WO2021129713A1 - 一种滤波器、移相器以及相关装置 - Google Patents

一种滤波器、移相器以及相关装置 Download PDF

Info

Publication number
WO2021129713A1
WO2021129713A1 PCT/CN2020/138866 CN2020138866W WO2021129713A1 WO 2021129713 A1 WO2021129713 A1 WO 2021129713A1 CN 2020138866 W CN2020138866 W CN 2020138866W WO 2021129713 A1 WO2021129713 A1 WO 2021129713A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
circuit board
line
cavity
interface
Prior art date
Application number
PCT/CN2020/138866
Other languages
English (en)
French (fr)
Inventor
徐春亮
周杰君
刘新明
卢俊锋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20907997.9A priority Critical patent/EP4071924A4/en
Publication of WO2021129713A1 publication Critical patent/WO2021129713A1/zh
Priority to US17/848,137 priority patent/US20220359965A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/2039Galvanic coupling between Input/Output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/06Coaxial lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • This application relates to the field of communication technology, and in particular to a filter, a phase shifter and related devices.
  • Adjustable phase shifters are mainly divided into two types: medium phase shift and physical phase shift. Among them, the medium phase shift is achieved by changing the wavelength of the guided wave, and the physical phase shift is achieved by changing the transmission path length of the electromagnetic wave.
  • the current general design scheme is to integrate the filter inside the phase shifter (cavity) to simplify the cascade.
  • the filter includes a filter branch, which is used to filter out electromagnetic waves.
  • the length of the filter branch needs to be adjusted.
  • the above design scheme has the problem of difficulty in adjustment because the filter is integrated inside the phase shifter cavity.
  • the embodiment of the application provides a filter.
  • the first filter line in the filter branch is arranged outside the cavity. Therefore, the user can adjust the length of the first filter line outside the cavity to realize the adjustment of the electromagnetic wave filtered by the filter. Wavelength range. Improve user convenience.
  • an embodiment of the present application proposes a filter, which includes: a cavity, a circuit board, and a filter branch; the circuit board is located inside the cavity; the circuit board is provided with a power dividing circuit, and the power dividing circuit
  • the circuit includes an input end, a main feeder line and an output end, the input end is electrically connected to the main feeder line, the output end is electrically connected to the main feeder line, and the main feeder line is used to transmit the signal input from the input end to the output end;
  • the filter branch includes a first interface and a first filter line, the first interface is disposed at the opening of the cavity, the first filter line is located outside the cavity, and the first filter line is electrically connected to the first interface, The first interface is electrically connected with the main feeder line.
  • a part of the first filter line of the filter branch is arranged outside the cavity, and a part of the first port of the filter branch is arranged at the opening of the cavity.
  • the first filter line is electrically connected with the first interface, the first interface is electrically connected with the main feeder, and the first filter line is electrically connected with the main feeder through the first interface.
  • the first filter line is electrically connected to the first interface through welding, or the first filter line is electrically connected to the first interface through screw connection, or, the The first filter line is electrically connected to the first interface through a coupling manner.
  • the electrical connection between the first filter line and the first interface can be achieved in a variety of ways, which improves the implementation flexibility of the solution.
  • the first filter line is a coaxial cable or a metal strip line.
  • a variety of components such as coaxial cables and metal strip lines can be used to realize the function of the first filter line, which improves the flexibility of the implementation of this solution.
  • the filter branch further includes a second filter line, the second filter line is located in the cavity, and the second filter line is provided on the circuit board; the first interface passes through the The second filter line is connected to the main feeder line.
  • the sum of the lengths of the first filter line and the second filter line is within a wavelength range of one-sixteenth to three-quarters, and the wavelength refers to the wavelength of the electromagnetic wave filtered by the filter branch.
  • the circuit board includes a metal strip line, wherein the metal strip line is exposed to the air, or the metal strip line is a metal layer plated on the surface of the substrate, or the metal The strip line is a metal layer embedded on the surface of the substrate, and the substrate is plastic or ceramic.
  • the circuit board includes a metal strip line, wherein the metal strip line is exposed to the air, or the metal strip line is a metal layer plated on the surface of the substrate, or the metal The strip line is a metal layer embedded on the surface of the substrate, and the substrate is plastic or ceramic.
  • At least one buckle is provided inside the cavity; at least one through hole is provided on the circuit board, and the through hole limits the buckle; the circuit board passes through the through hole and The fit of the buckle is fixed inside the cavity. At least one buckle provided in the cavity and at least one through hole provided on the circuit board, the through hole restricts the buckle. Through the cooperation of the buckle and the through hole, the circuit board is fixed inside the cavity. Improve the stability of the internal structure of the filter.
  • a first end cover and a second end cover are respectively provided at opposite ends of the cavity; the circuit board and the cavity are respectively provided with a first card slot and a second end cover at the corresponding two ends.
  • Two card slots the first card slot limits the first end cover, the second card slot limits the second end cover; the circuit board passes through the first card slot and the first end cover Matching, the second card slot and the second end cover are matched to be fixed inside the cavity.
  • the filter further includes a fixing member; the fixing member is perpendicular to the circuit board; in a direction perpendicular to the circuit board, both ends of the fixing member are connected to the cavity,
  • the fixing member is used for limiting the position of the circuit board in a vertical direction relative to the circuit board. Improve the stability of the internal structure of the filter.
  • an embodiment of the present application also proposes a phase shifter.
  • the phase shifter includes the filter of any one of the foregoing first aspect and the first aspect, and the phase shifter further includes a phase shifting unit. ;
  • the phase shifting unit is located inside the cavity, and the phase shifting unit can move relative to the circuit board.
  • the phase shift unit includes a mobile circuit board, the mobile circuit board is arranged in parallel on one side of the circuit board, and the mobile circuit board is electrically coupled to the circuit board.
  • the filter is integrated in the phase shifter. Since the first filter line in the filter branch is arranged outside the cavity, the user can adjust the length of the first filter line outside the cavity to realize the adjustment of the filter position. Filter out the wavelength range of electromagnetic waves. Improve user convenience. Since the larger part of the filter branch (the first filter line) is arranged outside the cavity of the phase shifter, compared with the phase shifter in the prior art, a large amount of space in the cavity of the phase shifter can be saved and the shift The electromagnetic performance of the phaser. At the same time, it can also meet the performance requirements of the phase shifter with a smaller volume of the phase shifter. Through the cooperation of the through hole and the buckle, the cooperation of the groove and the end cover and the fixing parts, the circuit board can be stably fixed inside the cavity, and the stability of the phase shifter structure is ensured.
  • an embodiment of the present application also proposes an antenna, including: an antenna unit for radiating an electromagnetic beam, and a phase shifter as in the foregoing second aspect connected to the antenna unit; the phase shifter is used for adjustment The angle of the electromagnetic beam radiated by the antenna unit.
  • an embodiment of the present application also proposes a multi-frequency antenna network system, including the antenna in the foregoing third aspect.
  • an embodiment of the present application also proposes a base station device, including the antenna in the foregoing third aspect.
  • the technical effects brought by any one of the possible implementations of the third to fifth aspects can be referred to the technical effects brought by the first aspect, the different possible implementations of the first aspect, or the implementations of the second aspect, here No longer.
  • the filter branch includes a first interface and a first filter line, the first interface is arranged at the opening of the cavity, the first filter line is located outside the cavity, the first filter line is electrically connected to the first interface, and the first interface is connected to the main feeder Electric connection. Since a part of the filter branch (the first filter line) is arranged outside the cavity, the user can adjust the length of the first filter line outside the cavity to adjust the wavelength range of electromagnetic waves filtered by the filter. Improve user convenience.
  • FIG. 1 is a schematic diagram of a structure of a filter proposed in an embodiment of the application
  • FIG. 2 is a schematic diagram of a phase shifter according to an embodiment of the application.
  • FIG. 3a is a schematic diagram of the appearance of the phase shifter according to an embodiment of the application.
  • FIG. 3b is a schematic cross-sectional view of the phase shifter according to an embodiment of the application.
  • FIG. 4 is a schematic diagram of a partial structure of a phase shifter proposed in an embodiment of the application.
  • FIG. 5 is a schematic diagram of a partial structure of a phase shifter according to an embodiment of the application.
  • Fig. 6 is a schematic structural diagram of a base station device proposed in an embodiment of the application.
  • the embodiments of the present application provide a filter, a phase shifter, and related devices.
  • the filter includes a cavity and a filter branch.
  • the filter branch includes a first interface and a first filter line.
  • the first interface is disposed in an opening of the cavity. Where, the first filter line is located outside the cavity, the first filter line is electrically connected to the first interface, the first interface is electrically connected to the main feeder, and the first filter line is in an open circuit shape. Since a part of the filter branch (the first filter line) is arranged outside the cavity, the user can adjust the length of the first filter line outside the cavity to adjust the wavelength range of electromagnetic waves filtered by the filter. Improve user convenience.
  • FIG. 1 is a schematic structural diagram of a filter according to an embodiment of the application.
  • a filter 100 proposed in an embodiment of the present application includes: a filter branch 110, a cavity 120, and a circuit board.
  • the circuit board is located inside the cavity 120.
  • the circuit board is provided with a power divider circuit.
  • the power divider circuit is a circuit board.
  • One way of dividing an input signal (energy) into two or more output signals (energy), the output signal (energy) can be an equal signal (energy) or an unequal signal (energy).
  • the power divider circuit provided on the circuit board of the filter 100 is illustrated by taking one input 131 and two output 132 as examples.
  • the input 131 is electrically connected to the output 132 through the main feeder 133, and the main feeder 133 is used for The signal (energy) input from the input terminal 131 is transmitted to the output terminal 132.
  • the filter 100 may also include more or fewer output terminals 133, which are not limited here.
  • the power dividing circuit includes only one output terminal and one input terminal.
  • the circuit board includes a metal strip line, where the metal strip line is exposed to the air, or the metal strip line is a metal layer plated on the surface of the substrate, or the metal strip line is a metal layer embedded on the surface of the substrate. Plastic or ceramic.
  • the metal strip line may specifically be a microstrip line.
  • the circuit board may not use a substrate, and only include metal strips.
  • the filter branch 110 includes a first interface 111 and a first filter line 112.
  • the first interface 111 is disposed at the opening of the cavity 120, the first interface 111 is electrically connected with the main feed line 133, and the first interface 111 is electrically connected with the first filter line 112.
  • the first filter line 112 is disposed outside the cavity 120. It should be noted that the first interface 111 can be either a physical interface; it can also be the overlapping part of the electrical connection part of the first filter line 112 and the main feeder 133 with the opening of the cavity 120, that is, the first interface 111 can also be the first interface 111. A part of the filter line 112 (or the main feeder line 133) is not limited here.
  • the first filter line 112 is in an open-circuit shape (that is, no circuit is connected to the end connected to the first interface 111).
  • the first filter line 112 can be connected to the first interface 111 in a variety of ways.
  • the first filter line 112 is electrically connected to the first interface 111 by welding.
  • the welding method specifically includes soldering; the first filter line 112 is screwed by a screw.
  • the connection mode is electrically connected to the first interface.
  • one end of the first filter line 112 and the first interface 111 is a screw structure, and the end of the first interface 111 and the first filter line 112 is a nut structure;
  • a filter line 112 may also be electrically connected to the first interface 111 through a coupling manner, that is, the first filter line 112 and the first interface 111 are not in direct contact, and a certain distance is maintained to form an electrical coupling structure.
  • the first filter line 112 has conductivity, and specifically may be a coaxial cable or a metal strip line.
  • the filtering branch 110 is used to filter out part of the electromagnetic waves transmitted in the main feeder 133.
  • the user can adjust the length of the first filter line 112 to adjust the wavelength range of the electromagnetic wave to be filtered. For example, the user can cut off a part of the first filter line 112 to shorten the length of the first filter line 112. Or, on the basis of the original first filter line 112, a wire is welded to the end of the first filter line 112 opposite to the first interface 111, and the wire is electrically connected to the first filter line 112, and the welded wire is connected to the The original first filter line 112 together form a new first filter line 112.
  • the wire can be made of the same material as the first filter wire 112.
  • the wire when the first filter wire 112 is a coaxial cable, the wire is a coaxial cable; the wire can also be made of a different material from the first filter wire 112.
  • the wire when the first filter line 112 is a coaxial cable, the wire is a metal strip line.
  • the first interface 111 is a physical interface, the user can also change the first filter line 112 of a different length, and the first filter line 112 is connected to the first interface 111 to adjust the wavelength range of the electromagnetic waves to be filtered.
  • part of the filter lines in the filter branch 110 may be arranged in the cavity 120.
  • the filter line is called the second filter line 113, and the first interface 111 is electrically connected to the main feeder 133 through the second filter line 113.
  • the sum of the length of the first filter line 112 and the second filter line 113 is in the wavelength range of one sixteenth to three quarters, and the wavelength refers to the wavelength of the electromagnetic wave filtered by the filter branch 110.
  • the sum of the lengths of the first filter line 112 and the second filter line 113 specifically refers to the sum of the length of the path from the open end of the first filter line 112 to the connection point of the second filter line 113 and the main feeder 133.
  • the second filter line 113 has conductivity, and specifically may be a coaxial cable or a metal strip line.
  • the total length of the filter branch 110 (that is, the sum of the lengths of the first filter line 112 and the second filter line 113) is 70 mm.
  • the user needs the filter 100 to be suitable for 850 megahertz (megahertz, MHz) filtering scenarios. It is known through calculation that in the 850 MHz filtering scenario, the total length of the required filtering branch 110 is 60 millimeters. Since the length of the second filter line 113 is 30 mm, the length of the first filter line 112 is 40 mm. Therefore, the user can adjust the total length of the filter branch 110 to 60 mm by shortening the length of the first filter line 112 located outside the cavity 120.
  • the filter 100 can be successfully applied to the 850MHz filtering scene.
  • the user can also monitor the waveform of the electromagnetic wave filtered by the filter 100 through a vector network analyzer (vector network analyzer), and adjust the length of the first filter line 112. By adjusting the length of the first filter line 112, the wavelength range of the electromagnetic wave filtered by the filter can be adjusted.
  • a vector network analyzer vector network analyzer
  • the wavelength range of the electromagnetic wave filtered by the filter can be adjusted.
  • a filter is introduced, and the filter can be applied to a variety of passive devices, such as a phase shifter or a power divider.
  • the filter includes a cavity and a filter branch.
  • the filter branch includes a first interface and a first filter line.
  • the first interface is arranged at the opening of the cavity, the first filter line is located outside the cavity, and the first filter line is connected to the first filter line.
  • One interface is electrically connected, and the first interface is electrically connected with the main feeder.
  • the first filter line may be a coaxial cable or a metal strip line, which realizes the filtering function at a lower cost. Take the first filter line as a coaxial cable as an example: the material of the coaxial cable is convenient for users to adjust the length.
  • the user when the user needs to increase the length of the first filter line, the user can solder the end of the first filter line. Weld other coaxial cables to increase the length of the first filter line. The user can also shorten the first filter line with pliers to shorten the length of the first filter line.
  • the first filter line is arranged outside the cavity, so the user can adjust the length of the first filter line outside the cavity to adjust the wavelength range of electromagnetic waves filtered by the filter. Improve user convenience.
  • FIG. 2 is a schematic diagram of a phase shifter according to an embodiment of the application.
  • the phase shifter 200 includes a filter 100 and a phase shifting unit.
  • the phase shifting unit includes a moving circuit board.
  • the moving circuit board 201 includes a sliding medium, a motor (not shown in the figure) that drives the sliding medium, and related wires that control the motor. Chip (not shown in the figure).
  • the mobile circuit board is electrically coupled to the circuit board in the filter 100.
  • the phase shift unit realizes the phase shift of the signal by moving the relative position change between the circuit board and the circuit board.
  • the phase shifter 200 shown in FIG. 2 is only an optional implementation solution.
  • the filter proposed in this application can also be applied to a variety of different phase shifters such as physical shifting. limited.
  • the phase shifter 200 further includes an input terminal 131 and two output terminals 132.
  • the input terminal 131 is electrically connected to the output terminal 132 through the main feeder 133. After the signal is input from the input terminal 131 to the main feeder 133, after passing through the T-junction 134, the signal is divided into two and transmitted to different output terminals 132, respectively.
  • the phase shifter 200 also includes two filter branches, each filter branch includes a first filter line 112 and a first interface 111, and the first filter line 112 is electrically connected to the main feeder line 133 through the first interface.
  • the mobile circuit board 201 is arranged in parallel on two sides (or one side) of the circuit board 130, and the mobile circuit board 201 and the circuit board 130 are electrically coupled and connected.
  • the filter is integrated in the phase shifter. Since the first filter line in the filter branch is arranged outside the cavity, the user can adjust the length of the first filter line outside the cavity to realize the adjustment of the filter position. Filter out the wavelength range of electromagnetic waves. Improve user convenience. Since the larger part of the filter branch (the first filter line) is arranged outside the cavity of the phase shifter, compared with the phase shifter in the prior art, a large amount of space in the cavity of the phase shifter can be saved and the shift The electromagnetic performance of the phaser. At the same time, it can also meet the performance requirements of the phase shifter with a smaller volume of the phase shifter.
  • FIG. 3a is a schematic diagram of the appearance of the phase shifter according to an embodiment of the application
  • FIG. 3b is a schematic cross-sectional view of the phase shifter according to an embodiment of the application.
  • the cavity 120 of the phase shifter 200 is provided with two openings, which are a first opening 301 and a second opening 302, respectively.
  • Each of the first opening 301 and the second opening 302 is provided with a first interface 111, and the first interface 111 is electrically connected to the first filter line 112.
  • the cavity 120 is provided with a first buckle 310, a second buckle 320, and a third buckle 330.
  • a first end cover 303 and a second end cover 304 are respectively provided at opposite ends of the cavity 120.
  • the circuit board 130 is provided with a first through hole 311, a second through hole 321 and a third through hole 331.
  • the first through hole 311 restricts the first buckle 310
  • the second through hole 321 restricts the second buckle 320
  • the third through hole 331 restricts the third buckle 330.
  • the circuit board 130 is fixed inside the cavity 120 through the cooperation of the through holes and the buckles.
  • the two ends corresponding to the cavity 120 are respectively provided with a first card slot 305 and a second card slot 306.
  • the first card slot 305 limits the first end cover 303
  • the second card slot 306 limits the first end cover 303.
  • the second end cover 304 is for limiting the position; the circuit board 130 is fixed in the cavity 120 through the cooperation of the first slot 305 and the first end cover 303, and the cooperation of the second slot 306 and the second end cover 304.
  • the phase shifter 200 also includes a fixing member 340, which is perpendicular to the circuit board 130; in the vertical direction relative to the circuit board 130, both ends of the fixing member 340 are connected to the cavity, and the fixing member 340 is used to align the circuit board 130. The position is limited in the vertical direction relative to the circuit board 130.
  • FIG. 4 is a schematic diagram of a partial structure of the phase shifter according to an embodiment of the application.
  • FIG. 5 is a schematic diagram of a partial structure of the phase shifter according to an embodiment of the application.
  • the filter is integrated in the phase shifter. Since the first filter line in the filter branch is arranged outside the cavity, the user can adjust the length of the first filter line outside the cavity to realize the adjustment of the filter position. Filter out the wavelength range of electromagnetic waves. Improve user convenience. Since the larger part of the filter branch (the first filter line) is arranged outside the cavity of the phase shifter, compared with the phase shifter in the prior art, a large amount of space in the cavity of the phase shifter can be saved and the shift The electromagnetic performance of the phaser. At the same time, it can also meet the performance requirements of the phase shifter with a smaller volume of the phase shifter. Through the cooperation of the through hole and the buckle, the cooperation of the slot and the end cover and the fixing part, the circuit board can be stably fixed inside the cavity, and the stability of the phase shifter structure is ensured.
  • This application also proposes an antenna, which includes an antenna unit and a phase shifter as described in the above-mentioned embodiments corresponding to FIGS. 2 to 5, and the antenna unit is used to radiate electromagnetic beams.
  • the phase shifter is used to adjust the angle of the electromagnetic beam radiated by the antenna unit.
  • the output end of the phase shifter is connected to the antenna unit through an output cable.
  • This application also proposes a multi-frequency antenna network system, which includes any of the above-mentioned phase shifters.
  • the filter, phase shifter, antenna and/or multi-frequency antenna network system proposed in this application can also be applied to base station (BS) equipment, which can also be referred to as a base station, which is a type of equipment deployed in wireless access networks.
  • BS base station
  • the equipment that provides the base station function in the 2G network includes the base transceiver station (BTS) and the base station controller (BSC).
  • BTS base transceiver station
  • BSC base station controller
  • the equipment that provides the base station function in the 3G network includes the NodeB (NodeB) and wireless Radio network controller (RNC)
  • equipment that provides base station functions in 4G networks includes evolved node B (evolved nodeb, eNB), and equipment that provides base station functions in wireless local area networks (WLAN) It is an access point (access point, AP).
  • equipment that provides base station functions includes eNB, new radio node B (gNB), centralized unit (CU), distributed unit (distributed unit), and new radio controller.
  • the base station equipment 60 includes: a baseband unit 61, a radio frequency unit 62, and an antenna feeder system 63; wherein the radio frequency unit 62 is connected to the baseband unit 61 and the antenna feeder system 63 respectively.
  • the baseband unit 61 may be a remote radio unit (RRU) and/or an indoor baseband processing unit (Building Baseband Unit, BBU).
  • the radio frequency unit 62 includes at least one signal transceiving channel, and each signal transceiving channel processes one radio frequency signal stream.
  • the signal transceiver channel includes digital up converter (DUC), crest factor reduction (CFR), digital to analog converter (DAC), and power amplifier (PA) Etc.
  • the signal transceiving channel may also include other physical function modules, for example, the filter proposed in the present application may be set after the power amplifier.
  • the antenna feeder system 63 also called antenna feeder system, refers to an antenna and feeder system, which includes: at least one antenna feeder unit, the antenna feeder unit includes a phase shifter and an antenna, and the input end of the signal transceiver channel is connected to the baseband unit 61.
  • the output end of the signal transceiving channel is connected to at least one antenna feed unit, wherein the output end of the signal transceiving channel is connected to the antenna through a phase shifter.
  • the phase control signal of the phase shifter is provided by the radio frequency unit 62, and the phase control signal of the phase shifter controls the phase shift state of the phase shifter, thereby controlling the phase distribution of the corresponding antenna's orifice electromagnetic wave, and realizing the switching of the antenna beam.
  • one embodiment or “an embodiment” mentioned throughout the specification means that a specific feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present application. Therefore, the appearances of "in one embodiment” or “in an embodiment” in various places throughout the specification do not necessarily refer to the same embodiment. In addition, these specific features, structures or characteristics can be combined in one or more embodiments in any suitable manner. It should be understood that in the various embodiments of the present application, the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application. The implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请实施例公开了一种滤波器、移相器以及相关装置。滤波器包括:腔体、电路板和滤波支节;电路板位于腔体内部;电路板上设有功分电路,功分电路包括输入端、主馈线和输出端,输入端和主馈线电连接,输出端与主馈线电连接,主馈线用于将输入端输入的信号传输至输出端;滤波支节包括第一接口和第一滤波线,第一接口设置于腔体的开口处,第一滤波线位于腔体外侧,第一滤波线与第一接口电连接,第一接口与主馈线电连接。滤波支节中第一滤波线设置于腔体外侧,因此用户可以在腔体外侧调节第一滤波线的长度,以实现调整滤波器所滤除电磁波的波长范围。提升用户的使用便利性。

Description

一种滤波器、移相器以及相关装置
本申请要求于2019年12月24日提交中国专利局、申请号为201911351077.2、发明名称为“一种滤波器、移相器以及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种滤波器、移相器以及相关装置。
背景技术
在移动通信系统中,由于网络覆盖或网络优化的需要,基站天线的俯仰面波束指向需要调整。例如,通过可调移相器进行俯仰面波束调整,其工作原理为:改变阵列天线各个天线单元的相位分布,进而调节天线波束的下倾角度。这样,不但能够实现主波束指向的连续调节,而且能够保证水平面波束不变形。可调移相器主要分为介质移相和物理移相两种类型。其中,介质移相是通过改变导波波长来实现移相,物理移相是通过改变电磁波的传输路径长度来实现移相。但是,随着电调天线的日益增多,需要在移相器前端增加滤波器,以保证各个频段不相互干扰,进而增加异频隔离度。通常采用在基站天线与移相器之间增加独立的滤波器。该方案基站天线与滤波器,滤波器与移相器之间通过线缆连接。由于这种多级级联的方案,需要通过螺钉或焊点方式连接,增加无源互调(passive inter modulation,PIM)隐患,影响通信质量。
基于此,目前一般的设计方案是将滤波器集成在移相器(腔体)内部,以简化级联。滤波器包括滤波支节(filter branch),滤波支节用于滤除电磁波。
通常,调整滤波器滤除电磁波的波长范围,需要对滤波支节的长度进行调整。而上述设计方案,由于滤波器集成于移相器腔体内部,存在调整困难的问题。
发明内容
本申请实施例提供了一种滤波器,滤波支节中第一滤波线设置于腔体外侧,因此用户可以在腔体外侧调节第一滤波线的长度,以实现调整滤波器所滤除电磁波的波长范围。提升用户的使用便利性。
第一方面,本申请实施例提出一种滤波器,该滤波器包括:腔体、电路板和滤波支节;该电路板位于该腔体内部;该电路板上设有功分电路,该功分电路包括输入端、主馈线和输出端,该输入端和该主馈线电连接,该输出端与该主馈线电连接,该主馈线用于将该输入端输入的信号传输至该输出端;该滤波支节包括第一接口和第一滤波线,该第一接口设置于该腔体的开口处,该第一滤波线位于该腔体外侧,该第一滤波线与该第一接口电连接,该第一接口与该主馈线电连接。
本申请实施例中,滤波支节的一部分第一滤波线设置于腔体外侧,滤波支节的一部分第一端口设置于腔体的开口处。第一滤波线与第一接口电连接,第一接口与主馈线电连接,第一滤波线通过第一接口与主馈线电连接。用户可以在腔体外侧调节第一滤波线的长度,以实现调整滤波器所滤除电磁波的波长范围。提升用户的使用便利性。
结合第一方面,在一些实现方式中,该第一滤波线通过焊接方式与该第一接口电连接,或,该第一滤波线通过螺钉旋接方式与该第一接口电连接,或,该第一滤波线通过耦合方式与该第一接口电连接。第一滤波线与第一接口之间可以通过多种方式实现电连接,提升了本方案的实现灵活性。
结合第一方面,在一些实现方式中,该第一滤波线为同轴线缆或金属带线。可以使用同轴线缆以及金属带线等多种元器件实现第一滤波线的功能,提升了本方案的实现灵活性。
结合第一方面,在一些实现方式中,该滤波支节还包括第二滤波线,该第二滤波线位于该腔体内,该第二滤波线设置于该电路板上;该第一接口通过该第二滤波线与该主馈线连接。该第一滤波线和该第二滤波线的长度之和在十六分之一至四分之三的波长范围内,该波长是指被该滤波支节所滤除的电磁波的波长。通过将滤波支节中第二滤波线设置于腔体内,提升了腔体内空间的利用率。
结合第一方面,在一些实现方式中,该电路板包括金属带线,其中,该金属带线裸露于空气中,或,该金属带线为基材的表面电镀的金属层,或,该金属带线为该基材的表面镶嵌的金属层,该基材为塑料或陶瓷。电路板存在多种方式实现方式,提升了本方案的实现灵活性。
结合第一方面,在一些实现方式中,该腔体内部设置至少一个卡扣;该电路板上设置至少一个通孔,该通孔对该卡扣进行限位;该电路板通过该通孔和该卡扣的配合,固定在该腔体内部。在腔体内部设置的至少一个卡扣与电路板上设置的至少一个通孔,该通孔对卡扣进行限位。通过卡扣与通孔的配合,使得电路板固定在腔体内部。提升了滤波器内部结构的稳定程度。
结合第一方面,在一些实现方式中,该腔体相对的两端分别设置第一端盖和第二端盖;该电路板与该腔体对应的两端,分别设置第一卡槽与第二卡槽,该第一卡槽对该第一端盖进行限位,该第二卡槽对该第二端盖进行限位;该电路板通过该第一卡槽和该第一端盖的配合,该第二卡槽和该第二端盖的配合,固定在该腔体内部。提升了滤波器内部结构的稳定程度。
结合第一方面,在一些实现方式中,该滤波器还包括固定件;该固定件与该电路板垂直;在相对于该电路板垂直方向上,该固定件的两端与该腔体连接,该固定件用于对该电路板在相对于该电路板垂直方向上进行限位。提升了滤波器内部结构的稳定程度。
第二方面,本申请实施例还提出了一种移相器,该移相器包括如前述第一方面以及第一方面中任意一种实现方式的滤波器,该移相器还包括移相单元;该移相单元位于该腔体内部,该移相单元能够相对该电路板移动。该移相单元包括移动电路板,该移动电路板平行设置在该电路板一侧,该移动电路板与该电路板之间耦合电连接。
本申请实施例中,移相器中集成滤波器,由于滤波支节中第一滤波线设置于腔体外侧,因此用户可以在腔体外侧调节第一滤波线的长度,以实现调整滤波器所滤除电磁波的波长范围。提升用户的使用便利性。由于滤波支节中体积较大的一部分(第一滤波线)设置于移相器的腔体外,相较于现有技术中的移相器,可节约大量移相器腔体内的空间,提升移相器的电磁性能。同时,也可以在更小的移相器体积下,满足移相器的性能要求。通过通 孔与卡扣的配合、卡槽与端盖的配合以及固定件,使得电路板可稳定地固定于腔体内部,保证移相器结构的稳定性。
第三方面,本申请实施例还提出了一种天线,包括:天线单元,用于辐射电磁波束,以及与该天线单元连接的如前述第二方面中的移相器;该移相器用于调节该天线单元辐射的电磁波束的角度。
第四方面,本申请实施例还提出了一种多频天线网络系统,包括如前述第三方面中的天线。
第五方面,本申请实施例还提出了一种基站设备,包括如前述第三方面中的天线。
其中,第三至第五方面中任一种可能实现方式所带来的技术效果可参见第一方面、第一方面不同可能实现方式或第二方面的实现方式所带来的技术效果,此处不再赘述。
从以上技术方案可以看出,本申请实施例具有以下优点:
滤波支节包括第一接口和第一滤波线,第一接口设置于腔体的开口处,第一滤波线位于腔体外侧,第一滤波线与第一接口电连接,第一接口与主馈线电连接。由于滤波支节的一部分(第一滤波线)设置于腔体外侧,因此用户可以在腔体外侧调节第一滤波线的长度,以实现调整滤波器所滤除电磁波的波长范围。提升用户的使用便利性。
附图说明
图1为本申请实施例提出的滤波器的一种结构示意图;
图2为本申请实施例提出的一种移相器示意图;
图3a为本申请实施例提出的移相器的一种外观示意图;
图3b为本申请实施例提出的移相器的一种剖面示意图;
图4为本申请实施例提出的移相器的一种局部结构示意图;
图5为本申请实施例提出的移相器的一种局部结构示意图;
图6为本申请实施例提出的基站设备的一种结构示意图。
具体实施方式
本申请实施例提供了一种滤波器、移相器以及相关装置,滤波器包括腔体和滤波支节,滤波支节包括第一接口和第一滤波线,第一接口设置于腔体的开口处,第一滤波线位于腔体外侧,第一滤波线与第一接口电连接,第一接口与主馈线电连接,第一滤波线呈开路状。由于滤波支节的一部分(第一滤波线)设置于腔体外侧,因此用户可以在腔体外侧调节第一滤波线的长度,以实现调整滤波器所滤除电磁波的波长范围。提升用户的使用便利性。
下面结合附图,对本申请的实施例进行描述。本领域普通技术人员可知,随着技术的发展和新场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请的说明书和权利要求书及上述附图中的术语“第一”、第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
请参阅图1,图1为本申请实施例提出的滤波器的一种结构示意图。本申请实施例提出的一种滤波器100包括:滤波支节110、腔体120和电路板,电路板位于腔体120内部,电路板上设有功分(power divider)电路,功分电路是一种将一路输入信号(能量)分成两路或多路输出信号(能量),该输出信号(能量)可以是相等信号(能量)也可以是不相等信号(能量)。滤波器100中电路板上设置的功分电路,以一个输入端131,两个输出端132为例进行示例性说明,该输入端131通过主馈线133与输出端132电连接,主馈线133用于将输入端131输入的信号(能量)传输至输出端132。需要说明的是,滤波器100还可以包括更多或更少的输出端133,此处不作限定,例如,功分电路中仅包括一个输出端和一个输入端。电路板包括金属带线,其中,金属带线裸露于空气中,或,金属带线为基材的表面电镀的金属层,或,金属带线为基材的表面镶嵌的金属层,基材为塑料或陶瓷。该金属带线具体可以是一种微带线。
可选的,该电路板也可以不使用基材,仅包括金属带线。
滤波支节110包括第一接口111和第一滤波线112。第一接口111设置于腔体120的开口处,第一接口111与主馈线133电连接,第一接口111与第一滤波线112电连接。第一滤波线112设置于腔体120外侧。需要说明的是,第一接口111既可以是实体接口;也可以是第一滤波线112与主馈线133电连接部分与腔体120开口处的重合部分,即第一接口111也可以是第一滤波线112(或主馈线133)的一部分,此处不作限定。第一滤波线112呈开路状(即相对于与第一接口111连接的一端不连接任何电路)。
第一滤波线112可以通过多种方式与第一接口111连接,例如:第一滤波线112通过焊接方式与第一接口111电连接,焊接方式具体包括锡焊;第一滤波线112通过螺钉旋接方式与第一接口电连接,示例性的,第一滤波线112与第一接口111电连接的一端为螺钉结构,第一接口111与第一滤波线112电连接的一端为螺母结构;第一滤波线112还可以通过耦合方式与第一接口111电连接,即第一滤波线112与第一接口111之间不直接接触,保持一定间距,以形成电耦合结构。第一滤波线112具有导电能力,具体可以是同轴线缆或金属带线。
滤波支节110用于滤除主馈线133中传输的部分电磁波。用户可通过调节第一滤波线112的长度,以实现调节所滤除电磁波的波长范围。例如:用户可以通过截断部分第一滤波线112,以缩短第一滤波线112的长度。或,在原有第一滤波线112的基础上,在第一滤波线112相对于与第一接口111连接的一端焊接上导线,该导线与第一滤波线112电连接,焊接上的该导线与原第一滤波线112共同组成新的第一滤波线112。该导线既可以与第一滤波线112的材质一致,例如,第一滤波线112为同轴线缆时,该导线为同轴线缆;该导线也可以与第一滤波线112的材质不同,例如,第一滤波线112为同轴线缆时,该导线为金属带线。当第一接口111为实体接口时,用户还可以通过更换不同长度的第一滤波线112,该第一滤波线112与第一接口111连接,以实现调节所滤除电磁波的波长范围。
可选的,滤波支节110中部分滤波线可以设置与腔体120内,该滤波线称为第二滤波线113,第一接口111通过第二滤波线113与主馈线133电连接。第一滤波线112和第二滤波线113的长度之和在十六分之一至四分之三的波长范围内,波长是指被滤波支节110所 滤掉的电磁波的波长。第一滤波线112和第二滤波线113的长度之和,具体指的是第一滤波线112处于开路的一端,到第二滤波线113与主馈线133连接处的路径长度之和。第二滤波线113具有导电能力,具体可以是同轴线缆或金属带线。
示例性的,该滤波器100初始状态时,滤波支节110的总长度(即第一滤波线112和第二滤波线113的长度之和)为70毫米。当实际使用时,用户需要该滤波器100适用于850兆赫(mega hertz,MHz)的滤波场景。通过计算得知,在850MHz的滤波场景中,所需要的滤波支节110的总长度为60毫米。由于第二滤波线113长度为30毫米,第一滤波线112的长度为40毫米。因此,用户可以通过截短位于腔体120外的第一滤波线112的长度,调节滤波支节110的总长度至60毫米。使得该滤波器100可以成功适用于850MHz的滤波场景中。此外,用户还可以通过矢量网络分析仪(vector network analyzer)监测该滤波器100所滤除的电磁波的波形,并调节第一滤波线112的长度。通过调节第一滤波线112的长度,以实现调整滤波器所滤除电磁波的波长范围。需要说明的是,上述滤波支节110与所滤除电磁波的波长仅做示例性说明,此处不作限定。
本申请实施例中,介绍了一种滤波器,该滤波器可以应用于多种无源器件中,例如移相器或功率分配器等。该滤波器包括腔体和滤波支节,滤波支节包括第一接口和第一滤波线,第一接口设置于腔体的开口处,第一滤波线位于腔体外侧,第一滤波线与第一接口电连接,第一接口与主馈线电连接。第一滤波线具体可以是同轴线缆或金属带线,以较低的成本实现滤波功能。以第一滤波线为同轴线缆为例:同轴线缆的材质便于用户调节长度,例如当用户需要增加第一滤波线长度时,用户可以通过锡焊等方式在第一滤波线的末端焊接其它的同轴线缆,以增加第一滤波线的长度。用户也可以通过钳子剪短该第一滤波线,以实现缩短第一滤波线的长度。第一滤波线设置于腔体外侧,因此用户可以在腔体外侧调节第一滤波线的长度,以实现调整滤波器所滤除电磁波的波长范围。提升用户的使用便利性。
接下来,基于前述实施例描述的滤波器100的基础上,介绍本申请实施例提出的移相器200。请参阅图2,图2为本申请实施例提出的一种移相器示意图。
移相器200包括滤波器100和移相单元,移相单元中包括移动电路板,移动电路板201包括滑动介质、驱动该滑动介质的电机(图中未示出)以及控制该电机的相关导线芯片(图中未示出)。该移动电路板与滤波器100中的电路板之间耦合电连接。移相单元通过移动电路板与电路板之间相对位置的变化,实现信号的移相。需要说明的是,图2所示的移相器200仅是一种可选的实现方案,本申请提出的滤波器还可以应用于如物理移相等多种不同的移相器中,此处不作限定。
移相器200还包括一个输入端131、两个输出端132,输入端131通过主馈线133与输出端132电连接。信号从输入端131输入至主馈线133后,通过T型结134后,一分为二分别传输至不同的输出端132。移相器200还包括两个滤波支节,每个滤波支节中包括一个第一滤波线112和第一接口111,第一滤波线112通过第一接口与主馈线133电连接。
移动电路板201平行设置在电路板130的两侧(也可以是一侧),移动电路板201与电路板130之间耦合电连接。
本申请实施例中,移相器中集成滤波器,由于滤波支节中第一滤波线设置于腔体外侧,因此用户可以在腔体外侧调节第一滤波线的长度,以实现调整滤波器所滤除电磁波的波长范围。提升用户的使用便利性。由于滤波支节中体积较大的一部分(第一滤波线)设置于移相器的腔体外,相较于现有技术中的移相器,可节约大量移相器腔体内的空间,提升移相器的电磁性能。同时,也可以在更小的移相器体积下,满足移相器的性能要求。
基于图1-图2对应的实施例的基础上,下面结合图3a和图3b介绍本申请提出的移相器。图3a为本申请实施例提出的移相器的一种外观示意图,图3b为本申请实施例提出的移相器的一种剖面示意图。
如图3a与图3b所示,移相器200的腔体120上设置有两个开口,分别为第一开口301和第二开口302。该第一开口301与第二开口302中各自设置一个第一接口111,该第一接口111与第一滤波线112电连接。腔体120内部设置有第一卡扣310、第二卡扣320和第三卡扣330。腔体120相对的两端分别设置第一端盖303和第二端盖304。
电路板130上设置有第一通孔311、第二通孔321和第三通孔331。第一通孔311对第一卡扣310进行限位,第二通孔321对第二卡扣320进行限位,第三通孔331对第三卡扣330进行限位。电路板130通过上述通孔和卡扣的配合,固定在腔体120内部。
电路板130中,与腔体120对应的两端,分别设置第一卡槽305和第二卡槽306,第一卡槽305对第一端盖303进行限位,第二卡槽306对第二端盖304进行限位;电路板130通过第一卡槽305和第一端盖303的配合,第二卡槽306和第二端盖304的配合,固定在腔体120内部。
移相器200中还包括固定件340,固定件340与电路板130垂直;在相对于电路板130垂直方向上,固定件340的两端与腔体连接,固定件340用于对电路板130在相对于电路板130垂直方向上进行限位。
为了便于理解,该卡扣(如第一卡扣310)与该固定件340的局部示意图,请参阅图4,图4为本申请实施例提出的移相器的一种局部结构示意图;该固定件340与电路板130的相对位置,请参阅图5,图5为本申请实施例提出的移相器的一种局部结构示意图。
本申请实施例中,移相器中集成滤波器,由于滤波支节中第一滤波线设置于腔体外侧,因此用户可以在腔体外侧调节第一滤波线的长度,以实现调整滤波器所滤除电磁波的波长范围。提升用户的使用便利性。由于滤波支节中体积较大的一部分(第一滤波线)设置于移相器的腔体外,相较于现有技术中的移相器,可节约大量移相器腔体内的空间,提升移相器的电磁性能。同时,也可以在更小的移相器体积下,满足移相器的性能要求。通过通孔与卡扣的配合、卡槽与端盖的配合以及固定件,使得电路板可稳定地固定于腔体内部,保证移相器结构的稳定性。
本申请还提出了一种天线,该天线包括天线单元以及如上述图2-图5对应的实施例中描述的移相器,该天线单元,用于辐射电磁波束。移相器用于调节天线单元辐射的电磁波束的角度。具体的,移相器的输出端通过输出电缆连接至天线单元。通过移相器的工作,可以给天线单元馈电要求的信号电流强度和相位,从而改变阵列天线辐射方向图的方向。
本申请还提出了一种多频天线网络系统,该多频天线网络系统包括上述任一项的移相 器。
本申请提出的滤波器、移相器、天线和/或多频天线网络系统,还可以应用于基站(base station,BS)设备,也可称为基站,是一种部署在无线接入网用以提供无线通信功能的装置。例如在2G网络中提供基站功能的设备包括基地无线收发站(base transceiver station,BTS)和基站控制器(base station controller,BSC),3G网络中提供基站功能的设备包括节点B(NodeB)和无线网络控制器(radio network controller,RNC),在4G网络中提供基站功能的设备包括演进的节点B(evolved nodeb,eNB),在无线局域网(wireless local area networks,WLAN)中,提供基站功能的设备为接入点(access point,AP)。在5G通信系统中,提供基站功能的设备包括eNB、新无线节点B(new radio nodeb,gNB),集中单元(centralized unit,CU),分布式单元(distributed unit)和新无线控制器等。
可选的,该基站设备的硬件结构,如图6所示,基站设备60包括:基带单元61、射频单元62和天馈系统63;其中,射频单元62分别与基带单元61以及天馈系统63相连。示例性的,基带单元61可以为射频拉远单元(remote radio unit,RRU)和/或室内基带处理单元(Building Base band Unit,BBU)。射频单元62包括至少一条信号收发通道,每条信号收发通道中处理一条射频信号流(stream)。信号收发通道上包括数字上变频装置(digital up converter,DUC)、波峰因子消减装置(crest factor reduction,CFR)、数字模拟转换器(digital to analog converter,DAC)以及功率放大器(power amplifier,PA)等,该信号收发通道上还可以包括其他的实体功能模块,例如功率放大器之后还可以设置本申请提出的滤波器等等。天馈系统63,也叫作天馈线系统(antenna feeder system)指天线与馈线系统,其包括:至少一个天馈单元,天馈单元包括移相器以及天线,信号收发通道的输入端连接基带单元61,信号收发通道的输出端连接至少一个天馈单元,其中信号收发通道的输出端通过移相器连接天线。移相器的相位控制信号由射频单元62提供,移相器的相位控制信号控制移相器的移相状态,从而控制对应的天线的口面电磁波的相位分布,实现天线波束的切换。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
以上对本申请所提供的滤波器、移相器以及相关装置进行了详细介绍,本文中应用了具体个例对本申请的具体实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申 请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (14)

  1. 一种滤波器,其特征在于,所述滤波器包括:腔体、电路板和滤波支节;
    所述电路板位于所述腔体内部;
    所述电路板上设有功分电路,所述功分电路包括输入端、主馈线和输出端,所述输入端和所述主馈线电连接,所述输出端与所述主馈线电连接,所述主馈线用于将所述输入端输入的信号传输至所述输出端;
    所述滤波支节包括第一接口和第一滤波线,所述第一接口设置于所述腔体的开口处,所述第一滤波线位于所述腔体外侧,所述第一滤波线与所述第一接口电连接,所述第一接口与所述主馈线电连接。
  2. 根据权利要求1所述的滤波器,其特征在于,所述第一滤波线通过焊接方式与所述第一接口电连接,或,
    所述第一滤波线通过螺钉旋接方式与所述第一接口电连接,或,
    所述第一滤波线通过耦合方式与所述第一接口电连接。
  3. 根据权利要求2所述的滤波器,其特征在于,所述第一滤波线为同轴线缆或金属带线。
  4. 根据权利要求1-3中任一项所述的滤波器,其特征在于,所述滤波支节还包括第二滤波线,所述第二滤波线位于所述腔体内,所述第二滤波线设置于所述电路板上;
    所述第一接口通过所述第二滤波线与所述主馈线连接。
  5. 根据权利要求4所述的滤波器,其特征在于,所述第一滤波线和所述第二滤波线的长度之和在十六分之一至四分之三的波长范围内,所述波长是指被所述滤波支节所滤除的电磁波的波长。
  6. 根据权利要求1-5中任一项所述的滤波器,其特征在于,所述电路板包括金属带线,其中,所述金属带线裸露于空气中,或,所述金属带线为基材的表面电镀的金属层,或,所述金属带线为所述基材的表面镶嵌的金属层,所述基材为塑料或陶瓷。
  7. 根据权利要求6所述的滤波器,其特征在于,所述腔体内部设置至少一个卡扣;
    所述电路板上设置至少一个通孔,所述通孔对所述卡扣进行限位;
    所述电路板通过所述通孔和所述卡扣的配合,固定在所述腔体内部。
  8. 根据权利要求7所述的滤波器,其特征在于,所述腔体相对的两端分别设置第一端盖和第二端盖;
    所述电路板与所述腔体对应的两端,分别设置第一卡槽与第二卡槽,所述第一卡槽对所述第一端盖进行限位,所述第二卡槽对所述第二端盖进行限位;
    所述电路板通过所述第一卡槽和所述第一端盖的配合,所述第二卡槽和所述第二端盖的配合,固定在所述腔体内部。
  9. 根据权利要求8所述的滤波器,其特征在于,所述滤波器还包括固定件;
    所述固定件与所述电路板垂直;
    在相对于所述电路板垂直方向上,所述固定件的两端与所述腔体连接,所述固定件用于对所述电路板在相对于所述电路板垂直方向上进行限位。
  10. 一种移相器,其特征在于,包括如权利要求1-9任一项所述的滤波器,所述移相器还包括移相单元;
    所述移相单元位于所述腔体内部,所述移相单元能够相对所述电路板移动。
  11. 根据权利要求10所述的移相器,其特征在于,所述移相单元包括移动电路板,所述移动电路板平行设置在所述电路板一侧,所述移动电路板与所述电路板之间耦合电连接。
  12. 一种天线,其特征在于,包括:
    天线单元,用于辐射电磁波束,以及与所述天线单元连接的如权利要求10-11所述的移相器;
    所述移相器用于调节所述天线单元辐射的电磁波束的角度。
  13. 一种多频天线网络系统,其特征在于,包括如权利要求12所述的天线。
  14. 一种基站设备,其特征在于,包括如权利要求12所述的天线。
PCT/CN2020/138866 2019-12-24 2020-12-24 一种滤波器、移相器以及相关装置 WO2021129713A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20907997.9A EP4071924A4 (en) 2019-12-24 2020-12-24 FILTER, PHASE SHIFTER AND RELATED DEVICE
US17/848,137 US20220359965A1 (en) 2019-12-24 2022-06-23 Filter, phase shifter, and related apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911351077.2A CN113113741B (zh) 2019-12-24 2019-12-24 一种滤波器、移相器以及相关装置
CN201911351077.2 2019-12-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/848,137 Continuation US20220359965A1 (en) 2019-12-24 2022-06-23 Filter, phase shifter, and related apparatus

Publications (1)

Publication Number Publication Date
WO2021129713A1 true WO2021129713A1 (zh) 2021-07-01

Family

ID=76575701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138866 WO2021129713A1 (zh) 2019-12-24 2020-12-24 一种滤波器、移相器以及相关装置

Country Status (4)

Country Link
US (1) US20220359965A1 (zh)
EP (1) EP4071924A4 (zh)
CN (2) CN113113741B (zh)
WO (1) WO2021129713A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016205995A1 (zh) * 2015-06-23 2016-12-29 华为技术有限公司 移相器和天线
CN206211031U (zh) * 2016-11-25 2017-05-31 京信通信技术(广州)有限公司 相位平衡单元及功分器电路相位平衡装置
CN108682939A (zh) * 2018-04-19 2018-10-19 深圳三星通信技术研究有限公司 一种滤波天线
WO2019071847A1 (zh) * 2017-10-09 2019-04-18 华为技术有限公司 天线装置及终端
CN209487674U (zh) * 2018-12-13 2019-10-11 江苏捷士通射频系统有限公司 带滤波功能的移相器
CN209487715U (zh) * 2019-02-01 2019-10-11 广东通宇通讯股份有限公司 一种便于调节阻抗的天线滤波器一体化馈电网络结构

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102176525A (zh) * 2011-01-30 2011-09-07 广东通宇通讯股份有限公司 一种结构紧凑的滤波装置
KR101246934B1 (ko) * 2011-09-16 2013-03-25 주식회사 에이스테크놀로지 스트립 라인 구조의 페이즈 쉬프터
CN103311621A (zh) * 2012-03-15 2013-09-18 成都赛纳赛德科技有限公司 一种基于细线支节的带线高通滤波器
US20170005387A1 (en) * 2015-07-01 2017-01-05 Wha Yu Industrial Co., Ltd. Phase shifter with asymmetric dielectric unit
CN106921011B (zh) * 2015-12-28 2019-07-19 西安华为技术有限公司 一种移相器及天线
CN108598638B (zh) * 2018-04-13 2019-10-11 电子科技大学 基于介质集成悬置线的多工器结构
CN109088133B (zh) * 2018-07-18 2023-10-31 华南理工大学 射频器件
CN109638391B (zh) * 2018-11-09 2020-07-07 华南理工大学 介质移动式移相器及基站天线
CN209133655U (zh) * 2018-12-05 2019-07-19 摩比科技(深圳)有限公司 一种移相器及基站天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016205995A1 (zh) * 2015-06-23 2016-12-29 华为技术有限公司 移相器和天线
CN206211031U (zh) * 2016-11-25 2017-05-31 京信通信技术(广州)有限公司 相位平衡单元及功分器电路相位平衡装置
WO2019071847A1 (zh) * 2017-10-09 2019-04-18 华为技术有限公司 天线装置及终端
CN108682939A (zh) * 2018-04-19 2018-10-19 深圳三星通信技术研究有限公司 一种滤波天线
CN209487674U (zh) * 2018-12-13 2019-10-11 江苏捷士通射频系统有限公司 带滤波功能的移相器
CN209487715U (zh) * 2019-02-01 2019-10-11 广东通宇通讯股份有限公司 一种便于调节阻抗的天线滤波器一体化馈电网络结构

Also Published As

Publication number Publication date
US20220359965A1 (en) 2022-11-10
EP4071924A4 (en) 2023-01-11
CN113113741B (zh) 2022-06-10
CN113113741A (zh) 2021-07-13
CN115149233A (zh) 2022-10-04
EP4071924A1 (en) 2022-10-12

Similar Documents

Publication Publication Date Title
US9030363B2 (en) Method and apparatus for tilting beams in a mobile communications network
WO2019056905A1 (zh) 一种基站天线的馈电网络,基站天线及基站
CN104009277B (zh) 一种天线设备和天线阵列
WO2016112628A1 (zh) 一种多输入多输出天线系统
JP2011517218A (ja) 広帯域の高利得誘電体ノッチ・ラジエータ・アンテナ
CN206506025U (zh) 可重构的多输入多输出天线以及移动终端
US20160056982A1 (en) Phase Control Method, Array Antenna, and System
CN109037933B (zh) 双频三极化mimo天线及无线通信设备
WO2019223318A1 (zh) 室内基站及其pifa天线
Mozharovskiy et al. Beam-steerable integrated lens antenna with waveguide feeding system for 71–76/81–86 GHz point-to-point applications
CN106953168A (zh) 一种平面毫米波mimo天线
CN217086863U (zh) 一种全频段室内分布单极化定向壁挂天线
CN106684549B (zh) 一种紧凑型椭圆弯折环形双极化宽带基站天线
WO2021129713A1 (zh) 一种滤波器、移相器以及相关装置
KR101622201B1 (ko) 인빌딩 통합 중계기용 cpw 급전 광대역 패치 안테나
CN106532249B (zh) 一种紧凑的椭圆环形双极化基站天线
KR101769156B1 (ko) 450 MHz 접힌 다이폴 안테나
WO2022110203A1 (zh) 基站天线和基站
CN211455936U (zh) 多通道wifi信号收发装置
WO2023231761A1 (zh) 天线、通信设备和通信系统
CN206564330U (zh) 一种紧凑型椭圆弯折环形双极化宽带基站天线
CN211789461U (zh) 多通道高增益wifi信号收发装置
CN219371393U (zh) 一种双极化全向天线
CN211789486U (zh) 多通道新型wifi信号收发装置
CN212257669U (zh) 多通道加强型wifi信号收发装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907997

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020907997

Country of ref document: EP

Effective date: 20220705

NENP Non-entry into the national phase

Ref country code: DE