WO2012100581A1 - 一种抗弯曲多模光纤 - Google Patents
一种抗弯曲多模光纤 Download PDFInfo
- Publication number
- WO2012100581A1 WO2012100581A1 PCT/CN2011/082248 CN2011082248W WO2012100581A1 WO 2012100581 A1 WO2012100581 A1 WO 2012100581A1 CN 2011082248 W CN2011082248 W CN 2011082248W WO 2012100581 A1 WO2012100581 A1 WO 2012100581A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical fiber
- ring
- refractive index
- depressed
- bending
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/028—Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
- G02B6/0281—Graded index region forming part of the central core segment, e.g. alpha profile, triangular, trapezoidal core
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/036—Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
- G02B6/03616—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
- G02B6/03638—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
- G02B6/03644—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - + -
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/036—Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
- G02B6/03616—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
- G02B6/03661—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
- G02B6/03672—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only arranged - - + -
Definitions
- the invention relates to a bending-resistant multimode optical fiber used in FTTx, data center and miniaturized optical device, which has excellent bending resistance and high bandwidth, and belongs to the field of optical communication technology. Background technique
- Multimode fiber is widely used in medium and short-haul fiber-optic network systems (such as data centers, local area networks, high-performance computing centers, and storage area networks). Cabling in a narrow environment, especially in applications where the fiber is too long, is usually wrapped in an increasingly smaller size storage case, where the fiber is likely to experience a small bend radius. Therefore, it is necessary to design and develop multimode fiber with bending insensitivity to meet the requirements of indoor book fiber network laying and device miniaturization.
- the more common method for reducing the additional attenuation of fiber bending is to use a depressed cladding ("gutter type") design.
- This design has two significant problems. First, more high-order mode energy is limited to the boundary position of the fiber core layer. It has a large negative impact on the multimode bandwidth. Second, the bending resistance of the fiber will gradually deteriorate with increasing wavelength (see Figure 2). The macrobend performance of the fiber at 1300 nm will be significantly worse than the macrobend performance at 850 nm. It does not meet the communication needs of dual windows (850nm and 1300nm) well.
- Core rod a preform containing a core layer and a partial cladding
- Radius the distance between the outer boundary of the layer and the center point
- Refractive index profile Fiber or fiber preform (including mandrel) The relationship between the refractive index of the glass and its radius
- Ni and respectively are the refractive indices of the respective portions and pure silica glass at a wavelength of 850 nm;
- Casing a quartz glass tube that meets certain geometric and doping requirements
- Sag ring area The area of the sagging ring is defined as: Instruction manual
- NNER is the radius of the inner end of the depressed ring
- ROUTEI ⁇ J is the radius of the outer end of the depressed ring.
- the unit of the depressed ring area is ⁇ 2 .
- a technical problem to be solved by the present invention is to provide a bending-resistant multimode optical fiber having a reasonable structural design, a small additional bending attenuation, a flattening additional attenuation, and a high bandwidth in view of the above-mentioned deficiencies of the prior art.
- the core layer and the cladding layer are characterized in that the core layer radius R1 is 23 to 27 micrometers, the refractive index profile of the core layer is parabolic, the distribution index ⁇ is 1.9 to 2.2, and the maximum relative refractive index difference Almax is 0.9% to 1.1%.
- the outer cladding layer from the inside to the outside is: inner cladding, depressed ring, rising ring, and depressed outer cladding; the inner cladding thickness W2 is 0 ⁇ 2.5 microns, and the inner cladding relative refractive index difference ⁇ 2 is -0.1% ⁇ 0.1%; the thickness of the singular ring W3 is 0.5 ⁇ 6 microns, the minimum relative refractive index difference of the depressed ring is ⁇ 3 ⁇ is -0.1% ⁇ -0.3%; the thickness of the rising ring unilateral W4 is 0.5 ⁇ 10 microns, and the rising ring is pure dioxide.
- the silicon layer (without chlorine or a small amount of chlorine); the thickness of the singular outer layer W5 is 17 39 microns, and the minimum relative refractive index difference of the depressed outer layer is ⁇ 5min is -0.15% 0.6%; and A3min>A5min.
- the inner cladding thickness W2 of the inner cladding layer is 0.5 2.5 micrometers.
- the inner cladding has a thickness W2 of 1 to 2 ⁇ m.
- the thickness D3 of the depressed ring is 1 ⁇ 3 micrometers; the area of the depressed ring is less than or equal to 80%- ⁇ 2 .
- the minimum relative refractive index difference A3min of the depressed ring is -0.1% to -0.2%.
- the one-side thickness W4 of the rising ring is 1 to 3 micrometers.
- the minimum relative refractive index difference ⁇ 5 ⁇ of the depressed outer cladding layer is -0.2% to -0.4%; and the thickness W5 of the depressed outer cladding layer is 25 micrometers or more.
- the refractive index of the depressed outer cladding is constant in the radial direction.
- the refractive index of the depressed outer cladding is gradually changed in the radial direction, including increasing the gradient from the inside to the outside or decreasing the gradient from the inside to the outside.
- each layer is composed of quartz glass doped with antimony (Ge) or fluorine-doped (F) or antimony fluoride or pure quartz.
- the material composition of the erbium-doped (Ge) and fluorine (F) quartz glass is SiO 2 -Ge02-F-Cl; the material composition of the fluorine-doped (F) quartz glass is SiO 2 -F -Cl.
- Chlorine (C1) is introduced by the reaction of silicon tetrachloride (SiCW), germanium tetrachloride (GeCW) and oxygen (02) to form C1.
- SiCW silicon tetrachloride
- GeCW germanium tetrachloride
- oxygen (02) oxygen
- the fluctuation of its content has little effect on the performance of the fiber, and it is stable.
- the fluctuation of the content under the process conditions is not large, and may not be required and controlled.
- the pure quartz glass liner was fixed on a plasma enhanced chemical vapor deposition (PCVD) lathe for cumbersome deposition.
- PCVD plasma enhanced chemical vapor deposition
- SiCl 4 silicon tetrachloride
- oxygen (0 2 )
- fluorine-containing gas was introduced.
- the fluorination of the fluorine (F) is complicated, and the cerium (GeCl 4 ) is introduced to introduce cerium (Ge) doping, and the reaction gas in the liner is ionized into a plasma by microwave, and finally in the form of glass.
- the depressed ring, the inner cladding and the core layer are sequentially deposited by changing the flow rate of the doping gas in the mixed gas; after the deposition is completed, the deposition tube is heated by an electric heating furnace Melt into a solid mandrel; then partially hydrolyze the mandrel with hydrofluoric acid (HF), then use the synthetic fluorine-doped quartz glass as a casing to make an optical fiber preform using RIT process, or outsourced with OVD or VAD
- the deposition process forms an optical fiber preform on the outer layer of the core rod; the optical fiber preform is placed in the drawing tower to form an optical fiber, and the inner and outer layers of the ultraviolet curing polyacrylic acid resin are applied on the surface of the optical fiber.
- the outer cladding of the optical fiber preform is a fluorine-doped casing.
- the fluorine-containing gas is any one or more of C2F6, CF4, SiF4 and SF6.
- the optical fiber of the invention has a bandwidth of 3000 MHz-km or more than 3000 MHz-km at a wavelength of 850 nm, and even a bandwidth of 10000 MHz-km or more; a numerical aperture of the optical fiber is 0.185 to 0.230; at a wavelength of 850 nm and 1300 nm, a circular radius of 15 mm is used.
- the resulting additional bending loss is less than or equal to O.OldB, even reaching O.OOldB; the additional bending loss caused by one revolution of 7.5 mm bending radius is less than or equal to O.
- the beneficial effects of the present invention are as follows: 1. Design a multimode fiber having both a depressed ring and a wide depressed outer cladding, the fiber having a very low macrobend additional attenuation and having a dual communication window (850 nm and 1300 nm) The same macro-bending performance, with "macro-bend flat" characteristics; 2, the fiber cladding layer contains a pure silicon rising ring, and the refractive index of the depressed ring next to the rising ring is higher than that of the depressed outer cladding layer, which can effectively improve the bending The bandwidth of the insensitive multimode fiber; 3.
- the manufacturing method of the invention is simple and effective, and is suitable for mass production.
- FIG. 1 is a schematic cross-sectional view showing a refractive index of an optical fiber according to an embodiment
- FIG. 2 is a schematic cross-sectional view showing a refractive index of an optical fiber according to another embodiment of the present invention.
- Figure 3 is a schematic diagram showing the additional curve of the macrobend of the "grooved" bending insensitive multimode fiber.
- FIG. 4 is a schematic diagram showing the macrobend additional attenuation curve of the bend insensitive multimode fiber of the present invention.
- the macrobend additional loss is measured according to the IEC-60793-1 47 method.
- the fiber under test is wound around a certain diameter (for example: 10mm, 15mm, 20mm, 30mm, etc.), then the circle is released, and the test is performed before and after the loop.
- the change in optical power is used as the macrobend additional loss of the fiber.
- an Encircled Flux light injection condition was employed. Encircled Flux light injection conditions can be obtained by: welding a 2 m long ordinary 50 micron core multimode fiber at the front end of the fiber to be tested, and winding a 25 mm diameter crucible in the middle of the fiber. When the injected light is injected into the fiber, the fiber to be tested is an Encircled Flux light injection.
- Embodiment 1 is a diagrammatic representation of Embodiment 1:
- a set of preforms and wires are prepared, using a double-layer coating of multimode fibers and a drawing speed of 600 m/min, an optical fiber.
- the structure and main performance parameters are shown in Table 1.
- Embodiment 2 is a diagrammatic representation of Embodiment 1:
- a set of preforms and wires are prepared, using a double-layer coating of multimode fibers and a drawing speed of 600 m/min, an optical fiber.
- the structure and main performance parameters are shown in Table 2.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Glass Compositions (AREA)
Description
一种抗弯曲多模光纤
技术领域
本发明涉及一种用于 FTTx,数据中心和小型化光器件中的抗弯曲多模光纤, 该光纤具有 优异的抗弯曲性能和高的带宽, 属于光通信技术领域。 背景技术
多模光纤在中短距离光纤网络系统 (如数据中心, 局域网、 高性能计算中心和存储区域 网等) 中得到了广泛的应用。 在室内说及狭窄环境下的布线, 特别是在应用中过长的光纤通常 缠绕在越来越小型化的存储盒中, 此时光纤很可能会经受很小的弯曲半径。 因此需要设计开 发具有弯曲不敏感性能的多模光纤, 以满足室内书光纤网络铺设和器件小型化的要求。
目前降低光纤弯曲附加衰减较普遍的方法是采用下陷包层 ( "壕沟型" ) 设计, 此设 计有两个显著的问题, 一是较多的高阶模能量会被限制在光纤芯层的边界位置, 对多模带宽 产生较大的负面影响; 二是光纤抗弯曲性能会随着波长增加逐渐变差 (见附图 2), 光纤在 1300nm波长的宏弯性能会明显差于 850nm波长的宏弯性能,不能很好地满足双窗口(850nm 和 1300nm) 的通信需要。 之前公开的中国专利 CN 101738681 A在一定程度上解决了上述问 题, 但光纤的整体带宽和宏弯性能还有待进一步提高, 才能更好满足 10Gb/s, 40 Gb/s和 100 Gb/s高速数据传输, 以及狭窄环境下布线的需要。
发明内容
本发明一些术语的定义
为方便介绍本发明内容, 定义部分术语:
芯 棒: 含有芯层和部分包层的预制件;
半径: 该层外边界与中心点之间的距离;
折射率剖面: 光纤或光纤预制棒 (包括芯棒) 玻璃折射率与其半径之间的关
系;
ni和 分别为各对应部分和纯二氧化硅玻璃在 850nm波长的折射率;
套 管: 符合一定几何和掺杂要求的石英玻璃管;
RIT工艺: 将芯棒插入套管中组成光纤预制棒;
RINNER
其中, NNER为下陷环内端的半径, ROUTEI^J下陷环外端的半径。 为下陷环折射率曲线, 下陷环面积的单位为^ 2。
幂指数律折射率剖面: 满足下面幂指数函数的折射率剖面, 其中, 为光纤轴心的折射 率; r为离开光纤轴心的距离; a为光纤芯半径; α为分布指数; Δ为芯 /包相对折射率差; n2 {r) = nl 2 [l - 2A{-)a ] r<a
a 本发明所要解决的技术问题在于针对上述现有技术存在的不足而提供一种结构设计合 理、 弯曲附加衰减小且宏弯附加衰减平坦、 带宽高的抗弯曲多模光纤。
本发明为解决上述提出的问题所采用的技术方案为:
包括有芯层和包层,其特征在于芯层半径 R1为 23〜27微米,芯层折射率剖面呈抛物线, 分布指数 α为 1.9〜2.2, 最大相对折射率差 Almax为 0.9%~1.1%, 芯层外的包层从内到外依 次为: 内包层、 下陷环、 上升环、 下陷外包层; 内包层单边厚度 W2为 0~2.5微米, 内包层 相对折射率差 Δ2为- 0.1 %~0.1%; 下陷环单边厚度 W3为 0.5~6微米, 下陷环最小相对折射率 差 Δ3ηώι为 -0.1%~-0.3%; 上升环单边厚度 W4为 0.5~10微米, 上升环为纯二氧化硅层 (不 掺氯或少量掺氯); 下陷外包层单边厚度 W5为 17 39微米, 下陷外包层最小相对折射率差 △5min为 -0.15% 0.6% ; 且 A3min>A5min。
按上述方案, 所述的内包层单边厚度 W2为 0.5 2.5微米。
按上述方案, 所述的内包层单边厚度 W2为 1〜2微米。
按上述方案, 所述的下陷环单边厚度 W3为 1〜3微米; 下陷环面积小于或等于 80%-μΓΠ2。 按上述方案, 所述的下陷环最小相对折射率差 A3min为 -0.1%〜- 0.2%。
按上述方案, 所述的上升环的单边厚度 W4为 1~3微米。
按上述方案,所述的下陷外包层最小相对折射率差 Δ5ηώι为 -0.2%〜- 0.4%;所述的下陷外 包层单边厚度 W5在 25微米或 25微米以上。
按上述方案, 所述的下陷外包层折射率沿径向为恒定的。
按上述方案, 所述的下陷外包层折射率沿径向为渐变的, 包括从内向外递增渐变或从内 向外递减渐变。
按上述方案, Δ3ηώι比 A5min大 0.1 %〜0.3%。
说 明 书 按上述方案, 各层是由掺锗 (Ge) 或掺氟 (F) 或锗氟共掺或纯石英的石英玻璃组成。 按上述方案, 所述的掺锗 (Ge)和氟 (F) 石英玻璃的材料组分为 Si02-Ge02-F-Cl; 所 述的掺氟 (F)石英玻璃的材料组分为 Si02-F-Cl。
氯 (C1) 是由四氯化硅 (SiCW)、 四氯化锗 (GeCW) 与氧气 (02) 发生反应生成 C1所 引入的,其含量的波动对光纤的性能影响不大, 且在稳定的工艺条件下其含量的波动也不大, 可不作要求和控制。
本发明多模光纤制造方法的技术方案为:
将纯石英玻璃衬管固定在等离子体增强化学气相沉积 (PCVD) 车床上进行惨杂沉积, 在反应气体四氯化硅 (SiCl4 ) 和氧气 (02) 中, 通入含氟的气体, 弓 I进氟 (F) 惨杂, 通入 四氯化锗(GeCl4)以引入锗(Ge)掺杂,通过微波使衬管内的反应气体离子化变成等离子体, 并最终以玻璃的形式沉积在衬管内壁; 根据所述光纤波导结构的掺杂要求, 通过改变混合气 体中掺杂气体的流量, 依次沉积下陷环、 内包层和芯层; 沉积完成后, 用电加热炉将沉积管 熔缩成实心芯棒; 然后采用氢氟酸(HF)根据需要对芯棒进行部分腐蚀, 然后以合成的掺氟 石英玻璃为套管采用 RIT工艺制得光纤预制棒, 或采用 OVD或 VAD外包沉积工艺在芯棒外沉 积外包层制得光纤预制棒; 将光纤预制棒置于拉丝塔拉成光纤, 在光纤表面涂覆内外两层紫 外固化的聚丙稀酸树脂即成。
按上述方案, 光纤预制棒的下陷外包层采用掺氟套管。
按上述方案, 所述的含氟气体为 C2F6、 CF4、 SiF4和 SF6的任意一种或多种。
本发明光纤在 850nm 波长具有 3000MHz-km 或 3000MHz-km 以上的带宽, 甚至 10000MHz-km以上的带宽; 光纤的数值孔径为 0.185~0.230; 在 850nm和 1300nm波长处, 以 15毫米弯曲半径绕 1圈导致的弯曲附加损耗小于或等于 O.OldB,甚至达到 O.OOldB;以 7.5 毫米弯曲半径绕 1圈导致的弯曲附加损耗小于或等于 O. ldB, 甚至达到 O.OldB; 以 5毫米弯 曲半径绕 1圈导致的弯曲附加损耗小于或等于 0.3dB,甚至达到 0.03dB;且在 850nm和 1300nm 波长处, 具有同等的宏弯附加衰减。
本发明的有益效果在于: 1、 设计出一种同时具有下陷环和宽的下陷外包层的多模光纤, 该光纤具有很低的宏弯附加衰减, 并且在双通信窗口(850nm和 1300nm)具有同等的宏弯性 能, 具有 "宏弯平坦"特性; 2、 光纤包层中包含纯硅上升环, 且紧挨上升环的下陷环的折射 率比下陷外包层的折射率高, 可以有效提高弯曲不敏感多模光纤的带宽; 3、本发明制造方法 简便有效, 适用于大规模生产。
附图说明
图 1 是本发明一个实施例的光纤折射率剖面示意图。
说 明 书 图 2是本发明另一个实施例的光纤折射率剖面示意图。
图 3 是 "壕沟型"弯曲不敏感多模光纤的宏弯附加衰减曲线示意图。
图 4是本发明弯曲不敏感多模光纤的宏弯附加衰减曲线示意图。
具体实施方式
下面将给出详细的实施例并结合附图, 对本发明作进一步的说明。
对实施例中宏弯附加损耗和满注入带宽的测试说明如下:
宏弯附加损耗是根据 IEC— 60793— 1 47 方法测得的, 被测光纤按一定直径 (比如: 10mm, 15mm, 20mm, 30mm等等)绕一圈, 然后将圆圈放开, 测试打圈前后光功率的变化, 以此作为光纤的宏弯附加损耗。 测试时, 采用环形通量 (Encircled Flux)光注入条件。 环形 通量 (Encircled Flux)光注入条件可以通过以下方法获得: 在被测光纤前端熔接一段 2米长 的普通 50微米芯径多模光纤, 并在该光纤中间绕一个 25毫米直径的圏, 当满注入光注入该 光纤时, 被测光纤即为环形通量 (Encircled Flux) 光注入。
实施例一:
按照技术方案的设计(如附图 1所示), 和本发明所述制造方法, 制备了一组预制棒并拉 丝,采用多模光纤的双层涂覆和 600米 /分钟的拉丝速度,光纤的结构和主要性能参数见表 1。
表 1
实施例二:
按照技术方案的设计(如附图 2所示), 和本发明所述制造方法, 制备了一组预制棒并拉 丝,采用多模光纤的双层涂覆和 600米 /分钟的拉丝速度,光纤的结构和主要性能参数见表 2。
表 2
Claims
1、 一种抗弯曲多模光纤, 包括有芯层和包层, 其特征在于芯层半径 R1为 23〜27微米, 芯层折射率剖面呈抛物线,分布指数 α为 1.9〜2.2,最大相对折射率差 Almax为 0.9%〜1.1%, 芯层外的包层从内到外依次为: 内包层、 下陷环、 上升环、 下陷外包层; 内包层单边厚度 W2为 0 2.5微米, 内包层相对折射率差 Δ2为 -0.1%~0.1%; 下陷环单边厚度 W3为 0.5~6微 米, 下陷环最小相对折射率差 Δ3ηώι为 -0.1%〜- 0.3%, 上升环单边厚度 W4为 0.5〜10微米, 上升环为纯二氧化硅层; 下陷外包层单边厚度 W5为 17 39微米, 下陷外包层最小相对折射 率差 A5min为 -0.15% 0.6%; 且 A3min>A5min。
2、按权利要求 1所述的抗弯曲多模光纤,其特征在于所述的内包层单边厚度 W2为 0.5 2.5 微米。
3、 按权利要求 1或 2所述的抗弯曲多模光纤, 其特征在于所述的下陷环单边厚度 W3为 1-3微米, 下陷环面积小于或等于 80%-μηη2。
4、 按权利要求 3 所述的抗弯曲多模光纤, 其特征在于所述的下陷环最小相对折射率差 △3min为 -0.1ο/ -0.2%。
5、 按权利要求 1或 2所述的抗弯曲多模光纤, 其特征在于所述的上升环的单边厚度 W4 为 1~3微米。
6、按权利要求 1或 2所述的抗弯曲多模光纤,其特征在于所述的下陷外包层最小相对折 射率差 Δ5ηώι为 -0.2%— 0.4%; 所述的下陷外包层单边厚度 W5在 25微米或 25微米以上。
7、按权利要求 6所述的抗弯曲多模光纤,其特征在于所述的下陷外包层折射率沿径向为 恒定的。
8、按权利要求 6所述的抗弯曲多模光纤,其特征在于所述的下陷外包层折射率沿径向为 渐变的, 包括从内向外递增渐变或从内向外递减渐变。
9、按权利要求 1或 2所述的抗弯曲多模光纤,其特征在于 A3min比 A5min大 0.1%〜0.3%。
10、 按权利要求 1 或 2 所述的抗弯曲多模光纤, 其特征在于在 850nm波长具有 3000MHz-km或 3000MHz-km 以上的带宽; 光纤的数值孔径为 0.185 0.230; 在 850nm和 1300nm波长处, 以 15毫米弯曲半径绕 1圈导致的弯曲附加损耗小于或等于 O.OldB; 以 7.5 毫米弯曲半径绕 1圈导致的弯曲附加损耗小于或等于 O. ldB; 以 5毫米弯曲半径绕 1圈导致 的弯曲附加损耗小于或等于 0.3dB; 且在 850nm和 1300nm波长处, 具有同等的宏弯附加衰 减。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110029993.1 | 2011-01-26 | ||
CN 201110029993 CN102043197A (zh) | 2011-01-26 | 2011-01-26 | 一种抗弯曲多模光纤 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012100581A1 true WO2012100581A1 (zh) | 2012-08-02 |
Family
ID=43909513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/082248 WO2012100581A1 (zh) | 2011-01-26 | 2011-11-16 | 一种抗弯曲多模光纤 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102043197A (zh) |
WO (1) | WO2012100581A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102043197A (zh) * | 2011-01-26 | 2011-05-04 | 长飞光纤光缆有限公司 | 一种抗弯曲多模光纤 |
CN104614093B (zh) * | 2015-03-03 | 2017-05-03 | 哈尔滨工业大学 | 一种弯曲不敏感的分布式布里渊光纤温度和应变传感器 |
CN107479129A (zh) * | 2017-08-11 | 2017-12-15 | 长飞光纤光缆股份有限公司 | 一种高带宽多模光纤 |
CN108333671B (zh) * | 2018-02-01 | 2019-12-03 | 烽火通信科技股份有限公司 | 抗弯曲多模光纤 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090169163A1 (en) * | 2007-12-13 | 2009-07-02 | Abbott Iii John Steele | Bend Resistant Multimode Optical Fiber |
CN101622561A (zh) * | 2007-01-08 | 2010-01-06 | 康宁股份有限公司 | 抗弯曲多模光纤 |
CN101738681A (zh) * | 2010-01-20 | 2010-06-16 | 长飞光纤光缆有限公司 | 一种高带宽多模光纤 |
CN101840023A (zh) * | 2010-05-28 | 2010-09-22 | 长飞光纤光缆有限公司 | 一种抗弯曲多模光纤 |
CN102043197A (zh) * | 2011-01-26 | 2011-05-04 | 长飞光纤光缆有限公司 | 一种抗弯曲多模光纤 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3829665B2 (ja) * | 2000-09-29 | 2006-10-04 | 住友電気工業株式会社 | 光ファイバカプラ及び光ファイバカプラ用の光ファイバ |
CN101583891A (zh) * | 2005-11-23 | 2009-11-18 | 康宁股份有限公司 | 低衰减非零色散位移光纤 |
CN101663604A (zh) * | 2007-02-28 | 2010-03-03 | 康宁股份有限公司 | 具有大有效面积的光纤 |
-
2011
- 2011-01-26 CN CN 201110029993 patent/CN102043197A/zh active Pending
- 2011-11-16 WO PCT/CN2011/082248 patent/WO2012100581A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101622561A (zh) * | 2007-01-08 | 2010-01-06 | 康宁股份有限公司 | 抗弯曲多模光纤 |
US20090169163A1 (en) * | 2007-12-13 | 2009-07-02 | Abbott Iii John Steele | Bend Resistant Multimode Optical Fiber |
CN101738681A (zh) * | 2010-01-20 | 2010-06-16 | 长飞光纤光缆有限公司 | 一种高带宽多模光纤 |
CN101840023A (zh) * | 2010-05-28 | 2010-09-22 | 长飞光纤光缆有限公司 | 一种抗弯曲多模光纤 |
CN102043197A (zh) * | 2011-01-26 | 2011-05-04 | 长飞光纤光缆有限公司 | 一种抗弯曲多模光纤 |
Also Published As
Publication number | Publication date |
---|---|
CN102043197A (zh) | 2011-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011088706A1 (zh) | 一种高带宽多模光纤 | |
JP5687355B2 (ja) | 曲げ耐性を有しコア径が大きく高開口数のマルチモード光ファイバ | |
KR101577635B1 (ko) | 벤딩에 민감하지 않은 단일모드 광섬유 | |
US9796618B2 (en) | Multi-core optical fiber ribbons and methods for making the same | |
JP6129270B2 (ja) | 曲げ耐性のマルチモード光ファイバ | |
EP2594535B1 (en) | Methods for preparing large-dimension optical fiber preform and optical fiber | |
CN106772788B (zh) | 一种截止波长位移单模光纤 | |
KR101577962B1 (ko) | 일종의 벤딩에 민감하지 않은 단일모드 광섬유 | |
CN104291676B (zh) | 一种大尺寸弯曲不敏感多模光纤预制棒的制造方法 | |
CN109839694B (zh) | 一种截止波长位移单模光纤 | |
WO2011020315A1 (zh) | 一种抗弯曲多模光纤及其制造方法 | |
WO2013177996A1 (zh) | 一种渐变折射率抗弯曲多模光纤 | |
WO2010020139A1 (zh) | 弯曲损耗不敏感的单模光纤 | |
CN108333671B (zh) | 抗弯曲多模光纤 | |
CN105759344B (zh) | 一种抗弯曲多模光纤 | |
CN104216044B (zh) | 一种低衰耗弯曲不敏感单模光纤 | |
WO2013177995A1 (zh) | 渐变折射率抗弯曲多模光纤 | |
WO2020119439A1 (zh) | 一种低损耗大有效面积单模光纤及其制备方法 | |
CN105911639B (zh) | 一种低衰减单模光纤 | |
CN107102400B (zh) | 一种高带宽弯曲不敏感多模光纤 | |
CN103513327A (zh) | 一种弯曲不敏感多模光纤及其制作方法 | |
WO2012100581A1 (zh) | 一种抗弯曲多模光纤 | |
CN107193080B (zh) | 高带宽弯曲不敏感多模光纤 | |
CN107479129A (zh) | 一种高带宽多模光纤 | |
CN203519865U (zh) | 一种弯曲不敏感多模光纤 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11857067 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11857067 Country of ref document: EP Kind code of ref document: A1 |