WO2022100422A1 - 一种全合成低损耗单模光纤 - Google Patents

一种全合成低损耗单模光纤 Download PDF

Info

Publication number
WO2022100422A1
WO2022100422A1 PCT/CN2021/126051 CN2021126051W WO2022100422A1 WO 2022100422 A1 WO2022100422 A1 WO 2022100422A1 CN 2021126051 W CN2021126051 W CN 2021126051W WO 2022100422 A1 WO2022100422 A1 WO 2022100422A1
Authority
WO
WIPO (PCT)
Prior art keywords
cladding layer
layer
inner cladding
optical fiber
refractive index
Prior art date
Application number
PCT/CN2021/126051
Other languages
English (en)
French (fr)
Inventor
孙楠
杜森
王友兵
段圣如
黄轩
张�浩
刘周伟
贲庆超
Original Assignee
江苏亨通光导新材料有限公司
江苏亨通光电股份有限公司
江苏亨通光纤科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏亨通光导新材料有限公司, 江苏亨通光电股份有限公司, 江苏亨通光纤科技有限公司 filed Critical 江苏亨通光导新材料有限公司
Publication of WO2022100422A1 publication Critical patent/WO2022100422A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only

Definitions

  • the invention belongs to the technical field of communication optical fibers, in particular to a fully synthetic low-loss single-mode optical fiber.
  • the existing conventional single-mode G.652 optical fiber can no longer meet the needs of long-distance, high-speed, large-capacity trunk transmission such as 400G.
  • the low attenuation coefficient fiber can effectively improve the optical signal-to-noise ratio in the optical fiber communication process, increase the transmission distance of the system, reduce the relay station settings, and reduce the operating cost. Therefore, low-loss single-mode fiber has become a hot research topic for major fiber companies.
  • the patent CN1692086A discloses that the attenuation of the optical fiber is reduced by doping alkali metal oxides in the core, but the use of alkali metal alone will lead to increased hydrogen loss, which is not conducive to the long-term stable operation of the optical fiber, and this patent does not elaborate on the specific embodiment. attenuation level.
  • Patent CN103472529A discloses a method for preparing a low-loss optical fiber.
  • the prepared optical fiber section is composed of core layer (pure silicon core micro-doped fluorine or boron), core-clad transition layer, core-clad interface transition layer, and deep fluorine-doped clad from inside to outside. layer, sheath transition layer, sheath interface transition layer and sleeve layer, the attenuation coefficient of the manufactured optical fiber in the 1550nm band can be less than 0.158db/km; but the core layer of this scheme is mainly pure silicon core, with high viscosity and high cladding layer.
  • the deep fluorine-doped design has low viscosity, which is easy to cause the unbalance of the optical fiber viscosity matching, so that the virtual temperature of the core layer increases rapidly, which is easy to cause the attenuation loss to be too large; although the transition layer and the interface transition layer are designed between the core and cladding layers to avoid
  • the transition layer and the interface transition layer are designed between the core and cladding layers to avoid
  • Patent CN206573738U discloses a low-loss optical fiber preparation method.
  • the optical fiber includes a core layer, an inner cladding layer, an intermediate isolation layer and an outer layer.
  • the obtained low-loss optical fiber has an attenuation coefficient of 1550nm band less than or equal to 0.185db/km, and the typical value is 0.180db/km , better than conventional G.652 fiber; but this technology uses high-purity quartz sleeve, and the economic cost is higher.
  • the purpose of the present invention is to provide a fully synthetic low-loss single-mode optical fiber, the attenuation coefficient of the optical fiber in the 1550nm band is less than or equal to 0.180db/km, achieving the purpose of low-loss attenuation, and the manufacturing cost is low. , the manufacturing process is less difficult.
  • a fully synthetic low-loss single-mode optical fiber the optical fiber structure includes a core layer, a first inner cladding layer, a second inner cladding layer and an outer cladding layer from inside to outside;
  • the core layer is a silica glass layer doped with germanium element, the radius R1 of the core layer is 4-5 ⁇ m, and the refractive index difference ⁇ n1 of the core layer relative to the pure silica glass is 0.300%-0.340%;
  • the first inner cladding layer and the second inner cladding layer are both fluorine-doped quartz glass layers; the radius R2 of the first inner cladding layer is 11.5-16.5 ⁇ m, and the refractive index difference ⁇ n2 of the first inner cladding layer relative to pure quartz glass is -0.04% to -0.02%; the radius R3 of the second inner cladding layer is 20 to 25 ⁇ m, and the refractive index difference ⁇ n3 of the second inner cladding layer relative to pure silica glass is -0.07% to -0.04%;
  • the outer cladding is a micro-doped aluminum-quartz cladding, the radius R4 of the outer cladding is 62.5 ⁇ 0.5 ⁇ m, and the refractive index difference ⁇ n4 of the outer cladding relative to the pure silica glass satisfies ⁇ n1> ⁇ n4> ⁇ n2> ⁇ n3 .
  • the core layer, the first inner cladding layer and the second inner cladding layer constitute a quartz core rod, and the core layer, the first inner cladding layer and the second inner cladding layer are all obtained by one-step deposition by vapor axial deposition method.
  • the outer layer is prepared by an external vapor deposition method.
  • the doping concentration of aluminum is 2-15 ppm.
  • the attenuation coefficient of the optical fiber at the wavelength of 1550 nm is less than or equal to 0.180 db/km.
  • the core layer of the present invention is doped with germanium element, the first inner cladding layer and the second inner cladding layer are doped with fluorine element, the outer cladding layer is slightly doped with aluminum, the doping components of each layer are less, and the process preparation difficulty is low; Doping aluminum in the outer cladding can reduce the viscosity of the glass, which is beneficial to the adjustment of the glass network structure. During the drawing process, the stress can be concentrated in the cladding layer, and the core layer is less stressed, reducing the internal defects of the fiber.
  • the fluorine-doped layer can effectively reduce the refractive index and match the viscosity with the core layer and the outer cladding, making the overall performance more reliable and not easily affected by other external conditions such as temperature;
  • the invention adopts the stepped-sag cladding design of the first inner cladding layer and the second inner cladding layer, which can effectively suppress the leakage of the fundamental mode, and at the same time, doping with fluorine can effectively concentrate the optical power in the core layer, reduce the fiber loss, and improve the bending resistance;
  • the core layer, the first inner cladding layer and the second inner cladding layer in the optical fiber of the present invention are deposited in one step by vapor-phase axial deposition (VAD).
  • VAD vapor-phase axial deposition
  • the inner cladding layer, or the deposition method using the in-tube method (PCVD+MCVD), has a simple process path and obvious cost advantages, which is more conducive to large-scale production.
  • FIG. 1 is a schematic diagram of a radial cross-sectional structure of a fully synthesized low-loss single-mode optical fiber according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional structure distribution diagram of a refractive index of a fully synthesized low-loss single-mode optical fiber according to an embodiment of the present invention.
  • the optical fiber structure includes a core layer 1, a first inner cladding layer 2, a second inner cladding layer 3 and an outer cladding 4 from the inside to the outside;
  • the core layer 1 is a silica glass layer doped with germanium, which is deposited in one step by vapor axial deposition (VAD); the radius R1 of the core layer is 4.3 ⁇ m, and the core layer is relatively The refractive index difference ⁇ n1 of pure quartz glass is 0.310%;
  • the first inner cladding layer 2 and the second inner cladding layer 3 are both fluorine-doped quartz glass layers; the radius R2 of the first inner cladding layer is 13.5 ⁇ m, and the refraction of the first inner cladding layer relative to pure quartz glass The rate difference ⁇ n2 is -0.02%; the radius R3 of the second inner cladding layer is 22.1 ⁇ m, and the refractive index difference ⁇ n3 of the second inner cladding layer relative to pure silica glass is -0.05%;
  • the outer layer 4 is a micro-doped aluminum-quartz cladding, which is obtained by external vapor deposition (OVD), and the aluminum doping concentration is 10ppm; the radius R4 of the outer layer is 62.4 ⁇ m, and the outer layer is relatively pure.
  • the refractive index difference ⁇ n4 of quartz glass satisfies ⁇ n1> ⁇ n4> ⁇ n2> ⁇ n3.
  • the optical parameters of the fibers were tested and confirmed by PK2200, and the attenuation of the fibers was measured by OTDR.
  • the optical parameters of the prepared fibers such as cut-off wavelength and mode field diameter, all met the requirements of the ITU-T G.652D standard.
  • the attenuation loss performance is obviously better than that of conventional G.652D products; the attenuation coefficient of this low-loss fiber in the 1550nm band is less than or equal to 0.180db/km, and the typical value is 0.175db/km.
  • the optical fiber structure of the comparative example includes a core layer, an inner cladding layer and an outer cladding layer of pure silica; specifically, the core layer and the inner cladding layer are deposited by vapor axial deposition (VAD); the core layer is doped with germanium, and the radius is 4.4 ⁇ m, which is relatively
  • VAD vapor axial deposition
  • the core layer is doped with germanium, and the radius is 4.4 ⁇ m, which is relatively
  • the refractive index difference of pure silica glass is 0.325%
  • the inner cladding is fluorine-doped, with a radius of 22.1 ⁇ m, and the refractive index difference relative to pure silica glass is -0.05%
  • the outer cladding of pure silica is deposited by external vapor deposition (OVD).
  • the radius is 62.5 ⁇ m
  • the refractive index difference relative to pure silica glass is 0%.
  • the optical parameters of the fibers were tested and confirmed by PK2200, and the attenuation of the fibers was measured by OTDR.
  • the optical parameters of the prepared fibers such as cut-off wavelength and mode field diameter, all met the requirements of the ITU-T G.652D standard;
  • the attenuation coefficient of the above fiber in the 1550nm band is less than or equal to 0.190db/km, and the typical value is 0.185db/km.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)

Abstract

一种全合成低损耗单模光纤,从内至外包括纤芯层(1)、第一内包层(2)、第二内包层(3)和外包层(4)。纤芯层(1)为掺杂锗元素的石英玻璃层,纤芯层(1)相对于纯石英玻璃的折射率差△n1为0.300%~0.340%;第一内包层(2)和第二内包层(2)均为掺杂氟元素的石英玻璃层;第一内包层(2)相对于纯石英玻璃的折射率差△n2为-0.04%~-0.02%;第二内包层(3)相对于纯石英玻璃的折射率差△n3为-0.07%~-0.04%;外包层(4)为微掺杂铝石英包层,外包层(4)相对于纯石英玻璃的折射率差△n4满足△n1>△n4>△n2>△n3。光纤在1550nm波段的衰减系数小于或等于0.180db/km,达到了低损耗衰减的目的,且制造成本低,工艺难度低。

Description

一种全合成低损耗单模光纤 技术领域
本发明属于通信光纤技术领域,特别涉及一种全合成低损耗单模光纤。
背景技术
随着光纤通信技术的快速发展,现有的常规单模G.652光纤已无法满足400G等长距离、高速率、大容量干线传输的需求。而低衰减系数光纤可以有效提高光纤通信过程中的光信噪比,提高系统传输距离以减少中继站设置,降低运营成本,因此低损耗单模光纤成为各大光纤企业争相研究的热门。
专利CN1692086A公开了通过在纤芯中掺杂碱金属氧化物来降低光纤衰减,但单纯使用碱金属会导致氢损增加,不利于光纤长期稳定工作,而且此专利也未详细阐述具体实施例情况对应的衰减水平。
专利CN103472529A公开了一种低损耗光纤制备方法,制备的光纤剖面从内到外依次为芯层(纯硅芯微掺氟或硼)、芯包过渡层、芯包界面过渡层、深掺氟包层、包套过渡层、包套界面过渡层和套管层,制造出的光纤在1550nm波段衰减系数可小于0.158db/km;但此方案芯层主体为纯硅芯,粘度较大,包层采用深掺氟设计,粘度较低,易造成光纤粘度匹配失衡,从而使芯层虚拟温度迅速增加,易造成衰减损耗偏大;虽在芯包层之间设计了过渡层以及界面过渡层以避免此缺陷,但由于剖面设计较复杂,且应用管内法进行沉积,会造成脱水困难,制备低损耗芯棒的工艺难度较大,不利于规模化生产。
专利CN206573738U公开了一种低损耗光纤制备方法,光纤包括芯层、内包层、中间隔离层以及外包层,得到的低损光纤1550nm波段衰减系数小等 于0.185db/km,典型值为0.180db/km,优于常规G.652光纤;但此技术用到高纯石英套管,经济成本较高。
发明内容
为解决上述技术问题,本发明的目的在于提供一种全合成低损耗单模光纤,该光纤在1550nm波段的衰减系数小于或等于0.180db/km,达到了低损耗衰减的目的,且制造成本低,制造工艺难度低。
为实现上述技术目的,达到上述技术效果,本发明通过以下技术方案实现:
一种全合成低损耗单模光纤,该光纤结构从内至外包括纤芯层、第一内包层、第二内包层和外包层;
所述纤芯层为掺杂锗元素的石英玻璃层,该纤芯层的半径R1为4~5μm,纤芯层相对于纯石英玻璃的折射率差△n1为0.300%~0.340%;
所述第一内包层和第二内包层均为掺杂氟元素的石英玻璃层;第一内包层的半径R2为11.5~16.5μm,第一内包层相对于纯石英玻璃的折射率差△n2为-0.04%~-0.02%;第二内包层的半径R3为20~25μm,第二内包层相对于纯石英玻璃的折射率差△n3为-0.07%~-0.04%;
所述外包层为微掺杂铝石英包层,该外包层的半径R4为62.5±0.5μm,外包层相对于纯石英玻璃的折射率差△n4满足△n1>△n4>△n2>△n3。
进一步的,所述纤芯层、第一内包层和第二内包层构成石英芯棒,且该纤芯层、第一内包层和第二内包层均是采用气相轴向沉积法一步沉积获得。
进一步的,所述外包层采用外部气相沉积法制备而成。
进一步的,所述外包层中,铝的掺杂浓度为2~15ppm。
进一步的,所述光纤在1550nm波段处的衰减系数小于或等于0.180db/km。
本发明的有益效果:
本发明的纤芯层掺杂锗元素,第一内包层和第二内包层掺杂氟元素,外包层微掺杂铝,各层掺杂组分较少,工艺制备难度低;而且,本发明在外包层掺杂铝元素,能够降低玻璃的粘度,有利于玻璃网络结构的调整,在拉丝过程中可将应力集中在包层,芯层受力较少,减少光纤内部缺陷,在光纤退火过程中可明显降低玻璃结构的弛豫时间,使玻璃密度趋于均匀,从而整体降低光纤的虚拟温度,有利于降低密度波动因子引起的光纤瑞利散射损耗;此外,第一内包层和第二内包层掺氟,可以有效降低折射率,并与纤芯层以及外包层进行粘度匹配,使整体性能更可靠,不易受温度等其他外界条件影响;
本发明采用第一内包层和第二内包层的阶梯下陷包层设计,可有效抑制基模泄漏,同时掺氟可有效将光功率集中在芯层,降低光纤损耗,提高抗弯曲能力;
此外,本发明光纤中的芯层、第一内包层和第二内包层是通过气相轴向沉积法(VAD)一步沉积而成,相比于现有技术中采用高成本的深掺氟套管做内包层,或者采用管内法(PCVD+MCVD)进行沉积的方法,工艺路径简单,成本优势明显,比较利于规模化生产。
附图说明
图1为本发明实施例提供的一种全合成低损耗单模光纤的径向截面结构示意图。
图2为本发明实施例提供的一种全合成低损耗单模光纤的折射率剖面结构分布图。
具体实施方式
下面将结合具体实施例对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例
如图1所示的一种全合成低损耗单模光纤的较佳实施例,其光纤结构从内至外包括纤芯层1、第一内包层2、第二内包层3和外包层4;
如图2所示,纤芯层1为掺杂锗元素的石英玻璃层,采用气相轴向沉积法(VAD)一步沉积而成;该纤芯层的半径R1为4.3μm,纤芯层相对于纯石英玻璃的折射率差△n1为0.310%;
如图2所示,第一内包层2和第二内包层3均为掺杂氟元素的石英玻璃层;第一内包层的半径R2为13.5μm,第一内包层相对于纯石英玻璃的折射率差△n2为-0.02%;第二内包层的半径R3为22.1μm,第二内包层相对于纯石英玻璃的折射率差△n3为-0.05%;
如图2所示,外包层4为微掺杂铝石英包层,采用外部气相沉积法(OVD)获得,铝掺杂浓度为10ppm;该外包层的半径R4为62.4μm,外包层相对于 纯石英玻璃的折射率差△n4满足△n1>△n4>△n2>△n3。
针对上述低损耗光纤,利用PK2200对光纤光学参数进行测试确认,利用OTDR对光纤衰减进行测量,所制备光纤的光学参数如截止波长、模场直径等均符合ITU-T G.652D标准的要求,且衰减损耗性能明显优于常规G.652D产品;该低损耗光纤在1550nm波段的衰减系数小于或等于0.180db/km,典型值为0.175db/km。
对比例
对比例的光纤结构包括芯层、内包层和纯二氧化硅外包层;具体的,采用气相轴向沉积法(VAD)沉积芯层和内包层;芯层掺锗,半径为4.4μm,相对于纯石英玻璃的折射率差为0.325%;内包层掺氟,半径为22.1μm,相对于纯石英玻璃的折射率差为-0.05%;采用外部气相沉积法(OVD)沉积纯二氧化硅外包层,半径为62.5μm,且相对于纯石英玻璃的折射率差为0%。
针对上述光纤,利用PK2200对光纤光学参数进行测试确认,利用OTDR对光纤衰减进行测量,所制备光纤的光学参数如截止波长、模场直径等均符合ITU-T G.652D标准的要求;对比例的上述光纤在1550nm波段的衰减系数小于或等于0.190db/km,典型值为0.185db/km。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (5)

  1. 一种全合成低损耗单模光纤,其特征在于:该光纤结构从内至外包括纤芯层、第一内包层、第二内包层和外包层;
    所述纤芯层为掺杂锗元素的石英玻璃层,该纤芯层的半径R1为4~5μm,纤芯层相对于纯石英玻璃的折射率差△n1为0.300%~0.340%;
    所述第一内包层和第二内包层均为掺杂氟元素的石英玻璃层;第一内包层的半径R2为11.5~16.5μm,第一内包层相对于纯石英玻璃的折射率差△n2为-0.04%~-0.02%;第二内包层的半径R3为20~25μm,第二内包层相对于纯石英玻璃的折射率差△n3为-0.07%~-0.04%;
    所述外包层为微掺杂铝石英包层,该外包层的半径R4为62.5±0.5μm,外包层相对于纯石英玻璃的折射率差△n4满足△n1>△n4>△n2>△n3。
  2. 根据权利要求1所述的一种全合成低损耗单模光纤,其特征在于:所述纤芯层、第一内包层和第二内包层构成石英芯棒,且该纤芯层、第一内包层和第二内包层均是采用气相轴向沉积法一步沉积获得。
  3. 根据权利要求1所述的一种全合成低损耗单模光纤,其特征在于:所述外包层采用外部气相沉积法制备而成。
  4. 根据权利要求1所述的一种全合成低损耗单模光纤,其特征在于:所述外包层中,铝的掺杂浓度为2~15ppm。
  5. 根据权利要求1所述的一种全合成低损耗单模光纤,其特征在于:所述光纤在1550nm波段处的衰减系数小于或等于0.180db/km。
PCT/CN2021/126051 2020-11-11 2021-10-25 一种全合成低损耗单模光纤 WO2022100422A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011250452.7A CN112230331A (zh) 2020-11-11 2020-11-11 一种全合成低损耗单模光纤
CN202011250452.7 2020-11-11

Publications (1)

Publication Number Publication Date
WO2022100422A1 true WO2022100422A1 (zh) 2022-05-19

Family

ID=74122358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126051 WO2022100422A1 (zh) 2020-11-11 2021-10-25 一种全合成低损耗单模光纤

Country Status (2)

Country Link
CN (1) CN112230331A (zh)
WO (1) WO2022100422A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112230331A (zh) * 2020-11-11 2021-01-15 江苏亨通光导新材料有限公司 一种全合成低损耗单模光纤
CN115201961A (zh) * 2022-06-14 2022-10-18 江苏亨通光导新材料有限公司 一种陆地用g.654.e光纤及其制作工艺
CN115437060A (zh) * 2022-09-05 2022-12-06 江苏亨通光导新材料有限公司 一种低损抗弯单模光纤及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645699A (zh) * 2012-05-02 2012-08-22 长飞光纤光缆有限公司 一种低衰减弯曲不敏感单模光纤
US20130136406A1 (en) * 2011-11-29 2013-05-30 Dana Craig Bookbinder Low bend loss optical fiber
US20190049660A1 (en) * 2017-08-08 2019-02-14 Corning Incorporated Low bend loss optical fiber with a chlorine doped core and offset trench
US20190243063A1 (en) * 2018-02-05 2019-08-08 Corning Incorporated Low loss wide bandwidth optical fiber
CN111807699A (zh) * 2020-08-06 2020-10-23 江苏亨通光导新材料有限公司 一种抗弯曲光纤的制造方法及其对应的光纤
CN112230331A (zh) * 2020-11-11 2021-01-15 江苏亨通光导新材料有限公司 一种全合成低损耗单模光纤

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130136406A1 (en) * 2011-11-29 2013-05-30 Dana Craig Bookbinder Low bend loss optical fiber
CN102645699A (zh) * 2012-05-02 2012-08-22 长飞光纤光缆有限公司 一种低衰减弯曲不敏感单模光纤
US20190049660A1 (en) * 2017-08-08 2019-02-14 Corning Incorporated Low bend loss optical fiber with a chlorine doped core and offset trench
US20190243063A1 (en) * 2018-02-05 2019-08-08 Corning Incorporated Low loss wide bandwidth optical fiber
CN111807699A (zh) * 2020-08-06 2020-10-23 江苏亨通光导新材料有限公司 一种抗弯曲光纤的制造方法及其对应的光纤
CN112230331A (zh) * 2020-11-11 2021-01-15 江苏亨通光导新材料有限公司 一种全合成低损耗单模光纤

Also Published As

Publication number Publication date
CN112230331A (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
WO2022100422A1 (zh) 一种全合成低损耗单模光纤
US9052435B2 (en) Bending-resistant large core diameter high numerical aperture multimode fiber
CN102645699B (zh) 一种低衰减弯曲不敏感单模光纤
CN102798927B (zh) 单模光纤及其制造方法
CN106772788B (zh) 一种截止波长位移单模光纤
WO2017020456A1 (zh) 一种超低衰耗弯曲不敏感单模光纤
EP3715923B1 (en) Single-mode optical fiber with ultralow loss and large effective area and manufacturing method therefor
WO2013104243A1 (zh) 弯曲不敏感单模光纤
WO2016206308A1 (zh) 一种掺杂优化的超低衰减单模光纤
WO2013104244A1 (zh) 一种弯曲不敏感单模光纤
CN109839694B (zh) 一种截止波长位移单模光纤
TWI522667B (zh) A kind of bending insensitive single mode fiber
JP6129270B2 (ja) 曲げ耐性のマルチモード光ファイバ
CN104316994A (zh) 一种低衰减弯曲不敏感单模光纤
CN106443876B (zh) 一种低串扰少模光纤
CN109298482B (zh) 一种低衰减和低弯曲损耗的大有效面积单模光纤
WO2013177996A1 (zh) 一种渐变折射率抗弯曲多模光纤
WO2016173253A1 (zh) 一种超低衰耗弯曲不敏感单模光纤
CN104714273B (zh) 低衰减少模光纤
TW201348767A (zh) 漸變折射率抗彎曲多模光纖
CN107357004B (zh) 一种低衰减单模光纤及其制备方法
WO2022027796A1 (zh) 一种抗弯曲光纤的制造方法及其对应的光纤
CN105334570A (zh) 一种低衰减弯曲不敏感单模光纤
WO2020119439A1 (zh) 一种低损耗大有效面积单模光纤及其制备方法
CN105911639A (zh) 一种低衰减单模光纤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21890949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21890949

Country of ref document: EP

Kind code of ref document: A1