WO2016206308A1 - 一种掺杂优化的超低衰减单模光纤 - Google Patents

一种掺杂优化的超低衰减单模光纤 Download PDF

Info

Publication number
WO2016206308A1
WO2016206308A1 PCT/CN2015/096108 CN2015096108W WO2016206308A1 WO 2016206308 A1 WO2016206308 A1 WO 2016206308A1 CN 2015096108 W CN2015096108 W CN 2015096108W WO 2016206308 A1 WO2016206308 A1 WO 2016206308A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
equal
less
cladding
refractive index
Prior art date
Application number
PCT/CN2015/096108
Other languages
English (en)
French (fr)
Inventor
张磊
龙胜亚
朱继红
吴俊�
王瑞春
Original Assignee
长飞光纤光缆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长飞光纤光缆股份有限公司 filed Critical 长飞光纤光缆股份有限公司
Priority to JP2017551596A priority Critical patent/JP6615905B2/ja
Priority to ES15896192T priority patent/ES2920807T3/es
Priority to KR1020177023832A priority patent/KR102034362B1/ko
Priority to PL15896192.0T priority patent/PL3316010T3/pl
Priority to EP15896192.0A priority patent/EP3316010B1/en
Publication of WO2016206308A1 publication Critical patent/WO2016206308A1/zh
Priority to US15/725,014 priority patent/US10018780B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • G02B6/03683Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only arranged - - + +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0286Combination of graded index in the central core segment and a graded index layer external to the central core segment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/12Doped silica-based glasses containing boron or halide containing fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/31Doped silica-based glasses containing metals containing germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/32Doped silica-based glasses containing metals containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/40Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03C2201/42Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn containing titanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/50Doped silica-based glasses containing metals containing alkali metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/54Doped silica-based glasses containing metals containing beryllium, magnesium or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2213/00Glass fibres or filaments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres

Definitions

  • the present invention relates to the field of optical communications, and in particular to a doping optimized ultra low attenuation single mode fiber.
  • the main method is to reduce the Rayleigh scattering coefficient of the fiber by controlling the composition control of the glass material and the thermodynamic change process of the glass during the preparation process;
  • the optical fiber manufacturing process is simple and controllable, and does not significantly increase the manufacturing cost of the optical fiber: because the current ultra-low attenuation process control is complicated, especially the current ultra-low attenuation pure silicon core design, in order to ensure the total reflection of the optical fiber, the cladding is made of perfluoro Doping the outer cladding material, the preparation process is complicated, and the cost of the optical fiber is very large;
  • the attenuation at 600nm-1600nm is mainly from Rayleigh scattering, and the attenuation ⁇ R caused by Rayleigh scattering can be calculated by the following formula:
  • R is the Rayleigh scattering coefficient (dB/km/ ⁇ m 4 ); P is the light intensity; when the Rayleigh scattering coefficient is confirmed, B is the corresponding constant. Therefore, as long as the Rayleigh scattering coefficient R is determined, the attenuation ⁇ R (dB/km) due to Rayleigh scattering can be obtained. Rayleigh scattering is caused by density fluctuations on the one hand and concentration fluctuations on the other hand. Therefore, the Rayleigh scattering coefficient R can be expressed as:
  • R d and R c respectively represent changes in the Rayleigh scattering coefficient due to density fluctuation and concentration fluctuation.
  • R c is the concentration fluctuation factor, which is mainly affected by the partial doping concentration of the fiber glass. Theoretically, the less Ge and F or other doping, the smaller the R c is . This is also the use of pure silicon core in some foreign companies. Designed to achieve the reason for ultra-low attenuation performance.
  • the Rayleigh scattering coefficient also includes another parameter R d .
  • R d is related to the fictive temperature T F of the glass and varies with structural changes in the glass and temperature changes.
  • the hypothetical temperature T F of the glass is a physical parameter that characterizes the glass structure. It is defined as the temperature at which the glass is rapidly cooled to room temperature from a certain temperature T' and the structure is not adjusted to reach a certain equilibrium state.
  • T F T'
  • T F glass The transition temperature
  • the core portion of the pure silicon core has a relatively high viscosity, and at the same time, the viscosity of the inner portion of the large amount of F-doping is low, thereby causing an imbalance in the viscosity matching of the optical fiber structure, thereby rapidly increasing the virtual temperature of the optical fiber of the pure silicon core structure, resulting in an optical fiber.
  • the R d increases. This not only offsets the benefits of R c reduction, but is more likely to cause fiber optic attenuation reverse anomalies.
  • Document CN201310394404 proposes an ultra-low attenuation fiber design using an outer cladding design of pure silica, but because it uses a typical step profile structure, there is no use of a depressed inner cladding design to optimize the bending of the fiber, and The core layer is not doped with Ge, so it may cause a viscosity mismatch in the preparation of the preform, and it is found that the attenuation and bending levels are relatively poor.
  • Document US2010022533 proposes a fiber optic design in which a pure silicon core design is used to achieve a lower Rayleigh coefficient, no co-doping of germanium and fluorine is performed in the core layer, and the design uses fluorine-doped dioxide. Silicon is used as an outer layer. For the design of this pure silicon core, it is required to carry out complex viscosity matching inside the optical fiber, and requires extremely low speed in the drawing process, avoiding the increase of attenuation caused by defects in the optical fiber caused by high-speed drawing, and the manufacturing process and its complexity. .
  • Ion doping can significantly change the material relaxation time of various parts of the fiber material, thereby changing the virtual temperature of the fiber. Therefore, the non-pure silicon core concept can be used in the process. By designing a reasonable viscosity for each part of the fiber, a simple core layer preparation method can be found, thereby realizing an ultra-low attenuation fiber.
  • the second challenge in achieving ultra-low attenuation fiber is to control costs.
  • a common ultra low attenuation single mode fiber design uses a full F doped overclad design. From the perspective of fiber optics, such a design is relatively simple, as long as the refractive index difference between the outer cladding and the core layer is ensured, the total reflection requirement of the fiber can be satisfied.
  • the current mainstream alkali metal process has high manufacturing cost and low efficiency.
  • the preform with pure F design has a small size and a complicated drawing process.
  • the fiber designed with pure F doping is very expensive to manufacture because of the F-doping process.
  • the price of the F-inlaid casing is 5-8 times that of the pure silica casing.
  • the F-doped material is 6 times the cost of the pure silica material
  • the manufacturing cost of the optical fiber will be significantly reduced.
  • this design is superior to traditional ultra-low attenuation fiber designs using full F-doped materials. 40% reduction; if F-doped materials are used from 30 microns to 60 microns, and ordinary pure silica is used from 60 to 125 microns, the material cost is reduced by 65%.
  • the suppression of the fundamental mode cutoff the difference in refractive index between the outer cladding material and the core material is too small, which may cause leakage of the fundamental mode of the optical fiber, thereby affecting the attenuation of the optical fiber. Therefore, an ultra-low attenuation fiber designed with a non-F-clad material must be in the middle of the outer cladding and the core layer to suppress the leakage of the fundamental mode through a reasonable fiber profile design.
  • Ppm a weight ratio of one part per million
  • the layer defined as the closest to the axis is the core layer of the fiber according to the change of the refractive index, and the outermost layer of the fiber, that is, the pure silicon dioxide layer is defined as the outer layer of the fiber.
  • n i is the absolute refractive index of the specific position portion of the fiber
  • n c is the absolute refractive index of the outer cladding, that is, the absolute refractive index of pure silica without Ge or F doping.
  • the relative refractive index contribution ⁇ Ge of the fiber core Ge doping is defined by the following equation.
  • n Ge is a hypothetical core Ge dopant, which is induced in pure silica without other dopants, causing a change in the refractive index of the silica glass
  • n c is the outermost outer cladding refractive index That is, the refractive index of pure silica which is not doped with Ge or F.
  • the technical problem to be solved by the present invention is to provide a doping-optimized ultra-low attenuation single-mode optical fiber for the above-mentioned shortcomings of the prior art, and achieve ultra-low attenuation performance by optimizing the viscosity of each part of the optical fiber and the waveguide structure. And simplify the process and reduce manufacturing costs.
  • the technical solution adopted by the present invention to solve the above-mentioned problems is to include a core layer, the outer layer of the core layer is coated from the inside to the outside, the inner cladding layer is depressed, the inner cladding layer is submerged, the outer cladding layer and the outer cladding layer are characterized, and the core is characterized by
  • the content of fluorine in the layer is less than or equal to 0.5% by weight, the relative refractive index contribution of cerium is less than or equal to 0.12%, the relative refractive index ⁇ n1 of the core layer is less than or equal to 0.12%, and the content of fluorine in the inner cladding is 0.5- 1.5wt%, the relative refractive index ⁇ n2 of the inner cladding is less than or equal to -0.14%, the content of fluorine in the depressed inner cladding is 1-3wt%, and the relative refractive index ⁇ n3 of the depressed inner cladding is less than or equal to -0.25%.
  • the auxiliary outer cladding layer has a fluorine content of 0.5-2wt and a relative refractive index ⁇ n4 of less than or equal to -0.14%, and the outer cladding layer is a pure silica glass layer and/or a metal doped silica glass layer.
  • the metal-doped metal impurities in the outer cladding layer include aluminum and an alkali metal, and the total content of the metal impurities is less than or equal to 25 ppm, wherein the aluminum content is 1-18 ppm, and the total alkali metal content is less than or equal to 2 ppm.
  • the alkali metal is one or more of lithium, sodium and potassium.
  • the metal impurities further include one or more of iron, calcium, magnesium, and titanium.
  • the core layer radius r 1 is 4.0 to 6.0 ⁇ m.
  • the inner cladding radius r 2 is 10 to 14 ⁇ m
  • the depressed inner cladding radius r 3 is 12.5 to 17 ⁇ m
  • the auxiliary outer cladding radius r 4 is 40 to 50 ⁇ m.
  • the relative refractive index ⁇ n1 of the core layer is 0.12% to -0.08%
  • the relative refractive index ⁇ n2 of the inner cladding layer is -0.14% to -0.35%
  • the relative refractive index of the depressed inner cladding layer is ⁇ n3 is -0.25% to -0.75%
  • the auxiliary outer cladding relative refractive index ⁇ n4 is -0.14% to -0.56%.
  • the outer cladding has a diameter of 125 ⁇ m.
  • the attenuation coefficient of the optical fiber at a wavelength of 1550 nm is less than or equal to 0.175 dB/km, and preferably less than or equal to 0.170 dB/km.
  • the beneficial effects of the invention are as follows: 1. Unique viscosity matching and optimized design of the waveguide structure: the core layer is co-doped with Ge and F, which reduces the viscosity of the core layer and makes it better with the inner thin layer and the depressed cladding layer. Matching, combined with the metal-doped matching viscosity outer cladding, the overall reduction of the virtual temperature of the fiber to achieve ultra-low attenuation performance; 2, through the depressed cladding design, to suppress the leakage of the fundamental mode; 3, the outer cladding part is pure silica outsourcing Layer material, the overall cost of the fiber is reduced; 4, the core layer of alkali metal material process is not used, reducing the difficulty of process control.
  • FIG. 1 is a distribution diagram of a refractive index profile structure according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the distribution of fluorine doping of each part in one embodiment of the present invention.
  • the single-mode optical fiber comprises a core layer, the outer layer of the core layer is coated from the inner side to the outer layer, the inner cladding layer is depressed, the outer cladding layer and the outer cladding layer are auxiliary, and the fluorine content in the core layer is less than or equal to 0.5 wt.
  • the relative refractive index contribution of cerium is less than or equal to 0.12%
  • the relative refractive index ⁇ n1 of the core layer is less than or equal to 0.12%
  • the content of fluorine in the inner cladding is 0.5-1.5 wt%
  • the relative refractive index of the inner cladding ⁇ n2 is less than or equal to -0.14%
  • the content of fluorine in the depressed inner cladding layer is 1-3wt%
  • the relative refractive index ⁇ n3 of the depressed inner cladding layer is less than or equal to -0.25%
  • the fluorine content in the auxiliary outer cladding layer is 0.5-2wt
  • the relative refractive index ⁇ n4 is less than or equal to -0.14%
  • the outer cladding is a pure silica glass layer and/or a metal-doped silica glass layer.
  • the optical fiber is drawn by a preform, and the preform mainly comprises two parts: an optical fiber core rod prepared by a PCVD method and a large casing of a hollow natural quartz sand material, and the method of inserting a core rod by using a sleeve of a fiber core rod and a large sleeve Assemble.
  • the core rod of the optical fiber preform comprises a core layer, an inner cladding layer, a depressed inner cladding layer and an auxiliary inner cladding layer.
  • the core layer of the optical fiber prepared by PCVD consists of quartz glass doped with fluorine and antimony: the inner cladding closely surrounds the core layer, and the core layer is prepared by PCVD deposition method; the depressed inner cladding layer is composed of fluorine-doped silica quartz glass deposited by PCVD process.
  • the third cladding layer is an auxiliary outer cladding layer composed of a fluorine-doped silica quartz glass deposited by PCVD and a liner of PCVD.
  • the large casing made of natural quartz sand is prepared from four different grades of natural quartz sand.
  • the numbering and specific impurity content are shown in Table 1.
  • Table 2 shows the fiber design with different material jackets and their corresponding attenuation coefficients.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Glass Compositions (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

一种掺杂优化超低衰减单模光纤,包括芯层,芯层从里向外依次包覆内包层,下陷内包层,辅助外包层和外包层,芯层中氟含量小于或等于0.5wt%,锗的相对折射率贡献量小于或等于0.12%,Δn1小于或等于0.12%,内包层中氟的含量为0.5-1.5wt%,Δn2小于或等于-0.14%,下陷内包层中氟的含量为1-3wt%,Δn3小于或等于-0.25%,辅助外包层中氟的含量为0.5-2wt%,Δn4小于或等于-0.14%,外包层为纯二氧化硅玻璃层和/或金属掺杂的二氧化硅玻璃层。光纤降低了芯层粘度,使芯层与内包层和下陷包层更好地匹配,并结合金属掺杂的匹配粘度外包层,整体降低光纤虚拟温度,同时通过下陷包层设计,抑制了基模泄漏,实现了超低衰减。

Description

一种掺杂优化的超低衰减单模光纤 技术领域
本发明涉及光通信领域,具体涉及到一种掺杂优化的超低衰减单模光纤。
背景技术
目前光纤制造领域非常热点的新型单模光纤产品主要有2种:一种是超低衰减G652光纤,因为其衰减系数低,兼容性能好,成为未来新型光纤的代表之一;另外一种是大有效面积G654光纤,其通过增加光纤的有效面积,抑制光纤传输时的非线性效应,从而更适于长距离大容量传输系统。
但不论对超低衰减G652还是大有效面积G654光纤,找到一种有效的方法降低光纤衰减系数,控制制造成本,对于光纤制造企业来说,都是非常巨大的挑战。其主要困难在于以下三点:
1.如何降低衰减:目前主要的方法是降低光纤的瑞利散射系数,方法是在制备过程中对玻璃材料组分控制和玻璃热力学变化过程进行控制;
2.光纤制造工艺简单可控,不显著增加光纤制造成本:因为目前超低衰减工艺控制复杂,尤其是目前常见的超低衰减纯硅芯设计,为了保证光纤的全反射,包层采用全氟掺杂外包层材料,制备工艺复杂,对光纤的成本影响非常大;
3.在获得超低衰减系数的同时,需要保证光纤各个光学参数满足ITU-T标准,主要指MFD,色散,截止波长和弯曲性能控制在标准要求范围内:即在保证光纤超低衰减性能的同时,其他光学参数必须控制在相应范围内。
对于以上三个困难,具体而言,我们首先从如何降低光纤的衰减来说。对于石英光纤在600nm-1600nm的衰减主要来自于瑞利散射,由瑞利散射所引起的衰减αR可由下式计算:
Figure PCTCN2015096108-appb-000001
式中,λ为波长(μm),R为瑞利散射系数(dB/km/μm4);P为光强;当瑞利散射系数确认时,B为相对应的常数。因而只要确定了瑞利散射系数R就可得到因瑞利散射所引起的衰减αR(dB/km)。瑞利散射一方面是由于密度波动引起的,另一方面是由于浓度波动引起的。因而瑞利散射系数R可表示为:
R=Rd+Rc
上式中,Rd和Rc分别表示由于密度波动和浓度波动所引起的瑞利散射系数变化。其中Rc为浓度波动因子,其主要受到光纤玻璃部分掺杂浓度的影响,理论上采用越少的Ge和F或者其他掺杂,Rc越小,这也是目前国外某些企业采用纯硅芯设计,实现超低衰减性能的原 因。
但是我们需要注意到,瑞利散射系数中还包括另外一个参数Rd。Rd与玻璃的假想温度TF相关,且伴随玻璃的结构变化和温度变化而变化。玻璃的假想温度TF是表征玻璃结构一个物理参数,定义为从某温度T’将玻璃迅速冷却到室温玻璃的结构不再调整而达到某平衡状态对应的温度。当T’>Tf(玻璃的软化温度),由于玻璃的粘度较小,玻璃结构易于调整,因而每一瞬间玻璃均处于平衡状态,故TF=T’;当T’<Tg(玻璃的转变温度),由于玻璃的粘度较大,玻璃结构难于调整,玻璃的结构调整滞后于温度变化,故TF>T’;当Tg<T’<Tf(玻璃的软化温度),玻璃趋向于平衡所需要的时间较短一些,具体与玻璃的组分和冷却速度有关,故TF>T’或TF<T’。
在使用纯硅芯设计时,为了保证光纤的全反射,必须使用相对较低折射率的F掺杂内包层进行匹配,以保证芯层和内包层之间保持足够的折射率差异。这样纯硅芯的芯层部分粘度相对较高,而同时大量F掺杂的内包层部分粘度较低,从而造成光纤结构粘度匹配失衡,从而使纯硅芯结构的光纤虚拟温度迅速增加,造成光纤的Rd增加。这样就不仅抵消掉Rc降低带来的好处,更可能造成光纤衰减反向异常。
从以上说明我们可以理解,为什么从理论上,不能单纯利用降低芯层掺杂获得超低衰减系数。为了解决这种问题,文献US20100195999A1中采用在芯层中添加碱金属的方法,在保持光纤芯层纯硅芯的情况下,通过改变光纤芯层部分的粘度以及芯层结构弛豫的时间,来解决粘度失配造成的Rd增加,从而整体降低光纤的瑞利散射系数。但是该种方法虽然可以有效的降低光纤衰减,但相对工艺制备复杂,需要分多批次对芯棒进行处理,且对碱金属掺杂浓度控制要求极高,不利于光纤大规模制备。
文献CN201310394404提出一种超低衰减光纤的设计,其使用了纯二氧化硅的外包层设计,但因为其使用的是典型的阶跃剖面结构,没有使用下陷内包层设计优化光纤的弯曲,且其芯层没有使用Ge进行掺杂,所以可能造成预制棒制备时出现粘度失配,并可发现其衰减和弯曲水平相对较差。
文献US2010022533提出了一种光纤的设计,为了得到更低的瑞利系数,其采用纯硅芯的设计,在芯层中没有进行锗和氟的共掺杂,并且其设计采用掺氟的二氧化硅作为外包层。对于这种纯硅芯的设计,其要求光纤内部必须进行复杂的粘度匹配,并要求在拉丝过程中采用极低的速度,避免高速拉丝造成光纤内部的缺陷引起的衰减增加,制造工艺及其复杂。
从以上的说明中我们可以发现,为了获得降低衰减系数,如果使用纯硅芯设计,或者不掺杂Ge的芯层设计,必须严格控制芯层材料的组分,从而使其匹配外包层材料的粘度,以减少光纤的Rd增加。
但众所周知,控制芯层材料的组分,尤其是在内部添加碱金属或者其他降低光纤虚拟温度的元素,从工艺实现角度都非常复杂,从而造成光纤制造成本增加。除了在纯硅芯的芯层进行碱金属掺杂外,是否可以通过外包层和内包层的粘度设计,达到同样的效果?我们知道,光纤芯层的虚拟温度,会受到外包层材料组分的影响,所以通过外包层和内包层的粘度设计,尤其是通过对光纤玻璃部分的最外层,即外包层部分,进行金属离子掺杂,可以明显的改变光纤材料各个部分的材料弛豫时间,从而改变光纤的虚拟温度。所以在工艺上可以使用非纯硅芯概念,通过对光纤各个部分进行合理的粘度设计,可以找到一种简单芯层制备方法,从而实现超低衰减光纤。
实现超低衰减光纤的第二个难题是控制成本。对于常见的超低衰减单模光纤设计,其使用的全F掺杂的外包层设计。从光纤光学的角度上来说,这样的设计相对简单,只要保证了外包层和芯层的折射率差值,就能满足光纤的全反射要求。但是目前限制超低衰减光纤制造成本的主要因素有三个:第一,目前主流的碱金属工艺制造成本高,效率低;第二,采用纯掺F设计的预制棒尺寸较小,拉丝工艺复杂;第三,采用纯F掺杂设计的光纤,因为使用F掺杂工艺,制造成本非常高。按照目前市场价格进行初步估算,掺F套管价格是纯二氧化硅套管价格的5-8倍。按照F掺杂材料是纯二氧化硅材料成本6倍的初步关系计算,如果通过合理的工艺设计,适当减少F掺杂层的厚度,光纤制造成本将显著降低。假设只是从光纤直径30微米到80微米位置使用F掺杂材料,80到125微米使用普通纯二氧化硅,则这种设计相对于传统使用全F掺杂材料的超低衰减光纤设计,材料成本降低40%;如果从30微米到60微米使用F掺杂材料,60到125微米使用普通纯二氧化硅,则材料成本降低65%。
从上面的分析我们可以发现,存在使用非纯硅芯和部分氟掺杂包层进行超低衰减光纤工艺设计的可行性。但是受到前面两个限制因素的影响,如何在这样的设计下,控制光纤的光学参数,是我们面临的最后一个挑战。
因为如果使用没有氟掺杂的纯二氧化硅作为外包层材料,会面临3个问题。
第一,抑制基模截止:外包层材料和芯层材料折射率差值太小,会造成光纤基模泄露,从而影响光纤的衰减。所以采用非掺F外包层材料设计的超低衰减光纤,必须在外包层和芯层中间位置,通过合理的光纤剖面设计,抑制基模泄露。
第二,考虑粘度匹配:如果外包层材料中没有做任何的粘度优化设计,其粘度与内包层和芯层粘度梯度失配,也会造成界面位置的缺陷以及虚拟温度升高等问题,从而增加光纤衰减。
第三,考虑光学剖面匹配:如果使用纯二氧化硅玻璃作为外包层材料,在考虑负责粘度匹配设计时,就限定了各个部分掺杂的浓度,而为了证光纤的光学参数满足G652或G654光 纤的参数要求,即保证光纤的MFD,色散和弯曲性能符合标准要求,又要求我们必须考虑光学剖面设计。这就要求我们在进行粘度设计时,综合考虑光纤的光学设计,增加了工艺实现的难度。
发明内容
以下为本发明中涉及的一些术语的定义和说明:
ppm:为百万分之一的重量比;
从光纤纤芯轴线开始算起,根据折射率的变化,定义为最靠近轴线的那层为光纤的芯层,光纤的最外层即纯二氧化硅层定义为光纤外包层。
光纤各层相对折射率Δni由以下方程式定义:
Figure PCTCN2015096108-appb-000002
其中ni为光纤特定位置部分的绝对折射率,而nc为外包层绝对折射率,即没有进行Ge或F掺杂的纯二氧化硅绝对折射率。
光纤芯层Ge掺杂的相对折射率贡献量ΔGe由以下方程式定义,
Figure PCTCN2015096108-appb-000003
其中nGe为假设纤芯的Ge掺杂物,在掺杂到没有其他掺杂物的纯二氧化硅中,引起二氧化硅玻璃折射率的变化量,而nc为最外侧外包层折射率,即没有进行Ge或F掺杂的纯二氧化硅的折射率。
本发明所要解决的技术问题在于针对上述现有技术存在的不足提供一种掺杂优化的超低衰减单模光纤,通过对光纤各个部分粘度及波导结构的优化设计,来实现超低衰减性能,并简化工艺,降低制造成本。
本发明为解决上述提出的问题所采用的技术方案为:包括有芯层,芯层外从内向外依次包覆内包层,下陷内包层,辅助外包层和外包层,其特征在于所述的芯层中氟的含量小于或等于0.5wt%,锗的相对折射率贡献量小于或等于0.12%,芯层的相对折射率Δn1小于或等于0.12%,所述的内包层中氟的含量为0.5-1.5wt%,内包层的相对折射率Δn2小于或等于-0.14%,所述的下陷内包层中氟的含量为1-3wt%,下陷内包层的相对折射率Δn3小于或等于-0.25%,所述的辅助外包层中氟的含量为0.5-2wt,相对折射率Δn4小于或等于-0.14%,所述的外包层为纯二氧化硅玻璃层和/或金属掺杂的二氧化硅玻璃层。
按上述方案,所述的外包层中金属掺杂的金属杂质包括铝和碱金属,金属杂质的总含量小于或等于25ppm,其中铝含量为1-18ppm,碱金属总含量小于或等于2ppm。
按上述方案,所述的碱金属为锂、钠、钾中的一种或几种。
按上述方案,所述的金属杂质还包括有铁、钙、镁、钛中的一种或多种。
按上述方案,所述的芯层半径r1为4.0~6.0μm。
按上述方案,所述的内包层半径r2为10~14μm,所述的下陷内包层半径r3为12.5~17μm,所述的辅助外包层半径r4为40~50μm。
按上述方案,所述芯层的相对折射率Δn1为0.12%~-0.08%,所述的内包层的相对折射率Δn2为-0.14%~-0.35%,所述的下陷内包层的相对折射率Δn3为-0.25%~-0.75%,所述的辅助外包层相对折射率Δn4为-0.14%~-0.56%。
按上述方案,所述的外包层直径为125μm。
按上述方案,所述的光纤在1550nm波长处的衰减系数小于或等于0.175dB/km,优选条件下,小于或等于0.170dB/km。
本发明的有益效果在于:1、特有的粘度匹配及波导结构的优化设计:芯层使用Ge和F共掺杂,降低了芯层粘度,使其能与内薄层和下陷包层更好的匹配,并结合金属掺杂的匹配粘度外包层,整体降低光纤虚拟温度,从而实现超低衰减性能;2、通过下陷包层设计,抑制基模泄露;3、外包层部分使用纯二氧化硅外包层材料,整体降低光纤成本;4、不使用芯层碱金属材料工艺,减少工艺控制难度。
附图说明
图1为本发明一个实施例的折射率剖面结构分布图。
图2为本发明一个实施例中各部分氟掺杂分布示意图。
具体实施方式
以下结合具体实施例对本发明进行详细描述。
所述单模光纤包括有芯层,芯层外从内向外依次包覆内包层,下陷内包层,辅助外包层和外包层,其特征在于所述的芯层中氟的含量小于或等于0.5wt%,锗的相对折射率贡献量小于或等于0.12%,芯层的相对折射率Δn1小于或等于0.12%,所述的内包层中氟的含量为0.5-1.5wt%,内包层的相对折射率Δn2小于或等于-0.14%,所述的下陷内包层中氟的含量为1-3wt%,下陷内包层的相对折射率Δn3小于或等于-0.25%,所述的辅助外包层中氟的含量为0.5-2wt,相对折射率Δn4小于或等于-0.14%,所述的外包层为纯二氧化硅玻璃层和/或金属掺杂的二氧化硅玻璃层。所述光纤由预制棒拉丝而成,预制棒主要包括两部分:PCVD方法制备的光纤芯棒以及中空天然石英砂材料的大套管,光纤芯棒和大套管采用套管内插芯棒的方法 进行组装。
光纤预制棒的芯棒包括纤芯层,内包层,下陷内包层和辅助内包层组成。PCVD制备的光纤芯层由掺有氟与锗的石英玻璃组成:内包层紧密围绕芯层,与芯层同为PCVD沉积法制得;下陷内包层由PCVD工艺沉积的掺氟二氧化硅石英玻璃组成;第三包层为辅助外包层,由PCVD沉积的掺氟二氧化硅石英玻璃和PCVD的衬管共同组成。
天然石英砂制成的大套管采用四种不同等级的天然石英砂为原料制备,编号和具体杂质含量如表1所示。表2为采用不同材质外套的光纤设计及其对应衰减系数。
表1中空大套管的原材料杂质含量分析
Figure PCTCN2015096108-appb-000004
表2、本发明实施例的光纤剖面参数和对应衰减系数
Figure PCTCN2015096108-appb-000005

Claims (9)

  1. 一种掺杂优化的超低衰减单模光纤,包括有芯层,芯层外从内向外依次包覆内包层,下陷内包层,辅助外包层和外包层,其特征在于所述的芯层中氟的含量小于或等于0.5wt%,锗的相对折射率贡献量小于或等于0.12%,芯层的相对折射率Δn1小于或等于0.12%,所述的内包层中氟的含量为0.5-1.5wt%,内包层的相对折射率Δn2小于或等于-0.14%,所述的下陷内包层中氟的含量为1-3wt%,下陷内包层的相对折射率Δn3小于或等于-0.25%,所述的辅助外包层中氟的含量为0.5-2wt,辅助外包层相对折射率Δn4小于或等于-0.14%,所述的外包层为纯二氧化硅玻璃层和/或金属掺杂的二氧化硅玻璃层。
  2. 按权利要求1所述的掺杂优化的超低衰减单模光纤,其特征在于所述的外包层中金属掺杂的金属杂质包括铝和碱金属,金属杂质的总含量小于或等于25ppm,其中铝含量为1-18ppm,碱金属总含量小于或等于2ppm。
  3. 按权利要求2所述的掺杂优化的超低衰减单模光纤,其特征在于所述的碱金属为锂、钠、钾中的一种或几种。
  4. 按权利要求2所述的掺杂优化的超低衰减单模光纤,其特征在于所述的金属杂质还包括有铁、钙、镁、钛中的一种或多种。
  5. 按权利要求1或2所述的掺杂优化的超低衰减单模光纤,其特征在于所述的芯层半径r1为4.0~6.0μm。
  6. 按权利要求5所述的掺杂优化的超低衰减单模光纤,其特征在于所述的内包层半径r2为10~14μm,所述的下陷内包层半径r3为12.5~17μm,所述的辅助外包层半径r4为40~50μm。
  7. 按权利要求1或2所述的掺杂优化的超低衰减单模光纤,其特征在于所述的外包层直径为125μm。
  8. 按权利要求1或2所述的掺杂优化的超低衰减单模光纤,其特征在于所述芯层的相对折射率Δn1为0.12%~-0.08%,所述的内包层的相对折射率Δn2为-0.14%~-0.35%,所述的下陷内包层的相对折射率Δn3为-0.25%~-0.75%,所述的辅助外包层相对折射率Δn4为-0.14%~-0.56%。
  9. 按权利要求1或2所述的掺杂优化的超低衰减单模光纤,其特征在于所述的光纤在1550nm波长处的衰减系数小于或等于0.175dB/km。
PCT/CN2015/096108 2015-06-25 2015-12-01 一种掺杂优化的超低衰减单模光纤 WO2016206308A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017551596A JP6615905B2 (ja) 2015-06-25 2015-12-01 ドーピング最適化による極低減衰の単一モード光ファイバ
ES15896192T ES2920807T3 (es) 2015-06-25 2015-12-01 Fibra óptica monomodo optimizada para dopaje con atenuación ultrabaja
KR1020177023832A KR102034362B1 (ko) 2015-06-25 2015-12-01 도핑 최적화된 최저 감쇠 단일모드 광섬유
PL15896192.0T PL3316010T3 (pl) 2015-06-25 2015-12-01 Jednomodowe włókno światłowodowe o bardzo niskiej tłumienności zoptymalizowane pod względem domieszkowania
EP15896192.0A EP3316010B1 (en) 2015-06-25 2015-12-01 Doping optimized single-mode optical fibre with ultralow attenuation
US15/725,014 US10018780B2 (en) 2015-06-25 2017-10-04 Doping optimized single-mode optical fiber with ultra low attenuation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510359450.4 2015-06-25
CN201510359450.4A CN104898200B (zh) 2015-06-25 2015-06-25 一种掺杂优化的超低衰减单模光纤

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/725,014 Continuation US10018780B2 (en) 2015-06-25 2017-10-04 Doping optimized single-mode optical fiber with ultra low attenuation

Publications (1)

Publication Number Publication Date
WO2016206308A1 true WO2016206308A1 (zh) 2016-12-29

Family

ID=54030959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096108 WO2016206308A1 (zh) 2015-06-25 2015-12-01 一种掺杂优化的超低衰减单模光纤

Country Status (8)

Country Link
US (1) US10018780B2 (zh)
EP (1) EP3316010B1 (zh)
JP (1) JP6615905B2 (zh)
KR (1) KR102034362B1 (zh)
CN (1) CN104898200B (zh)
ES (1) ES2920807T3 (zh)
PL (1) PL3316010T3 (zh)
WO (1) WO2016206308A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104898200B (zh) * 2015-06-25 2018-03-16 长飞光纤光缆股份有限公司 一种掺杂优化的超低衰减单模光纤
CN104991307A (zh) * 2015-07-31 2015-10-21 长飞光纤光缆股份有限公司 一种超低衰减大有效面积的单模光纤
WO2017078859A1 (en) * 2015-11-04 2017-05-11 Unimin Corporation Purified quartz powder modified for cladding optic fiber cable
CN105334568B (zh) * 2015-11-30 2018-06-19 中天科技精密材料有限公司 一种低损耗大有效面积单模光纤及其光纤预制棒制造方法
CN106019470B (zh) * 2016-06-14 2019-05-24 长飞光纤光缆股份有限公司 一种超低衰减单模光纤
CN107608023B (zh) * 2017-09-18 2020-04-21 长飞光纤光缆股份有限公司 一种阶跃型超低衰减少模光纤
CN111323871A (zh) * 2018-12-13 2020-06-23 中天科技精密材料有限公司 光纤及其制备方法
CN110221382B (zh) * 2019-06-12 2020-07-07 烽火通信科技股份有限公司 一种超低衰减大有效面积的单模光纤
CN110357410B (zh) * 2019-06-12 2020-08-04 烽火通信科技股份有限公司 用于制造超低衰减光纤的光纤预制棒、方法及光纤
CN111458789B (zh) * 2020-04-26 2021-11-09 中天科技光纤有限公司 光纤
CN116261683A (zh) * 2020-07-23 2023-06-13 江苏亨通光纤科技有限公司 一种压应力光纤及其制造工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102156323A (zh) * 2011-05-05 2011-08-17 长飞光纤光缆有限公司 一种单模光纤
CN102933996A (zh) * 2009-09-11 2013-02-13 康宁股份有限公司 低弯曲损耗光纤
US20140169748A1 (en) * 2012-08-13 2014-06-19 Ofs Fitel, Llc Optimized ultra large area optical fibers
US20140241686A1 (en) * 2013-02-28 2014-08-28 Fujikura, Ltd. Optical fiber and method of manufacturing the same
CN104360434A (zh) * 2014-11-12 2015-02-18 长飞光纤光缆股份有限公司 一种超低衰减大有效面积的单模光纤
CN104898200A (zh) * 2015-06-25 2015-09-09 长飞光纤光缆股份有限公司 一种掺杂优化的超低衰减单模光纤

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426816A (ja) * 1990-05-23 1992-01-30 Sumitomo Electric Ind Ltd 光アイソレータ
US6904218B2 (en) * 2003-05-12 2005-06-07 Fitel U.S.A. Corporation Super-large-effective-area (SLA) optical fiber and communication system incorporating the same
EP1682150B1 (en) 2003-11-10 2012-12-26 The Scripps Research Institute Compositions and methods for inducing cell dedifferentiation
JP4205125B2 (ja) * 2006-10-30 2009-01-07 株式会社フジクラ 光ファイバおよびこれを用いた光伝送路
DK1930753T3 (en) * 2006-12-04 2015-03-30 Draka Comteq Bv Optical fiber having a high Brillouin threshold strength and low bending
JP5013964B2 (ja) 2007-05-23 2012-08-29 キヤノン株式会社 撮像装置及びその制御方法
US8538219B2 (en) * 2010-10-29 2013-09-17 Corning Incorporated Large effective area optical fiber with low bend loss
JPWO2013038794A1 (ja) * 2011-09-12 2015-03-26 古河電気工業株式会社 光ファイバ、光ファイバレーザおよび光ファイバ増幅器、ならびに光ファイバの製造方法
CN102645699B (zh) * 2012-05-02 2015-03-04 长飞光纤光缆股份有限公司 一种低衰减弯曲不敏感单模光纤
CN103149630B (zh) * 2013-03-06 2016-02-24 长飞光纤光缆股份有限公司 一种低衰减单模光纤
CN103454719B (zh) * 2013-09-03 2015-09-30 长飞光纤光缆股份有限公司 一种单模光纤
CN103864291B (zh) * 2014-01-27 2016-08-24 长飞光纤光缆股份有限公司 一种单模光纤预制棒及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102933996A (zh) * 2009-09-11 2013-02-13 康宁股份有限公司 低弯曲损耗光纤
CN102156323A (zh) * 2011-05-05 2011-08-17 长飞光纤光缆有限公司 一种单模光纤
US20140169748A1 (en) * 2012-08-13 2014-06-19 Ofs Fitel, Llc Optimized ultra large area optical fibers
US20140241686A1 (en) * 2013-02-28 2014-08-28 Fujikura, Ltd. Optical fiber and method of manufacturing the same
CN104360434A (zh) * 2014-11-12 2015-02-18 长飞光纤光缆股份有限公司 一种超低衰减大有效面积的单模光纤
CN104898200A (zh) * 2015-06-25 2015-09-09 长飞光纤光缆股份有限公司 一种掺杂优化的超低衰减单模光纤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3316010A4 *

Also Published As

Publication number Publication date
KR20170105621A (ko) 2017-09-19
CN104898200A (zh) 2015-09-09
EP3316010A4 (en) 2018-07-11
EP3316010B1 (en) 2022-04-27
US10018780B2 (en) 2018-07-10
JP6615905B2 (ja) 2019-12-04
EP3316010A1 (en) 2018-05-02
ES2920807T3 (es) 2022-08-09
KR102034362B1 (ko) 2019-10-18
CN104898200B (zh) 2018-03-16
JP2018510387A (ja) 2018-04-12
PL3316010T3 (pl) 2022-08-22
US20180052280A1 (en) 2018-02-22

Similar Documents

Publication Publication Date Title
WO2016206308A1 (zh) 一种掺杂优化的超低衰减单模光纤
JP7190236B2 (ja) フッ素および塩素が共ドープされたコア領域を有する低損失光ファイバ
JP6564074B2 (ja) 極低損失でベンド不敏感の単一モード光ファイバ
JP5636151B2 (ja) 多波長、多モード光ファイバ
CN106772788B (zh) 一种截止波长位移单模光纤
KR102126089B1 (ko) 광섬유 및 광섬유용 실리카 유리 모재
ES2962308T3 (es) Fibra óptica monomodo con pérdida ultrabaja y gran área efectiva y método de fabricación de la misma
CN109298482B (zh) 一种低衰减和低弯曲损耗的大有效面积单模光纤
JP6529666B2 (ja) 極低減衰で大有効面積の単一モード光ファイバ
US20190154911A1 (en) Low loss optical fiber with core codoped with two or more halogens
CN107608023B (zh) 一种阶跃型超低衰减少模光纤
CN104316994A (zh) 一种低衰减弯曲不敏感单模光纤
WO2022100422A1 (zh) 一种全合成低损耗单模光纤
CN105911639B (zh) 一种低衰减单模光纤
WO2016173253A1 (zh) 一种超低衰耗弯曲不敏感单模光纤
WO2020119439A1 (zh) 一种低损耗大有效面积单模光纤及其制备方法
CN104216044B (zh) 一种低衰耗弯曲不敏感单模光纤
CN111308609B (zh) 一种大有效面积低损耗单模光纤
CN107193082A (zh) 一种超低衰减单模光纤
CN110954985B (zh) 一种超低衰减大有效面积单模光纤
WO2017010205A1 (ja) 光ファイバプリフォーム、光ファイバおよび光ファイバの製造方法
US8792762B2 (en) Low loss aluminum doped optical fiber for UV applications
CN117555067A (zh) 一种超低衰减大有效面积单模光纤
CN115437060A (zh) 一种低损抗弯单模光纤及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896192

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177023832

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017551596

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE