JP2006301221A - Imaging lens - Google Patents

Imaging lens Download PDF

Info

Publication number
JP2006301221A
JP2006301221A JP2005121848A JP2005121848A JP2006301221A JP 2006301221 A JP2006301221 A JP 2006301221A JP 2005121848 A JP2005121848 A JP 2005121848A JP 2005121848 A JP2005121848 A JP 2005121848A JP 2006301221 A JP2006301221 A JP 2006301221A
Authority
JP
Japan
Prior art keywords
lens
abbe number
refractive index
image
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005121848A
Other languages
Japanese (ja)
Inventor
Tatsu Ota
龍 大田
Yasuhiko Abe
泰彦 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP2005121848A priority Critical patent/JP2006301221A/en
Publication of JP2006301221A publication Critical patent/JP2006301221A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To attain reduction in thickness and size while securing high optical performance, regarding an imaging lens used for a camera for a mobile phone or the like. <P>SOLUTION: The imaging lens includes, in order from an object side, a 1st lens 1 having positive refractive index, an aperture diaphragm SD, a 2nd meniscus lens 2 having positive refractive index and also having a concave face on the object side, a 3rd lens 3 having negative refractive index, and also, where the surface on the image field side is concave on the image field side near the optical axis, and also, the surface becomes convex on the image field side as it comes close to the peripheral part, and all the 1st to 3rd lenses 1 to 3 are molded of resin material, and also, both surfaces of all the 1st to 3rd lenses 1 to 3 are aspherical, and the 1st to 3rd lenses 1 to 3 are constituted so that the abbe's numbers ν1, ν2 and ν3 may satisfy the following inequalities; ¾ν1-ν2¾<20, ¾ν2-ν3¾<20 and ¾ν1-ν3¾<20. By having such the constitution, the high optical performance is attained while attaining the reduction in weight and cost. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、CCD等の固体撮像素子を用いたデジタルスチルカメラ等に使用される小型の撮像レンズに関し、特に、デジタルスチルカメラ、車載用カメラ、あるいは、携帯電話機、PDA、携帯型パーソナルコンピュータ等に搭載され又は付属として接続して使用されるモバイルカメラ等に適した超小型の撮像レンズに関する。   The present invention relates to a small imaging lens used in a digital still camera or the like using a solid-state imaging device such as a CCD, and more particularly to a digital still camera, an in-vehicle camera, a mobile phone, a PDA, a portable personal computer, or the like. The present invention relates to an ultra-small imaging lens suitable for a mobile camera or the like that is mounted or used as an accessory.

近年、デジタルスチルカメラ等の普及に伴い、電子撮像装置に用いられる撮像レンズとしては、高性能、低コスト、コンパクト化の要求が強くなってきている。例えば、高性能、低コスト、コンパクト化を満たすレンズ構成の多くは、バックフォーカスを十分に確保しつつ射出角度を小さくしたレトロフォーカスタイプを採用している。
また撮像素子の小型化に伴い、撮像装置全体としてもさらに小型化が図られており、これら小型の撮像装置で使用される撮像レンズとしては、従来から小型で及び携帯性を重視した1枚あるいは2枚のレンズ構成からなるものが多い。
一方、これらの撮像レンズには、従来に比べて高い光学性能が要求されているため、1枚あるいは2枚のレンズ構成では十分な光学性能を得ることが難しくなってきている。そこで、レンズの枚数を増やした3枚のレンズ構成をなす撮像レンズの開発が進められている(例えば、特許文献1、特許文献2、特許文献3、特許文献4参照)。
In recent years, with the widespread use of digital still cameras and the like, there is an increasing demand for high performance, low cost, and compactness as imaging lenses used in electronic imaging devices. For example, many lens configurations that satisfy high performance, low cost, and compactness employ a retrofocus type in which the exit angle is reduced while sufficiently ensuring the back focus.
Further, along with the downsizing of the image pickup device, the entire image pickup apparatus has been further reduced in size. As an image pickup lens used in these small image pickup apparatuses, a single lens that has been conventionally compact and emphasizes portability or Many are composed of two lenses.
On the other hand, since these imaging lenses are required to have high optical performance as compared with the conventional lenses, it is difficult to obtain sufficient optical performance with one or two lenses. Therefore, development of an imaging lens having a three-lens configuration with an increased number of lenses is underway (see, for example, Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4).

特開平4−153612号公報JP-A-4-153612 特開平5−188284号公報Japanese Patent Laid-Open No. 5-188284 特開平9−288235号公報Japanese Patent Laid-Open No. 9-288235 特開平10−48516号公報Japanese Patent Laid-Open No. 10-48516

しかしながら、特許文献1ないし3に開示の撮像レンズでは、屈折率が1.7以上の高屈折率のガラスレンズを使用しており、コスト高になってしまうという問題がある。また特許文献4に開示の撮像レンズでは、第1レンズのパワーが小さいため小型化という点で十分ではない。   However, the imaging lenses disclosed in Patent Documents 1 to 3 use a high-refractive index glass lens having a refractive index of 1.7 or more, which increases the cost. Further, the imaging lens disclosed in Patent Document 4 is not sufficient in terms of miniaturization because the power of the first lens is small.

本発明は、上記の事情に艦みて成されたものであり、その目的とするところは、3群3枚という構成で、加工が容易な樹脂材料(プラスチック)を用い、特にレンズ全長がバックフォーカスを含めないで3mm以下であり、Fナンバーが2.8程度のレンズ明るさを有し、30万画素程度の撮像素子に対応し得る高い光学性能を確保でき、安価及び超小型で単焦点の撮像レンズを提供することにある。   The present invention has been made in view of the above circumstances, and the object of the present invention is to use a resin material (plastic) that is easy to process, with a configuration of 3 elements in 3 groups, and the overall length of the lens is back focus. 3mm or less, F-number is about 2.8, the lens brightness is about 2.8, high optical performance can be secured for an image sensor of about 300,000 pixels, low cost, ultra-compact, single focus It is to provide an imaging lens.

本発明の撮像レンズは、物体側から像面側に向けて順に、正の屈折率をもつ第1レンズ、所定の口径をなす開口絞り、正の屈折率をもつと共に物体側に凹状をなすメニスカス形状の第2レンズ、負の屈折率をもつと共に像面側の面が光軸近傍において像面側に凹状でかつ周辺部に向かうに連れて像面側に凸状をなす第3レンズとを備え、上記第1レンズ、第2レンズ、及び第3レンズは、全て樹脂材料により形成されると共に物体側及び像面側の両面が全て非球面に形成され、かつ、第1レンズのアッベ数をν1、第2レンズのアッベ数をν2、第3レンズのアッベ数をν3とするとき、下記条件式(1),(2),(3)
(1)|ν1−ν2|<20
(2)|ν2−ν3|<20
(3)|ν1−ν3|<20
を満足する、ことを特徴としている。
The imaging lens of the present invention includes, in order from the object side to the image plane side, a first lens having a positive refractive index, an aperture stop having a predetermined aperture, a meniscus having a positive refractive index and a concave shape on the object side. A second lens having a shape, and a third lens having a negative refractive index and having a concave surface on the image surface side in the vicinity of the optical axis and a convex shape on the image surface side toward the periphery. The first lens, the second lens, and the third lens are all made of a resin material, both the object side and the image side are both aspheric, and the Abbe number of the first lens is When ν1, the Abbe number of the second lens is ν2, and the Abbe number of the third lens is ν3, the following conditional expressions (1), (2), (3)
(1) | ν1-ν2 | <20
(2) | ν2-ν3 | <20
(3) | ν1-ν3 | <20
It is characterized by satisfying.

この構成によれば、第1レンズ〜第3レンズの全てが樹脂材料(プラスチック)により形成されているため、ガラスレンズに比べて複雑な形状を容易に加工でき(例えば非球面を容易に形成でき)、収差補正の自由度が増した分だけコンパクトな構成が可能となり、又、軽量化、低コスト化を達成できる。また、条件式(1),(2),(3)を満たすことにより、生産コストをさらに低減できる。
また、第1レンズ〜第3レンズの物体側及び像面側の両面全てを非球面としたことにより、光軸方向の薄型化を達成しつつ、球面収差、非点収差、コマ収差等の諸収差を良好に補正でき、高い光学性能を得ることができる。すなわち、第3レンズにおいては、仮に球面形状で同等の光学性能を得るにはさらに2枚以上のレンズが必要になり薄型化が困難になるが、両面を非球面とすることにより薄型化を達成できると共に、主に上光線側のコマ収差を補正しつつ諸収差を補正できる。また、第1レンズ及び第2レンズの両面を非球面とすることにより、薄型化を達成しつつ、レンズの全長が短いことで発生する球面収差、非点収差、コマ収差等の諸収差を補正することができる。
さらに、第3レンズにおいては、像面側の面が光軸近傍において像面側に凹状でかつ周辺部に向かうに連れて像面側に凸状をなすように形成されているため、射出角度及び外径を小さくすることができ、レンズの小型化を達成できる。
According to this configuration, since all of the first lens to the third lens are formed of a resin material (plastic), a complicated shape can be easily processed as compared with a glass lens (for example, an aspheric surface can be easily formed). ), A compact configuration can be achieved as much as the degree of freedom of aberration correction is increased, and weight reduction and cost reduction can be achieved. Moreover, the production cost can be further reduced by satisfying conditional expressions (1), (2), and (3).
In addition, since both the object side and the image plane side of the first lens to the third lens are all aspherical surfaces, it is possible to reduce spherical aberration, astigmatism, coma aberration, etc. while achieving thinning in the optical axis direction. Aberrations can be corrected well, and high optical performance can be obtained. In other words, in order to obtain the same optical performance with a spherical shape, the third lens requires two or more lenses, which makes it difficult to reduce the thickness. However, the reduction in thickness is achieved by making both surfaces aspherical. In addition, various aberrations can be corrected while mainly correcting coma aberration on the upper ray side. In addition, by making the both surfaces of the first lens and the second lens aspherical surfaces, it is possible to correct various aberrations such as spherical aberration, astigmatism, and coma aberration that occur when the total length of the lens is short while achieving thinning. can do.
Further, in the third lens, the image surface side surface is formed in a concave shape on the image surface side in the vicinity of the optical axis and is formed in a convex shape on the image surface side toward the peripheral portion. In addition, the outer diameter can be reduced, and the lens can be reduced in size.

上記構成において、第1レンズのアッベ数ν1、第2レンズのアッベ数ν2、及び第3レンズのアッベ数ν3は、下記条件式(4),(5),(6)
(4)30<ν1<60
(5)30<ν2<60
(6)30<ν3<60
を満足する、構成を採用することができる。
この構成によれば、第1レンズ〜第3レンズとして、アッベ数ν1,ν2,ν3が30〜60の範囲に入った素材のレンズを利用することで、プラスチック材料の選定に自由度が増す。
In the above configuration, the Abbe number ν1 of the first lens, the Abbe number ν2 of the second lens, and the Abbe number ν3 of the third lens are the following conditional expressions (4), (5), (6)
(4) 30 <ν1 <60
(5) 30 <ν2 <60
(6) 30 <ν3 <60
A configuration that satisfies the above can be adopted.
According to this configuration, as the first lens to the third lens, by using a lens made of a material whose Abbe numbers ν1, ν2, and ν3 are in the range of 30 to 60, the degree of freedom in selecting a plastic material is increased.

上記構成において、第1レンズの焦点距離をf1、レンズ全系の焦点距離をf、第1レンズの物体側の面から像面までの距離をTLとするとき、下記条件式(7),(8)
(7)0.95<f1/f<1.05
(8)TL/f<1.35
を満足する、構成を採用することができる。
この構成によれば、テレセントリック性を確保しつつ、レンズ全長の短縮化、小型化を達成することができ、又、諸収差、特に歪曲収差を良好に補正することができる。
In the above configuration, when the focal length of the first lens is f1, the focal length of the entire lens system is f, and the distance from the object side surface of the first lens to the image plane is TL, the following conditional expressions (7), ( 8)
(7) 0.95 <f1 / f <1.05
(8) TL / f <1.35
A configuration that satisfies the above can be adopted.
According to this configuration, it is possible to achieve shortening and downsizing of the entire lens while ensuring telecentricity, and it is possible to satisfactorily correct various aberrations, particularly distortion.

上記構成において、第3レンズの像面側の面から像面までの光軸上の間隔をD7、レンズ全系の焦点距離をfとするとき、下記条件式(9)
(9)2.05<f/D7<2.17
を満足する、構成を採用することができる。
この構成によれば、CCD等の撮像素子を備えたカメラ用レンズに必要なバックフォーカスを確保しつつ、諸収差、特に歪曲収差を良好に補正することができる。
In the above configuration, when the distance on the optical axis from the image side surface of the third lens to the image plane is D7 and the focal length of the entire lens system is f, the following conditional expression (9)
(9) 2.05 <f / D7 <2.17
A configuration that satisfies the above can be adopted.
According to this configuration, it is possible to satisfactorily correct various aberrations, particularly distortion, while ensuring the back focus necessary for a camera lens including an image sensor such as a CCD.

上記構成において、開口絞りから第3レンズの物体側の面までの光軸上の間隔をD3、レンズ全系の焦点距離をfとするとき、下記条件式(10)
(10)f/D3>5.2
を満足する、構成を採用することができる。
この構成によれば、レンズ全長を短くでき、薄型化、小型化を達成しつつ、諸収差、特に非点収差、歪曲収差を良好に補正することができる。
In the above configuration, when the distance on the optical axis from the aperture stop to the object side surface of the third lens is D3 and the focal length of the entire lens system is f, the following conditional expression (10)
(10) f / D3> 5.2
A configuration that satisfies the above can be adopted.
According to this configuration, the overall lens length can be shortened, and various aberrations, particularly astigmatism and distortion can be favorably corrected while achieving a reduction in thickness and size.

上記構成をなす撮像レンズによれば、3群3枚という構成で、特にレンズ全長がバックフォーカスを含めないで3mm以下であり、Fナンバーが2.8程度のレンズ明るさをもち、30万画素程度の撮像素子に適した高い光学性能を確保でき、軽量、小型、及び薄型で安価な撮像レンズが得られる。   According to the imaging lens having the above-described configuration, it is a configuration of 3 elements in 3 groups, particularly, the total length of the lens is 3 mm or less without including the back focus, the lens brightness with an F number of about 2.8, and 300,000 pixels. A high optical performance suitable for an image sensor of a certain degree can be ensured, and a lightweight, small, thin, and inexpensive imaging lens can be obtained.

以下、本発明の最良の実施形態について、添付図面を参照しつつ説明する。
図1及び図2は、本発明に係る撮像レンズの一実施形態を示すものであり、図1は概略構成図、図2は光路図である。
この撮像レンズは、図1に示すように、物体側から像面側に向けて順に、正の屈折率をもつ第1レンズ1、所定の口径をなす開口絞りSD、正の屈折率をもつ第2レンズ2、負の屈折力をもつ第3レンズ3により形成されている。そして、第3レンズ3の後方に像面Pが配置されている。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, exemplary embodiments of the invention will be described with reference to the accompanying drawings.
1 and 2 show an embodiment of an imaging lens according to the present invention. FIG. 1 is a schematic configuration diagram, and FIG. 2 is an optical path diagram.
As shown in FIG. 1, the imaging lens includes, in order from the object side to the image plane side, a first lens 1 having a positive refractive index, an aperture stop SD having a predetermined aperture, and a first lens having a positive refractive index. It is formed by two lenses 2 and a third lens 3 having negative refractive power. An image plane P is disposed behind the third lens 3.

ここでは、第1レンズ1、開口絞りSD、第2レンズ2、第3レンズ3、像面Pが、光軸Lに沿って物体側から像面側に向けて順に配列される構成において、図1に示すように、それぞれの面をSi(i=1〜7)、それぞれの面Siの曲率半径をRi(i=1〜7)、d線に対する屈折率をNi(i=1〜3)及びアッベ数をνi(i=1〜3)、第1レンズ1〜像面Pまでのそれぞれの光軸L上における間隔(厚さ、空気間隔)をDi(i=1〜7)で表す。また、第1レンズ1の焦点距離をf1、レンズ全系の焦点距離をf、第1レンズ1(の物体側の面S1)から像面Pまでの距離をTLで表す。   Here, in the configuration in which the first lens 1, the aperture stop SD, the second lens 2, the third lens 3, and the image plane P are sequentially arranged along the optical axis L from the object side to the image plane side. As shown in FIG. 1, each surface is Si (i = 1-7), the radius of curvature of each surface Si is Ri (i = 1-7), and the refractive index with respect to the d-line is Ni (i = 1-3). The Abbe number is represented by νi (i = 1 to 3), and the distance (thickness, air spacing) on each optical axis L from the first lens 1 to the image plane P is represented by Di (i = 1 to 7). Further, the focal length of the first lens 1 is denoted by f1, the focal length of the entire lens system is denoted by f, and the distance from the first lens 1 (the object-side surface S1) to the image plane P is denoted by TL.

第1レンズ1は、樹脂材料により形成され、正の屈折力をもつように、物体側の面S1が凸状をなしかつ像面側の面S2が凹状をなすメニスカス形状のプラスチックレンズである。また、物体側及び像面側の両面S1,S2は非球面として形成されている。
第2レンズ2は、樹脂材料により形成され、正の屈折力をもつように、物体側の面S4が凹状をなしかつ像面側の面S5が凸状をなすメニスカス形状のプラスチックレンズである。また、物体側及び像面側の両面S4,S5は非球面として形成されている。
第3レンズ3は、樹脂材料により形成され、負の屈折率をもつように、物体側の面S6が光軸L近傍において凸状で周辺部に向かうに連れて凹状をなし、かつ、像面側の面S7が光軸L近傍において凹状で周辺部に向かうに連れて凸状をなすように形成されたプラスチックレンズである。また、物体側及び像面側の両面S6,S7は、非球面として形成されている。
The first lens 1 is a meniscus plastic lens formed of a resin material and having a positive refractive power and an object-side surface S1 having a convex shape and an image-side surface S2 having a concave shape. Further, both the object side and image side S1 and S2 are formed as aspherical surfaces.
The second lens 2 is a meniscus plastic lens formed of a resin material and having a positive refractive power, the object side surface S4 being concave and the image side surface S5 being convex. Both the object side and image surface side surfaces S4 and S5 are formed as aspherical surfaces.
The third lens 3 is formed of a resin material, and the object-side surface S6 is convex in the vicinity of the optical axis L so as to have a negative refractive index. It is a plastic lens formed such that the side surface S7 is concave in the vicinity of the optical axis L and convex toward the periphery. In addition, both the object side and the image surface side S6 and S7 are formed as aspherical surfaces.

このように、第1レンズ1〜第3レンズ3の全てが樹脂材料(プラスチック)により形成されているため、ガラスレンズに比べて複雑な形状を容易に加工でき、例えば非球面を容易に形成でき、収差補正の自由度が増した分だけコンパクトな構成が可能になり、又、軽量化、低コスト化を達成できる。   Thus, since all of the first lens 1 to the third lens 3 are formed of a resin material (plastic), a complicated shape can be easily processed as compared with a glass lens, for example, an aspherical surface can be easily formed. Thus, a compact configuration can be achieved as much as the degree of freedom of aberration correction is increased, and weight reduction and cost reduction can be achieved.

また、第1レンズ1〜第3レンズ3の物体側及び像面側の両面S1,S2、S4,S5、S6,S7全てを非球面としたことにより、光軸方向Lの薄型化を達成しつつ、球面収差、非点収差、コマ収差等の諸収差を良好に補正でき、高い光学性能を確保することができる。
すなわち、第1レンズ1の両面S1,S2及び第2レンズ2の両面S4,S5を非球面とすることにより、薄型化を達成しつつ、レンズ全長TLを短縮しつつ、球面収差、非点収差、コマ収差等の諸収差を補正することができる。また、第3レンズ3においては、仮に球面形状で同等の光学性能を得るにはさらに2枚以上のレンズが必要になり薄型化が困難になるが、両面S6,S7を非球面とすることにより、薄型化を達成できると共に、主に上光線側のコマ収差を補正しつつ諸収差を補正できる。
さらに、第3レンズ3においては、像面側の面S7が光軸L近傍において像面側に凹状でかつ周辺部に向かうに連れて像面側に凸状をなすように形成されているため、射出角度及び外径を小さくすることができ、レンズの小型化を達成できる。
In addition, the object side and image plane side surfaces S1, S2, S4, S5, S6, and S7 of the first lens 1 to the third lens 3 are all aspherical, thereby achieving a reduction in the thickness in the optical axis direction L. On the other hand, various aberrations such as spherical aberration, astigmatism and coma can be corrected well, and high optical performance can be secured.
That is, by making both surfaces S1, S2 of the first lens 1 and both surfaces S4, S5 of the second lens 2 aspherical, while achieving a reduction in thickness and shortening the total lens length TL, spherical aberration and astigmatism. Various aberrations such as coma can be corrected. Further, in the third lens 3, it is difficult to reduce the thickness because two or more lenses are required to obtain the same optical performance with a spherical shape. However, by making both surfaces S6 and S7 aspherical. In addition to achieving a reduction in thickness, various aberrations can be corrected while correcting mainly the coma aberration on the upper ray side.
Further, in the third lens 3, the surface S7 on the image plane side is formed to be concave on the image plane side in the vicinity of the optical axis L and to be convex on the image plane side toward the periphery. The injection angle and the outer diameter can be reduced, and the lens can be miniaturized.

ここで、第1レンズ1〜第3レンズ3の非球面を表す式は、次式で規定される。
Z=Cy/[1+(1−εC1/2]+Dy+Ey+Fy+Gy10+Hy12
ただし、Z:非球面の頂点における接平面から,光軸Lからの高さがyの非球面上の点までの距離、y:光軸からの高さ、C:非球面の頂点における曲率(1/R)、ε:円錐定数、D,E,F,G,H:非球面係数である。
Here, the expression representing the aspheric surfaces of the first lens 1 to the third lens 3 is defined by the following expression.
Z = Cy 2 / [1+ (1-εC 2 y 2 ) 1/2 ] + Dy 4 + Ey 6 + Fy 8 + Gy 10 + Hy 12
Where Z: distance from the tangent plane at the apex of the aspheric surface to a point on the aspheric surface whose height from the optical axis L is y, y: height from the optical axis, C: curvature at the apex of the aspheric surface ( 1 / R), ε: conic constant, D, E, F, G, H: aspheric coefficients.

また、第1レンズ1のアッベ数ν1、第2レンズ2のアッベ数ν2、第3レンズ3のアッベ数ν3は、次の条件式(1),(2),(3)
(1)|ν1−ν2|<20
(2)|ν2−ν3|<20
(3)|ν1−ν3|<20
を満足するように形成されている。
このように、条件式(1),(2),(3)を満たすことにより、第1レンズ1、第2レンズ2、及び第3レンズ3の素材として近似した樹脂材料を用いることで、生産コストを低減でき、全て同一のアッベ数となる樹脂材料を用いた場合さらに生産コストを低減することができる。
The Abbe number ν1 of the first lens 1, the Abbe number ν2 of the second lens 2, and the Abbe number ν3 of the third lens 3 are the following conditional expressions (1), (2), (3)
(1) | ν1-ν2 | <20
(2) | ν2-ν3 | <20
(3) | ν1-ν3 | <20
It is formed to satisfy.
Thus, by satisfying the conditional expressions (1), (2), and (3), the resin material approximated as the material of the first lens 1, the second lens 2, and the third lens 3 is used to produce The cost can be reduced, and the production cost can be further reduced when resin materials having the same Abbe number are used.

ここで、上記構成においては、第1レンズ1のアッベ数ν1、第2レンズ2のアッベ数ν2、及び第3レンズ3のアッベ数ν3が、好ましくは、次の条件式(4),(5),(6)
(4)30<ν1<60
(5)30<ν2<60
(6)30<ν3<60
を満足するように形成されてもよい。
このように、条件式(4),(5),(6)を満たすことにより、第1レンズ1〜第3レンズ3としてアッベ数ν1,ν2,ν3が30〜60の範囲に入った素材のレンズを利用することになるため、プラスチック材料を選定する自由度が増加し、要求に応じた仕様を適宜選択することができる。
Here, in the above configuration, the Abbe number ν1 of the first lens 1, the Abbe number ν2 of the second lens 2, and the Abbe number ν3 of the third lens 3 are preferably the following conditional expressions (4), (5 ), (6)
(4) 30 <ν1 <60
(5) 30 <ν2 <60
(6) 30 <ν3 <60
It may be formed so as to satisfy
Thus, by satisfying the conditional expressions (4), (5), (6), the first lens 1 to the third lens 3 can be made of materials whose Abbe numbers ν1, ν2, ν3 are in the range of 30-60. Since a lens is used, the degree of freedom in selecting a plastic material is increased, and specifications according to requirements can be appropriately selected.

また、上記構成においては、第1レンズ1の焦点距離f1、レンズ全系の焦点距離f、第1レンズ1の物体側の面S1から像面Pまでの距離TLが、好ましくは、次の条件式(7),(8)
(7)0.95<f1/f<1.05
(8)TL/f<1.35
を満足するように形成されてもよい。
条件式(7)は、第1レンズ1の焦点距離に関するものである。f1/fの値が条件式(7)の上限値以上となると、第1レンズ1のパワーが小さくなり過ぎて像面湾曲の補正が困難となり、又、射出角度が大きくなってテレセントリック性が悪化するため好ましくない。一方、f1/fの値が条件式(7)の下限値以下となると、第1レンズ1のパワーが大きくなって像面湾曲の補正が困難となる。
条件式(8)は、レンズ全長TLを規定するものである。TLの値がこの範囲を逸脱すると、薄型化、小型化を維持できなくなり、収差補正とのバランスがとれなくなる。
したがって、条件式(7),(8)を満たすことにより、テレセントリック性を確保しつつ、レンズ全長の短縮化、小型化を達成することができ、又、諸収差、特に歪曲収差を良好に補正することができる。
In the above configuration, the focal length f1 of the first lens 1, the focal length f of the entire lens system, and the distance TL from the object-side surface S1 of the first lens 1 to the image plane P are preferably as follows. Formula (7), (8)
(7) 0.95 <f1 / f <1.05
(8) TL / f <1.35
It may be formed so as to satisfy
Conditional expression (7) relates to the focal length of the first lens 1. If the value of f1 / f is greater than or equal to the upper limit value of conditional expression (7), the power of the first lens 1 becomes too small to make correction of field curvature difficult, and the exit angle becomes large and telecentricity deteriorates. Therefore, it is not preferable. On the other hand, if the value of f1 / f is less than or equal to the lower limit value of conditional expression (7), the power of the first lens 1 is increased and it becomes difficult to correct curvature of field.
Conditional expression (8) defines the total lens length TL. If the value of TL deviates from this range, it is impossible to maintain a reduction in thickness and size, and balance with aberration correction cannot be achieved.
Therefore, by satisfying conditional expressions (7) and (8), it is possible to achieve shortening and downsizing of the entire lens while ensuring telecentricity, and correct various aberrations, particularly distortion aberrations. can do.

また、上記構成においては、第3レンズ3の像面側の面S7から像面Pまでの光軸L上の間隔D7、レンズ全系の焦点距離fが、好ましくは、次の条件式(9)
(9)2.05<f/D7<2.17
を満足するように形成されてもよい。
条件式(9)は、CCDカメラ用レンズに必要なバックフォーカスを確保するための条件式である。f/D7の値が条件式(9)の下限値以上になってバックフォーカスが長くなると、第1レンズ1のパワーを小さくする必要があり、発生する負の歪曲収差が大きくなる。一方、f/D7の値が条件式(9)の上限値以上になってバックフォーカスが短くなると、CCDカメラ用レンズに必要な赤外カットフィルターやパスフィルター等を配置するための十分なスペースが無くなってしまう。
したがって、条件式(9)を満たすことにより、CCD等の撮像素子を備えたカメラ用レンズに必要なバックフォーカスを確保しつつ、諸収差、特に歪曲収差を良好に補正することができる。
In the above configuration, the distance D7 on the optical axis L from the image plane side surface S7 to the image plane P of the third lens 3 and the focal length f of the entire lens system are preferably the following conditional expression (9 )
(9) 2.05 <f / D7 <2.17
It may be formed so as to satisfy
Conditional expression (9) is a conditional expression for ensuring the back focus necessary for the CCD camera lens. When the value of f / D7 becomes equal to or greater than the lower limit value of conditional expression (9) and the back focus becomes long, the power of the first lens 1 needs to be reduced, and the generated negative distortion aberration increases. On the other hand, when the value of f / D7 becomes equal to or greater than the upper limit value of conditional expression (9) and the back focus is shortened, there is sufficient space for arranging an infrared cut filter, a pass filter, and the like necessary for the CCD camera lens. It will disappear.
Therefore, by satisfying conditional expression (9), it is possible to satisfactorily correct various aberrations, particularly distortion, while ensuring the back focus necessary for a camera lens including an image sensor such as a CCD.

さらに、上記構成においては、開口絞りSDから第3レンズ3の物体側の面S6までの光軸L上の間隔D3が、好ましくは、次の条件式(10)
(10)f/D3>5.2
を満足するように形成されてもよい。
条件式(10)は、開口絞りSDと第3レンズ3との光軸方向Lにおける適切なレンズ間隔を定めたものである。f/D3の値が条件式(10)から逸脱すると射出瞳までの距離が長くなり撮像素子に入射する光線の角度が小さくなるためテレセントリック性は良いが、レンズ全長が比較して長くなり又第3レンズ3の外径が大きくなり、薄型化、小型化という点では好ましくなく、又、特に、非点収差、歪曲収差の補正が困難になる。
したがって、条件式(10)を満たすことにより、薄型化、小型化を達成しつつ、諸収差、特に非点収差、歪曲収差を良好に補正することができる。
Furthermore, in the above configuration, the distance D3 on the optical axis L from the aperture stop SD to the object-side surface S6 of the third lens 3 is preferably the following conditional expression (10):
(10) f / D3> 5.2
It may be formed so as to satisfy
Conditional expression (10) defines an appropriate lens interval in the optical axis direction L between the aperture stop SD and the third lens 3. If the value of f / D3 deviates from the conditional expression (10), the distance to the exit pupil becomes long and the angle of the light ray incident on the image sensor becomes small, so that the telecentricity is good, but the total lens length becomes longer compared with the first. The outer diameter of the three lenses 3 is increased, which is not preferable in terms of thinning and size reduction, and correction of astigmatism and distortion is particularly difficult.
Therefore, by satisfying conditional expression (10), it is possible to satisfactorily correct various aberrations, particularly astigmatism and distortion, while achieving a reduction in thickness and size.

次に、上記撮像レンズの具体的な数値による実施例を、実施例1、実施例2として以下に示す。   Next, specific numerical examples of the imaging lens will be described below as Example 1 and Example 2.

実施例1における条件式(1)〜(10)の数値データ、第1レンズ1〜第3レンズ3の主な仕様諸元、種々の数値データ(設定値)は以下の通りである。
<条件式の値>
(1)│ν1−ν2│=0
(2)│ν2−ν3│=0
(3)│ν1−ν3│=0
(4)ν1=56.3
(5)ν2=56.3
(6)ν3=56.3
(7)f1/f=2.99/3.05=0.98
(8)TL/f=4.09/3.05=1.34
(9)f/D7=3.05/1.42=2.16
(10)f/D3=3.05/0.52=5.86
Numerical data of conditional expressions (1) to (10) in the first embodiment, main specifications of the first lens 1 to the third lens 3, and various numerical data (setting values) are as follows.
<Value of conditional expression>
(1) | ν1-ν2 | = 0
(2) | ν2-ν3 | = 0
(3) | ν1-ν3 | = 0
(4) ν1 = 56.3
(5) ν2 = 56.3
(6) ν3 = 56.3
(7) f1 / f = 2.99 / 3.05 = 0.98
(8) TL / f = 4.09 / 3.05 = 1.34
(9) f / D7 = 3.05 / 1.42 = 2.16
(10) f / D3 = 3.05 / 0.52 = 5.86

<仕様諸元>
物体距離=60cm、焦点距離(f)=3.05mm、Fナンバー=2.8、射出瞳位置=3.08mm、レンズ全長(TL)=2.67mm、バックフォーカス(空気換算)=1.42mm、画角(2ω)=59.6°、ディストーション(最大値)=0.7%
<曲率半径(非球面)>
R1=1.405mm、R2=10.688mm、R3=∞、R4=−0.733mm、R5=−0.668mm、R6=10.309mm、R7=1.920mm
<光軸上の間隔>
D1=0.723mm、D2=0.03mm、D3=0.521mm、D4=0.653mm、D5=0.1mm、D6=0.649mm、D7=1.415mm
<屈折率(Nd)>
N1=1.525120、N2=1.525120、N3=1.525120
<アッベ数(νd)>
ν1=56.3、ν2=56.3、ν3=56.3
<Specification specifications>
Object distance = 60 cm, focal length (f) = 3.05 mm, F number = 2.8, exit pupil position = 3.08 mm, total lens length (TL) = 2.67 mm, back focus (air conversion) = 1.42 mm , Angle of view (2ω) = 59.6 °, distortion (maximum value) = 0.7%
<Curvature radius (aspheric surface)>
R1 = 1.405 mm, R2 = 10.688 mm, R3 = ∞, R4 = −0.733 mm, R5 = −0.668 mm, R6 = 10.309 mm, R7 = 1.920 mm
<Spacing on the optical axis>
D1 = 0.723 mm, D2 = 0.03 mm, D3 = 0.521 mm, D4 = 0.653 mm, D5 = 0.1 mm, D6 = 0.649 mm, D7 = 1.415 mm
<Refractive index (Nd)>
N1 = 1.525120, N2 = 1.525120, N3 = 1.525120
<Abbe number (νd)>
ν1 = 56.3, ν2 = 56.3, ν3 = 56.3

<非球面係数の数値データ>
<S1面>
ε=1.569750、D=−0.027411、E=−0.015690、F=3.128592×10−3、G=−0.082494、H=0.0
<S2面>
ε=0.0、D=−0.046949、E=−0.039756、F=−0.298975、G=0.468340、H=0.0
<S4面>
ε=1.155032、D=0.132550、E=−0.741721、F=2.638360、G=2.381630、H=0.0
<S5面>
ε=0.205194、D=0.223262、E=−0.602969、F=0.343112、G=1.132839、H=−0.914784
<S6面>
ε=83.027704、D=−0.145034、E=−0.152657、F=0.28520、G=−0.144927、H=0.0
<S7面>
ε=−20.178419、D=−0.175560、E=0.047230、F=−6.30438×10−3、G=−2.11672×10−3、H=0.0
<Numerical data of aspheric coefficient>
<S1 surface>
ε = 1.569750, D = −0.027411, E = −0.015690, F = 3.128559 × 10 −3 , G = −0.082494, H = 0.0
<S2 surface>
ε = 0.0, D = −0.046949, E = −0.039756, F = −0.298975, G = 0.468340, H = 0.0
<S4 surface>
ε = 1.155032, D = 0.132550, E = −0.741721, F = 2.638360, G = 2.38630, H = 0.0
<S5 surface>
ε = 0.205194, D = 0.223262, E = −0.602969, F = 0.343112, G = 1.132828, H = −0.914784
<S6 surface>
ε = 83.027704, D = −0.145034, E = −0.152657, F = 0.28520, G = −0.144927, H = 0.0
<S7 surface>
ε = -20.178419, D = -0.175560, E = 0.047230, F = -6.30438 × 10 −3 , G = −2.11672 × 10 −3 , H = 0.0

この実施例1における球面収差、非点収差、歪曲収差(ディストーション)、倍率色収差に関する収差線図は図3に示すような結果となる。尚、図3において、Sはサジタル平面での収差、Mはメリジオナル平面での収差を示す。
この実施例1によるレンズ仕様によれば、レンズ全長(TL)が2.67mm、Fナンバーが2.8の明るさをもち、球面収差、非点収差、歪曲収差、倍率色収差が良好に補正された光学性能の高い、薄型で小型の撮像レンズが得られる。
The aberration diagram regarding the spherical aberration, astigmatism, distortion (distortion) and lateral chromatic aberration in Example 1 is as shown in FIG. In FIG. 3, S represents the aberration on the sagittal plane, and M represents the aberration on the meridional plane.
According to the lens specifications according to Example 1, the lens has a total lens length (TL) of 2.67 mm and an F number of 2.8, and spherical aberration, astigmatism, distortion, and lateral chromatic aberration are corrected well. In addition, a thin and small imaging lens with high optical performance can be obtained.

実施例2における条件式(1)〜(10)の数値データ、第1レンズ1〜第3レンズ3の主な仕様諸元、種々の数値データ(設定値)は以下の通りである。
<条件式の値>
(1)│ν1−ν2│=0
(2)│ν2−ν3│=0
(3)│ν1−ν3│=0
(4)ν1=30.3
(5)ν2=30.3
(6)ν3=30.3
(7)f1/f=3.00/2.94=1.02
(8)TL/f=3.96/2.94=1.34
(9)f/D7=2.94/1.43=2.06
(10)f/D3=2.94/0.56=5.25
Numerical data of conditional expressions (1) to (10) in the second embodiment, main specification specifications of the first lens 1 to the third lens 3, and various numerical data (setting values) are as follows.
<Value of conditional expression>
(1) | ν1-ν2 | = 0
(2) | ν2-ν3 | = 0
(3) | ν1-ν3 | = 0
(4) ν1 = 30.3
(5) ν2 = 30.3
(6) ν3 = 30.3
(7) f1 / f = 3.00 / 2.94 = 1.02
(8) TL / f = 3.96 / 2.94 = 1.34
(9) f / D7 = 2.94 / 1.43 = 2.06
(10) f / D3 = 2.94 / 0.56 = 5.25

<仕様諸元>
物体距離=60cm、焦点距離(f)=2.94mm、Fナンバー=2.8、射出瞳位置=3.06mm、レンズ全長(TL)=2.53mm、バックフォーカス(空気換算)=1.43mm、画角(2ω)=61.2°、ディストーション(最大値)=1.3%
<曲率半径(非球面)>
R1=1.473mm、R2=7.756mm、R3=∞、R4=−0.751mm、R5=−0.669mm、R6=6.572mm、R7=1.609mm
<光軸上の間隔>
D1=0.631mm、D2=0.02mm、D3=0.558mm、D4=0.648mm、D5=0.15mm、D6=0.526mm、D7=1.427mm
<屈折率(Nd)>
N1=1.583816、N2=1.583816、N3=1.583816
<アッベ数(νd)>
ν1=30.3、ν2=30.3、ν3=30.3
<Specification specifications>
Object distance = 60 cm, focal length (f) = 2.94 mm, F number = 2.8, exit pupil position = 3.06 mm, total lens length (TL) = 2.53 mm, back focus (air equivalent) = 1.43 mm , Angle of view (2ω) = 61.2 °, distortion (maximum value) = 1.3%
<Curvature radius (aspheric surface)>
R1 = 1.473 mm, R2 = 7.756 mm, R3 = ∞, R4 = −0.751 mm, R5 = −0.669 mm, R6 = 6.572 mm, R7 = 1.609 mm
<Spacing on the optical axis>
D1 = 0.631 mm, D2 = 0.02 mm, D3 = 0.558 mm, D4 = 0.648 mm, D5 = 0.15 mm, D6 = 0.526 mm, D7 = 1.427 mm
<Refractive index (Nd)>
N1 = 1.58816, N2 = 1.58816, N3 = 1.58816
<Abbe number (νd)>
ν1 = 30.3, ν2 = 30.3, ν3 = 30.3

<非球面係数の数値データ>
<S1面>
ε=1.861270、D=−0.041055、E=−3.81910×10−3、F=−0.050460、G=−0.071008、H=0.0
<S2面>
ε=−29.0、D=−0.031846、E=−0.077220、F=−0.206572、G=0.274801、H=0.0
<S4面>
ε=1.173842、D=0.144696、E=−0.857322、F=2.984905、G=1.223926、H=0.0
<S5面>
ε=0.177073、D=0.249530、E=−0.571912、F=0.247541、G=1.029140、H=−0.790010
<S6面>
ε=−49.0、D=−0.137607、E=−0.142134、F=0.288550、G=−0.150011、H=0.0
<S7面>
ε=−15.864269、D=−0.1966003、E=0.061710、F=−3.90309×10−3、G=−5.97031×10−3、H=0.0
<Numerical data of aspheric coefficient>
<S1 surface>
ε = 1.861270, D = −0.041055, E = −3.81910 × 10 −3 , F = −0.050460, G = −0.071008, H = 0.0
<S2 surface>
ε = −29.0, D = −0.031846, E = −0.077220, F = −0.206572, G = 0.274801, H = 0.0
<S4 surface>
ε = 1.173842, D = 0.144696, E = −0.857322, F = 2.984905, G = 1.23926, H = 0.0
<S5 surface>
ε = 0.177073, D = 0.249530, E = -0.571912, F = 0.247541, G = 1.029140, H = -0.790010
<S6 surface>
ε = −49.0, D = −0.137607, E = −0.142134, F = 0.288550, G = −0.150011, H = 0.0
<S7 surface>
ε = −15.864269, D = −0.1966603, E = 0.061710, F = −3.990309 × 10 −3 , G = −5.99701 × 10 −3 , H = 0.0

この実施例2における球面収差、非点収差、歪曲収差(ディストーション)、倍率色収差に関する収差線図は図4に示すような結果となる。尚、図4において、Sはサジタル平面での収差、Mはメリジオナル平面での収差を示す。
この実施例2によるレンズ仕様によれば、レンズ全長(TL)が2.53mm、Fナンバーが2.8の明るさをもち、球面収差、非点収差、歪曲収差、倍率色収差が良好に補正された光学性能の高い、薄型で小型の撮像レンズが得られる。
The aberration diagram regarding the spherical aberration, astigmatism, distortion (distortion) and lateral chromatic aberration in Example 2 is as shown in FIG. In FIG. 4, S represents the aberration on the sagittal plane, and M represents the aberration on the meridional plane.
According to the lens specifications according to the second embodiment, the lens has a total lens length (TL) of 2.53 mm, an F number of 2.8, and spherical aberration, astigmatism, distortion, and lateral chromatic aberration are well corrected. In addition, a thin and small imaging lens with high optical performance can be obtained.

以上述べたように、本発明の撮像レンズは、超小型及び薄型で30万画素程度の撮像素子に対応し得る高い光学性能を確保できるため、デジタルスチルカメラ、車載用カメラ、携帯情報端末機(携帯電話機、PDA、携帯型パーソナルコンピュータ等)のモバイルカメラ等の撮像レンズとして適用できるのは勿論のこと、固定式のカメラの撮像レンズ、あるいはその他の用途に用いられるカメラの撮像レンズとしても有用である。   As described above, since the imaging lens of the present invention can ensure high optical performance that can correspond to an imaging element of about 300,000 pixels with a small size and a thin shape, a digital still camera, an in-vehicle camera, a portable information terminal ( It can be applied as an imaging lens for a mobile camera of a mobile phone, a PDA, a portable personal computer, etc., and is also useful as an imaging lens for a fixed camera or a camera used for other purposes. is there.

本発明に係る撮像レンズの一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the imaging lens which concerns on this invention. 図1に示す撮像レンズの光路図である。FIG. 2 is an optical path diagram of the imaging lens shown in FIG. 1. 実施例1における、球面収差、非点収差、歪曲収差、倍率色収差を示す収差図である。FIG. 3 is an aberration diagram showing spherical aberration, astigmatism, distortion, and lateral chromatic aberration in Example 1. 実施例2における、球面収差、非点収差、歪曲収差、倍率色収差を示す収差図である。FIG. 6 is an aberration diagram showing spherical aberration, astigmatism, distortion, and lateral chromatic aberration in Example 2.

符号の説明Explanation of symbols

L 光軸
TL レンズ全長
f レンズ全系の焦点距離
f1 第1レンズの焦点距離
1 第1レンズ
2 第2レンズ
3 第3レンズ
SD 開口絞り
P 像面
ν1 第1レンズのアッベ数
ν2 第2レンズのアッベ数
ν3 第3レンズのアッベ数
D3 開口絞りから第3レンズの物体側の面までの光軸上の間隔
D7 第3レンズの像面側の面から像面までの光軸上の間隔
L optical axis TL total lens length f focal length f1 of entire lens system first focal length 1 first lens 2 second lens 3 third lens SD aperture stop P image plane ν1 Abbe number ν1 of first lens ν2 of second lens Abbe number ν3 Abbe number D3 of the third lens Distance on the optical axis from the aperture stop to the object side surface of the third lens D7 Distance on the optical axis from the image side surface of the third lens to the image plane

Claims (5)

物体側から像面側に向けて順に、正の屈折率をもつ第1レンズ、所定の口径をなす開口絞り、正の屈折率をもつと共に物体側に凹状をなすメニスカス形状の第2レンズ、負の屈折率をもつと共に像面側の面が光軸近傍において像面側に凹状でかつ周辺部に向かうに連れて像面側に凸状をなす第3レンズとを備え、
前記第1レンズ、第2レンズ、及び第3レンズは、全て樹脂材料により形成されると共に物体側及び像面側の両面が全て非球面に形成され、かつ、前記第1レンズのアッベ数をν1、前記第2レンズのアッベ数をν2、前記第3レンズのアッベ数をν3とするとき、下記条件式(1),(2),(3)を満たすことを特徴とする撮像レンズ。
(1)|ν1−ν2|<20
(2)|ν2−ν3|<20
(3)|ν1−ν3|<20
In order from the object side to the image surface side, a first lens having a positive refractive index, an aperture stop having a predetermined aperture, a second meniscus lens having a positive refractive index and concave on the object side, negative A third lens that has a refractive index of 2 and a concave surface on the image surface side in the vicinity of the optical axis and a convex shape on the image surface side toward the periphery,
The first lens, the second lens, and the third lens are all made of a resin material, both the object side and the image side are both aspherical, and the Abbe number of the first lens is ν1. An imaging lens satisfying the following conditional expressions (1), (2), and (3) when the Abbe number of the second lens is ν2 and the Abbe number of the third lens is ν3.
(1) | ν1-ν2 | <20
(2) | ν2-ν3 | <20
(3) | ν1-ν3 | <20
前記第1レンズのアッベ数ν1、前記第2レンズのアッベ数ν2、及び前記第3レンズのアッベ数ν3は、下記条件式(4),(5),(6)を満たすことを特徴とする請求項1記載の撮像レンズ。
(4)30<ν1<60
(5)30<ν2<60
(6)30<ν3<60
The Abbe number ν1 of the first lens, the Abbe number ν2 of the second lens, and the Abbe number ν3 of the third lens satisfy the following conditional expressions (4), (5), and (6). The imaging lens according to claim 1.
(4) 30 <ν1 <60
(5) 30 <ν2 <60
(6) 30 <ν3 <60
前記第1レンズの焦点距離をf1、レンズ全系の焦点距離をf、前記第1レンズの物体側の面から像面までの距離をTLとするとき、下記条件式(7),(8)を満たすことを特徴とする請求項1又は2に記載の撮像レンズ。
(7)0.95<f1/f<1.05
(8)TL/f<1.35
When the focal length of the first lens is f1, the focal length of the entire lens system is f, and the distance from the object side surface of the first lens to the image plane is TL, the following conditional expressions (7) and (8) The imaging lens according to claim 1, wherein:
(7) 0.95 <f1 / f <1.05
(8) TL / f <1.35
前記第3レンズの像面側の面から像面までの光軸上の間隔をD7、レンズ全系の焦点距離をfとするとき、下記条件式(9)を満たすことを特徴とする請求項1ないし3いずれか一つに記載の撮像レンズ。
(9)2.05<f/D7<2.17
The following conditional expression (9) is satisfied, where D7 is the distance on the optical axis from the image plane side surface of the third lens to the image plane, and f is the focal length of the entire lens system. The imaging lens according to any one of 1 to 3.
(9) 2.05 <f / D7 <2.17
前記開口絞りから前記第3レンズの物体側の面までの光軸上の間隔をD3、レンズ全系の焦点距離をfとするとき、下記条件式(10)を満たすことを特徴とする請求項1ないし4いずれか一つに記載の撮像レンズ。
(10)f/D3>5.2
The following conditional expression (10) is satisfied, where D3 is the distance on the optical axis from the aperture stop to the object side surface of the third lens, and f is the focal length of the entire lens system. The imaging lens according to any one of 1 to 4.
(10) f / D3> 5.2
JP2005121848A 2005-04-20 2005-04-20 Imaging lens Pending JP2006301221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005121848A JP2006301221A (en) 2005-04-20 2005-04-20 Imaging lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005121848A JP2006301221A (en) 2005-04-20 2005-04-20 Imaging lens

Publications (1)

Publication Number Publication Date
JP2006301221A true JP2006301221A (en) 2006-11-02

Family

ID=37469592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005121848A Pending JP2006301221A (en) 2005-04-20 2005-04-20 Imaging lens

Country Status (1)

Country Link
JP (1) JP2006301221A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275831A (en) * 2007-04-27 2008-11-13 Seiko Precision Inc Imaging lens
JP2009031697A (en) * 2007-07-30 2009-02-12 Sanyo Electric Co Ltd Photographic lens unit, photographing device and personal digital assistant
JP2010079296A (en) * 2008-08-28 2010-04-08 Konica Minolta Opto Inc Imaging lens and compact image capturing apparatus
CN103913822A (en) * 2013-11-15 2014-07-09 玉晶光电(厦门)有限公司 Optical imaging lens and electronic device comprising optical imaging lens
CN104252034A (en) * 2013-06-26 2014-12-31 大立光电股份有限公司 Imaging lens system and image capturing device
US9753299B2 (en) 2012-04-26 2017-09-05 Asahi Glass Company, Limited Optical element
US10048414B2 (en) 2013-01-22 2018-08-14 Asahi Glass Company, Limited Optical device, optical system, and imaging apparatus
CN111208640A (en) * 2016-09-19 2020-05-29 玉晶光电(厦门)有限公司 Eyepiece optical system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275831A (en) * 2007-04-27 2008-11-13 Seiko Precision Inc Imaging lens
JP2009031697A (en) * 2007-07-30 2009-02-12 Sanyo Electric Co Ltd Photographic lens unit, photographing device and personal digital assistant
JP2010079296A (en) * 2008-08-28 2010-04-08 Konica Minolta Opto Inc Imaging lens and compact image capturing apparatus
US9753299B2 (en) 2012-04-26 2017-09-05 Asahi Glass Company, Limited Optical element
US10048414B2 (en) 2013-01-22 2018-08-14 Asahi Glass Company, Limited Optical device, optical system, and imaging apparatus
CN104252034A (en) * 2013-06-26 2014-12-31 大立光电股份有限公司 Imaging lens system and image capturing device
US9030761B2 (en) 2013-06-26 2015-05-12 Largan Precision Co., Ltd. Imaging lens assembly
CN103913822A (en) * 2013-11-15 2014-07-09 玉晶光电(厦门)有限公司 Optical imaging lens and electronic device comprising optical imaging lens
CN111208640A (en) * 2016-09-19 2020-05-29 玉晶光电(厦门)有限公司 Eyepiece optical system
CN111208640B (en) * 2016-09-19 2022-04-08 玉晶光电(厦门)有限公司 Eyepiece optical system

Similar Documents

Publication Publication Date Title
US20200174227A1 (en) Imaging lens
CN113238353B (en) Camera lens
JP4744184B2 (en) Super wide angle lens
US10429616B2 (en) Imaging lens
JP5894847B2 (en) Imaging lens
JP5985904B2 (en) Imaging lens
JP5513641B1 (en) Imaging lens
JP4164103B2 (en) Imaging lens
JP5090832B2 (en) Imaging lens, camera module, and imaging device
CN113064259B (en) Camera lens
JP5513648B1 (en) Imaging lens
JP2004240063A (en) Imaging lens
JP2008241999A (en) Imaging lens
JP2009069195A (en) Imaging lens, camera module and imaging equipment
JP5022172B2 (en) Four-element compact imaging lens, camera module, and imaging device
JP2019045665A (en) Image capturing lens
JP2006301221A (en) Imaging lens
JP2007322839A (en) Imaging lens and personal digital assistant
JP2005316010A (en) Imaging lens
JP2006309043A (en) Imaging lens
JP4064434B1 (en) Imaging lens
JP2009098515A (en) Four-lens-type small imaging lens, camera module, and imaging apparatus
JP2008096621A (en) Imaging lens
JP2015161760A (en) imaging lens
JP2005338234A (en) Imaging lens