WO2016205995A1 - 移相器和天线 - Google Patents

移相器和天线 Download PDF

Info

Publication number
WO2016205995A1
WO2016205995A1 PCT/CN2015/082051 CN2015082051W WO2016205995A1 WO 2016205995 A1 WO2016205995 A1 WO 2016205995A1 CN 2015082051 W CN2015082051 W CN 2015082051W WO 2016205995 A1 WO2016205995 A1 WO 2016205995A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
phase shifting
phase
output
cavity
Prior art date
Application number
PCT/CN2015/082051
Other languages
English (en)
French (fr)
Inventor
廖志强
卢麒屹
罗新能
卢俊锋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/082051 priority Critical patent/WO2016205995A1/zh
Priority to CN201580080982.2A priority patent/CN107710499B/zh
Priority to EP15895895.9A priority patent/EP3300166B1/en
Publication of WO2016205995A1 publication Critical patent/WO2016205995A1/zh
Priority to US15/854,224 priority patent/US10411347B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/32Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by mechanical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/2039Galvanic coupling between Input/Output

Definitions

  • the present invention relates to the field of antennas, and more particularly to phase shifters and antennas having filter elements that can be applied to antennas.
  • Adjustable phase shifters are mainly divided into two types: medium phase shifting and physical phase shifting. Among them, the phase shift of the medium is achieved by changing the wavelength of the guided wave, and the physical phase shift is achieved by changing the length of the transmission path of the electromagnetic wave.
  • the embodiment of the invention provides a phase shifter and an antenna.
  • the phase shifter includes a filtering unit, which is beneficial to reducing the cost of the antenna, making the connection of the main feed network simple, reducing the number of screws or solder joints, and improving the PIM level. And stability.
  • the present invention provides a phase shifter comprising a cavity and a fixed circuit board and a phase shifting unit located within the cavity, the phase shifting unit being movable relative to the fixed circuit board, the fixed circuit board a power dividing circuit is provided, the power dividing circuit comprising an input end, a main feed line, a node, at least two output ends, a filter branch and at least two output circuits, the main feed line being electrically connected to the input end and the Between the nodes, the filter branch is electrically connected to the main feed line, and the filter branch is open, and the at least two output circuits are electrically connected between the node and the at least two output ends, respectively.
  • Phase shifting single The element is disposed opposite the at least two output circuits, and the phase shifting unit is configured to change a phase value of the node to the at least two outputs.
  • the length of the filter branch is in a wavelength range of one-sixteenth to three-quarters, and the wavelength refers to an electromagnetic wave filtered by the filter branch. wavelength.
  • the number of the filtering branches is two, and the distance between the two filtering branches is in a wavelength range of one-sixteenth to three-quarters,
  • the wavelength refers to the wavelength of the electromagnetic wave filtered by the filter branch.
  • the phase shifting unit includes a mobile circuit board, and the mobile circuit board is provided with a phase shifting circuit, and the moving circuit board is disposed in parallel One side of the fixed circuit board, the moving circuit board is slidable relative to the fixed circuit board, and the phase shifting circuit is electrically coupled with one of the at least two output circuits to implement a phase shifting function.
  • the phase shifting circuit comprises a metal microstrip line extending in a U shape, the phase shifting circuit comprising a first interval spaced apart from each other An arm, a second arm, and a connecting arm connected between the first arm and the second arm, wherein one of the output circuits includes a first transmission section, a second transmission section, and an output section, the first transmission a segment electrically connected to the node, the first transmission segment and the second transmission segment being spaced apart from each other and disposed opposite to each other, the output segment being connected between the second transmission segment and one of the output terminals,
  • the first arm is disposed opposite to the first transmission segment
  • the second arm is disposed opposite to the second transmission segment.
  • a plurality of the phase shifting circuits are disposed on the mobile circuit board, and the power dividing circuit on the fixed circuit board includes multiple The output circuit coupled to the phase shifting circuit.
  • the phase shifting unit includes a medium body disposed on one or both sides of the fixed circuit board, the medium The body is slidable relative to the fixed circuit board to achieve a phase shifting function.
  • the one of the output circuits includes a phase shifting segment and a third transmitting segment, the phase shifting segment being electrically connected to the node and the Between the third transmission segments, the third transmission segment is electrically connected between the phase-shifting segment and one of the output terminals, and the medium body is disposed opposite to the phase-shifting segment.
  • the phase shifting single The element includes a plurality of dielectric bodies, and the power dividing circuit on the fixed circuit board includes a plurality of the output circuits that match the phase shifting unit.
  • the phase shifting unit includes a mobile circuit board and a dielectric body, and the mobile circuit board is located in the medium body and the fixed circuit board
  • the moving circuit board is movable relative to the fixed circuit board, and the phase shifting circuit is disposed on the moving circuit board, and the phase shifting circuit is electrically coupled to one of the at least two output circuits to A phase shifting function is realized; the medium body is slidable relative to the fixed circuit board to implement a phase shifting function.
  • the housing of the cavity is grounded, the cavity has a " ⁇ " shape in cross section, and the first cavity is formed in the outer casing and a second cavity, the number of the fixed circuit boards is two, the fixed circuit boards are respectively fixed in the first cavity and the second cavity, and the power dividing circuit on the fixed circuit board is in the A suspended microstrip line structure is formed in the first cavity and the second cavity.
  • the fixed circuit board includes a top surface and a bottom surface, and the fixed circuit board is provided with a via, and the via is connected to the Between the top surface and the bottom surface, the power dividing circuit is a metal microstrip line structure distributed on the top surface and the bottom surface, and the power dividing circuit distributed on the top surface is electrically connected through the hole Connected to the power dividing circuit distributed on the bottom surface.
  • the present invention provides an antenna, the antenna comprising the phase shifter and the antenna unit according to any one of the first aspect, wherein the output ends of the phase shifter are respectively connected to the Antenna unit.
  • the phase shifter provided by the present invention comprises a filter branch and a phase shifting unit, the filter branch is electrically connected to the main feed line, and the filter branch is open.
  • the invention integrates the filtering branch and the phase shifting unit in the phase shifter, so that the cost of the antenna is reduced, and it is not necessary to assemble the independent phase shifter and the filter in the main feed network of the antenna, so that the connection of the main feed network is made.
  • the simplification of the method reduces the number of screws or solder joints and increases the magnitude and stability of the PIM.
  • FIG. 1 is a schematic cross-sectional view of a phase shifter in a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a power dividing circuit on a fixed circuit board in the phase shifter shown in FIG. 1.
  • FIG 3 is a schematic cross-sectional view of a phase shifter in a second embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a power dividing circuit on a fixed circuit board in the phase shifter shown in FIG. 3, including a positional relationship between a dielectric body and a fixed circuit board.
  • Figure 5 is a cross-sectional view showing a phase shifter in a third embodiment of the present invention.
  • Fig. 6 is a perspective view showing the whole of a phase shifter according to an embodiment of the present invention.
  • FIG. 7 is a schematic plan view of a fixed circuit board in a phase shifter according to an embodiment of the present invention.
  • FIG. 8 is a schematic plan view of a mobile circuit board in a phase shifter according to an embodiment of the present invention.
  • the phase shifter provided by the present invention comprises a cavity 101, 201, 301 and a fixed circuit board 104, 204, 304 and a phase shifting unit located in the cavity 101, 201, 301, the phase shifting unit being capable of The fixed circuit boards 104, 204, 304 move.
  • the fixed circuit boards 104, 204, and 304 are provided with power dividing circuits 102, 202, and 302.
  • the power dividing circuit 102, 202, 302 includes an input terminal Pin, a main feed line 102i, 202i, nodes 102c, 202c, at least two output terminals P0, P1, P2, filter branches 102a, 102b, 202a, 202b and at least two Output circuits 102u, 202u, the main feeder is electrically connected to the input terminal Pin and the nodes 102c, 202c, and the filter branches 102a, 102b, 202a, 202b are electrically connected to the main feeders 102i, 202i,
  • the filter branches 102a, 102b, 202a, 202b are open, and the at least two output circuits 102u, 202u are electrically connected to the nodes 102c, 202c and the at
  • phase shifting unit 103, 206 is arranged to change the phase values of the nodes 102c, 202c to the at least two output terminals P0, P1, P2.
  • the filter branch 102a, 102b, 202a, 202b is open-circuited means that one end of the filter branch 102a, 102b, 202a, 202b (hereinafter referred to as a connection end) is connected to the main feed line 102i, 202i, the filter branch 102a,
  • the other end of 102b, 202a, 202b (hereinafter referred to as a free end) is open (i.e., no circuit is connected).
  • the length of the filter branches 102a, 102b, 202a, 202b is in the range of one-sixteenth to three-quarters of the wavelength.
  • the wavelength refers to the wavelength of the electromagnetic wave filtered by the filter branches 102a, 102b, 202a, 202b.
  • the length of the filter branches 102a, 102b, 202a, 202b is the path length between the free ends of the filter branches 102a, 102b, 202a, 202b and the connection ends.
  • the number of the filter branches 102a, 102b, 202a, 202b is two, and the distance between the two filter branches 102a, 102b, 202a, 202b is in the range of one-sixteenth to three-quarters.
  • the wavelength refers to the wavelength of the electromagnetic wave filtered by the filter branches 102a, 102b, 202a, 202b.
  • the phase shifting unit may be a mobile circuit board, as shown in FIG. 1 and FIG. 2; the phase shifting unit may also be a medium body, as shown in FIG. 3 and FIG.
  • the phase shifting unit may also be a combination of a mobile circuit board and a medium body. Please refer to the third embodiment shown in FIG. 5.
  • the phase shifting unit includes a moving circuit board 103, and the moving circuit board 103 is provided with phase shifting circuits 103-1, 103-2, and the moving The circuit board 103 is disposed in parallel on one side of the fixed circuit board 104, the moving circuit board 103 is slidable relative to the fixed circuit board 104, the phase shifting circuits 103-1, 103-2 and the at least two outputs An electrical connection is coupled between one of the circuits 102u to effect a phase shifting function.
  • the phase shifting circuits 103-1, 103-2 move relative to the output circuit 102u on the fixed circuit board 104, the two-phase coupling electrical connection realizes the transmission of high-frequency current.
  • the phase shifting circuits 103-1, 103-2 include metal microstrip lines extending in a U shape
  • the phase shifting circuits 103-1, 103-2 include first arms 11 spaced apart from each other and disposed opposite each other a second arm 12 and a connecting arm 13 connected between the first arm 11 and the second arm 12, wherein one of the output circuits 102u includes a first transmission section 21, a second transmission section 22, and an output section 23, the first transmission segment 21 is electrically connected to the node 102c, the first transmission segment 21 and the second transmission segment 22 are spaced apart from each other and disposed opposite to each other, and the output segment 23 is connected to the second transmission Segment 22 and one of the inputs Between the outlets P1, the first arm 11 is disposed opposite to the first transmission section 21, and the second arm 12 is disposed opposite to the second transmission section 22. Since the phase shifting circuits 103-1 and 103-2 are metal microstrip lines, the phase shifting circuits 103-1 and 103-2 are not in direct contact with the power dividing circuit 102, and are kept at a
  • a plurality of the phase shifting circuits 103-1, 103-2 are disposed on the mobile circuit board 103, and the power dividing circuit 102 on the fixed circuit board 104 includes a plurality of and the shifting The output circuits P1, P2 to which the phase circuits 103-1, 103-2 are coupled.
  • the phase shifting unit includes a dielectric body 206 disposed on one or both sides of the fixed circuit board 204, the dielectric body 206 is slidable relative to the fixed circuit board 204 to effect a phase shifting function.
  • the dielectric body 206 and the fixed circuit board 204 may be in contact with each other, and a gap may be provided therebetween.
  • the dielectric bodies 206 are distributed on both sides of the fixed circuit board 204, which are respectively a first dielectric body 206a and a second dielectric body 206b.
  • one of the output circuits 202u includes a phase shifting section 25 and a third transmitting section 26, and the phase shifting section 25 is electrically connected between the node 202c and the third transmitting section 26, the first The three transmission section 26 is electrically connected between the phase shifting section 25 and one of the output terminals P1, and the dielectric body 206 is disposed opposite to the phase shifting section 25.
  • the phase shifting unit includes a plurality of media 206-1, 206-2, and the power dividing circuit 202 on the fixed circuit board 204 includes a plurality of matching units of the phase shifting unit.
  • the output circuits P1, P2 are described.
  • the phase shifting unit includes a moving circuit board 303 and a dielectric body 306a, 306b.
  • the moving circuit board 303 is located between the dielectric body 306a and the fixed circuit board 304.
  • the mobile circuit board 303 The movable circuit board 303 is movable with respect to the fixed circuit board 304, and the phase shifting circuit is coupled to one of the at least two output circuits of the power dividing circuit on the fixed circuit board 304.
  • the dielectric bodies 306a, 306b are slidable relative to the fixed circuit board 304 to implement a phase shifting function.
  • the cavities 101, 201, and 301 are profile cavities in which the housing spaces 105, 205, and 305 are formed.
  • the cavity 101, 201, 301 is specifically described by taking the third embodiment as an example. Please refer to FIG. 6.
  • FIG. 6 is an overall view of the phase shifter in an embodiment, and the cavity 301 is grounded, as shown in FIG. 5.
  • the cavity 301 has a " ⁇ "-shaped cross section, and the cavity 301 of the " ⁇ "-shaped structure is common in the middle, which can effectively reduce the thickness of the phase shifter.
  • the fixing The number of the circuit boards 304 is two, the fixed circuit boards 304 are respectively fixed in the first cavity 305a and the second cavity 305b, and the power dividing circuit 302 on the fixed circuit board 304 is in the A suspended microstrip line structure is formed in the first cavity 305a and the second cavity 305b.
  • the fixed circuit board 304 and the phase shifting unit in the first cavity 305a are shown in FIG. 5.
  • the distribution of the fixed circuit board 304 and the phase shifting unit in the second cavity 305b may be combined with the first cavity.
  • the distribution in 305a is the same.
  • the inner wall of the cavity 301 is provided with a positioning groove for positioning the fixed circuit board 304, and a pair of edges of the fixed circuit board 304 are caught in the positioning groove.
  • the movement of the phase shifting unit is driven by the pull rod 308, and the pull rod 308 can be driven by the motor or other driving device to drive the phase shifting unit to move.
  • the cavity 301 is externally connected to a plurality of junction boxes 307, and the phase shifter shown in FIG. 6 includes four junction boxes 307.
  • the fixed circuit board 104, 204, 304 includes a top surface and a bottom surface, and the fixed circuit board 104, 204, 304 is provided with a via hole, and the via hole communicates between the top surface and the bottom surface,
  • the power dividing circuits 102, 202, 302 are metal microstrip line structures distributed on the top surface and the bottom surface, through the holes, the power dividing circuits distributed on the top surface are electrically connected to the distribution The power dividing circuit of the bottom surface.
  • FIG. 7 is a schematic overall view of a fixed circuit board 304 according to an embodiment of the present invention.
  • the fixed circuit board 304 includes an input terminal Pin, five output terminals P1, P2, P3, P4, P5, and a node 302c.
  • the four coupling circuits 302-1, 302-2, 302-3, and 302-4 are used to match the phase shifting unit to implement the phase shifting function.
  • FIG. 8 is a schematic overall view of a mobile circuit board 303 according to an embodiment of the present invention.
  • the mobile circuit board 303 includes four phase shifting circuits 303-1, 303-2, 303-3, and 303-4, specifically In other words, the four phase shifting circuits 303-1, 303-2, 303-3, and 303-4 are U-shaped microstrip lines.
  • the coupling circuit 302-1 and the phase shifting circuit 303-1 are electrically coupled; the coupling circuit 302-2 and the phase shifting circuit 303-2 are electrically coupled; the coupling circuit 302-3 and the phase shifting circuit 303-3 The coupling electrical connection; the coupling circuit 302-4 and the phase shifting circuit 303-4 are coupled electrically.
  • Such a design can ensure that the signal input from the input terminal Pin is transmitted to the output terminals P1, P2, P3, P4, P5. As shown in FIG. 7, the signal is input from the input terminal Pin, passes through the filtering branches 302a, 302b, and filters out the interference band signal, and the signal reaches the node 302c.
  • the current after passing through the node 302c passes through the coupling of the coupling circuit 302-1 and the phase shifting circuit 303-1, the coupling of the coupling circuit 302-2 and the phase shifting circuit 303-2, the coupling circuit 302-3, and the phase shifting circuit 303-3.
  • the coupling of the coupling and coupling circuit 302-4 and the phase shifting circuit 303-4 achieves the purpose of energy transfer.
  • the power distribution can adjust the power dividing circuit between the coupling circuits to achieve the purpose.
  • the output terminal P5 is obtained by connecting a coupling circuit in series on the basis of the output terminal P4.
  • the phase difference ratio generated at the output terminal P5 is output.
  • the phase difference generated at the terminal P4 is doubled, so that the phase of the output of the output terminal P5 is 2 ⁇ , and the phase of the output of the port of the output terminal P4 is ⁇ .
  • the phase of the output of the output terminal P1 is also twice the phase of the output of the output terminal P2. .
  • the layout of the coupling circuit 302-1, the coupling circuit 302-2, the coupling circuit 302-3, and the coupling circuit 302-4 is Opposite, that is, symmetrically distributed on both sides of the input terminal Pin.
  • the phase difference of the phase before the output phase of the output terminal P5 ⁇ P4 ⁇ P3 ⁇ P2 ⁇ P1 moves relative to the moving circuit board 303 is 2 ⁇ , 1 ⁇ , 0 ⁇ , -1 ⁇ , respectively. , -2 ⁇ .
  • the invention also provides an antenna comprising the phase shifter and an antenna unit, the outputs of the phase shifters being respectively connected to the antenna unit by an output cable.
  • the output terminals P5 ⁇ P4 ⁇ P3 ⁇ P2 ⁇ P1 are electrically connected to the antenna elements of the array antenna respectively, and when the pull rod drives the mobile circuit board to move a certain distance, the output terminal Pin
  • the fed high-frequency current signal through the operation of the phase shifter, can feed the antenna unit with the required signal current intensity and phase, thereby changing the direction of the array antenna radiation pattern.
  • the phase shifter provided by the present invention comprises a filter branch and a phase shifting unit, the filter branch is electrically connected to the main feed line, and the filter branch is open.
  • the invention integrates the filtering branch and the phase shifting unit in the phase shifter, so that the cost of the antenna is reduced, and it is not necessary to assemble the independent phase shifter and the filter in the main feed network of the antenna, so that the connection of the main feed network is made.
  • the simplification of the method reduces the number of screws or solder joints and increases the magnitude and stability of the PIM.
  • phase shifter and the antenna provided by the embodiments of the present invention are described in detail above.
  • the principles and implementation manners of the present invention are described herein by using specific examples.
  • the description of the above embodiments is only for helping to understand the method of the present invention.
  • the core idea of the present invention at the same time, those skilled in the art, according to the idea of the present invention, there will be changes in the specific embodiments and application scope.
  • the content of the present specification should not be construed as the present invention. limits.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明提供一种移相器,包括腔体和位于所述腔体内的固定电路板和移相单元,移相单元能够相对固定电路板移动。固定电路板上设有功分电路,所述功分电路包括输入端、主馈线、节点、至少两个输出端、滤波支节和至少两个输出电路,所述主馈线电连接于所述输入端和所述节点之间,所述滤波支节电连接于主馈线,且所述滤波支节呈开路状,所述至少两个输出电路分别电连接于所述节点和所述至少两个输出端之间,所述移相单元与所述至少两个输出电路相对设置,并且所述移相单元用于改变所述节点到所述至少两个输出端的相位值。本发明还提供一种天线。本发明将滤波支节集成在移相器中,使得天线成本降低,简化了主馈网络的连接方式,提升PIM的量级或稳定性。

Description

移相器和天线 技术领域
本发明涉及天线领域,特别涉及,可应用于天线中的具有滤波元件的移相器和天线。
背景技术
在移动通信系统中,由于网络覆盖或网络优化的需要,基站天线的俯仰面波束指向需要调整。例如,通过可调移相器进行俯仰面波束调整,其工作原理为:改变阵列天线各个天线单元的相位分布,进而调节天线波束的下倾角度。这样,不但能够实现主波束指向的连续调节,而且能够保证水平面波束不变形。可调移相器主要分为介质移相和物理移相两种类型。其中,介质移相是通过改变导波波长来实现移相,物理移相是通过改变电磁波的传输路径长度来实现移相。但是,随着电调天线的日益增多,需要在移相器前端增加滤波器,以保证各个频段不相互干扰,进而增加异频隔离度。目前,大多数电调天线均采用独立的滤波器和移相器,以实现异频隔离和下倾角调节的功能。独立的滤波器和移相器会导致电调天线成本增加,设计难度加大,而且使得整个主馈网络连接复杂,螺钉或焊点数增加,降低了PIM量级和稳定性。
发明内容
本发明实施例提供了一种移相器和一种天线,移相器中包括滤波单元,有利于降低天线的成本,使得主馈网络连接简单,减少螺钉或焊点数量,能够提升PIM量级和稳定性。
一方面,本发明提供了一种移相器,包括腔体和位于所述腔体内的固定电路板和移相单元,所述移相单元能够相对所述固定电路板移动,所述固定电路板上设有功分电路,所述功分电路包括输入端、主馈线、节点、至少两个输出端、滤波支节和至少两个输出电路,所述主馈线电连接于所述输入端和所述节点之间,所述滤波支节电连接于主馈线,且所述滤波支节呈开路状,所述至少两个输出电路分别电连接于所述节点和所述至少两个输出端之间,所述移相单 元与所述至少两个输出电路相对设置,并且所述移相单元用于改变所述节点到所述至少两个输出端的相位值。
在第一种可能的实施方式中,所述滤波支节的长度在十六分之一至四分之三的波长范围内,所述波长是指被所述滤波支节所滤掉的电磁波的波长。
在第二种可能的实施方式中,所述滤波支节的数量为两个,所述两个滤波支节之间的距离在十六分之一至四分之三的波长范围内,所述波长是指被所述滤波支节所滤掉的电磁波的波长。
结合第二种可能的实施方式中,在第三种可能的实施方式中,所述移相单元包括移动电路板,所述移动电路板上设有移相电路,所述移动电路板平行设置在所述固定电路板一侧,所述移动电路板能够相对所述固定电路板滑动,所述移相电路与所述至少两个输出电路之一者之间耦合电连接,以实现移相功能。
结合第三种可能的实施方式中,在第四种可能的实施方式中,所述移相电路包括呈U形延伸的金属微带线,所述移相电路包括彼此间隔且相对设置的第一臂、第二臂以及连接于所述第一臂和所述第二臂之间的连接臂,其中一个所述输出电路包括第一传输段、第二传输段和输出段,所述第一传输段电连接至所述节点,所述第一传输段和所述第二传输段彼此间隔且相对设置,所述输出段连接于所述第二传输段和其中一个所述输出端之间,所述第一臂与所述第一传输段相对设置,所述第二臂与所述第二传输段相对设置。
结合第四种可能的实施方式中,在第五种可能的实施方式中,所述移动电路板上设置多个所述移相电路,所述固定电路板上之所述功分电路包括多个与所述移相电路相耦合的所述输出电路。
结合第二种可能的实施方式中,在第六种可能的实施方式中,所述移相单元包括介质体,所述介质体设置在所述固定电路板的一侧或两侧,所述介质体能够相对所述固定电路板滑动,以实现移相功能。
结合第六种可能的实施方式中,在第七种可能的实施方式中,其中一个所述输出电路包括移相段和第三传输段,所述移相段电连接于所述节点与所述第三传输段之间,所述第三传输段电连接于所述移相段与其中一个所述输出端之间,所述介质体与所述移相段相对设置。
结合第七种可能的实施方式中,在第八种可能的实施方式中,所述移相单 元包括多个介质体,所述固定电路板上之所述功分电路包括多个与所述移相单元相匹配的所述输出电路。
结合第二种可能的实施方式中,在第九种可能的实施方式中,所述移相单元包括移动电路板和介质体,所述移动电路板位于所述介质体和所述固定电路板之间,所述移动电路板能够相对所述固定电路板移动,所述移动电路板上设置移相电路,所述移相电路与所述至少两个输出电路之一者之间耦合电连接,以实现移相功能;所述介质体能够相对所述固定电路板滑动,以实现移相功能。
结合第二种可能的实施方式中,在第十种可能的实施方式中,所述腔体的外壳接地,所述腔体之截面呈“曰”形结构,所述外壳内形成第一腔和第二腔,所述固定电路板的数量为两个,所述固定电路板分别固定在所述第一腔和所述第二腔中,所述固定电路板上的所述功分电路在所述第一腔和所述第二腔内形成悬置微带线结构。
结合第二种可能的实施方式中,在第十一种可能的实施方式中,所述固定电路板包括顶面和底面,所述固定电路板设有过孔,所述过孔连通于所述顶面和所述底面之间,所述功分电路为分布在所述顶面和所述底面的金属微带线结构,通过所述孔使得分布于所述顶面的所述功分电路电连接于分布在所述底面的所述功分电路。
另一方面,本发明还提供一种天线,所述天线包括第一方面任意一项所述的移相器和天线单元,所述移相器的所述输出端分别通过输出电缆连接至所述天线单元。
相较于现有技术,本发明提供的移相器包括滤波支节和移相单元,所述滤波支节电连接于主馈线,且所述滤波支节呈开路状。本发明集成了滤波支节和移相单元在移相器中,使得天线的成本降低,不需要将独立的移相器和滤波器组装在天线的主馈网络中,这样使得主馈网络的连接方式简化,从而减少了螺钉或者焊点的数量,提升了PIM量级和稳定性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的 前提下,还可以根据这些附图获得其他的附图。
图1为本发明第一种实施方式中移相器的剖面示意图。
图2为图1所示的移相器中的固定电路板上的功分电路的示意图。
图3为本发明第二种实施方式中移相器的剖面示意图。
图4为图3所示的移相器中的固定电路板上的功分电路的示意图,其中包括介质体与固定电路板之间的位置关系。
图5为本发明第三种实施方式中移相器的剖面示意图。
图6为本发明一种实施方式的移相器的整体的立体示意图。
图7为本发明一种实施方式的移相器中的固定电路板的平面示意图。
图8为本发明一种实施方式的移相器中的移动电路板的平面示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1、图3和图5,描述了本发明三种实施方式的移相器。本发明提供的移相器包括腔体101、201、301和位于所述腔体101、201、301内的固定电路板104、204、304和移相单元,所述移相单元能够相对所述固定电路板104、204、304移动。所述固定电路板104、204、304上设有功分电路102、202、302。
以下仅针对前两种实施方式的功分电路102、202做详细描述,如图2和图4所述,第三种实施方式中,可以使用前两种实施方式之一者。所述功分电路102、202、302包括输入端Pin、主馈线102i、202i、节点102c、202c、至少两个输出端P0、P1、P2、滤波支节102a、102b、202a、202b和至少两个输出电路102u、202u,所述主馈线电连接于所述输入端Pin和所述节点之间102c、202c,所述滤波支节102a、102b、202a、202b电连接于主馈线102i、202i,且所述滤波支节102a、102b、202a、202b呈开路状,所述至少两个输出电路102u、202u分别电连接于所述节点102c、202c和所述至少两个输出端P0、P1、P2之间,所述移相单元103、206与所述至少两个输出电路102u、202u相对 设置,并且所述移相单元103、206用于改变所述节点102c、202c到所述至少两个输出端P0、P1、P2的相位值。
滤波支节102a、102b、202a、202b呈开路状意思是指:滤波支节102a、102b、202a、202b的一端(以下称之为连接端)连接于主馈线102i、202i,滤波支节102a、102b、202a、202b的另一端(以下称之为自由端)为开路状(即不连接任何电路)。具体而言,所述滤波支节102a、102b、202a、202b的长度在十六分之一至四分之三的波长范围内。所述波长是指被所述滤波支节102a、102b、202a、202b所滤掉的电磁波的波长。滤波支节102a、102b、202a、202b的长度是滤波支节102a、102b、202a、202b之自由端与连接端之间的路径长度。所述滤波支节102a、102b、202a、202b的数量为两个,所述两个滤波支节之间102a、102b、202a、202b的距离在十六分之一至四分之三的波长范围内,所述波长是指被所述滤波支节102a、102b、202a、202b所滤掉的电磁波的波长。
所述移相单元可以为移动电路板,如图1和图2所示的第一种实施方式;所述移相单元也可以为介质体,如图3和图4所示的第二种实施方式;所述移相单元也可以为移动电路板和介质体的组合,请参阅图5所示的第三种实施方式。
请参阅图1和图2,在第一种实施方式中,所述移相单元包括移动电路板103,所述移动电路板103上设有移相电路103-1、103-2,所述移动电路板103平行设置在所述固定电路板104一侧,所述移动电路板103能够相对所述固定电路板104滑动,所述移相电路103-1、103-2与所述至少两个输出电路102u之一者之间耦合电连接,以实现移相功能。当移相电路103-1、103-2相对固定电路板104上的输出电路102u移动,二之间耦合电连接实现高频电流的传输。
具体而言,所述移相电路103-1、103-2包括呈U形延伸的金属微带线,所述移相电路103-1、103-2包括彼此间隔且相对设置的第一臂11、第二臂12以及连接于所述第一臂11和所述第二臂12之间的连接臂13,其中一个所述输出电路102u包括第一传输段21、第二传输段22和输出段23,所述第一传输段21电连接至所述节点102c,所述第一传输段21和所述第二传输段22彼此间隔且相对设置,所述输出段23连接于所述第二传输段22和其中一个所述输 出端P1之间,所述第一臂11与所述第一传输段21相对设置,所述第二臂12与所述第二传输段22相对设置。由于移相电路103-1、103-2为金属微带线结构,移相电路103-1、103-2与功分电路102之间不直接接触,保持一定间距,以形成电耦合结构。
如图2所示,所述移动电路板103上设置多个所述移相电路103-1、103-2,所述固定电路板104上之所述功分电路102包括多个与所述移相电路103-1、103-2相耦合的所述输出电路P1、P2。
请参阅图3和图4,在第二种实施方式中,所述移相单元包括介质体206,所述介质体206设置在所述固定电路板204的一侧或两侧,所述介质体206能够相对所述固定电路板204滑动,以实现移相功能。介质体206与固定电路板204之间可以接触,二者之间也可以设有间隙。本实施方式中,介质体206分布在固定电路板204的两侧,分别为第一介质体206a和第二介质体206b,
具体而言,其中一个所述输出电路202u包括移相段25和第三传输段26,所述移相段25电连接于所述节点202c与所述第三传输段26之间,所述第三传输段26电连接于所述移相段25与其中一个所述输出端P1之间,所述介质体206与所述移相段25相对设置。
如图4所示,所述移相单元包括多个介质206-1、206-2,所述固定电路板204上之所述功分电路202包括多个与所述移相单元相匹配的所述输出电路P1、P2。
请参阅图5,所述移相单元包括移动电路板303和介质体306a、306b,所述移动电路板303位于所述介质体306a和所述固定电路板304之间,所述移动电路板303能够相对所述固定电路板304移动,所述移动电路板303上设置移相电路,所述移相电路与固定电路板304上的功分电路之至少两个输出电路之一者之间耦合电连接,以实现移相功能;所述介质体306a、306b能够相对所述固定电路板304滑动,以实现移相功能。
具体而言,腔体101、201、301为型材腔体,其内形成收容空间105、205、305。以第三种实施方式为例子具体说明所述腔体101、201、301,请参阅图6,图6为一种实施方式中的移相器整体外观图,腔体301外壳接地,如图5所示,所述腔体301之截面呈“曰”形结构,“曰”形结构的腔体301中间共地,能够有效减小移相器的厚度。所述外壳内形成第一腔305a和第二腔305b,所述固定 电路板304的数量为两个,所述固定电路板304分别固定在所述第一腔305a和所述第二腔305b中,所述固定电路板304上的所述功分电路302在所述第一腔305a和所述第二腔305b内形成悬置微带线结构。为了简化说明,图5中只显示了第一腔305a中的固定电路板304和移相单元,实际产品中,第二腔305b中的固定电路板304和移相单元的分布可以与第一腔305a中的分布相同。
具体而言,腔体301内壁设有定位槽,用于定位固定电路板304,固定电路板304的一对边缘卡在定位槽中。通过拉杆308带动移相单元移动,可以通过电机或其它的驱动装置驱动拉杆308,从而带动移相单元移动。腔体301外部连接多个接线盒307,图6所示的移相器包括四个接线盒307。
所述固定电路板104、204、304包括顶面和底面,所述固定电路板104、204、304设有过孔,所述过孔连通于所述顶面和所述底面之间,所述功分电路102、202、302为分布在所述顶面和所述底面的金属微带线结构,通过所述孔使得分布于所述顶面的所述功分电路电连接于分布在所述底面的所述功分电路。
图7所示为本发明一种实施方式中的固定电路板304的整体示意图,固定电路板304上包括一个输入端Pin、五个输出端P1、P2、P3、P4、P5、节点302c、滤波支节302a、302b、四个耦合电路302-1、302-2、302-3、302-4。四个耦合电路302-1、302-2、302-3、302-4用于与移相单元匹配,实现移相功能。
图8所示为本发明一种实施方式中的移动电路板303的整体示意图,移动电路板303上包括四个移相电路303-1、303-2、303-3、303-4,具体而言,这四个移相电路303-1、303-2、303-3、303-4均为U形微带线。
在实际使用过程中,耦合电路302-1和移相电路303-1耦合电连接;耦合电路302-2和移相电路303-2耦合电连接;耦合电路302-3和移相电路303-3耦合电连接;耦合电路302-4和移相电路303-4耦合电连接。这样的设计能够保证从输入端Pin输入的信号传到到输出端P1、P2、P3、P4、P5。如图7所示,信号从输入端Pin输入,经过滤波支节302a、302b,滤除干扰频段信号,信号到达节点302c。经过节点302c后的电流经过耦合电路302-1和移相电路303-1的耦合、耦合电路302-2和移相电路303-2的耦合、耦合电路302-3和移相电路303-3的耦合及耦合电路302-4和移相电路303-4的耦合,达到能量传递的目的。
对于信号的功率而言,功率分配可以调整各耦合电路之间的功分电路达到目的。
对于信号的相位而言,输出端P5是在输出端P4的基础上串联一个耦合电路得到的,当拉杆带动滑动移动电路板303移动一段距离后,在输出端P5处产生的相位差比在输出端P4处产生的相位差多一倍,从而实现输出端P5输出的相位是2Ф,输出端P4端口输出的相位是Ф,同样的,输出端P1输出的相位也是输出端P2输出相位的两倍。为了实现输出端P5\P4\P3\P2\P1输出相位差实现等差或者近似等差,耦合电路302-1、耦合电路302-2、耦合电路302-3、耦合电路302-4的布局是相向的,即对称分布在输入端Pin的两侧。这样,当拉杆带动移动电路板303移动一段距离后,在输出端P5\P4\P3\P2\P1输出相位相对移动电路板303移动前的相位的相位差分别为2Ф、1Ф、0Ф、-1Ф、-2Ф。
本发明还提供一种天线,所述天线包括所述移相器和天线单元,所述移相器的所述输出端分别通过输出电缆连接至所述天线单元。为了更进一步对本发明之移相器的使用进行说明,输出端P5\P4\P3\P2\P1分别与阵列天线的天线单元电连接,当拉杆带动移动电路板移动一段距离后,从输出端Pin馈入的高频电流信号,通过移相器的工作,可以给天线单元馈电要求的信号电流强度和相位,从而改变阵列天线辐射方向图的方向。
相较于现有技术,本发明提供的移相器包括滤波支节和移相单元,所述滤波支节电连接于主馈线,且所述滤波支节呈开路状。本发明集成了滤波支节和移相单元在移相器中,使得天线的成本降低,不需要将独立的移相器和滤波器组装在天线的主馈网络中,这样使得主馈网络的连接方式简化,从而减少了螺钉或者焊点的数量,提升了PIM量级和稳定性。
以上对本发明实施例所提供的移相器和天线进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (13)

  1. 一种移相器,包括腔体和位于所述腔体内的固定电路板和移相单元,所述移相单元能够相对所述固定电路板移动,其特征在于,所述固定电路板上设有功分电路,所述功分电路包括输入端、主馈线、节点、至少两个输出端、滤波支节和至少两个输出电路,所述主馈线电连接于所述输入端和所述节点之间,所述滤波支节电连接于主馈线,且所述滤波支节呈开路状,所述至少两个输出电路分别电连接于所述节点和所述至少两个输出端之间,所述移相单元与所述至少两个输出电路相对设置,并且所述移相单元用于改变所述节点到所述至少两个输出端的相位值。
  2. 如权利要求1所述的移相器,其特征在于,所述滤波支节的长度在十六分之一至四分之三的波长范围内,所述波长是指被所述滤波支节所滤掉的电磁波的波长。
  3. 如权利要求1所述的移相器,其特征在于,所述滤波支节的数量为两个,所述两个滤波支节之间的距离在十六分之一至四分之三的波长范围内,所述波长是指被所述滤波支节所滤掉的电磁波的波长。
  4. 如权利要求3所述的移相器,其特征在于,所述移相单元包括移动电路板,所述移动电路板上设有移相电路,所述移动电路板平行设置在所述固定电路板一侧,所述移动电路板能够相对所述固定电路板滑动,所述移相电路与所述至少两个输出电路之一者之间耦合电连接,以实现移相功能。
  5. 如权利要求4所述的移相器,其特征在于,所述移相电路包括呈U形延伸的金属微带线,所述移相电路包括彼此间隔且相对设置的第一臂、第二臂以及连接于所述第一臂和所述第二臂之间的连接臂,其中一个所述输出电路包括第一传输段、第二传输段和输出段,所述第一传输段电连接至所述节点,所述第一传输段和所述第二传输段彼此间隔且相对设置,所述输出段连接于所述第二传输段和其中一个所述输出端之间,所述第一臂与所述第一传输段相对设置,所述第二臂与所述第二传输段相对设置。
  6. 如权利要求5所述的移相器,其特征在于,所述移动电路板上设置多个所述移相电路,所述固定电路板上之所述功分电路包括多个与所述移相电路相耦合的所述输出电路。
  7. 如权利要求3所述的移相器,其特征在于,所述移相单元包括介质体,所述介质体设置在所述固定电路板的一侧或两侧,所述介质体能够相对所述固定电路板滑动,以实现移相功能。
  8. 如权利要求7所述的移相器,其特征在于,其中一个所述输出电路包括移相段和第三传输段,所述移相段电连接于所述节点与所述第三传输段之间,所述第三传输段电连接于所述移相段与其中一个所述输出端之间,所述介质体与所述移相段相对设置。
  9. 如权利要求8所述的移相器,其特征在于,所述移相单元包括多个介质体,所述固定电路板上之所述功分电路包括多个与所述移相单元相匹配的所述输出电路。
  10. 如权利要求3所述的移相器,其特征在于,所述移相单元包括移动电路板和介质体,所述移动电路板位于所述介质体和所述固定电路板之间,所述移动电路板能够相对所述固定电路板移动,所述移动电路板上设置移相电路,所述移相电路与所述至少两个输出电路之一者之间耦合电连接,以实现移相功能;所述介质体能够相对所述固定电路板滑动,以实现移相功能。
  11. 如权利要求3所述的移相器,其特征在于,所述腔体的外壳接地,所述腔体之截面呈“曰”形结构,所述外壳内形成第一腔和第二腔,所述固定电路板的数量为两个,所述固定电路板分别固定在所述第一腔和所述第二腔中,所述固定电路板上的所述功分电路在所述第一腔和所述第二腔内形成悬置微带线结构。
  12. 如权利要求3所述的移相器,其特征在于,所述固定电路板包括顶面和底面,所述固定电路板设有过孔,所述过孔连通于所述顶面和所述底面之间,所述功分电路为分布在所述顶面和所述底面的金属微带线结构,通过所述孔使得分布于所述顶面的所述功分电路电连接于分布在所述底面的所述功分电路。
  13. 一种天线,其特征在于,所述天线包括如权利要求1至权利要求12任意一项所述的移相器和天线单元,所述移相器的所述输出端分别通过输出电缆连接至所述天线单元。
PCT/CN2015/082051 2015-06-23 2015-06-23 移相器和天线 WO2016205995A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2015/082051 WO2016205995A1 (zh) 2015-06-23 2015-06-23 移相器和天线
CN201580080982.2A CN107710499B (zh) 2015-06-23 2015-06-23 移相器和天线
EP15895895.9A EP3300166B1 (en) 2015-06-23 2015-06-23 Phase shifter and antenna
US15/854,224 US10411347B2 (en) 2015-06-23 2017-12-26 Phase shifter and antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/082051 WO2016205995A1 (zh) 2015-06-23 2015-06-23 移相器和天线

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/854,224 Continuation US10411347B2 (en) 2015-06-23 2017-12-26 Phase shifter and antenna

Publications (1)

Publication Number Publication Date
WO2016205995A1 true WO2016205995A1 (zh) 2016-12-29

Family

ID=57586114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082051 WO2016205995A1 (zh) 2015-06-23 2015-06-23 移相器和天线

Country Status (4)

Country Link
US (1) US10411347B2 (zh)
EP (1) EP3300166B1 (zh)
CN (1) CN107710499B (zh)
WO (1) WO2016205995A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109713406A (zh) * 2019-01-14 2019-05-03 武汉虹信通信技术有限责任公司 一种移相单元、移相器及基站天线
CN112701496A (zh) * 2019-10-22 2021-04-23 罗森伯格科技澳洲有限责任公司 一种基站天线
WO2021129713A1 (zh) * 2019-12-24 2021-07-01 华为技术有限公司 一种滤波器、移相器以及相关装置
US20220007503A1 (en) * 2019-03-20 2022-01-06 Huawei Technologies Co., Ltd. Phase Shifter, Antenna, and Base Station
WO2023071839A1 (zh) * 2021-10-27 2023-05-04 华为技术有限公司 馈电电路,天线设备,通信设备及通信系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3595084A4 (en) * 2017-03-31 2020-03-18 Huawei Technologies Co., Ltd. ADJUSTING DEVICE FOR ANTENNA DOWNLINE AND COMMUNICATION DEVICE
KR102561222B1 (ko) 2018-07-11 2023-07-28 주식회사 케이엠더블유 위상변환장치
WO2020013992A1 (en) 2018-07-12 2020-01-16 Commscope Technologies Llc Remote electronic tilt base station antennas having adjustable ret linkages
CN111600099B (zh) * 2019-02-20 2021-10-26 华为技术有限公司 移相器及电调天线
CN110112572B (zh) * 2019-05-10 2024-01-23 华南理工大学 一种滤波功分移相一体化的天线阵列馈电网络
CN210430115U (zh) * 2019-05-13 2020-04-28 华为技术有限公司 移相器、阵列天线及基站
CN112736378B (zh) * 2020-12-01 2021-12-14 武汉虹信科技发展有限责任公司 一种滤波移相器及天线
CN113871822B (zh) * 2021-11-02 2022-08-09 江苏亨鑫科技有限公司 一种输出模式可调的移相器以及天线

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023866A (en) * 1987-02-27 1991-06-11 Motorola, Inc. Duplexer filter having harmonic rejection to control flyback
CN201430200Y (zh) * 2008-12-24 2010-03-24 广东通宇通讯设备有限公司 等相差分多路复合移相器
CN102544733A (zh) * 2012-01-31 2012-07-04 广东博纬通信科技有限公司 一种基站电调天线相位连续线性可变的移相器
CN103050764A (zh) * 2012-12-17 2013-04-17 广东博纬通信科技有限公司 等相差分波束形成装置
CN103107387A (zh) * 2013-02-08 2013-05-15 华为技术有限公司 具有滤波元件的移相器以及滤波元件和天线
CN104103875A (zh) * 2014-07-22 2014-10-15 京信通信系统(中国)有限公司 移相器及包含移相器的移相组件、移相馈电网络
CN203967218U (zh) * 2014-04-30 2014-11-26 广东晖速通信技术有限公司 一种4g天线的小型化移相器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4617539A (en) * 1985-05-13 1986-10-14 Raytheon Company Reflective phase shifter
GB8619680D0 (en) * 1986-08-13 1986-09-24 Collins J L F C Flat plate array
US6025803A (en) * 1998-03-20 2000-02-15 Northern Telecom Limited Low profile antenna assembly for use in cellular communications
US6677899B1 (en) * 2003-02-25 2004-01-13 Raytheon Company Low cost 2-D electronically scanned array with compact CTS feed and MEMS phase shifters
US9444151B2 (en) * 2014-01-10 2016-09-13 Commscope Technologies Llc Enhanced phase shifter circuit to reduce RF cables
CN104051821B (zh) 2014-05-23 2019-03-01 京信通信技术(广州)有限公司 介质移相器
CN104269647B (zh) * 2014-09-09 2017-12-22 西安华为技术有限公司 一种移相器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023866A (en) * 1987-02-27 1991-06-11 Motorola, Inc. Duplexer filter having harmonic rejection to control flyback
CN201430200Y (zh) * 2008-12-24 2010-03-24 广东通宇通讯设备有限公司 等相差分多路复合移相器
CN102544733A (zh) * 2012-01-31 2012-07-04 广东博纬通信科技有限公司 一种基站电调天线相位连续线性可变的移相器
CN103050764A (zh) * 2012-12-17 2013-04-17 广东博纬通信科技有限公司 等相差分波束形成装置
CN103107387A (zh) * 2013-02-08 2013-05-15 华为技术有限公司 具有滤波元件的移相器以及滤波元件和天线
CN203967218U (zh) * 2014-04-30 2014-11-26 广东晖速通信技术有限公司 一种4g天线的小型化移相器
CN104103875A (zh) * 2014-07-22 2014-10-15 京信通信系统(中国)有限公司 移相器及包含移相器的移相组件、移相馈电网络

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109713406A (zh) * 2019-01-14 2019-05-03 武汉虹信通信技术有限责任公司 一种移相单元、移相器及基站天线
CN109713406B (zh) * 2019-01-14 2022-01-11 武汉虹信科技发展有限责任公司 一种移相单元、移相器及基站天线
US20220007503A1 (en) * 2019-03-20 2022-01-06 Huawei Technologies Co., Ltd. Phase Shifter, Antenna, and Base Station
CN112701496A (zh) * 2019-10-22 2021-04-23 罗森伯格科技澳洲有限责任公司 一种基站天线
WO2021129713A1 (zh) * 2019-12-24 2021-07-01 华为技术有限公司 一种滤波器、移相器以及相关装置
WO2023071839A1 (zh) * 2021-10-27 2023-05-04 华为技术有限公司 馈电电路,天线设备,通信设备及通信系统

Also Published As

Publication number Publication date
EP3300166A1 (en) 2018-03-28
US20180123240A1 (en) 2018-05-03
EP3300166B1 (en) 2020-12-16
US10411347B2 (en) 2019-09-10
CN107710499A (zh) 2018-02-16
EP3300166A4 (en) 2018-06-27
CN107710499B (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
WO2016205995A1 (zh) 移相器和天线
US9780425B2 (en) Microwave component of cavity type
EP2979323B1 (en) A siw antenna arrangement
CN109728431B (zh) 一种带宽提高的四单元微带阵列天线
KR101901795B1 (ko) 위상 시프터
WO2016173465A1 (zh) 移相器和天线
US10658761B2 (en) Adapter structure with waveguide channels
CN104681896A (zh) 一种多路一体化介质移相器
CN108432036B (zh) 移相器和天线
WO2015135153A1 (zh) 阵列天线
US9577301B2 (en) Dielectric phase-shift module and phase-shift unit thereof, feeding network and antenna
CN106972267B (zh) 一种应用于基站天线的空间立体移相器
EP3547446B1 (en) Dielectric phase shifting unit, dielectric phase shifter and base station antenna
US11462811B2 (en) Coupling device and antenna
WO2018196711A1 (zh) 一种基站天线的空间立体移相器
CN204614906U (zh) 一种多路一体化介质移相器
CN111063970A (zh) 微波器件及天线
KR101786960B1 (ko) 페이즈 쉬프터
CN114497930A (zh) 合路移相装置与天线
WO2022170748A1 (zh) 合路滤波结构及合路移相器
KR101811245B1 (ko) 가변 커플러 및 스트립라인 가변커플러
JP2018037928A (ja) 導波管型可変移相器および導波管スロットアレーアンテナ装置
US10403948B2 (en) Adjustable phase shifter including a signal conductor, a movable dielectric plate and a transformer unit, where the transformer unit defines overlapped and non-overlapped portions with respect to the signal conductor
CN110176662B (zh) 一种应用于5g工作频段的宽带紧凑型180°耦合器
CN110867663A (zh) 馈电网络及天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895895

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2015895895

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE