WO2016027784A1 - Far-infrared lens, image-acquisition optical device, and digital equipment - Google Patents

Far-infrared lens, image-acquisition optical device, and digital equipment Download PDF

Info

Publication number
WO2016027784A1
WO2016027784A1 PCT/JP2015/073051 JP2015073051W WO2016027784A1 WO 2016027784 A1 WO2016027784 A1 WO 2016027784A1 JP 2015073051 W JP2015073051 W JP 2015073051W WO 2016027784 A1 WO2016027784 A1 WO 2016027784A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
far
infrared
image
conditional expression
Prior art date
Application number
PCT/JP2015/073051
Other languages
French (fr)
Japanese (ja)
Inventor
杭迫 真奈美
敦司 山下
誠 神
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016544202A priority Critical patent/JPWO2016027784A1/en
Publication of WO2016027784A1 publication Critical patent/WO2016027784A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to a far-infrared lens, an imaging optical device, and a digital device.
  • an imaging lens system used in the far-infrared (wavelength 8 to 12 ⁇ m band), especially with a wide angle with a half angle of view ⁇ of 30 ° or more, the number of lenses is as few as 2, and aberration correction is performed well.
  • It relates to a far-infrared lens that can be used in an inexpensive camera system, an imaging optical device that captures a far-infrared image obtained by the far-infrared lens with an imaging device, and a digital device with an image input function equipped with a far-infrared lens. is there.
  • Patent Documents 1 to 4 propose a relatively wide-angle far-infrared lens composed of two lenses.
  • the core thickness of the second lens normalized by the focal length is thin.
  • the material cost will increase, so it will be compensated, or the size of the homogeneous lens material will be limited, so the lens core thickness has been reduced. It is thought that it is designed.
  • a far infrared sensor having a small size has been manufactured at a low cost.
  • the back focus normalized by the focal length is long.
  • the F number is as bright as about 1.2, and the off-axis light beam is not cut as much as possible.
  • the F-number light beam passes through a high position from the optical axis of the second lens. The burden will increase.
  • the on-axis light beam and the off-axis light beam pass through almost the same height, it is difficult to effectively correct off-axis performance (correction of field curvature or the like). For this reason, sufficient performance cannot be obtained with a system having a small number of lenses.
  • the back focus normalized by the focal length is shortened. This is considered to be because the numerical system is a lens system for an inch and the sensor screen size is large.
  • the cover glass of the sensor cannot be inserted into the back focus. Since the sensor cover glass is indispensable for ensuring performance even if it is small and inexpensive, such a lens system with an excessively short back focus cannot be used.
  • a first lens having a relatively weak meniscus is disposed with the concave surface facing the object side.
  • the meniscus degree is determined by the paraxial radius of curvature of the front and rear surfaces of the lens, and is represented by (r1 + r2) / (r1-r2) where r1 is the radius of curvature of the front surface and r2 is the radius of curvature of the rear surface.
  • the positive lens has a weak meniscus degree and a high power (power: an amount defined by the reciprocal of the focal length), and the first lens also exhibits spherical aberration and field curvature due to the positive power. generate.
  • power an amount defined by the reciprocal of the focal length
  • the first lens does not actively correct the aberration, so the aberration cannot be reduced sufficiently with a small number of lenses, and the performance is deteriorated particularly in a wide-angle lens system. It is easy to do.
  • the first lens is a negative lens.
  • the negative power is strong.
  • the negative power is too strong, so that the light passes through a higher position from the optical axis in the second lens and becomes larger. Aberrations are generated, and a wide-angle lens system deteriorates the performance.
  • the focal length of the first lens normalized by the focal length of the entire system takes a small positive value, and the positive power of the first lens is relatively strong.
  • the first lens also causes spherical aberration and curvature of field due to positive power, and the aberration is not corrected so much, so good performance cannot be obtained with a small number of lenses.
  • the focal length of the first lens normalized by the focal length of the entire system takes a small negative value, and the negative power is strong. Similar to the case where the meniscus degree is weak, if the negative power is too strong, the power condensed by the second lens becomes stronger, which deteriorates the performance.
  • the total lens length normalized by the focal length of the entire system is small.
  • the surfaces are arranged close to each other, so that it is difficult to correct different aberrations on each surface, and sufficient performance cannot be obtained.
  • Patent Document 2 the total lens length standardized by the focal length of the entire system is large.
  • the off-axis light beam passes through a high position on the first surface and the effective diameter becomes large.
  • each surface can be spaced apart and different aberration correction is possible, the coma aberration of the off-axis light beam becomes large and sufficient performance cannot be obtained.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a high-performance and inexpensive far-off lens in which aberrations are satisfactorily corrected for an on-axis light beam and an off-axis light beam even with a small number of two lenses.
  • An object of the present invention is to provide an infrared lens, an imaging optical apparatus and a digital apparatus including the infrared lens.
  • the far-infrared lens of the first invention is a lens system used in the far-infrared band, It is composed of two single lenses of the first lens and the second lens in order from the object side, satisfies the following conditional expression (2), and has a half field angle larger than 30 °. 7.3 ⁇ (r1 + r2) / (r1-r2) ⁇ 27.5 (2)
  • r1 Paraxial radius of curvature of the object side surface of the first lens
  • r2 paraxial radius of curvature of the image side surface of the first lens
  • the far-infrared lens of the second invention is characterized in that, in the first invention, the following conditional expression (4) is satisfied. 0.63 ⁇ dL2 / f ⁇ 2.55 (4) However, dL2: center thickness of the second lens, f: Focal length of the entire far-infrared lens system, It is.
  • a far-infrared lens according to a third aspect of the invention is characterized in that, in the first or second aspect of the invention, the following conditional expression (6) is satisfied. 0.9 ⁇ f2 / f ⁇ 4.5 (6) However, f2: focal length of the second lens, f: Focal length of the entire far-infrared lens system, It is.
  • a far-infrared lens of a fourth invention is characterized in that, in any one of the first to third inventions, the first lens and the second lens have a refractive index larger than 2 at a design wavelength. .
  • An imaging optical device is a far-infrared lens according to any one of the first to fourth aspects, and an imaging element that converts a far-infrared optical image formed on the imaging surface into an electrical signal. And the far-infrared lens is provided so that a far-infrared optical image of a subject is formed on the imaging surface of the imaging device.
  • the digital device is characterized in that at least one of a still image shooting and a moving image shooting of a subject is added by including the imaging optical device according to the fifth invention.
  • a far-infrared camera system includes the far-infrared lens according to any one of the first to fourth aspects.
  • the present invention by adopting the above-described configuration, it becomes possible to perform positive aberration correction on the on-axis light beam and off-axis light beam even with a small number of lenses, that is, good aberration correction.
  • good aberration correction As a result, high performance and high definition are possible, and it is possible to deal with newly manufactured inexpensive far-infrared sensors. Therefore, it is possible to realize an inexpensive but high-performance far-infrared lens and an imaging optical device including the same.
  • the far-infrared lens or the imaging optical device according to the present invention in a digital device such as a night vision device, a thermography, a portable terminal, a camera system (for example, a digital camera, a surveillance camera, a security camera, an in-vehicle camera), A high-performance far-infrared image input function can be added to a digital device at a low cost and in a compact manner.
  • a digital device such as a night vision device, a thermography, a portable terminal, a camera system (for example, a digital camera, a surveillance camera, a security camera, an in-vehicle camera)
  • a high-performance far-infrared image input function can be added to a digital device at a low cost and in a compact manner.
  • FIG. 1 is a lens cross-sectional view of a first embodiment (Example 1).
  • FIG. FIG. 6 is an aberration diagram of Example 1.
  • FIG. 6 is a lens cross-sectional view of a second embodiment (Example 2).
  • FIG. 6 is an aberration diagram of Example 2.
  • FIG. 6 is a lens cross-sectional view of a third embodiment (Example 3).
  • FIG. 6 is an aberration diagram of Example 3.
  • FIG. 10 is a lens cross-sectional view of a fourth embodiment (Example 4).
  • FIG. 6 is an aberration diagram of Example 4.
  • FIG. 10 is a lens cross-sectional view of a fifth embodiment (Example 5).
  • FIG. 6 is an aberration diagram of Example 5.
  • FIG. 6 is an aberration diagram of Example 1.
  • FIG. 10 is a lens cross-sectional view of a sixth embodiment (Example 6).
  • FIG. 10 is an aberration diagram of Example 6.
  • FIG. 10 is a lens cross-sectional view of a seventh embodiment (Example 7).
  • FIG. 10 is an aberration diagram of Example 7.
  • FIG. 10 is a lens cross-sectional view of an eighth embodiment (Example 8).
  • FIG. 10 is an aberration diagram of Example 8.
  • FIG. 10 is a lens cross-sectional view of a ninth embodiment (Example 9).
  • FIG. 10 is an aberration diagram of Example 9.
  • FIG. 10 is a lens cross-sectional view of a tenth embodiment (Example 10).
  • FIG. 10 is an aberration diagram of Example 10.
  • FIG. 11 The lens sectional view of the 11th embodiment (Example 11).
  • FIG. 10 shows aberration diagrams of Example 11.
  • a lens sectional view of a twelfth embodiment (Example 12).
  • FIG. 10 is an aberration diagram of Example 12.
  • FIG. 18 is a lens cross-sectional view of a thirteenth embodiment (Example 13).
  • Aberration diagram of Example 13 The schematic diagram which shows the schematic structural example of the digital apparatus carrying a far-infrared lens.
  • a far-infrared lens according to an embodiment of the present invention is a lens system used in a far-infrared band, and is composed of two single lenses, a first lens and a second lens, in order from the object side.
  • Conditional expression (2) is satisfied, and the half angle of view is larger than 30 °. 7.3 ⁇ (r1 + r2) / (r1-r2) ⁇ 27.5 (2)
  • r1 Paraxial radius of curvature of the object side surface of the first lens
  • r2 paraxial radius of curvature of the image side surface of the first lens, It is.
  • Far infrared rays are mainly infrared rays having a wavelength in the range of 7 to 14 ⁇ m.
  • the body temperature of humans and animals is emitted light having a wavelength of 8 to 12 ⁇ m, and most of the far infrared optical system is used at a wavelength of 8 to 12 ⁇ m.
  • the far-infrared region with a wavelength of 8 to 12 ⁇ m is the range in which the temperature of a substance can be detected, and there are many things that can be applied, such as temperature measurement, human detection in the dark, and security. Nonetheless, far-infrared cameras are not widely used at present because lens materials that transmit far-infrared rays are materials containing expensive rare metals or materials that are difficult to process.
  • the processing cost of the lens system is configured by forming the single lens of the first lens and the second lens in order from the object side to form a small number of lens systems. This makes it possible to provide an inexpensive lens system.
  • the far-infrared lens according to the embodiment of the present invention assumes a lens configuration suitable for a wide-angle system in which the half angle of view ⁇ is larger than 30 °, even though it has a wide-angle lens configuration composed of two single lenses.
  • the following is a description of conditions and the like that are desirable in order to enable even two lenses while achieving such a wide angle and high performance.
  • conditional expression (2) defines a desirable condition regarding the shaping factor of the first lens of the far-infrared lens. It is further desirable to satisfy the following conditional expression (2a), and by satisfying conditional expression (2a), the effects described later can be further increased. 9.4 ⁇ (r1 + r2) / (r1-r2) ⁇ 27.1 (2a) However, r1: Paraxial radius of curvature of the object side surface of the first lens, r2: paraxial radius of curvature of the image side surface of the first lens, It is.
  • the shaping factor indicates the shape of one lens. If the paraxial curvature radius of the front surface (object side surface) of the lens including the sign is r1, and the paraxial curvature radius of the rear surface (image side surface) is r2, then (r1 + r2) / (r1-r2). When the values of the paraxial curvature radii on both sides are close to each other including the sign, the lens has a strong meniscus degree, and the absolute value of the shaping factor becomes large.
  • the sign plus or minus differs depending on the direction of the lens surface. When the paraxial radii of curvature on both sides are separated including the sign, the lens has a low meniscus degree, and the absolute value of the shaping factor is small. The sign plus or minus differs depending on the direction of the lens surface as described above.
  • the shaping factor of the first lens it is preferable to set the shaping factor of the first lens within a predetermined range.
  • the conditional expressions (2) and (2a) define the range, and indicate that the value of the shaping factor is large, that is, the degree of meniscus is large.
  • the first lens has a weak positive power or a weak negative power.
  • the first lens is mainly responsible for correction of spherical aberration and curvature of field, and by weakening the light condensing function, sufficient back focus can be secured and aberration correction can be made even with a wide angle specification.
  • the first lens When the value of the shaping factor becomes smaller than the lower limit of the conditional expression (2), the first lens has a weak meniscus and has a slightly strong positive power. Since it has a condensing function to some extent, the back focus is shortened and aberration correction is insufficient, and the second lens cannot be corrected. Further, if the value of the shaping factor exceeds the upper limit of the conditional expression (2), the aberration correction power of the first lens is almost lost, and the second lens alone needs to collect light. A large amount of aberration will occur.
  • the first lens becomes a positive lens or negative lens having a strong meniscus degree, and the first lens has spherical aberration, curvature of field, etc.
  • the first lens has spherical aberration, curvature of field, etc.
  • conditional expression (1) Regarding the back focus of the entire far-infrared lens system, it is desirable to satisfy the following conditional expression (1). Furthermore, it is desirable to satisfy the following conditional expression (1a), and it is further desirable to satisfy the following conditional expression (1b). Therefore, the effect described later can be further enhanced by preferably satisfying conditional expression (1a), more preferably satisfying conditional expression (1b).
  • conditional expression (1a) 0.38 ⁇ fB / f ⁇ 1.35
  • fB Air-converted distance from the image side surface of the second lens to the image surface
  • f Focal length of the entire far-infrared lens system, It is.
  • the back focus In the far-infrared lens according to the embodiment of the present invention, it is preferable to set the back focus normalized by the focal length of the entire system within a predetermined range.
  • the conditional expressions (1), (1a), and (1b) define the range, and the back focus is relatively short compared to a general far-infrared lens system.
  • the back focus By shortening the back focus, the distance from the image plane to the second lens is shortened, so that the F-number light beam on the axis passes through a relatively low position of the second lens and suppresses the generation amount of spherical aberration. It becomes possible.
  • the brightness of the lens system determines the resolving power, the brightness of the F number: about 1.2 is required.
  • conditional expression (1) For this reason, if the upper limit of conditional expression (1) is exceeded, spherical aberration tends to occur, making it difficult to construct a lens system with a small number of lenses. If the generation amount of spherical aberration is reduced so as not to exceed the upper limit of conditional expression (1), off-axis aberrations can be corrected efficiently by an aspherical surface, etc., and a wide-angle lens system is configured with a small number of lenses. Is possible. Further, if the back focus is shortened beyond the lower limit of the conditional expression (1), it is difficult to secure a space for disposing the far-infrared sensor cover glass and an interval between the cover glass and the sensor light receiving surface. Become. In the far infrared sensor, such a space is indispensable in order to ensure the performance. Therefore, the far infrared lens must be designed to ensure such a space.
  • conditional expression (1) if the conditional expression (1) is satisfied, and preferably the conditional expression (1a) or (1b) is satisfied, the distance from the image plane to the second lens is not excessively increased, and the low position of the second lens is set.
  • the spherical aberration can be suppressed by passing the F-number light beam, and at the same time, the field curvature correction can be effectively performed for the off-axis light beam.
  • a sufficient space for inserting the far-infrared sensor cover glass can be secured.
  • conditional expression (3) Regarding the total length of the far-infrared lens, it is desirable to satisfy the following conditional expression (3). Furthermore, it is desirable to satisfy the following conditional expression (3a), and it is more desirable to satisfy the following conditional expression (3b). Therefore, the effect described later can be further enhanced by preferably satisfying conditional expression (3a), more preferably satisfying conditional expression (3b). 1.75 ⁇ TL / f ⁇ 5.7 (3) 1.75 ⁇ TL / f ⁇ 5.0 (3a) 1.75 ⁇ TL / f ⁇ 3.2 (3b)
  • TL full length of far infrared lens (when back focus is converted to air)
  • f Focal length of the entire far-infrared lens system, It is.
  • conditional expressions (3), (3a), and (3b) define the range.
  • the lower limit of conditional expression (3) when the number of lenses is as small as two, the surfaces are arranged close to each other due to the small total lens length, making it difficult to correct different aberrations on each surface. Sufficient performance cannot be obtained.
  • the upper limit of conditional expression (3) is exceeded, in such a lens system, the off-axis light beam passes through a high position on the first surface, so that the effective diameter becomes large. Different aberrations can be corrected because the surfaces can be arranged apart from each other, but sufficient performance cannot be obtained because the coma aberration of the off-axis light beam increases.
  • the surfaces can be arranged sufficiently apart from each other, so that even with a lens configuration of as few as two lenses It is possible to obtain a lens system with good performance by correcting different aberrations. Further, it is possible to prevent an increase in the front lens diameter due to an excessively large lens total length, and to suppress the coma aberration of the off-axis light beam caused by the first lens.
  • center thickness (core thickness) of the second lens of the far-infrared lens it is desirable to satisfy the following conditional expression (4), and it is more desirable to satisfy the following conditional expression (4a). Therefore, preferably, by satisfying conditional expression (4a), the effects described later can be further increased. 0.63 ⁇ dL2 / f ⁇ 2.55 (4) 0.68 ⁇ dL2 / f ⁇ 2.5 (4a)
  • dL2 center thickness of the second lens
  • f Focal length of the entire far-infrared lens system, It is.
  • the core thickness of the second lens normalized by the focal length of the entire system within a predetermined range.
  • the conditional expressions (4) and (4a) define the range, and the core thickness of the second lens is relatively thick compared to the conventional far-infrared lens.
  • the same aberration correction can only be performed on the front surface and the rear surface of the second lens. It will be difficult to do. Also, if the core thickness of the second lens increases beyond the upper limit of conditional expression (4), it becomes difficult to obtain a homogeneous material due to lens material restrictions, or uniform heat molding is difficult in the case of an aspherical surface. For this reason, it becomes difficult to obtain the performance of a single lens as designed, and it becomes impossible to obtain a lens system with good performance.
  • conditional expression (5) Regarding the focal length of the first lens of the far-infrared lens, it is desirable to satisfy the following conditional expression (5). Furthermore, it is more desirable to satisfy the following conditional expressions (5a), (5b) or (5c). That is, it is more preferable that the conditional expressions (5), (5a), (5b), and (5c) are satisfied in this order. Therefore, the effect described later can be further increased by satisfying conditional expression (5a), more preferably conditional expression (5b) or (5c).
  • f1 focal length of the first lens
  • f Focal length of the entire far-infrared lens system
  • the focal length of the first lens In the far-infrared lens according to the embodiment of the present invention, it is preferable to set the focal length of the first lens normalized by the focal length of the entire system within a predetermined range.
  • the conditional expressions (5), (5a), (5b), and (5c) define the range, and the first lens has a relatively weak positive power. If the power of the first lens exceeds the upper limit of the conditional expression (5), it becomes difficult to secure a sufficient back focus, and even in a wide-angle optical system, it is difficult to even insert a sensor cover glass. End up. Further, when the power of the first lens becomes smaller than the lower limit of the conditional expression (5), most of the light condensing action must be performed by the second lens, and a large spherical aberration occurs in the second lens.
  • conditional expression 6 Regarding the focal length of the second lens of the far-infrared lens, it is desirable to satisfy the following conditional expression (6). Furthermore, it is desirable to satisfy the following conditional expression (6a), and it is more desirable to satisfy the following conditional expression (6b). Therefore, the effect described later can be further enhanced by preferably satisfying conditional expression (6a), more preferably satisfying conditional expression (6b). 0.9 ⁇ f2 / f ⁇ 4.5 (6) 0.9 ⁇ f2 / f ⁇ 2.9 (6a) 0.9 ⁇ f2 / f ⁇ 1.3 (6b) However, f2: focal length of the second lens, f: Focal length of the entire far-infrared lens system, It is.
  • the focal length of the second lens normalized by the focal length of the entire system within a predetermined range.
  • the conditional expressions (6), (6a), and (6b) define the range. If the lower limit of conditional expression (6) is exceeded, the power of the second lens is not too strong, so that curvature of field, distortion, etc. that occur in this lens are kept small, and eccentricity errors and lens shape errors that occur during manufacturing. The performance degradation due to the lens interval error can be kept small. If the upper limit of conditional expression (6) is not reached, the power of the second lens is not too weak, so the optical system does not become too large, and the volume and weight of the lens can be kept within an appropriate range.
  • a refractive index at a design wavelength of the first lens and the second lens is larger than 2.
  • the first lens and the second lens are made of a far-infrared lens material having a high refractive index.
  • chalcogenide glass containing chalcogen as a main component reffractive index of about 2.5 to 2.8 at a wavelength of 10 ⁇ m
  • silicon Si, refractive index of about 3 at a wavelength of 10 ⁇ m
  • germanium Ge, at a wavelength of 10 ⁇ m
  • a refractive index of about 4 For example, a refractive index of about 4).
  • lens materials have a high refractive index, the curvature of the lens surface can be relaxed and the aberration of each surface can be reduced. Therefore, even when the number of lenses is small, good aberration correction can be performed.
  • Some far-infrared lens materials have a low refractive index. However, even if they are inexpensive, it is necessary to increase the curvature of the lens surface. Therefore, it is difficult to construct a lens system with a small number of sheets, which ultimately increases the cost of the lens system.
  • Refractive index is the ratio of the traveling speed of light in the substance to the vacuum, and is displayed for the d-line (587 nm) in the visible region.
  • the refractive index for a wavelength of 10 ⁇ m is typically representative.
  • (N10-1) / (N8-N12) as a value representing the nature of dispersion (however, N10: Refractive index at a wavelength of 10 ⁇ m, N8: Refractive index at a wavelength of 8 ⁇ m, N12: Refractive index at a wavelength of 12 ⁇ m).
  • (N10-1) / (N8-N12) as a value representing the nature of dispersion (however, N10: Refractive index at a wavelength of 10 ⁇ m, N8: Refractive index at a wavelength of 8 ⁇ m, N12: Refractive index at a wavelength
  • At least one of the lens surfaces of the first and second lenses is a diffraction grating surface.
  • a diffraction grating surface By having a diffraction grating surface, it is possible to satisfactorily correct axial chromatic aberration.
  • a cross-sectional shape of the diffraction grating a step shape or a kinoform may be used in addition to the binary shape. In either case, the phase difference at the diffraction wavelength can be calculated by the equation (DS) described later.
  • the far-infrared image input function can be added at a low cost and in a compact manner, contributing to its compactness, high performance, and high functionality.
  • the lens material and lens processing are expensive. Therefore, by using a simple two-lens lens system as a far-infrared lens. Further, it is possible to realize an inexpensive camera system in which the processing cost of the lens is suppressed.
  • the far-infrared lens according to the embodiment of the present invention is suitable for use as an imaging optical system for a digital device with a far-infrared image input function (for example, a mobile terminal, a drive recorder, etc.).
  • a far-infrared imaging optical device that optically captures a far-infrared image of a subject and outputs it as an electrical signal.
  • the imaging optical device is an optical device that constitutes a main component of a camera used for still image shooting or moving image shooting of a subject. For example, a far-infrared ray that forms a far-infrared optical image of an object in order from the object (that is, subject) side.
  • the lens includes a lens and an imaging element (far infrared sensor) that converts a far infrared optical image formed by the far infrared lens into an electrical signal. Then, the far-infrared lens having the above-described characteristic configuration is arranged so that the far-infrared optical image of the subject is formed on the light-receiving surface (that is, the imaging surface) of the image sensor, so that the size and cost are high.
  • An imaging optical device having performance and a digital device including the same can be realized.
  • Examples of digital devices with a far-infrared image input function include camera systems such as infrared cameras, surveillance cameras, security cameras, in-vehicle cameras, aircraft cameras, digital cameras, video cameras, videophone cameras, and personal computers. , Night vision devices, thermography, portable digital devices (for example, small and portable information device terminals such as mobile phones, smart phones (high-function mobile phones), tablet terminals, mobile computers, etc.), and peripheral devices (scanners, printers) , Mouse, etc.), other digital devices (drive recorders, defense devices, etc.), etc., which have a camera function built in or externally mounted.
  • camera systems such as infrared cameras, surveillance cameras, security cameras, in-vehicle cameras, aircraft cameras, digital cameras, video cameras, videophone cameras, and personal computers.
  • Night vision devices thermography
  • portable digital devices for example, small and portable information device terminals such as mobile phones, smart phones (high-function mobile phones), tablet terminals, mobile computers, etc.
  • peripheral devices scanners, printers
  • an infrared camera system by using an imaging optical device for far infrared rays, but also to provide an infrared camera function and a night vision function by installing the imaging optical device in various devices.
  • a temperature measurement function can be added.
  • a digital device having a far-infrared image input function such as a smartphone with an infrared camera can be configured.
  • FIG. 27 shows a schematic configuration example of the digital device DU in a schematic cross section.
  • the imaging optical device LU mounted in the digital device DU shown in FIG. 27 has a far-infrared lens LN (AX: optical axis) that forms a far-infrared optical image (image plane) IM of the object in order from the object (that is, subject) side. ), A parallel plate PT (corresponding to a cover glass of the image sensor SR, an optical filter arranged as necessary), and an optical image formed on the light receiving surface (imaging surface) SS by the far-infrared lens LN.
  • AX optical axis
  • an imaging element far infrared sensor
  • SR far infrared sensor
  • the imaging optical device LU is usually arranged inside the body, but when necessary to realize the camera function, a form as necessary is adopted. Is possible.
  • the unitized imaging optical device LU can be configured to be detachable or rotatable with respect to the main body of the digital device DU.
  • the far-infrared lens LN is a two-lens single-focus lens composed of two single lenses, a first lens and a second lens, in order from the object side.
  • the light receiving surface SS of the image sensor SR As described above, the light receiving surface SS of the image sensor SR.
  • An optical image IM composed of far infrared rays is formed on the top.
  • the image sensor SR for example, a far infrared image sensor (thermosensor or the like) having a plurality of pixels (for example, several thousand to several hundred thousand pixels) and using a wavelength of about 8 to 12 ⁇ m is used.
  • the far-infrared lens LN is provided so that the optical image IM of the subject is formed on the light-receiving surface SS that is the photoelectric conversion unit of the imaging element SR, the optical image IM formed by the far-infrared lens LN is It is converted into an electrical signal by the image sensor SR.
  • the image sensor SR include a pyroelectric sensor, a microbolometer, and a thermopile.
  • the pyroelectric sensor uses a pyroelectric effect in which ceramic containing lead zirconate titanate or the like spontaneously polarizes due to a change in temperature. In most cases, the pyroelectric sensor has a single light receiving surface and is an inexpensive temperature sensor.
  • the microbolometer is a temperature sensor that has a light receiving surface in which heat sensitive materials such as amorphous silicon and vanadium oxide are two-dimensionally arranged by a microfabrication technique and detects a change in resistance value due to a temperature rise. Common microbolometers currently used have 80 ⁇ 80, 320 ⁇ 240, 640 ⁇ 480 and the like.
  • thermopile is a temperature sensor that uses thermocouples capable of converting heat into electric energy in series or in parallel to form a sensor surface, and is the second cheapest sensor after a pyroelectric sensor.
  • the digital device DU includes a signal processing unit 1, a control unit 2, a memory 3, an operation unit 4, a display unit 5 and the like in addition to the imaging optical device LU.
  • the signal generated by the image sensor SR is subjected to predetermined digital image processing, image compression processing, and the like in the signal processing unit 1 as necessary, and recorded as a digital video signal in the memory 3 (semiconductor memory, optical disc, etc.) In some cases, it is transmitted to other devices via a cable or converted into an infrared signal or the like (for example, a communication function of a mobile phone).
  • the control unit 2 is composed of a microcomputer, and performs control of functions such as a photographing function (still image photographing function, moving image photographing function, etc.), an image reproduction function, and the like; and a lens moving mechanism for focusing.
  • the control unit 2 controls the imaging optical device LU so as to perform at least one of still image shooting and moving image shooting of a subject.
  • the display unit 5 includes a display such as a liquid crystal monitor, and performs image display using an image signal converted by the image sensor SR or image information recorded in the memory 3.
  • the operation unit 4 is a part including operation members such as an operation button (for example, a release button) and an operation dial (for example, a shooting mode dial), and transmits information input by the operator to the control unit 2.
  • FIG. 1, FIG. 3,..., FIG. 25 show first to thirteenth embodiments of the far-infrared lens LN in an infinitely focused state in optical sections.
  • the far-infrared lenses LN according to the first to thirteenth embodiments include, in order from the object side, a first lens L1 having positive power and a second lens L2 having positive power.
  • the first lens L1 and the second lens L2 have a meniscus shape that is paraxial and convex to the image side.
  • the first lens L1 has a meniscus shape that is paraxial and concave on the image side
  • the second lens L2 has a biconvex shape that is paraxial.
  • the first lens L1 has a meniscus shape that is paraxial and convex to the image side
  • the second lens L2 has a biconvex shape that is paraxial.
  • the first lens L1 and the second lens L2 are double-sided aspheric lenses.
  • the aperture stop ST is disposed closest to the object side.
  • the first lens L1 and the second lens L2 are arranged.
  • An aperture stop ST is disposed between the two.
  • a parallel plate PT for example, a parallel plate of Ge crystal
  • corresponding to the protective cover glass of the image sensor SR is disposed on the image side of each far-infrared lens LN.
  • Examples 1 to 13 (EX1 to 13) listed here are numerical examples corresponding to the first to thirteenth embodiments, respectively, and are lens configuration diagrams showing the first to thirteenth embodiments. (FIG. 1, FIG. 3,..., FIG. 25) respectively show the lens cross-sectional shape, lens arrangement, and the like of the corresponding Examples 1 to 13.
  • surface data in order from the left column, surface number (OB: object surface, ST: aperture surface, IM: image surface), paraxial radius of curvature R (mm), axial top surface spacing d (mm), a refractive index N10 for a design wavelength of 10 ⁇ m, and a dispersion value ⁇ for wavelengths of 8 to 12 ⁇ m.
  • the optical material with a refractive index of 4.000400 is germanium (GE), and the optical material with a refractive index of 2.77810 is chalcogenide glass.
  • the parallel flat plate PT in front of the image plane IM is a protective plate (cover glass) of the far infrared sensor SR.
  • a surface with * in the surface number is an aspheric surface, and the surface shape is defined by the following expression (AS) using a local orthogonal coordinate system (x, y, z) with the surface vertex as the origin. .
  • AS a local orthogonal coordinate system
  • x, y, z a local orthogonal coordinate system with the surface vertex as the origin.
  • z (C ⁇ h 2 ) / [1 + ⁇ ⁇ 1 ⁇ (1 + K) ⁇ C 2 ⁇ h 2 ⁇ ] + ⁇ (Ai ⁇ h i ) (AS)
  • z the amount of sag in the direction of the optical axis AX at the position of the height h (based on the surface vertex)
  • C curvature at the surface vertex (reciprocal of paraxial radius of curvature R)
  • K conic constant
  • Ai i-th order aspheric coefficient ( ⁇ represents the sum of 4th order to ⁇ order for i), It is.
  • the surface numbered with # is a diffraction grating surface, and the diffractive structure is expressed by the following equation using a local orthogonal coordinate system (x, y, z) having the surface vertex as the origin, like an aspheric surface. (DS).
  • the diffraction grating is a rotationally symmetric grating with respect to the optical axis, and first-order diffraction with respect to a wavelength of 10 ⁇ m is used, and the shape is given by a phase difference Pz with respect to a wavelength of 10 ⁇ m.
  • Table 1 shows various data as the focal length f (mm), F number (Fno), half angle of view ⁇ (°), image height Y ′ (real image height, mm), lens total length TL (mm),
  • the back focus fB (mm), the focal length f1 (mm) of the first lens L1, and the focal length f2 (mm) of the second lens L2 are shown, and Table 2 shows the values corresponding to the conditional expressions of each embodiment (design wavelength: 10,000 nm).
  • the back focus BF in Table 1 expresses the distance from the lens final surface to the paraxial image surface by the air conversion length, and the total lens length TL indicates the back focus BF at the distance from the lens front surface to the lens final surface.
  • the total lens length TL is the distance from the stop ST to the paraxial image point IM.
  • FIG. 26 are aberration diagrams corresponding to Examples 1 to 13 (EX1 to 13), respectively, (A) is a spherical aberration diagram, (B) is an astigmatism diagram, and (C ) Is a distortion diagram.
  • the spherical aberration diagram shows a spherical aberration amount at a design wavelength (evaluation wavelength) of 10 ⁇ m indicated by a solid line, a spherical aberration amount at a wavelength of 8 ⁇ m indicated by a long broken line, and a spherical aberration amount at a wavelength of 12 ⁇ m indicated by a short broken line from the paraxial image plane.
  • the amount of displacement in the optical axis AX direction (mm) is represented, the vertical axis represents the F number, and the vertical axis scale represents the value obtained by normalizing the incident height to the pupil by the maximum height (that is, the relative pupil height).
  • the alternate long and short dash line M or broken line T is the meridional (tangential) image plane at the design wavelength of 10 ⁇ m
  • the solid line S is the sagittal image plane at the design wavelength of 10 ⁇ m
  • the vertical axis represents the half angle of view ⁇ (°).
  • the horizontal axis represents the distortion (%) at the design wavelength of 10 ⁇ m
  • the vertical axis represents the half angle of view ⁇ (°).
  • Example 1 Unit mm Surface data Surface number R (mm) d (mm) N10 ⁇ Object ⁇ 1 (Aperture) ⁇ 0.75 2 * -6.338 2.43 4.00400 1252 3 * -5.752 1.82 4 * -196.123 2.80 4.00400 1252 5 * -27.043 2.30 6 ⁇ 0.50 4.00400 1252 7 ⁇ 0.50 Paraxial image point
  • Example 2 Unit mm Surface data Surface number R (mm) d (mm) N10 ⁇ Object ⁇ 1 (Aperture) ⁇ 0.81 2 * -6.045 2.74 2.77810 160 3 * -4.887 1.94 4 * -29.093 3.22 2.77810 160 5 * -12.221 2.84 6 ⁇ 0.50 4.00400 1252 7 ⁇ 0.49 Paraxial image point
  • Example 3 Unit mm Surface data Surface number R (mm) d (mm) N10 ⁇ Object ⁇ 1 * 3.591 1.01 2.77810 160 2 * 3.335 1.04 3 (Aperture) ⁇ 0.78 4 * 8.676 3.27 2.77810 160 5 * -65.586 1.02 6 ⁇ 0.50 4.00400 1252 7 ⁇ 1.02 Paraxial image point
  • Example 4 Unit mm Surface data Surface number R (mm) d (mm) N10 ⁇ OB ⁇ ⁇ 1 (ST) ⁇ 0.802176 2 * -6.27915 2.587169 4.004 1250 3 * -5.80433 1.831465 4 * 90.73463 2.779481 4.004 1250 5 * -57.55095 2.272522 6 ⁇ 0.500000 4.004 1250 7 ⁇ 0.486000 IM ⁇ 0.000000
  • Example 5 Unit mm Surface data Surface number R (mm) d (mm) N10 ⁇ OB ⁇ ⁇ 1 (ST) ⁇ 0.810319 2 * -7.27664 3.452702 4.004 1250 3 * -6.67025 2.600671 4 * 99.81599 2.344192 4.004 1250 5 * -46.41594 2.013546 6 ⁇ 0.500000 4.004 1250 7 ⁇ 0.486000 IM ⁇ 0.000000
  • Example 6 Unit mm Surface data Surface number R (mm) d (mm) N10 ⁇ OB ⁇ ⁇ 1 (ST) ⁇ 0.816782 2 * -7.33382 3.441187 4.004 1250 3 * -6.68192 2.620908 4 * 121.52350 2.344225 4.004 1250 5 * -42.01188 1.990185 6 ⁇ 0.500000 4.004 1250 7 ⁇ 0.486000 IM ⁇ 0.000000
  • Example 7 Unit mm Surface data Surface number R (mm) d (mm) N10 ⁇ OB ⁇ ⁇ 1 (ST) ⁇ 0.864920 2 * -7.03526 2.975668 4.004 1250 3 * -6.27469 1.945048 4 * 173.51899 2.650012 4.004 1250 5 * -46.35185 2.243907 6 ⁇ 0.500000 4.004 1250 7 ⁇ 0.486000 IM ⁇ 0.000000
  • Example 8 Unit mm Surface data Surface number R (mm) d (mm) N10 ⁇ OB ⁇ ⁇ 1 (ST) ⁇ 0.861697 2 * -7.31877 3.125049 4.004 1250 3 * -6.42076 1.971548 4 * 390.00777 2.576393 4.004 1250 5 * -41.75446 2.236701 6 ⁇ 0.500000 4.004 1250 7 ⁇ 0.486000 IM ⁇ 0.000000
  • Example 9 Unit mm Surface data Surface number R (mm) d (mm) N10 ⁇ OB ⁇ ⁇ 1 (ST) ⁇ 0.845567 2 * -7.64106 3.351431 4.004 1250 3 * -6.60849 2.053915 4 * -887.07541 2.433648 4.004 1250 5 * -37.24419 2.220860 6 ⁇ 0.500000 4.004 1250 7 ⁇ 0.486000 IM ⁇ 0.000000
  • Example 10 Unit mm Surface data Surface number R (mm) d (mm) N10 ⁇ OB ⁇ ⁇ 1 (ST) ⁇ 0.819818 2 * -5.91316 2.768638 2.7781 160.2 3 * -4.52183 1.371573 4 * -34.73754 4.000000 2.7781 160.2 5 * -18.19129 2.696316 6 ⁇ 0.500000 4.004 1250 7 ⁇ 0.486000 IM ⁇ 0.000000
  • Example 11 Unit mm Surface data Surface number R (mm) d (mm) N10 ⁇ OB ⁇ ⁇ 1 (ST) ⁇ 0.824233 2 * -5.82038 2.748465 2.7781 160.2 3 * -4.52696 1.423082 4 * -39.21930 4.000000 2.7781 160.2 5 * -18.48482 2.676865 6 ⁇ 0.500000 4.004 1250 7 ⁇ 0.486000 IM ⁇ 0.000000
  • Example 12 Unit mm Surface data Surface number R (mm) d (mm) N10 ⁇ OB ⁇ ⁇ 1 (ST) ⁇ 0.853611 2 * -5.38831 2.594890 2.7781 160.2 3 * -4.52618 1.836368 4 * -69.46815 4.000000 2.7781 160.2 5 * -17.34124 2.520451 6 ⁇ 0.500000 4.004 1250 7 ⁇ 0.486000 IM ⁇ 0.000000
  • Example 13 Unit mm Surface data Surface number R (mm) d (mm) N10 ⁇ OB ⁇ ⁇ 1 * 3.57283 1.051131 2.7781 160.2 2 * 3.31299 1.007687 3 (ST) ⁇ 1.149565 4 * 8.24988 3.710412 2.7781 160.2 5 * -76.52927 0.668753 6 ⁇ 0.500000 4.004 1250 7 ⁇ 1.042203 IM ⁇ 0.000000

Abstract

This far-infrared lens is a lens system used in the far-infrared band. The lens is formed of two single lenses, namely, a first lens and a second lens in this order from the object side, satisfies the conditional expression 7.3 < (r1 + r2)/(r1 - r2) < 27.5, where r1 is the paraxial radius of curvature of the object-side surface of the first lens, and r2 is the paraxial radius of curvature of the image-side surface of the first lens, and has a half angle of view greater than 30°.

Description

遠赤外線レンズ,撮像光学装置及びデジタル機器Far-infrared lens, imaging optical device and digital equipment
 本発明は、遠赤外線レンズ,撮像光学装置及びデジタル機器に関するものである。例えば、遠赤外線(波長8~12μm帯)で使用する撮像レンズ系であって、特に半画角ωが30°以上の広角でもレンズ枚数が2枚と少なく収差補正が良好に行われており、安価なカメラシステムに使用可能な遠赤外線レンズと、遠赤外線レンズにより得られた遠赤外線映像を撮像素子で取り込む撮像光学装置と、遠赤外線レンズを搭載した画像入力機能付きデジタル機器と、に関するものである。 The present invention relates to a far-infrared lens, an imaging optical device, and a digital device. For example, an imaging lens system used in the far-infrared (wavelength 8 to 12 μm band), especially with a wide angle with a half angle of view ω of 30 ° or more, the number of lenses is as few as 2, and aberration correction is performed well. It relates to a far-infrared lens that can be used in an inexpensive camera system, an imaging optical device that captures a far-infrared image obtained by the far-infrared lens with an imaging device, and a digital device with an image input function equipped with a far-infrared lens. is there.
 監視カメラや防犯カメラ等の普及に伴い、安価で小型の遠赤外線レンズが必要とされている。遠赤外線レンズに用いられるレンズ材料は、一般的な光学ガラスに比べて高価であるため、レンズ体積は小さい方がコストが抑えられる。そのような観点から、レンズ2枚で構成された比較的広角な遠赤外線レンズが、特許文献1~4で提案されている。 With the spread of surveillance cameras and security cameras, cheap and small far-infrared lenses are required. Since the lens material used for the far-infrared lens is more expensive than general optical glass, the smaller the lens volume, the lower the cost. From such a viewpoint, Patent Documents 1 to 4 propose a relatively wide-angle far-infrared lens composed of two lenses.
US2013/0271852 A1US2013 / 0271852 A1 特開2013-195795号公報JP 2013-19595 A US2012/0229892 A1US2012 / 0229892 A1 US6292293 B1US6292293 B1
 上記特許文献1~4に記載されている遠赤外線レンズでは、焦点距離で規格化した第2レンズの芯厚が薄くなっている。大型の遠赤外線センサーに対応するためにレンズ径が大型化すると材料コストが高くなるのでそれを補ったり、単に均質なレンズ材料の大きさの制限を受けたりすることから、レンズ芯厚を薄くした設計にしていると考えられる。しかしながら、最近では遠赤外線センサーも小型のものが安価に製造されるようになってきている。加えて、安価ではあってもセンサーの画素数が多いものが増えてきている。このようなセンサーに対してはより高性能で高精細なレンズ系が求められているが、第2レンズの芯厚が薄い場合、レンズの前面と後面とで異なる収差補正を行いにくいため、少ないレンズ枚数の系では十分な収差補正を行うことができない。 In the far-infrared lenses described in Patent Documents 1 to 4, the core thickness of the second lens normalized by the focal length is thin. In order to accommodate large far-infrared sensors, if the lens diameter is increased, the material cost will increase, so it will be compensated, or the size of the homogeneous lens material will be limited, so the lens core thickness has been reduced. It is thought that it is designed. However, recently, a far infrared sensor having a small size has been manufactured at a low cost. In addition, there are an increasing number of sensors with a large number of pixels even though they are inexpensive. For such a sensor, a higher-performance and higher-definition lens system is required, but it is difficult to correct different aberrations between the front and rear surfaces of the lens when the core thickness of the second lens is thin. In the system of the number of lenses, sufficient aberration correction cannot be performed.
 上記特許文献1~3では、焦点距離で規格化したバックフォーカスが長くなっている。また、遠赤外線レンズでは系の明るさが解像力にも影響するため、Fナンバーが1.2程度と明るくなっており、軸外光束もなるべく切らない構成になっている。このようなレンズ系では、バックフォーカスが長く像面から第2レンズまでの距離が長い場合、第2レンズの光軸から高い位置をFナンバー光線が通るため、第2レンズでの球面収差補正の負担が大きくなってしまう。また、軸上光束と軸外光束がほとんど同じ高さを通過するため、軸外性能の効果的な補正(像面湾曲等の補正)も行いにくい。このため、少ないレンズ枚数の系では十分な性能が得られなくなっている。 In the above Patent Documents 1 to 3, the back focus normalized by the focal length is long. In the far-infrared lens, since the brightness of the system also affects the resolving power, the F number is as bright as about 1.2, and the off-axis light beam is not cut as much as possible. In such a lens system, when the back focus is long and the distance from the image plane to the second lens is long, the F-number light beam passes through a high position from the optical axis of the second lens. The burden will increase. In addition, since the on-axis light beam and the off-axis light beam pass through almost the same height, it is difficult to effectively correct off-axis performance (correction of field curvature or the like). For this reason, sufficient performance cannot be obtained with a system having a small number of lenses.
 上記特許文献4では、焦点距離で規格化したバックフォーカスが短くなっている。これは、数値例の表記がインチ単位でセンサーの画面サイズが大きいものに対するレンズ系であるためと考えられる。これを安価で小型のセンサーに対応するように比例縮小して応用した場合、センサーのカバーガラスをバックフォーカスに挿入することができなくなる。センサーのカバーガラスは、小型で安価であっても性能を確保するためには必須なので、このようにバックフォーカスの短すぎるレンズ系は使用することができない。 In the above Patent Document 4, the back focus normalized by the focal length is shortened. This is considered to be because the numerical system is a lens system for an inch and the sensor screen size is large. When this is applied in a proportionally reduced manner so as to correspond to an inexpensive and small sensor, the cover glass of the sensor cannot be inserted into the back focus. Since the sensor cover glass is indispensable for ensuring performance even if it is small and inexpensive, such a lens system with an excessively short back focus cannot be used.
 上記特許文献1,4では、第1レンズとしてメニスカス度の比較的弱いレンズが物体側に凹面を向けて配置されている。メニスカス度はレンズの前面と後面の近軸曲率半径によって決まるものであり、前面の曲率半径をr1、後面の曲率半径をr2とすると、(r1+r2)/(r1-r2)で表される。曲率半径を符号も含めた値で考えると、正レンズの場合はこの値が大きいほど前後の面の曲率半径が近くメニスカス度合いが大きいことを示す。特許文献1に記載のものでは、正レンズでメニスカス度が弱くパワーが強めであり(パワー:焦点距離の逆数で定義される量)、第1レンズでも正のパワーによる球面収差や像面湾曲を発生させる。第2レンズでの正のパワーによる収差は少し小さくなるが、第1レンズで積極的に収差補正を行わないので、少ないレンズ枚数では収差を十分小さくできず、特に広角なレンズ系では性能が低下しやすくなっている。 In Patent Documents 1 and 4, a first lens having a relatively weak meniscus is disposed with the concave surface facing the object side. The meniscus degree is determined by the paraxial radius of curvature of the front and rear surfaces of the lens, and is represented by (r1 + r2) / (r1-r2) where r1 is the radius of curvature of the front surface and r2 is the radius of curvature of the rear surface. When considering the value of the radius of curvature including the sign, in the case of a positive lens, the larger the value, the closer the radius of curvature of the front and rear surfaces, and the greater the meniscus degree. In the one described in Patent Document 1, the positive lens has a weak meniscus degree and a high power (power: an amount defined by the reciprocal of the focal length), and the first lens also exhibits spherical aberration and field curvature due to the positive power. generate. Although the aberration due to the positive power in the second lens is slightly reduced, the first lens does not actively correct the aberration, so the aberration cannot be reduced sufficiently with a small number of lenses, and the performance is deteriorated particularly in a wide-angle lens system. It is easy to do.
 上記の特許文献2,3では、第1レンズが負レンズになっており、このときメニスカス度が弱いと負のパワーが強めになっている。第1レンズの負のパワーによって収差を発生させ、正の第2レンズによる収差を打ち消す効果もあるが、負のパワーが強すぎるため、第2レンズで光線が光軸から高い位置を通り更に大きな収差を発生させてしまい、広角なレンズ系ではかえって性能を悪化させてしまうことになる。 In the above Patent Documents 2 and 3, the first lens is a negative lens. At this time, if the meniscus degree is weak, the negative power is strong. Although there is an effect of generating aberration by the negative power of the first lens and canceling out aberration due to the positive second lens, the negative power is too strong, so that the light passes through a higher position from the optical axis in the second lens and becomes larger. Aberrations are generated, and a wide-angle lens system deteriorates the performance.
 上記特許文献1,4では、全系の焦点距離で規格化した第1レンズの焦点距離が正の小さい値を取り、第1レンズの正のパワーが比較的強くなっている。メニスカス度が弱い場合と同様で、第1レンズでも正のパワーによる球面収差や像面湾曲を発生させ、あまり収差補正されないので、少ないレンズ枚数の構成では良い性能が得られない。 In Patent Documents 1 and 4, the focal length of the first lens normalized by the focal length of the entire system takes a small positive value, and the positive power of the first lens is relatively strong. As in the case where the degree of meniscus is weak, the first lens also causes spherical aberration and curvature of field due to positive power, and the aberration is not corrected so much, so good performance cannot be obtained with a small number of lenses.
 上記特許文献2,3では、全系の焦点距離で規格化した第1レンズの焦点距離が負の小さい値を取り、負のパワーが強くなっている。メニスカス度が弱い場合と同様で、負のパワーが強すぎると第2レンズで集光させるパワーもより強くなり、かえって性能を悪化させている。 In the above Patent Documents 2 and 3, the focal length of the first lens normalized by the focal length of the entire system takes a small negative value, and the negative power is strong. Similar to the case where the meniscus degree is weak, if the negative power is too strong, the power condensed by the second lens becomes stronger, which deteriorates the performance.
 上記特許文献1,3,4では、全系の焦点距離で規格化したレンズ全長が小さくなっている。2枚という少ないレンズ枚数で構成する場合、レンズ全長が小さいと各面が近接して配置されるため、各面で異なった収差補正がしにくくなって十分な性能が得られなくなっている。 In the above Patent Documents 1, 3, and 4, the total lens length normalized by the focal length of the entire system is small. In the case where the number of lenses is as small as two, if the entire lens length is small, the surfaces are arranged close to each other, so that it is difficult to correct different aberrations on each surface, and sufficient performance cannot be obtained.
 上記特許文献2では、全系の焦点距離で規格化したレンズ全長が大きくなっている。このようなレンズ系では、軸外光束が第1面の高い位置を通り有効径が大きくなってしまう。各面を離して配置でき、異なる収差補正が可能となるが、軸外光束のコマ収差が大きくなってしまって十分な性能を得られていない。 In Patent Document 2, the total lens length standardized by the focal length of the entire system is large. In such a lens system, the off-axis light beam passes through a high position on the first surface and the effective diameter becomes large. Although each surface can be spaced apart and different aberration correction is possible, the coma aberration of the off-axis light beam becomes large and sufficient performance cannot be obtained.
 本発明はこのような状況に鑑みてなされたものであって、その目的は、2枚という少ないレンズ枚数でも軸上光束及び軸外光束に対して良好に収差補正された高性能で安価な遠赤外線レンズ、それを備えた撮像光学装置及びデジタル機器を提供することにある。 The present invention has been made in view of such a situation, and an object of the present invention is to provide a high-performance and inexpensive far-off lens in which aberrations are satisfactorily corrected for an on-axis light beam and an off-axis light beam even with a small number of two lenses. An object of the present invention is to provide an infrared lens, an imaging optical apparatus and a digital apparatus including the infrared lens.
 上記目的を達成するために、第1の発明の遠赤外線レンズは、遠赤外線帯で使用されるレンズ系であって、
 物体側から順に、第1レンズ及び第2レンズの2枚の単レンズで構成され、以下の条件式(2)を満足し、半画角が30°よりも大きいことを特徴とする。
7.3<(r1+r2)/(r1-r2)<27.5 …(2)
 ただし、
r1:第1レンズの物体側面の近軸曲率半径、
r2:第1レンズの像側面の近軸曲率半径、
である。
In order to achieve the above object, the far-infrared lens of the first invention is a lens system used in the far-infrared band,
It is composed of two single lenses of the first lens and the second lens in order from the object side, satisfies the following conditional expression (2), and has a half field angle larger than 30 °.
7.3 <(r1 + r2) / (r1-r2) <27.5 (2)
However,
r1: Paraxial radius of curvature of the object side surface of the first lens,
r2: paraxial radius of curvature of the image side surface of the first lens,
It is.
 第2の発明の遠赤外線レンズは、上記第1の発明において、以下の条件式(4)を満足することを特徴とする。
0.63<dL2/f<2.55 …(4)
 ただし、
dL2:第2レンズの中心厚、
f:遠赤外線レンズ全系の焦点距離、
である。
The far-infrared lens of the second invention is characterized in that, in the first invention, the following conditional expression (4) is satisfied.
0.63 <dL2 / f <2.55 (4)
However,
dL2: center thickness of the second lens,
f: Focal length of the entire far-infrared lens system,
It is.
 第3の発明の遠赤外線レンズは、上記第1又は第2の発明において、以下の条件式(6)を満足することを特徴とする。
0.9<f2/f<4.5 …(6)
 ただし、
f2:第2レンズの焦点距離、
f:遠赤外線レンズ全系の焦点距離、
である。
A far-infrared lens according to a third aspect of the invention is characterized in that, in the first or second aspect of the invention, the following conditional expression (6) is satisfied.
0.9 <f2 / f <4.5 (6)
However,
f2: focal length of the second lens,
f: Focal length of the entire far-infrared lens system,
It is.
 第4の発明の遠赤外線レンズは、上記第1~第3のいずれか1つの発明において、前記第1レンズ及び第2レンズは、設計波長での屈折率が2よりも大きいことを特徴とする。 A far-infrared lens of a fourth invention is characterized in that, in any one of the first to third inventions, the first lens and the second lens have a refractive index larger than 2 at a design wavelength. .
 第5の発明の撮像光学装置は、上記第1~第4のいずれか1つの発明に係る遠赤外線レンズと、撮像面上に形成された遠赤外線光学像を電気的な信号に変換する撮像素子と、を備え、前記撮像素子の撮像面上に被写体の遠赤外線光学像が形成されるように前記遠赤外線レンズが設けられていることを特徴とする。 An imaging optical device according to a fifth aspect of the invention is a far-infrared lens according to any one of the first to fourth aspects, and an imaging element that converts a far-infrared optical image formed on the imaging surface into an electrical signal. And the far-infrared lens is provided so that a far-infrared optical image of a subject is formed on the imaging surface of the imaging device.
 第6の発明のデジタル機器は、上記第5の発明に係る撮像光学装置を備えることにより、被写体の静止画撮影,動画撮影のうちの少なくとも一方の機能が付加されたことを特徴とする。 The digital device according to a sixth aspect of the invention is characterized in that at least one of a still image shooting and a moving image shooting of a subject is added by including the imaging optical device according to the fifth invention.
 第7の発明の遠赤外線用カメラシステムは、上記第1~第4のいずれか1つの発明に係る遠赤外線レンズを備えたことを特徴とする。 A far-infrared camera system according to a seventh aspect of the invention includes the far-infrared lens according to any one of the first to fourth aspects.
 本発明では、上述のような構成をとることにより、2枚という少ないレンズ枚数でも軸上光束及び軸外光束に対して積極的な収差補正を行うことができるようになるため、良好な収差補正により高性能化・高精細化が可能となり、新たに製造されてきている安価な遠赤外線センサーにも対応可能となる。したがって、安価でも高性能な遠赤外線レンズと、それを備えた撮像光学装置を実現することができる。そして、本発明に係る遠赤外線レンズ又は撮像光学装置を、暗視装置,サーモグラフィー,携帯端末,カメラシステム(例えば、デジタルカメラ,監視カメラ,防犯カメラ,車載カメラ)等のデジタル機器に用いることによって、デジタル機器に対し高性能の遠赤外線画像入力機能を安価でコンパクトに付加することが可能となる。 In the present invention, by adopting the above-described configuration, it becomes possible to perform positive aberration correction on the on-axis light beam and off-axis light beam even with a small number of lenses, that is, good aberration correction. As a result, high performance and high definition are possible, and it is possible to deal with newly manufactured inexpensive far-infrared sensors. Therefore, it is possible to realize an inexpensive but high-performance far-infrared lens and an imaging optical device including the same. And, by using the far-infrared lens or the imaging optical device according to the present invention in a digital device such as a night vision device, a thermography, a portable terminal, a camera system (for example, a digital camera, a surveillance camera, a security camera, an in-vehicle camera), A high-performance far-infrared image input function can be added to a digital device at a low cost and in a compact manner.
第1の実施の形態(実施例1)のレンズ断面図。1 is a lens cross-sectional view of a first embodiment (Example 1). FIG. 実施例1の収差図。FIG. 6 is an aberration diagram of Example 1. 第2の実施の形態(実施例2)のレンズ断面図。FIG. 6 is a lens cross-sectional view of a second embodiment (Example 2). 実施例2の収差図。FIG. 6 is an aberration diagram of Example 2. 第3の実施の形態(実施例3)のレンズ断面図。FIG. 6 is a lens cross-sectional view of a third embodiment (Example 3). 実施例3の収差図。FIG. 6 is an aberration diagram of Example 3. 第4の実施の形態(実施例4)のレンズ断面図。FIG. 10 is a lens cross-sectional view of a fourth embodiment (Example 4). 実施例4の収差図。FIG. 6 is an aberration diagram of Example 4. 第5の実施の形態(実施例5)のレンズ断面図。FIG. 10 is a lens cross-sectional view of a fifth embodiment (Example 5). 実施例5の収差図。FIG. 6 is an aberration diagram of Example 5. 第6の実施の形態(実施例6)のレンズ断面図。FIG. 10 is a lens cross-sectional view of a sixth embodiment (Example 6). 実施例6の収差図。FIG. 10 is an aberration diagram of Example 6. 第7の実施の形態(実施例7)のレンズ断面図。FIG. 10 is a lens cross-sectional view of a seventh embodiment (Example 7). 実施例7の収差図。FIG. 10 is an aberration diagram of Example 7. 第8の実施の形態(実施例8)のレンズ断面図。FIG. 10 is a lens cross-sectional view of an eighth embodiment (Example 8). 実施例8の収差図。FIG. 10 is an aberration diagram of Example 8. 第9の実施の形態(実施例9)のレンズ断面図。FIG. 10 is a lens cross-sectional view of a ninth embodiment (Example 9). 実施例9の収差図。FIG. 10 is an aberration diagram of Example 9. 第10の実施の形態(実施例10)のレンズ断面図。FIG. 10 is a lens cross-sectional view of a tenth embodiment (Example 10). 実施例10の収差図。FIG. 10 is an aberration diagram of Example 10. 第11の実施の形態(実施例11)のレンズ断面図。The lens sectional view of the 11th embodiment (Example 11). 実施例11の収差図。FIG. 10 shows aberration diagrams of Example 11. 第12の実施の形態(実施例12)のレンズ断面図。A lens sectional view of a twelfth embodiment (Example 12). 実施例12の収差図。FIG. 10 is an aberration diagram of Example 12. 第13の実施の形態(実施例13)のレンズ断面図。FIG. 18 is a lens cross-sectional view of a thirteenth embodiment (Example 13). 実施例13の収差図。Aberration diagram of Example 13. 遠赤外線レンズを搭載したデジタル機器の概略構成例を示す模式図。The schematic diagram which shows the schematic structural example of the digital apparatus carrying a far-infrared lens.
 以下、本発明の実施の形態に係る遠赤外線レンズ,撮像光学装置,デジタル機器等を説明する。本発明の実施の形態に係る遠赤外線レンズは、遠赤外線帯で使用されるレンズ系であって、物体側から順に、第1レンズ及び第2レンズの2枚の単レンズで構成され、以下の条件式(2)を満足し、半画角が30°よりも大きいことを特徴としている。
7.3<(r1+r2)/(r1-r2)<27.5 …(2)
 ただし、
r1:第1レンズの物体側面の近軸曲率半径、
r2:第1レンズの像側面の近軸曲率半径、
である。
Hereinafter, a far-infrared lens, an imaging optical device, a digital device, and the like according to embodiments of the present invention will be described. A far-infrared lens according to an embodiment of the present invention is a lens system used in a far-infrared band, and is composed of two single lenses, a first lens and a second lens, in order from the object side. Conditional expression (2) is satisfied, and the half angle of view is larger than 30 °.
7.3 <(r1 + r2) / (r1-r2) <27.5 (2)
However,
r1: Paraxial radius of curvature of the object side surface of the first lens,
r2: paraxial radius of curvature of the image side surface of the first lens,
It is.
 遠赤外線は、主として波長7~14μmの範囲の赤外線である。人や動物の体温は波長8~12μmの放射光であり、遠赤外線光学系はほとんどが波長8~12μmで使用される。波長8~12μm帯の遠赤外線領域は物質の温度を検知できる範囲であり、温度測定,暗闇での人検知,セキュリティ等、応用できるものは多い。それにもかかわらず、現在のところ遠赤外線カメラが広く普及していないのは、遠赤外線を透過するレンズ材料が高価な希少金属を含む材料であったり加工が難しい材料であったりして、それらを数枚以上使用したレンズ系にするとコスト高になってしまうからである。最近では遠赤外線センサーの製造技術が進み、安価なサーモパイルや非冷却式マイクロボロメータ等も製造されるようになり、これらと適合するような安価なレンズ系が望まれている。本発明の実施の形態に係る遠赤外線レンズでは、物体側から順に第1レンズ及び第2レンズの2枚の単レンズで構成して、少ない枚数のレンズ系とすることにより、レンズ系の加工コストを低減して安価なレンズ系を提供することを可能としている。 Far infrared rays are mainly infrared rays having a wavelength in the range of 7 to 14 μm. The body temperature of humans and animals is emitted light having a wavelength of 8 to 12 μm, and most of the far infrared optical system is used at a wavelength of 8 to 12 μm. The far-infrared region with a wavelength of 8 to 12 μm is the range in which the temperature of a substance can be detected, and there are many things that can be applied, such as temperature measurement, human detection in the dark, and security. Nonetheless, far-infrared cameras are not widely used at present because lens materials that transmit far-infrared rays are materials containing expensive rare metals or materials that are difficult to process. This is because a lens system using several or more lenses increases the cost. Recently, far-infrared sensor manufacturing technology has advanced, and inexpensive thermopiles, uncooled microbolometers, and the like have been manufactured, and an inexpensive lens system that is compatible with these is desired. In the far-infrared lens according to the embodiment of the present invention, the processing cost of the lens system is configured by forming the single lens of the first lens and the second lens in order from the object side to form a small number of lens systems. This makes it possible to provide an inexpensive lens system.
 また、従来の遠赤外線センサーは、温度分解能を精密に表示することのできる高価なものがほとんどである。このようなセンサーでは、温度分解能を十分に発揮させるため、センサー回りを液体窒素等の冷媒で冷却する必要がある。したがって、冷却するための空間が必要となるため、レンズバックが比較的短くなりやすい広角なレンズ系はほとんど製造されてこなかった。しかしながら、もっと広い視野を見たいというニーズがあり、しかも近年では冷却を必要としないマイクロボロメータ等の非冷却センサーが安価に作製できるようになってきている。このため、半画角ωが30°より大きい広角な遠赤外線レンズであっても実現は可能である。本発明の実施の形態に係る遠赤外線レンズでは、2枚の単レンズで構成された広角のレンズ構成を有するもののなかでも半画角ωが30°よりも大きい広角系に適したレンズ構成を想定しており、このような広角化を高性能化と両立させながらレンズ2枚でも可能にするうえで望ましい条件設定等を以下に説明する。 Also, most of the conventional far infrared sensors are expensive and can accurately display the temperature resolution. In such a sensor, it is necessary to cool the periphery of the sensor with a refrigerant such as liquid nitrogen in order to sufficiently exhibit temperature resolution. Therefore, since a space for cooling is required, a wide-angle lens system in which the lens back tends to be relatively short has hardly been manufactured. However, there is a need to view a wider field of view, and in recent years, non-cooled sensors such as microbolometers that do not require cooling can be manufactured at low cost. For this reason, even a wide-angle far-infrared lens having a half angle of view ω larger than 30 ° can be realized. The far-infrared lens according to the embodiment of the present invention assumes a lens configuration suitable for a wide-angle system in which the half angle of view ω is larger than 30 °, even though it has a wide-angle lens configuration composed of two single lenses. The following is a description of conditions and the like that are desirable in order to enable even two lenses while achieving such a wide angle and high performance.
 前記条件式(2)は、遠赤外線レンズの第1レンズのシェイピングファクターに関する望ましい条件を規定している。以下の条件式(2a)を満足することが更に望ましく、条件式(2a)を満たすことにより、後述する効果をより一層大きくすることができる。
9.4<(r1+r2)/(r1-r2)<27.1 …(2a)
 ただし、
r1:第1レンズの物体側面の近軸曲率半径、
r2:第1レンズの像側面の近軸曲率半径、
である。
The conditional expression (2) defines a desirable condition regarding the shaping factor of the first lens of the far-infrared lens. It is further desirable to satisfy the following conditional expression (2a), and by satisfying conditional expression (2a), the effects described later can be further increased.
9.4 <(r1 + r2) / (r1-r2) <27.1 (2a)
However,
r1: Paraxial radius of curvature of the object side surface of the first lens,
r2: paraxial radius of curvature of the image side surface of the first lens,
It is.
 シェイピングファクターは、1枚のレンズの形状を示すものである。符号も含めてレンズの前面(物体側面)の近軸曲率半径をr1、後面(像側面)の近軸曲率半径をr2とすると、(r1+r2)/(r1-r2)で表される。両面の近軸曲率半径の値が符号も含めて近い場合、メニスカス度の強いレンズとなり、シェイピングファクターの絶対値は大きくなる。符号のプラスマイナスはレンズ面の向きで異なる。両面の近軸曲率半径が符号も含めて離れている場合、メニスカス度の弱いレンズとなり、シェイピングファクターの絶対値は小さくなる。符号のプラスマイナスは上記と同様にレンズ面の向きで異なる。 The shaping factor indicates the shape of one lens. If the paraxial curvature radius of the front surface (object side surface) of the lens including the sign is r1, and the paraxial curvature radius of the rear surface (image side surface) is r2, then (r1 + r2) / (r1-r2). When the values of the paraxial curvature radii on both sides are close to each other including the sign, the lens has a strong meniscus degree, and the absolute value of the shaping factor becomes large. The sign plus or minus differs depending on the direction of the lens surface. When the paraxial radii of curvature on both sides are separated including the sign, the lens has a low meniscus degree, and the absolute value of the shaping factor is small. The sign plus or minus differs depending on the direction of the lens surface as described above.
 本発明の実施の形態に係る遠赤外線レンズでは、第1レンズのシェイピングファクターを所定の範囲内に設定することが好ましい。上記条件式(2),(2a)はその範囲を規定しており、シェイピングファクターの値が大きいこと、すなわちメニスカス度合いが大きいことを示している。メニスカス度合いが大きい場合、第1レンズは弱い正のパワーか弱い負のパワーを持つことになる。第1レンズでは球面収差や像面湾曲の補正を主に担当し、集光作用を弱くしておくことで、広角の仕様でもバックフォーカスを十分確保し収差補正も可能としている。 In the far-infrared lens according to the embodiment of the present invention, it is preferable to set the shaping factor of the first lens within a predetermined range. The conditional expressions (2) and (2a) define the range, and indicate that the value of the shaping factor is large, that is, the degree of meniscus is large. When the meniscus degree is large, the first lens has a weak positive power or a weak negative power. The first lens is mainly responsible for correction of spherical aberration and curvature of field, and by weakening the light condensing function, sufficient back focus can be secured and aberration correction can be made even with a wide angle specification.
 シェイピングファクターの値が条件式(2)の下限を越えて小さくなると、第1レンズはメニスカス度合いが弱くなり、やや強い正のパワーを持つことになる。集光作用をある程度持つことになるので、バックフォーカスが短くなってしまうとともに収差補正が不十分となり、第2レンズで補正しきれなくなってしまう。また、シェイピングファクターの値が条件式(2)の上限を越えて大きくなりすぎると、第1レンズの収差補正力はほとんどなくなるとともに第2レンズだけで集光を行わなければならず、第2レンズによる収差が大きく発生してしまう。 When the value of the shaping factor becomes smaller than the lower limit of the conditional expression (2), the first lens has a weak meniscus and has a slightly strong positive power. Since it has a condensing function to some extent, the back focus is shortened and aberration correction is insufficient, and the second lens cannot be corrected. Further, if the value of the shaping factor exceeds the upper limit of the conditional expression (2), the aberration correction power of the first lens is almost lost, and the second lens alone needs to collect light. A large amount of aberration will occur.
 したがって、条件式(2)を満たし、好ましくは条件式(2a)を満たすようにすれば、第1レンズはメニスカス度が強い正レンズ又は負レンズとなり、第1レンズでは球面収差や像面湾曲等の補正を主に行い、第2レンズで発生する正のパワーによる収差を相殺して性能の向上を図ることが可能となる。 Accordingly, if the conditional expression (2) is satisfied, and preferably the conditional expression (2a) is satisfied, the first lens becomes a positive lens or negative lens having a strong meniscus degree, and the first lens has spherical aberration, curvature of field, etc. Thus, it is possible to improve the performance by canceling out aberration due to the positive power generated in the second lens.
 遠赤外線レンズの系全体のバックフォーカスに関して、以下の条件式(1)を満足することが望ましい。さらに、以下の条件式(1a)を満足することが望ましく、以下の条件式(1b)を満足することが更に望ましい。したがって、好ましくは条件式(1a)、更に好ましくは条件式(1b)を満たすことにより、後述する効果をより一層大きくすることができる。
0.38<fB/f<1.35 …(1)
0.38<fB/f<0.97 …(1a)
0.38<fB/f<0.85 …(1b)
 ただし、
fB:第2レンズの像側面から像面までの空気換算距離、
f:遠赤外線レンズ全系の焦点距離、
である。
Regarding the back focus of the entire far-infrared lens system, it is desirable to satisfy the following conditional expression (1). Furthermore, it is desirable to satisfy the following conditional expression (1a), and it is further desirable to satisfy the following conditional expression (1b). Therefore, the effect described later can be further enhanced by preferably satisfying conditional expression (1a), more preferably satisfying conditional expression (1b).
0.38 <fB / f <1.35 (1)
0.38 <fB / f <0.97 (1a)
0.38 <fB / f <0.85 (1b)
However,
fB: Air-converted distance from the image side surface of the second lens to the image surface
f: Focal length of the entire far-infrared lens system,
It is.
 本発明の実施の形態に係る遠赤外線レンズでは、全系の焦点距離で規格化したバックフォーカスを所定の範囲内に設定することが好ましい。上記条件式(1),(1a),(1b)はその範囲を規定しており、そのバックフォーカスは一般的な遠赤外線レンズ系と比べて比較的短くなっている。バックフォーカスをより短くすることによって像面から第2レンズまでの距離が短くなるため、軸上のFナンバー光線が第2レンズの比較的低い位置を通ることになり、球面収差の発生量を抑えることが可能となる。しかし、遠赤外線レンズでは、レンズ系の明るさが解像力を決めるため、Fナンバー:1.2程度の明るさが必要である。このため、条件式(1)の上限を越えると、球面収差が発生しやすくなり、枚数の少ないレンズ系を構成することが困難になる。条件式(1)の上限を越えないように球面収差の発生量を小さくすると、軸外の収差は非球面等により効率良く補正できるようになり、広角なレンズ系でも少ないレンズ枚数で構成することが可能となる。また、条件式(1)の下限を越えてバックフォーカスが短くなってしまうと、遠赤外線センサーのカバーガラスを配置するための空間やカバーガラスとセンサー受光面との間隔を確保することが困難になる。遠赤外線センサーでは性能を確保するためにこのような空間が不可欠となっているため、遠赤外線レンズでもこのような空間を確保した設計にしなければならない。 In the far-infrared lens according to the embodiment of the present invention, it is preferable to set the back focus normalized by the focal length of the entire system within a predetermined range. The conditional expressions (1), (1a), and (1b) define the range, and the back focus is relatively short compared to a general far-infrared lens system. By shortening the back focus, the distance from the image plane to the second lens is shortened, so that the F-number light beam on the axis passes through a relatively low position of the second lens and suppresses the generation amount of spherical aberration. It becomes possible. However, in the far-infrared lens, since the brightness of the lens system determines the resolving power, the brightness of the F number: about 1.2 is required. For this reason, if the upper limit of conditional expression (1) is exceeded, spherical aberration tends to occur, making it difficult to construct a lens system with a small number of lenses. If the generation amount of spherical aberration is reduced so as not to exceed the upper limit of conditional expression (1), off-axis aberrations can be corrected efficiently by an aspherical surface, etc., and a wide-angle lens system is configured with a small number of lenses. Is possible. Further, if the back focus is shortened beyond the lower limit of the conditional expression (1), it is difficult to secure a space for disposing the far-infrared sensor cover glass and an interval between the cover glass and the sensor light receiving surface. Become. In the far infrared sensor, such a space is indispensable in order to ensure the performance. Therefore, the far infrared lens must be designed to ensure such a space.
 したがって、条件式(1)を満たし、好ましくは条件式(1a)又は(1b)を満たすようにすれば、像面から第2レンズまでの距離が大きくなりすぎることなく、第2レンズの低い位置をFナンバー光線が通って球面収差が抑えられると同時に、軸外光束に対しても像面湾曲補正を効果的に行うことが可能となる。また、遠赤外線センサーのカバーガラスを挿入するスペースも十分に確保することが可能となる。 Therefore, if the conditional expression (1) is satisfied, and preferably the conditional expression (1a) or (1b) is satisfied, the distance from the image plane to the second lens is not excessively increased, and the low position of the second lens is set. Thus, the spherical aberration can be suppressed by passing the F-number light beam, and at the same time, the field curvature correction can be effectively performed for the off-axis light beam. In addition, a sufficient space for inserting the far-infrared sensor cover glass can be secured.
 遠赤外線レンズの全長に関して、以下の条件式(3)を満足することが望ましい。さらに、以下の条件式(3a)を満足することが望ましく、以下の条件式(3b)を満足することが更に望ましい。したがって、好ましくは条件式(3a)、更に好ましくは条件式(3b)を満たすことにより、後述する効果をより一層大きくすることができる。
1.75<TL/f<5.7 …(3)
1.75<TL/f<5.0 …(3a)
1.75<TL/f<3.2 …(3b)
 ただし、
TL:遠赤外線レンズの全長(バックフォーカスを空気換算した場合)、
f:遠赤外線レンズ全系の焦点距離、
である。
Regarding the total length of the far-infrared lens, it is desirable to satisfy the following conditional expression (3). Furthermore, it is desirable to satisfy the following conditional expression (3a), and it is more desirable to satisfy the following conditional expression (3b). Therefore, the effect described later can be further enhanced by preferably satisfying conditional expression (3a), more preferably satisfying conditional expression (3b).
1.75 <TL / f <5.7 (3)
1.75 <TL / f <5.0 (3a)
1.75 <TL / f <3.2 (3b)
However,
TL: full length of far infrared lens (when back focus is converted to air),
f: Focal length of the entire far-infrared lens system,
It is.
 本発明の実施の形態に係る遠赤外線レンズでは、全系の焦点距離で規格化したレンズ全長を所定の範囲内に設定することが好ましい。上記条件式(3),(3a),(3b)はその範囲を規定している。条件式(3)の下限を越えると、2枚という少ないレンズ枚数で構成する場合、レンズ全長が小さいことにより各面が近接して配置されるため、各面で異なった収差補正が行いにくくなって十分な性能が得られなくなる。条件式(3)の上限を越えると、このようなレンズ系では軸外光束が第1面の高い位置を通るため有効径が大きくなってしまう。各面を離して配置できるため異なる収差補正が可能となるが、軸外光束のコマ収差が大きくなってしまうため十分な性能が得られなくなる。 In the far-infrared lens according to the embodiment of the present invention, it is preferable to set the total lens length normalized by the focal length of the entire system within a predetermined range. The conditional expressions (3), (3a), and (3b) define the range. When the lower limit of conditional expression (3) is exceeded, when the number of lenses is as small as two, the surfaces are arranged close to each other due to the small total lens length, making it difficult to correct different aberrations on each surface. Sufficient performance cannot be obtained. If the upper limit of conditional expression (3) is exceeded, in such a lens system, the off-axis light beam passes through a high position on the first surface, so that the effective diameter becomes large. Different aberrations can be corrected because the surfaces can be arranged apart from each other, but sufficient performance cannot be obtained because the coma aberration of the off-axis light beam increases.
 したがって、条件式(3)を満たし、好ましくは条件式(3a)又は(3b)を満たすようにすれば、各面を互いに十分に離して配置することができるため、2枚という少ないレンズ構成でも異なる収差補正を行い性能の良いレンズ系を得ることが可能となる。また、レンズ全長が大きすぎることによる前玉径の増大を防止し、第1レンズによる軸外光束のコマ収差を小さく抑えることが可能となる。 Therefore, if the conditional expression (3) is satisfied, and preferably the conditional expression (3a) or (3b) is satisfied, the surfaces can be arranged sufficiently apart from each other, so that even with a lens configuration of as few as two lenses It is possible to obtain a lens system with good performance by correcting different aberrations. Further, it is possible to prevent an increase in the front lens diameter due to an excessively large lens total length, and to suppress the coma aberration of the off-axis light beam caused by the first lens.
 遠赤外線レンズの第2レンズの中心厚(芯厚)に関して、以下の条件式(4)を満足することが望ましく、以下の条件式(4a)を満足することが更に望ましい。したがって、好ましくは条件式(4a)を満たすことにより、後述する効果をより一層大きくすることができる。
0.63<dL2/f<2.55 …(4)
0.68<dL2/f<2.5 …(4a)
 ただし、
dL2:第2レンズの中心厚、
f:遠赤外線レンズ全系の焦点距離、
である。
Regarding the center thickness (core thickness) of the second lens of the far-infrared lens, it is desirable to satisfy the following conditional expression (4), and it is more desirable to satisfy the following conditional expression (4a). Therefore, preferably, by satisfying conditional expression (4a), the effects described later can be further increased.
0.63 <dL2 / f <2.55 (4)
0.68 <dL2 / f <2.5 (4a)
However,
dL2: center thickness of the second lens,
f: Focal length of the entire far-infrared lens system,
It is.
 本発明の実施の形態に係る遠赤外線レンズでは、全系の焦点距離で規格化した第2レンズの芯厚を所定の範囲内に設定することが好ましい。上記条件式(4),(4a)はその範囲を規定しており、その第2レンズの芯厚は従来の遠赤外線レンズと比べて比較的厚くなっている。レンズを厚くすることによって、第2レンズの前面と後面とで異なる収差補正を行うことができるようになり、少ないレンズ枚数でも良好な性能を確保することができるようになる。 In the far-infrared lens according to the embodiment of the present invention, it is preferable to set the core thickness of the second lens normalized by the focal length of the entire system within a predetermined range. The conditional expressions (4) and (4a) define the range, and the core thickness of the second lens is relatively thick compared to the conventional far-infrared lens. By increasing the thickness of the lens, different aberration correction can be performed on the front surface and the rear surface of the second lens, and good performance can be ensured even with a small number of lenses.
 条件式(4)の下限を越えて第2レンズの芯厚が小さくなると、第2レンズの前面と後面とでほぼ同様の収差補正を行うことしかできなくなるため、少ないレンズ枚数で良好な収差補正を行うことは困難となる。また、条件式(4)の上限を越えて第2レンズの芯厚が大きくなると、レンズ材料の制約から均質な材料を得ることが難しくなったり、非球面の場合には均一な加熱成形が難しくなったりするため、設計値通りの単レンズの性能を出すことが困難となり、性能の良いレンズ系を得ることができなくなる。 If the core thickness of the second lens is reduced beyond the lower limit of conditional expression (4), the same aberration correction can only be performed on the front surface and the rear surface of the second lens. It will be difficult to do. Also, if the core thickness of the second lens increases beyond the upper limit of conditional expression (4), it becomes difficult to obtain a homogeneous material due to lens material restrictions, or uniform heat molding is difficult in the case of an aspherical surface. For this reason, it becomes difficult to obtain the performance of a single lens as designed, and it becomes impossible to obtain a lens system with good performance.
 遠赤外線レンズの第1レンズの焦点距離に関して、以下の条件式(5)を満足することが望ましい。さらに、以下の条件式(5a),(5b)又は(5c)を満足することが更に望ましい。つまり、条件式(5),(5a),(5b),(5c)の順で満足することがより好ましい。したがって、好ましくは条件式(5a)、更に好ましくは条件式(5b)又は(5c)を満たすことにより、後述する効果をより一層大きくすることができる。
1.1<f1/f<97.5 …(5)
1.1<f1/f<8.0 …(5a)
1.1<f1/f<3.8 …(5b)
1.3<f1/f<3.8 …(5c)
 ただし、
f1:第1レンズの焦点距離、
f:遠赤外線レンズ全系の焦点距離、
である。
Regarding the focal length of the first lens of the far-infrared lens, it is desirable to satisfy the following conditional expression (5). Furthermore, it is more desirable to satisfy the following conditional expressions (5a), (5b) or (5c). That is, it is more preferable that the conditional expressions (5), (5a), (5b), and (5c) are satisfied in this order. Therefore, the effect described later can be further increased by satisfying conditional expression (5a), more preferably conditional expression (5b) or (5c).
1.1 <f1 / f <97.5 (5)
1.1 <f1 / f <8.0 (5a)
1.1 <f1 / f <3.8 (5b)
1.3 <f1 / f <3.8 (5c)
However,
f1: focal length of the first lens,
f: Focal length of the entire far-infrared lens system,
It is.
 本発明の実施の形態に係る遠赤外線レンズでは、全系の焦点距離で規格化した第1レンズの焦点距離を所定の範囲内に設定することが好ましい。上記条件式(5),(5a),(5b),(5c)はその範囲を規定しており、第1レンズは比較的弱い正のパワーを持っている。第1レンズのパワーが条件式(5)の上限を越えて強くなりすぎると、十分なバックフォーカスを確保することが難しくなり、特に広角な光学系ではセンサーのカバーガラスを挿入することさえ難しくなってしまう。また、第1レンズのパワーが条件式(5)の下限を越えて小さくなると、第2レンズでほとんどの集光作用を行わなければならず、第2レンズで大きな球面収差が発生してしまう。 In the far-infrared lens according to the embodiment of the present invention, it is preferable to set the focal length of the first lens normalized by the focal length of the entire system within a predetermined range. The conditional expressions (5), (5a), (5b), and (5c) define the range, and the first lens has a relatively weak positive power. If the power of the first lens exceeds the upper limit of the conditional expression (5), it becomes difficult to secure a sufficient back focus, and even in a wide-angle optical system, it is difficult to even insert a sensor cover glass. End up. Further, when the power of the first lens becomes smaller than the lower limit of the conditional expression (5), most of the light condensing action must be performed by the second lens, and a large spherical aberration occurs in the second lens.
 遠赤外線レンズの第2レンズの焦点距離に関して、以下の条件式(6)を満足することが望ましい。さらに、以下の条件式(6a)を満足することが望ましく、以下の条件式(6b)を満足することが更に望ましい。したがって、好ましくは条件式(6a)、更に好ましくは条件式(6b)を満たすことにより、後述する効果をより一層大きくすることができる。
0.9<f2/f<4.5 …(6)
0.9<f2/f<2.9 …(6a)
0.9<f2/f<1.3 …(6b)
 ただし、
f2:第2レンズの焦点距離、
f:遠赤外線レンズ全系の焦点距離、
である。
Regarding the focal length of the second lens of the far-infrared lens, it is desirable to satisfy the following conditional expression (6). Furthermore, it is desirable to satisfy the following conditional expression (6a), and it is more desirable to satisfy the following conditional expression (6b). Therefore, the effect described later can be further enhanced by preferably satisfying conditional expression (6a), more preferably satisfying conditional expression (6b).
0.9 <f2 / f <4.5 (6)
0.9 <f2 / f <2.9 (6a)
0.9 <f2 / f <1.3 (6b)
However,
f2: focal length of the second lens,
f: Focal length of the entire far-infrared lens system,
It is.
 本発明の実施の形態に係る遠赤外線レンズでは、全系の焦点距離で規格化した第2レンズの焦点距離を所定の範囲内に設定することが好ましい。上記条件式(6),(6a),(6b)はその範囲を規定している。条件式(6)の下限を上回ると、第2レンズのパワーが強過ぎないので、このレンズで発生する像面湾曲や歪曲収差等を小さく抑えるとともに、製造時に発生する偏芯誤差やレンズ形状誤差、レンズ間隔誤差による性能劣化を小さく抑えることができる。条件式(6)の上限を下回ると、第2レンズのパワーが弱過ぎないので、光学系が大きくなり過ぎず、レンズの体積や重量を適切な範囲に収めることが可能となる。 In the far-infrared lens according to the embodiment of the present invention, it is preferable to set the focal length of the second lens normalized by the focal length of the entire system within a predetermined range. The conditional expressions (6), (6a), and (6b) define the range. If the lower limit of conditional expression (6) is exceeded, the power of the second lens is not too strong, so that curvature of field, distortion, etc. that occur in this lens are kept small, and eccentricity errors and lens shape errors that occur during manufacturing. The performance degradation due to the lens interval error can be kept small. If the upper limit of conditional expression (6) is not reached, the power of the second lens is not too weak, so the optical system does not become too large, and the volume and weight of the lens can be kept within an appropriate range.
 本発明の実施の形態に係る遠赤外線レンズでは、前記第1レンズ及び第2レンズの設計波長での屈折率が2よりも大きいことが好ましい。第1レンズ及び第2レンズは、屈折率の高い遠赤外線用レンズ材料で構成されている。具体的には、カルコゲンを主成分としたカルコゲナイドガラス(波長10μmでの屈折率2.5~2.8程度),シリコン(Si、波長10μmの屈折率3程度),ゲルマニウム(Ge、波長10μmでの屈折率4程度)等が挙げられる。これらのレンズ材料では、屈折率が高いためレンズ面の曲率を緩くすることができ、各面の収差を小さくすることが可能である。したがって、レンズ枚数が少なくても良好な収差補正が可能となる。遠赤外線用レンズ材料でも屈折率の低いものは存在する。しかし、それらは安価であってもレンズ面の曲率を強くしなければならないので、少ない枚数でレンズ系を構成することが困難となり、結局、レンズ系のコスト高を招いてしまう。 In the far-infrared lens according to the embodiment of the present invention, it is preferable that a refractive index at a design wavelength of the first lens and the second lens is larger than 2. The first lens and the second lens are made of a far-infrared lens material having a high refractive index. Specifically, chalcogenide glass containing chalcogen as a main component (refractive index of about 2.5 to 2.8 at a wavelength of 10 μm), silicon (Si, refractive index of about 3 at a wavelength of 10 μm), germanium (Ge, at a wavelength of 10 μm) For example, a refractive index of about 4). Since these lens materials have a high refractive index, the curvature of the lens surface can be relaxed and the aberration of each surface can be reduced. Therefore, even when the number of lenses is small, good aberration correction can be performed. Some far-infrared lens materials have a low refractive index. However, even if they are inexpensive, it is necessary to increase the curvature of the lens surface. Therefore, it is difficult to construct a lens system with a small number of sheets, which ultimately increases the cost of the lens system.
 屈折率は、真空に対する物質中の光の進む速度の比であり、可視領域ではd線(587nm)に対して表示される。しかし、この値は遠赤外線領域では意味を持たないので、波長10μmに対する屈折率を代表的に示す場合が多い。例えば、従来より用いられている遠赤外線光学材料の波長10μmでの屈折率は、Ge=4.004、Si=3.418、ZnS=2.200、ZnSe=2.407等である。 Refractive index is the ratio of the traveling speed of light in the substance to the vacuum, and is displayed for the d-line (587 nm) in the visible region. However, since this value has no meaning in the far-infrared region, the refractive index for a wavelength of 10 μm is typically representative. For example, the refractive index at a wavelength of 10 μm of far-infrared optical materials conventionally used is Ge = 4.004, Si = 3.418, ZnS = 2.200, ZnSe = 2.407, and the like.
 また、分散の性質を表す値として、可視光線ではd線のアッベ数νdが用いられる。このアッベ数は、νd=(Nd-1)/(Nf-Nc)で表される(ただし、Nd:d線での屈折率、NfはF線での屈折率、NcはC線での屈折率、である。)。しかし、この値は遠赤外線領域では意味を持たないので、前記遠赤外線レンズでは、分散の性質を表す値として、ν=(N10-1)/(N8-N12)を用いることにする(ただし、N10:波長10μmでの屈折率、N8:波長8μmでの屈折率、N12:波長12μmでの屈折率、とする。)。この値が大きいほど色による屈折率の差が小さいので、分散が小さいということになる。例えば、従来より用いられている遠赤外線光学材料の分散は、Ge=1250~1252、Si=1860、ZnS=23(色消しに使う。)、ZnSe=57(色消しに使う。)等である。 Also, as a value representing the nature of dispersion, the Abbe number νd of d-line is used for visible light. This Abbe number is expressed by νd = (Nd−1) / (Nf−Nc) (where Nd is the refractive index at the d line, Nf is the refractive index at the F line, and Nc is the refractive index at the C line. Rate.). However, since this value has no meaning in the far-infrared region, the far-infrared lens uses ν = (N10-1) / (N8-N12) as a value representing the nature of dispersion (however, N10: Refractive index at a wavelength of 10 μm, N8: Refractive index at a wavelength of 8 μm, N12: Refractive index at a wavelength of 12 μm). The larger this value, the smaller the difference in refractive index between colors, and the smaller the dispersion. For example, dispersions of far-infrared optical materials conventionally used are Ge = 1250 to 1252, Si = 1860, ZnS = 23 (used for achromatic), ZnSe = 57 (used for achromatic), and the like. .
 本発明の実施の形態に係る遠赤外線レンズでは、前記第1,第2レンズが有するレンズ面のうちの少なくとも1面は、回折格子面であることが好ましい。回折格子面を有することにより、軸上色収差の補正を良好に行うことが可能となる。回折格子の断面形状としては、バイナリ形状の他にステップ(階段)形状やキノフォームを用いてもよい。いずれの場合も回折波長での位相差は、後述する式(DS)で計算することができる。 In the far-infrared lens according to the embodiment of the present invention, it is preferable that at least one of the lens surfaces of the first and second lenses is a diffraction grating surface. By having a diffraction grating surface, it is possible to satisfactorily correct axial chromatic aberration. As a cross-sectional shape of the diffraction grating, a step shape or a kinoform may be used in addition to the binary shape. In either case, the phase difference at the diffraction wavelength can be calculated by the equation (DS) described later.
 上述したように条件設定された各構成を、単独で又は必要に応じ組み合わせて採用することにより、2枚という少ないレンズ枚数でも軸上光束及び軸外光束に対して積極的な収差補正を行うことができるようになる。このため、良好な収差補正により広角化を高性能化や高精細化と両立させながらレンズ2枚でも達成することが可能となり、新たに製造されてきている安価な遠赤外線センサーにも対応可能となる。したがって、安価でも高性能な遠赤外線レンズと、それを備えた撮像光学装置を実現することができる。 By adopting each of the conditions set as described above alone or in combination as necessary, positive aberration correction can be performed on the on-axis light beam and off-axis light beam even with a small number of two lenses. Will be able to. For this reason, it is possible to achieve a wide angle with two lenses while achieving high performance and high definition through good aberration correction, and it can also be used for newly manufactured inexpensive far-infrared sensors. Become. Therefore, it is possible to realize an inexpensive but high-performance far-infrared lens and an imaging optical device including the same.
 遠赤外線レンズ又は撮像光学装置を、暗視装置,サーモグラフィー,携帯端末,カメラシステム(例えば、デジタルカメラ,監視カメラ,防犯カメラ,車載カメラ)等のデジタル機器に用いることによって、デジタル機器に対し高性能の遠赤外線画像入力機能を安価でコンパクトに付加することが可能となり、そのコンパクト化,高性能化,高機能化等に寄与することができる。前述したように、遠赤外線カメラが普及していない原因の1つにはレンズ材料やレンズ加工が高価であることが挙げられるので、簡単な2枚構成のレンズ系を遠赤外線レンズとして用いることにより、レンズの加工コスト等が抑えられ安価なカメラシステムを実現することが可能となる。 High performance for digital devices by using far-infrared lenses or imaging optical devices for digital devices such as night vision devices, thermography, portable terminals, camera systems (eg, digital cameras, surveillance cameras, security cameras, in-vehicle cameras) The far-infrared image input function can be added at a low cost and in a compact manner, contributing to its compactness, high performance, and high functionality. As described above, one of the reasons why far-infrared cameras are not widespread is that the lens material and lens processing are expensive. Therefore, by using a simple two-lens lens system as a far-infrared lens. Further, it is possible to realize an inexpensive camera system in which the processing cost of the lens is suppressed.
 本発明の実施の形態に係る遠赤外線レンズは、遠赤外線画像入力機能付きデジタル機器(例えば携帯端末,ドライブレコーダー等)用の撮像光学系としての使用に適しており、これを撮像用の遠赤外線センサー等と組み合わせることにより、被写体の遠赤外線映像を光学的に取り込んで電気的な信号として出力する遠赤外線用撮像光学装置を構成することができる。撮像光学装置は、被写体の静止画撮影や動画撮影に用いられるカメラの主たる構成要素を成す光学装置であり、例えば、物体(すなわち被写体)側から順に、物体の遠赤外線光学像を形成する遠赤外線レンズと、その遠赤外線レンズにより形成された遠赤外線光学像を電気的な信号に変換する撮像素子(遠赤外線センサー)と、を備えることにより構成される。そして、撮像素子の受光面(すなわち撮像面)上に被写体の遠赤外線光学像が形成されるように、前述した特徴的構成を有する遠赤外線レンズが配置されることにより、小型・低コストで高い性能を有する撮像光学装置やそれを備えたデジタル機器を実現することができる。 The far-infrared lens according to the embodiment of the present invention is suitable for use as an imaging optical system for a digital device with a far-infrared image input function (for example, a mobile terminal, a drive recorder, etc.). By combining with a sensor or the like, it is possible to configure a far-infrared imaging optical device that optically captures a far-infrared image of a subject and outputs it as an electrical signal. The imaging optical device is an optical device that constitutes a main component of a camera used for still image shooting or moving image shooting of a subject. For example, a far-infrared ray that forms a far-infrared optical image of an object in order from the object (that is, subject) side. The lens includes a lens and an imaging element (far infrared sensor) that converts a far infrared optical image formed by the far infrared lens into an electrical signal. Then, the far-infrared lens having the above-described characteristic configuration is arranged so that the far-infrared optical image of the subject is formed on the light-receiving surface (that is, the imaging surface) of the image sensor, so that the size and cost are high. An imaging optical device having performance and a digital device including the same can be realized.
 遠赤外線画像入力機能付きデジタル機器の例としては、赤外線カメラ,監視カメラ,防犯カメラ,車載カメラ,航空機カメラ,デジタルカメラ,ビデオカメラ,テレビ電話用カメラ等のカメラシステムが挙げられ、また、パーソナルコンピューター,暗視装置,サーモグラフィー,携帯用デジタル機器(例えば、携帯電話,スマートフォン(高機能携帯電話),タブレット端末,モバイルコンピューター等の小型で携帯可能な情報機器端末),これらの周辺機器(スキャナー,プリンター,マウス等),その他のデジタル機器(ドライブレコーダー,防衛機器等)等に内蔵又は外付けによりカメラ機能が搭載されたものが挙げられる。これらの例から分かるように、遠赤外線用の撮像光学装置を用いることにより赤外線カメラシステムを構成することができるだけでなく、その撮像光学装置を各種機器に搭載することにより赤外線カメラ機能,暗視機能,温度測定機能等を付加することが可能である。例えば、赤外線カメラ付きスマートフォン等の遠赤外線画像入力機能を備えたデジタル機器を構成することが可能である。 Examples of digital devices with a far-infrared image input function include camera systems such as infrared cameras, surveillance cameras, security cameras, in-vehicle cameras, aircraft cameras, digital cameras, video cameras, videophone cameras, and personal computers. , Night vision devices, thermography, portable digital devices (for example, small and portable information device terminals such as mobile phones, smart phones (high-function mobile phones), tablet terminals, mobile computers, etc.), and peripheral devices (scanners, printers) , Mouse, etc.), other digital devices (drive recorders, defense devices, etc.), etc., which have a camera function built in or externally mounted. As can be seen from these examples, it is possible not only to configure an infrared camera system by using an imaging optical device for far infrared rays, but also to provide an infrared camera function and a night vision function by installing the imaging optical device in various devices. , A temperature measurement function can be added. For example, a digital device having a far-infrared image input function such as a smartphone with an infrared camera can be configured.
 遠赤外線画像入力機能付きデジタル機器の一例として、図27にデジタル機器DUの概略構成例を模式的断面で示す。図27に示すデジタル機器DUに搭載されている撮像光学装置LUは、物体(すなわち被写体)側から順に、物体の遠赤外線光学像(像面)IMを形成する遠赤外線レンズLN(AX:光軸)と、平行平板PT(撮像素子SRのカバーガラス、必要に応じて配置される光学フィルター等に相当する。)と、遠赤外線レンズLNにより受光面(撮像面)SS上に形成された光学像IMを電気的な信号に変換する撮像素子(遠赤外線センサー)SRと、を備えている。この撮像光学装置LUで画像入力機能付きデジタル機器DUを構成する場合、通常そのボディ内部に撮像光学装置LUを配置することになるが、カメラ機能を実現する際には必要に応じた形態を採用することが可能である。例えば、ユニット化した撮像光学装置LUをデジタル機器DUの本体に対して着脱可能又は回動可能に構成することが可能である。 As an example of a digital device with a far infrared image input function, FIG. 27 shows a schematic configuration example of the digital device DU in a schematic cross section. The imaging optical device LU mounted in the digital device DU shown in FIG. 27 has a far-infrared lens LN (AX: optical axis) that forms a far-infrared optical image (image plane) IM of the object in order from the object (that is, subject) side. ), A parallel plate PT (corresponding to a cover glass of the image sensor SR, an optical filter arranged as necessary), and an optical image formed on the light receiving surface (imaging surface) SS by the far-infrared lens LN. And an imaging element (far infrared sensor) SR that converts IM into an electrical signal. When a digital device DU with an image input function is constituted by this imaging optical device LU, the imaging optical device LU is usually arranged inside the body, but when necessary to realize the camera function, a form as necessary is adopted. Is possible. For example, the unitized imaging optical device LU can be configured to be detachable or rotatable with respect to the main body of the digital device DU.
 遠赤外線レンズLNは、物体側から順に、第1レンズ及び第2レンズの2枚の単レンズで構成された2枚構成の単焦点レンズであり、前述したように、撮像素子SRの受光面SS上に遠赤外線からなる光学像IMを形成する構成になっている。撮像素子SRとしては、例えば複数の画素(例えば、数千~数十万画素)を有し、8~12μm程度の波長を利用する遠赤外線用のイメージセンサー(サーモセンサー等)が用いられる。遠赤外線レンズLNは、撮像素子SRの光電変換部である受光面SS上に被写体の光学像IMが形成されるように設けられているので、遠赤外線レンズLNによって形成された光学像IMは、撮像素子SRによって電気的な信号に変換される。 The far-infrared lens LN is a two-lens single-focus lens composed of two single lenses, a first lens and a second lens, in order from the object side. As described above, the light receiving surface SS of the image sensor SR. An optical image IM composed of far infrared rays is formed on the top. As the image sensor SR, for example, a far infrared image sensor (thermosensor or the like) having a plurality of pixels (for example, several thousand to several hundred thousand pixels) and using a wavelength of about 8 to 12 μm is used. Since the far-infrared lens LN is provided so that the optical image IM of the subject is formed on the light-receiving surface SS that is the photoelectric conversion unit of the imaging element SR, the optical image IM formed by the far-infrared lens LN is It is converted into an electrical signal by the image sensor SR.
 撮像素子SRの具体例としては、焦電センサー,マイクロボロメータ,サーモパイル等が挙げられる。焦電センサーは、チタン酸ジルコン酸鉛等を含むセラミックが温度の変化によって自発分極する焦電効果を使ったものであり、ほとんどの場合単一の受光面を持ち、安価な温度センサーである。マイクロボロメータは、アモルファスシリコンや酸化バナジウム等の感熱材料を微細加工技術によって2次元配列した受光面を持ち、温度上昇によって抵抗値が変化することを検知する温度センサーである。現在使用されている一般的なマイクロボロメータは画素数が80×80,320×240,640×480等である。従来は温度分解能を十分発揮させるため、センサーの周囲を液体窒素等で冷却するものがほとんどであったが、近年では製造技術が進み、冷却しなくてもある程度温度検知能力の高いものが製造されてきている。サーモパイルは、熱を電気エネルギーに変換することのできる熱電対を直列又は並列に並べてセンサー面とした温度センサーで、焦電センサーに次いで安価なものである。 Specific examples of the image sensor SR include a pyroelectric sensor, a microbolometer, and a thermopile. The pyroelectric sensor uses a pyroelectric effect in which ceramic containing lead zirconate titanate or the like spontaneously polarizes due to a change in temperature. In most cases, the pyroelectric sensor has a single light receiving surface and is an inexpensive temperature sensor. The microbolometer is a temperature sensor that has a light receiving surface in which heat sensitive materials such as amorphous silicon and vanadium oxide are two-dimensionally arranged by a microfabrication technique and detects a change in resistance value due to a temperature rise. Common microbolometers currently used have 80 × 80, 320 × 240, 640 × 480 and the like. In the past, most of the sensors were cooled with liquid nitrogen to provide sufficient temperature resolution. However, in recent years, manufacturing technology has advanced, and products with a high temperature detection capability have been manufactured without cooling. It is coming. The thermopile is a temperature sensor that uses thermocouples capable of converting heat into electric energy in series or in parallel to form a sensor surface, and is the second cheapest sensor after a pyroelectric sensor.
 デジタル機器DUは、撮像光学装置LUの他に、信号処理部1,制御部2,メモリー3,操作部4,表示部5等を備えている。撮像素子SRで生成した信号は、信号処理部1で所定のデジタル画像処理や画像圧縮処理等が必要に応じて施され、デジタル映像信号としてメモリー3(半導体メモリー,光ディスク等)に記録されたり、場合によってはケーブルを介したり赤外線信号等に変換されたりして他の機器に伝送される(例えば携帯電話の通信機能)。制御部2はマイクロコンピューターからなっており、撮影機能(静止画撮影機能,動画撮影機能等),画像再生機能等の機能の制御;フォーカシングのためのレンズ移動機構の制御等を集中的に行う。例えば、被写体の静止画撮影,動画撮影のうちの少なくとも一方を行うように、制御部2により撮像光学装置LUに対する制御が行われる。表示部5は液晶モニター等のディスプレイを含む部分であり、撮像素子SRによって変換された画像信号あるいはメモリー3に記録されている画像情報を用いて画像表示を行う。操作部4は、操作ボタン(例えばレリーズボタン),操作ダイヤル(例えば撮影モードダイヤル)等の操作部材を含む部分であり、操作者が操作入力した情報を制御部2に伝達する。 The digital device DU includes a signal processing unit 1, a control unit 2, a memory 3, an operation unit 4, a display unit 5 and the like in addition to the imaging optical device LU. The signal generated by the image sensor SR is subjected to predetermined digital image processing, image compression processing, and the like in the signal processing unit 1 as necessary, and recorded as a digital video signal in the memory 3 (semiconductor memory, optical disc, etc.) In some cases, it is transmitted to other devices via a cable or converted into an infrared signal or the like (for example, a communication function of a mobile phone). The control unit 2 is composed of a microcomputer, and performs control of functions such as a photographing function (still image photographing function, moving image photographing function, etc.), an image reproduction function, and the like; and a lens moving mechanism for focusing. For example, the control unit 2 controls the imaging optical device LU so as to perform at least one of still image shooting and moving image shooting of a subject. The display unit 5 includes a display such as a liquid crystal monitor, and performs image display using an image signal converted by the image sensor SR or image information recorded in the memory 3. The operation unit 4 is a part including operation members such as an operation button (for example, a release button) and an operation dial (for example, a shooting mode dial), and transmits information input by the operator to the control unit 2.
 図1,図3,…,図25に、無限遠合焦状態にある遠赤外線レンズLNの第1~第13の実施の形態を光学断面でそれぞれ示す。第1~第13の実施の形態の遠赤外線レンズLNは、物体側より順に、正パワーを有する第1レンズL1と、正パワーを有する第2レンズL2と、からなっている。 FIG. 1, FIG. 3,..., FIG. 25 show first to thirteenth embodiments of the far-infrared lens LN in an infinitely focused state in optical sections. The far-infrared lenses LN according to the first to thirteenth embodiments include, in order from the object side, a first lens L1 having positive power and a second lens L2 having positive power.
 第1,第2,第9~第12の実施の形態では、第1レンズL1と第2レンズL2が近軸で像側に凸のメニスカス形状を有している。第3,第13の実施の形態では、第1レンズL1が近軸で像側に凹のメニスカス形状を有しており、第2レンズL2が近軸で両凸形状を有している。第4~第8の実施の形態では、第1レンズL1が近軸で像側に凸のメニスカス形状を有しており、第2レンズL2が近軸で両凸形状を有している。 In the first, second, ninth to twelfth embodiments, the first lens L1 and the second lens L2 have a meniscus shape that is paraxial and convex to the image side. In the third and thirteenth embodiments, the first lens L1 has a meniscus shape that is paraxial and concave on the image side, and the second lens L2 has a biconvex shape that is paraxial. In the fourth to eighth embodiments, the first lens L1 has a meniscus shape that is paraxial and convex to the image side, and the second lens L2 has a biconvex shape that is paraxial.
 第1~第13の実施の形態では、第1レンズL1と第2レンズL2が両面非球面レンズである。第1,第2,第4~第12の実施の形態では、最も物体側に開口絞りSTが配置されており、第3,第13の実施の形態では、第1レンズL1と第2レンズL2との間に開口絞りSTが配置されている。なお、各遠赤外線レンズLNの像側には、撮像素子SRの保護用カバーガラスに相当する平行平板PT(例えば、Ge結晶の平行平板)が配置されている。 In the first to thirteenth embodiments, the first lens L1 and the second lens L2 are double-sided aspheric lenses. In the first, second, fourth to twelfth embodiments, the aperture stop ST is disposed closest to the object side. In the third and thirteenth embodiments, the first lens L1 and the second lens L2 are arranged. An aperture stop ST is disposed between the two. A parallel plate PT (for example, a parallel plate of Ge crystal) corresponding to the protective cover glass of the image sensor SR is disposed on the image side of each far-infrared lens LN.
 以下、本発明を実施した遠赤外線レンズの構成等を、実施例のコンストラクションデータ等を挙げて更に具体的に説明する。ここで挙げる実施例1~13(EX1~13)は、前述した第1~第13の実施の形態にそれぞれ対応する数値実施例であり、第1~第13の実施の形態を表すレンズ構成図(図1,図3,…,図25)は、対応する実施例1~13のレンズ断面形状,レンズ配置等をそれぞれ示している。 Hereinafter, the configuration and the like of the far-infrared lens embodying the present invention will be described more specifically with reference to construction data of the examples. Examples 1 to 13 (EX1 to 13) listed here are numerical examples corresponding to the first to thirteenth embodiments, respectively, and are lens configuration diagrams showing the first to thirteenth embodiments. (FIG. 1, FIG. 3,..., FIG. 25) respectively show the lens cross-sectional shape, lens arrangement, and the like of the corresponding Examples 1 to 13.
 各実施例のコンストラクションデータでは、面データとして、左側の欄から順に、面番号(OB:物面,ST:絞り面,IM:像面),近軸における曲率半径R(mm),軸上面間隔d(mm),設計波長10μmに対する屈折率N10,及び波長8~12μmに対する分散値νを示す。分散値νは分散の性質を表し、ν=(N10-1)/(N8-N12)で定義される(ただし、N8:波長8μmに対する屈折率,波長10μmに対する屈折率N10,N12:波長12μmに対する屈折率である。)。屈折率が4.00400の光学材料はゲルマニウム(GE)、屈折率が2.77810の光学材料はカルコゲナイドガラスである。なお、像面IMの前の平行平板PTは遠赤外線センサーSRの保護板(カバーガラス)である。 In the construction data of each embodiment, as surface data, in order from the left column, surface number (OB: object surface, ST: aperture surface, IM: image surface), paraxial radius of curvature R (mm), axial top surface spacing d (mm), a refractive index N10 for a design wavelength of 10 μm, and a dispersion value ν for wavelengths of 8 to 12 μm. The dispersion value ν represents the nature of dispersion and is defined by ν = (N10-1) / (N8-N12) (where N8: refractive index for a wavelength of 8 μm, refractive index N10 for a wavelength of 10 μm, N12: for a wavelength of 12 μm) Refractive index.) The optical material with a refractive index of 4.000400 is germanium (GE), and the optical material with a refractive index of 2.77810 is chalcogenide glass. The parallel flat plate PT in front of the image plane IM is a protective plate (cover glass) of the far infrared sensor SR.
 面番号に*が付された面は非球面であり、その面形状は面頂点を原点とするローカルな直交座標系(x,y,z)を用いた以下の式(AS)で定義される。非球面データとして、非球面係数等を示す。なお、各実施例の非球面データにおいて表記の無い項の係数は0であり、すべてのデータに関してE-n=×10-nである。
z=(C・h2)/[1+√{1-(1+K)・C2・h2}]+Σ(Ai・hi) …(AS)
 ただし、
h:z軸(光軸AX)に対して垂直な方向の高さ(h2=x2+y2)、
z:高さhの位置での光軸AX方向のサグ量(面頂点基準)、
C:面頂点での曲率(近軸曲率半径Rの逆数)、
K:円錐定数、
Ai:i次の非球面係数(Σはiについて4次から∞次の総和を表す。)、
である。
A surface with * in the surface number is an aspheric surface, and the surface shape is defined by the following expression (AS) using a local orthogonal coordinate system (x, y, z) with the surface vertex as the origin. . As aspheric data, an aspheric coefficient or the like is shown. It should be noted that the coefficient of the term not described in the aspherical data of each embodiment is 0, and En = × 10 −n for all data.
z = (C · h 2 ) / [1 + √ {1− (1 + K) · C 2 · h 2 }] + Σ (Ai · h i ) (AS)
However,
h: height in the direction perpendicular to the z axis (optical axis AX) (h 2 = x 2 + y 2 ),
z: the amount of sag in the direction of the optical axis AX at the position of the height h (based on the surface vertex),
C: curvature at the surface vertex (reciprocal of paraxial radius of curvature R),
K: conic constant,
Ai: i-th order aspheric coefficient (Σ represents the sum of 4th order to ∞ order for i),
It is.
 面番号に#が付された面は回折格子面であり、その回折構造は、非球面と同様に面頂点を原点とするローカルな直交座標系(x,y,z)を用いた以下の式(DS)で定義される。回折格子は光軸に対して回転対称な格子であって、波長10μmに対する1次の回折が使用され、形状は波長10μmに対する位相差Pzで与えられる。回折面データとして、位相係数を示す。なお、各実施例の回折面データにおいて表記の無い項の係数は0であり、すべてのデータに関してE-n=×10-nである。
Pz=Σ(Bj・hj) …(DS)
 ただし、
h:z軸(光軸AX)に対して垂直な方向の高さ(h2=x2+y2)、
Pz:位相差、
Bj:j次の位相係数(Σはjについて2次から∞次の総和を表す。)、
である。
The surface numbered with # is a diffraction grating surface, and the diffractive structure is expressed by the following equation using a local orthogonal coordinate system (x, y, z) having the surface vertex as the origin, like an aspheric surface. (DS). The diffraction grating is a rotationally symmetric grating with respect to the optical axis, and first-order diffraction with respect to a wavelength of 10 μm is used, and the shape is given by a phase difference Pz with respect to a wavelength of 10 μm. A phase coefficient is shown as diffraction plane data. It should be noted that the coefficient of the term not described in the diffraction surface data of each example is 0, and En = × 10 −n for all data.
Pz = Σ (Bj · h j ) (DS)
However,
h: height in the direction perpendicular to the z axis (optical axis AX) (h 2 = x 2 + y 2 ),
Pz: phase difference,
Bj: j-th order phase coefficient (Σ represents the total from the second order to the ∞ order for j),
It is.
 表1に、各種データとして、全系の焦点距離f(mm),Fナンバー(Fno),半画角ω(°),像高Y’(実像高,mm),レンズ全長TL(mm),バックフォーカスfB(mm),第1レンズL1の焦点距離f1(mm),第2レンズL2の焦点距離f2(mm)を示し、表2に各実施例の条件式対応値を示す(設計波長:10000nm)。表1中のバックフォーカスBFは、レンズ最終面から近軸像面までの距離を空気換算長により表記しており、レンズ全長TLは、レンズ最前面からレンズ最終面までの距離にバックフォーカスBFを加えたものであるが、第1面が絞りSTである場合(EX1,2,4~12)、レンズ全長TLは絞りSTから近軸像点IMまでの距離である。 Table 1 shows various data as the focal length f (mm), F number (Fno), half angle of view ω (°), image height Y ′ (real image height, mm), lens total length TL (mm), The back focus fB (mm), the focal length f1 (mm) of the first lens L1, and the focal length f2 (mm) of the second lens L2 are shown, and Table 2 shows the values corresponding to the conditional expressions of each embodiment (design wavelength: 10,000 nm). The back focus BF in Table 1 expresses the distance from the lens final surface to the paraxial image surface by the air conversion length, and the total lens length TL indicates the back focus BF at the distance from the lens front surface to the lens final surface. In addition, when the first surface is the stop ST (EX1, 2, 4 to 12), the total lens length TL is the distance from the stop ST to the paraxial image point IM.
 図2,図4,…,図26は、実施例1~13(EX1~13)にそれぞれ対応する収差図であり、(A)は球面収差図、(B)は非点収差図、(C)は歪曲収差図である。球面収差図は、実線で示す設計波長(評価波長)10μmにおける球面収差量、長い破線で示す波長8μmにおける球面収差量、短い破線で示す波長12μmにおける球面収差量を、それぞれ近軸像面からの光軸AX方向のズレ量(mm)で表しており、縦軸はFナンバー、縦軸目盛は瞳への入射高さをその最大高さで規格化した値(すなわち相対瞳高さ)を表している。非点収差図において、一点鎖線M又は破線Tは設計波長10μmにおけるメリディオナル(タンジェンシャル)像面、実線Sは設計波長10μmにおけるサジタル像面を、近軸像面からの光軸AX方向のズレ量(mm)で表しており、縦軸は半画角ω(°)を表している。歪曲収差図において、横軸は設計波長10μmにおける歪曲(%)を表しており、縦軸は半画角ω(°)を表している。 2, FIG. 4,..., FIG. 26 are aberration diagrams corresponding to Examples 1 to 13 (EX1 to 13), respectively, (A) is a spherical aberration diagram, (B) is an astigmatism diagram, and (C ) Is a distortion diagram. The spherical aberration diagram shows a spherical aberration amount at a design wavelength (evaluation wavelength) of 10 μm indicated by a solid line, a spherical aberration amount at a wavelength of 8 μm indicated by a long broken line, and a spherical aberration amount at a wavelength of 12 μm indicated by a short broken line from the paraxial image plane. The amount of displacement in the optical axis AX direction (mm) is represented, the vertical axis represents the F number, and the vertical axis scale represents the value obtained by normalizing the incident height to the pupil by the maximum height (that is, the relative pupil height). ing. In the astigmatism diagram, the alternate long and short dash line M or broken line T is the meridional (tangential) image plane at the design wavelength of 10 μm, the solid line S is the sagittal image plane at the design wavelength of 10 μm, and the amount of deviation in the optical axis AX direction from the paraxial image plane. (Mm), and the vertical axis represents the half angle of view ω (°). In the distortion diagram, the horizontal axis represents the distortion (%) at the design wavelength of 10 μm, and the vertical axis represents the half angle of view ω (°).
 実施例1
単位:mm
 面データ
 面番号             R(mm)    d(mm)       N10         ν
 物体                           ∞
 1(絞り)               ∞     0.75
 2        *        -6.338     2.43     4.00400     1252
 3        *        -5.752     1.82
 4        *      -196.123     2.80     4.00400     1252
 5        *       -27.043     2.30
 6                     ∞     0.50     4.00400     1252
 7                     ∞     0.50
 近軸像点
Example 1
Unit: mm
Surface data Surface number R (mm) d (mm) N10 ν
Object ∞
1 (Aperture) ∞ 0.75
2 * -6.338 2.43 4.00400 1252
3 * -5.752 1.82
4 * -196.123 2.80 4.00400 1252
5 * -27.043 2.30
6 ∞ 0.50 4.00400 1252
7 ∞ 0.50
Paraxial image point
 非球面データ
                 第2面         第3面         第4面         第5面
 K               7.621        -3.868       -15.000       -15.000
 A4        -2.7194E-03   -3.5463E-03    3.6807E-03    4.3449E-03
 A6         3.6128E-05    1.1045E-05   -1.0679E-05   -7.6449E-05
 A8         2.9521E-05    2.9216E-06   -2.9459E-06    3.8592E-05
 A10       -3.8271E-06   -7.1261E-07    1.0359E-07   -8.1171E-08
Aspheric data 2nd surface 3rd surface 4th surface 5th surface K 7.621 -3.868 -15.000 -15.000
A4 -2.7194E-03 -3.5463E-03 3.6807E-03 4.3449E-03
A6 3.6128E-05 1.1045E-05 -1.0679E-05 -7.6449E-05
A8 2.9521E-05 2.9216E-06 -2.9459E-06 3.8592E-05
A10 -3.8271E-06 -7.1261E-07 1.0359E-07 -8.1171E-08
 実施例2
単位:mm
 面データ
 面番号             R(mm)    d(mm)       N10         ν
 物体                           ∞
 1(絞り)               ∞     0.81
 2        *        -6.045     2.74     2.77810      160
 3        *        -4.887     1.94
 4        *       -29.093     3.22     2.77810      160
 5        *       -12.221     2.84
 6                     ∞     0.50     4.00400     1252
 7                     ∞     0.49
 近軸像点
Example 2
Unit: mm
Surface data Surface number R (mm) d (mm) N10 ν
Object ∞
1 (Aperture) ∞ 0.81
2 * -6.045 2.74 2.77810 160
3 * -4.887 1.94
4 * -29.093 3.22 2.77810 160
5 * -12.221 2.84
6 ∞ 0.50 4.00400 1252
7 ∞ 0.49
Paraxial image point
 非球面データ
                 第2面         第3面         第4面         第5面
 K               5.363        -4.100        -0.852         7.657
 A4        -9.7358E-04   -3.6558E-03    3.2384E-03    2.8128E-03
 A6        -5.5200E-04    2.4842E-05   -5.0326E-06    1.1594E-05
 A8         2.5492E-04    1.4386E-05   -1.8198E-06    8.0515E-06
 A10       -1.3497E-05   -1.0203E-06    4.4725E-08   -6.7964E-09
Aspheric data 2nd surface 3rd surface 4th surface 5th surface K 5.363 -4.100 -0.852 7.657
A4 -9.7358E-04 -3.6558E-03 3.2384E-03 2.8128E-03
A6 -5.5200E-04 2.4842E-05 -5.0326E-06 1.1594E-05
A8 2.5492E-04 1.4386E-05 -1.8198E-06 8.0515E-06
A10 -1.3497E-05 -1.0203E-06 4.4725E-08 -6.7964E-09
 実施例3
単位:mm
 面データ
 面番号             R(mm)    d(mm)       N10         ν
 物体                           ∞
 1        *         3.591     1.01     2.77810      160
 2        *         3.335     1.04
 3(絞り)               ∞     0.78
 4        *         8.676     3.27     2.77810      160
 5        *       -65.586     1.02
 6                     ∞     0.50     4.00400     1252
 7                     ∞     1.02
 近軸像点
Example 3
Unit: mm
Surface data Surface number R (mm) d (mm) N10 ν
Object ∞
1 * 3.591 1.01 2.77810 160
2 * 3.335 1.04
3 (Aperture) ∞ 0.78
4 * 8.676 3.27 2.77810 160
5 * -65.586 1.02
6 ∞ 0.50 4.00400 1252
7 ∞ 1.02
Paraxial image point
 非球面データ
                 第1面         第2面         第4面         第5面
 K              -0.392         1.073         3.590        30.000
 A3        -2.4094E-04    1.0642E-03    1.8151E-04   -1.0760E-03
 A4         1.1585E-03   -3.0028E-03    6.0091E-04    4.2629E-03
 A5         6.9918E-05    4.6961E-05   -1.6119E-05   -2.3812E-05
 A6        -7.0756E-05   -3.9360E-06   -2.2481E-04   -4.8154E-04
 A8         2.8321E-05   -2.5775E-04    2.7422E-05    6.9480E-05
 A10       -1.4924E-05   -6.6923E-05   -1.9462E-06   -4.7962E-06
Aspheric data 1st surface 2nd surface 4th surface 5th surface K -0.392 1.073 3.590 30.000
A3 -2.4094E-04 1.0642E-03 1.8151E-04 -1.0760E-03
A4 1.1585E-03 -3.0028E-03 6.0091E-04 4.2629E-03
A5 6.9918E-05 4.6961E-05 -1.6119E-05 -2.3812E-05
A6 -7.0756E-05 -3.9360E-06 -2.2481E-04 -4.8154E-04
A8 2.8321E-05 -2.5775E-04 2.7422E-05 6.9480E-05
A10 -1.4924E-05 -6.6923E-05 -1.9462E-06 -4.7962E-06
 実施例4
単位:mm
 面データ
 面番号       R(mm)          d(mm)       N10     ν
 OB              ∞             ∞
 1(ST)           ∞       0.802176
 2*        -6.27915       2.587169     4.004   1250
 3*        -5.80433       1.831465
 4*        90.73463       2.779481     4.004   1250
 5*       -57.55095       2.272522
 6               ∞       0.500000     4.004   1250
 7               ∞       0.486000
 IM              ∞       0.000000
Example 4
Unit: mm
Surface data Surface number R (mm) d (mm) N10 ν
OB ∞ ∞
1 (ST) ∞ 0.802176
2 * -6.27915 2.587169 4.004 1250
3 * -5.80433 1.831465
4 * 90.73463 2.779481 4.004 1250
5 * -57.55095 2.272522
6 ∞ 0.500000 4.004 1250
7 ∞ 0.486000
IM ∞ 0.000000
 非球面データ
非球面:2*
K  =  7.620968
A4 = -0.232586E-02
A6 = -0.138789E-03
A8 =  0.123318E-03
A10= -0.807669E-05
Aspheric data Aspheric surface: 2 *
K = 7.620968
A4 = -0.232586E-02
A6 = -0.138789E-03
A8 = 0.123318E-03
A10 = -0.807669E-05
 非球面データ
非球面:3*
K  = -4.105717
A4 = -0.341885E-02
A6 =  0.203194E-04
A8 =  0.360199E-05
A10= -0.661989E-06
Aspheric data Aspheric surface: 3 *
K = -4.105717
A4 = -0.341885E-02
A6 = 0.203194E-04
A8 = 0.360199E-05
A10 = -0.661989E-06
 非球面データ
非球面:4*
K  =-15.000000
A4 =  0.364839E-02
A6 = -0.804332E-05
A8 = -0.282540E-05
A10=  0.104786E-06
Aspheric data Aspheric surface: 4 *
K = -15.000000
A4 = 0.364839E-02
A6 = -0.804332E-05
A8 = -0.282540E-05
A10 = 0.104786E-06
 非球面データ
非球面:5*
K  =-15.000000
A4 =  0.445355E-02
A6 =  0.514582E-04
A8 =  0.335483E-04
A10=  0.966802E-06
Aspheric data Aspheric: 5 *
K = -15.000000
A4 = 0.445355E-02
A6 = 0.514582E-04
A8 = 0.335483E-04
A10 = 0.966802E-06
 実施例5
単位:mm
 面データ
 面番号       R(mm)          d(mm)       N10     ν
 OB              ∞             ∞
 1(ST)           ∞       0.810319
 2*        -7.27664       3.452702     4.004   1250
 3*        -6.67025       2.600671
 4*        99.81599       2.344192     4.004   1250
 5*       -46.41594       2.013546
 6               ∞       0.500000     4.004   1250
 7               ∞       0.486000
 IM              ∞       0.000000
Example 5
Unit: mm
Surface data Surface number R (mm) d (mm) N10 ν
OB ∞ ∞
1 (ST) ∞ 0.810319
2 * -7.27664 3.452702 4.004 1250
3 * -6.67025 2.600671
4 * 99.81599 2.344192 4.004 1250
5 * -46.41594 2.013546
6 ∞ 0.500000 4.004 1250
7 ∞ 0.486000
IM ∞ 0.000000
 非球面データ
非球面:2*
K  =  9.490200
A4 = -0.141396E-02
A6 = -0.111242E-03
A8 =  0.890495E-04
A10= -0.676957E-05
Aspheric data Aspheric surface: 2 *
K = 9.490200
A4 = -0.141396E-02
A6 = -0.111242E-03
A8 = 0.890495E-04
A10 = -0.676957E-05
 非球面データ
非球面:3*
K  = -4.035285
A4 = -0.221072E-02
A6 =  0.169514E-04
A8 =  0.271526E-06
A10= -0.134928E-06
Aspheric data Aspheric surface: 3 *
K = -4.035285
A4 = -0.221072E-02
A6 = 0.169514E-04
A8 = 0.271526E-06
A10 = -0.134928E-06
 非球面データ
非球面:4*
K  =-15.000000
A4 =  0.281935E-02
A6 =  0.685182E-04
A8 = -0.503968E-05
A10=  0.143664E-06
Aspheric data Aspheric surface: 4 *
K = -15.000000
A4 = 0.281935E-02
A6 = 0.685182E-04
A8 = -0.503968E-05
A10 = 0.143664E-06
 非球面データ
非球面:5*
K  = 15.000000
A4 =  0.336277E-02
A6 =  0.261324E-03
A8 = -0.144972E-04
A10=  0.376420E-05
Aspheric data Aspheric: 5 *
K = 15.000000
A4 = 0.336277E-02
A6 = 0.261324E-03
A8 = -0.144972E-04
A10 = 0.376420E-05
 実施例6
単位:mm
 面データ
 面番号       R(mm)          d(mm)       N10     ν
 OB              ∞             ∞
 1(ST)           ∞       0.816782
 2*        -7.33382       3.441187     4.004   1250
 3*        -6.68192       2.620908
 4*       121.52350       2.344225     4.004   1250
 5*       -42.01188       1.990185
 6               ∞       0.500000     4.004   1250
 7               ∞       0.486000
 IM              ∞       0.000000
Example 6
Unit: mm
Surface data Surface number R (mm) d (mm) N10 ν
OB ∞ ∞
1 (ST) ∞ 0.816782
2 * -7.33382 3.441187 4.004 1250
3 * -6.68192 2.620908
4 * 121.52350 2.344225 4.004 1250
5 * -42.01188 1.990185
6 ∞ 0.500000 4.004 1250
7 ∞ 0.486000
IM ∞ 0.000000
 非球面データ
非球面:2*
K  =  9.611185
A4 = -0.149260E-02
A6 = -0.127211E-03
A8 =  0.870872E-04
A10= -0.701794E-05
Aspheric data Aspheric surface: 2 *
K = 9.611185
A4 = -0.149260E-02
A6 = -0.127211E-03
A8 = 0.870872E-04
A10 = -0.701794E-05
 非球面データ
非球面:3*
K  = -3.727033
A4 = -0.211299E-02
A6 =  0.839648E-05
A8 =  0.648433E-06
A10= -0.142336E-06
Aspheric data Aspheric surface: 3 *
K = -3.727033
A4 = -0.211299E-02
A6 = 0.839648E-05
A8 = 0.648433E-06
A10 = -0.142336E-06
 非球面データ
非球面:4*
K  =-15.000000
A4 =  0.266175E-02
A6 =  0.802542E-04
A8 = -0.550920E-05
A10=  0.148235E-06
Aspheric data Aspheric surface: 4 *
K = -15.000000
A4 = 0.266175E-02
A6 = 0.802542E-04
A8 = -0.550920E-05
A10 = 0.148235E-06
 非球面データ
非球面:5*
K  = 15.000000
A4 =  0.319550E-02
A6 =  0.254845E-03
A8 = -0.138955E-04
A10=  0.352979E-05
Aspheric data Aspheric: 5 *
K = 15.000000
A4 = 0.319550E-02
A6 = 0.254845E-03
A8 = -0.138955E-04
A10 = 0.352979E-05
 実施例7
単位:mm
 面データ
 面番号       R(mm)          d(mm)       N10     ν
 OB              ∞             ∞
 1(ST)           ∞       0.864920
 2*        -7.03526       2.975668     4.004   1250
 3*        -6.27469       1.945048
 4*       173.51899       2.650012     4.004   1250
 5*       -46.35185       2.243907
 6               ∞       0.500000     4.004   1250
 7               ∞       0.486000
 IM              ∞       0.000000
Example 7
Unit: mm
Surface data Surface number R (mm) d (mm) N10 ν
OB ∞ ∞
1 (ST) ∞ 0.864920
2 * -7.03526 2.975668 4.004 1250
3 * -6.27469 1.945048
4 * 173.51899 2.650012 4.004 1250
5 * -46.35185 2.243907
6 ∞ 0.500000 4.004 1250
7 ∞ 0.486000
IM ∞ 0.000000
 非球面データ
非球面:2*
K  =  8.897131
A4 = -0.207533E-02
A6 = -0.289646E-03
A8 =  0.143117E-03
A10= -0.135917E-04
Aspheric data Aspheric surface: 2 *
K = 8.897131
A4 = -0.207533E-02
A6 = -0.289646E-03
A8 = 0.143117E-03
A10 = -0.135917E-04
 非球面データ
非球面:3*
K  = -4.359018
A4 = -0.283678E-02
A6 =  0.282421E-04
A8 =  0.110501E-05
A10= -0.292151E-06
Aspheric data Aspheric surface: 3 *
K = -4.359018
A4 = -0.283678E-02
A6 = 0.282421E-04
A8 = 0.110501E-05
A10 = -0.292151E-06
 非球面データ
非球面:4*
K  =-15.000000
A4 =  0.358746E-02
A6 =  0.520212E-05
A8 = -0.298734E-05
A10=  0.108580E-06
Aspheric data Aspheric surface: 4 *
K = -15.000000
A4 = 0.358746E-02
A6 = 0.520212E-05
A8 = -0.298734E-05
A10 = 0.108580E-06
 非球面データ
非球面:5*
K  = 14.690149
A4 =  0.402099E-02
A6 =  0.235244E-03
A8 = -0.784096E-05
A10=  0.409915E-05
Aspheric data Aspheric: 5 *
K = 14.690149
A4 = 0.402099E-02
A6 = 0.235244E-03
A8 = -0.784096E-05
A10 = 0.409915E-05
 実施例8
単位:mm
 面データ
 面番号       R(mm)          d(mm)       N10     ν
 OB              ∞             ∞
 1(ST)           ∞       0.861697
 2*        -7.31877       3.125049     4.004   1250
 3*        -6.42076       1.971548
 4*       390.00777       2.576393     4.004   1250
 5*       -41.75446       2.236701
 6               ∞       0.500000     4.004   1250
 7               ∞       0.486000
 IM              ∞       0.000000
Example 8
Unit: mm
Surface data Surface number R (mm) d (mm) N10 ν
OB ∞ ∞
1 (ST) ∞ 0.861697
2 * -7.31877 3.125049 4.004 1250
3 * -6.42076 1.971548
4 * 390.00777 2.576393 4.004 1250
5 * -41.75446 2.236701
6 ∞ 0.500000 4.004 1250
7 ∞ 0.486000
IM ∞ 0.000000
 非球面データ
非球面:2*
K  =  9.690032
A4 = -0.206297E-02
A6 = -0.234755E-03
A8 =  0.116301E-03
A10= -0.938163E-05
Aspheric data Aspheric surface: 2 *
K = 9.690032
A4 = -0.206297E-02
A6 = -0.234755E-03
A8 = 0.116301E-03
A10 = -0.938163E-05
 非球面データ
非球面:3*
K  = -4.433234
A4 = -0.268792E-02
A6 =  0.300845E-04
A8 =  0.548332E-06
A10= -0.225286E-06
Aspheric data Aspheric surface: 3 *
K = -4.433234
A4 = -0.268792E-02
A6 = 0.300845E-04
A8 = 0.548332E-06
A10 = -0.225286E-06
 非球面データ
非球面:4*
K  = 15.000000
A4 =  0.363317E-02
A6 =  0.926419E-05
A8 = -0.322586E-05
A10=  0.115247E-06
Aspheric data Aspheric surface: 4 *
K = 15.000000
A4 = 0.363317E-02
A6 = 0.926419E-05
A8 = -0.322586E-05
A10 = 0.115247E-06
 非球面データ
非球面:5*
K  =-14.377065
A4 =  0.399215E-02
A6 =  0.236360E-03
A8 = -0.817727E-05
A10=  0.405203E-05
Aspheric data Aspheric: 5 *
K = -14.377065
A4 = 0.399215E-02
A6 = 0.236360E-03
A8 = -0.817727E-05
A10 = 0.405203E-05
 実施例9
単位:mm
 面データ
 面番号       R(mm)          d(mm)       N10     ν
 OB              ∞             ∞
 1(ST)           ∞       0.845567
 2*        -7.64106       3.351431     4.004   1250
 3*        -6.60849       2.053915
 4*      -887.07541       2.433648     4.004   1250
 5*       -37.24419       2.220860
 6               ∞       0.500000     4.004   1250
 7               ∞       0.486000
 IM              ∞       0.000000
Example 9
Unit: mm
Surface data Surface number R (mm) d (mm) N10 ν
OB ∞ ∞
1 (ST) ∞ 0.845567
2 * -7.64106 3.351431 4.004 1250
3 * -6.60849 2.053915
4 * -887.07541 2.433648 4.004 1250
5 * -37.24419 2.220860
6 ∞ 0.500000 4.004 1250
7 ∞ 0.486000
IM ∞ 0.000000
 非球面データ
非球面:2*
K  = 10.741471
A4 = -0.192691E-02
A6 = -0.154892E-03
A8 =  0.884281E-04
A10= -0.433345E-05
Aspheric data Aspheric surface: 2 *
K = 10.741471
A4 = -0.192691E-02
A6 = -0.154892E-03
A8 = 0.884281E-04
A10 = -0.433345E-05
 非球面データ
非球面:3*
K  = -4.550159
A4 = -0.249158E-02
A6 =  0.326732E-04
A8 = -0.269045E-07
A10= -0.159032E-06
Aspheric data Aspheric surface: 3 *
K = -4.550159
A4 = -0.249158E-02
A6 = 0.326732E-04
A8 = -0.269045E-07
A10 = -0.159032E-06
 非球面データ
非球面:4*
K  =-15.000000
A4 =  0.374483E-02
A6 =  0.154127E-04
A8 = -0.359526E-05
A10=  0.128983E-06
Aspheric data Aspheric surface: 4 *
K = -15.000000
A4 = 0.374483E-02
A6 = 0.154127E-04
A8 = -0.359526E-05
A10 = 0.128983E-06
 非球面データ
非球面:5*
K  = -6.221728
A4 =  0.407323E-02
A6 =  0.244691E-03
A8 = -0.929228E-05
A10=  0.411471E-05
Aspheric data Aspheric: 5 *
K = -6.221728
A4 = 0.407323E-02
A6 = 0.244691E-03
A8 = -0.929228E-05
A10 = 0.411471E-05
 実施例10
単位:mm
 面データ
 面番号       R(mm)          d(mm)       N10     ν
 OB              ∞             ∞
 1(ST)           ∞       0.819818
 2*        -5.91316       2.768638     2.7781  160.2
 3*        -4.52183       1.371573
 4*       -34.73754       4.000000     2.7781  160.2
 5*       -18.19129       2.696316
 6               ∞       0.500000     4.004   1250
 7               ∞       0.486000
 IM              ∞       0.000000
Example 10
Unit: mm
Surface data Surface number R (mm) d (mm) N10 ν
OB ∞ ∞
1 (ST) ∞ 0.819818
2 * -5.91316 2.768638 2.7781 160.2
3 * -4.52183 1.371573
4 * -34.73754 4.000000 2.7781 160.2
5 * -18.19129 2.696316
6 ∞ 0.500000 4.004 1250
7 ∞ 0.486000
IM ∞ 0.000000
 非球面データ
非球面:2*
K  =  1.768390
A4 = -0.455419E-02
A6 = -0.961230E-03
A8 =  0.277633E-03
A10= -0.325522E-04
Aspheric data Aspheric surface: 2 *
K = 1.768390
A4 = -0.455419E-02
A6 = -0.961230E-03
A8 = 0.277633E-03
A10 = -0.325522E-04
 非球面データ
非球面:3*
K  = -2.612672
A4 = -0.260108E-02
A6 = -0.396228E-04
A8 =  0.959824E-05
A10= -0.614360E-06
Aspheric data Aspheric surface: 3 *
K = -2.612672
A4 = -0.260108E-02
A6 = -0.396228E-04
A8 = 0.959824E-05
A10 = -0.614360E-06
 非球面データ
非球面:4*
K  =  6.570084
A4 =  0.389940E-02
A6 = -0.730020E-04
A8 =  0.391424E-06
A10=  0.157896E-07
Aspheric data Aspheric surface: 4 *
K = 6.570084
A4 = 0.389940E-02
A6 = -0.730020E-04
A8 = 0.391424E-06
A10 = 0.157896E-07
 非球面データ
非球面:5*
K  =  3.514999
A4 =  0.245290E-02
A6 = -0.573722E-05
A8 =  0.954888E-05
A10= -0.151311E-06
Aspheric data Aspheric: 5 *
K = 3.514999
A4 = 0.245290E-02
A6 = -0.573722E-05
A8 = 0.954888E-05
A10 = -0.151311E-06
 実施例11
単位:mm
 面データ
 面番号       R(mm)          d(mm)       N10     ν
 OB              ∞             ∞
 1(ST)           ∞       0.824233
 2*        -5.82038       2.748465     2.7781  160.2
 3*        -4.52696       1.423082
 4*       -39.21930       4.000000     2.7781  160.2
 5*       -18.48482       2.676865
 6               ∞       0.500000     4.004   1250
 7               ∞       0.486000
 IM              ∞       0.000000
Example 11
Unit: mm
Surface data Surface number R (mm) d (mm) N10 ν
OB ∞ ∞
1 (ST) ∞ 0.824233
2 * -5.82038 2.748465 2.7781 160.2
3 * -4.52696 1.423082
4 * -39.21930 4.000000 2.7781 160.2
5 * -18.48482 2.676865
6 ∞ 0.500000 4.004 1250
7 ∞ 0.486000
IM ∞ 0.000000
 非球面データ
非球面:2*
K  =  1.545042
A4 = -0.448727E-02
A6 = -0.100024E-02
A8 =  0.285638E-03
A10= -0.335281E-04
Aspheric data Aspheric surface: 2 *
K = 1.545042
A4 = -0.448727E-02
A6 = -0.100024E-02
A8 = 0.285638E-03
A10 = -0.335281E-04
 非球面データ
非球面:3*
K  = -2.533029
A4 = -0.252923E-02
A6 = -0.488205E-04
A8 =  0.102503E-04
A10= -0.639718E-06
Aspheric data Aspheric surface: 3 *
K = -2.533029
A4 = -0.252923E-02
A6 = -0.488205E-04
A8 = 0.102503E-04
A10 = -0.639718E-06
 非球面データ
非球面:4*
K  = 14.765852
A4 =  0.379131E-02
A6 = -0.676970E-04
A8 =  0.299986E-06
A10=  0.162865E-07
Aspheric data Aspheric surface: 4 *
K = 14.765852
A4 = 0.379131E-02
A6 = -0.676970E-04
A8 = 0.299986E-06
A10 = 0.162865E-07
 非球面データ
非球面:5*
K  =  3.960430
A4 =  0.245208E-02
A6 = -0.495538E-05
A8 =  0.944887E-05
A10= -0.132525E-06
Aspheric data Aspheric: 5 *
K = 3.960430
A4 = 0.245208E-02
A6 = -0.495538E-05
A8 = 0.944887E-05
A10 = -0.132525E-06
 実施例12
単位:mm
 面データ
 面番号       R(mm)          d(mm)       N10     ν
 OB              ∞             ∞
 1(ST)           ∞       0.853611
 2*        -5.38831       2.594890     2.7781  160.2
 3*        -4.52618       1.836368
 4*       -69.46815       4.000000     2.7781  160.2
 5*       -17.34124       2.520451
 6               ∞       0.500000     4.004   1250
 7               ∞       0.486000
 IM              ∞       0.000000
Example 12
Unit: mm
Surface data Surface number R (mm) d (mm) N10 ν
OB ∞ ∞
1 (ST) ∞ 0.853611
2 * -5.38831 2.594890 2.7781 160.2
3 * -4.52618 1.836368
4 * -69.46815 4.000000 2.7781 160.2
5 * -17.34124 2.520451
6 ∞ 0.500000 4.004 1250
7 ∞ 0.486000
IM ∞ 0.000000
 非球面データ
非球面:2*
K  =  2.176583
A4 = -0.323974E-02
A6 = -0.101787E-02
A8 =  0.273320E-03
A10= -0.298276E-04
Aspheric data Aspheric surface: 2 *
K = 2.176583
A4 = -0.323974E-02
A6 = -0.101787E-02
A8 = 0.273320E-03
A10 = -0.298276E-04
 非球面データ
非球面:3*
K  = -2.896526
A4 = -0.344650E-02
A6 = -0.197773E-04
A8 =  0.866588E-05
A10= -0.633557E-06
Aspheric data Aspheric surface: 3 *
K = -2.896526
A4 = -0.344650E-02
A6 = -0.197773E-04
A8 = 0.866588E-05
A10 = -0.633557E-06
 非球面データ
非球面:4*
K  = -9.499184
A4 =  0.289565E-02
A6 = -0.232867E-04
A8 = -0.843775E-06
A10=  0.279536E-07
Aspheric data Aspheric surface: 4 *
K = -9.499184
A4 = 0.289565E-02
A6 = -0.232867E-04
A8 = -0.843775E-06
A10 = 0.279536E-07
 非球面データ
非球面:5*
K  =  6.108008
A4 =  0.230698E-02
A6 = -0.799862E-05
A8 =  0.854639E-05
A10= -0.974203E-07
Aspheric data Aspheric: 5 *
K = 6.108008
A4 = 0.230698E-02
A6 = -0.799862E-05
A8 = 0.854639E-05
A10 = -0.974203E-07
 実施例13
単位:mm
 面データ
 面番号       R(mm)          d(mm)       N10     ν
 OB              ∞             ∞
 1*         3.57283       1.051131     2.7781  160.2
 2*         3.31299       1.007687
 3(ST)           ∞       1.149565
 4*         8.24988       3.710412     2.7781  160.2
 5*       -76.52927       0.668753
 6               ∞       0.500000     4.004   1250
 7               ∞       1.042203
 IM              ∞       0.000000
Example 13
Unit: mm
Surface data Surface number R (mm) d (mm) N10 ν
OB ∞ ∞
1 * 3.57283 1.051131 2.7781 160.2
2 * 3.31299 1.007687
3 (ST) ∞ 1.149565
4 * 8.24988 3.710412 2.7781 160.2
5 * -76.52927 0.668753
6 ∞ 0.500000 4.004 1250
7 ∞ 1.042203
IM ∞ 0.000000
 非球面データ
非球面:1*
K  = -3.6694E-01
A3 =  1.4780E-03
A4 =  1.0131E-03
A5 =  3.2472E-04
A6 =  7.7471E-05
A8 =  5.2150E-05
A10= -6.5105E-06
Aspheric data Aspheric surface: 1 *
K = -3.6694E-01
A3 = 1.4780E-03
A4 = 1.0131E-03
A5 = 3.2472E-04
A6 = 7.7471E-05
A8 = 5.2150E-05
A10 = -6.5105E-06
 非球面データ
非球面:2*
K  =  1.1377E+00
A3 =  1.6247E-04
A4 = -1.5162E-03
A5 =  6.2043E-04
A6 =  3.6710E-04
A8 = -1.0639E-04
A10= -4.1788E-05
非球面:4*
K  =  4.4727E+00
A3 = -1.2208E-03
A4 =  9.2382E-04
A5 =  3.0930E-05
A6 = -2.4440E-04
A8 =  2.1154E-05
A10= -1.6421E-06
Aspheric data Aspheric surface: 2 *
K = 1.1377E + 00
A3 = 1.6247E-04
A4 = -1.5162E-03
A5 = 6.2043E-04
A6 = 3.6710E-04
A8 = -1.0639E-04
A10 = -4.1788E-05
Aspheric: 4 *
K = 4.4727E + 00
A3 = -1.2208E-03
A4 = 9.2382E-04
A5 = 3.0930E-05
A6 = -2.4440E-04
A8 = 2.1154E-05
A10 = -1.6421E-06
 非球面データ
非球面:5*
K  =  1.5000E+01
A3 =  9.7846E-03
A4 = -3.0877E-04
A5 =  2.3391E-04
A6 = -2.0535E-04
A8 =  8.1670E-05
A10= -6.2377E-06
Aspheric data Aspheric: 5 *
K = 1.5000E + 01
A3 = 9.7846E-03
A4 = -3.0877E-04
A5 = 2.3391E-04
A6 = -2.0535E-04
A8 = 8.1670E-05
A10 = -6.2377E-06
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 DU  デジタル機器
 LU  撮像光学装置
 LN  遠赤外線レンズ
 L1  第1レンズ
 L2  第2レンズ
 ST  開口絞り(絞り)
 SR  撮像素子(遠赤外線センサー)
 SS  受光面(撮像面)
 IM  像面(光学像)
 AX  光軸
 1  信号処理部
 2  制御部
 3  メモリー
 4  操作部
 5  表示部
DU Digital equipment LU Imaging optical device LN Far infrared lens L1 First lens L2 Second lens ST Aperture stop
SR image sensor (far infrared sensor)
SS Photosensitive surface (imaging surface)
IM image plane (optical image)
AX Optical axis 1 Signal processing unit 2 Control unit 3 Memory 4 Operation unit 5 Display unit

Claims (7)

  1.  遠赤外線帯で使用されるレンズ系であって、
     物体側から順に、第1レンズ及び第2レンズの2枚の単レンズで構成され、以下の条件式(2)を満足し、半画角が30°よりも大きいことを特徴とする遠赤外線レンズ;
    7.3<(r1+r2)/(r1-r2)<27.5 …(2)
     ただし、
    r1:第1レンズの物体側面の近軸曲率半径、
    r2:第1レンズの像側面の近軸曲率半径、
    である。
    A lens system used in the far-infrared band,
    A far-infrared lens comprising two single lenses, a first lens and a second lens, in order from the object side, satisfying the following conditional expression (2) and having a half angle of view greater than 30 ° ;
    7.3 <(r1 + r2) / (r1-r2) <27.5 (2)
    However,
    r1: Paraxial radius of curvature of the object side surface of the first lens,
    r2: paraxial radius of curvature of the image side surface of the first lens,
    It is.
  2.  以下の条件式(4)を満足することを特徴とする請求項1記載の遠赤外線レンズ;
    0.63<dL2/f<2.55 …(4)
     ただし、
    dL2:第2レンズの中心厚、
    f:遠赤外線レンズ全系の焦点距離、
    である。
    The far-infrared lens according to claim 1, wherein the following conditional expression (4) is satisfied:
    0.63 <dL2 / f <2.55 (4)
    However,
    dL2: center thickness of the second lens,
    f: Focal length of the entire far-infrared lens system,
    It is.
  3.  以下の条件式(6)を満足することを特徴とする請求項1又は2記載の遠赤外線レンズ;
    0.9<f2/f<4.5 …(6)
     ただし、
    f2:第2レンズの焦点距離、
    f:遠赤外線レンズ全系の焦点距離、
    である。
    The far-infrared lens according to claim 1, wherein the following conditional expression (6) is satisfied:
    0.9 <f2 / f <4.5 (6)
    However,
    f2: focal length of the second lens,
    f: Focal length of the entire far-infrared lens system,
    It is.
  4.  前記第1レンズ及び第2レンズは、設計波長での屈折率が2よりも大きいことを特徴とする請求項1~3のいずれか1項に記載の遠赤外線レンズ。 The far-infrared lens according to any one of claims 1 to 3, wherein the first lens and the second lens have a refractive index greater than 2 at a design wavelength.
  5.  請求項1~4のいずれか1項に記載の遠赤外線レンズと、撮像面上に形成された遠赤外線光学像を電気的な信号に変換する撮像素子と、を備え、前記撮像素子の撮像面上に被写体の遠赤外線光学像が形成されるように前記遠赤外線レンズが設けられていることを特徴とする撮像光学装置。 An imaging surface of the imaging device, comprising: the far-infrared lens according to any one of claims 1 to 4; and an imaging device that converts a far-infrared optical image formed on the imaging surface into an electrical signal. An imaging optical apparatus, wherein the far-infrared lens is provided so that a far-infrared optical image of a subject is formed thereon.
  6.  請求項5記載の撮像光学装置を備えることにより、被写体の静止画撮影,動画撮影のうちの少なくとも一方の機能が付加されたことを特徴とするデジタル機器。 6. A digital apparatus comprising the imaging optical device according to claim 5 to which at least one function of still image shooting and moving image shooting of a subject is added.
  7.  請求項1~4のいずれか1項に記載の遠赤外線レンズを備えたことを特徴とする遠赤外線用カメラシステム。 A far-infrared camera system comprising the far-infrared lens according to any one of claims 1 to 4.
PCT/JP2015/073051 2014-08-20 2015-08-17 Far-infrared lens, image-acquisition optical device, and digital equipment WO2016027784A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016544202A JPWO2016027784A1 (en) 2014-08-20 2015-08-17 Far-infrared lens, imaging optical device and digital equipment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-167603 2014-08-20
JP2014167603 2014-08-20
JP2015-059658 2015-03-23
JP2015059658 2015-03-23

Publications (1)

Publication Number Publication Date
WO2016027784A1 true WO2016027784A1 (en) 2016-02-25

Family

ID=55350728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073051 WO2016027784A1 (en) 2014-08-20 2015-08-17 Far-infrared lens, image-acquisition optical device, and digital equipment

Country Status (2)

Country Link
JP (1) JPWO2016027784A1 (en)
WO (1) WO2016027784A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109856900A (en) * 2018-11-27 2019-06-07 玉晶光电(厦门)有限公司 Optical lens group

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10206730A (en) * 1997-01-23 1998-08-07 Fuji Photo Optical Co Ltd Image formation lens
WO1999006866A1 (en) * 1997-08-01 1999-02-11 Olympus Optical Co., Ltd. Objective of endoscope
JPH11133297A (en) * 1997-11-04 1999-05-21 Fuji Photo Film Co Ltd Fourier transform lens
JP2006304924A (en) * 2005-04-27 2006-11-09 Olympus Medical Systems Corp Image pickup optical system
JP2009251227A (en) * 2008-04-04 2009-10-29 Olympus Medical Systems Corp Objective optical system for endoscope
JP2012103461A (en) * 2010-11-10 2012-05-31 Topcon Corp Infrared optical system
JP2015060194A (en) * 2013-09-20 2015-03-30 株式会社タムロン Infrared optical system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10206730A (en) * 1997-01-23 1998-08-07 Fuji Photo Optical Co Ltd Image formation lens
WO1999006866A1 (en) * 1997-08-01 1999-02-11 Olympus Optical Co., Ltd. Objective of endoscope
JPH11133297A (en) * 1997-11-04 1999-05-21 Fuji Photo Film Co Ltd Fourier transform lens
JP2006304924A (en) * 2005-04-27 2006-11-09 Olympus Medical Systems Corp Image pickup optical system
JP2009251227A (en) * 2008-04-04 2009-10-29 Olympus Medical Systems Corp Objective optical system for endoscope
JP2012103461A (en) * 2010-11-10 2012-05-31 Topcon Corp Infrared optical system
JP2015060194A (en) * 2013-09-20 2015-03-30 株式会社タムロン Infrared optical system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109856900A (en) * 2018-11-27 2019-06-07 玉晶光电(厦门)有限公司 Optical lens group
TWI718448B (en) * 2018-11-27 2021-02-11 大陸商玉晶光電(廈門)有限公司 Optical lens assembly
CN109856900B (en) * 2018-11-27 2021-05-14 玉晶光电(厦门)有限公司 Optical lens group

Also Published As

Publication number Publication date
JPWO2016027784A1 (en) 2017-06-01

Similar Documents

Publication Publication Date Title
JP6167348B2 (en) Imaging lens
JP6845484B2 (en) Imaging optical system, lens unit and imaging device
JPWO2013153792A1 (en) Imaging lens and imaging apparatus
JP6149410B2 (en) Far-infrared imaging optical system, imaging optical device, and digital equipment
JP6583407B2 (en) Infrared optical system, imaging optical device, and digital equipment
WO2016027786A1 (en) Far-infrared lens, imaging optical device and digital equipment
JP6191628B2 (en) Imaging optical system, imaging optical device and digital equipment
JP2019045665A (en) Image capturing lens
WO2017090495A1 (en) Infrared optical system, image pickup optical device, and digital apparatus
WO2016121857A1 (en) Far-infrared lens system, optical imaging device, and digital apparatus
JP7045002B2 (en) Single focus imaging optical system, lens unit, and imaging device
JP6149411B2 (en) Far-infrared imaging optical system, imaging optical device, and digital equipment
JP6848967B2 (en) Infrared optics, imaging optics and digital equipment
JP6222116B2 (en) Imaging optical system, imaging optical device and digital equipment
US20150370044A1 (en) Imaging Optical System, Imaging Optical Device, and Digital Apparatus
JP6455107B2 (en) Imaging optical system, imaging optical device, and digital device
WO2016027784A1 (en) Far-infrared lens, image-acquisition optical device, and digital equipment
JP6608738B2 (en) Imaging lens, imaging optical device, and digital device
WO2016027783A1 (en) Far-infrared lens, image-acquisition optical device, and digital equipment
JP2019124744A (en) Image capturing optical system and image capturing device
JP2016139093A (en) Lens, far-infrared lens system, image capturing optical device, and digital device
WO2016072294A1 (en) Far infrared optical system, image-capturing optical device, and digital equipment
CN112285886A (en) Optical imaging system, image capturing device and electronic device
WO2017195731A1 (en) Infrared optical system, imaging optical device and digital device
WO2016208433A1 (en) Far-infrared lens system, imaging optical apparatus, and digital device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833954

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016544202

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15833954

Country of ref document: EP

Kind code of ref document: A1