WO2013177996A1 - 一种渐变折射率抗弯曲多模光纤 - Google Patents

一种渐变折射率抗弯曲多模光纤 Download PDF

Info

Publication number
WO2013177996A1
WO2013177996A1 PCT/CN2013/074668 CN2013074668W WO2013177996A1 WO 2013177996 A1 WO2013177996 A1 WO 2013177996A1 CN 2013074668 W CN2013074668 W CN 2013074668W WO 2013177996 A1 WO2013177996 A1 WO 2013177996A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
optical fiber
layer
radius
cladding
Prior art date
Application number
PCT/CN2013/074668
Other languages
English (en)
French (fr)
Inventor
汪松
周志攀
刘永涛
徐进
范明峰
张树强
王伟
Original Assignee
长飞光纤光缆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长飞光纤光缆有限公司 filed Critical 长飞光纤光缆有限公司
Publication of WO2013177996A1 publication Critical patent/WO2013177996A1/zh
Priority to US14/550,493 priority Critical patent/US9297953B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0281Graded index region forming part of the central core segment, e.g. alpha profile, triangular, trapezoidal core
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0288Multimode fibre, e.g. graded index core for compensating modal dispersion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/03644Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - + -

Definitions

  • the invention relates to a graded-index multimode fiber optimized for transmission in a 1300 nm transmission window in data signal transmission, optical fiber sensing and optical devices.
  • the optical fiber not only has good bending resistance, but also has easy coupling with a light source and uniform optical power distribution. It has the characteristics of high bandwidth in the 1300nm window and belongs to the field of optical communication technology.
  • Fiber optic communications began with the invention and application of multimode fiber.
  • multimode fiber has not been replaced but has maintained a steady growth in market demand.
  • the reason is that many characteristics of multimode fiber are just right. Can meet the needs of optical signals, energy transmission, LAN data transmission and optical devices.
  • the cost of multimode fiber-optic communication systems is much lower than that of single-mode fiber-optic communication systems, which is one of the reasons why multi-mode fiber is developed.
  • the classification of conventional multimode fiber can be divided into 50 ⁇ and 62. 5 ⁇ according to the recommended standards of international standards such as IEC and ITU. In the category of 50 ⁇ , it can be further divided according to the bandwidth and ISO 11801 standard.
  • the transmission rate of 50um multimode fiber system is from 10Mbit/s to 10Gbit/s or even 100Gbit/s, and the link length is up to 2km, which has far met its application requirements.
  • the above-mentioned applications of multimode fiber in 10G Gbit/s and even 100Gbit/s systems are transmitted in the 850nm window, which benefits from the invention and cost reduction of the VCSEL850nm laser.
  • Multimode fiber especially high-transmission multimode fiber such as 0M3, 0M4 fiber, is widely used in medium and short-haul fiber-optic network systems.
  • the environment is narrow and the fiber is subject to large bending stresses. Long-term bending stress of the fiber will shorten the service life of the fiber and deteriorate the transmission performance. Therefore, the fiber needs to have bending resistance to meet the needs of special applications.
  • An effective way to reduce the additional bending loss of the fiber is to optimize the cross-sectional structure of the fiber, mainly to design a cladding of different structures to reduce the loss of optical power when the fiber is bent.
  • the fiber core refractive index profile must be perfectly parabolic.
  • the residual stress and the diffusion of the components cause the refractive index of the fiber to be compared with the preform.
  • Great distortion which reduces the bandwidth of the fiber. Therefore, the problem of distortion of the refractive index profile of the fiber needs to be further improved.
  • Quartz liner a tubular base tube whose inner wall carries a glass-state oxidized deposit of PCVD chemical reaction
  • sleeve a quartz glass tube that meets certain geometric and doping requirements
  • Core layer the central portion of the cross section of the fiber, which is the main light guiding area of the fiber;
  • Inner cladding an annular region in the cross section of the fiber adjacent to the core layer;
  • Intermediate cladding an annular region of the cross section of the fiber adjacent to the inner cladding;
  • Outer layer an annular region of the cross section of the fiber adjacent to the intermediate cladding
  • a power exponential refractive index profile a refractive index profile that satisfies the power exponential function below, where 3 ⁇ 4 is the refractive index of the fiber axis; The distance from the axis of the fiber; a is the core radius of the fiber; a is the distribution power exponent; ⁇ is the core/package relative refractive index difference;
  • n 2 (r) n [l - 2A(-) a ] r ⁇ a .
  • the technical problem to be solved by the present invention is to provide a bending-resistant multimode optical fiber which is optimized at a window of 1300 nm, has high bandwidth performance, and maintains a good refractive index profile structure after drawing, in view of the deficiencies of the above prior art.
  • the core layer and the cladding layer are characterized by a core layer radius R1 of 20 to 50 ⁇ m, a refractive index gradient of the core layer, a distribution power index ⁇ of 1.89 to 1.97, and a maximum relative refractive index difference of the core layer ⁇ .
  • l% max is 0.9% ⁇ 2.72%
  • the inner layer is adjacent to the core layer
  • the inner cladding radius R2 is 22 ⁇ 57 ⁇
  • the relative refractive index difference A 2% is 0.02% ⁇ 0.02%, from the inner cladding to the middle and the middle.
  • the cladding layer and the outer cladding layer are pure quartz glass layers, and the intermediate cladding radius R3 is 32 ⁇ 60 ⁇ ; the relative refractive index difference is A 3% is 0.01% ⁇ 0.01%.
  • the outer cladding radius R4 is 62. 5 ⁇ 1 ⁇
  • the relative refractive index difference ⁇ 4% is 0.15% to -0.30
  • the outer cladding is an F-doped quartz glass layer; or the outer cladding layer
  • the first outer cladding layer is made of F-doped quartz glass layer, and the radius of the first outer cladding layer is 42 ⁇ 60 ⁇ , and the relative refractive index difference ⁇ /. It is a 0. 15% ⁇ -0.35%
  • the second outer cladding is a pure quartz glass layer.
  • the core layer and the inner cladding layer are F-Ge co-doped quartz glass layers, and the inner cladding layer has a relative refractive index difference of ⁇ 2%. Less than the core layer refractive index difference ⁇ 1%.
  • the core layer distribution power index ⁇ is 1.90 to 1.95, and a higher bandwidth can be obtained at the 1300 nm window.
  • the core layer distribution power index e is 1.91 to 1.93, and a larger bandwidth can be obtained at the 1300 nm window.
  • the core layer has a radius of 25 to 45 ⁇ m.
  • the optical fiber has a numerical aperture of 0.196 ⁇ 0. 34.
  • the fluorine (F) Germanium (Ge) layer is co-doped quartz glass component material is Si0 2 -Ge0 2 -F-Cl; said fluorine-doped material component (F) layer of quartz glass
  • the fluorine-containing gas is SiO 2 -F-Cl; and the fluorine-containing gas is any one or more of C 2 F 6 , CF 4 , SiF 4 and SF 6 .
  • the outermost layer of the optical fiber is a fiber coating layer
  • the fiber coating layer is one or two of an acrylic resin coating, a silicone rubber coating, and a polyimide coating.
  • the fiber coating layer is a UV-curable silicone rubber coating and a high-temperature resistant acrylic resin coating.
  • the thickness of the fiber coating layer is 60 ⁇ 5 ⁇ , and the working temperature of the fiber is 40 °C to +150 °C.
  • the fiber coating layer is a heat-curing silicone rubber coating, and the fiber coating layer has a thickness of 20 ⁇ 4 ⁇ m on one side and an operating temperature of 50 ° C to + 150 ° C.
  • the fiber coating layer is a thermosetting polyimide coating
  • the thickness of the fiber coating layer is 15 ⁇ 3 ⁇
  • the working temperature of the fiber is 50 ° C to +400 ° C;
  • the full injection bandwidth of the optical fiber of the present invention is 200 MHz-km or more at a wavelength of 850 nm; 600 MHz-km or more at a wavelength of 1300 nm, and up to 13000 MHz-km.
  • the optical fiber of the invention has a bending additional loss of less than 0.2 dB at a wavelength of 1300 nm with a bending radius of 7.5 mm, and a bending additional loss of less than 0.2 dB with a bending radius of 15 mm; a winding radius of 30 mm with a bending radius of 30 mm The resulting additional bending loss is less than 0.2 dB.
  • a pure quartz glass liner is fixed on a plasma enhanced chemical vapor deposition (PCVD) lathe for doping deposition, and a fluorine-containing gas is introduced into the reaction gases silicon tetrachloride (SiCl 4 ) and oxygen (0 2 ).
  • a fluorine-containing gas is introduced into the reaction gases silicon tetrachloride (SiCl 4 ) and oxygen (0 2 ).
  • Introducing fluorine (F) doping introducing cerium tetrachloride (GeCl 4 ) to introduce germanium (Ge) doping, ionizing the reaction gas in the liner into a plasma by microwave, and finally depositing it in the form of glass.
  • the tension is drawn into an optical fiber, and the inner and outer layers of the ultraviolet-curable polyacrylic acid resin or the single-layer heat-curing silicone rubber or polyimide are coated on the surface of the optical fiber.
  • the beneficial effects of the present invention are as follows: 1. Providing a bending-resistant multimode optical fiber optimized at a transmission window of 1300 nm, and making the optical fiber
  • the 1300nm window has a high transmission bandwidth, and by increasing the core diameter and the numerical aperture, the optical fiber's ability to collect and condense the LED, VCSEL or LD is significantly improved, and the light-emitting device, that is, the light source and the light-transmitting device, that is, between the optical fibers, is improved.
  • Coupling fault tolerance; the low refractive index outer cladding of the fiber significantly reduces the additional attenuation of the fiber macrobend and improves the bending resistance of the fiber; 2.
  • the specific cladding design reduces the refractive index distortion of the fiber core during the drawing process, thereby ensuring the fiber It has excellent bandwidth characteristics; 3. It can make the transmission rate of multimode fiber in the 1300nm window reach 10G Gbit/s or even 100Gbit/s ; 4.
  • the coating layer of the invention makes the fiber have better high temperature resistance, and the fiber is higher. It can be used normally under temperature environment and can work stably in different high temperature environments for a long time.
  • Figure 1 is a radial cross-sectional structural view of an embodiment of the present invention.
  • Figure 2 is a cross-sectional view of a refractive index of one embodiment of the present invention.
  • R1 is the core radius
  • R2 is the inner cladding radius
  • R3 is the intermediate cladding radius
  • R4 is the outer cladding radius
  • the bending-resistant multimode fiber designed and manufactured by the inventive scheme has a significantly lower bending loss under various test conditions than the conventional multimode fiber of the same type.
  • the F and Ge co-doped first inner cladding designed by the invention can significantly withstand the additional stress in the preform to the wire drawing process during the fiber manufacturing process, thereby reducing the parabolic distortion of the produced fiber core layer;
  • the multimode fiber manufactured by the design of the present invention has a high bandwidth, and the full injection bandwidth is 200 MHz-km or more at a wavelength of 850 nm; at a wavelength of 1300 nm, it is 600 MHz-km or more, and even up to 13000 MHz-km.
  • the macrobend additional loss is measured according to the FOTP-62 (IEC- 60793-1 - 47) method.
  • the fiber under test is wound around a certain diameter (for example: 15mm, 20mm, 30mm, etc.), and then the circle is released.
  • the change of optical power before and after the circle is tested as the additional loss of the macrobend of the fiber.
  • an Encircled Flux light injection condition was employed. Encircled Flux light injection conditions can be obtained by: welding a 2 m long ordinary 50 micron core multimode fiber at the front end of the fiber under test, and winding a 25 mm diameter ring in the middle of the fiber.
  • the fiber to be tested is an Encircled Flux light injection.
  • the full injection bandwidth is measured according to the FOTP-204 method, and the test uses a full injection condition.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

一种渐变折射率抗弯曲多模光纤,包括有芯层和包层。芯层半径为20〜50μm,芯层折射率为梯度渐变型折射率分布,分布幂指数α为1.89—1.97,芯层相对折射率差最大值Δ1%max为0.9%〜2.72%。紧邻芯层的为内包层,内包层半径为22〜57μm,相对折射率差Δ2%为一0.02%〜0.02%。从内包层依次向外是中间包层和外包层,中间包层为纯石英玻璃层,中间包层半径为32〜60μm,相对折射率差为Δ3%为一0.01%〜0.01%。该渐变折射率抗弯曲多模光纤不仅降低光纤的弯曲损耗,而且保证光纤在1300nm窗口具有高传输带宽,且通过增大芯径直径和数值孔径,提高光纤对LED、VCSEL或LD的收光和聚光能力,提高光源和光纤之间的耦合容错能力。

Description

一种渐变折射率抗弯曲多模光纤
技术领域
本发明涉及一种数据信号传输、 光纤传感和光器件中应用在 1300nm传输窗口优化的渐 变折射率多模光纤, 该光纤不但具有良好的抗弯曲性能, 而且具有易与光源耦合以及光功率 分布均匀、 在 1300nm窗口具有带宽高等特点, 属于光通信技术领域。
背景技术
光纤通信始于多模光纤的发明和应用。 近十多年来, 尽管单模光纤成为光纤市场中需求 的最主要品种, 但多模光纤始终没有被取代而是一直保持着稳定增长的市场需求, 其原因就 在于多模光纤的许多特性正好可以满足光信号、能量传输、局域网数据传输和光器件的使用。 目前多模光纤通信系统的造价远远低于单模光纤通信系统, 这也是多模光纤长盛不衰的原因 之一。 常规多模光纤的种类划分, 根据 IEC以及 ITU等国际标准组织的推荐标准可以划分为 50μηι和 62. 5μηι两大类, 在 50μηι这一大类中又可以按照带宽, ISO 11801标准又把它细分 为 0M1、 0M2、 0M3、 0M4几种类型。 50um多模光纤系统的传输速率从 10Mbit/s到 10Gbit/s甚 至 100Gbit/s, 链路长度最大可达 2km, 已远远满足其应用需求。 然而, 上述多模光纤在 10G Gbit/s甚至 100Gbit/s系统中的应用, 都是在 850nm窗口传输, 这受益于 VCSEL850nm激光 器发明和成本降低。 如果在 1300nm光器件成本下降, 在此窗口传输 10Gbit/s甚至 100Gbit/s 多模系统是完全可能的, 并且还可以充分利用光纤在此窗口低损耗特点, 大大提高传输距离, 降低系统成本。 在过去的几年里, 长波长 VCSEL制造商已经进行了大量可靠性测试, 采用 晶园键合法制造的 1300nm波段 VCSEL的测试结果已经发布: 实现 5000小时高温加速老化 实验零故障率, 在 25°C下平均失效时间为 3千万小时, 70°C下达两百万小时。
多模光纤, 特别是高传输性能的多模光纤如 0M3、 0M4光纤, 在中短距离光纤网络系统应 用广泛。 在大楼、 小型化器件里, 环境狭窄, 光纤承受很大的弯曲应力。 光纤长期承受大的 弯曲应力, 会减短光纤的使用寿命, 恶化传输性能指标, 为此, 需要光纤具有抗弯特性, 以 满足特殊应用的需要。 降低光纤附加弯曲损耗有效的办法是优化光纤的剖面结构, 主要是设 计不同结构的包层, 以减少光纤弯曲时光功率的损失。
此外, 要使多模光纤有很好的带宽, 光纤纤芯折射率剖面必须为完美的抛物线型。 包括 专利 CN183049C在内的许多文献只是关注如何制备具有精确折射率剖面的预制棒,然而,预 制棒在拉丝过程中, 残存的应力以及组分的扩散使光纤的折射率与预制棒相比有了很大的畸 变, 从而降低光纤的带宽。 因此, 光纤折射率剖面畸变的问题也有待进一步改进。
为方便介绍本发明内容, 定义部分术语: 石英衬管: 管状的基底管, 其内壁承载 PCVD化学反应的玻璃态氧化沉积物; 套管: 符合一定几何指标和掺杂要求的石英玻璃管;
芯层: 居于光纤横截面的中心部分, 是光纤的主要导光的区域;
内包层: 光纤横截面中紧邻芯层的环形区域;
中间包层: 光纤横截面中紧邻内包层的环形区域;
外包层: 光纤横截面中紧邻中间包层的环形区域;
相对折 :
Figure imgf000004_0001
数值孔径:
ΝΑ=η0 Χ ( 2Δ ) 1/2
和 分别为各对应部分和纯二氧化硅玻璃在 1300nm波长的折射率; 幂指数律折射率分布剖面: 满足下面幂指数函数的折射率分布形态, 其中, ¾为光纤轴 心的折射率; r为离开光纤轴心的距离; a为光纤芯半径; a为分布幂指数; Δ为芯 /包相对折 射率差;
n2 (r) = n [l - 2A(-)a ] r<a 。
a
发明内容
本发明所要解决的技术问题在于针对上述现有技术存在的不足而提供一种在 1300nm窗 口优化, 具有高带宽性能, 拉丝后保持完好折射率剖面结构的抗弯曲多模光纤。
本发明为解决上述提出的问题所采用的技术方案为:
包括有芯层和包层, 其特征是芯层半径 R1为 20〜50μηι, 芯层折射率为梯度渐变型折射 率分布, 分布幂指数 α为 1.89— 1.97, 芯层相对折射率差最大值 Δ l%max为 0.9%〜2.72%, 紧邻芯层的为内包层, 内包层半径 R2为 22〜57μηι, 相对折射率差 A 2%为一0.02%〜0.02%, 从内包层依次向外是中间包层和外包层,中间包层为纯石英玻璃层,中间包层半径 R3为 32〜 60μηΐ; 相对折射率差为 A 3%为一 0.01%〜0.01%。
按上述方案, 所述的外包层半径 R4 为 62. 5 ± 1μηι, 相对折射率差 Δ 4%为一 0. 15%〜 -0. 35%, 外包层为掺 F石英玻璃层; 或者外包层为两层, 第一外包层靠内为掺 F石英玻璃层, 第一外包层半径为 42〜60μηι, 相对折射率差 Δ /。为一 0. 15%〜- 0. 35%; 第二外包层为纯石英 玻璃层。
按上述方案, 所述的芯层和内包层为 F-Ge共掺石英玻璃层, 内包层相对折射率差 Δ 2% 小于芯层折射率差 Δ 1%。
按上述方案, 所述的芯层分布幂指数 α为 1.90〜1.95, 可在 1300nm窗口获得较高带宽。 按上述方案, 所述的芯层分布幂指数 e 为 1.91〜1.93, 可在 1300nm窗口获得更大带宽。 按上述方案, 所述的芯层半径为 25〜45μηι。
按上述方案, 所述光纤的数值孔径为 0.196〜0. 34。
按上述方案, 所述的氟 (F)锗(Ge)共掺石英玻璃层的材料组分为 Si02-Ge02-F-Cl; 所 述的掺氟 (F) 石英玻璃层的材料组分为 Si02-F-Cl; 所述的含氟气体为 C2F6、 CF4、 SiF4和 SF6的任意一种或多种。
按上述方案, 所述的光纤最外层为光纤涂覆层, 所述的光纤涂覆层为丙烯酸树脂涂层、 硅橡胶涂层、 聚酰亚胺涂层的一种或两种。
按上述方案, 光纤涂覆层为紫外固化硅橡胶涂层和耐高温丙烯酸树脂涂层, 光纤涂覆层 单边厚度为 60 ± 5μηι, 光纤工作温度为一 40°C〜+150°C。
按上述方案, 光纤涂覆层为热固化硅橡胶涂层, 光纤涂覆层单边厚度为 20 ± 4μιη, 光纤 工作温度为一 50 °C〜+ 150 °C。
按上述方案, 光纤涂覆层为热固化聚酰亚胺涂层, 光纤涂覆层单边厚度为 15 ± 3μηι, 光 纤工作温度为一 50 °C〜+400°C;
根据 IEC60793— 2— 10 所述的测试要求, 本发明光纤的满注入带宽在 850nm波长为 200MHz-km以上; 在 1300nm波长为 600MHz-km以上, 最高可达 13000MHz-km.。
本发明光纤在 1300nm波长处, 以 7.5 毫米弯曲半径绕 2 圈导致的弯曲附加损耗小于 0.2dB;以 15毫米弯曲半径绕 2圈导致的弯曲附加损耗小于 0.2dB;以 30毫米弯曲半径绕 100 圈导致的弯曲附加损耗小于 0.2dB。
本发明多模光纤制造方法的技术方案为:
将纯石英玻璃衬管固定在等离子体增强化学气相沉积 (PCVD ) 车床上进行掺杂沉积, 在反应气体四氯化硅 (SiCl4) 和氧气 (02) 中, 通入含氟的气体, 引进氟 (F ) 掺杂, 通入 四氯化锗(GeCl4)以引入锗(Ge)掺杂,通过微波使衬管内的反应气体离子化变成等离子体, 并最终以玻璃的形式沉积在衬管内壁; 根据所述光纤波导结构的掺杂要求, 通过改变混合气 体中掺杂气体的流量, 依次沉积内包层和芯层; 沉积完成后, 用熔縮车床将沉积管熔縮成实 心芯棒, 然后以掺氟石英玻璃为套管采用 RIT工艺制得光纤预制棒, 或采用 OVD或 VAD外 包沉积工艺在芯棒外沉积外包层制得光纤预制棒;将光纤预制棒置于拉丝塔低张力拉成光纤, 在光纤表面涂覆内外两层紫外固化的聚丙稀酸树脂或单层热固化硅橡胶或聚酰亚胺。
本发明的有益效果在于: 1、 提供一种在 1300nm传输窗口优化的抗弯多模光纤, 使光纤 在 1300nm窗口具有高传输带宽, 且通过增大芯径直径和数值孔径, 显著提高光纤对 LED、 VCSEL或 LD的收光和聚光能力, 提高发光器件即光源和传光器件即光纤之间的耦合容错能 力; 光纤的低折射率外包层, 显著降低了光纤宏弯附加衰减, 提高了光纤的抗弯性能; 2、 特 定的包层设计, 减少拉丝过程光纤芯层折射率畸变, 从而保证光纤具有优良的带宽特性; 3、 能使多模光纤在 1300nm窗口的传输速率达到 10G Gbit/s甚至 100Gbit/s; 4、本发明涂覆层使 光纤具有较好的耐高温性能, 光纤在较高温度环境下可正常使用, 并可长期在不同的高温环 境下稳定工作。
附图说明
图 1为本发明一个实施例的径向截面结构图。
图 2为本发明一个实施例的折射率剖面图。
具体实施方式
下面给出详细的实施例对本发明进行进一步的说明, 使得本发明的使用范围更加显而易 见的。 表中 R1为芯层半径, R2为内包层半径, R3为中间包层半径, R4为外包层半径。
1 2 3 4 5 芯层幂指数 α 1.92 1.90 1.96 1.95 1.89
Almax (%) 1.07 1.76 2.00 2.3 2.56
Δ2 (%) -0.01 0.01 0 0.01 0.01
Δ3 (%) -0.001 0.001 0.001 0.001 0.002
Δ4 (%) -0.22 -0.25 -0.32 -0.26 -0.33
R1 (μηι) 25.0 31.25 40.0 27 43
R2 (jim) 29.1 35.2 44.0 29.3 45.7
R3 (μηι) 40.3 50.8 55.5 39.5 55.9
R4 (μηι) 62.5 62.5 62.5 62.5 62.5
数值孔径 0.210 0.275 0.293 0.315 0.332
满 注 入 带 宽 336 211 216 209 233
@850nm
(MHz-km)
满注入带宽 9806 3783 2556 993 837
@1300nm
(MHz-km)
涂敷层材料 丙烯酸树 丙烯酸树 聚酰亚胺 硅橡胶 丙烯酸树
脂 脂和硅橡 脂
涂敷层单边厚度 60 60 15 23 60
(μιη) 2圈 7.5mm弯曲 0.030 0.030 0.120 0.135 0.135
半径宏弯附加衰
减@1300
2圈 15mm弯曲 0.005 0.002 0.130 0.150 0.166
半径宏弯附加衰
减@1300
100圈 30mm弯 0.030 0.020 0.128 0.123 0.130
曲半径宏弯附加
衰 减 @1300nm
(dB) 通过对比测试,采用本发明方案设计制造的抗弯曲多模光纤比相同类型的常规多模光纤, 其弯曲损耗在各种测试条件下都有大幅降低。
同时, 本发明所设计的 F和 Ge共掺的第一内包层在光纤制造过程中能够显著承受预制 棒到拉丝成纤过程中的附加应力, 从而减少所制得光纤芯层抛物线型的畸变; 这样, 采用本 发明设计方案制造的多模光纤具有很高的带宽, 满注入带宽在 850nm波长为 200MHz-km以 上; 在 1300nm波长为 600MHz-km以上, 甚至高达 13000MHz-km.
对实施例中宏弯附加损耗和满注入带宽的测试说明如下:
宏弯附加损耗是根据 FOTP— 62 ( IEC— 60793— 1一 47 ) 方法测得的, 被测光纤按一定直 径 (比如: 15mm, 20mm, 30mm等等) 绕 n圈, 然后将圆圈放开, 测试打圈前后光功率的 变化, 以此作为光纤的宏弯附加损耗。 测试时, 采用环形通量 (Encircled Flux)光注入条件。 环形通量 (Encircled Flux) 光注入条件可以通过以下方法获得: 在被测光纤前端熔接一段 2 米长的普通 50微米芯径多模光纤, 并在该光纤中间绕一个 25毫米直径的圈, 当满注入光注 入该光纤时,被测光纤即为环形通量(Encircled Flux )光注入。满注入带宽是根据 FOTP— 204 方法测得的, 测试采用满注入条件。

Claims

权 利 要 求 书
1、一种渐变折射率抗弯曲多模光纤,包括有芯层和包层,其特征是芯层半径为 20〜50μηι, 芯层折射率为梯度渐变型折射率分布, 分布幂指数 ( 为 1.89— 1.97, 芯层相对折射率差最大 值 A l%max为 0.9%〜2.72%, 紧邻芯层的为内包层, 内包层半径为 22〜57μηι, 相对折射率 差八2%为一0.02%〜0.02%, 从内包层依次向外是中间包层和外包层, 中间包层为纯石英玻璃 层, 中间包层半径为 32〜60μηι; 相对折射率差为 A 3%为一 0.01%〜0.01%。
2、 按权利要求 1 所述的渐变折射率抗弯曲多模光纤, 其特征在于所述的外包层半径为 62. 5 ± Ιμηι, 相对折射率差 Δ 4%为一 0. 15%〜- 0. 35%, 外包层为掺 F石英玻璃层。
3、 按权利要求 1所述的渐变折射率抗弯曲多模光纤, 其特征在于外包层为两层, 第一外 包层靠内为掺 F石英玻璃层, 第一外包层半径为 42〜60μηι, 相对折射率差 A /。为一 0. 15%〜 -0. 35%; 第二外包层为纯石英玻璃层。
4、按权利要求 2或 3所述的渐变折射率抗弯曲多模光纤, 其特征在于所述的芯层和内包 层为 F-Ge共掺石英玻璃层, 内包层相对折射率差 Δ 2%小于芯层折射率差 Δ 1%。
5、按权利要求 2或 3所述的渐变折射率抗弯曲多模光纤, 其特征在于所述的芯层分布幂 指数 α为 1.91〜1.95。
6、按权利要求 2或 3所述的渐变折射率抗弯曲多模光纤, 其特征在于所述的芯层半径为 25〜45μη。
7、按权利要求 6所述的渐变折射率抗弯曲多模光纤, 其特征在于所述光纤的数值孔径为 0.196〜0· 34。
8、按权利要求 2或 3所述的渐变折射率抗弯曲多模光纤, 其特征在于所述的光纤最外层 为光纤涂覆层, 所述的光纤涂覆层为丙烯酸树脂涂层、 硅橡胶涂层、 聚酰亚胺涂层的一种或 两种。
9、按权利要求 2或 3所述的渐变折射率抗弯曲多模光纤,其特征在于满注入带宽在 850nm 波长为 200MHz-km以上; 在 1300nm波长为 600MHz-km以上。
10、 按权利要求 2或 3所述的渐变折射率抗弯曲多模光纤, 其特征在于在 1300nm波长 处, 以 7.5毫米弯曲半径绕 2圈导致的弯曲附加损耗小于 0.2dB; 以 15毫米弯曲半径绕 2圈 导致的弯曲附加损耗小于 0.2dB;以 30毫米弯曲半径绕 100圈导致的弯曲附加损耗小于 0.2dB。
PCT/CN2013/074668 2012-05-28 2013-04-25 一种渐变折射率抗弯曲多模光纤 WO2013177996A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/550,493 US9297953B2 (en) 2012-05-28 2014-11-21 Graded refractive index bending-resistant multimode optical fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210167792.2 2012-05-28
CN2012101677922A CN102692675A (zh) 2012-05-28 2012-05-28 一种渐变折射率抗弯曲多模光纤

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/550,493 Continuation US9297953B2 (en) 2012-05-28 2014-11-21 Graded refractive index bending-resistant multimode optical fiber

Publications (1)

Publication Number Publication Date
WO2013177996A1 true WO2013177996A1 (zh) 2013-12-05

Family

ID=46858248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074668 WO2013177996A1 (zh) 2012-05-28 2013-04-25 一种渐变折射率抗弯曲多模光纤

Country Status (4)

Country Link
US (1) US9297953B2 (zh)
CN (1) CN102692675A (zh)
TW (1) TW201348766A (zh)
WO (1) WO2013177996A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102692675A (zh) * 2012-05-28 2012-09-26 长飞光纤光缆有限公司 一种渐变折射率抗弯曲多模光纤
CN103472530B (zh) * 2013-09-23 2015-12-23 长飞光纤光缆股份有限公司 一种大芯径弯曲不敏感传能光纤
CN103472531B (zh) * 2013-09-25 2015-11-18 长飞光纤光缆股份有限公司 一种低衰减耐高温光纤
CN103543491B (zh) * 2013-11-08 2015-08-19 烽火通信科技股份有限公司 超低损耗高带宽耐辐照多模光纤及其制造方法
CN104052552A (zh) * 2014-06-13 2014-09-17 南京大学 大口径超导弱光接收机
CN104614093B (zh) * 2015-03-03 2017-05-03 哈尔滨工业大学 一种弯曲不敏感的分布式布里渊光纤温度和应变传感器
CN104698535A (zh) * 2015-03-31 2015-06-10 长飞光纤光缆股份有限公司 一种弯曲不敏感多模光纤
CN104793285B (zh) * 2015-04-29 2018-01-02 武汉邮电科学研究院 低损耗少模光纤
EP3398002B1 (en) * 2015-12-31 2021-09-29 AFL Telecommunications LLC Encircled flux compliant test apparatus
US9841559B2 (en) * 2016-02-24 2017-12-12 Corning Incorporated Multimode fiber with intermediate clad layer
CN106324752B (zh) 2016-11-08 2019-01-22 长飞光纤光缆股份有限公司 一种高带宽抗辐射多模光纤
CN107132615B (zh) * 2017-07-03 2020-01-10 长飞光纤光缆股份有限公司 一种多模光纤、其应用及测温系统
CN111399153A (zh) * 2020-05-12 2020-07-10 信达科创(唐山)石油设备有限公司 一种测井封装光纤管缆及其制备方法
CN114371530A (zh) * 2020-12-24 2022-04-19 中天电力光缆有限公司 光纤结构、光纤结构的生产方法及光缆结构
CN115327699B (zh) * 2022-10-13 2023-02-03 中国航天三江集团有限公司 内包层折射率变化的泵浦缓释增益光纤及制备方法、应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004038006A (ja) * 2002-07-05 2004-02-05 Furukawa Electric Co Ltd:The 光ファイバ
CN101634728A (zh) * 2009-08-18 2010-01-27 长飞光纤光缆有限公司 一种抗弯曲多模光纤及其制造方法
CN101738681A (zh) * 2010-01-20 2010-06-16 长飞光纤光缆有限公司 一种高带宽多模光纤
CN101907738A (zh) * 2009-06-05 2010-12-08 德雷卡通信技术公司 纤芯包层界面优化和包层效应降低的甚宽带宽多模光纤
CN102692675A (zh) * 2012-05-28 2012-09-26 长飞光纤光缆有限公司 一种渐变折射率抗弯曲多模光纤

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238203A (ja) * 2002-02-15 2003-08-27 Furukawa Electric Co Ltd:The 石英光ファイバおよび石英光ファイバ母材の製造方法
US20090169163A1 (en) * 2007-12-13 2009-07-02 Abbott Iii John Steele Bend Resistant Multimode Optical Fiber
US8184936B2 (en) * 2009-08-18 2012-05-22 Yangtze Optical Fibre And Cable Company, Ltd. Multi-mode bending-resistant fiber and production method thereof
TW201219865A (en) * 2010-11-02 2012-05-16 Hon Hai Prec Ind Co Ltd Fiber
CN102778722B (zh) * 2012-05-28 2014-09-17 长芯盛(武汉)科技有限公司 渐变折射率抗弯曲多模光纤

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004038006A (ja) * 2002-07-05 2004-02-05 Furukawa Electric Co Ltd:The 光ファイバ
CN101907738A (zh) * 2009-06-05 2010-12-08 德雷卡通信技术公司 纤芯包层界面优化和包层效应降低的甚宽带宽多模光纤
CN101634728A (zh) * 2009-08-18 2010-01-27 长飞光纤光缆有限公司 一种抗弯曲多模光纤及其制造方法
CN101738681A (zh) * 2010-01-20 2010-06-16 长飞光纤光缆有限公司 一种高带宽多模光纤
CN102692675A (zh) * 2012-05-28 2012-09-26 长飞光纤光缆有限公司 一种渐变折射率抗弯曲多模光纤

Also Published As

Publication number Publication date
CN102692675A (zh) 2012-09-26
TWI506311B (zh) 2015-11-01
US20150104140A1 (en) 2015-04-16
TW201348766A (zh) 2013-12-01
US9297953B2 (en) 2016-03-29

Similar Documents

Publication Publication Date Title
WO2013177996A1 (zh) 一种渐变折射率抗弯曲多模光纤
JP5687355B2 (ja) 曲げ耐性を有しコア径が大きく高開口数のマルチモード光ファイバ
DK2299303T3 (en) Multimode optical fiber with reduced bending losses
KR101577635B1 (ko) 벤딩에 민감하지 않은 단일모드 광섬유
WO2011088706A1 (zh) 一种高带宽多模光纤
JP5604028B2 (ja) 単一モード光ファイバ
TWI522667B (zh) A kind of bending insensitive single mode fiber
WO2013177995A1 (zh) 渐变折射率抗弯曲多模光纤
KR101731715B1 (ko) 휨 저항성 멀티모드 광섬유
KR101273801B1 (ko) 구부림 손실 강화 광섬유
EP2856225A1 (en) Multimode optical fiber and system comprising such fiber
WO2018086536A1 (zh) 一种高带宽抗辐射多模光纤
CN112904474B (zh) 一种小外径低衰减弯曲不敏感单模光纤
US8606065B2 (en) Optical fiber and method for fabricating the same
CN110488411B (zh) 一种抗弯曲单模光纤
CN107193080B (zh) 高带宽弯曲不敏感多模光纤
WO2012100581A1 (zh) 一种抗弯曲多模光纤
CN108983350B (zh) 一种小芯径渐变折射率光纤
CN111257994A (zh) 宽带抗弯多模光纤
CN112649916B (zh) 一种小型化器件用色散补偿光纤及模块
CN115542455A (zh) 一种兼容g652d标准的大模场g657a2光纤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13797227

Country of ref document: EP

Kind code of ref document: A1