WO2016208432A1 - ウィンドファーム制御装置,ウィンドファーム及びウィンドファーム制御方法 - Google Patents
ウィンドファーム制御装置,ウィンドファーム及びウィンドファーム制御方法 Download PDFInfo
- Publication number
- WO2016208432A1 WO2016208432A1 PCT/JP2016/067474 JP2016067474W WO2016208432A1 WO 2016208432 A1 WO2016208432 A1 WO 2016208432A1 JP 2016067474 W JP2016067474 W JP 2016067474W WO 2016208432 A1 WO2016208432 A1 WO 2016208432A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- wind farm
- wind
- command value
- output
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for dc mains or dc distribution networks
- H02J1/10—Parallel operation of dc sources
- H02J1/102—Parallel operation of dc sources being switching converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/76—Power conversion electric or electronic aspects
Definitions
- the present invention relates to a wind farm control device, a wind farm, and a wind farm control method, and more particularly, to a wind farm control device and a wind farm control method suitable for direct current transmission of electric power generated using wind energy. It is.
- wind power generation is an effective power generation method using renewable energy.
- a wind power generator has a smaller individual output than a nuclear power generator or the like, and therefore, a plurality of wind power generators are provided as a wind farm, and these outputs are collectively connected to a system network or the like.
- wind power generators tend to have more installation restrictions than other power generators.
- many power transmission technologies for transmitting the output of the wind turbine generator as direct current are used.
- Patent Document 1 Japanese Patent Laid-Open No. 2003-274554
- An object of the present invention is to solve the above-described problem, and in the case of using a configuration in which the generated power of wind power generation is transmitted with direct current, a wind farm control device capable of suppressing fluctuations in the direct current transmission path, A wind farm and a wind farm control method are provided.
- the present invention provides a DC / DC power converter or a detection unit that detects DC power of an AC / DC power converter, and a power command value for suppressing fluctuations in the DC power.
- the output power of the wind power generator is decreased, while when the DC power falls below the wind farm output power target value, the power command value for suppressing the fluctuation of the DC power is calculated so as to increase the output power of the wind turbine generator.
- a DC / DC power converter or a detector for detecting a DC voltage of the AC / DC power converter, a fluctuation extractor for calculating a power command value for suppressing fluctuations of the DC voltage, and the power command.
- a power command value distribution unit that distributes the value to each AC / DC power converter or AC generator, and based on the allocated power command value, outputs of the AC / DC power converter or AC generator It was configured to adjust the power.
- the output power of the wind turbine generator is decreased, while when the DC voltage exceeds the lower limit value, the output power of the wind turbine generator is increased.
- the power command value for suppressing the fluctuation of the DC voltage is calculated.
- the rotational energy (or rotational speed) in the deceleration direction is in descending order
- the rotational energy in the acceleration direction or The power command value to be distributed to the AC / DC power converter or the AC power generator is calculated in descending order of the margin of (rotational speed).
- the power command value distribution unit increases the output power of the wind turbine generator in order of increasing product of the margin of rotational energy (or rotational speed) in the deceleration direction and the distribution upper limit value of the output increase command.
- the AC / AC power is increased in descending order of the tolerance of the rotational energy (or rotational speed) in the acceleration direction (also referred to as likelihood; the same shall apply hereinafter) and the distribution upper limit of the output reduction command.
- the power command value distributed to the DC power converter or AC generator is calculated.
- a wind farm control method for controlling a wind farm to be transmitted a value corresponding to DC power of the DC power transmission path is detected, and a command is given to the power converter to suppress fluctuations in the DC power based on the detection. It has comprised so that it might have an electric power command part which supplies.
- the present invention it is possible to suppress power fluctuations or voltage fluctuations in the DC transmission path in a configuration in which the generated power of the wind farm is transmitted by DC.
- FIG. It is a figure which shows the structure of the wind farm in Example 1.
- FIG. It is a figure explaining control of the AC / DC power converter device 13.
- FIG. It is a block diagram of the fluctuation
- FIG. It is a figure which shows the flow of a process in the electric power command value distribution part 103 (when increasing output electric power).
- FIG. 1 is a diagram showing a configuration of a wind farm in the first embodiment.
- the wind power generator 10 includes a windmill 11 that converts wind energy into rotational energy, a generator 12 that converts rotational energy into AC power, and an AC / DC power converter 13 that converts AC power into DC power. , At least two or more wind power generators are installed.
- the AC / DC power converter 13 has a function of controlling the output power of the wind power generator 10.
- the command value of the output power is determined according to the wind speed received by the wind turbine 11, for example.
- the output power command value is also changed by a power command from the power command value distribution unit 103 of the wind farm control device 100.
- the DC / DC power converter 20 is a power converter that collects the output power of the wind power generator 10 and boosts the DC voltage of the AC / DC power converter 13.
- the output power of the wind turbine generator 10 whose current has been boosted by the DC / DC power converter 20 is supplied to the power system 40 via the DC transmission line 30.
- the wind farm control device 100 is a digital control arithmetic device equipped with an analog / digital signal input / output port, a microprocessor, a communication function, and the like.
- the fluctuation extracting unit 102 calculates a power command value PWFFR for suppressing fluctuations in the wind farm output from the DC power PDC of the DC / DC power converter 20 detected by the sensor 101 or the DC voltage VDC.
- the power command value distribution unit 103 performs arithmetic processing for distributing the power command value calculated by the fluctuation extraction unit 102 to each AC / DC power converter 13.
- the distributed power command value is transmitted from the wind farm control device 100 to the control unit of each AC / DC power conversion device 13 as the distribution suppression value PWFFRn of the fluctuation suppression command. Note that n at the end of each variable name indicates the identification number of each wind turbine generator.
- the addition unit 81 adds the power command value PRn of the wind turbine generator determined according to the wind speed received by each windmill and the distribution value PWFFRn of the fluctuation suppression power command.
- the converter control unit 82 gates the output power value Pfb of the AC / DC power converter 13 so as to be equal to the sum of the power command value PRn of the wind power generator and the distribution value PWFFRn of the fluctuation suppression power command. Generate a pulse. In response to the gate pulse, the semiconductor switching element of the power converter 83 is turned on and off. Thereby, the AC power of the generator 12 is converted into desired DC power and supplied to the DC / DC power converter 20.
- FIG. 3 is a block diagram of the fluctuation extracting unit 102 when the DC power PDC is input.
- the value of the wind farm output power target value PWFR in the figure is set to, for example, a change range in which the output fluctuation of the wind farm does not adversely affect the power system based on the average wind speed and output state of each wind power generator.
- the fluctuation suppression power command value PWFFR is calculated by subtracting the DC power PDC from the wind farm output power target value PWFR. That is, the fluctuation suppression power command value PWFFR becomes a command value (positive value) that increases the output power of the wind turbine generator when the wind farm output power falls below the target value, while the wind farm output power exceeds the target value. Command value (negative value) to decrease the output power of the wind turbine generator.
- FIG. 4 is a block diagram of the fluctuation extracting unit 102 when the DC voltage VDC is input.
- VHI is the upper limit value of the DC voltage
- VLO is the lower limit value.
- the fluctuation suppression power command value PWFFR becomes a command value (negative value) for reducing the output power of the wind turbine generator when the DC voltage VDC at the wind farm output end exceeds the upper limit value VHI, while the DC at the wind farm output end When the voltage VDC exceeds the lower limit value VLO, it becomes a command value (positive value) for increasing the output power of the wind turbine generator.
- FIG. 5 is a diagram for explaining parameters for determining the distribution priority order of the power command value distribution unit 103.
- ERn on the horizontal axis is the rotational energy of each wind power generator
- ERMAXn is the upper limit value of the rotational energy
- ERMINn is the lower limit value of the rotational energy.
- PRn on the vertical axis is the power command value of the wind turbine generator determined according to the wind speed received by each windmill
- PRMAXn is the upper limit value of the power command
- PRMINn is the lower limit value of the power command. Note that n at the end of each variable name indicates the identification number of each wind turbine generator.
- Rotational energy ERn of each generator is obtained from [Equation 1]. In is the moment of inertia of each generator, and ⁇ n is the rotational speed.
- Equation 2 ERUn is the rotational energy margin in the acceleration direction of each wind turbine generator, and ERDn is the rotational energy margin in the deceleration direction.
- PRUn is the distribution upper limit value of the output increase command from the power command value distribution unit 103 to each wind power generator
- PRDn is the distribution upper limit value of the output decrease command
- APER1n of [Equation 4] is the product of the rotational energy margin ERDn in the deceleration direction of each wind turbine generator and the allocation upper limit value PRUn of the output increase command
- APER2n is the allocation upper limit of the rotational energy margin ERDn in the acceleration direction and the output decrease command. It is the product of the values PRDn.
- the power command value distribution unit 103 uses the values calculated by [Equation 2], [Equation 3], and [Equation 4] as parameters for determining the distribution priority order of the fluctuation suppression power command value PWFFR calculated by the fluctuation extraction unit 102. .
- the rotational energy ERn of each wind turbine in [Equation 2] is rotated by the rotational speed ⁇ n of each generator and the upper limit value ERMAXn of the rotational energy.
- the upper limit value ⁇ MAXn of the speed and the lower limit value ERMINn of the rotational energy may be set as the lower limit value ⁇ MINn of the rotational speed, and the rotational speed margin ⁇ Un in the acceleration direction and the rotational speed margin ⁇ Dn in the deceleration direction may be used.
- FIG. 6 shows a case where the output power of the wind turbine generator is increased.
- the priority order for increasing the output power is determined in descending order of the rotational energy margin ERDn [or the product APER1n of the upper limit value PRUn of the power command when increasing the output power] in the deceleration direction of each wind turbine generator. (Step S201).
- step S203 When there is a wind power generator having the same ERDn (Yes in step S202), the upper limit value PRUn of the power command when increasing the output power between the wind power generators having the same ERDn [or APER1n] [deceleration direction in the case of APER1n Of the rotational energy margin ERDn] is prioritized and the order is determined (step S203).
- the upper limit value PRUn [or ERDn] of the power command is also equal, for example, the one with the smaller identification number of the wind turbine generator is set to the higher priority.
- the determined priority order is used corresponding to the counter i in S204 to S207.
- PRUn (i) means the upper limit value PRUn of the power command with priority i. Note that if step S202 is No, step S203 is skipped.
- step S204 the fluctuation suppression power command value PWFFR is substituted for the internal variable PR, and the counter i indicating the priority order is reset to zero.
- step S205 1 is added to the priority order counter.
- step S206 it is determined whether or not the internal variable PR is equal to or lower than the upper limit value PRUn (i) of the highest i-th power command in the priority order. This process is terminated as PR (step S209). If No, the distribution control power command distribution value PWFFRn of the same identification number is set to the power command upper limit value PRUn (i) in step S207, and the power command upper limit value PRUn (i) is subtracted from the internal variable PR.
- step 208 it is determined whether or not the processing has been completed for all the wind turbine generators. If No, the process returns to step S205, the processing for the next priority wind turbine generator is performed, and if Yes, this processing is performed. finish.
- FIG. 7 shows a case where the output power of the wind turbine generator is reduced. First, the priority for increasing the output power is determined in descending order of the rotational energy margin ERUn in the acceleration direction of each wind turbine generator (step S301). Next, it is determined whether or not there are wind turbine generators having the same ERUn (step S302).
- step S302 When there is a wind power generator with equal ERUn (Yes in step S302), priority is given to the wind power generator with equal ERUn giving priority to the one with the larger upper limit value PRDn of the power command when reducing the output power ( Step S203).
- the upper limit value PRDn of the power command is also equal, for example, the one with the smaller identification number of the wind turbine generator is set as the higher priority. Note that if step S302 is No, step S303 is skipped.
- step S304 PWFFR of the fluctuation suppression power command value is substituted into the internal variable PR, and the counter i indicating the priority order is reset to zero.
- step S305 1 is added to the priority counter.
- step S306 it is determined whether or not the absolute value of the internal variable PR is equal to or lower than the upper limit value PRDn (i) of the i-th power command having the highest priority, and if Yes, the distribution value PWFFRn of the fluctuation suppression power command having the same identification number is determined. Is the internal variable PR, and the process is terminated (step S309).
- step S307 the distribution value PWFFRn of the fluctuation suppression power command having the same identification number is made negative of the upper limit value PRDn (i) of the power command, and the upper limit value PRDn (i) of the power command is added to the internal variable PR.
- step 308 it is determined whether or not the processing has been completed for all the wind turbine generators. If No, the process returns to step S305, the processing for the next priority wind turbine generator is performed, and if Yes, this processing is performed. finish. If the fluctuation suppression power command value PWFFR is zero, all the distribution values PWFFRn are set to zero and the process is terminated.
- the wind farm using the wind farm control device and its control method according to the present embodiment has a rotational energy (rotational speed) margin or a rotational energy (rotational speed) margin of each wind power generator and a power command. Since the wind farm fluctuation control power command value is distributed in consideration of the product of the upper limit value, it is possible to prevent the wind power generator from being stopped due to over-rotation or insufficient rotation.
- FIG. 8 is a diagram showing the configuration of a wind farm in another embodiment.
- the wind power generator 10 includes a windmill 11 that converts wind energy into rotational energy, and an AC power generator 14 that converts rotational energy into AC power. At least two or more wind power generators are installed.
- the AC generator 14 generates AC power such as a secondary excitation method in which a winding induction generator and an AC / DC converter are connected in parallel, or a full converter method in which a permanent magnet synchronous generator and an AC / DC converter are connected in series. It is a power generator that outputs, and has a function of controlling the output power of the wind power generator 10.
- the command value of the output power is determined according to the wind speed received by the wind turbine 11, for example.
- the output power command value is also changed by the power command distribution value PWFFRn of the wind farm control apparatus 100 described in the first embodiment.
- the transformer 50 is a step-up transformer for the wind power generator 10 and may be individually installed in each AC generator 14.
- the collected output power of each AC power generator is converted into DC power by the AC / DC power converter 60 and supplied to the power system 40 via the DC power transmission line 30.
- wind farm control apparatus 100 of the present embodiment If the wind farm control apparatus 100 of the present embodiment is used, the same effect can be obtained even in the configuration of the wind farm shown in the present embodiment.
- Wind power generator 11 Windmill 12: Generator 13: AC / DC power converter 14: AC power generator 20: DC / DC power converter 30: DC transmission line 40: Power system 50: Transformer 60: AC / DC power conversion device 81: addition unit 82: converter control unit 83: power converter 100: wind farm control device 101: sensor 102: fluctuation extraction unit 103: power command value distribution unit
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Eletrric Generators (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Direct Current Feeding And Distribution (AREA)
Abstract
ウィンドファームの発電電力を直流で送電する系統構成において,ウィンドファームの出力電力の変動を抑制する制御装置及びその方法を提供することである。 本発明のウィンドファーム制御装置は,直流電力,或いは直流電圧を検出する手段と,前記直流電力,或いは直流電圧の変動を抑制するための電力指令値を演算する変動抽出部と,前記電力指令値を各風力発電装置に配分する電力指令値配分部を備え,配分された前記電力指令値に基づいて,前記風力発電装置の出力電力を調整し,前記直流電力,或いは直流電圧が所定の範囲に入るように制御する。
Description
本発明は,ウィンドファーム制御装置,ウィンドファーム及びウィンドファーム制御方法に係り,特に,風のエネルギーを利用して発電した電力を直流送電するのに好適なウィンドファーム制御装置及びウィンドファーム制御方法に関するものである。
現在の電力需要は種々の形式の発電機器から賄われているところ,この中で,地球的環境改善の観点からCO2 削減が急務となっており,電力の発電源として,自然エネルギーを活用する風力発電が注目されている。このように,風力発電は,再生可能エネルギーを利用した有効な発電方式である。風力発電装置は原子力発電装置等と比較して個々の出力が小さいために複数の風力発電装置をウィンドファームとして設け,これらの出力を纏めて系統網等に接続している。
一方,風力発電装置は他の発電機器と比較して,設置の制約が多くなる傾向があり,発電装置から系統網等への電力送電において,送電効率を向上させるため,或いは,設置の外部環境に適するように工夫するため,風力発電装置の出力を直流として送電する送電技術が多く用いられる。
このような,風力発電の出力を直流として送電する技術は,例えば特開2003-274554号公報(特許文献1)に開示されている。
一方で,風力発電においては,風速の変動により安定した電力を供給できないといった問題があり,発電電力の変動によって直流送電における送電電力量或いは送電電圧等に悪影響を与える恐れがある。
すなわち,上記の従来技術では,例えば,風速等の変動により風力発電において発電電力が変動したときに,風力発電装置の出力を直流電力で送電する場合は,必ずしも直流系統の電力変動,或いは電圧変動を抑制できるとは限らないという問題があった。
本発明の目的は,上記の課題を解決することにあり,風力発電の発電電力を直流で送電する構成を用いる場合において,直流送電路での変動を抑制することが可能なウィンドファーム制御装置,ウィンドファーム及びウィンドファーム制御方法を提供することにある。
上記目的を達成するために,本発明は,DC/DC電力変換装置,或いはAC/DC電力変換装置の直流電力を検出する検出部と,前記直流電力の変動を抑制するための電力指令値を演算する変動抽出部と,前記電力指令値を各AC/DC電力変換装置,或いは交流発電装置に配分する電力指令値配分部を備え,配分された前記電力指令値に基づいて,前記AC/DC電力変換装置,或いは交流発電装置の出力電力を調整するように構成した。
更に,検出した前記直流電力がウィンドファーム出力電力目標値を上回った場合には前記風力発電装置の出力電力を減少させ,一方,前記直流電力がウィンドファーム出力電力目標値を下回った場合には前記風力発電装置の出力電力を増加させるように,前記直流電力の変動を抑制するための電力指令値を算出するように構成した。
また,DC/DC電力変換装置,或いはAC/DC電力変換装置の直流電圧を検出する検出部と,前記直流電圧の変動を抑制するための電力指令値を演算する変動抽出部と,前記電力指令値を各AC/DC電力変換装置,或いは交流発電装置に配分する電力指令値配分部を備え,配分された前記電力指令値に基づいて,前記AC/DC電力変換装置,或いは交流発電装置の出力電力を調整するように構成した。
更に,検出した前記直流電圧が上限値を超えた場合には前記風力発電装置の出力電力を減少させ,一方,前記直流電圧が下限値を超えた場合には前記風力発電装置の出力電力を増加させるように,前記直流電圧の変動を抑制するための電力指令値を算出するように構成した。
更に,風力発電装置の出力電力を増加させる場合,減速方向の回転エネルギー(または回転速度)の裕度が大きい順に,一方,風力発電装置の出力電力を減少させる場合,加速方向の回転エネルギー(または回転速度)の裕度が大きい順に,AC/DC電力変換装置,或いは交流発電装置に配分する電力指令値を算出するように構成した。
更に,前記電力指令値配分部は,風力発電装置の出力電力を増加させる場合,減速方向の回転エネルギー(または回転速度)の裕度と出力増加指令の配分上限値との積が大きい順に,一方,風力発電装置の出力電力を減少させる場合,加速方向の回転エネルギー(または回転速度)の裕度(或いは尤度とも称する。以下同じ。)と出力減少指令の配分上限値が大きい順に,AC/DC電力変換装置,或いは交流発電装置に配分する電力指令値を算出するように構成した。
或いは,複数台の風力発電装置と,前記複数の風力発電装置の出力を電力変換する複数の電力変換装置を有し,前記複数の風力発電装置の出力は集電されて直流送電路を介して送電されるウィンドファームを制御するウィンドファーム制御方法において,前記直流送電路の直流電力に相当する値を検出し,前記検出に基づいて前記直流電力の変動を抑制するように前記電力変換装置に指令を供給する電力指令部を有するように構成した。
本発明によれば,ウィンドファームの発電電力を直流で送電する構成において,直流送電路の電力変動或いは電圧変動を抑制することができる。
本発明を実施するための形態を以下,図を用いて説明する。
図1は,実施例1におけるウィンドファームの構成を示す図である。風力発電装置10は,風のエネルギーを回転エネルギーに変換する風車11と,回転エネルギーを交流電力に変換する発電機12と,交流電力を直流電力に変換するAC/DC電力変換装置13で構成され,少なくとも2台以上の風力発電装置が設置される。
AC/DC電力変換装置13は,風力発電装置10の出力電力を制御する機能を持つ。出力電力の指令値は,例えば,風車11が受ける風速に応じて決定される。また,この出力電力指令値はウィンドファーム制御装置100の電力指令値配分部103からの電力指令によっても変更される。
DC/DC電力変換装置20は,風力発電装置10の出力電力を集電し,AC/DC電力変換装置13の直流電圧を昇圧する電力変換装置である。DC/DC電力変換装置20によって集電昇圧された風力発電装置10の出力電力は,直流送電線30を介して電力系統40に供給される。
ウィンドファーム制御装置100は,アナログ・デジタル信号の入出力ポート,マイクロプロセッサ,通信機能等を備えたデジタル制御演算装置である。
変動抽出部102では,センサ101で検出したDC/DC電力変換装置20の直流電力PDC,或いは直流電圧VDCからウィンドファーム出力の変動を抑制するための電力指令値PWFFRを算出する。
電力指令値配分部103では,変動抽出部102で算出した電力指令値を各AC/DC電力変換装置13に振り分けるための演算処理を行う。振り分けられた電力指令値は,ウィンドファーム制御装置100から各AC/DC電力変換装置13の制御部に変動抑制指令の配分値PWFFRnとして伝送される。なお,各変数名の末尾のnは,各風力発電装置の識別番号を示すものである。
次に,図2を使って,AC/DC電力変換装置13の制御を説明する。
各風車が受ける風速に応じて決定された風力発電装置の電力指令値PRnと,変動抑制電力指令の配分値PWFFRnとが,加算部81で加算される。変換器制御部82では,AC/DC電力変換装置13の出力電力値であるPfbが,風力発電装置の電力指令値PRnと変動抑制電力指令の配分値PWFFRnとの加算値に等しくなるようにゲートパルスを発生する。該ゲートパルスに応じて電力変換器83の半導体スイッチング素子がオンオフ動作をする。これにより,発電機12の交流電力は所望の直流電力に変換されてDC/DC電力変換装置20に供給される。
次に,図3を使って変動抽出部102のウィンドファーム出力の変動を抑制するための電力指令値を算出する方法について説明する。
図3は,直流電力PDCを入力とする場合の変動抽出部102のブロック図である。図中のウィンドファーム出力電力目標値PWFRの値は,例えば,各風力発電装置の平均風速や出力状態を基にウィンドファームの出力変動が電力系統に悪影響を及ぼさない範囲の変化幅に設定される。変動抑制電力指令値PWFFRは,ウィンドファーム出力電力目標値PWFRから直流電力PDCを減算することで算出する。即ち,変動抑制電力指令値PWFFRは,ウィンドファーム出力電力が目標値を下回った時に風力発電装置の出力電力を増加させる指令値(正の値)となり,一方,ウィンドファーム出力電力が目標値を上回った時に風力発電装置の出力電力を減少させる指令値(負の値)となる。
図4は,直流電圧VDCを入力とする場合の変動抽出部102のブロック図である。図中のVHIは,直流電圧の上限値,VLOは下限値である。変動抑制電力指令値PWFFRは,ウィンドファーム出力端の直流電圧VDCが上限値VHIを超えた時に風力発電装置の出力電力を減少させる指令値(負の値)となり,一方,ウィンドファーム出力端の直流電圧VDCが下限値VLOを超えた時に風力発電装置の出力電力を増加させる指令値(正の値)となる。
次に電力指令値配分部103について,詳細に説明する。
図5は,電力指令値配分部103の配分優先順位を決定するパラメータについて説明する図である。横軸のERnは各風力発電装置の回転エネルギー,ERMAXnは回転エネルギーの上限値,ERMINnは回転エネルギーの下限値である。縦軸のPRnは各風車が受ける風速に応じて決定された風力発電装置の電力指令値,PRMAXnは電力指令の上限値,PRMINnは電力指令の下限値である。なお,各変数名の末尾のnは,各風力発電装置の識別番号を示すものである。
各発電機の回転エネルギーERnは,[数1]により求める。Inは各発電機の慣性モーメント,ωnは回転速度である。
[数2]のERUnは,各風力発電装置の加速方向の回転エネルギー裕度,ERDnは減速方向の回転エネルギー裕度である。
[数3]のPRUnは,電力指令値配分部103から各風力発電装置への出力増加指令の配分上限値,PRDnは出力減少指令の配分上限値である。
[数4]のAPER1nは,各風力発電装置の減速方向の回転エネルギー裕度ERDnと出力増加指令の配分上限値PRUnの積,APER2nは加速方向の回転エネルギー裕度ERDnと出力減少指令の配分上限値PRDnの積である。
電力指令値配分部103では,変動抽出部102で算出した変動抑制電力指令値PWFFRの配分優先順位を決定するパラメータとして[数2],[数3],[数4]で演算した値を用いる。
なお,対象とするウィンドファーム内の各発電機の慣性モーメントが全て等しい場合には,[数2]の各風車の回転エネルギーERnを各発電機の回転速度ωn,回転エネルギーの上限値ERMAXnを回転速度の上限値ωMAXn,回転エネルギーの下限値ERMINnを回転速度の下限値ωMINnとして,加速方向の回転速度裕度ωUn,減速方向の回転速度裕度ωDnとしてもよい。
次に電力指令値配分部103における処理の流れを,図6,7を用いて説明する。
図6では2つの実施例(第1の実施例,第2の実施例)が並列的に記載されている。例えば図6の301では「ERDn[APER1n]」と記載されている。これは,第1の実施例ではERDnを用いるものであり,一方,第2の実施例ではERDnの替わりにAPER1nを用いることを示している。したがって,この図において,[ … ]の記載は第2の実施例において,第1の実施例の置き換えを意味する。[ … ]の記載のない部分は,第2の実施例において,第1の実施例と同様であることを意味する。
図6は,風力発電装置の出力電力を増加させる場合を示している。始めに,各風力発電装置の減速方向の回転エネルギー裕度ERDn[またはERDnと出力電力を増加させる場合の電力指令の上限値PRUnの積APER1n]が大きい順に出力電力を増加させる優先順位を決定する(ステップS201)。次にERDn[またはAPER1n]が等しい風力発電装置があるか否かを判定する(ステップS202)。ERDnが等しい風力発電装置がある場合(ステップS202でYes),ERDn[またはAPER1n]の等しい風力発電装置間について,出力電力を増加させる場合の電力指令の上限値PRUn[APER1nの場合には減速方向の回転エネルギー裕度ERDn]が大きい方を優先して順位を決定する(ステップS203)。電力指令の上限値PRUn[またはERDn]も等しい場合には,例えば,風力発電装置の識別番号の小さい方を優先順位の上位とする。この決められた優先順位はS204~S207のカウンタiに対応して用いられる。例えば,優先順位1の風力発電装置は,カウンタ=1の風力発電装置に対応する。また,例えば,PRUn(i)は,優先順位iの電力指令の上限値PRUnを意味する。なお,ステップS202でNoの場合は,ステップS203をスキップする。
ステップS204では,変動抑制電力指令値PWFFRを内部変数PRに代入し,優先順位を示すカウンタiをゼロにリセットする。次にステップS205で優先順位のカウンタに1を加算する。ステップS206では,内部変数PRが優先順位の上位i番目の電力指令の上限値PRUn(i)以下か否かが判定し,Yesならば同識別番号の変動抑制電力指令の配分値PWFFRnを内部変数PRとして本処理を終了する(ステップS209)。NoならばステップS207で同識別番号の変動抑制電力指令の配分値PWFFRnを電力指令の上限値PRUn(i)とし,内部変数PRから電力指令の上限値PRUn(i)を減算する。ステップ208では,全ての風力発電装置について処理が終わったか否かを判定し,NoならばステップS205に戻り,次の優先順位の風力発電装置に対しての処理を行い,Yesならば本処理を終了する。
図7は,風力発電装置の出力電力を減少させる場合を示している。始めに,各風力発電装置の加速方向の回転エネルギー裕度ERUnが大きい順に出力電力を増加させる優先順位を決定する(ステップS301)。次にERUnが等しい風力発電装置があるか否かを判定する(ステップS302)。ERUnが等しい風力発電装置がある場合(ステップS302でYes),ERUnの等しい風力発電装置間について,出力電力を減少させる場合の電力指令の上限値PRDnが大きい方を優先して順位を決定する(ステップS203)。電力指令の上限値PRDnも等しい場合には,例えば,風力発電装置の識別番号の小さい方を優先順位の上位とする。なお,ステップS302でNoの場合は,ステップS303をスキップする。
図7は,風力発電装置の出力電力を減少させる場合を示している。始めに,各風力発電装置の加速方向の回転エネルギー裕度ERUnが大きい順に出力電力を増加させる優先順位を決定する(ステップS301)。次にERUnが等しい風力発電装置があるか否かを判定する(ステップS302)。ERUnが等しい風力発電装置がある場合(ステップS302でYes),ERUnの等しい風力発電装置間について,出力電力を減少させる場合の電力指令の上限値PRDnが大きい方を優先して順位を決定する(ステップS203)。電力指令の上限値PRDnも等しい場合には,例えば,風力発電装置の識別番号の小さい方を優先順位の上位とする。なお,ステップS302でNoの場合は,ステップS303をスキップする。
ステップS304では,変動抑制電力指令値のPWFFRを内部変数PRに代入し,優先順位を示すカウンタiをゼロにリセットする。次にステップS305で優先順位のカウンタに1を加算する。ステップS306では,内部変数PRの絶対値が優先順位の上位i番目の電力指令の上限値PRDn(i)以下か否かが判定し,Yesならば同識別番号の変動抑制電力指令の配分値PWFFRnを内部変数PRとして本処理を終了する(ステップS309)。NoならばステップS307で同識別番号の変動抑制電力指令の配分値PWFFRnを電力指令の上限値PRDn(i)のマイナスとし,内部変数PRに電力指令の上限値PRDn(i)を加算する。ステップ308では,全ての風力発電装置について処理が終わったか否かを判定し,NoならばステップS305に戻り,次の優先順位の風力発電装置に対しての処理を行い,Yesならば本処理を終了する。
なお,変動抑制電力指令値PWFFRがゼロの場合は,全ての配分値PWFFRnをゼロにして本処理を終了する。
なお,変動抑制電力指令値PWFFRがゼロの場合は,全ての配分値PWFFRnをゼロにして本処理を終了する。
このように,本実施例のウィンドファーム制御装置及びその制御方法を用いたウィンドファームは,各風力発電装置の回転エネルギー(回転速度)裕度,または回転エネルギー(回転速度)裕度と電力指令の上限値の積を考慮してウィンドファームの変動抑制電力指令値を配分するため,風力発電装置の過回転や回転不足による停止を防止することができる。
<他の実施例>
図8は,他の実施例におけるウィンドファームの構成を示す図である。風力発電装置10は,風のエネルギーを回転エネルギーに変換する風車11と,回転エネルギーを交流電力に変換する交流発電装置14で構成され,少なくとも2台以上の風力発電装置が設置される。
図8は,他の実施例におけるウィンドファームの構成を示す図である。風力発電装置10は,風のエネルギーを回転エネルギーに変換する風車11と,回転エネルギーを交流電力に変換する交流発電装置14で構成され,少なくとも2台以上の風力発電装置が設置される。
交流発電装置14は,例えば,巻線形誘導発電機と交直電力変換器を並列接続した二次励磁方式や永久磁石式同期発電機と交直電力変換器を直列接続したフルコンバータ方式などの交流電力を出力する発電装置で,風力発電装置10の出力電力を制御する機能を持つ。出力電力の指令値は,例えば,風車11が受ける風速に応じて決定される。また,この出力電力指令値は実施例1で述べたウィンドファーム制御装置100の電力指令の配分値PWFFRnによっても変更される。
変圧器50は,風力発電装置10の昇圧用変圧器であり,各交流発電装置14に個別に設置してもよい。集電された各交流発電装置の出力電力は,AC/DC電力変換装置60で直流電力に変換され,直流送電線30を介して電力系統40に供給される。
本実施例のウィンドファーム制御装置100を用いれば,本実施形態に示すウィンドファームの構成においても同様の効果を得ることができる。
10:風力発電装置
11:風車
12:発電機
13:AC/DC電力変換装置
14:交流発電装置
20:DC/DC電力変換装置
30:直流送電線
40:電力系統
50:変圧器
60:AC/DC電力変換装置
81:加算部
82:変換器制御部
83:電力変換器
100:ウィンドファーム制御装置
101:センサ
102:変動抽出部
103:電力指令値配分部
11:風車
12:発電機
13:AC/DC電力変換装置
14:交流発電装置
20:DC/DC電力変換装置
30:直流送電線
40:電力系統
50:変圧器
60:AC/DC電力変換装置
81:加算部
82:変換器制御部
83:電力変換器
100:ウィンドファーム制御装置
101:センサ
102:変動抽出部
103:電力指令値配分部
Claims (19)
- 交流電力を直流電力に変換するAC/DC電力変換装置を有する複数台の風力発電装置と,前記各風力発電装置の出力を集電昇圧するDC/DC電力変換装置で構成されるウィンドファームを制御するウィンドファーム制御装置において,前記DC/DC電力変換装置の直流電力を検出する検出部と,前記直流電力の変動を抑制するための電力指令値を演算する変動抽出部と,前記電力指令値を前記AC/DC電力変換装置に配分する電力指令値配分部を有することを特徴とするウィンドファーム制御装置。
- 請求項1に記載のウィンドファーム制御装置において,前記変動抽出部は,検出した前記直流電力がウィンドファーム出力電力目標値を上回った場合には前記風力発電装置の出力電力を減少させ,一方,前記直流電力がウィンドファーム出力電力目標値を下回った場合には前記風力発電装置の出力電力を増加させるように電力指令値を算出することを特徴とするウィンドファーム制御装置。
- 請求項1に記載のウィンドファーム制御装置において,前記直流電圧の変動を抑制するための電力指令値を演算する変動抽出部と,前記電力指令値を各AC/DC電力変換装置に配分する電力指令値配分部を備え,配分された前記電力指令値に基づいて,前記AC/DC電力変換装置の出力電力を調整し,前記DC/DC電力変換装置の直流電力が所定の範囲に入るように制御することを特徴とするウィンドファーム制御装置。
- 請求項3に記載のウィンドファーム制御装置において,前記変動抽出部は,検出した前記直流電圧が上限値を超えた場合には前記風力発電装置の出力電力を減少させ,一方,前記直流電圧が下限値を超えた場合には前記風力発電装置の出力電力を増加させるように電力指令値を算出することを特徴とするウィンドファーム制御装置。
- 請求項1乃至請求項3のいずれかに記載のウィンドファーム制御装置において,前記電力指令値配分部は,風力発電装置の出力電力を増加させる場合,減速方向の回転エネルギー,または回転速度の裕度が大きい順に,一方,風力発電装置の出力電力を減少させる場合,加速方向の回転エネルギー,または回転速度の裕度が大きい順に,AC/DC電力変換装置に配分する電力指令値を算出することを特徴とするウィンドファーム制御装置。
- 請求項1乃至請求項3のいずれかに記載のウィンドファーム制御装置において,前記電力指令値配分部は,風力発電装置の出力電力を増加させる場合,減速方向の回転エネルギーまたは回転速度の裕度と出力増加指令の配分上限値との積が大きい順に,一方,風力発電装置の出力電力を減少させる場合,加速方向の回転エネルギーまたは回転速度の裕度と出力減少指令の配分上限値が大きい順に,AC/DC電力変換装置に配分する電力指令値を算出することを特徴とするウィンドファーム制御装置。
- 交流電力を出力する交流発電装置を有する複数台の風力発電装置と,前記各風力発電装置の交流電圧を昇圧する変圧器と,各風力発電装置の出力電力を直流電力に変換するAC/DC電力変換装置で構成されるウィンドファームを制御するウィンドファーム制御装置において,前記AC/DC電力変換装置の直流電力を検出する検出部と,前記直流電力の変動を抑制するための電力指令値を演算する変動抽出部と,前記電力指令値を各交流発電装置に配分する電力指令値配分部を備えたことを特徴とするウィンドファーム制御装置。
- 請求項7に記載のウィンドファーム制御装置において,前記変動抽出部は,検出した前記直流電力がウィンドファーム出力電力目標値を上回った場合には前記風力発電装置の出力電力を減少させ,一方,前記直流電力がウィンドファーム出力電力目標値を下回った場合には前記風力発電装置の出力電力を増加させるように電力指令値を算出することを特徴とするウィンドファーム制御装置。
- 請求項7に記載のウィンドファーム制御装置において,前記直流電圧の変動を抑制するための電力指令値を演算する変動抽出部と,前記電力指令値を各交流発電装置に配分する電力指令値配分部を備え,配分された前記電力指令値に基づいて,前記交流発電装置の出力電力を調整し,前記AC/DC電力変換装置の直流電力が所定の範囲に入るように制御することを特徴とするウィンドファーム制御装置。
- 請求項9に記載のウィンドファーム制御装置において,前記変動抽出部は,検出した前記直流電圧が上限値を超えた場合には前記風力発電装置の出力電力を減少させ,一方,前記直流電圧が下限値を超えた場合には前記風力発電装置の出力電力を増加させるように電力指令値を算出することを特徴とするウィンドファーム制御装置。
- 請求項7乃至請求項9に記載のいずれかに記載のウィンドファーム制御装置において,前記電力指令値配分部は,風力発電装置の出力電力を増加させる場合,減速方向の回転エネルギーまたは回転速度の裕度が大きい順に,一方,風力発電装置の出力電力を減少させる場合,加速方向の回転エネルギーまたは回転速度の裕度が大きい順に,交流発電装置に配分する電力指令値を算出することを特徴とするウィンドファーム制御装置。
- 請求項7乃至請求項9のいずれかに記載のウィンドファーム制御装置において,前記電力指令値配分部は,風力発電装置の出力電力を増加させる場合,減速方向の回転エネルギーまたは回転速度の裕度と出力増加指令の配分上限値との積が大きい順に,一方,風力発電装置の出力電力を減少させる場合,加速方向の回転エネルギーまたは回転速度の裕度と出力減少指令の配分上限値が大きい順に,交流発電装置に配分する電力指令値を算出することを特徴とするウィンドファーム制御装置。
- 複数台の風力発電装置と,前記複数の風力発電装置の出力を電力変換する複数の電力変換装置を有し,前記複数の風力発電装置の出力は集電されて直流送電路を介して送電されるウィンドファームを制御するウィンドファーム制御装置において,前記直流送電路の直流電力に相当する値を検出する検出部と,前記検出に基づいて前記直流電力の変動を抑制するように前記電力変換装置に指令を供給する電力指令部を有することを特徴とするウィンドファーム制御装置。
- 交流電力を直流電力に変換するAC/DC電力変換装置を有する複数台の風力発電装置と,前記各風力発電装置の出力を集電昇圧するDC/DC電力変換装置で構成されるウィンドファームにおいて,前記DC/DC電力変換装置の直流電力を検出する検出部と,前記直流電力の変動を抑制するための電力指令値を演算する変動抽出部と,前記電力指令値を前記AC/DC電力変換装置に配分する電力指令値配分部を有することを特徴とするウィンドファーム。
- 交流電力を直流電力に変換するAC/DC電力変換装置を有する複数台の風力発電装置と,各風力発電装置の出力を集電昇圧するDC/DC電力変換装置と,DC/DC電力変換装置の直流電力を検出する検出部と,前記直流電力の変動を抑制するための電力指令値を演算する変動抽出部と,前記電力指令値を各AC/DC電力変換装置に配分する電力指令値配分部で構成されるウィンドファームの制御方法において,配分された前記電力指令値に基づいて,前記AC/DC電力変換装置の出力電力を調整し,前記DC/DC電力変換装置の直流電力が所定の範囲に入るように制御するウィンドファームの制御方法。
- 請求項15に記載のウィンドファームの制御方法において,配分された前記電力指令値に基づいて,前記AC/DC電力変換装置の出力電力を調整し,前記DC/DC電力変換装置の直流電力が所定の範囲に入るように制御するウィンドファームの制御方法。
- 交流電力を出力する交流発電装置を有する複数台の風力発電装置と,各風力発電装置の交流電圧を昇圧する変圧器と,各風力発電装置の出力電力を直流電力に変換するAC/DC電力変換装置と,AC/DC電力変換装置の直流電力を検出する検出部と,前記直流電力の変動を抑制するための電力指令値を演算する変動抽出部と,前記電力指令値を各交流発電装置に配分する電力指令値配分部で構成されるウィンドファームの制御方法において,配分された前記電力指令値に基づいて,前記交流発電装置の出力電力を調整し,前記AC/DC電力変換装置の直流電力が所定の範囲に入るように制御するウィンドファームの制御方法。
- 請求項17に記載のウィンドファームの制御方法において,配分された前記電力指令値に基づいて,前記交流発電装置の出力電力を調整し,前記AC/DC電力変換装置の直流電力が所定の範囲に入るように制御するウィンドファームの制御方法。
- 複数台の風力発電装置と,前記複数の風力発電装置の出力を電力変換する複数の電力変換装置を有し,前記複数の風力発電装置の出力は集電されて直流送電路を介して送電されるウィンドファームを制御するウィンドファーム制御方法において,前記直流送電路の直流電力に相当する値を検出し,前記検出に基づいて前記直流電力の変動を抑制するように前記電力変換装置に指令を供給するウィンドファーム制御方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015126131A JP6726937B2 (ja) | 2015-06-24 | 2015-06-24 | ウィンドファーム制御装置,ウィンドファーム及びウィンドファーム制御方法 |
JP2015-126131 | 2015-06-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016208432A1 true WO2016208432A1 (ja) | 2016-12-29 |
Family
ID=57585679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/067474 WO2016208432A1 (ja) | 2015-06-24 | 2016-06-13 | ウィンドファーム制御装置,ウィンドファーム及びウィンドファーム制御方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6726937B2 (ja) |
WO (1) | WO2016208432A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114336733A (zh) * | 2021-11-24 | 2022-04-12 | 中国三峡建工(集团)有限公司 | 海上风电柔直系统耗能装置经济性提升评估方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018135031A1 (ja) * | 2017-01-19 | 2018-07-26 | 三菱電機株式会社 | 直流送電システムおよびそれに用いられるdc/dc変換器 |
GB2573397B (en) * | 2017-01-19 | 2022-04-27 | Mitsubishi Electric Corp | DC transmission system and DC/DC Converter used in the same |
ES2951574T3 (es) * | 2017-06-08 | 2023-10-24 | Vestas Wind Sys As | Funcionamiento de una turbina eólica durante pérdida de red eléctrica usando una unidad de almacenamiento de energía |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000047741A (ja) * | 1998-07-29 | 2000-02-18 | Kandenko Co Ltd | 風力発電用電力変換装置およびその制御方法 |
JP2006174694A (ja) * | 2004-12-17 | 2006-06-29 | General Electric Co <Ge> | 風力タービン発電機の制御方法および制御システム |
JP2015040551A (ja) * | 2013-08-23 | 2015-03-02 | 株式会社日本製鋼所 | 流体力電力システム |
JP2015080354A (ja) * | 2013-10-18 | 2015-04-23 | 三菱重工業株式会社 | 電力システム及びその運転方法、並びに電力システムの制御装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003274554A (ja) * | 2002-03-19 | 2003-09-26 | Hitachi Ltd | 電力供給方法 |
-
2015
- 2015-06-24 JP JP2015126131A patent/JP6726937B2/ja active Active
-
2016
- 2016-06-13 WO PCT/JP2016/067474 patent/WO2016208432A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000047741A (ja) * | 1998-07-29 | 2000-02-18 | Kandenko Co Ltd | 風力発電用電力変換装置およびその制御方法 |
JP2006174694A (ja) * | 2004-12-17 | 2006-06-29 | General Electric Co <Ge> | 風力タービン発電機の制御方法および制御システム |
JP2015040551A (ja) * | 2013-08-23 | 2015-03-02 | 株式会社日本製鋼所 | 流体力電力システム |
JP2015080354A (ja) * | 2013-10-18 | 2015-04-23 | 三菱重工業株式会社 | 電力システム及びその運転方法、並びに電力システムの制御装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114336733A (zh) * | 2021-11-24 | 2022-04-12 | 中国三峡建工(集团)有限公司 | 海上风电柔直系统耗能装置经济性提升评估方法 |
CN114336733B (zh) * | 2021-11-24 | 2023-05-26 | 中国三峡建工(集团)有限公司 | 海上风电柔直系统耗能装置经济性提升评估方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2017011911A (ja) | 2017-01-12 |
JP6726937B2 (ja) | 2020-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9997922B2 (en) | Method for feeding electrical power into an electrical supply network | |
JP4495001B2 (ja) | 発電システム | |
EP2673870B1 (en) | Control arrangement and method for regulating the output voltage of a dc source power converter connected to a multi-source dc system | |
WO2016208432A1 (ja) | ウィンドファーム制御装置,ウィンドファーム及びウィンドファーム制御方法 | |
KR102044511B1 (ko) | 전력 계통주파수 변동 저감을 위한 모듈러 멀티레벨 컨버터의 출력레벨 제어방법 | |
CN112840520A (zh) | 体系系统、控制装置以及体系系统的控制方法 | |
WO2015029138A1 (ja) | 太陽光発電システム | |
TWI466406B (zh) | Solar power generation system and power supply system | |
EP3018787A1 (en) | Microgrid control device and control method therefor | |
JP5636412B2 (ja) | 風力発電システム及びその励磁同期発電機の制御方法 | |
EP2709266A3 (en) | Voltage control in a doubly-fed induction generator wind turbine system | |
JP2007124780A (ja) | 蓄電システム及び風力発電所 | |
CN113381440A (zh) | 用于借助于风能系统馈入电功率的方法 | |
EP2720337A1 (en) | Operation control device for photovoltaic power generation system | |
EP2702684B1 (en) | A variable wind turbine having a power dissipating unit; a method of operating a power dissipating unit in a wind turbine | |
EP2867970B1 (en) | Method and controller for continuously operating a plurality of electric energy generating machines during a high voltage condition | |
JP5767895B2 (ja) | 分散電源の出力変動抑制装置および分散電源の出力変動抑制方法 | |
KR20160037238A (ko) | 풍력 발전 설비를 제어하기 위한 방법 | |
JP6130414B2 (ja) | 発電機の発電方法及びシステム | |
JP2015033307A (ja) | 複数蓄電デバイスを用いた電力変動抑制装置およびその制御方法 | |
JP2018023262A (ja) | 電力供給システム | |
US10801472B2 (en) | Method for controlling a power value of an offshore wind energy system | |
EP3410556B1 (en) | Control method for protecting generators | |
EP2605365A1 (en) | Management system for variable-resource energy generation systems | |
WO2012063576A1 (ja) | 風力発電装置群の制御装置及び制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16814203 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16814203 Country of ref document: EP Kind code of ref document: A1 |