JP2012234099A - Imaging lens - Google Patents

Imaging lens Download PDF

Info

Publication number
JP2012234099A
JP2012234099A JP2011103749A JP2011103749A JP2012234099A JP 2012234099 A JP2012234099 A JP 2012234099A JP 2011103749 A JP2011103749 A JP 2011103749A JP 2011103749 A JP2011103749 A JP 2011103749A JP 2012234099 A JP2012234099 A JP 2012234099A
Authority
JP
Japan
Prior art keywords
lens
shape
imaging
refractive power
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011103749A
Other languages
Japanese (ja)
Other versions
JP5725967B2 (en
Inventor
Tomofumi Koishi
知文 小石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2011103749A priority Critical patent/JP5725967B2/en
Publication of JP2012234099A publication Critical patent/JP2012234099A/en
Application granted granted Critical
Publication of JP5725967B2 publication Critical patent/JP5725967B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wide angle imaging lens satisfactorily correcting aberrations, being compact, light-weight and inexpensive, and having excellent optical performance.SOLUTION: The imaging lens includes three lenses, namely, in order from the object side, a first lens 110 having a negative refractive power, a second lens 120 having a positive refractive power, an aperture stop 130, and a third lens 140 having a positive refractive power. The first lens 110 has a meniscus shape with its convex surface facing the object side and an aspherical shape on the image surface side. The second lens 120 has a meniscus shape with its convex surface facing the image side and an aspherical shape on at least one of the surfaces. The third lens 140 has a biconvex shape and an aspherical shape on at least one of the surfaces. The focal lengths and the Abbe numbers of the lenses are appropriately set.

Description

本発明は、監視用カメラや車載用カメラ等、固体撮像素子を備えた撮像装置に用いられる撮像レンズ、特に単焦点の広角撮像レンズに関する。   The present invention relates to an imaging lens used in an imaging apparatus equipped with a solid-state imaging device, such as a monitoring camera or a vehicle-mounted camera, and more particularly to a single-focus wide-angle imaging lens.

監視用カメラや車載用カメラに用いられる撮像レンズには、広画角を確保しながら画面全域で結像性能が良いことが要求される。また、搭載スペースが限られることが多いことなどから小型で軽量であることが要求される。   Imaging lenses used for surveillance cameras and in-vehicle cameras are required to have good imaging performance over the entire screen while ensuring a wide angle of view. In addition, since the mounting space is often limited, it is required to be small and lightweight.

これらの要望に対応し得る可能性がある単焦点の広角撮像レンズとして、下記の特許文献1、2、3が提案されている。しかしながら、この特許文献1に記載される単焦点レンズは構成レンズの枚数を減らし、小型化、軽量化を図った広角撮像レンズであるが収差補正が充分ではなく、画面全域で高い光学性能面を満足することが出来なかった。またこの問題を克服した特許文献2、3に記載される単焦点レンズでは、レンズ枚数を4枚とし高い結像性能を持たせることができたが、現在では更なる小型化が望まれている。   The following Patent Documents 1, 2, and 3 have been proposed as single-focus wide-angle imaging lenses that may be able to meet these demands. However, the single focus lens described in Patent Document 1 is a wide-angle imaging lens in which the number of constituent lenses is reduced, and the size and weight are reduced. However, aberration correction is not sufficient, and a high optical performance surface is provided over the entire screen. I couldn't be satisfied. In addition, in the single focus lenses described in Patent Documents 2 and 3 that overcome this problem, the number of lenses is four and high imaging performance can be provided. However, further downsizing is desired now. .

特開2003−195161号公報JP 2003-195161 A 特開2008−268268号公報JP 2008-268268 A 特開2009−8867号公報JP 2009-8867 A

本発明は、上記の点に鑑みて成されたものであり、目的とするのは、3枚構成によって小型、軽量且つ安価でありながら、レンズの形状、非球面の形状等を適切に設定することにより高い光学性能を持つ広角撮像レンズを提供することである。   The present invention has been made in view of the above points, and an object of the present invention is to appropriately set the shape of the lens, the shape of the aspherical surface, etc. while being small, light and inexpensive by the three-piece structure. Accordingly, a wide-angle imaging lens having high optical performance is provided.

上記目的を達成するため第1の発明のレンズは、物体側から順に、負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、開口絞りと、正の屈折力を有する第3レンズとの3枚のレンズが配置され、前記第1レンズが物体側に凸面を向けたメニスカス形状と像面側に非球面形状を有し、前記第2レンズが像側に凸面を向けたメニスカス形状と少なくともどちらか一方の面に非球面形状を有し、前記第3レンズが両凸形状と少なくともどちらか一方の面に非球面を有し、下記条件式(1)〜(5)を満足することを特徴とする。   In order to achieve the above object, a lens according to a first invention has, in order from the object side, a first lens having a negative refractive power, a second lens having a positive refractive power, an aperture stop, and a positive refractive power. The first lens has a meniscus shape with a convex surface facing the object side and an aspherical shape on the image side, and the second lens has a convex surface on the image side. The directed meniscus shape and at least one surface has an aspheric shape, the third lens has a biconvex shape and at least one surface has an aspheric surface, and the following conditional expressions (1) to (5) ) Is satisfied.

1.0 < f2/f3 ・・・(1)
1.0 < |f1/f23| < 3.0 ・・・(2)
ν1>50 ・・・(3)
ν2<30 ・・・(4)
ν3>50 ・・・(5)
ただし、
f1:第1レンズの焦点距離
f2:第2レンズの焦点距離
f3:第3レンズの焦点距離
f23:第2レンズ、第3レンズの合成焦点距離
ν1:第1レンズのd線に対するアッベ数
ν2:第2レンズのd線に対するアッベ数
ν3:第3レンズのd線に対するアッベ数。
1.0 <f2 / f3 (1)
1.0 <| f1 / f23 | <3.0 (2)
ν1> 50 (3)
ν2 <30 (4)
ν3> 50 (5)
However,
f1: focal length of the first lens f2: focal length of the second lens f3: focal length of the third lens f23: combined focal length of the second lens and the third lens ν1: Abbe number ν2 of the first lens with respect to the d-line: Abbe number ν3 for the d-line of the second lens: Abbe number for the d-line of the third lens.

従来、特許文献2や特許文献3のような4枚構成の広角レンズでは、強い負の屈折力を持つ2枚のレンズと、色分散が大きく正の屈折力を持つレンズと開口絞りの後方に正の屈折力を持つレンズを配置することで、像面湾曲と倍率の色収差を良好に補正していた。   Conventionally, in a wide-angle lens having four lenses as in Patent Document 2 and Patent Document 3, two lenses having a strong negative refractive power, a lens having a large chromatic dispersion and a positive refractive power, and the rear of the aperture stop are used. By arranging a lens having a positive refractive power, the field curvature and the chromatic aberration of magnification were corrected satisfactorily.

本発明では第1レンズの像側面により強い屈折力を持たせ、それに合わせたレンズ形状を適切に設定することにより、色収差や像面湾曲などの諸収差を補正しつつ、小型化、軽量化を達成することが可能となる。   In the present invention, the image side surface of the first lens has a strong refractive power, and by appropriately setting the lens shape corresponding thereto, it is possible to reduce the size and weight while correcting various aberrations such as chromatic aberration and curvature of field. Can be achieved.

さらに、前記撮像レンズを構成する前記第1乃至第3のすべてのレンズが樹脂材料で形成されることを特徴とする。   Furthermore, all the first to third lenses constituting the imaging lens are formed of a resin material.

本発明によれば、3枚構成によって小型、軽量且つ安価でありながら諸収差が良好に補正された広角撮像レンズを提供することができる。その結果、監視カメラや車載用カメラに搭載可能なコンパクトな広角撮像レンズを実現することができる。   According to the present invention, it is possible to provide a wide-angle imaging lens in which various aberrations are satisfactorily corrected with a three-lens configuration while being small, light, and inexpensive. As a result, a compact wide-angle imaging lens that can be mounted on a surveillance camera or a vehicle-mounted camera can be realized.

本実施形態の撮像レンズの基本構成を示す図である。It is a figure which shows the basic composition of the imaging lens of this embodiment. 本実施形態において、撮像レンズの絞り部、各レンズに対して付与した面番号を示す図である。In this embodiment, it is a figure which shows the aperture | diaphragm | squeeze part of an imaging lens, and the surface number provided with respect to each lens. 実施例1 において、球面収差、および非点収差を示す収差図である。FIG. 4 is an aberration diagram showing spherical aberration and astigmatism in Example 1. 実施例2 において採用した撮像レンズの構成を示す図である。6 is a diagram illustrating a configuration of an imaging lens employed in Example 2. FIG. 実施例2 において、球面収差、および非点収差を示す収差図である。In Example 2, it is an aberrational figure which shows spherical aberration and astigmatism. 実施例3 において採用した撮像レンズの構成を示す図である。6 is a diagram illustrating a configuration of an imaging lens employed in Example 3. FIG. 実施例3 において、球面収差、および非点収差を示す収差図である。In Example 3, it is an aberrational figure which shows spherical aberration and astigmatism. 実施例2と実施例3 において、温度ごとの近軸像面位置を示す図である。In Example 2 and Example 3, it is a figure which shows the paraxial image surface position for every temperature.

以下、図面を参照しながら、本発明の実施形態を詳細に説明する。図1に実施の形態のレンズ構成をそれぞれ光学断面で示す。これらの実施形態は物体側から順に、第1レンズ110、第2レンズ120、開口絞り130、第3レンズ140、カバーガラス150、CCD(Charge Coupled Device)やCMOS(Complementary Mental-Oxide Semiconductor device)等の撮像素子160が配置される3枚構成の単焦点レンズ100である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows the lens configuration of the embodiment in an optical section. In these embodiments, in order from the object side, the first lens 110, the second lens 120, the aperture stop 130, the third lens 140, the cover glass 150, a CCD (Charge Coupled Device), a CMOS (Complementary Mental-Oxide Semiconductor device), etc. This is a single-focus lens 100 having a three-lens configuration in which the image sensor 160 is arranged.

本発明を実施した撮像レンズで3枚のレンズは、物体側から順に、負の屈折力を有する第1レンズ110と、正の屈折力を有する第2レンズ120と、開口絞り130と、正の屈折力を有する第3レンズ140のように配列されている。広角レンズでは、広い画角を得るために焦点距離を短くする必要があるが、機構的な制約からバックフォーカスは焦点距離に比べて長くしなくてはならない。そこで、前方に負の屈折力を有するレンズを配置し、入射した光を一度発散した後、後方の正の屈折力を有するレンズで集光することにより、レンズ系の主点をレンズ後方に飛出させ焦点距離に比べて長いバックフォーカスを確保することが可能となる。具体的には負の第1レンズで光を発散させ、正の第2レンズと第3レンズで集光する。最も物体側に負レンズを配置することで、主点を後方に置くのに十分な負の屈折力を得ることができ、開口絞り前に正の屈折力をもつレンズを配置することにより、倍率の色収差を良好に補正し、開口絞り後に正の屈折力をもつレンズを配置することにより、像面への入射角度を小さくし、かつ収差を良好に補正する。   In the imaging lens embodying the present invention, the three lenses are, in order from the object side, a first lens 110 having a negative refractive power, a second lens 120 having a positive refractive power, an aperture stop 130, and a positive lens. They are arranged like a third lens 140 having refractive power. With a wide-angle lens, it is necessary to shorten the focal length in order to obtain a wide angle of view, but the back focus must be longer than the focal length due to mechanical limitations. Therefore, a lens having a negative refractive power is arranged in the front, once incident light is diverged, and then condensed by a lens having a positive rear refractive power, so that the principal point of the lens system is moved backward. It is possible to ensure a long back focus compared to the focal length. Specifically, light is diverged by the negative first lens and condensed by the positive second lens and the third lens. By placing the negative lens closest to the object side, it is possible to obtain a negative refractive power sufficient to place the principal point behind, and by placing a lens with a positive refractive power in front of the aperture stop, The chromatic aberration is favorably corrected, and a lens having a positive refractive power is disposed after the aperture stop, thereby reducing the incident angle on the image plane and favorably correcting the aberration.

前記撮像レンズで、第1レンズ110は物体側に凸面を向けたメニスカスレンズであり、第2レンズ120は像側に凸面を向けたメニスカスレンズであり、第3レンズ140は両凸レンズである。前記第1レンズが物体側に凸面を向けたメニスカス形状を有することで、第1面に対する軸外光線の入射角度を小さく保つことが可能となり、収差の発生を抑えることが出来る。また第1レンズの像側面を非球面とすることにより、軸外光線に対して強い屈折力が得られ、像面を良好に補正出来る。前記第2レンズが物体側に凹面を、像側に凸面を向けた形状を有することで、主点を後方に配置しつつ、倍率色収差を良好に補正することが出来る。前記第3レンズが両側に凸面を向け、非球面を有することで、像面への入射角度を小さくすることが出来る。   In the imaging lens, the first lens 110 is a meniscus lens having a convex surface facing the object side, the second lens 120 is a meniscus lens having a convex surface facing the image side, and the third lens 140 is a biconvex lens. Since the first lens has a meniscus shape with a convex surface facing the object side, the incident angle of off-axis rays with respect to the first surface can be kept small, and the occurrence of aberration can be suppressed. Also, by making the image side surface of the first lens an aspherical surface, a strong refractive power can be obtained for off-axis rays, and the image surface can be corrected well. Since the second lens has a shape with a concave surface on the object side and a convex surface on the image side, it is possible to satisfactorily correct lateral chromatic aberration while arranging the principal point behind. When the third lens has convex surfaces on both sides and has an aspheric surface, the incident angle on the image plane can be reduced.

撮像レンズ100において、物体側OBJS より入射した光は、第1レンズ110の物体側R1面1、像面側R2面2、第2レンズ120の物体側R3面3、像面側R4面4、開口絞り130の面5、第3レンズ140の物体側R5面6、像面側R6面7、カバーガラス150の物体側R7面8、像面側R8面9、を順次通過し撮像素子160へと集光される。   In the imaging lens 100, the light incident from the object side OBJS is the object side R1 surface 1, the image surface side R2 surface 2 of the first lens 110, the object side R3 surface 3, the image surface side R4 surface 4 of the second lens 120, The surface 5 of the aperture stop 130, the object side R5 surface 6, the image surface side R6 surface 7 of the third lens 140, the object side R7 surface 8 and the image surface side R8 surface 9 of the cover glass 150 are sequentially passed to the image sensor 160. And condensed.

本発明を実施した撮像レンズは、f1を第1レンズ110の焦点距離、f2を第2レンズ120の焦点距離、f3を第3レンズ140の焦点距離、f23を第2レンズ120、第3レンズ140の合成焦点距離とすると、条件式(1)〜(2)を満足するように構成される。   In the imaging lens embodying the present invention, f1 is the focal length of the first lens 110, f2 is the focal length of the second lens 120, f3 is the focal length of the third lens 140, f23 is the second lens 120, and the third lens 140. If the combined focal length is, the conditional expressions (1) to (2) are satisfied.

1.0 < f2/f3 ・・・(1)
1.0 < |f1/f23| < 3.0 ・・・(2)
(1)式の下限値1.0を下回ると、射出瞳の距離が短くなり、軸外光線の像面への入射角が大きくなる。(2)式の上限値3.0を超えると、焦点距離に比べて十分な長さのバックフォーカスの確保が難しくなる。(2)式の下限値1.0を下回ると、レンズ系を小型化することが困難となる。また、各レンズの曲率半径が小さくなるため、加工が困難になる。
1.0 <f2 / f3 (1)
1.0 <| f1 / f23 | <3.0 (2)
If the lower limit of 1.0 in the equation (1) is not reached, the distance of the exit pupil is shortened, and the incident angle of off-axis rays on the image plane is increased. When the upper limit of 3.0 in the expression (2) is exceeded, it is difficult to secure a back focus having a sufficient length compared to the focal length. If the value falls below the lower limit 1.0 of the expression (2), it is difficult to reduce the size of the lens system. Moreover, since the curvature radius of each lens becomes small, processing becomes difficult.

本発明を実施した撮像レンズでは、第1レンズ110を構成する材料のd線に対するアッベ数が50以上に、前記第2レンズ120を構成する材料のd線に対するアッベ数が30以下に、前記第3レンズ140を構成する材料のd線に対するアッベ数が50以上に、それぞれ設定される。開口絞り130よりも物体側にあり、負レンズである第1レンズ110を構成する材料のアッベ数が大きいほど、第1レンズ110で発生する倍率色収差が小さくなり、開口絞り130よりも物体側にあり、正レンズである第2レンズ120を構成する材料のアッベ数が小さいほど、第2レンズ120で発生する倍率色収差が大きくなるので第1レンズ110および第3レンズ140で発生した倍率色収差を良好に補正出来る。また、開口絞り130よりも像側にあり、正レンズである第3レンズ140を構成する材料のアッベ数が大きいほど倍率色収差を小さくできるためである。   In the imaging lens embodying the present invention, the Abbe number with respect to the d-line of the material constituting the first lens 110 is 50 or more, the Abbe number with respect to the d-line of the material constituting the second lens 120 is 30 or less. The Abbe number with respect to the d line of the material constituting the three lenses 140 is set to 50 or more, respectively. As the Abbe number of the material constituting the first lens 110 that is the negative lens is closer to the object side than the aperture stop 130, the chromatic aberration of magnification generated in the first lens 110 becomes smaller and closer to the object side than the aperture stop 130. Yes, the smaller the Abbe number of the material constituting the second lens 120, which is a positive lens, the greater the chromatic aberration of magnification that occurs in the second lens 120. Therefore, the chromatic aberration of magnification that occurs in the first lens 110 and the third lens 140 is better. Can be corrected. This is also because the chromatic aberration of magnification can be reduced as the Abbe number of the material constituting the third lens 140, which is a positive lens, is closer to the image side than the aperture stop 130.

本発明を実施した撮像レンズで好ましくは、第1から第3までのすべてのレンズが樹脂材料で形成される。樹脂材料で形成されることにより、軽量化や低コスト化が実現できるとともに、非球面形状の作製が容易となる。また、いずれかのレンズにだけガラス材料を用いるよりも温度変化による像面位置の移動を小さく抑えることが可能となる。   In the imaging lens embodying the present invention, all the first to third lenses are preferably made of a resin material. By being formed of a resin material, weight reduction and cost reduction can be realized, and an aspherical shape can be easily manufactured. In addition, the movement of the image plane position due to a temperature change can be suppressed smaller than when a glass material is used for only one of the lenses.

本発明を実施した撮像レンズでさらに好ましくは、第2レンズ120の物体側面の形状が、下記条件式(6)を満足することである。(6)式の範囲を満足する形状をとることで第1レンズ110と第2レンズ120の間隔を短くしつつ像面湾曲と倍率色収差を良好なバランスで補正することが容易となる。
0.3 <(S2-S2)/S2<0.8 ・・・(6)
2:第2レンズ120の物体側面の有効径位置でのサグ量
2:第2レンズ120の物体側面の中心曲率を持つ球面の有効径位置でのサグ量。
More preferably, in the imaging lens embodying the present invention, the shape of the object side surface of the second lens 120 satisfies the following conditional expression (6). By taking a shape that satisfies the range of the expression (6), it becomes easy to correct the field curvature and the chromatic aberration of magnification with a good balance while shortening the distance between the first lens 110 and the second lens 120.
0.3 <(S A 2−S S 2) / S A 2 <0.8 (6)
S A 2: Sag amount at the effective diameter position of the object side surface of the second lens 120 S A 2: Sag amount at the effective diameter position of the spherical surface having the center curvature of the object side surface of the second lens 120.

さらに、本発明を実施した撮像レンズで好ましくは、第3レンズ140の像側面の形状が、下記条件式(7)を満足することである。(7)式の範囲を満足する形状をとることで、主点位置を像面に近づけつつ歪曲収差を適度に設定することが可能となる。
−0.4 <(S3−S3)/S3< −0.1 ・・・(7)
3:第3レンズ140の像側面の有効径位置でのサグ量
3:第3レンズ140の像側面の中心曲率を持つ球面の有効径位置でのサグ量。
Furthermore, in the imaging lens embodying the present invention, it is preferable that the shape of the image side surface of the third lens 140 satisfies the following conditional expression (7). By taking a shape that satisfies the range of the expression (7), it becomes possible to set the distortion aberration appropriately while bringing the principal point position close to the image plane.
−0.4 <(S A 3−S S 3) / S A 3 <−0.1 (7)
S A 3: Sag amount at the effective diameter position of the image side surface of the third lens 140 S S 3: Sag amount at the effective diameter position of the spherical surface having the central curvature of the image side surface of the third lens 140.

以下に、撮像レンズの具体的な数値による実施例1〜3を示す。1〜3の数値実施例において、焦点距離、Fナンバー、画角、像高、レンズ全長、バックフォーカス(Bf)は次の表1に記載の通りである。また、同じく1〜3の数値実施例において、条件式(1)〜(5)の数値データは、次の表2に記載の値になる。   Examples 1 to 3 according to specific numerical values of the imaging lens are shown below. In the numerical examples 1 to 3, the focal length, F number, angle of view, image height, total lens length, and back focus (Bf) are as shown in Table 1 below. Similarly, in the numerical examples 1 to 3, the numerical data of the conditional expressions (1) to (5) are the values described in Table 2 below.

なお、以下の数値実施例の中で記載されるレンズの非球面の形状は、物体側から像面側へ向かう方向を正とし、kを円錐係数、Aは4次の非球面係数を、Bは6次の非球面係数を、Cは8次の非球面係数を、Dは10次の非球面係数としたとき次式で表される。hは光線の高さ、cは中心曲率半径の逆数を、Zは面頂点に対する接平面からの深さを、をそれぞれ表している。   The aspherical shape of the lens described in the following numerical examples is positive in the direction from the object side to the image plane side, k is a conical coefficient, A is a fourth-order aspheric coefficient, B Is a 6th-order aspheric coefficient, C is an 8th-order aspheric coefficient, and D is a 10th-order aspheric coefficient. h represents the height of the light beam, c represents the reciprocal of the central radius of curvature, and Z represents the depth from the tangent plane with respect to the surface vertex.

Figure 2012234099
Figure 2012234099

Figure 2012234099
Figure 2012234099

Figure 2012234099
Figure 2012234099

<実施例1>
実施の形態1におけるレンズ系の基本構成は図2に示され、各数値データ(設定値)は表3、表4に、球面収差、および非点収差を示す収差図は図3にそれぞれ示される。
<Example 1>
The basic configuration of the lens system in Embodiment 1 is shown in FIG. 2, each numerical data (setting value) is shown in Tables 3 and 4, and aberration diagrams showing spherical aberration and astigmatism are shown in FIG. .

図2に示すように、第1レンズ110は物体側に凸面を向けたメニスカス形状、第2レンズ120は像側に凸面を向けたメニスカス形状、開口絞り130の像側に配置される第3レンズ140は両凸形状を有する。第1レンズ110は像側面に、第2レンズ120と第3レンズ140は両面に、それぞれ非球面を有する。   As shown in FIG. 2, the first lens 110 has a meniscus shape with a convex surface facing the object side, the second lens 120 has a meniscus shape with a convex surface facing the image side, and a third lens disposed on the image side of the aperture stop 130. 140 has a biconvex shape. The first lens 110 has an aspheric surface on the image side surface, and the second lens 120 and the third lens 140 have an aspheric surface on both surfaces.

また、図に示すように第1レンズ110の厚さとなるR1面1とR2面2間の距離をD1、第1レンズ110のR2面2と第2レンズ120のR3面3までの距離をD2、第2レンズ120の厚さとなるR3面3とR4面4間の距離をD3、第2レンズ120のR4面4と開口絞り130の面5までの距離をD4、開口絞り130の面5と第3レンズ140のR5面6間の距離をD5、第3レンズ140の厚さとなるR5面6とR6面7間の距離をD6、第3レンズ140のR6面7とカバーガラス150のR7面8までの距離をD7、カバーガラス150の厚さとなるR7面8とR8面9間の距離をD8、カバーガラス150のR8面9と結像面(撮像面)160までの距離をD9とする。   Further, as shown in the figure, the distance between the R1 surface 1 and the R2 surface 2 which is the thickness of the first lens 110 is D1, and the distance between the R2 surface 2 of the first lens 110 and the R3 surface 3 of the second lens 120 is D2. The distance between the R3 surface 3 and the R4 surface 4 that is the thickness of the second lens 120 is D3, the distance between the R4 surface 4 of the second lens 120 and the surface 5 of the aperture stop 130 is D4, and the surface 5 of the aperture stop 130 is The distance between the R5 surface 6 of the third lens 140 is D5, the distance between the R5 surface 6 and the R6 surface 7 which is the thickness of the third lens 140 is D6, the R6 surface 7 of the third lens 140 and the R7 surface of the cover glass 150. 8 is D7, the distance between the R7 surface 8 and the R8 surface 9 that is the thickness of the cover glass 150 is D8, and the distance between the R8 surface 9 of the cover glass 150 and the imaging surface (imaging surface) 160 is D9. .

表3は、実施例1における撮像レンズの各面番号に対応した絞り、各レンズの曲率半径R、間隔D、屈折率Nd、および分散値νdを示している。表中の記号*は非球面の面を表している(以下の実施例においても同様)。表4は、所定面の非球面係数を示している。   Table 3 shows the stop corresponding to each surface number of the imaging lens in Example 1, the radius of curvature R, the interval D, the refractive index Nd, and the dispersion value νd of each lens. The symbol * in the table represents an aspheric surface (the same applies to the following examples). Table 4 shows the aspheric coefficient of the predetermined surface.

なお、本実施例1でサグ量S2は0.041、サグ量S2は0.024であり、(S2−S2)/S2は0.41となり、(6)式を満足する。また、本実施例でサグ量S3は0.747、サグ量S3は0.976であり、(S3−S3)/S3は−0.31となり、(7)式を満足する。
数値実施例1
In Example 1, the sag amount S A 2 is 0.041, the sag amount S S 2 is 0.024, and (S A 2−S S 2) / S A 2 is 0.41, (6 ) Is satisfied. In this embodiment, the sag amount S A 3 is 0.747, the sag amount S S 3 is 0.976, and (S A 3 -S S 3) / S A 3 is −0.31, (7 ) Is satisfied.
Numerical example 1

Figure 2012234099
Figure 2012234099

Figure 2012234099
Figure 2012234099

図3は、実施例1において、図3(A)が球面収差を、図3(B)が非点収差をそれぞれ示している。図3(B)の縦軸は結像面での像高を表し、図3(B)中、実線Sはサジタル像面の値、破線Tはタンジェンシャル像面の値をそれぞれ示している。図3からわかるように、実施例1によれば、球面、非点の諸収差が良好に補正され、結像性能に優れた撮像レンズが得られる。   3A and 3B show spherical aberration and FIG. 3B shows astigmatism in Example 1, respectively. The vertical axis in FIG. 3B represents the image height on the imaging plane. In FIG. 3B, the solid line S represents the value of the sagittal image plane, and the broken line T represents the value of the tangential image plane. As can be seen from FIG. 3, according to the first embodiment, spherical and astigmatism aberrations are satisfactorily corrected, and an imaging lens having excellent imaging performance can be obtained.

<実施例2>
実施の形態2におけるレンズ系の基本構成は図4に示され、各数値データ(設定値)は表5、表6に、球面収差、および非点収差を示す収差図は図5にそれぞれ示される。
<Example 2>
The basic configuration of the lens system according to Embodiment 2 is shown in FIG. 4, numerical data (setting values) are shown in Tables 5 and 6, and aberration diagrams showing spherical aberration and astigmatism are shown in FIG. .

図4に示すように、第1レンズ110は物体側に凸面を向けたメニスカス形状、第2レンズ120は像側に凸面を向けたメニスカス形状、開口絞り130の像側に配置される第3レンズ140は両凸形状を有する。第1レンズ110は像側面に、第2レンズ120と第3レンズ140は両面に、それぞれ非球面を有する。   As shown in FIG. 4, the first lens 110 has a meniscus shape with a convex surface facing the object side, the second lens 120 has a meniscus shape with a convex surface facing the image side, and a third lens disposed on the image side of the aperture stop 130. 140 has a biconvex shape. The first lens 110 has an aspheric surface on the image side surface, and the second lens 120 and the third lens 140 have an aspheric surface on both surfaces.

表5は、実施例2における撮像レンズの各面番号に対応した絞り、各レンズの曲率半径R、間隔D、屈折率Nd、および分散値νdを示している。表6は、所定面の非球面係数を示している。   Table 5 shows the diaphragm corresponding to each surface number of the imaging lens in Example 2, the radius of curvature R, the interval D, the refractive index Nd, and the dispersion value νd of each lens. Table 6 shows the aspheric coefficient of the predetermined surface.

なお、本実施例2でサグ量S2は0.247、サグ量S2は0.094であり、(S2−S2)/S2は0.62となり、(6)式を満足する。また、本実施例でサグ量S3は0.330、サグ量S3は0.405であり、(S3−S3)/S3は−0.23となり、(7)式を満足する。
数値実施例2
In Example 2, the sag amount S A 2 is 0.247, the sag amount S S 2 is 0.094, and (S A 2−S S 2) / S A 2 is 0.62, and (6 ) Is satisfied. In this embodiment, the sag amount S A 3 is 0.330, the sag amount S S 3 is 0.405, and (S A 3−S S 3) / S A 3 is −0.23, (7 ) Is satisfied.
Numerical example 2

Figure 2012234099
Figure 2012234099

Figure 2012234099
Figure 2012234099

図5は、実施例2において、図5(A)が球面収差を、図5(B)が非点収差をそれぞれ示している。図5(B)の縦軸は結像面での像高を表している。図5からわかるように、実施例2によれば、球面、非点の諸収差が良好に補正され、結像性能に優れた撮像レンズが得られる。
<実施例3>
実施の形態3におけるレンズ系の基本構成は図6に示され、各数値データ(設定値)は表7、表8に、球面収差、および非点収差を示す収差図は図7にそれぞれ示される。なお実施例3は実施例2と同様の仕様に基づき、第1レンズ110の材料を樹脂にして設計した例である。
5A and 5B, in Example 2, FIG. 5A shows spherical aberration, and FIG. 5B shows astigmatism, respectively. The vertical axis in FIG. 5B represents the image height on the imaging plane. As can be seen from FIG. 5, according to the second embodiment, spherical and astigmatism aberrations are satisfactorily corrected, and an imaging lens having excellent imaging performance can be obtained.
<Example 3>
The basic configuration of the lens system according to Embodiment 3 is shown in FIG. 6, the numerical data (setting values) are shown in Tables 7 and 8, and the aberration diagrams showing spherical aberration and astigmatism are shown in FIG. . Example 3 is an example in which the material of the first lens 110 is made of resin based on the same specifications as Example 2.

図6に示すように、第1レンズ110は物体側に凸面を向けたメニスカス形状、第2レンズ120は像側に凸面を向けたメニスカス形状、開口絞り130の像側に配置される第3レンズ140は両凸形状を有する。第1レンズ110は像側面に、第2レンズ120と第3レンズ140は両面に、それぞれ非球面を有する。   As shown in FIG. 6, the first lens 110 has a meniscus shape with a convex surface facing the object side, the second lens 120 has a meniscus shape with a convex surface facing the image side, and a third lens disposed on the image side of the aperture stop 130. 140 has a biconvex shape. The first lens 110 has an aspheric surface on the image side surface, and the second lens 120 and the third lens 140 have an aspheric surface on both surfaces.

表7は、実施例3における撮像レンズの各面番号に対応した絞り、各レンズの曲率半径R、間隔D、屈折率Nd、および分散値νdを示している。表8は、所定面の非球面係数を示している。   Table 7 shows the stop corresponding to each surface number of the imaging lens in Example 3, the radius of curvature R, the interval D, the refractive index Nd, and the dispersion value νd of each lens. Table 8 shows the aspheric coefficient of the predetermined surface.

なお、本実施例1でサグ量S2は0.281、サグ量S2は0.084であり、(S2−S2)/S2は0.70となり、(6)式を満足する。また、本実施例でサグ量S3は0.361、サグ量S3は0.421であり、(S3−S3)/S3は−0.16となり、(7)式を満足する。
数値実施例3
In Example 1, the sag amount S A 2 is 0.281, the sag amount S S 2 is 0.084, and (S A 2−S S 2) / S A 2 is 0.70, (6 ) Is satisfied. In this example, the sag amount S A 3 is 0.361, the sag amount S S 3 is 0.421, and (S A 3−S S 3) / S A 3 is −0.16, (7 ) Is satisfied.
Numerical Example 3

Figure 2012234099
Figure 2012234099

Figure 2012234099
Figure 2012234099

図7は、実施例3において、図7(A)が球面収差を、図7(B)が非点収差をそれぞれ示している。図7(B)の縦軸は結像面での像高を表している。図7からわかるように、実施例3によれば、球面、非点の諸収差が良好に補正され、結像性能に優れた撮像レンズが得られる。   7A and 7B, in Example 3, FIG. 7A shows spherical aberration, and FIG. 7B shows astigmatism. The vertical axis in FIG. 7B represents the image height on the imaging plane. As can be seen from FIG. 7, according to the third embodiment, various aberrations of spherical and astigmatism are corrected well, and an imaging lens having excellent imaging performance can be obtained.

図8は、実施例2および実施例3における温度とバックフォーカスの関係を示している。横軸は温度を、縦軸はレンズ最終面から近軸像面までの空気換算距離を常温20度での値で正規化したもの示している。図からわかるように、同様の仕様でありながら、第1レンズ110にガラス材料を用いた実施例2よりも樹脂材料を用いた実施例3の方が温度変化による像面移動が少なく、結像性能に優れた撮像レンズが得られる。したがって本発明においては、第1レンズ110を第2レンズ120および第4レンズ140と同様に樹脂材料で形成することが好ましいことが示される。   FIG. 8 shows the relationship between the temperature and the back focus in the second and third embodiments. The horizontal axis represents temperature, and the vertical axis represents the normalized air distance from the lens final surface to the paraxial image plane with a value at 20 degrees Celsius. As can be seen from the figure, the image plane movement due to temperature change is less in Example 3 using a resin material than in Example 2 using a glass material for the first lens 110, although the specifications are the same. An imaging lens with excellent performance can be obtained. Therefore, in the present invention, it is indicated that the first lens 110 is preferably formed of a resin material in the same manner as the second lens 120 and the fourth lens 140.

100,100A〜100C・・・撮像レンズ
110 ・・・第1レンズ
120 ・・・第2レンズ
130 ・・・開口絞り
140 ・・・第3レンズ
150 ・・・カバーガラス
160 ・・・撮像面(結像面)
100, 100A to 100C ... Imaging lens 110 ... First lens
120 ... second lens 130 ... aperture stop 140 ... third lens 150 ... cover glass 160 ... imaging surface (imaging surface)

Claims (2)

物体側から順に、負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、開口絞りと、正の屈折力を有する第3レンズとの3枚のレンズが配置され、前記第1レンズが物体側に凸面を向けたメニスカス形状と像面側に非球面形状を有し、前記第2レンズが像側に凸面を向けたメニスカス形状と少なくともどちらか一方の面に非球面形状を有し、前記第3レンズが両凸形状と少なくともどちらか一方の面に非球面を有し、下記条件式(1)〜(5)を満足することを特徴とする撮像レンズ。
1.0 < f2/f3 ・・・(1)
1.0 < |f1/f23| < 3.0 ・・・(2)
ν1>50 ・・・(3)
ν2<30 ・・・(4)
ν3>50 ・・・(5)
ただし、
f1:第1レンズの焦点距離
f2:第2レンズの焦点距離
f3:第3レンズの焦点距離
f23:第2レンズ、第3レンズの合成焦点距離
ν1:第1レンズのd線に対するアッベ数
ν2:第2レンズのd線に対するアッベ数
ν3:第3レンズのd線に対するアッベ数
In order from the object side, three lenses, a first lens having a negative refractive power, a second lens having a positive refractive power, an aperture stop, and a third lens having a positive refractive power, are arranged. The first lens has a meniscus shape with a convex surface facing the object side and an aspherical shape on the image surface side, and the second lens has a meniscus shape with a convex surface facing the image side and an aspheric surface on at least one surface An imaging lens having a shape, wherein the third lens has a biconvex shape and an aspherical surface on at least one of the surfaces, and satisfies the following conditional expressions (1) to (5).
1.0 <f2 / f3 (1)
1.0 <| f1 / f23 | <3.0 (2)
ν1> 50 (3)
ν2 <30 (4)
ν3> 50 (5)
However,
f1: focal length of the first lens f2: focal length of the second lens f3: focal length of the third lens f23: combined focal length of the second lens and the third lens ν1: Abbe number ν2 of the first lens with respect to the d-line: Abbe number ν3 for the d-line of the second lens: Abbe number for the d-line of the third lens
前記撮像レンズを構成する前記第1乃至第3のすべてのレンズが樹脂材料で形成されることを特徴とする請求項1に記載の撮像レンズ。   2. The imaging lens according to claim 1, wherein all of the first to third lenses constituting the imaging lens are formed of a resin material.
JP2011103749A 2011-05-06 2011-05-06 Imaging lens Active JP5725967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011103749A JP5725967B2 (en) 2011-05-06 2011-05-06 Imaging lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011103749A JP5725967B2 (en) 2011-05-06 2011-05-06 Imaging lens

Publications (2)

Publication Number Publication Date
JP2012234099A true JP2012234099A (en) 2012-11-29
JP5725967B2 JP5725967B2 (en) 2015-05-27

Family

ID=47434454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011103749A Active JP5725967B2 (en) 2011-05-06 2011-05-06 Imaging lens

Country Status (1)

Country Link
JP (1) JP5725967B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5544559B1 (en) * 2013-12-26 2014-07-09 ナルックス株式会社 Imaging optical system
CN104076489A (en) * 2013-03-28 2014-10-01 日本电产三协株式会社 Wide-angle lens
WO2016208433A1 (en) * 2015-06-24 2016-12-29 コニカミノルタ株式会社 Far-infrared lens system, imaging optical apparatus, and digital device
CN106646825A (en) * 2016-12-12 2017-05-10 广东弘景光电科技股份有限公司 Depth imaging optical system and applied lens
CN107643585A (en) * 2016-07-22 2018-01-30 日本电产三协株式会社 Wide-angle lens
WO2018163831A1 (en) * 2017-03-10 2018-09-13 パナソニックIpマネジメント株式会社 Lens system, interchangeable lens device, and camera system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634879A (en) * 1992-07-17 1994-02-10 Konica Corp Wide-angle lens device
JP2007133324A (en) * 2005-11-14 2007-05-31 Sony Corp Lens unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634879A (en) * 1992-07-17 1994-02-10 Konica Corp Wide-angle lens device
JP2007133324A (en) * 2005-11-14 2007-05-31 Sony Corp Lens unit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104076489A (en) * 2013-03-28 2014-10-01 日本电产三协株式会社 Wide-angle lens
JP5544559B1 (en) * 2013-12-26 2014-07-09 ナルックス株式会社 Imaging optical system
WO2016208433A1 (en) * 2015-06-24 2016-12-29 コニカミノルタ株式会社 Far-infrared lens system, imaging optical apparatus, and digital device
CN107643585A (en) * 2016-07-22 2018-01-30 日本电产三协株式会社 Wide-angle lens
CN106646825A (en) * 2016-12-12 2017-05-10 广东弘景光电科技股份有限公司 Depth imaging optical system and applied lens
CN106646825B (en) * 2016-12-12 2022-08-05 广东弘景光电科技股份有限公司 Depth imaging optical system and lens applied by same
WO2018163831A1 (en) * 2017-03-10 2018-09-13 パナソニックIpマネジメント株式会社 Lens system, interchangeable lens device, and camera system
JPWO2018163831A1 (en) * 2017-03-10 2020-01-16 パナソニックIpマネジメント株式会社 Lens system, interchangeable lens device and camera system
US11320630B2 (en) 2017-03-10 2022-05-03 Panasonic Intellectual Property Management Co., Ltd. Lens system, interchangeable lens device, and camera system
JP7117638B2 (en) 2017-03-10 2022-08-15 パナソニックIpマネジメント株式会社 Lens system, interchangeable lens device and camera system

Also Published As

Publication number Publication date
JP5725967B2 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
JP5252842B2 (en) Imaging lens
CN108333714B (en) Camera lens
JP5084335B2 (en) Imaging lens
JP5052144B2 (en) Imaging lens
TWI422897B (en) Optical imaging lens assembly
JP6005941B2 (en) Imaging lens
JP2005284153A (en) Imaging lens
JP2019045665A (en) Image capturing lens
JP2015011050A (en) Imaging lens and imaging device
CN108351494B (en) Imaging lens
JP2009265338A (en) Wide-angle imaging lens
US20140347515A1 (en) Imaging lens and imaging device using same
JP2018200444A (en) Imaging lens
JP5725967B2 (en) Imaging lens
JP2011164237A (en) Imaging lens
JP2016126133A (en) Imaging lens and optical device
JP2019184723A (en) Image capturing lens
JP2010128100A (en) Wide-angle lens and imaging module
JP2012177736A (en) Imaging lens
JP6711360B2 (en) Imaging lens
JP2009145479A (en) Imaging lens unit and camera module
JP2012237852A (en) Imaging lens
JP5693352B2 (en) Imaging lens
JP2015161760A (en) imaging lens
JP5398400B2 (en) Imaging lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150331

R150 Certificate of patent or registration of utility model

Ref document number: 5725967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150