記バンドパスフィルターが波長3.1~3.5μmの光のみを透過させる特性を有することが望ましい。波長3~5μm帯には、メタン等のさまざまな炭化水素系の物質の吸収波長帯が存在しており、炭化水素系の物質の吸収を検知するためには、この波長帯での光学系が必要である。そして、第3レンズと像面との間にバンドパスフィルターを有する構成では、バンドパスフィルターをコールドアパーチャー近傍に配置することができるため、バンドパスフィルターをコールドアパーチャーと同様に冷却することがメカ構成上可能となる。バンドパスフィルターを冷却することで、バンドパスフィルターからの放射光を最小限に低減する効果が得られる。したがって、コールドアパーチャーの像側にバンドパスフィルターを配置してもよく、コールドアパーチャーの物体側にバンドパスフィルターを配置してもよい。 It is desirable that a band pass filter is disposed between the third lens and the image plane, and the band pass filter has a characteristic of transmitting only light having a wavelength of 3.1 to 3.5 μm. In the wavelength band of 3-5 μm, there are absorption wavelength bands for various hydrocarbon substances such as methane. In order to detect the absorption of hydrocarbon substances, an optical system in this wavelength band is required. is necessary. In the configuration having the band pass filter between the third lens and the image plane, the band pass filter can be disposed in the vicinity of the cold aperture, so that the band pass filter can be cooled in the same manner as the cold aperture. It becomes possible. By cooling the bandpass filter, the effect of reducing the emitted light from the bandpass filter to a minimum can be obtained. Therefore, a band pass filter may be arranged on the image side of the cold door aperture, and a band pass filter may be arranged on the object side of the cold door aperture.
 前記バンドパスフィルターが波長3.2~3.4μmの光のみを透過させる特性を有することが更に望ましい。この透過特性を有するバンドパスフィルターであれば、上記観点に基づく効果をより一層大きくすることができる。 It is further desirable that the bandpass filter has a characteristic of transmitting only light having a wavelength of 3.2 to 3.4 μm. If it is a band-pass filter having this transmission characteristic, the effect based on the above viewpoint can be further increased.
 3.1~3.5μmや更には3.2~3.4μmの波長帯では、光量が不足する可能性があるので、レンズ系には通常より明るいFナンバーが要求される。したがって、波長3~5μm帯を使用する赤外線用撮影光学系としては、Fナンバーが1.7より小さいこと(Fno<1.7)が望ましい。 In the wavelength band of 3.1 to 3.5 μm or even 3.2 to 3.4 μm, the amount of light may be insufficient, so the lens system is required to have an F-number brighter than usual. Therefore, it is desirable that the F-number is smaller than 1.7 (Fno <1.7) for an infrared imaging optical system using a wavelength band of 3 to 5 μm.
 前記第1,第2,第3レンズのいずれの面にも、表面レリーフ状の回折面又はフレネル面を有しないことが望ましい。波長8~14μm帯のいわゆる遠赤外線を使用する光学系では、回折面を使用して色収差を補正することが行われている。しかし、高次項による回折光はゴースト光やフレア成分になりやすい。また、回折面の特性上、どうしても立ち壁が発生するが、この立ち壁での反射・屈折により上記と同様のゴースト光やフレア成分が発生する原因となる。冷却センサーは感度が高いので、これら不要光は大きなノイズ要因となってS/N比を低下させるおそれがある。これは表面レリーフ状の回折面に限らず、フレネル面でも同様である。 It is desirable that none of the surfaces of the first, second, and third lenses have a surface relief-like diffractive surface or a Fresnel surface. In an optical system using so-called far infrared rays in the wavelength band of 8 to 14 μm, chromatic aberration is corrected using a diffractive surface. However, diffracted light due to higher-order terms tends to become ghost light and flare components. Further, due to the characteristics of the diffractive surface, a standing wall is inevitably generated. However, reflection and refraction at the standing wall cause ghost light and flare components similar to those described above. Since the cooling sensor has high sensitivity, the unnecessary light may cause a large noise and reduce the S / N ratio. This is not limited to a surface relief-like diffractive surface, but also applies to a Fresnel surface.
 本発明の実施の形態に係る赤外線用光学系は、赤外線画像入力機能付きデジタル機器(例えば、赤外線カメラ付きガス漏れ検知システム)用の撮像光学系としての使用に適しており、これを撮像用の冷却センサー等と組み合わせることにより、被写体の赤外線映像を光学的に取り込んで電気的な信号として出力する赤外線用撮像光学装置を構成することができる。撮像光学装置は、被写体の静止画撮影や動画撮影に用いられるカメラの主たる構成要素を成す光学装置であり、例えば、物体(すなわち被写体)側から順に、物体の赤外線光学像を形成する赤外線用光学系と、その赤外線用光学系により形成された赤外線光学像を電気的な信号に変換する撮像センサー(例えば、冷却センサーに相当する。)と、を備えることにより構成される。そして、撮像センサーの受光面(すなわち撮像面)上に被写体の赤外線光学像が形成されるように、前述した特徴的構成を有する赤外線用光学系が配置されることにより、小型・低コストで高い性能を有する撮像光学装置やそれを備えたデジタル機器を実現することができる。 An infrared optical system according to an embodiment of the present invention is suitable for use as an imaging optical system for a digital device with an infrared image input function (for example, a gas leak detection system with an infrared camera). By combining with a cooling sensor or the like, an infrared imaging optical device that optically captures an infrared image of a subject and outputs it as an electrical signal can be configured. The imaging optical device is an optical device that constitutes a main component of a camera used for still image shooting or moving image shooting of an object. For example, an infrared optical device that forms an infrared optical image of an object in order from the object (ie, object) side. And an imaging sensor (e.g., corresponding to a cooling sensor) that converts an infrared optical image formed by the infrared optical system into an electrical signal. Then, the infrared optical system having the above-described characteristic configuration is arranged so that an infrared optical image of the subject is formed on the light receiving surface (that is, the imaging surface) of the imaging sensor. An imaging optical device having performance and a digital device including the same can be realized.
 赤外線画像入力機能付きデジタル機器の例としては、赤外線カメラ,監視カメラ,航空機カメラ,船舶用カメラ,火災検知用カメラ等が挙げられ、また、ガス検知装置,ガス漏れ検知システム,暗視装置,サーモグラフィー,インフラ監視用システム(高圧電線・工場内・プラント内での異常熱源の監視、構造物の劣化監視等)等が挙げられる。 Examples of digital devices with an infrared image input function include infrared cameras, surveillance cameras, aircraft cameras, marine cameras, fire detection cameras, etc., as well as gas detection devices, gas leak detection systems, night vision devices, and thermography. , Infrastructure monitoring systems (high-voltage power lines, monitoring of abnormal heat sources in factories and plants, monitoring of deterioration of structures, etc.).
 上記の例から分かるように、赤外線用の撮像光学装置を用いることにより赤外線カメラシステムを構成することができるだけでなく、その撮像光学装置を各種機器に搭載することにより赤外線カメラ機能,暗視機能,温度測定機能等を付加することが可能である。例えば、炭化水素系の物質(メタン,エタン,プロパン,ブタン等)に特有の吸収波長帯の赤外線吸収によるコントラスト差を撮影する機能を、赤外線画像入力機能として備えた赤外線カメラ付きガス検知装置を構成することにより、可視光では捕らえられないガス漏れ等を検知することが可能である。 As can be seen from the above examples, not only can an infrared camera system be configured by using an imaging optical device for infrared rays, but also an infrared camera function, night vision function, It is possible to add a temperature measurement function or the like. For example, a gas detector with an infrared camera equipped with an infrared image input function that captures the contrast difference due to infrared absorption in the absorption wavelength band specific to hydrocarbon substances (methane, ethane, propane, butane, etc.) By doing so, it is possible to detect a gas leak or the like that cannot be captured by visible light.
 赤外線画像入力機能付きデジタル機器の一例として、図19にデジタル機器DUの概略構成例を模式的断面で示す。図19に示すデジタル機器DUに搭載されている撮像光学装置LUは、物体(すなわち被写体)側から順に、物体の赤外線光学像(像面)IMを形成する赤外線用光学系LN(AX:光軸)と、赤外線用光学系LNにより受光面(撮像面)SS上に形成された光学像IMを電気的な信号に変換する撮像センサー(冷却センサー)SRと、を備えている。赤外線用光学系LNは、3枚の単レンズと、コールドアパーチャーと、バンドパスフィルターと、からなる3枚構成の単焦点撮影光学系であり、撮像センサーSRの光電変換部である受光面SS上に赤外線からなる光学像IMを形成する構成になっている。 As an example of a digital device with an infrared image input function, FIG. 19 shows a schematic configuration example of the digital device DU in a schematic cross section. The imaging optical device LU mounted on the digital device DU shown in FIG. 19 includes an infrared optical system LN (AX: optical axis) that forms an infrared optical image (image plane) IM of an object in order from the object (namely, subject) side. ) And an imaging sensor (cooling sensor) SR that converts the optical image IM formed on the light receiving surface (imaging surface) SS by the infrared optical system LN into an electrical signal. The infrared optical system LN is a three-lens single-focus imaging optical system including three single lenses, a cold aperture, and a bandpass filter, on the light receiving surface SS that is a photoelectric conversion unit of the image sensor SR. The optical image IM composed of infrared rays is formed.
 赤外線用光学系LNに内蔵のバンドパスフィルター以外の平行平面板を、必要に応じて配置してもよい。そのような平行平面板として、例えば、冷却部CUを構成するコールドシールドCS(図17,図18)を密閉するために、コールドアパーチャー近傍にウィンドウWI(図17,図18)を配置してもよく、耐傷・耐薬品等を考慮して、最も物体側に位置する第1レンズの外側に、波長3~5μm帯の赤外線を通過するカバー部材や窓材を配置してもよい。また、撮像光学装置LUで画像入力機能付きデジタル機器DUを構成する場合、通常そのボディ内部に撮像光学装置LUを配置することになるが、カメラ機能を実現する際には必要に応じた形態を採用することが可能である。例えば、ユニット化した撮像光学装置LUをデジタル機器DUの本体に対して着脱可能又は回動可能に構成することが可能である。 A plane parallel plate other than the bandpass filter built in the infrared optical system LN may be arranged as necessary. As such a parallel flat plate, for example, a window WI (FIGS. 17 and 18) may be disposed in the vicinity of the cold door aperture in order to seal the cold shield CS (FIGS. 17 and 18) constituting the cooling unit CU. In consideration of scratch resistance, chemical resistance, and the like, a cover member or window material that transmits infrared light having a wavelength of 3 to 5 μm may be disposed outside the first lens located closest to the object side. In addition, when the digital device DU with an image input function is configured by the imaging optical device LU, the imaging optical device LU is usually disposed inside the body. It is possible to adopt. For example, the unitized imaging optical device LU can be configured to be detachable or rotatable with respect to the main body of the digital device DU.
 デジタル機器DUは、撮像光学装置LUの他に、信号処理部1,制御部2,メモリー3,操作部4,表示部5等を備えている。撮像センサーSRで生成した信号は、信号処理部1で所定のデジタル画像処理や画像圧縮処理等が必要に応じて施され、デジタル映像信号としてメモリー3(半導体メモリー,光ディスク等)に記録されたり、場合によってはケーブルを介したり赤外線信号等に変換されたりして他の機器に伝送される(例えば携帯電話の通信機能)。制御部2はマイクロコンピューターからなっており、撮影機能(静止画撮影機能,動画撮影機能等),画像再生機能等の機能の制御;フォーカシング等のためのレンズ移動機構の制御等を集中的に行う。例えば、被写体の静止画撮影,動画撮影のうちの少なくとも一方を行うように、制御部2により撮像光学装置LUに対する制御が行われる。表示部5は液晶モニター等のディスプレイを含む部分であり、撮像センサーSRによって変換された画像信号あるいはメモリー3に記録されている画像情報を用いて画像表示を行う。操作部4は、操作ボタン(例えばレリーズボタン),操作ダイヤル(例えば撮影モードダイヤル)等の操作部材を含む部分であり、操作者が操作入力した情報を制御部2に伝達する。 The digital device DU includes a signal processing unit 1, a control unit 2, a memory 3, an operation unit 4, a display unit 5 and the like in addition to the imaging optical device LU. The signal generated by the image sensor SR is subjected to predetermined digital image processing, image compression processing, and the like as required by the signal processing unit 1 and recorded as a digital video signal in the memory 3 (semiconductor memory, optical disk, etc.) In some cases, it is transmitted to other devices via a cable or converted into an infrared signal or the like (for example, a communication function of a mobile phone). The control unit 2 is composed of a microcomputer, and controls functions such as a shooting function (still image shooting function, moving image shooting function, etc.), an image reproduction function, etc .; control of a lens moving mechanism for focusing, etc. . For example, the control unit 2 controls the imaging optical device LU so as to perform at least one of still image shooting and moving image shooting of a subject. The display unit 5 includes a display such as a liquid crystal monitor, and performs image display using an image signal converted by the imaging sensor SR or image information recorded in the memory 3. The operation unit 4 is a part including operation members such as an operation button (for example, a release button) and an operation dial (for example, a shooting mode dial), and transmits information input by the operator to the control unit 2.
 図1,図3,…,図15に、無限遠合焦状態にある赤外線用光学系LNの第1~第8の実施の形態を光学断面でそれぞれ示す。第1~第8の実施の形態のいずれについても、赤外線用光学系LNは、物体側から像側へ順に、負パワーを有する第1群Gr1と、正パワーを有する第2群Gr2と、絞り(コールドアパーチャー)STと、が配置されており(パワーについてはすべて近軸での値とする。)、第2群Gr2と像面IMとの間には、絞りSTの他にウィンドウWIとバンドパスフィルターBPFが配置されている。バンドパスフィルターBPFは、シリコン製の平板にコーティング(多層膜)が施された構成になっており、ウィンドウWIは、シリコン製の平板に反射防止膜(多層膜)が施された構成になっている。そして、第1群Gr1は、少なくとも1面に非球面を有する負の単レンズからなる第1レンズL1で構成されており、第2群Gr2は、物体側に凹の正メニスカスレンズからなる第2レンズL2と、物体側に凸の正メニスカスレンズからなる第3レンズL3と、で構成されており、第2レンズL2と第3レンズL3は全て球面レンズである。 FIGS. 1, 3,..., And 15 show first to eighth embodiments of the infrared optical system LN in an infinitely focused state in optical cross sections. In any of the first to eighth embodiments, the infrared optical system LN includes, in order from the object side to the image side, the first group Gr1 having negative power, the second group Gr2 having positive power, (Cold door aperture) ST is arranged (all power values are paraxial). Between the second group Gr2 and the image plane IM, a window WI and a band are provided in addition to the aperture ST. A pass filter BPF is arranged. The band pass filter BPF has a configuration in which a coating (multilayer film) is applied to a silicon flat plate, and the window WI has a configuration in which an antireflection film (multilayer film) is applied to a silicon flat plate. Yes. The first group Gr1 is composed of a first lens L1 made of a negative single lens having an aspheric surface on at least one surface, and the second group Gr2 is a second lens made of a positive meniscus lens concave on the object side. The lens L2 and a third lens L3 made of a positive meniscus lens convex on the object side are configured, and the second lens L2 and the third lens L3 are all spherical lenses.
 第1~第8の実施の形態のいずれにおいても、第2レンズL2はシリコンで構成されており、第1,第2,第4,第6,第7,第8の実施の形態では第1レンズL1がゲルマニウムで構成されており、第3,第5の実施の形態では第1レンズL1がシリコンで構成されている。第1,第4,第5,第7,第8の実施の形態では、第1レンズL1の両面に非球面が配置されており、第2,第3,第6の実施の形態では、第1レンズL1の物体側面のみに非球面が配置されている。第1,第4~第8の実施の形態では、第1レンズL1が物体側に凸の負メニスカスレンズであり、第2,第3の実施の形態では、第1レンズL1が物体側に凹の負メニスカスレンズである。第1,第4~第8の実施の形態では、バンドパスフィルターBPFは絞りSTの物体側に配置されており、第2,第3の実施の形態では、バンドパスフィルターBPFは絞りSTの像面側に配置されている。 In any of the first to eighth embodiments, the second lens L2 is made of silicon. In the first, second, fourth, sixth, seventh, and eighth embodiments, the first lens L2 is made of silicon. The lens L1 is made of germanium. In the third and fifth embodiments, the first lens L1 is made of silicon. In the first, fourth, fifth, seventh, and eighth embodiments, aspheric surfaces are arranged on both surfaces of the first lens L1, and in the second, third, and sixth embodiments, An aspherical surface is disposed only on the object side surface of one lens L1. In the first, fourth to eighth embodiments, the first lens L1 is a negative meniscus lens convex toward the object side. In the second and third embodiments, the first lens L1 is concave toward the object side. Negative meniscus lens. In the first, fourth to eighth embodiments, the bandpass filter BPF is disposed on the object side of the stop ST. In the second and third embodiments, the bandpass filter BPF is an image of the stop ST. It is arranged on the surface side.
 第1~第8の実施の形態のいずれにおいても、コールドアパーチャーST近傍には、冷却部CU(図19)を密閉するためのウィンドウWIが配置されているが、冷却効果が十分であれば省略してもよい。最も物体側に位置する第1レンズL1の外側には、耐傷・耐薬品等を考慮して該当する赤外線を通過するカバー部材又は窓材を配置してもよい。 In any of the first to eighth embodiments, a window WI for sealing the cooling unit CU (FIG. 19) is disposed in the vicinity of the cold door aperture ST, but is omitted if the cooling effect is sufficient. May be. A cover member or window material that passes the corresponding infrared rays may be disposed outside the first lens L1 positioned closest to the object side in consideration of scratch resistance, chemical resistance, and the like.
 以上の説明から分かるように、上述した各実施の形態や後述する各実施例には以下の特徴的な構成(#1)~(#11)等が含まれている。 As can be understood from the above description, the following characteristic configurations (# 1) to (# 11) and the like are included in each of the above-described embodiments and examples described later.
 (#1):物体側から像側へ順に、負パワーを有する第1群と、正パワーを有する第2群と、からなる赤外線用撮影光学系であって、
 前記第2群と像面との間に絞りが配置され、
 前記第1群が、少なくとも1面に非球面を有する負の単レンズからなる第1レンズで構成され、
 前記第2群が、物体側に凹の正メニスカスレンズからなる第2レンズと、物体側に凸の正メニスカスレンズからなる第3レンズと、で構成され、
 以下の条件式(1)及び(2)を満足することを特徴とする赤外線用光学系;
1<f23/FL<1.2 …(1)
0.9<t2/FL<1.7 …(2)
 ただし、
f23:第2群の焦点距離、
FL:全系の焦点距離、
t2:第1レンズの像側面から第2レンズの物体側面までの光軸上での距離、
である。
(# 1): An infrared imaging optical system comprising, in order from the object side to the image side, a first group having negative power and a second group having positive power,
A diaphragm is disposed between the second group and the image plane;
The first group includes a first lens composed of a negative single lens having an aspheric surface on at least one surface,
The second group includes a second lens composed of a positive meniscus lens concave on the object side, and a third lens composed of a positive meniscus lens convex on the object side,
An infrared optical system satisfying the following conditional expressions (1) and (2);
1 <f23 / FL <1.2 (1)
0.9 <t2 / FL <1.7 (2)
However,
f23: focal length of the second group,
FL: focal length of the entire system,
t2: the distance on the optical axis from the image side surface of the first lens to the object side surface of the second lens,
It is.
 (#2):前記第1レンズがゲルマニウム又はシリコンからなる非球面レンズであり、前記第2,第3レンズがいずれもシリコンからなる球面レンズであることを特徴とする(#1)記載の赤外線用光学系。 (# 2): The infrared ray according to (# 1), wherein the first lens is an aspherical lens made of germanium or silicon, and the second and third lenses are both spherical lenses made of silicon. Optical system.
 (#3):前記第1レンズが負メニスカスレンズであることを特徴とする(#1)又は(#2)記載の赤外線用光学系。 (# 3): The infrared optical system according to (# 1) or (# 2), wherein the first lens is a negative meniscus lens.
 (#4):以下の条件式(3)を満足することを特徴とする(#1)~(#3)のいずれか1項に記載の赤外線用光学系;
-4.9<f1/f23<-1.3 …(3)
 ただし、
f1:第1群の焦点距離、
f23:第2群の焦点距離、
である。
(# 4): The infrared optical system according to any one of (# 1) to (# 3), which satisfies the following conditional expression (3):
-4.9 <f1 / f23 <-1.3 (3)
However,
f1: focal length of the first group,
f23: focal length of the second group,
It is.
 (#5):以下の条件式(4)を満足することを特徴とする(#1)~(#4)のいずれか1項に記載の赤外線用光学系;
1.0<BF/FL<1.8 …(4)
 ただし、
BF:第3レンズの像側面から像面までの空気換算長、
FL:全系の焦点距離、
である。
(# 5): The infrared optical system according to any one of (# 1) to (# 4), wherein the following conditional expression (4) is satisfied;
1.0 <BF / FL <1.8 (4)
However,
BF: air conversion length from the image side surface of the third lens to the image surface,
FL: focal length of the entire system,
It is.
 (#6):前記第3レンズと像面との間にバンドパスフィルターが配置され、前記バンドパスフィルターが波長3.1~3.5μmの光のみを透過させる特性を有することを特徴とする(#1)~(#5)のいずれか1項に記載の赤外線用光学系。 (# 6): A band-pass filter is disposed between the third lens and the image plane, and the band-pass filter has a characteristic of transmitting only light having a wavelength of 3.1 to 3.5 μm. The infrared optical system according to any one of (# 1) to (# 5).
 (#7):前記第1,第2,第3レンズのいずれの面にも、表面レリーフ状の回折面又はフレネル面を有しないことを特徴とする(#1)~(#6)のいずれか1項に記載の赤外線用光学系。 (# 7): Any one of (# 1) to (# 6) is characterized in that none of the first, second and third lenses has a surface relief-like diffractive surface or Fresnel surface. The infrared optical system according to claim 1.
 (#8):前記絞りがコールドシールドの一部からなるコールドアパーチャーであることを特徴とする(#1)~(#7)のいずれか1項に記載の赤外線用光学系。 (# 8): The infrared optical system according to any one of (# 1) to (# 7), wherein the aperture is a cold door aperture formed of a part of a cold shield.
 (#9):(#1)~(#8)のいずれか1項に記載の赤外線用光学系と、撮像面上に形成された赤外線光学像を電気的な信号に変換する撮像センサーと、を備え、前記撮像センサーの撮像面上に被写体の赤外線光学像が形成されるように前記赤外線用光学系が設けられていることを特徴とする撮像光学装置。 (# 9): the infrared optical system according to any one of (# 1) to (# 8), an imaging sensor that converts an infrared optical image formed on the imaging surface into an electrical signal, And an infrared optical system is provided so that an infrared optical image of a subject is formed on an imaging surface of the imaging sensor.
 (#10):(#9)記載の撮像光学装置を備えることにより、被写体の静止画撮影,動画撮影のうちの少なくとも一方の機能が付加されたことを特徴とするデジタル機器。 (# 10): A digital apparatus provided with the imaging optical device according to (# 9), to which at least one function of still image shooting and moving image shooting of a subject is added.
 (#11):(#1)~(#8)のいずれか1項に記載の赤外線用光学系を備えたことを特徴とする赤外線用カメラシステム。 (# 11): An infrared camera system comprising the infrared optical system according to any one of (# 1) to (# 8).
 以下、本発明を実施した赤外線用光学系の構成等を、実施例のコンストラクションデータ等を挙げて更に具体的に説明する。ここで挙げる実施例1~8(EX1~8)は、前述した第1~第8の実施の形態にそれぞれ対応する数値実施例であり、第1~第8の実施の形態を表すレンズ構成図(図1,図3,…,図15)は、対応する実施例1~8のレンズ断面形状,レンズ配置等をそれぞれ示している。 Hereinafter, the configuration of the infrared optical system embodying the present invention will be described more specifically with reference to the construction data of the examples. Examples 1 to 8 (EX1 to 8) listed here are numerical examples corresponding to the first to eighth embodiments, respectively, and are lens configuration diagrams showing the first to eighth embodiments. (FIG. 1, FIG. 3,..., FIG. 15) show the lens cross-sectional shape, lens arrangement, and the like of the corresponding Examples 1 to 8, respectively.
 各実施例のコンストラクションデータでは、面データとして、左側の欄から順に、面番号,近軸における曲率半径R(mm),軸上面間隔d(mm),波長3.3μmに対する屈折率N3.3,及び波長3~5μmに対する分散値νを示す。分散値νは分散の性質を表し、ν=(N4-1)/(N3-N5)で定義される(ただし、N3:波長3μmに対する屈折率,N4:波長4μmに対する屈折率,N5:波長5μmに対する屈折率である。)。表1に、シリコン(Si)とゲルマニウム(Ge)の屈折率N5,N4,N3.3,N3及び分散値νを示す。 In the construction data of each example, as surface data, in order from the left column, the surface number, the radius of curvature R (mm) in the paraxial axis, the distance d (mm) between the axial upper surfaces, and the refractive index N3.3 for a wavelength of 3.3 μm. And the dispersion value ν for a wavelength of 3 to 5 μm. The dispersion value ν represents the nature of dispersion, and is defined by ν = (N4-1) / (N3-N5) (where N3: refractive index for wavelength 3 μm, N4: refractive index for wavelength 4 μm, N5: wavelength 5 μm) Is the refractive index for. Table 1 shows refractive indexes N5, N4, N3.3, N3 and dispersion value ν of silicon (Si) and germanium (Ge).
 面番号に*が付された面は非球面であり、その面形状は面頂点を原点とするローカルな直交座標系(x,y,z)を用いた以下の式(AS)で定義される。非球面データとして、非球面係数等を示す。なお、各実施例の非球面データにおいて表記の無い項の係数は0であり、すべてのデータに関してE-n=×10-nである。
z=(C・h2)/[1+√{1-(1+K)・C2・h2}]+Σ(Ai・hi) …(AS)
 ただし、
h:z軸(光軸AX)に対して垂直な方向の高さ(h2=x2+y2)、
z:高さhの位置での光軸AX方向のサグ量(面頂点基準)、
C:面頂点での曲率(近軸曲率半径Rの逆数)、
K:円錐定数、
Ai:i次の非球面係数(Σはiについて4次から∞次の総和を表す。)、
である。
A surface with * in the surface number is an aspheric surface, and the surface shape is defined by the following expression (AS) using a local orthogonal coordinate system (x, y, z) with the surface vertex as the origin. . As aspheric data, an aspheric coefficient or the like is shown. It should be noted that the coefficient of the term not described in the aspherical data of each embodiment is 0, and En = × 10 −n for all data.
z = (C · h 2 ) / [1 + √ {1− (1 + K) · C 2 · h 2 }] + Σ (Ai · h i ) (AS)
However,
h: height in the direction perpendicular to the z axis (optical axis AX) (h 2 = x 2 + y 2 ),
z: the amount of sag in the direction of the optical axis AX at the position of the height h (based on the surface vertex),
C: curvature at the surface vertex (reciprocal of paraxial radius of curvature R),
K: conic constant,
Ai: i-th order aspheric coefficient (Σ represents the sum of 4th order to ∞ order for i),
It is.
 表2に、各種データとして、全系の焦点距離FL(mm),Fナンバー(Fno),全画角2ω(°),レンズ全長TT(mm),バックフォーカスBF(mm),像高Y’(mm),第1レンズL1の焦点距離f1(mm),第2レンズL2の焦点距離f2(mm),第3レンズL3の焦点距離f3(mm),第2群Gr2の焦点距離f23(mm),及び第1レンズL1と第2レンズL2との間隔t2(mm)を示し、表3に各実施例の条件式対応値を示す(いずれも波長3.3μmでの値である。)。表2中のバックフォーカスBFは、レンズ最終面から近軸像面までの距離を空気換算長により表記しており(ウィンドウWI,バンドパスフィルターBPF等の平面部は空気換算長に変換している。)、レンズ全長TTは、レンズ最前面(第1レンズL1の物体側面)からレンズ最終面までの距離にバックフォーカスBFを加えたものである。 Table 2 shows various data as focal length FL (mm), F number (Fno), total angle of view 2ω (°), total lens length TT (mm), back focus BF (mm), and image height Y ′. (Mm), focal length f1 (mm) of the first lens L1, focal length f2 (mm) of the second lens L2, focal length f3 (mm) of the third lens L3, focal length f23 of the second group Gr2 (mm) ), And a distance t2 (mm) between the first lens L1 and the second lens L2, and Table 3 shows values corresponding to the conditional expressions of the respective examples (all are values at a wavelength of 3.3 μm). The back focus BF in Table 2 expresses the distance from the lens final surface to the paraxial image plane by the air conversion length (the flat portions such as the window WI and the bandpass filter BPF are converted to the air conversion length. )), The total lens length TT is obtained by adding the back focus BF to the distance from the lens front surface (the object side surface of the first lens L1) to the lens final surface.
 図2,図4,…,図16は、実施例1~8(EX1~8)にそれぞれ対応する収差図であり、(A)は球面収差図、(B)は非点収差図、(C)は歪曲収差図である。球面収差図は、実線で示す設計波長(評価波長)3.3μmにおける球面収差量、一点鎖線で示す波長3.0μmにおける球面収差量、破線で示す波長3.5μmにおける球面収差量を、それぞれ近軸像面からの光軸AX方向のズレ量(mm)で表しており、縦軸はFナンバーを表している。非点収差図において、破線Tは設計波長3.3μmにおけるタンジェンシャル像面、実線Sは設計波長3.3μmにおけるサジタル像面を、近軸像面からの光軸AX方向のズレ量(mm)で表しており、縦軸は半画角ω(°)を表している。歪曲収差図において、横軸は設計波長3.3μmにおける歪曲(%)を表しており、縦軸は半画角ω(°)を表している。 2, FIG. 4,..., FIG. 16 are aberration diagrams corresponding to Examples 1 to 8 (EX1 to 8), respectively, (A) is a spherical aberration diagram, (B) is an astigmatism diagram, and (C ) Is a distortion diagram. The spherical aberration diagram shows the amount of spherical aberration at the design wavelength (evaluation wavelength) of 3.3 μm indicated by the solid line, the amount of spherical aberration at the wavelength of 3.0 μm indicated by the alternate long and short dash line, and the amount of spherical aberration at the wavelength of 3.5 μm indicated by the broken line. This is represented by the amount of deviation (mm) in the optical axis AX direction from the axial image plane, and the vertical axis represents the F number. In the astigmatism diagram, the broken line T is the tangential image plane at the design wavelength of 3.3 μm, the solid line S is the sagittal image plane at the design wavelength of 3.3 μm, and the amount of deviation in the optical axis AX direction from the paraxial image plane (mm) The vertical axis represents the half angle of view ω (°). In the distortion diagram, the horizontal axis represents the distortion (%) at the design wavelength of 3.3 μm, and the vertical axis represents the half angle of view ω (°).
 実施例1
単位:mm
面データ
 面番号            R         d      N3.3      ν
 1(OB)            ∞        ∞
 2*           50.203     4.000     4.036     103
 3*           37.945    37.244
 4          -133.554     9.300     3.433     234
 5           -68.805     0.200
 6            95.739     3.216     3.433     234
 7           336.082    14.000
 8                ∞     1.000     3.433     234(WI)
 9                ∞     1.500
 10               ∞     0.500     3.433     234(BPF)
 11               ∞     0.000
 12(ST)           ∞    19.040
 13(IM)           ∞
Example 1
Unit: mm
Surface data Surface number R d N3.3 ν
1 (OB) ∞ ∞
2 * 50.203 4.000 4.036 103
3 * 37.945 37.244
4 -133.554 9.300 3.433 234
5 -68.805 0.200
6 95.739 3.216 3.433 234
7 336.082 14.000
8 ∞ 1.000 3.433 234 (WI)
9 ∞ 1.500
10 ∞ 0.500 3.433 234 (BPF)
11 ∞ 0.000
12 (ST) ∞ 19.040
13 (IM) ∞
非球面データ
 面番号    K           A4           A6           A8          A10
 2      5.21    2.360E-05   -2.293E-08    6.578E-11   -4.222E-13
 3      4.32    3.378E-05   -3.294E-08    5.651E-10   -3.176E-12
Aspheric data Surface number K A4 A6 A8 A10
2 5.21 2.360E-05 -2.293E-08 6.578E-11 -4.222E-13
3 4.32 3.378E-05 -3.294E-08 5.651E-10 -3.176E-12
 実施例2
単位:mm
面データ
 面番号            R         d      N3.3      ν
 1(OB)            ∞        ∞
 2*          -35.370     3.000     4.036     103
 3           -61.939    19.364
 4           -59.293     5.000     3.433     234
 5           -44.123     0.300
 6            58.917     4.824     3.433     234
 7           164.599    13.500
 8                ∞     1.500     3.433     234(WI)
 9                ∞     1.500
 10(ST)           ∞     0.000
 11               ∞     1.000     3.433     234(BPF)
 12               ∞    19.500
 13(IM)           ∞
Example 2
Unit: mm
Surface data Surface number R d N3.3 ν
1 (OB) ∞ ∞
2 * -35.370 3.000 4.036 103
3 -61.939 19.364
4 -59.293 5.000 3.433 234
5 -44.123 0.300
6 58.917 4.824 3.433 234
7 164.599 13.500
8 ∞ 1.500 3.433 234 (WI)
9 ∞ 1.500
10 (ST) ∞ 0.000
11 ∞ 1.000 3.433 234 (BPF)
12 ∞ 19.500
13 (IM) ∞
非球面データ
 面番号    K           A4           A6           A8          A10
 2      3.27    3.352E-06    1.196E-08    2.092E-11    2.825E-13
Aspheric data Surface number K A4 A6 A8 A10
2 3.27 3.352E-06 1.196E-08 2.092E-11 2.825E-13
 実施例3
単位:mm
面データ
 面番号            R         d      N3.3      ν
 1(OB)            ∞        ∞
 2*          -40.922     3.000     3.433     234
 3           -92.866    19.081
 4           -70.354     7.000     3.433     234
 5           -50.161     0.300
 6            64.238     3.749     3.433     234
 7           216.477    13.500
 8                ∞     1.500     3.433     234(WI)
 9                ∞     1.500
 10(ST)           ∞     0.000
 11               ∞     1.000     3.433     234(BPF)
 12               ∞    19.600
 13(IM)           ∞
Example 3
Unit: mm
Surface data Surface number R d N3.3 ν
1 (OB) ∞ ∞
2 * -40.922 3.000 3.433 234
3 -92.866 19.081
4 -70.354 7.000 3.433 234
5 -50.161 0.300
6 64.238 3.749 3.433 234
7 216.477 13.500
8 ∞ 1.500 3.433 234 (WI)
9 ∞ 1.500
10 (ST) ∞ 0.000
11 ∞ 1.000 3.433 234 (BPF)
12 ∞ 19.600
13 (IM) ∞
非球面データ
 面番号    K           A4           A6           A8          A10
 2      4.24    2.369E-07    1.894E-09    5.028E-11    5.781E-14
Aspheric data Surface number K A4 A6 A8 A10
2 4.24 2.369E-07 1.894E-09 5.028E-11 5.781E-14
 実施例4
単位:mm
面データ
 面番号            R         d      N3.3      ν
 1(OB)            ∞        ∞
 2*           51.871     4.241     4.036     103
 3*           38.722    34.748
 4           -84.015     7.015     3.433     234
 5           -48.319     0.300
 6            48.870     6.197     3.433     234
 7            60.274    10.000
 8                ∞     1.000     3.433     234(WI)
 9                ∞     1.500
 10               ∞     0.500     3.433     234(BPF)
 11               ∞     0.000
 12(ST)           ∞    19.500
 13(IM)           ∞
Example 4
Unit: mm
Surface data Surface number R d N3.3 ν
1 (OB) ∞ ∞
2 * 51.871 4.241 4.036 103
3 * 38.722 34.748
4 -84.015 7.015 3.433 234
5 -48.319 0.300
6 48.870 6.197 3.433 234
7 60.274 10.000
8 ∞ 1.000 3.433 234 (WI)
9 ∞ 1.500
10 ∞ 0.500 3.433 234 (BPF)
11 ∞ 0.000
12 (ST) ∞ 19.500
13 (IM) ∞
非球面データ
 面番号    K           A4           A6           A8          A10
 2      5.92    2.213E-05   -1.847E-08    6.157E-11   -3.134E-13
 3      3.58    3.480E-05   -4.632E-09    4.815E-10   -1.931E-12
Aspheric data Surface number K A4 A6 A8 A10
2 5.92 2.213E-05 -1.847E-08 6.157E-11 -3.134E-13
3 3.58 3.480E-05 -4.632E-09 4.815E-10 -1.931E-12
 実施例5
単位:mm
面データ
 面番号            R         d      N3.3      ν
 1(OB)            ∞        ∞
 2*           58.159     5.537     3.433     234
 3*           40.909    36.153
 4           -69.540     2.907     3.433     234
 5           -42.521     0.300
 6            39.721     2.838     3.433     234
 7            50.065    10.000
 8                ∞     1.000     3.433     234(WI)
 9                ∞     1.500
 10               ∞     0.500     3.433     234(BPF)
 11               ∞     0.000
 12(ST)           ∞    19.265
 13(IM)           ∞
Example 5
Unit: mm
Surface data Surface number R d N3.3 ν
1 (OB) ∞ ∞
2 * 58.159 5.537 3.433 234
3 * 40.909 36.153
4 -69.540 2.907 3.433 234
5 -42.521 0.300
6 39.721 2.838 3.433 234
7 50.065 10.000
8 ∞ 1.000 3.433 234 (WI)
9 ∞ 1.500
10 ∞ 0.500 3.433 234 (BPF)
11 ∞ 0.000
12 (ST) ∞ 19.265
13 (IM) ∞
非球面データ
 面番号    K           A4           A6           A8          A10
 2      7.07    1.756E-05   -1.858E-08    6.848E-11   -1.808E-13
 3      2.22    3.320E-05    7.007E-09    3.434E-10   -4.564E-13
Aspheric data Surface number K A4 A6 A8 A10
2 7.07 1.756E-05 -1.858E-08 6.848E-11 -1.808E-13
3 2.22 3.320E-05 7.007E-09 3.434E-10 -4.564E-13
 実施例6
単位:mm
面データ
 面番号            R         d      N3.3      ν
 1(OB)            ∞        ∞
 2*          188.402     3.000     4.036     103
 3            71.688    24.959
 4           -86.152     4.660     3.433     234
 5           -43.985     0.300
 6            35.913     8.524     3.433     234
 7            34.731    10.000
 8                ∞     1.000     3.433     234(WI)
 9                ∞     1.500
 10               ∞     0.500     3.433     234(BPF)
 11               ∞     0.000
 12(ST)           ∞    19.071
 13(IM)           ∞
Example 6
Unit: mm
Surface data Surface number R d N3.3 ν
1 (OB) ∞ ∞
2 * 188.402 3.000 4.036 103
3 71.688 24.959
4 -86.152 4.660 3.433 234
5 -43.985 0.300
6 35.913 8.524 3.433 234
7 34.731 10.000
8 ∞ 1.000 3.433 234 (WI)
9 ∞ 1.500
10 ∞ 0.500 3.433 234 (BPF)
11 ∞ 0.000
12 (ST) ∞ 19.071
13 (IM) ∞
非球面データ
 面番号    K           A4           A6           A8          A10
 2     -9.68   -5.945E-06   -1.220E-08    9.107E-12   -1.022E-13
Aspheric data Surface number K A4 A6 A8 A10
2 -9.68 -5.945E-06 -1.220E-08 9.107E-12 -1.022E-13
 実施例7
単位:mm
面データ
 面番号            R         d      N3.3      ν
 1(OB)            ∞        ∞
 2*           70.573     5.803     4.036     103
 3*           47.633    30.267
 4           -48.733     3.480     3.433     234
 5           -33.906     0.300
 6            46.064     2.787     3.433     234
 7            67.615     8.000
 8                ∞     1.000     3.433     234(WI)
 9                ∞     1.500
 10               ∞     0.500     3.433     234(BPF)
 11               ∞     0.000
 12(ST)           ∞    19.000
 13(IM)           ∞
Example 7
Unit: mm
Surface data Surface number R d N3.3 ν
1 (OB) ∞ ∞
2 * 70.573 5.803 4.036 103
3 * 47.633 30.267
4 -48.733 3.480 3.433 234
5 -33.906 0.300
6 46.064 2.787 3.433 234
7 67.615 8.000
8 ∞ 1.000 3.433 234 (WI)
9 ∞ 1.500
10 ∞ 0.500 3.433 234 (BPF)
11 ∞ 0.000
12 (ST) ∞ 19.000
13 (IM) ∞
非球面データ
 面番号    K           A4           A6           A8          A10
 2     14.56    3.347E-05   -4.863E-08    2.356E-10   -5.247E-13
 3     -0.27    6.288E-05    3.430E-08    8.272E-10    1.787E-12
Aspheric data Surface number K A4 A6 A8 A10
2 14.56 3.347E-05 -4.863E-08 2.356E-10 -5.247E-13
3 -0.27 6.288E-05 3.430E-08 8.272E-10 1.787E-12
 実施例8
単位:mm
面データ
 面番号            R         d      N3.3      ν
 1(OB)            ∞        ∞
 2*          140.751     3.000     4.036     103
 3*          102.721    28.393
 4           -91.480     2.860     3.433     234
 5           -46.503     0.300
 6            31.616     5.288     3.433     234
 7            30.324     8.000
 8                ∞     1.000     3.433     234(WI)
 9                ∞     1.500
 10               ∞     0.500     3.433     234(BPF)
 11               ∞     0.000
 12(ST)           ∞    19.159
 13(IM)           ∞
Example 8
Unit: mm
Surface data Surface number R d N3.3 ν
1 (OB) ∞ ∞
2 * 140.751 3.000 4.036 103
3 * 102.721 28.393
4 -91.480 2.860 3.433 234
5 -46.503 0.300
6 31.616 5.288 3.433 234
7 30.324 8.000
8 ∞ 1.000 3.433 234 (WI)
9 ∞ 1.500
10 ∞ 0.500 3.433 234 (BPF)
11 ∞ 0.000
12 (ST) ∞ 19.159
13 (IM) ∞
非球面データ
 面番号    K           A4           A6           A8          A10
 2     -5.88    1.703E-05   -2.022E-08    1.065E-10   -3.339E-13
 3    -19.60    2.436E-05   -2.384E-08    2.305E-10   -7.006E-13
Aspheric data Surface number K A4 A6 A8 A10
2 -5.88 1.703E-05 -2.022E-08 1.065E-10 -3.339E-13
3 -19.60 2.436E-05 -2.384E-08 2.305E-10 -7.006E-13
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 DU  デジタル機器
 LU  撮像光学装置
 CU  冷却部
 LN  赤外線用光学系
 Gr1  第1群
 Gr2  第2群
 L1  第1レンズ
 L2  第2レンズ
 L3  第3レンズ
 ST  絞り(コールドアパーチャー)
 CS  コールドシールド
 WI  ウィンドウ
 BPF  バンドパスフィルター
 SR  撮像センサー(冷却センサー)
 SS  受光面(撮像面)
 IM  像面(光学像)
 AX  光軸
 1  信号処理部
 2  制御部
 3  メモリー
 4  操作部
 5  表示部
DU Digital equipment LU Imaging optical device CU Cooling unit LN Infrared optical system Gr1 First group Gr2 Second group L1 First lens L2 Second lens L3 Third lens ST Aperture (cold aperture)
CS Cold shield WI Window BPF Bandpass filter SR Imaging sensor (cooling sensor)
SS Photosensitive surface (imaging surface)
IM image plane (optical image)
AX Optical axis 1 Signal processing unit 2 Control unit 3 Memory 4 Operation unit 5 Display unit

Claims (11)

  1.  物体側から像側へ順に、負パワーを有する第1群と、正パワーを有する第2群と、からなる赤外線用撮影光学系であって、
     前記第2群と像面との間に絞りが配置され、
     前記第1群が、少なくとも1面に非球面を有する負の単レンズからなる第1レンズで構成され、
     前記第2群が、物体側に凹の正メニスカスレンズからなる第2レンズと、物体側に凸の正メニスカスレンズからなる第3レンズと、で構成され、
     以下の条件式(1)及び(2)を満足する赤外線用光学系;
    1<f23/FL<1.2 …(1)
    0.9<t2/FL<1.7 …(2)
     ただし、
    f23:第2群の焦点距離、
    FL:全系の焦点距離、
    t2:第1レンズの像側面から第2レンズの物体側面までの光軸上での距離、
    である。
    An infrared imaging optical system comprising, in order from the object side to the image side, a first group having negative power and a second group having positive power,
    A diaphragm is disposed between the second group and the image plane;
    The first group includes a first lens composed of a negative single lens having an aspheric surface on at least one surface,
    The second group includes a second lens composed of a positive meniscus lens concave on the object side, and a third lens composed of a positive meniscus lens convex on the object side,
    An infrared optical system satisfying the following conditional expressions (1) and (2);
    1 <f23 / FL <1.2 (1)
    0.9 <t2 / FL <1.7 (2)
    However,
    f23: focal length of the second group,
    FL: focal length of the entire system,
    t2: the distance on the optical axis from the image side surface of the first lens to the object side surface of the second lens,
    It is.
  2.  前記第1レンズがゲルマニウム又はシリコンからなる非球面レンズであり、前記第2,第3レンズがいずれもシリコンからなる球面レンズである請求項1記載の赤外線用光学系。 The infrared optical system according to claim 1, wherein the first lens is an aspherical lens made of germanium or silicon, and the second and third lenses are both spherical lenses made of silicon.
  3.  前記第1レンズが負メニスカスレンズである請求項1又は2記載の赤外線用光学系。 The infrared optical system according to claim 1 or 2, wherein the first lens is a negative meniscus lens.
  4.  以下の条件式(3)を満足する請求項1~3のいずれか1項に記載の赤外線用光学系;
    -4.9<f1/f23<-1.3 …(3)
     ただし、
    f1:第1群の焦点距離、
    f23:第2群の焦点距離、
    である。
    The infrared optical system according to any one of claims 1 to 3, which satisfies the following conditional expression (3):
    -4.9 <f1 / f23 <-1.3 (3)
    However,
    f1: focal length of the first group,
    f23: focal length of the second group,
    It is.
  5.  以下の条件式(4)を満足する請求項1~4のいずれか1項に記載の赤外線用光学系;
    1.0<BF/FL<1.8 …(4)
     ただし、
    BF:第3レンズの像側面から像面までの空気換算長、
    FL:全系の焦点距離、
    である。
    The infrared optical system according to any one of claims 1 to 4, which satisfies the following conditional expression (4):
    1.0 <BF / FL <1.8 (4)
    However,
    BF: air conversion length from the image side surface of the third lens to the image surface,
    FL: focal length of the entire system,
    It is.
  6.  前記第3レンズと像面との間にバンドパスフィルターが配置され、前記バンドパスフィルターが波長3.1~3.5μmの光のみを透過させる特性を有する請求項1~5のいずれか1項に記載の赤外線用光学系。 The bandpass filter is disposed between the third lens and the image plane, and the bandpass filter has a characteristic of transmitting only light having a wavelength of 3.1 to 3.5 μm. The optical system for infrared rays described in 1.
  7.  前記第1,第2,第3レンズのいずれの面にも、表面レリーフ状の回折面又はフレネル面を有しない請求項1~6のいずれか1項に記載の赤外線用光学系。 The infrared optical system according to any one of claims 1 to 6, wherein none of the first, second, and third lenses has a surface relief-like diffractive surface or a Fresnel surface.
  8.  前記絞りがコールドシールドの一部からなるコールドアパーチャーである請求項1~7のいずれか1項に記載の赤外線用光学系。 The infrared optical system according to any one of claims 1 to 7, wherein the aperture is a cold door aperture comprising a part of a cold shield.
  9.  請求項1~8のいずれか1項に記載の赤外線用光学系と、撮像面上に形成された赤外線光学像を電気的な信号に変換する撮像センサーと、を備え、前記撮像センサーの撮像面上に被写体の赤外線光学像が形成されるように前記赤外線用光学系が設けられている撮像光学装置。 An infrared optical system according to any one of claims 1 to 8, and an imaging sensor for converting an infrared optical image formed on the imaging surface into an electrical signal, the imaging surface of the imaging sensor An imaging optical apparatus provided with the infrared optical system so that an infrared optical image of a subject is formed thereon.
  10.  請求項9記載の撮像光学装置を備えることにより、被写体の静止画撮影,動画撮影のうちの少なくとも一方の機能が付加されたデジタル機器。 A digital device to which at least one function of still image shooting and moving image shooting of a subject is added by including the imaging optical device according to claim 9.
  11.  請求項1~8のいずれか1項に記載の赤外線用光学系を備えた赤外線用カメラシステム。 An infrared camera system comprising the infrared optical system according to any one of claims 1 to 8.
PCT/JP2016/083967 2015-11-27 2016-11-16 Infrared optical system, image pickup optical device, and digital apparatus WO2017090495A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017552374A JPWO2017090495A1 (en) 2015-11-27 2016-11-16 Infrared optical system, imaging optical device, and digital equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-231621 2015-11-27
JP2015231621 2015-11-27

Publications (1)

Publication Number Publication Date
WO2017090495A1 true WO2017090495A1 (en) 2017-06-01

Family

ID=58763534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083967 WO2017090495A1 (en) 2015-11-27 2016-11-16 Infrared optical system, image pickup optical device, and digital apparatus

Country Status (2)

Country Link
JP (1) JPWO2017090495A1 (en)
WO (1) WO2017090495A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110568595A (en) * 2019-10-16 2019-12-13 协益电子(苏州)有限公司 Small-distortion infrared optical lens and auxiliary driving monitor
CN111273423A (en) * 2018-12-04 2020-06-12 新巨科技股份有限公司 Three-piece infrared single-wavelength lens group
CN115390220A (en) * 2022-08-25 2022-11-25 嘉兴中润光学科技股份有限公司 Vehicle-mounted lens and vehicle-mounted system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109491058B (en) * 2018-12-29 2023-12-08 福建福光天瞳光学有限公司 F50mm high-transmittance optical athermalized lens and assembly method thereof
CN111929864B (en) * 2020-08-26 2022-05-20 河南平原光电有限公司 Economical long-wave infrared athermalized gun aiming lens
CN114326056B (en) * 2021-12-31 2024-03-26 天活松林光学(广州)有限公司 Infrared fixed-focus lens, infrared camera and infrared imaging system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5251063A (en) * 1991-10-16 1993-10-05 Bodenseewerk Geratetechnik Gmbh Large-aperture three-lens objective with aspherical-surfaces
US5446581A (en) * 1993-03-15 1995-08-29 Lockheed Missiles & Space Co., Inc. Inverted telephoto wide-aperture wide-field infrared lens system
JPH1152227A (en) * 1997-07-31 1999-02-26 Asahi Optical Co Ltd Photographing lens
JP2000019392A (en) * 1998-06-30 2000-01-21 Matsushita Electric Ind Co Ltd Photographing lens
JP2009063942A (en) * 2007-09-10 2009-03-26 Sumitomo Electric Ind Ltd Far-infrared camera lens, lens unit, and imaging apparatus
WO2011027622A1 (en) * 2009-09-01 2011-03-10 オリンパスメディカルシステムズ株式会社 Objective optical system
JP2012173559A (en) * 2011-02-22 2012-09-10 Tamron Co Ltd Infrared lens
JP2013228539A (en) * 2012-04-25 2013-11-07 Tamron Co Ltd Optical system for infrared rays

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5251063A (en) * 1991-10-16 1993-10-05 Bodenseewerk Geratetechnik Gmbh Large-aperture three-lens objective with aspherical-surfaces
US5446581A (en) * 1993-03-15 1995-08-29 Lockheed Missiles & Space Co., Inc. Inverted telephoto wide-aperture wide-field infrared lens system
JPH1152227A (en) * 1997-07-31 1999-02-26 Asahi Optical Co Ltd Photographing lens
JP2000019392A (en) * 1998-06-30 2000-01-21 Matsushita Electric Ind Co Ltd Photographing lens
JP2009063942A (en) * 2007-09-10 2009-03-26 Sumitomo Electric Ind Ltd Far-infrared camera lens, lens unit, and imaging apparatus
WO2011027622A1 (en) * 2009-09-01 2011-03-10 オリンパスメディカルシステムズ株式会社 Objective optical system
JP2012173559A (en) * 2011-02-22 2012-09-10 Tamron Co Ltd Infrared lens
JP2013228539A (en) * 2012-04-25 2013-11-07 Tamron Co Ltd Optical system for infrared rays

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111273423A (en) * 2018-12-04 2020-06-12 新巨科技股份有限公司 Three-piece infrared single-wavelength lens group
CN111273423B (en) * 2018-12-04 2021-12-21 新巨科技股份有限公司 Three-piece infrared wavelength lens group
CN110568595A (en) * 2019-10-16 2019-12-13 协益电子(苏州)有限公司 Small-distortion infrared optical lens and auxiliary driving monitor
CN110568595B (en) * 2019-10-16 2024-04-05 协益电子(苏州)有限公司 Small-distortion infrared optical lens and auxiliary driving monitor
CN115390220A (en) * 2022-08-25 2022-11-25 嘉兴中润光学科技股份有限公司 Vehicle-mounted lens and vehicle-mounted system

Also Published As

Publication number Publication date
JPWO2017090495A1 (en) 2018-09-13

Similar Documents

Publication Publication Date Title
WO2017090495A1 (en) Infrared optical system, image pickup optical device, and digital apparatus
JP6583407B2 (en) Infrared optical system, imaging optical device, and digital equipment
CN109219766B (en) Image pickup optical system, lens member, and image pickup apparatus
JP6353756B2 (en) Imaging lens system and imaging apparatus
JP6149410B2 (en) Far-infrared imaging optical system, imaging optical device, and digital equipment
JP6571840B2 (en) Imaging lens system and imaging apparatus
JP2010039243A (en) Infrared lens and imaging apparatus
JP6848967B2 (en) Infrared optics, imaging optics and digital equipment
JP2019095657A (en) Imaging lens and imaging device
US9823449B1 (en) Optical telephoto imaging lens
WO2016121857A1 (en) Far-infrared lens system, optical imaging device, and digital apparatus
WO2016027786A1 (en) Far-infrared lens, imaging optical device and digital equipment
JP2001033689A (en) Bright wide-angled infrared lens
JP6222116B2 (en) Imaging optical system, imaging optical device and digital equipment
WO2015029645A1 (en) Far infrared lens, photographing lens system and camera system
WO2020262553A1 (en) Imaging lens, and image capturing device
JP7193362B2 (en) Imaging lens and imaging device
JP2019207427A (en) Image capturing lens system and image capturing device
TWI512321B (en) Wide-angle lens and image pick-up unit and monitor device thereof
WO2017195731A1 (en) Infrared optical system, imaging optical device and digital device
JP2019124744A (en) Image capturing optical system and image capturing device
JP2016139093A (en) Lens, far-infrared lens system, image capturing optical device, and digital device
JP2018044987A (en) Reflection optical device, far-infrared ray imaging system, and gas detection system
WO2016208433A1 (en) Far-infrared lens system, imaging optical apparatus, and digital device
WO2016027784A1 (en) Far-infrared lens, image-acquisition optical device, and digital equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868443

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017552374

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868443

Country of ref document: EP

Kind code of ref document: A1