WO2013177995A1 - 渐变折射率抗弯曲多模光纤 - Google Patents

渐变折射率抗弯曲多模光纤 Download PDF

Info

Publication number
WO2013177995A1
WO2013177995A1 PCT/CN2013/074667 CN2013074667W WO2013177995A1 WO 2013177995 A1 WO2013177995 A1 WO 2013177995A1 CN 2013074667 W CN2013074667 W CN 2013074667W WO 2013177995 A1 WO2013177995 A1 WO 2013177995A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
optical fiber
layer
radius
core layer
Prior art date
Application number
PCT/CN2013/074667
Other languages
English (en)
French (fr)
Inventor
汪松
周志攀
刘永涛
徐进
范明峰
张树强
王伟
Original Assignee
长飞光纤光缆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长飞光纤光缆有限公司 filed Critical 长飞光纤光缆有限公司
Publication of WO2013177995A1 publication Critical patent/WO2013177995A1/zh
Priority to US14/548,047 priority Critical patent/US9170369B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0281Graded index region forming part of the central core segment, e.g. alpha profile, triangular, trapezoidal core
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/03644Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - + -

Definitions

  • the invention relates to a graded-index multimode fiber applied in 10GBASE-SR and 100GBASE-SR10 transmission systems.
  • the fiber not only has good bending resistance, but also has high bandwidth and excellent differential mode delay performance, and belongs to optical communication. Technical field.
  • Fiber optic communications began with the invention and application of multimode fiber.
  • multimode fiber has not been replaced but has maintained a steady growth in market demand.
  • the reason is that many characteristics of multimode fiber are just right. It can meet the requirements of optical signal, energy transmission, LAN data transmission and optical device, and the cost of multimode fiber-optic communication system is much lower than that of single-mode fiber-optic communication system. This is also the reason why multi-mode fiber is nowadays in 50 ⁇ multimode fiber. According to the ⁇ / ⁇ -492 ⁇ standard, it is divided into four types: 0 ⁇ 1, 0 ⁇ 2, 0 ⁇ 3, and 0 ⁇ 4.
  • High-bandwidth multimode fiber (such as ⁇ 3/ ⁇ 4) has been widely used in medium and short-haul fiber-optic network systems due to its relatively low system cost.
  • the fiber is subjected to high bending stress, which results in high bending loss. Therefore, it is necessary to design and develop multimode fiber with anti-bending performance to meet the requirements of indoor fiber network laying and device miniaturization.
  • DMD Different Mode Delay
  • ⁇ 3 fiber transmission distance is not less than 300m, OM4 fiber transmission distance is not less than 550m; and in 100G network, OM3 fiber transmission distance is not less than 100m, OM4 fiber transmission The distance is no less than 150m.
  • the DMD value measured from the core 5 to 18 ⁇ distance is defined as INNER MASK; 0 to 25 ⁇ distance measurement The obtained DMD value is defined as OUTER MASK; and in the 0-25 ⁇ distance segment subdivided into 7-13 ⁇ , 9-15 ⁇ , 11-17 ⁇ , 13-19 ⁇ , the DMD values measured on the four distance segments are defined.
  • INNER MASK 5 to 18 ⁇ distance
  • OUTER MASK 0 to 25 ⁇ distance measurement
  • the DMD values measured on the four distance segments are defined.
  • Standard TIA/EIA-492AAAC and TIA/EIA-492AAAD specify the DMD performance specifications for OM3 fiber and OM4 fiber, respectively:
  • Table 1 OM3 fiber INNER MASK and OUTER MASK in 850nm band DMD DMD Inner Mask (Unit: ps/m) DMD Outer Mask (Unit: ps/m)
  • the DMD values of INNER MASK and OUTER MASK of OM3 fiber must meet any of the six groups in Table 1, and according to Table 2, 7-13, 9-15, 11-17, 13-19 ⁇ INTERVAL MASK Less than or equal to 0.25 ps/m.
  • Table 3 850nm band 0M4 fiber INNER MASK and OUTER MASK
  • the DMD values of INNER MASK and OUTER MASK of 0M4 fiber must meet any of the three groups in Table 3, and according to Table 4, 7-13, 9-15, 11-17, 13-19 ⁇ INTERVAL MASK Less than or equal to 0.1 lps/m.
  • Quartz liner a tubular base tube whose inner wall carries a glass-state oxidized deposit of PCVD chemical reaction;
  • Casing quartz glass tube that meets certain geometrical specifications and doping requirements
  • Core layer the central portion of the cross section of the fiber, which is the main light guiding area of the fiber;
  • Inner cladding an annular region in the cross section of the fiber adjacent to the core layer;
  • Intermediate cladding an annular region of the cross section of the fiber adjacent to the inner cladding;
  • Outer layer an annular region of the cross section of the fiber adjacent to the intermediate cladding
  • a power exponential refractive index profile a refractive index profile that satisfies the power exponential function below, where ⁇ is the refractive index of the fiber axis; The distance from the axis of the fiber; a is the core radius of the fiber; a is the distribution power exponent; ⁇ is the core/package relative refractive index difference;
  • n 2 (r) n [l - 2A(-) a ] r ⁇ a
  • DMD Differential Mode Delay
  • AT REF represents the time width of the light pulse intensity of the system source of 25%
  • T FAST represents the time of the edge of the most leading light pulse among all output light pulses in the position of the set incident light relative to the core of the fiber to be tested;
  • L represents the length of the fiber to be tested.
  • the technical problem to be solved by the present invention is to provide a gradient index refraction which is optimized in the 850 nm window, maintains a good refractive index profile after drawing, and has high bandwidth and excellent differential mode delay performance in view of the above-mentioned deficiencies of the prior art. Bending multimode fiber.
  • the core layer and the cladding layer are characterized by a core layer radius R1 of 22.5 ⁇ 27.5 ⁇ , a refractive index gradient of the core layer, a distribution power index ⁇ of 1.99 ⁇ 2.06, and a maximum relative refractive index difference of the core layer.
  • ⁇ l% max is 0.9% ⁇ 1.3%
  • the inner layer is adjacent to the core layer
  • the inner cladding radius R2 is 25.5 ⁇ 34.5 ⁇
  • the relative refractive index difference ⁇ 2% is 0.02% ⁇ 0.02%, which is sequentially outward from the inner cladding.
  • It is an intermediate cladding layer and an outer cladding layer.
  • the intermediate cladding layer is a pure quartz glass layer.
  • the intermediate cladding radius R3 is 30.5 ⁇ 49.5 ⁇ , the relative refractive index difference is A 3% is 0.01% ⁇ 0.01%; the outer cladding radius R4 is 62. 5% ⁇ - 0. 30% ⁇ 5 ⁇ 1 ⁇ , relative refractive index difference ⁇ 4% is a 0. 20% ⁇ - 0. 30%
  • the core layer and the inner cladding layer are F-Ge co-doped quartz glass layers, and the relative refractive index difference ⁇ 2% of the inner cladding layer is smaller than the core layer refractive index difference ⁇ 1%.
  • the outer cladding layer is an F-doped quartz glass layer.
  • the power distribution index of the core layer is 2.00 ⁇ 2.05, and a larger bandwidth can be obtained at the 850 nm window.
  • the power distribution index of the core layer is 2.01 to 2.03, which can be obtained at the window of 850 nm.
  • the inner cladding has a thickness of 5 to 7 ⁇ m, and a better DMD can be obtained.
  • the bend-resistant multimode fiber prepared by the invention satisfies the OM3/OM4 DMD characteristic requirement specified by the TIA/EIA-492AAA standard.
  • the optical fiber has a numerical aperture of 0.185 ⁇ 0. 215.
  • the fluorine (F) Germanium (Ge) layer is co-doped quartz glass component material is Si0 2 -Ge0 2 -F-Cl; said fluorine-doped material component (F) layer of quartz glass
  • the fluorine-containing gas is SiO 2 -F-Cl; and the fluorine-containing gas is any one or more of C 2 F 6 , CF 4 , SiF 4 and SF 6 .
  • the full injection bandwidth of the optical fiber of the present invention is above 500 MHz-km at a wavelength of 1300 nm; at a wavelength of 1500 nm above 1500 MHz-km, up to 11000 MHz-km.
  • the optical fiber of the present invention has an additional bending loss of less than 0.2 dB at a wavelength of 850 nm with a bending radius of 7.5 mm, and a bending additional loss of less than 0.1 dB with a bending radius of 15 mm.
  • the additional bending loss is less than 0.5 dB with a radius of 7.5 mm around 2 turns; the additional bending loss is less than 0.3 dB with 2 turns of a 15 mm bend radius.
  • DMD Different Mode Delay
  • FOTP-220 IEC-60793- 1-49-2006
  • the source used for the test is a 850 nm, high power, narrow-spectrum pulse laser that passes through a pulse.
  • Standard single mode fiber is injected into the core of the fiber to be tested.
  • the position of the pulsed laser injected into the core of the fiber to be tested is changed, so that the transmission mode of the pulsed laser in the fiber to be tested changes, and the fiber to be tested is collected and recorded by the detector at different positions of the single-mode fiber.
  • the laser pulse signal output in the middle From this analysis, the difference in delay between the different output pulse signals obtained, that is, the differential mode delay is calculated.
  • a pure quartz glass liner is fixed on a plasma enhanced chemical vapor deposition (PCVD) lathe for doping deposition, and a fluorine-containing gas is introduced into the reaction gases silicon tetrachloride (SiCl 4 ) and oxygen (0 2 ).
  • a fluorine-containing gas is introduced into the reaction gases silicon tetrachloride (SiCl 4 ) and oxygen (0 2 ).
  • Introducing fluorine (F) doping introducing cerium tetrachloride (GeCl 4 ) to introduce germanium (Ge) doping, ionizing the reaction gas in the liner into a plasma by microwave, and finally depositing it in the form of glass.
  • the beneficial effects of the present invention are as follows: 1. Providing a bending-resistant multimode optical fiber optimized for transmission window at 850 nm, and making the optical fiber It has a high transmission bandwidth in the 850 nm window. 2. Through the gradient index profile and the F-GE co-doped cladding structure design, it can significantly withstand the additional stress in the preform to the wire drawing process during the fiber manufacturing process, thereby reducing the fiber. The distortion of the refractive index profile of the core layer, so that the multimode fiber has a higher bandwidth and a lower differential mode delay (DMD), which optimizes the DMD performance of the fiber; 3. enables the multimode fiber at 850 nm.
  • DMD differential mode delay
  • the transmission rate of the window reaches 10G Gbit/s or even 100Gbit/s, and ensures that the fiber has good signal stability in the 10G or 100G multimode fiber transmission system. 4. It has good bending insensitivity and is suitable for the current multi-function. Modular fiber is required for network transmission and device applications.
  • Figure 1 is a radial cross-sectional structural view of an embodiment of the present invention.
  • Figure 2 is a cross-sectional view of a refractive index of one embodiment of the present invention.
  • Figure 3 is a diagram of a DMD waveform in accordance with one embodiment of the present invention.
  • Figure 5 is a DMD waveform diagram of a conventional anti-bending fiber of the same type.
  • Table 6 compares DMD data of an existing fiber of the same type with an existing embodiment of the present invention.
  • the F and Ge co-doped inner cladding designed by the invention can significantly withstand the additional stress in the preform to the wire drawing process during the fiber manufacturing process, thereby reducing the distortion of the refractive index of the core layer of the optical fiber, thus adopting the design scheme of the invention.
  • the manufactured multimode fiber has a higher bandwidth and a lower differential mode delay (DMD).
  • DMD differential mode delay
  • the outer layer structure with a recessed ring designed by the present invention has a lower additional macrobend loss. .
  • Table 6 is a comparison of DMD data of an existing optical fiber of the same type according to an embodiment of the present invention.
  • the DMD data given in Table 6 strongly demonstrates that the use of the present invention can effectively reduce the bending multimode fiber DMD, thereby ensuring that the fiber meets the DMD characteristics requirements specified by the TIA/EIA-492AAA standard.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

一种渐变折射率抗弯曲多模光纤包括芯层和包层,其特征是芯层半径为22.5~27.5μm,芯层折射率为梯度渐变型折射率分布,分布幂指数α为1.99~2.06,芯层相对折射率差最大值Δ1%maχ为0.9%~1.3%,紧邻芯层的为内包层,内包层半径为25.5~34.5μm,相对折射率差Δ2%为—0.02%~0.02%,从内包层依次向外是中间包层和外包层,中间包层为纯石英玻璃层,中间包层半径为30.5~49.5μm,相对折射率差为△3%为—0.01%~0.01%;外包层半径为62.5±1μm,相对折射率差Δ4%为—0.20%~0.30%。本发明不仅提高光纤的抗弯性能,具有较高带宽,而且优化了光纤的差分模式时延性能,确保此种光纤在10G或100G的多模光纤传输系统中拥有良好的信号稳定性。

Description

渐变折射率抗弯曲多模光纤 技术领域
本发明涉及一种在 10GBASE-SR和 100GBASE-SR10传输系统应用的渐变折射率多模光 纤, 该光纤不但有着良好的抗弯曲性能, 而且具有高带宽以及优异的差分模式时延性能, 属 于光通信技术领域。
背景技术
光纤通信始于多模光纤的发明和应用。 近十多年来, 尽管单模光纤成为光纤市场中需求 的最主要品种, 但多模光纤始终没有被取代而是一直保持着稳定增长的市场需求, 其原因就 在于多模光纤的许多特性正好可以满足光信号、 能量传输、 局域网数据传输和光器件的使用, 而且多模光纤通信系统的造价远低于单模光纤通信系统, 这也是多模光纤长盛不衰的原因之 在 50μηι多模光纤中, 依据 ΤΙΑ/ΕΙΑ-492ΑΑΑ标准,分为 0Μ1、 0Μ2、 0Μ3、 0Μ4四种类型。 高带宽多模光纤 (如 ΟΜ3/ΟΜ4 ) 因系统成本相对较低, 在中短距离光纤网络系统中得到了 广泛应用。 但在室内及狭窄的环境下布线, 光纤经受较高的弯曲应力, 这将导致较高的弯曲 损耗。 因此需要设计开发具有抗弯曲性能的多模光纤, 以满足室内光纤网络铺设和器件小型 化的要求。
在已知的相关研究以及专利中, 只给出了多模光纤弯曲性能优化的解决方案, 如专利文 献 ZL201010029031.1 ,专利 ZL201110029993.1 ,但没有解决高带宽多模光纤(如 ΟΜ3/ΟΜ4) 的 DMD (差分模式时延) 性能优化。 在 10G或 100G的传输系统中, DMD是决定信号传输 的最关键参数, 根据目前发展 10G或 100G传输系统的技术要求, 优异的 DMD性能越来越重 要, 它决定了信号传输能力的稳定性, 直接表征了多模光纤的品级。
据标准 ΤΙΑ/ΕΙΑ-492ΑΑΑ规定, 在 10G网络中: ΟΜ3光纤传输距离不低于 300m, OM4 光纤传输距离不低于 550m; 而在 100G网络中, OM3光纤传输距离不低于 100m, OM4光纤 传输距离不低于 150m。 同样在标准 TIA/EIA-492AAA中: 针对半径为 25μηι的多模光纤, 在 850nm波段处, 从纤芯开始, 5至 18μηι距离段测得的 DMD数值定义为 INNER MASK; 0 至 25μηι距离段测得的 DMD 数值定义为 OUTER MASK; 而在 0-25μηι距离段又细分为 7-13μηι, 9-15μηι, 11-17μηι, 13-19μηι,在此 4个距离段上测得的 DMD数值均定义为 INTERVAL MASK。 标准 TIA/EIA-492AAAC与 TIA/EIA-492AAAD分别对 OM3光纤与 OM4光纤的 DMD性能指标给出了规定:
表 1: 850nm波段 OM3光纤 INNER MASK与 OUTER MASK DMD DMD Inner Mask (Unit: ps/m) DMD Outer Mask (Unit: ps/m)
Templates (Radius 5 to 18μιη) (Radius 0 to 23μιη)
1 <0.23 <0.70
2 <0.24 <0.60
3 <0.25 <0.50
4 <0.26 <0.40
5 <0.27 <0.35
6 <0.33 <0.33 表 2: 850nm波段 OM3光纤 INTERVAL MASK
Figure imgf000004_0001
即 OM3光纤的 INNER MASK与 OUTER MASK的 DMD数值必须满足表 1的六组中的任- 组, 同时根据表 2, 7-13, 9-15, 11-17,13-19μηι的 INTERVAL MASK均需小于等于 0.25ps/m。 表 3: 850nm波段 0M4光纤 INNER MASK与 OUTER MASK
Figure imgf000004_0002
表 4: 850nm波段 0M4光纤 INTERVAL MASK
Figure imgf000004_0003
即 0M4光纤的 INNER MASK与 OUTER MASK的 DMD数值必须满足表 3的三组中的任- 组, 同时根据表 4, 7-13, 9-15, 11-17,13-19μηι的 INTERVAL MASK均需小于等于 0.1 lps/m。 为方便介绍本发明内容, 定义部分术语:
石英衬管: 管状的基底管, 其内壁承载 PCVD化学反应的玻璃态氧化沉积物;
套管: 符合一定几何指标和掺杂要求的石英玻璃管;
芯层: 居于光纤横截面的中心部分, 是光纤的主要导光的区域;
内包层: 光纤横截面中紧邻芯层的环形区域;
中间包层: 光纤横截面中紧邻内包层的环形区域;
外包层: 光纤横截面中紧邻中间包层的环形区域;
相对折射率差:
Figure imgf000005_0001
数值孔径:
ΝΑ= η0 Χ ( 2Δ ) 1/2
和 分别为各对应部分和纯二氧化硅玻璃在 850nm波长的折射率; 幂指数律折射率分布剖面: 满足下面幂指数函数的折射率分布形态, 其中, ^为光纤轴 心的折射率; r为离开光纤轴心的距离; a为光纤芯半径; a为分布幂指数; Δ为芯 /包相对折 射率差;
n2 (r) = n [l - 2A(-)a ] r<a
a
DMD : 差分模式时延
差分模时延系数 (ps/m) : DMD=[(TSLOW-TFAST)- Δ TREF]/L
其中: A TREF表示系统光源光脉冲强度 25%的时间宽度;
TSU)W表示在所设定的入射光相对待测光纤纤芯的位置中, 所有输出光脉冲中最 拖尾的光脉冲边缘的时间;
TFAST表示在所设定的入射光相对待测光纤纤芯的位置中, 所有输出光脉冲中最领 先的光脉冲边缘的时间;
L表示待测光纤的长度。
发明内容
本发明所要解决的技术问题在于针对上述现有技术存在的不足而提供一种在 850nm窗口 优化, 拉丝后保持完好折射率剖面结构, 具有高带宽和优异的差分模式时延性能的渐变折射 率抗弯曲多模光纤。
本发明为解决上述提出的问题所采用的技术方案为:
包括有芯层和包层, 其特征是芯层半径 R1 为 22.5〜27.5μηι, 芯层折射率为梯度渐变型 折射率分布,分布幂指数 α为 1.99〜2.06,芯层相对折射率差最大值 Δ l%max为 0.9%〜1.3%, 紧邻芯层的为内包层, 内包层半径 R2 为 25.5〜34.5μηι, 相对折射率差 Δ 2%为一 0.02%〜 0.02%, 从内包层依次向外是中间包层和外包层, 中间包层为纯石英玻璃层, 中间包层半径 R3为 30.5〜49.5μηι,相对折射率差为 A 3%为一 0.01%〜0.01%;外包层半径 R4为 62. 5 ± 1μηι, 相对折射率差 Δ 4%为一 0. 20%〜- 0. 30%
按上述方案, 所述的芯层和内包层为 F-Ge共掺石英玻璃层, 内包层相对折射率差 Δ 2% 小于芯层折射率差 Δ 1%。 按上述方案, 所述的外包层为掺 F石英玻璃层。
按上述方案, 所述的芯层分布幂指数 ( 为 2.00〜2.05, 可在 850nm窗口获得更大带宽。 按上述方案, 所述的芯层分布幂指数 ( 为 2.01〜2.03, 可在 850nm窗口获得最佳带宽。 按上述方案, 所述的内包层单边厚度为 5〜7μηι, 可获得更好 DMD。
按上述方案,本发明所制备的抗弯多模光纤满足 TIA/EIA-492AAA标准规定的 OM3/OM4 DMD特性要求.。
按上述方案, 所述光纤的数值孔径为 0.185〜0. 215。
按上述方案, 所述的氟 (F)锗(Ge)共掺石英玻璃层的材料组分为 Si02-Ge02-F-Cl; 所 述的掺氟 (F) 石英玻璃层的材料组分为 Si02-F-Cl; 所述的含氟气体为 C2F6、 CF4、 SiF4和 SF6的任意一种或多种。
根据标准 TIA/EIA-455-204 所述要求, 本发明光纤的满注入带宽在 1300nm 波长为 500MHz-km以上; 在 850nm波长为 1500MHz-km以上, 最高可达 11000MHz-km.。
本发明光纤在 850nm波长处,以 7.5毫米弯曲半径绕 2圈导致的弯曲附加损耗小于 0.2dB; 以 15毫米弯曲半径绕 2圈导致的弯曲附加损耗小于 0.1dB。 在 1300nm波长处, 以 7.5毫米 弯曲半径绕 2圈导致的弯曲附加损耗小于 0.5dB; 以 15毫米弯曲半径绕 2圈导致的弯曲附加 损耗小于 0.3dB。
DMD (差分模式时延)是根据 FOTP-220 (IEC-60793- 1-49-2006)方法测得, 测试使用的 光源为 850nm, 高功率, 窄谱宽的脉冲激光, 该脉冲激光通过一根标准单模光纤注入至待测 光纤纤芯中。 测试时通过位移单模光纤, 改变脉冲激光注入待测光纤纤芯时的位置, 使得待 测光纤中脉冲激光的传输模式发生变化, 通过探测器收集并记录单模光纤不同位置时由待测 光纤中输出的激光脉冲信号。 由此分析计算所得到的不同输出脉冲信号间的时延差值即差分 模式时延。
本发明多模光纤制造方法的技术方案为:
将纯石英玻璃衬管固定在等离子体增强化学气相沉积 (PCVD ) 车床上进行掺杂沉积, 在反应气体四氯化硅 (SiCl4) 和氧气 (02) 中, 通入含氟的气体, 引进氟 (F ) 掺杂, 通入 四氯化锗(GeCl4)以引入锗(Ge)掺杂,通过微波使衬管内的反应气体离子化变成等离子体, 并最终以玻璃的形式沉积在衬管内壁; 根据所述光纤波导结构的掺杂要求, 通过改变混合气 体中掺杂气体的流量, 依次沉积内包层和芯层; 沉积完成后, 用熔縮车床将沉积管熔縮成实 心芯棒, 然后以掺氟石英玻璃为套管采用 RIT工艺制得光纤预制棒; 最后将预制棒在低张力 高拉丝速度的条件下拉丝成纤。
本发明的有益效果在于: 1、 提供一种在 850nm传输窗口优化的抗弯多模光纤, 使光纤 在 850nm窗口具有高传输带宽; 2、通过渐变折射率的剖面和 F-GE共掺包层结构设计, 在光 纤制造过程中能够显著承受预制棒到拉丝成纤过程中的附加应力, 从而减少光纤芯层折射率 剖面的畸变, 这样, 多模光纤在具有较高带宽的同时, 也具有较低的差分模式时延 (DMD), 优化了光纤的 DMD性能; 3、 能使多模光纤在 850nm窗口的传输速率达到 10G Gbit/s甚至 100Gbit/s, 并确保光纤在 10G或 100G的多模光纤传输系统中拥有良好的信号稳定性; 4、 具 有良好的弯曲不敏感性能, 适用于目前的多模光纤在网络传输和器件应用需求。
附图说明
图 1为本发明一个实施例的径向截面结构图。
图 2为本发明一个实施例的折射率剖面图。
图 3为本发明一个实施例的 DMD波形图。
图 4为现有的同类型抗弯曲光纤折射率剖面图 (R2=R3 )。
图 5为现有的同类型抗弯曲光纤的 DMD波形图。
表 6为本发明一个实施例与现有同类型光纤的 DMD数据对比。
具体实施方式
下面给出详细的实施例对本发明进行进一步的说明, 使得本发明的使用范围更加显而易 见的。 包括有芯层和包层, 芯层和个包层的参数见表 5, 表 5中 R1为芯层半径, R2为内包 层半径, R3为中间包层半径, R4为外包层半径。
表 5 : 本发明设计光纤的基本参数
1 2 3 4 5
芯层幂指数 α 1.99 2.01 2.04 2.05 2.06
Almax (%) 1.07 0.91 1.1 1.14 1.25
Δ2 (%) -0.02 0.01 0 0.01 0.01
Δ3 (%) -0.001 0.001 0.001 0.001 0.002
Δ4 (%) -0.22 -0.25 -0.3 -0.26 -0.29
R1 (μηι) 25 22.7 24.2 27 26.2
R2 (μηι) 27.2 26.9 26.2 28.5 28.2
R3 (μηι) 32.5 33.3 35.2 34.1 33.4
R4 (μηι) 61.6 61.9 63.1 62.6 62.2
数值孔径 0.199 0.185 0.205 0.211 0.214
满注入带宽 at 850nm (MHz-km) 1527 2537 8901 3210 2201
满注入带宽 at 1300nm (MHz-km) 1106 765 737 683 681
弯曲附加损耗 Φ 15mm X
0. 022 0. 051 0. 06 0. 034 0. 028
at 850nm (DB/km) 2turns Φ 30mm X
0. 003 0. 012 0. 024 0. 004 0. 009
2turns
Φ 15mm X
0. 045 0. 087 0. 046 0. 035 0. 061
弯曲附加损耗 2turns
at 1300nm (DB/km) Φ 30mm X
0. 007 0. 005 0. 004 0. 009 0. 009
2turns
本发明所设计的 F和 Ge共掺的内包层在光纤制造过程中能够显著承受预制棒到拉丝成纤 过程中的附加应力, 从而减少光纤芯层折射剖面的畸变, 这样, 采用本发明设计方案制造的 多模光纤在具有较高带宽的同时, 也具有较低的差分模式时延(DMD); 同时本发明设计的带 有下陷环的外包层结构, 使得光纤具有较低的附加宏弯损耗。
表 6为本发明一个实施例与现有同类型光纤的 DMD数据对比
Figure imgf000008_0001
表 6给出的 DMD数据有力说明采用本发明能有效降低抗弯多模光纤 DMD,从而保证光纤 满足 TIA/EIA-492AAA标准规定的对 DMD特性要求。

Claims

权 利 要 求 书
1、一种渐变折射率抗弯曲多模光纤,包括有芯层和包层,其特征是芯层半径为 22.5〜27.5μηι, 芯层折射率为梯度渐变型折射率分布, 分布幂指数 ( 为 1.99〜2.06, 芯层相对折射率差最大值 A l%maX为0.9%〜1.3%, 紧邻芯层的为内包层, 内包层半径为 25.5〜34.5μηι, 相对折射率差 八2%为一0.02%〜0.02%, 从内包层依次向外是中间包层和外包层, 中间包层为纯石英玻璃层, 中间包层半径为 30.5〜49.5μηι, 相对折射率差为 A 3%为一 0.01%〜0.01%; 外包层半径为 62. 5 士 Ιμηι, 相对折射率差 A 4%为一 0. 20%〜- 0. 30%。
2、按权利要求 1所述的渐变折射率抗弯曲多模光纤, 其特征在于所述的芯层和内包层为 F-Ge共掺石英玻璃层, 内包层相对折射率差 Δ 2%小于芯层折射率差 Δ 1%。
3、按权利要求 1或 2所述的渐变折射率抗弯曲多模光纤, 其特征在于所述的外包层为掺 F石英玻璃层。
4、按权利要求 1或 2所述的渐变折射率抗弯曲多模光纤, 其特征在于所述的芯层分布幂 指数 α为 2.00〜2.05。
5、按权利要求 4所述的渐变折射率抗弯曲多模光纤, 其特征在于所述的芯层分布幂指数 α为 2.01〜2.03。
6、按权利要求 1或 2所述的渐变折射率抗弯曲多模光纤, 其特征在于所述的内包层单边 厚度为 5〜 7μηι。
7、按权利要求 1或 2所述的渐变折射率抗弯曲多模光纤, 其特征在于所述光纤的数值孔 径为 0.185〜0. 215。
8、按权利要求 1或 2所述的渐变折射率抗弯曲多模光纤, 其特征在于光纤的满注入带宽 在 1300nm波长为 500MHz-km以上; 在 850nm波长为 1500MHz-km以上。
9、 按权利要求 1或 2所述的渐变折射率抗弯曲多模光纤, 其特征在于光纤在 850nm波 长处, 以 7.5毫米弯曲半径绕 2圈导致的弯曲附加损耗小于 0.2dB; 以 15毫米弯曲半径绕 2 圈导致的弯曲附加损耗小于 0.1dB。 在 1300nm波长处, 以 7.5毫米弯曲半径绕 2圈导致的弯 曲附加损耗小于 0.5dB; 以 15毫米弯曲半径绕 2圈导致的弯曲附加损耗小于 0.3dB。
PCT/CN2013/074667 2012-05-28 2013-04-25 渐变折射率抗弯曲多模光纤 WO2013177995A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/548,047 US9170369B2 (en) 2012-05-28 2014-11-19 Graded refractive index bending-resistant multimode obtical fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210167873.2 2012-05-28
CN201210167873.2A CN102778722B (zh) 2012-05-28 2012-05-28 渐变折射率抗弯曲多模光纤

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/548,047 Continuation US9170369B2 (en) 2012-05-28 2014-11-19 Graded refractive index bending-resistant multimode obtical fiber

Publications (1)

Publication Number Publication Date
WO2013177995A1 true WO2013177995A1 (zh) 2013-12-05

Family

ID=47123679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074667 WO2013177995A1 (zh) 2012-05-28 2013-04-25 渐变折射率抗弯曲多模光纤

Country Status (4)

Country Link
US (1) US9170369B2 (zh)
CN (1) CN102778722B (zh)
TW (1) TW201348767A (zh)
WO (1) WO2013177995A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102692675A (zh) * 2012-05-28 2012-09-26 长飞光纤光缆有限公司 一种渐变折射率抗弯曲多模光纤
CN102778722B (zh) 2012-05-28 2014-09-17 长芯盛(武汉)科技有限公司 渐变折射率抗弯曲多模光纤
CN103454719B (zh) * 2013-09-03 2015-09-30 长飞光纤光缆股份有限公司 一种单模光纤
CN103472530B (zh) * 2013-09-23 2015-12-23 长飞光纤光缆股份有限公司 一种大芯径弯曲不敏感传能光纤
WO2018093451A2 (en) 2016-09-21 2018-05-24 Corning Incorporated Optical fibers having a varying clad index and methods of forming same
CN106371166A (zh) * 2016-11-15 2017-02-01 长飞光纤光缆股份有限公司 一种混合型多芯光纤
CN106707407B (zh) * 2016-12-30 2019-06-28 中天科技精密材料有限公司 宽带半阶跃型多模光纤
CN106772786B (zh) * 2017-01-17 2019-11-26 烽火通信科技股份有限公司 一种支持多个线偏振模式与轨道角动量模式的少模光纤
CN107132615B (zh) * 2017-07-03 2020-01-10 长飞光纤光缆股份有限公司 一种多模光纤、其应用及测温系统
CN107479129A (zh) * 2017-08-11 2017-12-15 长飞光纤光缆股份有限公司 一种高带宽多模光纤
CN107292122B (zh) * 2017-08-22 2020-09-01 中国工程物理研究院激光聚变研究中心 石英玻璃光纤折射率参数计算方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001350052A (ja) * 2000-06-06 2001-12-21 Mitsubishi Rayon Co Ltd プラスチック光ファイバ及びこれを用いた光ファイバケーブル
CN101622561A (zh) * 2007-01-08 2010-01-06 康宁股份有限公司 抗弯曲多模光纤
CN101634728A (zh) * 2009-08-18 2010-01-27 长飞光纤光缆有限公司 一种抗弯曲多模光纤及其制造方法
CN102778722A (zh) * 2012-05-28 2012-11-14 长飞光纤光缆有限公司 渐变折射率抗弯曲多模光纤

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8184936B2 (en) * 2009-08-18 2012-05-22 Yangtze Optical Fibre And Cable Company, Ltd. Multi-mode bending-resistant fiber and production method thereof
CN101738681B (zh) * 2010-01-20 2011-08-31 长飞光纤光缆有限公司 一种高带宽多模光纤
TW201219865A (en) * 2010-11-02 2012-05-16 Hon Hai Prec Ind Co Ltd Fiber
US8792763B2 (en) * 2011-03-07 2014-07-29 Corning Incorporated Bend resistant multimode optical fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001350052A (ja) * 2000-06-06 2001-12-21 Mitsubishi Rayon Co Ltd プラスチック光ファイバ及びこれを用いた光ファイバケーブル
CN101622561A (zh) * 2007-01-08 2010-01-06 康宁股份有限公司 抗弯曲多模光纤
CN101634728A (zh) * 2009-08-18 2010-01-27 长飞光纤光缆有限公司 一种抗弯曲多模光纤及其制造方法
CN102778722A (zh) * 2012-05-28 2012-11-14 长飞光纤光缆有限公司 渐变折射率抗弯曲多模光纤

Also Published As

Publication number Publication date
CN102778722A (zh) 2012-11-14
US20150117827A1 (en) 2015-04-30
CN102778722B (zh) 2014-09-17
TW201348767A (zh) 2013-12-01
US9170369B2 (en) 2015-10-27
TWI475268B (zh) 2015-03-01

Similar Documents

Publication Publication Date Title
WO2013177995A1 (zh) 渐变折射率抗弯曲多模光纤
JP5687355B2 (ja) 曲げ耐性を有しコア径が大きく高開口数のマルチモード光ファイバ
CN102645699B (zh) 一种低衰减弯曲不敏感单模光纤
DK2299303T3 (en) Multimode optical fiber with reduced bending losses
EP2339383B1 (en) Multimode optical fiber with low bending losses and reduced cladding effect
WO2013177996A1 (zh) 一种渐变折射率抗弯曲多模光纤
KR101554373B1 (ko) 다중모드 섬유
CN103635840B (zh) 多模光纤和包括该多模光纤的系统
CN102590933B (zh) 一种弯曲不敏感单模光纤
CN106772788B (zh) 一种截止波长位移单模光纤
WO2011088706A1 (zh) 一种高带宽多模光纤
WO2013104243A1 (zh) 弯曲不敏感单模光纤
JP6129270B2 (ja) 曲げ耐性のマルチモード光ファイバ
CN109188603B (zh) 小芯径渐变折射率光纤
CN109839694B (zh) 一种截止波长位移单模光纤
JP2011118392A (ja) 曲げ損失が低減された高帯域幅マルチモード光ファイバ
WO2017020456A1 (zh) 一种超低衰耗弯曲不敏感单模光纤
TWI522667B (zh) A kind of bending insensitive single mode fiber
CN104316994A (zh) 一种低衰减弯曲不敏感单模光纤
WO2016173253A1 (zh) 一种超低衰耗弯曲不敏感单模光纤
CN105334570A (zh) 一种低衰减弯曲不敏感单模光纤
WO2020119439A1 (zh) 一种低损耗大有效面积单模光纤及其制备方法
WO2003050577A1 (en) Single mode dispersion compensating optical fiber
WO2012100581A1 (zh) 一种抗弯曲多模光纤
CN108983350B (zh) 一种小芯径渐变折射率光纤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13796985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13796985

Country of ref document: EP

Kind code of ref document: A1