JP4032667B2 - Shooting lens - Google Patents

Shooting lens Download PDF

Info

Publication number
JP4032667B2
JP4032667B2 JP2001169300A JP2001169300A JP4032667B2 JP 4032667 B2 JP4032667 B2 JP 4032667B2 JP 2001169300 A JP2001169300 A JP 2001169300A JP 2001169300 A JP2001169300 A JP 2001169300A JP 4032667 B2 JP4032667 B2 JP 4032667B2
Authority
JP
Japan
Prior art keywords
lens
conditional expression
following conditional
power
satisfied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001169300A
Other languages
Japanese (ja)
Other versions
JP2002365530A (en
Inventor
悦郎 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2001169300A priority Critical patent/JP4032667B2/en
Publication of JP2002365530A publication Critical patent/JP2002365530A/en
Application granted granted Critical
Publication of JP4032667B2 publication Critical patent/JP4032667B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/22Telecentric objectives or lens systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主にデジタルスチルカメラをはじめ監視カメラ、PCカメラ(パーソナルコンピュータに付属の撮像装置)のようなCCD(charged coupled device)等の撮像素子を使用した小型の撮像装置に用いられる高性能でコンパクトな撮影レンズに関する。
【0002】
【従来の技術】
近年の一般向けデジタルスチルカメラ(以下、DSC)の急速な普及には目を見張るものがある。DSCは、構造的には、撮影レンズによって結像された静止画像をCCD他の撮像素子(以下CCD)により画像を電気的に取り込み、内蔵メモリやメモリカードなどに記録する撮像装置であり、普及の当初は、液晶モニターを撮影の際のファインダーとして、また撮影した画像の再生用モニターとして使用出来るため、銀塩カメラに比べて即時性、利便性をアピールして普及してきたが、一方では銀塩カメラに較べて撮影画像の解像度が低く、欠点と指摘されてきた。しかしながら、その点でも急速な普及と共にCCDの画素数が多いものが安価に供給されるなどしてDSCは、解像力の点でも普及判のプリントサイズなどの制限の範囲では銀塩カメラの解像力に迫る勢いで改良され製品化されるようになった。
【0003】
ここで従来のDSCの撮影レンズに目を向けると、高画素ながら画像の取り込みをCCDを用いていることから、構成的にはVTR用撮影レンズに類似していることがわかる。しかし、求められる解像力や画像の品位の面で、さらに高い性能を要求されるため、構成的には複雑化している場合が多く、光学系の大きさについても、CCDの画面サイズを同じとしてもVTR用撮影レンズよりDSC用撮影レンズの方が大型化してしまう。以下に、従来のDSC用の撮影レンズについて特徴の概略を列挙してみる。
【0004】
1.高画質である
最近では、CCDの画素数では、300万画素〜400万画素が、一般向けのDSCでも発表されている。VTRに使用されている、35万画素クラスの撮像素子とは、画面寸法が違うため、直接比較することはあまり意味を成さないが、画面寸法を無視すれば、約10倍の差がある事になる。すなわち、撮影レンズに要求される、収差補正の精度(難易度)も、この差程度の違いがあると考えられる。
CCDの画素数を上げるには、現在一般的には、画面寸法をなるべく大きくせずに、画素ピッチを小さくする方法で画素数を上げる方法がとられており、例えば、デジタルスチルカメラ用として最近発表されている有効画素数が130万画素クラスのCCDでは画素ピッチは4.2μm程度となっている。従って、最小錯乱円径を画素ピッチの2倍と仮定しても8.4μmであり、35mm判銀塩カメラの最小錯乱円径が約33μmと考えられるので、デジタルスチルカメラの撮影レンズに要求される解像力は銀塩カメラの約4倍ということが言える。
【0005】
2.像側テレセントリック性が良好であること
像側のテレセントリック性とは、各像点に対する光線束の主光線が、光学系の最終面を射出した後、光軸とほぼ平行になる、すなわち、像面とはほぼ垂直に交わることを言う。言い換えると、光学系の射出瞳位置が像面から十分離れることである。これは、CCD上の色フィルターが撮像面からやや離れた位置にあるために、光線が、斜めから入射した場合、実質的な開口効率が減少する(シェーディングという)ためであり、特に最近の高感度型のCCDでは、撮像面の直前にマイクロレンズアレーを配しているものが多いが、この場合も同様に、射出瞳が十分離れていないと、周辺で開口効率がで低下してしまう。
【0006】
3.大きなバックフォーカスが必要
CCDの構造に起因する保護用のガラス板や、その後の空間はもとより、撮影レンズの光学系とCCDの間には一般的には幾つかの光学素子を挿入する空間が必要とされる。CCDの周期構造に起因して発生するモアレ現象等を防止する目的で挿入されるオプチカルローパスフィルター(以下、OLPF)やCCDの赤外波長域での感度を低下させて人の目の比視感度に近づける目的で、やはり光学系とCCDの間に挿入される赤外吸収フィルターがそれである。
【0007】
【発明が解決しようとする課題】
この様に、従来のDSCの撮影レンズには概略、3つの特徴(条件)があるが、最近になって2.の項目については、CCDの色フィルターやマイクロレンズアレーの配列の見直しによって、また、3.の項目についてはOLPF他の材質の見直しと共にCCDの構造を根本的な所から見直すことで改善の兆しが見えてきており、これらの改善によって条件的に緩和された分について、よりコンパクト性やコスト性を意識することによって、特徴を生かした撮影レンズの開発を行うための環境が出来つつある状況となっている。
【0008】
本発明は、前述した事情に鑑み、高解像でかつ構成枚数が少なく、コンパクトな撮影レンズを提供する。
【0009】
【課題を解決するための手段】
本発明の撮影レンズは、最も物体側に開口絞りを配し、以降物体側より順に、正の屈折力を有する(以下正レンズ)第1レンズ、負の屈折力を有する(以下負レンズ)第2レンズ、正レンズである第3レンズ、及び負レンズである第4レンズを配して構成され、全系を構成する屈折面の内少なくとも1面は非球面形状の屈折面を有する撮影レンズにおいて、前記第1レンズのパワーに関して下記条件式(1)を満足しており、また前記第2レンズのパワーに関して下記条件式(2)を満足しており、さらに前記第1レンズ及び前記第2レンズのアッベ数に関して下記条件式(3)を満足しており、前記第1レンズの像側面の形状に関して下記条件式(4)を満足しており、また前記第3レンズの像側面の形状に関して下記条件式(5)を満足しており、前記第4レンズの物体側面の形状に関して下記条件式(6)を満足していることを特徴とする。(請求項1)
(1) 1.5<f/f <2.5
(2) 1.5<f/|f |<2.5 (ただし絶対値はf <0のため)
(3) 15<ν −ν
(4) 0.8<|r /r |<2.5 (ただし絶対値はr <0のため)
(5) 0.25<|r |/f<0.45 (ただし絶対値はr <0のため)
(6) 1.2<r /f<2.0
ただし、
f :レンズ全系の合成焦点距離
:第1レンズの焦点距離
:第2レンズの焦点距離
ν :第1レンズのアッベ数
ν :第2レンズのアッベ数
:第1レンズの物体側面の曲率半径
:第1レンズの像側面の曲率半径
:第3レンズの像側面の曲率半径
:第4レンズの物体側面の曲率半径
【0010】
本発明の撮影レンズのレンズ構成の基本的特徴としては、大きな正のパワーを持つ前記第1レンズ及び大きな負のパワーを持つ前記第2レンズと、それに続く比較的小さな正のパワーを有するの前記第3レンズ、そして最も像面側に小さな負のパワーを有する前記第4レンズとからなり、正、負、正、負と正のパワーが先行する、いわゆる望遠タイプのパワー配置を持つことである。さらに、色収差の補正のために、大きなパワーを持つ前記第1レンズ及び前記第2レンズにて主な色消しを行うことを特徴としている。従って、前記第1レンズ及び前記第2レンズにて主に軸上付近の球面収差、コマ収差、色収差を補正し、前記第3レンズ、前記第4レンズにて、主に軸外収差である歪曲収差の補正、テレセントリック性の良好に保つなどの作用を有している。
【0011】
この様な全体構成のもとで、条件式(1)は、前記第1レンズの適切なパワー配分に関する条件式である。条件式(1)の上限を越えると、前記第1レンズのパワーが過大となり、球面収差、色収差が大きく発生してしまう。反対に下限を越えると、単色収差の補正には有利であるが、レンズ系全長が大きくなってしまい、コンパクト性を損ねてしまう。
【0012】
条件式(2)は負レンズのパワーに関する条件式である。レンズ全系で、負のパワーを有するのは、前記第2レンズ及び前記第4レンズであるが、負パワーの多くが、前記第2レンズに委ねられているため、前記第2レンズのパワーに関する条件は、すなわちレンズ全系における負レンズのパワー配分に関する条件式と言うことが出来る。この負のパワーは正レンズである前記第1レンズ及び前記第3レンズで発生する色収差、球面収差を補正するための条件式となる。従って、条件式の上限を越えると色補正が過剰となり、小型化がしにくい。反対に下限を越えると、色補正の不足となり、球面収差、コマ収差の補正も難しくなる。
【0013】
条件式(3)は、主たるパワーを有する前記第1レンズ及び前記第2レンズの色消し条件であり、下限を越えると、正、負レンズパワーが過大となり単色収差や加工上の問題が発生し、上限を越えると、やはり正レンズの屈折率の低下による単色収差の発生は過大となる。
【0015】
条件式(4)は主に球面収差を補正するための前記第1レンズの形状に関しての条件式である。従って、条件式の上限を越えると負の球面収差が大きく発生し、前記第1レンズより後方に位置するレンズでの補正が困難となり、また、コマ収差についても過大発生してしまう。反対に下限を越えると軸外の収差補正については有利となるが、前記第1レンズの像側面で過大発生する球面収差について、補正する手段を持つことが出来ない。
【0016】
条件式(5)は、前記第3レンズの形状に関するもので、前記第3レンズは、像側に凸面を向けたゆるい正メニスカス形状であることが必要となる。また、ゆるい正のパワーを持たせることにより、前記第1レンズ、及び前記第2レンズのパワーの軽減をはかりつつ軸外収差の補正を行う事にある。上限を越えると、軸外主光線角度が低くなりすぎ、前記第4レンズでは修正不能のためテレセントリック性が劣化してしまう。下限を越えると、テレセントリック性の面では有利であるが、軸外コマフレアが増大して、性能が劣化する。
【0017】
条件式(6)は前記第4レンズの形状に関する条件を示しており、主に像側のテレセントリック性及び歪曲収差に関しての条件となる。この条件式の範囲において、これらの収差のバランスをとっていることから、上限を越えても、下限を越えても共に、像側のテレセントリック性及び歪曲収差の劣化を招くこととなる。
【0018】
さらに、前記第1レンズがガラス材料で製作される以外の、前記第2レンズから前記第4レンズは樹脂材料により製作されていることが好ましく、(請求項2)これにより、樹脂材料の特徴である非球面の使用、及び低価格化が容易に可能となる。
【0019】
【発明の実施の形態】
以下、具体的な数値実施例について、本発明を説明する。以下の実施例1から実施例3では、いずれも最も物体側に開口絞りS(面としてはS1,S2)を配し、以降物体側より順に、第1レンズL1、第2レンズL2、第3レンズL3、及び第4レンズL4を配して構成される。前記第4レンズL4と像面との間には空気間隔をおいて平行平面ガラスLPが配されている。前記平行平面ガラスLPは、実際には水晶光学フィルターであるが、本発明の光学的説明には何ら問題はないので厚さの等しい1枚の平行平面ガラスとして表現している。
【0020】
各実施例において使用している非球面については、周知のごとく、光軸方向にZ軸、光軸と直交する方向にY軸をとるとき、非球面式:
Z=(Y /r)〔1+√{1−(1+K)(Y/r) }〕+A・Y +B・Y +C・Y +D・Y10 +‥‥
で与えられる曲線を光軸の回りに回転して得られる曲面で、近軸曲率半径:r、円錐定数:K、高次の非球面係数:A、B、C、Dを与えて形状を定義する。尚表中の円錐定数及び高次の非球面係数の表記において「Eとそれに続く数字」は「10の累乗」を表している。例えば、「E−4」は10−4 を意味し、この数値が直前の数値に掛かるのである。
【0021】
[実施例1] 本発明の撮影レンズの第1実施例について数値例を表1に示す。また図1は、そのレンズ構成図、図2はその諸収差図である。
表及び図面中、fはレンズ全系の焦点距離、Fno はFナンバー、2ωはレンズの全画角、b はバックフォーカスを表す。バックフォーカスb は前記第4レンズの像側面から像面までの空気換算距離である。 また、Rは曲率半径、Dはレンズ厚またはレンズ間隔、N はd線の屈折率、ν はd線のアッベ数を示す。また、球面収差図中のd、g、Cはそれぞれの波長における収差曲線であり、S.C.は正弦条件である。また非点収差図中のSはサジタル、Mはメリディオナルを示している。
【0022】
【表 1】

Figure 0004032667
【0023】
[実施例2] 第2実施例について数値例を表2に示す。また、図3はそのレンズ構成図、図4はその諸収差図である。
【表 2】
Figure 0004032667
【0024】
[実施例3] 第3実施例について数値例を表3に示す。また、図5はそのレンズ構成図、図6はその諸収差図である。
【表 3】
Figure 0004032667
【0025】
次に実施例1から実施例3に関して条件式(1)から条件式(6)に対応する値をまとめて表4に示す。
【表 4】
Figure 0004032667
【0026】
表4から明らかなように、実施例1から実施例3の各実施例に関する数値は条件式(1)から(6)を満足しているとともに、各実施例における収差図からも明らかなように、各収差とも良好に補正されている。
【0027】
【発明の効果】
本発明によれば、高解像でかつ構成枚数が少なく、コンパクトな撮影レンズを提供することが出来る。また、開口絞りが最も物体側に配置されていることにより、物体側から見たときに撮影レンズが目立たない特徴を生かし、特に監視用カメラやPCカメラ(パーソナルコンピュータ付属の撮像装置)にも使用することが可能となり、高性能である上、コンパクトで、さらに形状的な特徴を生かした製品に応用が可能である。
【図面の簡単な説明】
【図1】本発明による撮影レンズの第1実施例のレンズ構成図
【図2】第1実施例の撮影レンズの諸収差図
【図3】本発明による撮影レンズの第2実施例のレンズ構成図
【図4】第2実施例の撮影レンズの諸収差図
【図5】本発明による撮影レンズの第3実施例のレンズ構成図
【図6】第3実施例の撮影レンズの諸収差図[0001]
BACKGROUND OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is mainly used for a small-sized imaging apparatus using an imaging element such as a digital still camera, a surveillance camera, and a CCD (charged coupled device) such as a PC camera (an imaging apparatus attached to a personal computer). It relates to a compact photographic lens.
[0002]
[Prior art]
In recent years, the rapid spread of digital still cameras for general use (hereinafter referred to as DSC) is remarkable. The DSC is an imaging device that structurally captures a still image formed by a photographic lens using a CCD or other imaging device (hereinafter referred to as a CCD) and records it in a built-in memory or a memory card. At first, the LCD monitor can be used as a viewfinder for shooting and as a playback monitor for captured images. The resolution of captured images is lower than that of salt cameras, and has been pointed out as a drawback. However, DSC is approaching the resolution of a silver salt camera in the range of restrictions such as the print size of a popular format in terms of resolution as well. It was improved and commercialized with momentum.
[0003]
Here, when looking at the conventional DSC taking lens, it is understood that the CCD is used to capture an image although it has a high pixel, so that it is structurally similar to the VTR taking lens. However, since higher performance is required in terms of the required resolution and image quality, the structure is often complicated, and the optical system size and CCD screen size are the same. The DSC photographic lens becomes larger than the VTR photographic lens. The following outlines the features of conventional DSC photographing lenses.
[0004]
1. Recently, with a high image quality, 3 to 4 million pixels in the number of CCD pixels have been announced in general DSCs. Since the screen size is different from the 350,000 pixel class image sensor used in VTR, it does not make much sense to make a direct comparison, but there is a difference of about 10 times if the screen size is ignored. It will be a thing. In other words, it is considered that the aberration correction accuracy (difficulty) required for the photographic lens also has a difference of about this difference.
In order to increase the number of pixels of a CCD, currently, a method of increasing the number of pixels by reducing the pixel pitch without increasing the screen size as much as possible is used. In the CCD with the effective number of effective pixels of 1.3 million pixel class, the pixel pitch is about 4.2 μm. Therefore, even if the minimum circle of confusion is assumed to be twice the pixel pitch, it is 8.4 μm, and the minimum circle of confusion of a 35 mm silver salt camera is considered to be about 33 μm. Therefore, it is required for a photographic lens of a digital still camera. It can be said that the resolution is about four times that of a silver halide camera.
[0005]
2. Good image-side telecentricity Image-side telecentricity means that the principal ray of the light bundle for each image point is almost parallel to the optical axis after exiting the final surface of the optical system. Means crossing almost vertically. In other words, the exit pupil position of the optical system is sufficiently separated from the image plane. This is because, since the color filter on the CCD is located slightly away from the imaging surface, the effective aperture efficiency is reduced (called shading) when a light beam is incident obliquely. In many sensitivity type CCDs, a microlens array is arranged immediately before the imaging surface. Similarly, in this case, if the exit pupil is not sufficiently separated, the aperture efficiency decreases at the periphery.
[0006]
3. A large back focus is required. In addition to the protective glass plate caused by the CCD structure and the subsequent space, a space for inserting several optical elements is generally required between the optical system of the taking lens and the CCD. It is said. The optical visual low-pass filter (hereinafter referred to as “OLPF”) inserted for the purpose of preventing the moire phenomenon that occurs due to the periodic structure of the CCD, or the relative visibility of the human eye by reducing the sensitivity in the infrared wavelength region of the CCD. This is an infrared absorption filter which is inserted between the optical system and the CCD for the purpose of getting close to.
[0007]
[Problems to be solved by the invention]
As described above, the conventional DSC photographing lens generally has three characteristics (conditions). Regarding the item (2), by reviewing the arrangement of the CCD color filter and microlens array, With regard to the item, signs of improvement have been seen by reviewing the structure of the CCD from a fundamental point along with the review of other materials such as OLPF. By being conscious of sex, the environment for developing a photographic lens that makes the most of its characteristics is being created.
[0008]
In view of the circumstances described above, the present invention provides a compact photographic lens with high resolution and a small number of components.
[0009]
[Means for Solving the Problems]
The photographing lens of the present invention has an aperture stop closest to the object side, and thereafter, in order from the object side, a first lens having a positive refractive power (hereinafter positive lens) and a negative refractive power (hereinafter negative lens). An imaging lens having two lenses, a third lens that is a positive lens , and a fourth lens that is a negative lens, and at least one of the refractive surfaces constituting the entire system has an aspherical refractive surface. The power of the first lens satisfies the following conditional expression (1), the power of the second lens satisfies the following conditional expression (2), and the first lens and the second lens: The following conditional expression (3) is satisfied with respect to the Abbe number, the following conditional expression (4) is satisfied with respect to the shape of the image side surface of the first lens, and the shape of the image side surface of the third lens is as follows. Satisfy conditional expression (5) And which is characterized in that it satisfies the following conditional expression (6) with respect to the shape of the object side surface of the fourth lens. (Claim 1)
(1) 1.5 <f / f 1 <2.5
(2) 1.5 <f / | f 2 | <2.5 (the absolute value is f 2 <Because it is 0)
(3) 15 <ν 1 2
(4) 0.8 <| r 2 / R 1 | <2.5 (However, the absolute value is r 2 <Because it is 0)
(5) 0.25 <| r 6 | / F <0.45 (However, the absolute value is r 6 <Because it is 0)
(6) 1.2 <r 7 /F<2.0
However,
f: Composite focal length f 1 of the entire lens system : Focal length f 2 of the first lens : Focal length ν 1 of the second lens : Abbe number ν 2 of the first lens : Abbe number of the second lens
r 1 : Curvature radius of the object side of the first lens
r 2 : Radius of curvature of the image side of the first lens
r 6 : Curvature radius of the image side of the third lens
r 7 : Curvature radius of the object side surface of the fourth lens
The basic features of the lens configuration of the photographing lens of the present invention include the first lens having a large positive power, the second lens having a large negative power, and the subsequent relatively small positive power. It is composed of a third lens and the fourth lens having the smallest negative power on the image plane side, and has a so-called telephoto type power arrangement preceded by positive, negative, positive, negative and positive powers. . Further, in order to correct chromatic aberration, the first lens and the second lens having large power are mainly subjected to achromaticity. Accordingly, spherical aberration, coma aberration, and chromatic aberration near the axis are mainly corrected by the first lens and the second lens, and distortion that is mainly off-axis aberration is corrected by the third lens and the fourth lens. It has effects of correcting aberrations and maintaining good telecentricity.
[0011]
Under such an overall configuration, conditional expression (1) is a conditional expression regarding appropriate power distribution of the first lens. If the upper limit of conditional expression (1) is exceeded, the power of the first lens will be excessive, and large spherical aberration and chromatic aberration will occur. On the other hand, if the lower limit is exceeded, it is advantageous for correcting monochromatic aberration, but the overall length of the lens system becomes large and the compactness is impaired.
[0012]
Conditional expression (2) is a conditional expression regarding the power of the negative lens. It is the second lens and the fourth lens that have negative power in the entire lens system, but since much of the negative power is left to the second lens, it relates to the power of the second lens. The condition can be said to be a conditional expression relating to the power distribution of the negative lens in the entire lens system. This negative power is a conditional expression for correcting chromatic aberration and spherical aberration generated in the first lens and the third lens which are positive lenses. Therefore, if the upper limit of the conditional expression is exceeded, color correction becomes excessive and miniaturization is difficult. On the contrary, if the lower limit is exceeded, color correction becomes insufficient, and correction of spherical aberration and coma becomes difficult.
[0013]
Conditional expression (3) is an achromatic condition for the first lens and the second lens having the main power. If the lower limit is exceeded, the positive and negative lens powers become excessive, resulting in monochromatic aberrations and processing problems. If the upper limit is exceeded, the occurrence of monochromatic aberration due to a decrease in the refractive index of the positive lens becomes excessive.
[0015]
Conditional expression (4) is a conditional expression regarding the shape of the first lens mainly for correcting spherical aberration. Therefore, when the upper limit of the conditional expression is exceeded, large negative spherical aberration occurs, making correction with a lens located behind the first lens difficult, and excessive coma aberration. On the other hand, if the lower limit is exceeded, it is advantageous for correcting off-axis aberrations, but it is impossible to have a means for correcting spherical aberration that occurs excessively on the image side surface of the first lens.
[0016]
Conditional expression (5) relates to the shape of the third lens, and the third lens needs to have a loose positive meniscus shape with a convex surface facing the image side. Further, by providing a loose positive power, the off-axis aberration is corrected while reducing the power of the first lens and the second lens. If the upper limit is exceeded, the off-axis chief ray angle becomes too low, and the fourth lens cannot be corrected, so the telecentricity deteriorates. Exceeding the lower limit is advantageous in terms of telecentricity, but off-axis coma flare increases and performance deteriorates.
[0017]
Conditional expression (6) indicates the condition relating to the shape of the fourth lens, and is mainly the condition relating to telecentricity and distortion on the image side. Since these aberrations are balanced within the range of this conditional expression, both the upper limit and the lower limit are exceeded, which leads to degradation of image side telecentricity and distortion.
[0018]
Further, other than the first lens is made of glass material, it is preferable that the fourth lens from the second lens is made of a resin material, thereby (claim 2), a characteristic of a resin material A certain aspherical surface can be used easily and at a low price.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described with respect to specific numerical examples. In each of Examples 1 to 3 below, an aperture stop S (S1 and S2 as surfaces) is disposed on the most object side, and thereafter, in order from the object side, the first lens L1, the second lens L2, and the third lens. A lens L3 and a fourth lens L4 are arranged. A plane parallel glass LP is disposed between the fourth lens L4 and the image plane with an air gap. Although the plane parallel glass LP is actually a quartz optical filter, there is no problem in the optical description of the present invention, and therefore, the plane parallel glass LP is expressed as one plane parallel glass having the same thickness.
[0020]
As is well known, the aspherical surface used in each embodiment has an aspherical formula when taking the Z axis in the optical axis direction and the Y axis in the direction orthogonal to the optical axis:
Z = (Y 2 / R) [1 + √ {1- (1 + K) (Y / r) 2 }] + A · Y 4 + B ・ Y 6 + C ・ Y 8 + D · Y 10 + ...
Is a curved surface obtained by rotating the curve given by around the optical axis, and the shape is defined by giving paraxial curvature radius: r, conic constant: K, and higher-order aspheric coefficients: A, B, C, D To do. In the notation of the conic constant and the higher-order aspheric coefficient in the table, “E and the number following it” represent “power of 10”. For example, “E-4” is 10 −4. This value is multiplied by the previous value.
[0021]
Example 1 Table 1 shows numerical examples of the first example of the photographing lens of the present invention. FIG. 1 is a diagram showing the lens configuration, and FIG. 2 is a diagram showing various aberrations thereof.
In the tables and drawings, f is the focal length of the entire lens system, F no is the F number, 2ω is the total angle of view of the lens, and b f Represents the back focus. Back focus b f Is the air equivalent distance from the image side surface of the fourth lens to the image surface. R is a radius of curvature, D is a lens thickness or a lens interval, N d Is the refractive index of d-line, ν d Indicates the Abbe number of the d line. Further, d, g, and C in the spherical aberration diagram are aberration curves at respective wavelengths. C. Is a sine condition. In the astigmatism diagram, S indicates sagittal, and M indicates meridional.
[0022]
[Table 1]
Figure 0004032667
[0023]
[Example 2] Table 2 shows numerical examples of the second example. FIG. 3 is a diagram showing the lens configuration, and FIG. 4 is a diagram showing various aberrations thereof.
[Table 2]
Figure 0004032667
[0024]
[Example 3] Table 3 shows numerical examples of the third example. FIG. 5 is a lens configuration diagram, and FIG.
[Table 3]
Figure 0004032667
[0025]
Next, Table 4 summarizes values corresponding to the conditional expressions (1) to (6) regarding the first to third embodiments.
[Table 4]
Figure 0004032667
[0026]
As is clear from Table 4, the numerical values related to the examples of Examples 1 to 3 satisfy the conditional expressions (1) to (6), and are also apparent from the aberration diagrams in the examples. Each aberration is corrected well.
[0027]
【The invention's effect】
According to the present invention, it is possible to provide a compact photographic lens with high resolution and a small number of components. In addition, because the aperture stop is located closest to the object side, it takes advantage of the inconspicuous characteristics of the photographic lens when viewed from the object side, and is used especially for surveillance cameras and PC cameras (imaging devices attached to personal computers). It can be applied to products that have high performance, are compact, and take advantage of their shape characteristics.
[Brief description of the drawings]
FIG. 1 is a lens configuration diagram of a first example of a taking lens according to the present invention. FIG. 2 is a diagram showing various aberrations of the taking lens of the first example. FIG. 3 is a lens configuration of a second example of a taking lens according to the present invention. FIG. 4 is a diagram showing various aberrations of the photographic lens of the second embodiment. FIG. 5 is a lens configuration diagram of the photographic lens according to the third embodiment of the present invention.

Claims (2)

最も物体側に開口絞りを配し、以降物体側より順に、正の屈折力を有する(以下正レンズ)第1レンズ、負の屈折力を有する(以下負レンズ)第2レンズ、正レンズである第3レンズ、及び負レンズである第4レンズを配して構成される撮影レンズにおいて、全系を構成する屈折面の内少なくとも1面は非球面形状の屈折面であるものとし、前記第1レンズのパワーに関して下記条件式(1)を満足しており、また前記第2レンズのパワーに関して下記条件式(2)を満足しており、さらに前記第1レンズ及び前記第2レンズのアッベ数に関して下記条件式(3)を満足しており、前記第1レンズの像側面の形状に関して下記条件式(4)を満足しており、また前記第3レンズの像側面の形状に関して下記条件式(5)を満足しており、前記第4レンズの物体側面の形状に関して下記条件式(6)を満足していることを特徴とする撮影レンズ。
(1) 1.5<f/f <2.5
(2) 1.5<f/|f |<2.5 (ただし絶対値はf <0のため)
(3) 15<ν −ν
(4) 0.8<|r /r |<2.5 (ただし絶対値はr <0のため)
(5) 0.25<|r |/f<0.45 (ただし絶対値はr <0のため)
(6) 1.2<r /f<2.0
ただし、
f :レンズ全系の合成焦点距離
:第1レンズの焦点距離
:第2レンズの焦点距離
ν :第1レンズのアッベ数
ν :第2レンズのアッベ数
:第1レンズの物体側面の曲率半径
:第1レンズの像側面の曲率半径
:第3レンズの像側面の曲率半径
:第4レンズの物体側面の曲率半径
A first lens having a positive refracting power (hereinafter positive lens), a second lens having a negative refracting power (hereinafter negative lens), and a positive lens in order from the object side. In the photographing lens configured by arranging the third lens and the fourth lens which is a negative lens, at least one of the refracting surfaces constituting the entire system is an aspheric refracting surface, The following conditional expression (1) is satisfied with respect to the power of the lens, the following conditional expression (2) is satisfied with respect to the power of the second lens, and the Abbe numbers of the first lens and the second lens are further satisfied. The following conditional expression (3) is satisfied, the following conditional expression (4) is satisfied regarding the shape of the image side surface of the first lens, and the following conditional expression (5) regarding the shape of the image side surface of the third lens: ) Taking lens, characterized in that satisfies the following conditional expression (6) with respect to the shape of the object side surface of the fourth lens.
(1) 1.5 <f / f 1 <2.5
(2) 1.5 <f / | f 2 | <2.5 (the absolute value is f 2 <Because it is 0)
(3) 15 <ν 1 2
(4) 0.8 <| r 2 / R 1 | <2.5 (However, the absolute value is r 2 <Because it is 0)
(5) 0.25 <| r 6 | / F <0.45 (However, the absolute value is r 6 <Because it is 0)
(6) 1.2 <r 7 /F<2.0
However,
f: Composite focal length f 1 of the entire lens system : Focal length f 2 of the first lens : Focal length ν 1 of the second lens : Abbe number ν 2 of the first lens : Abbe number of the second lens
r 1 : Curvature radius of the object side of the first lens
r 2 : Radius of curvature of the image side of the first lens
r 6 : Curvature radius of the image side of the third lens
r 7 : Curvature radius of object side of 4th lens
前記第1レンズがガラス材料で製作され、それ以外の前記第2レンズから前記第4レンズは樹脂材料により製作されていることを特徴とする請求項1記載の撮影レンズ。The photographing lens according to claim 1, wherein the first lens is made of a glass material, and the second lens to the fourth lens other than the first lens are made of a resin material.
JP2001169300A 2001-06-05 2001-06-05 Shooting lens Expired - Fee Related JP4032667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001169300A JP4032667B2 (en) 2001-06-05 2001-06-05 Shooting lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001169300A JP4032667B2 (en) 2001-06-05 2001-06-05 Shooting lens

Publications (2)

Publication Number Publication Date
JP2002365530A JP2002365530A (en) 2002-12-18
JP4032667B2 true JP4032667B2 (en) 2008-01-16

Family

ID=19011395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001169300A Expired - Fee Related JP4032667B2 (en) 2001-06-05 2001-06-05 Shooting lens

Country Status (1)

Country Link
JP (1) JP4032667B2 (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI261120B (en) * 2002-07-18 2006-09-01 Konica Corp Image pickup lens, image pickup unit and portable terminal
JP2004326097A (en) * 2003-04-09 2004-11-18 Olympus Corp Image forming optical system and electronic apparatus using image forming optical system
JP4623993B2 (en) * 2003-04-22 2011-02-02 オリンパス株式会社 Imaging optical system and electronic apparatus using the same
JP4658511B2 (en) * 2003-04-23 2011-03-23 オリンパス株式会社 Imaging optical system, imaging apparatus and electronic apparatus equipped with the same
KR100757157B1 (en) * 2003-05-27 2007-09-07 코니카 미놀타 옵토 인코포레이티드 Small imaging lens and imaging device
DE602004031340D1 (en) * 2003-07-23 2011-03-24 Konica Minolta Opto Inc ILLUMINATING LENS AND PICTURE DEVICE
JP2005208236A (en) * 2004-01-21 2005-08-04 Sony Corp Single focal lens
CN100543509C (en) * 2004-08-20 2009-09-23 鸿富锦精密工业(深圳)有限公司 Digital camera lens
JP2006126494A (en) * 2004-10-28 2006-05-18 Sony Corp Imaging lens
JP2006184365A (en) 2004-12-27 2006-07-13 Konica Minolta Opto Inc Imaging lens system
US7215492B2 (en) 2005-03-17 2007-05-08 Konica Minolta Opto, Inc. Image pickup lens, image pickup apparatus, and mobile terminal provided with image pickup apparatus
JP4828317B2 (en) * 2005-09-29 2011-11-30 富士フイルム株式会社 Imaging lens
KR100691624B1 (en) 2006-02-15 2007-03-12 삼성전기주식회사 Subminiature optical system
KR101382702B1 (en) 2006-04-04 2014-04-08 엘지이노텍 주식회사 Lens system for camera
JP4940740B2 (en) 2006-04-13 2012-05-30 コニカミノルタオプト株式会社 Imaging lens, imaging device provided with imaging lens, and portable terminal provided with imaging device
JP4977869B2 (en) 2006-08-21 2012-07-18 コニカミノルタアドバンストレイヤー株式会社 Imaging lens, imaging device, and portable terminal
KR100799217B1 (en) 2006-09-11 2008-01-29 삼성테크윈 주식회사 Photographic lens
WO2008078709A1 (en) * 2006-12-22 2008-07-03 Seiko Precision Inc. Imaging lens, imaging device using the imaging lens, and portable terminal device
JP4924141B2 (en) 2007-03-28 2012-04-25 コニカミノルタオプト株式会社 Imaging lens, imaging device, and portable terminal
KR100940235B1 (en) 2007-04-24 2010-02-04 삼성테크윈 주식회사 Photographic lens
KR100933546B1 (en) * 2007-10-10 2009-12-23 마이크롭틱스 주식회사 Imaging lens
JP5353879B2 (en) 2008-03-31 2013-11-27 コニカミノルタ株式会社 Imaging lens, imaging device, and portable terminal
JP2009258286A (en) 2008-04-15 2009-11-05 Konica Minolta Opto Inc Imaging lens, imaging unit, and mobile terminal
JP2009282223A (en) 2008-05-21 2009-12-03 Konica Minolta Opto Inc Imaging lens, imaging unit and personal digital assistant
JP2010049113A (en) 2008-08-22 2010-03-04 Sony Corp Image pickup lens and image pickup apparatus
JP5304117B2 (en) 2008-09-05 2013-10-02 コニカミノルタ株式会社 Imaging lens, imaging device, and portable terminal
CN102460264B (en) * 2009-06-03 2014-07-16 柯尼卡美能达精密光学株式会社 Image pickup lens, image pickup device having image pickup lens, and portable terminal having image pickup device
CN102483512B (en) * 2009-09-02 2015-01-14 柯尼卡美能达株式会社 Single-focus optical system, image pickup device, and digital apparatus
JP2012008490A (en) 2010-06-28 2012-01-12 Sony Corp Imaging lens and imaging device
JP2012008489A (en) 2010-06-28 2012-01-12 Sony Corp Imaging lens and imaging device
JP2012068355A (en) 2010-09-22 2012-04-05 Olympus Corp Imaging optical system, and imaging apparatus equipped with the same
JP5589815B2 (en) 2010-12-14 2014-09-17 ソニー株式会社 Imaging lens and imaging apparatus
JP5830853B2 (en) 2010-12-14 2015-12-09 ソニー株式会社 Imaging lens and imaging apparatus
CN105319670B (en) * 2014-06-25 2018-02-27 Kolen株式会社 Photographic film optical system
KR101778070B1 (en) * 2015-05-14 2017-09-13 오사카 가스 케미칼 가부시키가이샤 Imaging Lens System

Also Published As

Publication number Publication date
JP2002365530A (en) 2002-12-18

Similar Documents

Publication Publication Date Title
JP4403672B2 (en) Shooting lens
JP4032667B2 (en) Shooting lens
JP3424030B2 (en) Shooting lens
JP3564107B2 (en) Compact shooting lens
JP4032668B2 (en) Shooting lens
JP5052956B2 (en) Photographing lens and photographing device
JP4827193B2 (en) Electronic imaging device
JP4103475B2 (en) Imaging lens device
JP3723637B2 (en) Shooting lens
JP6025048B2 (en) Imaging optical system, camera device, and portable information terminal device
JP2002162562A (en) Photographic lens
JP3821087B2 (en) Imaging lens device
JP5272668B2 (en) Imaging lens, camera, and portable information terminal
JP3723654B2 (en) Shooting lens system
JP4106882B2 (en) Zoom lens
JP2001356269A (en) Zoom lens
JP3788133B2 (en) Shooting lens
JP2001100091A (en) Photographic lens
JP4106881B2 (en) Zoom lens
JP2001100098A (en) Aspherical lens
JP4608917B2 (en) Zoom lens
JP2000275514A (en) Photographing lens for electronic still camera
JP2002162561A (en) Photographic lens
JP2002098887A (en) Photographing lens
JP3937706B2 (en) Shooting lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070730

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees