WO2016205972A1 - 一种聚噁二唑芳醚共双酚芴质子交换膜及其制备方法 - Google Patents

一种聚噁二唑芳醚共双酚芴质子交换膜及其制备方法 Download PDF

Info

Publication number
WO2016205972A1
WO2016205972A1 PCT/CN2015/000447 CN2015000447W WO2016205972A1 WO 2016205972 A1 WO2016205972 A1 WO 2016205972A1 CN 2015000447 W CN2015000447 W CN 2015000447W WO 2016205972 A1 WO2016205972 A1 WO 2016205972A1
Authority
WO
WIPO (PCT)
Prior art keywords
exchange membrane
proton exchange
aryl ether
bisphenol
polyoxadiazole
Prior art date
Application number
PCT/CN2015/000447
Other languages
English (en)
French (fr)
Inventor
谢晓峰
费哲君
王树博
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to PCT/CN2015/000447 priority Critical patent/WO2016205972A1/zh
Publication of WO2016205972A1 publication Critical patent/WO2016205972A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/08Polyhydrazides; Polytriazoles; Polyaminotriazoles; Polyoxadiazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/06Polyhydrazides; Polytriazoles; Polyamino-triazoles; Polyoxadiazoles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention belongs to the technical field of fuel cell materials, and particularly relates to a polyoxadiazole aryl ether co-bisphenol quinone proton exchange membrane and a preparation method thereof.
  • Fuel cells have attracted much attention due to their cleanliness and high energy conversion rate. According to factors such as fuel, electrolyte and application, fuel cells can be classified into proton exchange membrane fuel cells, high temperature fuel cells, solid oxide fuel cells, and the like. Direct methanol fuel cell is a kind of proton exchange membrane fuel cell, which has become a research hotspot because of its high theoretical energy density.
  • the membrane was modified to prepare a /PVFP-BI composite film, wherein PVFP is a copolymer of vinylidene fluoride and hexafluoropropylene, and PBI is polybenzimidazole.
  • the composite membrane significantly impaired the penetration of methanol.
  • the mass fraction of PVFP and PBI was 9.5% and 0.5%, the maximum energy density of the methanol fuel cell reached 103 mW ⁇ cm -2 .
  • Molla et al. Molla S, Compan V. Polymer blends of SPEEK for DMFC application at intermediate temperatures [J]. Int. J.
  • the ruthenium-containing film has high ionic conductivity and stability, and the fluorine-containing functional group can enhance the mechanical stability of the film. And chemical stability. Therefore, the present invention selects bisphenolphthalein and decafluorobenzoxazole as comonomers to examine its effect on the properties of the ion exchange membrane.
  • the oxadiazole group acts as a strong electron-withdrawing functional group and contributes to the structure of the polymer, which activates the ortho position on the benzene ring.
  • the CF bond of the alignment wherein the CF bond of the alignment has higher activity.
  • the present invention controls milder reaction conditions such that the phenolic oxy group on the bisphenolphthalein attacks the para-C-F bond to achieve linear base polymer synthesis.
  • the reaction conditions were then enhanced and sodium 4-hydroxysulfonate was added to attack the C-F bond in the ortho position to effect the introduction of functional groups.
  • the invention provides a polyoxadiazole aryl ether co-bisphenol quinone proton exchange membrane and a preparation method thereof, and the specific technical scheme is as follows:
  • a polyoxadiazole aryl ether co-bisphenol quinone proton exchange membrane wherein the polyoxadiazole aryl ether co-bisphenol hydrazine proton exchange membrane is obtained by copolymerization of a monomer to obtain a base polymer, and then reacted with a functionalizing agent. Obtaining; the polyoxadiazole aryl ether co-bisphenol quinone proton exchange membrane has an ionic conductivity greater than 130 mS ⁇ cm -1 at 70 ° C, and the methanol permeability is less than 117 membrane methanol permeability is half.
  • the monomer is decafluorobenzoxazole and bisphenolphthalein;
  • the functionalizing agent is a phenolsulfonate and a derivative thereof, or a isethionate and a derivative thereof.
  • phenolsulfonate and its derivative are sodium 4-hydroxysulfonate.
  • the decafluorobenzene oxadiazole is used to improve the mechanical stability and chemical stability of the film;
  • the bisphenol quinone is used to increase the ionic conductivity and mechanical stability of the film.
  • the catalyst is potassium fluoride or potassium carbonate.
  • the solvent is N,N-dimethylformamide.
  • the proton exchange membrane prepared by the invention has high ionic conductivity, the conductivity is 58 mS ⁇ cm -1 at 30 ° C, and the conductivity reaches 137 mS at 70 ° C. ⁇ cm -1 .
  • the proton exchange membrane has strong mechanical properties and low methanol permeability, and its methanol permeability is less than 117 membrane methanol permeability is half.
  • the film to be tested is assembled direct methanol fuel cells, the results show that, at 90 °C, the maximum power of the battery is 75mW ⁇ cm -2, and at 100 deg.] C, the maximum power of 85mW ⁇ cm -2.
  • the preparation method adopted by the invention has simple experimental steps and convenient and easy to obtain raw materials.
  • FIG. 1 is a schematic view showing the preparation process of a polyoxadiazole aryl ether co-bisphenol quinone proton exchange membrane.
  • Example 2 is a graph showing the proton conductivity of a polyoxadiazole aryl ether co-bisphenol quinone proton exchange membrane in Example 1 of the present invention.
  • Example 3 is a graph showing the power density of a methanol fuel cell when a single cell test is performed after the proton exchange membrane obtained in Example 1 of the present invention is assembled to a methanol fuel cell.
  • the present invention provides a polyoxadiazole aryl ether co-bisphenol quinone proton exchange membrane and a preparation method thereof, and the present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
  • the FFPEO-S was dissolved in an appropriate amount of DMF, and the solution was poured onto a smooth glass plate, and the solvent was dried in an oven at 70 ° C to obtain a proton exchange membrane.
  • the preparation process is shown in Figure 1.
  • the functionalized polymer FFEFO-S was dissolved in DMF in advance to prepare a casting solution having a mass fraction of 5%. Weigh 0.07 g of PtRu/C (40:40%, Johnson Mathhey) in 2 mL of DMF. After stirring for 3 hours, 0.247 g of casting solution was added, ultrasonically stirred for 2 hours, and the mixed solution was sprayed on carbon paper with a spray gun. The cathode material was dried in an oven for 12 hours.
  • the water absorption of the polyoxadiazole aryl ether co-bisphenol hydrazine proton exchange membrane is greater than that tested by swelling, water absorption and ion exchange capacity (IEC). 117 film, but the swelling rate is small, IEC is also greater than A film of 117 indicates that a sufficient amount of functional groups have been introduced into the polymer.
  • the proton conductivity of the polyoxadiazole aryl ether co-bisphenol quinone proton exchange membrane increases with increasing temperature.
  • the conductivity is 58 mS ⁇ cm -1
  • the conductivity is also increased to 137 mS ⁇ cm -1 .
  • the methanol permeability coefficient of the polyoxadiazole aryl ether co-bisphenol hydrazine proton exchange membrane is less than 100% by the methanol permeability test. 117 membrane methanol permeability coefficient of half. The smaller methanol permeability coefficient is a guarantee of the methanol fuel cell power density.
  • the polyoxadiazole aryl ether co-bisphenol quinone proton exchange membrane was assembled into a direct methanol fuel cell for single cell testing.
  • the power density of the battery increases with the increase of temperature. When the temperature is 90 °C, the power density reaches nearly 75 mW ⁇ cm -2 , and when the temperature is 100 ° C, the power density reaches nearly 85 mW ⁇ cm -2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Fuel Cell (AREA)
  • Polyethers (AREA)

Abstract

本发明公开了一种聚噁二唑芳醚共双酚芴质子交换膜及其制备方法。所述质子交换膜通过一步法制备得到,具体为:将十氟苯噁二唑和双酚芴共聚得到基础聚合物,再与功能化试剂混合反应,成膜,得到所述质子交换膜。其中与功能化试剂的反应主要是通过芳香亲核取代实现的。本发明得到的质子交换膜具有较高的离子传导率,在30℃时,其传导率为58mS·cm-1,而在70℃时,其传导率达到了137mS·cm-1。此外,所述质子交换膜具有较强的机械性能以及较低的甲醇渗透率,其中甲醇渗透率小于Nafion® 117膜甲醇渗透率的一半。将膜组装于直接甲醇燃料电池中进行测试,结果显示,在90℃时,电池的最大功率为75mW·cm-2,而在100℃时,其最大功率达到85mW·cm-2

Description

一种聚噁二唑芳醚共双酚芴质子交换膜及其制备方法 技术领域
本发明属于燃料电池材料技术领域,具体涉及一种聚噁二唑芳醚共双酚芴质子交换膜及其制备方法。
背景技术
燃料电池因其洁净且能量转换率高的优点而备受人们关注。按照燃料、电解质及应用等因素,可将燃料电池分为质子交换膜燃料电池、高温燃料电池、固体氧化物燃料电池等。直接甲醇燃料电池为质子交换膜燃料电池的一种,因其理论能量密度较高而成为研究的热点。
然而,直接甲醇燃料电池面临的一个问题便是其渗透,过量的甲醇渗透会导致电极极化、氧气损耗及其他问题,最终导致能量输出偏低。目前,
Figure PCTCN2015000447-appb-000001
膜是燃料电池中最常用的离子交换膜,具有较好的机械稳定性、化学稳定性和较高的离子传导率,但是较高的甲醇渗透率及高昂的成本阻碍了其进一步应用发展。因此,研究者们一直致力于进行相关的研究,以期制备出一种新型的离子交换膜。Wang等(Wang S,Lin H.Poly(vinylidene fluoride-co-hexafluoropropylene)/polybenzimidazole blend nanofiber supported Nafion membranes for direct methanol fuel cells[J].J.Power Sources,2014,257:254-263.)对
Figure PCTCN2015000447-appb-000002
膜进行了改性,制备出一种
Figure PCTCN2015000447-appb-000003
/PVFP-BI复合膜,其中PVFP是偏氟乙烯和六氟丙烯的共聚物,PBI是聚苯并咪唑。复合膜明显削弱了甲醇的渗透情况,当PVFP和PBI的质量分数为9.5%和0.5%时,甲醇燃料电池的最大能量密度达到103mW·cm-2。Molla等(Molla S,Compan V.Polymer blends of SPEEK for DMFC application at intermediate temperatures[J].Int.J.Hydrogen Energy,2014,39:5121-5136.)制备出一种SPEEK/PVB(聚乙烯醇缩丁醛)共混膜,将甲醇渗透率减小了10倍。Seong等(Seong Y,Won J,Kim S,Nam K,Kim S,Kim D.Synthesis and characterization of proton exchange membranes based on sulfonated poly(fluorenyl ether nitrile oxynaphthalate)for direct methanol fuel cells[J].Int.J.Hydrogen Energy,2011,36:8492-8498.)制备了一种磺化聚芴醚腈萘结构的质子交换膜,该膜显示出与
Figure PCTCN2015000447-appb-000004
膜相近的质子传导率,但甲醇渗透系数却明显降低,当将其组装在直接甲醇燃料电池上时,电池功率密度较高。Wang等(Wang S,Li W,Xie X,lv Y.Synthesis and characterization of a fluorinated cross-linked anion exchange membrane[J].Int.J.Hydrogen Energy,2013,38:11045-11052.)报道了一种偏氟聚芳醚噁二唑结构的阴离子交换膜,该膜显示出较高的传导率和机械性能。
发明内容
含芴基的膜具有较高的离子传导率和稳定性,含氟的官能基团能够增强膜的机械稳定性 和化学稳定性。因此,本发明选择了将双酚芴和十氟苯噁二唑作为共聚单体,考察其对离子交换膜性质的影响。在十氟苯噁二唑中,除了含氟的苯环外,噁二唑基团作为一个强吸电子性的官能基团,对聚合物的结构也有所贡献,它活化了苯环上邻位和对位的C-F键,其中对位的C-F键具有更高的活性。因此本发明控制较为温和的反应条件,让双酚芴上的酚氧基进攻对位的C-F键,以实现线性基础聚合物的合成。之后强化反应条件,加入4-羟基磺酸钠来进攻邻位的C-F键,以实现官能基团的引入。
本发明提供了一种聚噁二唑芳醚共双酚芴质子交换膜及其制备方法,具体技术方案如下:
一种聚噁二唑芳醚共双酚芴质子交换膜,所述聚噁二唑芳醚共双酚芴质子交换膜是通过单体共聚得到基础聚合物,然后再与功能化试剂进行反应所得到的;所述聚噁二唑芳醚共双酚芴质子交换膜在70℃时的离子传导率大于130mS·cm-1,甲醇渗透率小于
Figure PCTCN2015000447-appb-000005
117膜甲醇渗透率的一半。
进一步地,所述单体为十氟苯噁二唑和双酚芴;所述功能化试剂为苯酚磺酸盐及其衍生物,或羟基乙磺酸盐及其衍生物。
进一步地,所述苯酚磺酸盐及其衍生物为4-羟基磺酸钠。
进一步地,所述十氟苯噁二唑,用以提高膜的机械稳定性和化学稳定性;所述双酚芴,用以提高膜的离子传导率和机械稳定性。
一种聚噁二唑芳醚共双酚芴质子交换膜的制备方法,具体步骤如下:
(1)基础聚合物的制备:将十氟苯噁二唑和双酚芴混合溶于溶剂中,加入催化剂,然后在室温下反应6-8小时;将反应溶液倾倒于甲醇与水的混合溶液中进行析出,洗涤、干燥,得到基础聚合物;其中所述十氟苯噁二唑、双酚芴和催化剂的摩尔比为十氟苯噁二唑∶双酚芴∶催化剂=1∶1∶(1.5~4);
(2)聚噁二唑芳醚共双酚芴质子交换膜的制备:将所述基础聚合物和4-羟基磺酸钠溶于溶剂中,再加入催化剂,在60℃下反应2天;将反应溶液倾倒于乙酸乙酯中进行析出,洗涤,在1mol·L-1的盐酸中浸泡,洗涤干燥;将所得反应物溶于溶剂中,倾倒于玻璃板上,并置于70℃烘箱中让溶剂挥发,即得聚噁二唑芳醚共双酚芴质子交换膜;其中所述4-羟基磺酸钠、基础聚合物中重复单元和催化剂的摩尔比为4-羟基磺酸钠∶基础聚合物中重复单元∶催化剂=2∶1∶6。
进一步地,所述催化剂为氟化钾或碳酸钾。
进一步地,所述溶剂为N,N-二甲基甲酰胺。
本发明的有益效果为:本发明制备得到的质子交换膜具有较高的离子传导率,在30℃时, 其传导率为58mS·cm-1,而在70℃时,其传导率达到了137mS·cm-1。此外,所述质子交换膜具有较强的机械性能以及较低的甲醇渗透率,其甲醇渗透率小于
Figure PCTCN2015000447-appb-000006
117膜甲醇渗透率的一半。将膜组装于直接甲醇燃料电池中进行测试,结果显示,在90℃时,电池的最大功率为75mW·cm-2,而在100℃时,其最大功率达到85mW·cm-2。本发明所采用的制备方法,实验步骤简单,原料方便易得。
附图说明
图1为聚噁二唑芳醚共双酚芴质子交换膜的制备流程示意图。
图2为本发明实施例1中聚噁二唑芳醚共双酚芴质子交换膜的质子传导率曲线图。
图3为本发明实施例1所得质子交换膜组装于甲醇燃料电池后,进行单电池测试时,甲醇燃料电池的功率密度曲线图。
具体实施方式
本发明提供了一种聚噁二唑芳醚共双酚芴质子交换膜及其制备方法,下面结合附图和具体实施方式对本发明做进一步说明。
实施例1
质子交换膜的制备
将20.226g五氟苯甲酸和7.455g硫酸肼加入到四口圆底烧瓶中,后加入至少160g多聚磷酸作为溶剂和催化剂。将烧瓶与冷凝管、氮气通气管、机械搅拌桨和温度计相连。向圆底烧瓶中通入0.5小时氮气后开始加热并开启搅拌,让溶液在150℃保温1小时,之后继续升温至200℃并保温2小时,直至没有气泡冒出。将反应溶液倒入至去离子水中,反复洗涤和纯化后,干燥得到单体十氟苯噁二唑(FPOx)。
将1.2081g十氟苯噁二唑与1.0512g双酚芴投入到圆底烧瓶中,加入25mL DMF作为溶剂。当单体完全溶解后,再加入1.24g过量的碳酸钾作为催化剂。将溶液在室温下搅拌7小时,再将其倒入甲醇与水的混合溶液中进行析出,反复洗涤后干燥,得到基础聚合物FPFEO。
在圆底烧瓶中加入1.5g FPFEO和1g 4-羟基磺酸钠后,加入25mL DMF进行溶解,加入过量碳酸钾作为催化剂,让溶液在60℃下搅拌反应2天时间。将溶液倒入乙酸乙酯中进行析出,反复洗涤后,将产物置于1mol·L-1盐酸中进行质子化,最后洗涤干燥,得到官能化聚合物FPFEO-S。
将FPFEO-S溶于适量DMF中,并将溶液倾倒于光滑的玻璃板上,在70℃的烘箱中将溶剂烘干,得到质子交换膜。其制备流程如图1所示。
膜电极的制备
事先将官能化聚合物FPFEO-S溶于DMF中,制备质量分数为5%的铸膜液。称量0.07g PtRu/C(40:40%,Johnson Mathhey)置于2mL DMF中,搅拌3小时后,加入0.247g铸膜液,超声搅拌2小时,用喷枪将混合溶液喷在碳纸上,在烘箱中干燥12小时即得正极材料。
同样地,称量0.07g Pt/C(60%,Johnson Mathhey)并置于2mL DMF中,后加入0.35g铸膜液,搅拌4小时后,将溶液均匀喷在碳纸上,干燥后即得负极材料。
通过19F谱图对聚噁二唑芳醚共双酚芴质子交换膜的结构进行了确证。
十氟苯噁二唑(FPOx)的谱图测试结果与文献值相符,证明了FPOx的成功合成。在基础聚合物FPFEO的谱图中,对位的单峰消失了,证明所有对位的F原子都被双酚芴成功取代;邻位F原子的化学位移有明显变化,但其积分值与间位F原子所对应单峰的积分值仍为1∶1,说明在聚合步骤,邻位和间位F原子没有参与反应。在FPFEO-S的谱图中,单峰全部裂成了多峰,这是因为Ox邻位的四个氟原子被成功取代的机会均等,因此每个重复单位内部的结构都有所不同,聚合物结构呈现不对称性。此外,邻位F原子所对应峰面积远小于间位F原子对应的峰面积,再结合Zhao等(Zhao Z,Ma Z,Zhang A,Song H.A unique stepped multifunctionality of perfluorinated aryl compound and its versatile use in synthesizing grafted polymers with controlled structures and topologies[J].J.Polym.Sci.,Part A:Polym.Chem.,2011,49:2423-2433.)对于FPOx上不同位置F原子活性的判断,可知Ox邻位的F原子被成功取代,证明制备FPFEO-S的流程切实可行。
通过溶胀性、吸水性和离子交换容量(IEC)的测试,聚噁二唑芳醚共双酚芴质子交换膜的吸水率大于
Figure PCTCN2015000447-appb-000007
117膜,但溶胀率较小,IEC也大于
Figure PCTCN2015000447-appb-000008
117膜,说明聚合物上已经引入足量的官能基团。
通过质子传导性能的测试,聚噁二唑芳醚共双酚芴质子交换膜的质子传导率随温度的上升而升高。当温度在30℃时,其传导率为58mS·cm-1,而当温度上升到70℃时,其传导率也随之升高到137mS·cm-1
通过机械性能的测试,聚噁二唑芳醚共双酚芴质子交换膜的拉伸强度与
Figure PCTCN2015000447-appb-000009
117膜近似,而杨氏模量远大于
Figure PCTCN2015000447-appb-000010
117膜。良好的机械性能得益于基础聚合物的结构,也为其实际应用打下了良好的基础。
通过甲醇渗透性能的测试,聚噁二唑芳醚共双酚芴质子交换膜的甲醇渗透系数小于
Figure PCTCN2015000447-appb-000011
117膜甲醇渗透系数的一半。较小的甲醇渗透系数是甲醇燃料电池功率密度的保证。
将聚噁二唑芳醚共双酚芴质子交换膜组装于直接甲醇燃料电池中,进行单电池测试。电池的功率密度随着温度的上升而增大,当温度为90℃时,其功率密度达到近75mW·cm-2, 而当温度为100℃时,其功率密度达到近85mW·cm-2
以上所述,仅为本发明的具体可操作实施方式,本发明的保护范围以权利要求书为准。

Claims (7)

  1. 一种聚噁二唑芳醚共双酚芴质子交换膜,其特征在于,所述聚噁二唑芳醚共双酚芴质子交换膜是通过单体共聚得到基础聚合物,然后再与功能化试剂进行反应所得到的;所述聚噁二唑芳醚共双酚芴质子交换膜在70℃时的离子传导率大于130mS·cm-1,甲醇渗透率小于
    Figure PCTCN2015000447-appb-100001
    117膜甲醇渗透率的一半。
  2. 根据权利要求1所述的一种聚噁二唑芳醚共双酚芴质子交换膜,其特征在于,所述单体为十氟苯噁二唑和双酚芴;所述功能化试剂为苯酚磺酸盐及其衍生物,或羟基乙磺酸盐及其衍生物。
  3. 根据权利要求2所述的一种聚噁二唑芳醚共双酚芴质子交换膜,其特征在于,所述苯酚磺酸盐及其衍生物为4-羟基磺酸钠。
  4. 根据权利要求1所述的一种聚噁二唑芳醚共双酚芴质子交换膜,其特征在于,所述十氟苯噁二唑,用以提高膜的机械稳定性和化学稳定性;所述双酚芴,用以提高膜的离子传导率和机械稳定性。
  5. 根据权利要求1-4任意一项权利要求所述的一种聚噁二唑芳醚共双酚芴质子交换膜的制备方法,其特征在于,具体步骤如下:
    (1)基础聚合物的制备:将十氟苯噁二唑和双酚芴混合溶于溶剂中,加入催化剂,然后在室温下反应6-8小时;将反应溶液倾倒于甲醇与水的混合溶液中进行析出,洗涤、干燥,得到基础聚合物;其中所述十氟苯噁二唑、双酚芴和催化剂的摩尔比为十氟苯噁二唑∶双酚芴∶催化剂=1∶1∶(1.5~4);
    (2)聚噁二唑芳醚共双酚芴质子交换膜的制备:将所述基础聚合物和4-羟基磺酸钠溶于溶剂中,再加入催化剂,在60℃下反应2天;将反应溶液倾倒于乙酸乙酯中进行析出,洗涤,在1mol·L-1的盐酸中浸泡,洗涤干燥;将所得反应物溶于溶剂中,倾倒于玻璃板上,并置于70℃烘箱中让溶剂挥发,即得聚噁二唑芳醚共双酚芴质子交换膜;其中所述4-羟基磺酸钠、基础聚合物中重复单元和催化剂的摩尔比为4-羟基磺酸钠∶基础聚合物中重复单元∶催化剂=2∶1∶6。
  6. 根据权利要求5所述的一种聚噁二唑芳醚共双酚芴质子交换膜的制备方法,其特征在于,所述催化剂为氟化钾或碳酸钾。
  7. 根据权利要求5所述的一种聚噁二唑芳醚共双酚芴质子交换膜的制备方法,其特征在于,所述溶剂为N,N-二甲基甲酰胺。
PCT/CN2015/000447 2015-06-24 2015-06-24 一种聚噁二唑芳醚共双酚芴质子交换膜及其制备方法 WO2016205972A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/000447 WO2016205972A1 (zh) 2015-06-24 2015-06-24 一种聚噁二唑芳醚共双酚芴质子交换膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/000447 WO2016205972A1 (zh) 2015-06-24 2015-06-24 一种聚噁二唑芳醚共双酚芴质子交换膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2016205972A1 true WO2016205972A1 (zh) 2016-12-29

Family

ID=57584386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000447 WO2016205972A1 (zh) 2015-06-24 2015-06-24 一种聚噁二唑芳醚共双酚芴质子交换膜及其制备方法

Country Status (1)

Country Link
WO (1) WO2016205972A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113488688A (zh) * 2020-05-09 2021-10-08 深圳盛德新能源科技有限公司 一种用于燃料电池的交联结构侧链磺化聚合物质子交换膜的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011151775A1 (en) * 2010-05-31 2011-12-08 Basf Se Mechanically stabilized polyazoles
CN103242552A (zh) * 2013-05-23 2013-08-14 北京大学 一种季铵化两性离子交换膜的制备方法
JP2014500567A (ja) * 2010-05-31 2014-01-09 ビーエーエスエフ ソシエタス・ヨーロピア 機械的に安定なポリアゾール
CN104250383A (zh) * 2014-08-27 2014-12-31 清华大学 两性离子交换膜及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011151775A1 (en) * 2010-05-31 2011-12-08 Basf Se Mechanically stabilized polyazoles
JP2014500567A (ja) * 2010-05-31 2014-01-09 ビーエーエスエフ ソシエタス・ヨーロピア 機械的に安定なポリアゾール
CN103242552A (zh) * 2013-05-23 2013-08-14 北京大学 一种季铵化两性离子交换膜的制备方法
CN104250383A (zh) * 2014-08-27 2014-12-31 清华大学 两性离子交换膜及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113488688A (zh) * 2020-05-09 2021-10-08 深圳盛德新能源科技有限公司 一种用于燃料电池的交联结构侧链磺化聚合物质子交换膜的制备方法
CN113488688B (zh) * 2020-05-09 2022-07-08 深圳盛德新能源科技有限公司 一种用于燃料电池的交联结构侧链磺化聚合物质子交换膜的制备方法

Similar Documents

Publication Publication Date Title
JP3724064B2 (ja) 燃料電池用高分子電解質及び燃料電池
JP4424129B2 (ja) ブロック共重合体及びその用途
US7906608B2 (en) Nitrogenated aromatic compound, process for production of the same, polymer, and proton conductive membrane
JP5740030B2 (ja) ヒドロキシ基を含有するスルホン化ポリエーテルスルホンの共重合体及びその製造方法、燃料電池用高分子電解質膜及びそれを含む膜電極接合体
US7771857B2 (en) Proton-conducting polymer membrane
JP5222687B2 (ja) 高分子鎖の内部に架橋構造を有するスルホン化したポリ(アリレンエーテル)共重合体、高分子鎖の内部および末端に架橋構造を有するスルホン化したポリ(アリレンエーテル)共重合体およびそれを用いた高分子電解質膜
CN102585204A (zh) 一种侧链磺酸型聚芳醚、制备方法及用于制备质子交换膜
JP2005248143A (ja) 高分子化合物およびその製造方法
US20100168346A1 (en) Sulfonated Poly (Arylene Ether) Containing Crosslinkable Moiety at End Group, Method of Manufacturing the Same, and Polymer Electrolyte Membrane Using the Sulfonated Poly (Arylene Ether) and the Method
JP2007515513A (ja) プロトン交換膜用の親水性および疎水性セグメントを含有する多ブロック共重合体
CA2650417A1 (en) Aromatic compound and sulfonated polyarylene polymer
TWI304821B (en) Block copolymer and use thereof
US20180198149A1 (en) Polyphenylsulfone-based proton conducting polymer electrolyte, proton conducting solid polymer electrolyte membrane, electrode catalyst layer for solid polymer fuel cells, method for producing electrode catalyst layer for solid polymer fuel cells, and fuel cell
JP2005133099A (ja) ポリ(2,5−ベンズイミダゾール)の製造方法,ポリ(2,5−ベンズイミダゾール),ポリ(2,5−ベンズイミダゾール)高分子電解質膜の製造方法,ポリ(2,5−ベンズイミダゾール)高分子電解質膜,およびポリ(2,5−ベンズイミダゾール)高分子電解質膜を含む燃料電池
KR20120134048A (ko) 폴리아릴렌계 중합체, 이의 제조방법 및 이를 이용한 연료전지용 고분자 전해질 막
WO2016029735A1 (zh) 两性离子交换膜及其制备方法
KR20140017213A (ko) 카르도 구조를 갖는 황산화 고분자 전해질막 및 이를 포함하는 연료전지
JP4289058B2 (ja) ブロック共重合体及びその用途
WO2016205972A1 (zh) 一种聚噁二唑芳醚共双酚芴质子交换膜及其制备方法
JP2005314452A (ja) ポリアリーレン系高分子及びその用途
KR101648839B1 (ko) 2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 이온전도성 고분자로부터 제조된 전해질 막 및 이를 구비한 연료전지용 막전극 접합체
JP2007106986A (ja) ブロック共重合体及びその製造方法、高分子電解質、触媒組成物、高分子電解質膜、膜−電極接合体及び燃料電池
US20100167165A1 (en) Copolymer, polymer electrolyte, and use thereof
CN113150248B (zh) 一种无醚键芳基磺化非氟离聚物及其制备方法和应用
JP5109366B2 (ja) 芳香族化合物、ポリアリーレン系共重合体およびその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15895872

Country of ref document: EP

Kind code of ref document: A1