JP5052144B2 - Imaging lens - Google Patents

Imaging lens Download PDF

Info

Publication number
JP5052144B2
JP5052144B2 JP2007011312A JP2007011312A JP5052144B2 JP 5052144 B2 JP5052144 B2 JP 5052144B2 JP 2007011312 A JP2007011312 A JP 2007011312A JP 2007011312 A JP2007011312 A JP 2007011312A JP 5052144 B2 JP5052144 B2 JP 5052144B2
Authority
JP
Japan
Prior art keywords
lens
shows
imaging
astigmatism
aberration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007011312A
Other languages
Japanese (ja)
Other versions
JP2008176185A (en
Inventor
知文 小石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007011312A priority Critical patent/JP5052144B2/en
Publication of JP2008176185A publication Critical patent/JP2008176185A/en
Application granted granted Critical
Publication of JP5052144B2 publication Critical patent/JP5052144B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

本発明は、撮像素子を使用した撮像装置(デジタルスチルカメラや携帯電話用カメラ等)に用いられる単焦点レンズ用の撮像レンズに関する。   The present invention relates to an imaging lens for a single focus lens used in an imaging apparatus (such as a digital still camera or a mobile phone camera) using an imaging element.

年々、携帯電話のカメラ市場も大きくなり、高画素化のみならず、多様化が求められる。画角についても現在は特許文献1乃至3のように広角が一般的であるが、ソフトウェアによる手振れ補正機能などの開発により、より狭い画角にもニーズが出てくると予想される。また、携帯電話においては、端末自体の薄型化や多機能を搭載するスペース確保のために撮像装置の小型化が求められている。それにより、撮像装置に搭載される撮像レンズへのさらなる小型化の要求が高まっている。   Year after year, the market for mobile phone cameras is growing, and not only high pixel count but also diversification is required. As for the angle of view, a wide angle is generally used as in Patent Documents 1 to 3, but it is expected that there will be a need for a narrower angle of view due to the development of a camera shake correction function by software. In addition, in mobile phones, downsizing of the imaging device is required in order to reduce the thickness of the terminal itself and to secure a space for mounting multiple functions. As a result, there is an increasing demand for further downsizing the imaging lens mounted on the imaging device.

またCCD(Change Coupled Device)やCMOS(Complementary Mental Oxide Semiconductor)といった撮像素子の小型化と同時に、撮像素子の画素ピッチの微細化による高画素数化が進み、それに伴い、これら撮像装置に使用される撮像レンズにも高い性能が求められてきている。これらの固体撮像素子の表面には、光を効率良く入射させるためのマイクロレンズが設けられている。しかし、射出瞳位置が像面に近づくと、撮像レンズから射出された軸外光束が像面に対して斜めに入射するため、シェーディング現象が起きる。すると、マイクロレンズによる集光が不十分になり、画像の明るさが画像中央部と画像周辺部とで極端に変化するという問題が生じることになる。この問題を解決するためには射出角度が小さいテレセントリック光学系であることが望ましい。   In addition to downsizing of image sensors such as CCD (Change Coupled Device) and CMOS (Complementary Mental Oxide Semiconductor), the number of pixels is increasing due to the miniaturization of pixel pitch of the image sensor. High performance has also been demanded for imaging lenses. On the surface of these solid-state imaging devices, a microlens for allowing light to enter efficiently is provided. However, when the exit pupil position approaches the image plane, the off-axis light beam emitted from the imaging lens is incident obliquely on the image plane, and a shading phenomenon occurs. Then, the condensing by the microlens becomes insufficient, and there arises a problem that the brightness of the image changes extremely between the central portion of the image and the peripheral portion of the image. In order to solve this problem, a telecentric optical system with a small emission angle is desirable.

以上のように、CCDやCMOSセンサ等の撮像素子に像を結像させる撮像レンズには、まず小型であることが要求されることになる。その上で、良好な結像性能と歪曲収差特性、十分な周辺光量、適度なバックフォ−カスを持ち、また射出瞳位置ができるだけ長いことも要求される。   As described above, an imaging lens that forms an image on an imaging element such as a CCD or CMOS sensor is required to be small first. In addition, it is required to have good imaging performance and distortion characteristics, a sufficient amount of peripheral light, an appropriate back focus, and an exit pupil position as long as possible.

しかし、従来の小型の狭画角撮像レンズとしては、小型ではあるものの高画素化が進むにつれ結像性能が不足する可能性があるものであったり、あるいは望遠レンズとして設計されたものではなく、狭画角ではないものであったりしていた。
特開平06-34884号公報 特開平07-311351号公報 特開2002-350725号公報
However, as a conventional small-sized narrow-angle imaging lens, although it is small, the imaging performance may become insufficient as the number of pixels increases, or it is not designed as a telephoto lens. It was not a narrow angle of view.
Japanese Patent Laid-Open No. 06-34884 Japanese Unexamined Patent Publication No. 07-311351 JP 2002-350725 A

本発明は、上記の点に鑑みて成されたものであり、目的とするのは、4枚構成によって高い光学性能を持ちつつ、レンズの形状、非球面の形状等を適切に設定することにより小型、薄型の撮像レンズを提供することである。   The present invention has been made in view of the above points, and an object of the present invention is to appropriately set the shape of the lens, the shape of the aspherical surface, etc. while having high optical performance by the four-lens configuration. It is to provide a small and thin imaging lens.

本発明の撮像レンズは、物体側から順に、正の屈折力を有する両凸形状の第1のレン ズと、開口絞りと、負の屈折力を有する第2のレンズと、負の屈折力を有する物体側に 凹面を向けた第3のレンズと、正の屈折力を有し、かつ少なくとも1面が非球面とされ た物体側に凸面を向けた第4のレンズとが配列された撮像光学系において、下記条件式 (1)乃至(7)の全てを満足する。
1.0<TL/f<1.5 ・・・・・(1)
0.4<f1/f<1.0 ・・・・・(2)
−0.4>f2/f ・・・・・(3)
−0.82>f3/f ・・・・・(4)
0.71<f4/f ・・・・・(5)
−1.0<(R1+R2)/(R1−R2)<−0.25 ・・・・・(6)
νd1−νd2>15.0 ・・・・・(7)
ただし、
f:全系の焦点距離、
TL:前記第1のレンズから像面までのレンズ系の全長
f1:第1のレンズの焦点距離
f2:第2のレンズの焦点距離
f3:第3のレンズの焦点距離
f4:第4のレンズの焦点距離
R1:第1のレンズの物体側面の曲率半径
R2:第1のレンズの像側面の曲率半径
νd1:第1のレンズのアッベ数νd
νd2:第2のレンズのアッベ数νd
である。
これにより、デジタルスチルカメラや携帯電話用カメラの単焦点レンズに適切な画角を 維持し、且つ射出瞳位置を適正に保ちながら全長を短くすることができ、収差を良好に 補正し、小型且つコストを低減しながら優れた光学特性を得ることができる。
An imaging lens of the present invention, in order from the object side, a first lens of a biconvex shape having a positive refractive power, a second lens having an aperture stop, a negative refractive power, negative refractive power An imaging in which a third lens having a concave surface facing the object side and a fourth lens having a positive refractive power and a convex surface facing the object side having at least one aspherical surface are arranged In the optical system, the following conditional expressions (1) to (7) are all satisfied.
1.0 <TL / f <1.5 (1)
0.4 <f1 / f <1.0 (2)
-0.4> f2 / f (3)
-0.82> f3 / f (4)
0.71 <f4 / f (5)
−1.0 <(R1 + R2) / (R1−R2) <− 0.25 (6)
νd1-νd2> 15.0 (7)
However,
f: focal length of the entire system,
TL: Total length of the lens system from the first lens to the image plane
f1: Focal length of the first lens
f2: Focal length of the second lens
f3: Focal length of the third lens
f4: Focal length of the fourth lens
R1: radius of curvature of the object side of the first lens
R2: radius of curvature of the image side of the first lens
νd1: Abbe number of the first lens νd
νd2: Abbe number of the second lens νd
It is.
Thus, to maintain the proper angle to the digital still camera and a single lens of a mobile phone camera, and while properly maintaining the exit pupil position can reduce the overall length, well corrected aberrations, compact and Excellent optical characteristics can be obtained while reducing the cost.

好適には、前記第1のレンズ乃至第4のレンズをプラチックレンズとする。これは、ガラス材料により形成した場合に比べて、材料単価、非球面の成形性の面から低コスト化を達成でき、レンズ系を軽量化することができるためである。
Preferably, the first lens to plus tics lens fourth lens. This is because the cost can be reduced and the lens system can be reduced in weight in terms of material unit price and aspheric formability compared to the case of forming with a glass material.

好適には、下記条件式(6)を満足する。
−1.0<(R1+R2)/(R1−R2)<−0.25 ・・・・・(6)
ただし、R1:第1のレンズの物体側面の曲率半径、R2:第1のレンズの像側面の曲率半径である。
これは、条件式の上限値を超えると第1のレンズの物体側と像側の面の曲率半径が近くなり、球面収差と歪曲の両方を補正することが難しくなるためである。
Preferably, the following conditional expression (6) is satisfied.
−1.0 <(R1 + R2) / (R1−R2) <− 0.25 (6)
Where R1: radius of curvature of the object side surface of the first lens and R2: radius of curvature of the image side surface of the first lens.
This is because if the upper limit of the conditional expression is exceeded, the radius of curvature of the object-side surface and the image-side surface of the first lens will be close, and it will be difficult to correct both spherical aberration and distortion.

好適には、前記撮像光学系において、下記条件式(7)を満足する。
νd1−νd2>15.0 ・・・・・(7)
ただし、νd1:第1のレンズのアッベ数νd、νd2:第2のレンズのアッベ数νdである。
これは、開口絞りの前後に配置される第1のレンズ、第2のレンズはそれぞれ強い正負の屈折力をもつことから、アッベ数の差が小さくなると軸上の色収差の補正が困難になるためである。
Preferably, the imaging optical system satisfies the following conditional expression (7).
νd1-νd2> 15.0 (7)
Here, νd1: Abbe number νd of the first lens, νd2: Abbe number νd of the second lens.
This is because the first lens and the second lens arranged before and after the aperture stop have strong positive and negative refracting powers, respectively, and it becomes difficult to correct axial chromatic aberration when the difference in Abbe number becomes small. It is.

本発明によれば、全長が短く、諸収差が良好に補正され、明るい撮像レンズを提供することができる。その結果、撮像装置に搭載可能なコンパクトな撮像レンズを実現することができる。   According to the present invention, it is possible to provide a bright imaging lens having a short overall length and excellent correction of various aberrations. As a result, a compact imaging lens that can be mounted on the imaging device can be realized.

以下、本発明を実施するための最良の形態について、図面を参照しつつ説明する。
図1に実施の形態のレンズ構成をそれぞれ光学断面で示す。これらの実施形態は物体側から順に、第1レンズ110、開口絞り120、第2レンズ130、第3レンズ140、第4レンズ150、平行平面のガラス板160、CCD(Charge Coupled Device)やCMOS(Complementary Mental-Oxide Semiconductor device)等の撮像素子170が配置される4枚構成の単焦点レンズ100である。
The best mode for carrying out the present invention will be described below with reference to the drawings.
FIG. 1 shows the lens configuration of the embodiment in an optical section. In these embodiments, in order from the object side, the first lens 110, the aperture stop 120, the second lens 130, the third lens 140, the fourth lens 150, a parallel plane glass plate 160, a CCD (Charge Coupled Device) and a CMOS (CMOS) This is a four-lens single-focus lens 100 in which an imaging device 170 such as a complementary mental-oxide semiconductor device) is disposed.

本発明を実施した撮像レンズで4枚のレンズは、物体側から順に正の屈折力をもつ両凸形状の第1レンズ110、負の屈折力をもち物体側及び像面側に凹面を向けた両凹形状の第2レンズ130と、負の屈折力をもち物体側に凹面を向けたメニスカス形状の第3レンズ140と、正の屈折力をもち物体側に凸面を向けたメニスカス形状の第4レンズ150のように配列されている。   In the imaging lens embodying the present invention, the four lenses are a biconvex first lens 110 having a positive refractive power in order from the object side, a negative refractive power, and a concave surface directed toward the object side and the image plane side. A biconcave second lens 130, a meniscus third lens 140 having negative refractive power and a concave surface facing the object side, and a meniscus fourth lens having positive refractive power and a convex surface facing the object side They are arranged like lenses 150.

撮像レンズ100において、物体側OBJS より入射した光は、第1レンズ110の物体側R1面1、像面側R2面2、開口絞り部120の面3、第2レンズ130の物体側R3面4、像面側R4面5、第3レンズ140の物体側R5面6、像面側R6面7、第4レンズ150の物体側R7面8、像面側R8面9、カバーガラス160の物体側R9面10 、像面側R10面11を順次通過し撮像素子170へと集光される。   In the imaging lens 100, the light incident from the object side OBJS is the object side R1 surface 1, the image surface side R2 surface 2, the surface 3 of the aperture stop 120, and the object side R3 surface 4 of the second lens 130. , Image side R4 surface 5, object side R5 surface 6 of third lens 140, image side R6 surface 7, object side R7 surface 8 of fourth lens 150, image side R8 surface 9, object side of cover glass 160 The light passes through the R9 surface 10 and the image surface side R10 surface 11 in order, and is condensed onto the image sensor 170.

第1レンズ110から第4レンズ150までの各レンズはそれぞれ両面に非球面形状をもち、特に第4レンズ150の非球面は有効径の範囲内において、曲率の向きが変化する変曲点をもつように形成される。   Each lens from the first lens 110 to the fourth lens 150 has an aspheric shape on both sides, and in particular, the aspheric surface of the fourth lens 150 has an inflection point where the direction of curvature changes within the effective diameter range. Formed as follows.

以下に、撮像レンズの具体的な数値による実施例1〜4を示す。
<実施例1>
実施の形態1におけるレンズ系の基本構成は図2に示され、各数値データ(設定値)は表1、表2に、球面収差、歪曲収差、および非点収差を示す収差図は図3にそれぞれ示される。
図2に示すように、第1レンズ110の厚さとなるR1面1とR2面2間の距離をD1、第1レンズ110のR2面2と絞り部120の面3までの距離をD2、絞り部120の面3と第2レンズ130のR3面4までの距離をD3、第2レンズ130の厚さとなるR3面4とR4面5間の距離をD4、第2レンズ130のR4面5と第3レンズ140のR5面6間の距離をD5、第3レンズ140の厚さとなるR5面6とR7面8間の距離をD6、第3レンズ140のR6面7と第4レンズ150のR7面8間の距離をD7、第4レンズ150の厚さとなるR7面8とR8面9間の距離をD8、第4レンズ150のR8面9とカバーガラス160のR9面10間の距離をD9、カバーガラス160の厚さとなるR9面10間とR10面11の距離をD10とする。
表1には、実施例1における撮像レンズの各面番号に対応した絞り、各レンズ、カバーガラスの曲率半径(R:mm),間隔(D:mm)、屈折率(N)、および分散値(ν)を示している。

Figure 0005052144
Examples 1-4 according to specific numerical values of the imaging lens are shown below.
<Example 1>
The basic configuration of the lens system in Embodiment 1 is shown in FIG. 2, each numerical data (setting value) is shown in Tables 1 and 2, and aberration diagrams showing spherical aberration, distortion, and astigmatism are shown in FIG. Each is shown.
As shown in FIG. 2, the distance between the R1 surface 1 and the R2 surface 2, which is the thickness of the first lens 110, is D1, the distance between the R2 surface 2 of the first lens 110 and the surface 3 of the diaphragm 120 is D2, The distance between the surface 3 of the portion 120 and the R3 surface 4 of the second lens 130 is D3, the distance between the R3 surface 4 and the R4 surface 5 that is the thickness of the second lens 130 is D4, and the R4 surface 5 of the second lens 130 The distance between the R5 surface 6 of the third lens 140 is D5, the distance between the R5 surface 6 and the R7 surface 8 that is the thickness of the third lens 140 is D6, the R6 surface 7 of the third lens 140 and the R7 of the fourth lens 150. The distance between the surfaces 8 is D7, the distance between the R7 surface 8 and the R8 surface 9 which is the thickness of the fourth lens 150 is D8, and the distance between the R8 surface 9 of the fourth lens 150 and the R9 surface 10 of the cover glass 160 is D9. The distance between the R9 surface 10 and the R10 surface 11 that is the thickness of the cover glass 160 And 10.
Table 1 shows the apertures corresponding to the surface numbers of the imaging lens in Example 1, each lens, the radius of curvature (R: mm), the interval (D: mm), the refractive index (N), and the dispersion value of the cover glass. (Ν) is shown.
Figure 0005052144

表2には、実施例1における非球面を含む第1レンズ110、第2レンズ130、第3レンズ140、及び第4レンズ150の所定面の非球面係数を示す。
なお、レンズの非球面の形状は、物体側から像面側へ向かう方向を正とし、kを円錐係数、A、B、C、Dを非球面係数、rを中心曲率半径としたとき次式で表される。hは光線の高さ、cは中心曲率半径の逆数をそれぞれ表している。ただし、Zは面頂点に対する接平面からの深さを、Aは4次の非球面係数を、Bは6次の非球面係数を、Cは8次の非球面係数を、Dは10次の非球面係数をそれぞれ表している。

Figure 0005052144
Table 2 shows aspheric coefficients of predetermined surfaces of the first lens 110, the second lens 130, the third lens 140, and the fourth lens 150 including the aspheric surface in the first embodiment.
The aspherical shape of the lens is as follows when the direction from the object side to the image plane side is positive, k is a conical coefficient, A, B, C, and D are aspherical coefficients, and r is a central radius of curvature. It is represented by h represents the height of the light beam, and c represents the reciprocal of the central radius of curvature. Where Z is the depth from the tangent plane to the surface vertex, A is the fourth-order aspheric coefficient, B is the sixth-order aspheric coefficient, C is the eighth-order aspheric coefficient, and D is the tenth-order aspheric coefficient. Each aspheric coefficient is shown.
Figure 0005052144

Figure 0005052144
Figure 0005052144

図3は、実施例1において、図3(A)が球面収差、図3(B)が非点収差を、図3(C)が歪曲収差をそれぞれ示している。図3(B)中、実線M はメリディオナル像面の値、破線S はサジタル像面の値をそれぞれ示している。図3からわかるように、実施例1によれば、球面、歪曲、非点の諸収差が良好に補正され、結像性能に優れた撮像レンズが得られる。   3A and 3B show spherical aberration, FIG. 3B shows astigmatism, and FIG. 3C shows distortion aberration in Example 1, respectively. In FIG. 3B, the solid line M represents the value of the meridional image plane, and the broken line S represents the value of the sagittal image plane. As can be seen from FIG. 3, according to the first embodiment, spherical, distorted, and astigmatism aberrations are satisfactorily corrected, and an imaging lens excellent in imaging performance can be obtained.

この実施例においては、条件式(1)〜(7)の数値データは、次のようになる。
(1)TL/f =1.12
(2)f1/f =0.5
(3)f2/f =−0.59
(4)f3/f =−1.79
(5)f4/f =1.42
(6)(R1+R2)/(R1−R2) =−0.56
(7)νd1−νd2 =29.0
In this embodiment, the numerical data of the conditional expressions (1) to (7) are as follows.
(1) TL / f = 1.12
(2) f1 / f = 0.5
(3) f2 / f = −0.59
(4) f3 / f = -1.79
(5) f4 / f = 1.42
(6) (R1 + R2) / (R1-R2) = -0.56
(7) νd1−νd2 = 29.0

<実施例2>
実施の形態2におけるレンズ系の基本構成は図4に示され、各数値データ(設定値)は表3、表4に、球面収差、歪曲収差、および非点収差を示す収差図は図5にそれぞれ示される。
表3には、実施例2における撮像レンズの各面番号に対応した絞り、各レンズ、カバーガラスの曲率半径(R:mm),間隔(D:mm)、屈折率(N)、および分散値(ν)を示している。

Figure 0005052144
<Example 2>
The basic configuration of the lens system in the second embodiment is shown in FIG. 4, each numerical data (setting value) is shown in Tables 3 and 4, and an aberration diagram showing spherical aberration, distortion, and astigmatism is shown in FIG. Each is shown.
Table 3 shows the diaphragm, the lens, the radius of curvature (R: mm), the interval (D: mm), the refractive index (N), and the dispersion value corresponding to each surface number of the imaging lens in Example 2. (Ν) is shown.
Figure 0005052144

表4には、実施例2における非球面を含む第1レンズ110、第2レンズ130、第3レンズ140、及び第4レンズ150の所定面の非球面係数を示す。なお、レンズの非球面の形状は、実施例1と同様の式で表される。

Figure 0005052144
Table 4 shows aspherical coefficients of predetermined surfaces of the first lens 110, the second lens 130, the third lens 140, and the fourth lens 150 including the aspherical surface in Example 2. The shape of the aspherical surface of the lens is expressed by the same formula as in the first embodiment.
Figure 0005052144

図5は、実施例2において、図5(A)が球面収差、図5(B)が非点収差を、図5(C)が歪曲収差をそれぞれ示している。図5(B)中、実線M はメリディオナル像面の値、破線S はサジタル像面の値をそれぞれ示している。図5からわかるように、実施例2によれば、球面、歪曲、非点の諸収差が良好に補正され、結像性能に優れた撮像レンズが得られる。   FIG. 5 shows spherical aberration, FIG. 5B shows astigmatism, and FIG. 5C shows distortion aberration in Example 2. In FIG. 5B, the solid line M represents the value of the meridional image plane, and the broken line S represents the value of the sagittal image plane. As can be seen from FIG. 5, according to the second embodiment, the spherical lens, the distortion, and the astigmatism are satisfactorily corrected, and an imaging lens excellent in imaging performance can be obtained.

この実施例においては、条件式(1)〜(7)の数値データは、次のようになる。
(1)TL/f =1.07
(2)f1/f =0.48
(3)f2/f =−0.63
(4)f3/f =−2.75
(5)f4/f =4.85
(6)(R1+R2)/(R1−R2) =−0.60
(7)νd1−νd2 =29.0
In this embodiment, the numerical data of the conditional expressions (1) to (7) are as follows.
(1) TL / f = 1.07
(2) f1 / f = 0.48
(3) f2 / f = −0.63
(4) f3 / f = −2.75
(5) f4 / f = 4.85
(6) (R1 + R2) / (R1-R2) = -0.60
(7) νd1−νd2 = 29.0

<実施例3>
実施の形態2におけるレンズ系の基本構成は図6に示され、各数値データ(設定値)は表5、表6に、球面収差、歪曲収差、および非点収差を示す収差図は図7にそれぞれ示される。
表5には、実施例3における撮像レンズの各面番号に対応した絞り、各レンズ、カバーガラスの曲率半径(R:mm),間隔(D:mm)、屈折率(N)、および分散値(ν)を示している。

Figure 0005052144
<Example 3>
The basic configuration of the lens system according to Embodiment 2 is shown in FIG. 6, each numerical data (setting value) is shown in Tables 5 and 6, and aberration diagrams showing spherical aberration, distortion, and astigmatism are shown in FIG. Each is shown.
Table 5 shows the diaphragm, lens, radius of curvature (R: mm), interval (D: mm), refractive index (N), and dispersion value corresponding to each surface number of the imaging lens in Example 3. (Ν) is shown.
Figure 0005052144

表6には、実施例3における非球面を含む第1レンズ110、第2レンズ130、第3レンズ140、及び第4レンズ150の所定面の非球面係数を示す。なお、レンズの非球面の形状は、実施例1と同様の式で表される。

Figure 0005052144
Table 6 shows aspheric coefficients of predetermined surfaces of the first lens 110, the second lens 130, the third lens 140, and the fourth lens 150 including the aspheric surface in Example 3. The shape of the aspherical surface of the lens is expressed by the same formula as in the first embodiment.
Figure 0005052144

図7は、実施例3において、図7(A)が球面収差、図7(B)が非点収差を、図7(C)が歪曲収差をそれぞれ示している。図7(B)中、実線M はメリディオナル像面の値、破線S はサジタル像面の値をそれぞれ示している。図7からわかるように、実施例3によれば、球面、歪曲、非点の諸収差が良好に補正され、結像性能に優れた撮像レンズが得られる。   7A and 7B, in Example 3, FIG. 7A shows spherical aberration, FIG. 7B shows astigmatism, and FIG. 7C shows distortion. In FIG. 7B, the solid line M indicates the value of the meridional image plane, and the broken line S indicates the value of the sagittal image plane. As can be seen from FIG. 7, according to the third embodiment, spherical, distorted, and astigmatism aberrations are satisfactorily corrected, and an imaging lens excellent in imaging performance can be obtained.

この実施例においては、条件式(1)〜(7)の数値データは、次のようになる。
(1)TL/f =1.09
(2)f1/f =0.43
(3)f2/f =−0.48
(4)f3/f =−1.64
(5)f4/f =1.49
(6)(R1+R2)/(R1−R2) =−0.39
(7)νd1−νd2 =29.0
In this embodiment, the numerical data of the conditional expressions (1) to (7) are as follows.
(1) TL / f = 1.09
(2) f1 / f = 0.43
(3) f2 / f = −0.48
(4) f3 / f = −1.64
(5) f4 / f = 1.49
(6) (R1 + R2) / (R1−R2) = − 0.39
(7) νd1−νd2 = 29.0

<実施例4>
実施の形態4におけるレンズ系の基本構成は図8に示され、各数値データ(設定値)は表7、表8に、球面収差、歪曲収差、および非点収差を示す収差図は図9にそれぞれ示される。
表7には、実施例4における撮像レンズの各面番号に対応した絞り、各レンズ、カバーガラスの曲率半径(R:mm),間隔(D:mm)、屈折率(N)、および分散値(ν)を示している。

Figure 0005052144
<Example 4>
The basic configuration of the lens system in Embodiment 4 is shown in FIG. 8, each numerical data (setting value) is shown in Tables 7 and 8, and the aberration diagram showing spherical aberration, distortion, and astigmatism is shown in FIG. Each is shown.
Table 7 shows the aperture corresponding to each surface number of the imaging lens in Example 4, each lens, the radius of curvature (R: mm), the interval (D: mm), the refractive index (N), and the dispersion value of the cover glass. (Ν) is shown.
Figure 0005052144

表8には、実施例4における非球面を含む第1レンズ110、第2レンズ130、第3レンズ140、及び第4レンズ150の所定面の非球面係数を示す。なお、レンズの非球面の形状は、実施例1と同様の式で表される。

Figure 0005052144
Table 8 shows aspherical coefficients of predetermined surfaces of the first lens 110, the second lens 130, the third lens 140, and the fourth lens 150 including the aspherical surface in Example 4. The shape of the aspherical surface of the lens is expressed by the same formula as in the first embodiment.
Figure 0005052144

図9は、実施例4において、図9(A)が球面収差、図9(B)が非点収差を、図9(C)が歪曲収差をそれぞれ示している。図9(B)中、実線M はメリディオナル像面の値、破線S はサジタル像面の値をそれぞれ示している。図9からわかるように、実施例4によれば、球面、歪曲、非点の諸収差が良好に補正され、結像性能に優れた撮像レンズが得られる。   9A and 9B, in Example 4, FIG. 9A shows spherical aberration, FIG. 9B shows astigmatism, and FIG. 9C shows distortion. In FIG. 9B, the solid line M represents the value of the meridional image plane, and the broken line S represents the value of the sagittal image plane. As can be seen from FIG. 9, according to Example 4, various aberrations of spherical surface, distortion, and astigmatism are satisfactorily corrected, and an imaging lens excellent in imaging performance can be obtained.

この実施例においては、条件式(1)〜(7)の数値データは、次のようになる。
(1)TL/f =1.13
(2)f1/f =0.51
(3)f2/f =−0.67
(4)f3/f =−1.05
(5)f4/f =1.01
(6)(R1+R2)/(R1−R2) =−0.51
(7)νd1−νd2 =29.0
In this embodiment, the numerical data of the conditional expressions (1) to (7) are as follows.
(1) TL / f = 1.13
(2) f1 / f = 0.51
(3) f2 / f = −0.67
(4) f3 / f = −1.05
(5) f4 / f = 1.01
(6) (R1 + R2) / (R1-R2) = -0.51
(7) νd1−νd2 = 29.0

<実施例5(比較例1)>
実施の形態5におけるレンズ系の基本構成は図10に示され、各数値データ(設定値)は表9、表10に、球面収差、歪曲収差、および非点収差を示す収差図は図11にそれぞれ示される。
表9には、実施例5における撮像レンズの各面番号に対応した絞り、各レンズ、カバーガラスの曲率半径(R:mm),間隔(D:mm)、屈折率(N)、および分散値(ν)を示している。

Figure 0005052144
<Example 5 (Comparative Example 1)>
The basic configuration of the lens system according to Embodiment 5 is shown in FIG. 10, each numerical data (setting value) is shown in Tables 9 and 10, and the aberration diagram showing spherical aberration, distortion, and astigmatism is shown in FIG. Each is shown.
Table 9 shows the diaphragm, lens, and cover glass radius of curvature (R: mm), spacing (D: mm), refractive index (N), and dispersion value corresponding to each surface number of the imaging lens in Example 5. (Ν) is shown.
Figure 0005052144

表10には、実施例5における非球面を含む第1レンズ110、第2レンズ130、第3レンズ140、及び第4レンズ150の所定面の非球面係数を示す。

Figure 0005052144
Table 10 shows aspherical coefficients of predetermined surfaces of the first lens 110, the second lens 130, the third lens 140, and the fourth lens 150 including the aspherical surface in Example 5.
Figure 0005052144

図11は、実施例5において、図11(A)が球面収差、図11(B)が非点収差を、図11(C)が歪曲収差をそれぞれ示している。図11(B)中、実線M はメリディオナル像面の値、破線S はサジタル像面の値をそれぞれ示している。図11からわかるように、実施例5によれば、歪曲の収差が良好に補正されているが、球面や像面が補正できず、結像性能に優れた撮像レンズが得られない。   11A and 11B, in Example 5, FIG. 11A shows spherical aberration, FIG. 11B shows astigmatism, and FIG. 11C shows distortion. In FIG. 11B, the solid line M represents the value of the meridional image plane, and the broken line S represents the value of the sagittal image plane. As can be seen from FIG. 11, according to the fifth embodiment, the distortion aberration is corrected well, but the spherical surface and the image plane cannot be corrected, and an imaging lens having excellent imaging performance cannot be obtained.

この実施例においては、条件式(1)〜(7)の数値データは、次のようになる。
(1)TL/f =0.98
(2)f1/f =0.47
(3)f2/f =−0.61
(4)f3/f =−2.49
(5)f4/f =11.24
(6)(R1+R2)/(R1−R2) =−0.63
(7)νd1−νd2 =29.0
In this embodiment, the numerical data of the conditional expressions (1) to (7) are as follows.
(1) TL / f = 0.98
(2) f1 / f = 0.47
(3) f2 / f = −0.61
(4) f3 / f = −2.49
(5) f4 / f = 11.24
(6) (R1 + R2) / (R1−R2) = − 0.63
(7) νd1−νd2 = 29.0

<実施例6(比較例2)>
実施の形態6におけるレンズ系の基本構成は図12に示され、各数値データ(設定値)は表11、表12に、球面収差、歪曲収差、および非点収差を示す収差図は図13にそれぞれ示される。
表11には、実施例6における撮像レンズの各面番号に対応した絞り、各レンズ、カバーガラスの曲率半径(R:mm),間隔(D:mm)、屈折率(N)、および分散値(ν)を示している。

Figure 0005052144
<Example 6 (Comparative Example 2)>
The basic configuration of the lens system in the sixth embodiment is shown in FIG. 12, each numerical data (setting value) is shown in Tables 11 and 12, and aberration diagrams showing spherical aberration, distortion, and astigmatism are shown in FIG. Each is shown.
Table 11 shows the apertures corresponding to the surface numbers of the imaging lens in Example 6, each lens, the radius of curvature (R: mm), the interval (D: mm), the refractive index (N), and the dispersion value of the cover glass. (Ν) is shown.
Figure 0005052144

表12には、実施例6における非球面を含む第1レンズ110、第2レンズ130、第3レンズ140、及び第4レンズ150の所定面の非球面係数を示す。

Figure 0005052144
Table 12 shows aspheric coefficients of predetermined surfaces of the first lens 110, the second lens 130, the third lens 140, and the fourth lens 150 including the aspheric surface in Example 6.
Figure 0005052144

図13は、実施例6において、図13(A)が球面収差、図13(B)が非点収差を、図13(C)が歪曲収差をそれぞれ示している。図13(B)中、実線M はメリディオナル像面の値、破線S はサジタル像面の値をそれぞれ示している。図13からわかるように、実施例6によれば、球面、歪曲の諸収差が良好に補正されているが、非点収差が大きく、結像性能に優れた撮像レンズが得られない。   FIG. 13 shows spherical aberration, FIG. 13B shows astigmatism, and FIG. 13C shows distortion aberration in Example 6. In FIG. 13B, the solid line M represents the value of the meridional image plane, and the broken line S represents the value of the sagittal image plane. As can be seen from FIG. 13, according to Example 6, various spherical and distorted aberrations are corrected satisfactorily, but an astigmatism is large and an imaging lens excellent in imaging performance cannot be obtained.

この実施例においては、条件式(1)〜(7)の数値データは、次のようになる。
(1)TL/f =1.07
(2)f1/f =0.38
(3)f2/f =−0.39
(4)f3/f =−1.75
(5)f4/f =1.45
(6)(R1+R2)/(R1−R2) =−0.30
(7)νd1−νd2 =29.0
In this embodiment, the numerical data of the conditional expressions (1) to (7) are as follows.
(1) TL / f = 1.07
(2) f1 / f = 0.38
(3) f2 / f = −0.39
(4) f3 / f = −1.75
(5) f4 / f = 1.45
(6) (R1 + R2) / (R1-R2) = -0.30
(7) νd1−νd2 = 29.0

<実施例7(比較例3)>
実施の形態7におけるレンズ系の基本構成は図14に示され、各数値データ(設定値)は表13、表14に、球面収差、歪曲収差、および非点収差を示す収差図は図15にそれぞれ示される。
表13には、実施例7における撮像レンズの各面番号に対応した絞り、各レンズ、カバーガラスの曲率半径(R:mm),間隔(D:mm)、屈折率(N)、および分散値(ν)を示している。

Figure 0005052144
<Example 7 (Comparative Example 3)>
The basic configuration of the lens system in the seventh embodiment is shown in FIG. 14, each numerical data (setting value) is shown in Tables 13 and 14, and the aberration diagram showing spherical aberration, distortion, and astigmatism is shown in FIG. Each is shown.
Table 13 shows the diaphragm, lens, radius of curvature (R: mm), interval (D: mm), refractive index (N), and dispersion value corresponding to each surface number of the imaging lens in Example 7. (Ν) is shown.
Figure 0005052144

表14には、実施例7における非球面を含む第1レンズ110、第2レンズ130、第3レンズ140、及び第4レンズ150の所定面の非球面係数を示す。

Figure 0005052144
Table 14 shows aspheric coefficients of predetermined surfaces of the first lens 110, the second lens 130, the third lens 140, and the fourth lens 150 including the aspheric surface in Example 7.
Figure 0005052144

図15は、実施例7において、図15(A)が球面収差、図15(B)が非点収差を、図15(C)が歪曲収差をそれぞれ示している。図15(B)中、実線M はメリディオナル像面の値、破線S はサジタル像面の値をそれぞれ示している。図15からわかるように、実施例7によれば、球面、歪曲、非点の諸収差が良好に補正されているが、軸上の色収差が大きく、結像性能に優れた撮像レンズが得られない。   In FIG. 15, FIG. 15A shows spherical aberration, FIG. 15B shows astigmatism, and FIG. 15C shows distortion aberration in Example 7. In FIG. 15B, the solid line M represents the value of the meridional image plane, and the broken line S represents the value of the sagittal image plane. As can be seen from FIG. 15, according to Example 7, various spherical aberrations, distortions, and astigmatism aberrations are corrected satisfactorily, but an imaging lens having a large axial chromatic aberration and excellent imaging performance can be obtained. Absent.

この実施例においては、条件式(1)〜(7)の数値データは、次のようになる。
(1)TL/f =1.14
(2)f1/f =1.03
(3)f2/f =−21.47
(4)f3/f =−1.98
(5)f4/f =5.68
(6)(R1+R2)/(R1−R2) =−0.97
(7)νd1−νd2 =29.0
In this embodiment, the numerical data of the conditional expressions (1) to (7) are as follows.
(1) TL / f = 1.14
(2) f1 / f = 1.03
(3) f2 / f = -21.47
(4) f3 / f = -1.98
(5) f4 / f = 5.68
(6) (R1 + R2) / (R1−R2) = − 0.97
(7) νd1−νd2 = 29.0

<実施例8(比較例4)>
実施の形態8におけるレンズ系の基本構成は図16に示され、各数値データ(設定値)は表15、表16に、球面収差、歪曲収差、および非点収差を示す収差図は図17にそれぞれ示される。
表15には、実施例8における撮像レンズの各面番号に対応した絞り、各レンズ、カバーガラスの曲率半径(R:mm),間隔(D:mm)、屈折率(N)、および分散値(ν)を示している。

Figure 0005052144
<Example 8 (Comparative Example 4)>
The basic configuration of the lens system according to Embodiment 8 is shown in FIG. 16, each numerical data (setting value) is shown in Tables 15 and 16, and the aberration diagram showing spherical aberration, distortion, and astigmatism is shown in FIG. Each is shown.
Table 15 shows the apertures corresponding to the surface numbers of the imaging lens in Example 8, each lens, the radius of curvature (R: mm), the interval (D: mm), the refractive index (N), and the dispersion value of the cover glass. (Ν) is shown.
Figure 0005052144

表16には、実施例8における非球面を含む第1レンズ110、第2レンズ130、第3レンズ140、及び第4レンズ150の所定面の非球面係数を示す。

Figure 0005052144
Table 16 shows aspheric coefficients of predetermined surfaces of the first lens 110, the second lens 130, the third lens 140, and the fourth lens 150 including the aspheric surface in Example 8.
Figure 0005052144

図17は、実施例8において、図17(A)が球面収差、図17(B)が非点収差を、図17(C)が歪曲収差をそれぞれ示している。図17(B)中、実線M はメリディオナル像面の値、破線S はサジタル像面の値をそれぞれ示している。図17からわかるように、実施例8によれば、球面、歪曲の諸収差が良好に補正されているが、非点収差が大きく、結像性能に優れた撮像レンズが得られない。   FIG. 17 shows spherical aberration, FIG. 17B shows astigmatism, and FIG. 17C shows distortion aberration in Example 8. In FIG. 17B, the solid line M represents the value of the meridional image plane, and the broken line S represents the value of the sagittal image plane. As can be seen from FIG. 17, according to Example 8, various spherical and distorted aberrations are corrected satisfactorily, but an astigmatism is large and an imaging lens excellent in imaging performance cannot be obtained.

この実施例においては、条件式(1)〜(7)の数値データは、次のようになる。
(1)TL/f =1.08
(2)f1/f =0.40
(3)f2/f =−0.39
(4)f3/f =−1.95
(5)f4/f =1.47
(6)(R1+R2)/(R1−R2) =−0.32
(7)νd1−νd2 =29.0
In this embodiment, the numerical data of the conditional expressions (1) to (7) are as follows.
(1) TL / f = 1.08
(2) f1 / f = 0.40
(3) f2 / f = −0.39
(4) f3 / f = -1.95
(5) f4 / f = 1.47
(6) (R1 + R2) / (R1-R2) = -0.32
(7) νd1−νd2 = 29.0

<実施例9(比較例5)>
実施の形態9におけるレンズ系の基本構成は図18に示され、各数値データ(設定値)は表17、表18に、球面収差、歪曲収差、および非点収差を示す収差図は図19にそれぞれ示される。
表17には、実施例9における撮像レンズの各面番号に対応した絞り、各レンズ、カバーガラスの曲率半径(R:mm),間隔(D:mm)、屈折率(N)、および分散値(ν)を示している。

Figure 0005052144
<Example 9 (Comparative Example 5)>
The basic configuration of the lens system according to the ninth embodiment is shown in FIG. 18. Numerical data (setting values) are shown in Tables 17 and 18, and aberration diagrams showing spherical aberration, distortion, and astigmatism are shown in FIG. Each is shown.
Table 17 shows the diaphragm, lens, cover glass radius of curvature (R: mm), distance (D: mm), refractive index (N), and dispersion value corresponding to each surface number of the imaging lens in Example 9. (Ν) is shown.
Figure 0005052144

表18には、実施例9における非球面を含む第1レンズ110、第2レンズ130、第3レンズ140、及び第4レンズ150の所定面の非球面係数を示す。

Figure 0005052144
Table 18 shows aspheric coefficients of predetermined surfaces of the first lens 110, the second lens 130, the third lens 140, and the fourth lens 150 including aspheric surfaces in Example 9.
Figure 0005052144

図19は、実施例9において、図19(A)が球面収差、図19(B)が非点収差を、図19(C)が歪曲収差をそれぞれ示している。図19(B)中、実線M はメリディオナル像面の値、破線S はサジタル像面の値をそれぞれ示している。図19からわかるように、実施例9によれば、球面、歪曲の諸収差が良好に補正されているが、非点収差が大きく、結像性能に優れた撮像レンズが得られない。   FIG. 19 shows spherical aberration, FIG. 19B shows astigmatism, and FIG. 19C shows distortion aberration in Example 9. In FIG. 19B, the solid line M represents the value of the meridional image plane, and the broken line S represents the value of the sagittal image plane. As can be seen from FIG. 19, according to Example 9, various spherical and distorted aberrations are corrected satisfactorily, but an astigmatism is large and an imaging lens with excellent imaging performance cannot be obtained.

この実施例においては、条件式(1)〜(7)の数値データは、次のようになる。
(1)TL/f =1.11
(2)f1/f =0.48
(3)f2/f =−0.71
(4)f3/f =−0.79
(5)f4/f =0.92
(6)(R1+R2)/(R1−R2) =−0.42
(7)νd1−νd2 =29.0
In this embodiment, the numerical data of the conditional expressions (1) to (7) are as follows.
(1) TL / f = 1.11
(2) f1 / f = 0.48
(3) f2 / f = −0.71
(4) f3 / f = −0.79
(5) f4 / f = 0.92
(6) (R1 + R2) / (R1−R2) = − 0.42
(7) νd1−νd2 = 29.0

<実施例10(比較例6)>
実施の形態10におけるレンズ系の基本構成は図20に示され、各数値データ(設定値)は表19、表20に、球面収差、歪曲収差、および非点収差を示す収差図は図21にそれぞれ示される。
表19には、実施例10における撮像レンズの各面番号に対応した絞り、各レンズ、カバーガラスの曲率半径(R:mm),間隔(D:mm)、屈折率(N)、および分散値(ν)を示している。

Figure 0005052144
<Example 10 (Comparative Example 6)>
The basic configuration of the lens system in the tenth embodiment is shown in FIG. 20, each numerical data (setting value) is shown in Tables 19 and 20, and the aberration diagram showing spherical aberration, distortion, and astigmatism is shown in FIG. Each is shown.
Table 19 shows the apertures, lenses, and cover glass curvature radii (R: mm), spacing (D: mm), refractive index (N), and dispersion values corresponding to the surface numbers of the imaging lens in Example 10. (Ν) is shown.
Figure 0005052144

表20には、実施例10における非球面を含む第1レンズ110、第2レンズ130、第3レンズ140、及び第4レンズ150の所定面の非球面係数を示す。

Figure 0005052144
Table 20 shows aspheric coefficients of predetermined surfaces of the first lens 110, the second lens 130, the third lens 140, and the fourth lens 150 including the aspheric surface in Example 10.
Figure 0005052144

図21は、実施例10において、図21(A)が球面収差、図21(B)が非点収差を、図21(C)が歪曲収差をそれぞれ示している。図21(B)中、実線M はメリディオナル像面の値、破線S はサジタル像面の値をそれぞれ示している。図21からわかるように、実施例10によれば、歪曲の収差が良好に補正されているが、球面や像面が補正できず、結像性能に優れた撮像レンズが得られない。   FIG. 21 shows spherical aberration, FIG. 21B shows astigmatism, and FIG. 21C shows distortion aberration in Example 10. In FIG. 21B, the solid line M represents the value of the meridional image plane, and the broken line S represents the value of the sagittal image plane. As can be seen from FIG. 21, according to Example 10, the distortion aberration is corrected well, but the spherical surface and the image plane cannot be corrected, and an imaging lens with excellent imaging performance cannot be obtained.

この実施例においては、条件式(1)〜(7)の数値データは、次のようになる。
(1)TL/f =1.11
(2)f1/f =0.48
(3)f2/f =−0.54
(4)f3/f =−0.86
(5)f4/f =0.71
(6)(R1+R2)/(R1−R2) =−0.50
(7)νd1−νd2 =29.0
In this embodiment, the numerical data of the conditional expressions (1) to (7) are as follows.
(1) TL / f = 1.11
(2) f1 / f = 0.48
(3) f2 / f = −0.54
(4) f3 / f = −0.86
(5) f4 / f = 0.71
(6) (R1 + R2) / (R1-R2) = -0.50
(7) νd1−νd2 = 29.0

<実施例11(比較例7)>
実施の形態11におけるレンズ系の基本構成は図22に示され、各数値データ(設定値)は表21、表22に、球面収差、歪曲収差、および非点収差を示す収差図は図23にそれぞれ示される。
表21には、実施例11における撮像レンズの各面番号に対応した絞り、各レンズ、カバーガラスの曲率半径(R:mm),間隔(D:mm)、屈折率(N)、および分散値(ν)を示している。

Figure 0005052144
<Example 11 (Comparative Example 7)>
The basic configuration of the lens system according to the eleventh embodiment is shown in FIG. 22. Numerical data (setting values) are shown in Table 21 and Table 22, and aberration diagrams showing spherical aberration, distortion, and astigmatism are shown in FIG. Each is shown.
Table 21 shows the apertures corresponding to the respective surface numbers of the imaging lens in Example 11, each lens, the radius of curvature (R: mm), the interval (D: mm), the refractive index (N), and the dispersion value of the cover glass. (Ν) is shown.
Figure 0005052144

表22には、実施例11における非球面を含む第1レンズ110、第2レンズ130、第3レンズ140、及び第4レンズ150の所定面の非球面係数を示す。

Figure 0005052144
Table 22 shows aspherical coefficients of predetermined surfaces of the first lens 110, the second lens 130, the third lens 140, and the fourth lens 150 including the aspherical surface in Example 11.
Figure 0005052144

図23は、実施例11において、図23(A)が球面収差、図23(B)が非点収差を、図23(C)が歪曲収差をそれぞれ示している。図23(B)中、実線M はメリディオナル像面の値、破線S はサジタル像面の値をそれぞれ示している。図23からわかるように、実施例11によれば、球面、歪曲、非点の諸収差が良好に補正されず、結像性能に優れた撮像レンズが得られない。   23, in Example 11, FIG. 23A shows spherical aberration, FIG. 23B shows astigmatism, and FIG. 23C shows distortion aberration. In FIG. 23B, the solid line M represents the value of the meridional image plane, and the broken line S represents the value of the sagittal image plane. As can be seen from FIG. 23, according to Example 11, spherical, distorted, and astigmatism aberrations are not corrected well, and an imaging lens with excellent imaging performance cannot be obtained.

この実施例においては、条件式(1)〜(7)の数値データは、次のようになる。
(1)TL/f =1.08
(2)f1/f =0.40
(3)f2/f =−0.44
(4)f3/f =−1.72
(5)f4/f =1.47
(6)(R1+R2)/(R1−R2) =−0.25
(7)νd1−νd2 =29.0
In this embodiment, the numerical data of the conditional expressions (1) to (7) are as follows.
(1) TL / f = 1.08
(2) f1 / f = 0.40
(3) f2 / f = −0.44
(4) f3 / f = −1.72
(5) f4 / f = 1.47
(6) (R1 + R2) / (R1−R2) = − 0.25
(7) νd1−νd2 = 29.0

<実施例12(比較例8)>
実施の形態12におけるレンズ系の基本構成は図24に示され、各数値データ(設定値)は表23、表24に、球面収差、歪曲収差、および非点収差を示す収差図は図25にそれぞれ示される。
表23には、実施例12における撮像レンズの各面番号に対応した絞り、各レンズ、カバーガラスの曲率半径(R:mm),間隔(D:mm)、屈折率(N)、および分散値(ν)を示している。

Figure 0005052144
<Example 12 (Comparative Example 8)>
The basic configuration of the lens system according to the twelfth embodiment is shown in FIG. 24. Numerical data (setting values) are shown in Tables 23 and 24, and aberration diagrams showing spherical aberration, distortion, and astigmatism are shown in FIG. Each is shown.
Table 23 shows the aperture corresponding to each surface number of the imaging lens in Example 12, each lens, the radius of curvature (R: mm), the interval (D: mm), the refractive index (N), and the dispersion value of the cover glass. (Ν) is shown.
Figure 0005052144

表24には、実施例12における非球面を含む第1レンズ110、第2レンズ130、第3レンズ140、及び第4レンズ150の所定面の非球面係数を示す。

Figure 0005052144
Table 24 shows aspherical coefficients of predetermined surfaces of the first lens 110, the second lens 130, the third lens 140, and the fourth lens 150 including the aspherical surface in Example 12.
Figure 0005052144

図25は、実施例12において、図25(A)が球面収差、図25(B)が非点収差を、図21(C)が歪曲収差をそれぞれ示している。図25(B)中、実線M はメリディオナル像面の値、破線S はサジタル像面の値をそれぞれ示している。図25からわかるように、実施例12によれば、球面、歪曲、非点の諸収差が良好に補正されているが、軸上の色収差が大きく、結像性能に優れた撮像レンズが得られない。   25, in Example 12, FIG. 25A shows spherical aberration, FIG. 25B shows astigmatism, and FIG. 21C shows distortion aberration. In FIG. 25B, the solid line M represents the value of the meridional image plane, and the broken line S represents the value of the sagittal image plane. As can be seen from FIG. 25, according to the twelfth embodiment, various aberrations of spherical surface, distortion, and astigmatism are satisfactorily corrected, but an imaging lens having large axial chromatic aberration and excellent imaging performance can be obtained. Absent.

この実施例においては、条件式(1)〜(7)の数値データは、次のようになる。
(1)TL/f =1.12
(2)f1/f =0.56
(3)f2/f =−0.75
(4)f3/f =−1.39
(5)f4/f =1.21
(6)(R1+R2)/(R1−R2) =−0.87
(7)νd1−νd2 =12.5
In this embodiment, the numerical data of the conditional expressions (1) to (7) are as follows.
(1) TL / f = 1.12
(2) f1 / f = 0.56
(3) f2 / f = −0.75
(4) f3 / f = −1.39
(5) f4 / f = 1.21
(6) (R1 + R2) / (R1−R2) = − 0.87
(7) νd1-νd2 = 12.5

以上説明したように、本発明の撮像レンズによれば、全長が短く、諸収差が良好に補正され、かつ明るい撮像レンズを提供することができる。   As described above, according to the imaging lens of the present invention, it is possible to provide a bright imaging lens having a short overall length, excellent correction of various aberrations, and brightness.

本実施形態の撮像レンズの基本構成を示す図である。It is a figure which shows the basic composition of the imaging lens of this embodiment. 本実施形態において、撮像レンズの絞り部、各レンズ、並びに撮像部を構成するカバーガラスに対して付与した面番号を示す図である。In this embodiment, it is a figure which shows the surface number provided with respect to the aperture part of an imaging lens, each lens, and the cover glass which comprises an imaging part. 実施例1において、球面収差、歪曲収差、および非点収差を示す収差図である。In Example 1, it is an aberrational figure which shows spherical aberration, distortion aberration, and astigmatism. 実施例2において採用した撮像レンズの構成を示す図である。6 is a diagram illustrating a configuration of an imaging lens employed in Example 2. FIG. 実施例2において、球面収差、歪曲収差、および非点収差を示す収差図である。In Example 2, it is an aberrational figure which shows spherical aberration, distortion aberration, and astigmatism. 実施例3において採用した撮像レンズの構成を示す図である。6 is a diagram illustrating a configuration of an imaging lens employed in Example 3. FIG. 実施例3において、球面収差、歪曲収差、および非点収差を示す収差図である。In Example 3, it is an aberrational figure which shows spherical aberration, distortion aberration, and astigmatism. 実施例4において採用した撮像レンズの構成を示す図である。6 is a diagram illustrating a configuration of an imaging lens employed in Example 4. FIG. 実施例4において、球面収差、歪曲収差、および非点収差を示す収差図である。In Example 4, it is an aberrational figure which shows spherical aberration, a distortion aberration, and astigmatism. 実施例5(比較例1)において採用した撮像レンズの構成を示す図である。It is a figure which shows the structure of the imaging lens employ | adopted in Example 5 (comparative example 1). 実施例5(比較例1)において、球面収差、歪曲収差、および非点収差を示す収差図である。In Example 5 (comparative example 1), it is an aberrational figure which shows spherical aberration, a distortion aberration, and astigmatism. 実施例6(比較例2)において採用した撮像レンズの構成を示す図である。It is a figure which shows the structure of the imaging lens employ | adopted in Example 6 (comparative example 2). 実施例6(比較例2)において、球面収差、歪曲収差、および非点収差を示す収差図である。In Example 6 (comparative example 2), it is an aberrational figure which shows a spherical aberration, a distortion aberration, and an astigmatism. 実施例7(比較例3)において採用した撮像レンズの構成を示す図である。It is a figure which shows the structure of the imaging lens employ | adopted in Example 7 (comparative example 3). 実施例7(比較例3)において、球面収差、歪曲収差、および非点収差を示す収差図である。In Example 7 (comparative example 3), it is an aberrational figure which shows a spherical aberration, a distortion aberration, and an astigmatism. 実施例8(比較例4)において採用した撮像レンズの構成を示す図である。It is a figure which shows the structure of the imaging lens employ | adopted in Example 8 (comparative example 4). 実施例8(比較例4)において、球面収差、歪曲収差、および非点収差を示す収差図である。FIG. 10 is an aberration diagram showing spherical aberration, distortion, and astigmatism in Example 8 (Comparative Example 4). 実施例9(比較例5)において採用した撮像レンズの構成を示す図である。It is a figure which shows the structure of the imaging lens employ | adopted in Example 9 (comparative example 5). 実施例9(比較例5)において、球面収差、歪曲収差、および非点収差を示す収差図である。FIG. 10 is an aberration diagram showing spherical aberration, distortion, and astigmatism in Example 9 (Comparative Example 5). 実施例10(比較例6)において採用した撮像レンズの構成を示す図である。It is a figure which shows the structure of the imaging lens employ | adopted in Example 10 (comparative example 6). 実施例10(比較例6)において、球面収差、歪曲収差、および非点収差を示す収差図である。FIG. 10 is an aberration diagram showing spherical aberration, distortion, and astigmatism in Example 10 (Comparative Example 6). 実施例11(比較例7)において採用した撮像レンズの構成を示す図である。It is a figure which shows the structure of the imaging lens employ | adopted in Example 11 (comparative example 7). 実施例11(比較例7)において、球面収差、歪曲収差、および非点収差を示す収差図である。FIG. 10 is an aberration diagram showing spherical aberration, distortion, and astigmatism in Example 11 (Comparative Example 7). 実施例12(比較例8)において採用した撮像レンズの構成を示す図である。It is a figure which shows the structure of the imaging lens employ | adopted in Example 12 (comparative example 8). 実施例12(比較例8)において、球面収差、歪曲収差、および非点収差を示す収差図である。In Example 12 (comparative example 8), it is an aberrational figure which shows a spherical aberration, a distortion aberration, and an astigmatism.

符号の説明Explanation of symbols

100,100A〜100L:撮像レンズ
110:第1レンズ
120:開口絞り部
130:第2レンズ
140:第3レンズ
150:第4レンズ
160:ガラス製の平行平面板( カバーガラス)
170:撮像面
100, 100A to 100L: imaging lens 110: first lens
120: Aperture stop 130: Second lens
140: Third lens 150: Fourth lens
160: Parallel plane plate made of glass (cover glass)
170: Imaging surface

Claims (2)

物体側から順に、正の屈折力を有する両凸形状の第1のレンズと、開口絞りと、負の 屈折力を有する第2のレンズと、負の屈折力を有する物体側に凹面を向けた第3のレン ズと、正の屈折力を有し、かつ少なくとも1面が非球面とされた物体側に凸面を向けた 第4のレンズとが配列された撮像光学系において、下記条件式(1)乃至(7)の全て を満足することを特徴とする撮像レンズ。
1.0<TL/f<1.5 ・・・・・(1)
0.4<f1/f<1.0 ・・・・・(2)
−0.4>f2/f ・・・・・(3)
−0.82>f3/f ・・・・・(4)
0.71<f4/f ・・・・・(5)
−1.0<(R1+R2)/(R1−R2)<−0.25 ・・・・・(6)
νd1−νd2>15.0 ・・・・・(7)
ただし、
f:全系の焦点距離、
TL:前記第1のレンズから像面までのレンズ系の全長
f1:第1のレンズの焦点距離
f2:第2のレンズの焦点距離
f3:第3のレンズの焦点距離
f4:第4のレンズの焦点距離
R1:第1のレンズの物体側面の曲率半径
R2:第1のレンズの像側面の曲率半径
νd1:第1のレンズのアッベ数νd
νd2:第2のレンズのアッベ数νd
である。
In order from the object side, a concave birefringent first lens having a positive refractive power, an aperture stop, a second lens having a negative refractive power, and a concave surface facing the object side having a negative refractive power In an imaging optical system in which a third lens and a fourth lens having a positive refractive power and having a convex surface facing the object side at least one surface of which is an aspheric surface are arranged, the following conditional expression ( An imaging lens satisfying all of 1) to (7) .
1.0 <TL / f <1.5 (1)
0.4 <f1 / f <1.0 (2)
-0.4> f2 / f (3)
-0.82> f3 / f (4)
0.71 <f4 / f (5)
−1.0 <(R1 + R2) / (R1−R2) <− 0.25 (6)
νd1-νd2> 15.0 (7)
However,
f: focal length of the entire system,
TL: Total length of the lens system from the first lens to the image plane
f1: Focal length of the first lens
f2: Focal length of the second lens
f3: Focal length of the third lens
f4: Focal length of the fourth lens
R1: radius of curvature of the object side of the first lens
R2: radius of curvature of the image side of the first lens
νd1: Abbe number of the first lens νd
νd2: Abbe number of the second lens νd
It is.
前記第1のレンズ乃至第4のレンズをプラスチックレンズとすることを特徴とする請 求項に記載の撮像レンズ。 The imaging lens according to claim 1 , wherein the first lens to the fourth lens are plastic lenses.
JP2007011312A 2007-01-22 2007-01-22 Imaging lens Expired - Fee Related JP5052144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007011312A JP5052144B2 (en) 2007-01-22 2007-01-22 Imaging lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007011312A JP5052144B2 (en) 2007-01-22 2007-01-22 Imaging lens

Publications (2)

Publication Number Publication Date
JP2008176185A JP2008176185A (en) 2008-07-31
JP5052144B2 true JP5052144B2 (en) 2012-10-17

Family

ID=39703240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007011312A Expired - Fee Related JP5052144B2 (en) 2007-01-22 2007-01-22 Imaging lens

Country Status (1)

Country Link
JP (1) JP5052144B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102789040A (en) * 2011-05-17 2012-11-21 大立光电股份有限公司 Optical lens assembly for image pickup
US11899169B2 (en) 2020-12-03 2024-02-13 Samsung Electronics Co., Ltd. Lens assembly and electronic device including the same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4947423B2 (en) * 2007-08-29 2012-06-06 コニカミノルタオプト株式会社 Imaging lens
JP2009098515A (en) * 2007-10-18 2009-05-07 Fujinon Corp Four-lens-type small imaging lens, camera module, and imaging apparatus
JP5022172B2 (en) * 2007-10-18 2012-09-12 富士フイルム株式会社 Four-element compact imaging lens, camera module, and imaging device
JP5015719B2 (en) * 2007-10-18 2012-08-29 富士フイルム株式会社 Four-element compact imaging lens, camera module, and imaging device
JP5015720B2 (en) * 2007-10-18 2012-08-29 富士フイルム株式会社 Four-element compact imaging lens, camera module, and imaging device
WO2010047033A1 (en) * 2008-10-22 2010-04-29 ナルックス株式会社 Imaging optical system
TWI382199B (en) * 2008-12-16 2013-01-11 Largan Precision Co Ltd Optical lens system for taking image
JP2010170080A (en) * 2008-12-24 2010-08-05 Sanyo Electric Co Ltd Lens unit and image capturing device
TWI408409B (en) * 2009-09-04 2013-09-11 Largan Precision Co Ltd Imaging lens assembly
KR101500034B1 (en) * 2012-06-29 2015-03-06 엘지이노텍 주식회사 Camera module
JP5904623B2 (en) 2013-03-25 2016-04-13 富士フイルム株式会社 Imaging lens and imaging device provided with imaging lens
WO2014208371A1 (en) * 2013-06-28 2014-12-31 コニカミノルタ株式会社 Aspherical lens, method for manufacturing lens unit provided with aspherical lens, lens unit manufactured by said method for manufacturing, and lens molding mold
US9223118B2 (en) * 2013-10-31 2015-12-29 Apple Inc. Small form factor telephoto camera
US9557627B2 (en) * 2014-03-07 2017-01-31 Apple Inc. Folded camera lens systems
US9316810B2 (en) 2014-03-07 2016-04-19 Apple Inc. Folded telephoto camera lens system
CN105487207B (en) * 2015-09-11 2017-12-15 厦门颉轩光电有限公司 A kind of mobile device camera lens module
CN112764201B (en) * 2021-01-27 2022-05-13 江西晶超光学有限公司 Optical system, camera module and electronic equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04355710A (en) * 1991-06-04 1992-12-09 Matsushita Electric Ind Co Ltd Objective lens system, variable power finder using the same, and camera using the same
JPH10186227A (en) * 1996-10-24 1998-07-14 Asahi Optical Co Ltd Telephotographic lens
JPH10333031A (en) * 1997-05-28 1998-12-18 Minolta Co Ltd Variable power finder
JP2001330785A (en) * 2000-05-22 2001-11-30 Olympus Optical Co Ltd Real image type finder
JP4821058B2 (en) * 2001-06-21 2011-11-24 株式会社ニコン Tesser lens

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102789040A (en) * 2011-05-17 2012-11-21 大立光电股份有限公司 Optical lens assembly for image pickup
CN102789040B (en) * 2011-05-17 2014-12-24 大立光电股份有限公司 Optical lens assembly for image pickup
US11899169B2 (en) 2020-12-03 2024-02-13 Samsung Electronics Co., Ltd. Lens assembly and electronic device including the same

Also Published As

Publication number Publication date
JP2008176185A (en) 2008-07-31

Similar Documents

Publication Publication Date Title
JP5052144B2 (en) Imaging lens
JP5084335B2 (en) Imaging lens
JP4821121B2 (en) Wide-angle lens system
JP5252842B2 (en) Imaging lens
CN108333714B (en) Camera lens
JP5513641B1 (en) Imaging lens
JP4164103B2 (en) Imaging lens
EP1591820A1 (en) Imaging lens system for portable electronic imaging devices
JP2005284153A (en) Imaging lens
JP2008064884A (en) Imaging lens
KR100966990B1 (en) Subminiature Optical System
KR100759152B1 (en) Taking Lens System
JP2010128100A (en) Wide-angle lens and imaging module
JP2019184723A (en) Image capturing lens
JP2017021150A (en) Image capturing lens
KR20040049794A (en) Image pickup lens
JP2006301221A (en) Imaging lens
JP5398400B2 (en) Imaging lens
JP2019158927A (en) Image capturing lens
JP2008096621A (en) Imaging lens
JP2012177736A (en) Imaging lens
JP2017021151A (en) Image capturing lens
JP2012230158A (en) Imaging lens
JP5421066B2 (en) Imaging lens
JP2015161760A (en) imaging lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees