WO2016204469A1 - 메탈로센 담지 촉매의 제조 방법 - Google Patents

메탈로센 담지 촉매의 제조 방법 Download PDF

Info

Publication number
WO2016204469A1
WO2016204469A1 PCT/KR2016/006264 KR2016006264W WO2016204469A1 WO 2016204469 A1 WO2016204469 A1 WO 2016204469A1 KR 2016006264 W KR2016006264 W KR 2016006264W WO 2016204469 A1 WO2016204469 A1 WO 2016204469A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
molecular weight
alkyl
metallocene
Prior art date
Application number
PCT/KR2016/006264
Other languages
English (en)
French (fr)
Inventor
유영석
조경진
권혁주
최이영
이기수
송은경
김우리
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160029835A external-priority patent/KR101850985B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201680021196.XA priority Critical patent/CN107531828B/zh
Priority to EP16811882.6A priority patent/EP3255066B1/en
Priority to US15/566,098 priority patent/US10501563B2/en
Priority to JP2017546872A priority patent/JP6450467B2/ja
Publication of WO2016204469A1 publication Critical patent/WO2016204469A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring

Definitions

  • the present invention relates to a method for preparing a metallocene supported catalyst which can more effectively prepare polyolefins which can be preferably used for blow molding, as the polymer elasticity increases and the swell (swel l) has a molecular weight distribution.
  • metallocene catalysts using Group 4 transition metals are easier to control the molecular weight and molecular weight distribution of polyolefins than conventional Ziegler-Natta catalysts, and can control the comonomer distribution of polymers, resulting in improved mechanical properties and processability. And so on.
  • polyolefins prepared using metallocene catalysts have a problem of poor workability due to narrow molecular weight distribution.
  • Tebbe reagent a complex of titanocene (Tebno reagent) and alkylaluminum (Alkylaluminium) called Tebbe reagent and has played a role in increasing the molecular weight.
  • Tebbe reagent The main characteristic of the Tebbe reagent is that the Tebbe reagent is activated by a base to form titaniumalkyl idene, which is related to the double bond. , Metathesis, etc.), but the role of Tebe reagents in ethylene polymerization without the addition of lewis bases is not known.
  • the Petasis group succeeded in ring-closing metathesis by simply adding heat to Tebe reagents. Accordingly, it is presumed that Tebbe reagent forms titaniumalkyl idene by polymerization temperature when it participates in polymerization, resulting in polymerization using alkylidene-specific reactions.
  • the technology and development can be more effectively produced the polyolefin which can satisfy mechanical properties and processability at the same time and can be preferably used for blow molding. This is constantly required.
  • the present invention provides a method for preparing a metallocene-supported catalyst which can more effectively prepare a polyolefin which can be preferably used for blow molding, as the polymer elasticity increases and the molecular weight distribution of the swell is improved. will be.
  • the present invention is prepared in the presence of a metallocene supported catalyst prepared from the production method, it can satisfy mechanical properties and processability at the same time to provide a polyolefin which can be preferably used for blow molding. '
  • the present invention is to prepare a molecular weight regulator composition by mixing a cyclopentadienyl metal compound of Formula 1 and an organoaluminum compound of Formula 2 for 50 to 108 hours at room temperature; And supporting at least one metallocene compound represented by one of the following Chemical Formulas 3 to 6 and the molecular weight modifier composition on a carrier; and a supported metallocene catalyst.
  • Cp 1 and Cp 2 are each independently a ligand including a cyclopentadienyl group, an indenyl group, or a fluorenyl group;
  • R 1 and R 2 are each independently a substituent of Cp 1 and Cp 2 , hydrogen, alkyl of 1 to 20 carbon atoms, alkenyl of 1 to 20 carbon atoms, alkylaryl of 7 to 20 carbon atoms, arylalkyl of 7 to 20 carbon atoms, Aryl having 6 to 20 carbon atoms, heteroalkyl having 1 to 20 carbon atoms, heteroalkenyl having 2 to 20 carbon atoms, heteroalkylaryl having 6 to 20 carbon atoms, heteroarylaryl having 6 to 20 carbon atoms or heteroaryl having 5 to 20 carbon atoms, ;
  • M 1 is a Group 4 transition metal element;
  • X is halogen,
  • R 3 , R 4 and R 5 in Formula 2 are each independently an alkyl group having 4 to 20 carbon atoms or halogen, at least one of R 3 , R 4 and R 5 is an alkyl group having 4 to 20 carbon atoms,
  • M 1 is a Group 4 transition metal
  • Cp 5 and Cp 6 are the same as or different from each other, and each independently Cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl, and fluorenyl radicals, and any one selected from the group consisting of hydrocarbons having 1 to 20 carbon atoms, ;
  • R a and R b are the same as or different from each other, and each independently hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 Alkenyl to C20, alkylaryl of C7 to C40, arylalkyl of C7 to C40, arylalkenyl of C8 to C40, or alkynyl of C2 to C10;
  • Z 1 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene , A substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy;
  • n 1 or 0;
  • M 2 is a Group 4 transition metal
  • Cp 7 and Cp 8 are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4, 5, 6, 7-tetrahydro-1-indenyl and fluorenyl radicals They may be substituted with a hydrocarbon having 1 to 20 carbon atoms;
  • R c and R d are the same as or different from each other, and each independently hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 C20 to C40 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C8 to C40 arylalkenyl, or C2 to C10 alkynyl;
  • Z 2 is a halogen atom, C1 ' to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkyl Liden, substituted or unsubstituted Amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy;
  • B 1 is one or more of a carbon, germanium, silicon, phosphorus or nitrogen atom containing radical which crosslinks the Cp3 ⁇ 4 c ring with the Cp 4 R d ring or crosslinks one Cp 4 R d ring with M 2 or Is a combination of;
  • n 1 or 0;
  • M 3 is a Group 4 transition metal
  • Cp 9 is any one selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl and fluorenyl radicals, which may be substituted with hydrocarbons having 1 to 20 carbon atoms Can be;
  • R e is hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 to C20 alkenyl, C7 to C40 alkylaryl C7-C40 arylalkyl, C8-C40 arylalkenyl, or C2-C10 alkynyl;
  • Z 3 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene Or a substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy;
  • B 2 ' is one or more or a combination of carbon, germanium, silicon, phosphorus or nitrogen atom containing radicals which crosslink the Cp 5 R e ring and J;
  • J is any one selected from the group consisting of NR f , 0, PR f and S, wherein R f is C1 to C20 alkyl, aryl, substituted alkyl or substituted aryl, [Formula 6]
  • A is hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, C7 to C20 alkylaryl group, C7 to C20 arylalkyl group, C1 to C20 alkoxy group, C2 to C20 C20 alkoxyalkyl group, C3 to C20 heterocycloalkyl group, or C5 to C20 heteroaryl group;
  • D is — 0—, -S-, -N (R)-or -SKRKR ')-, wherein R and R' are the same as or different from each other, and each independently hydrogen, halogen, an alkyl group of C1 to C20, C2 To C20 alkenyl group, or C6 to C20 aryl group;
  • L is a C1 to C10 straight or branched chain alkylene group
  • B is carbon, silicon or germanium
  • Q is hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, C7 to C20 alkylaryl group, or C7 to C20 arylalkyl group;
  • M is a Group 4 transition metal
  • X 1 and X 2 are the same as or different from each other, and each independently halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, nitro group, amido group, C1 to C20 alkylsilyl group , A C1 to C20 alkoxy group, or a C1 to C20 sulfonate group;
  • C 1 and C 2 are the same as or different from each other, and each independently
  • R1 to R17 and R1 'to R9' are the same as or different from each other, and each independently hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C1 to C20 alkyl Silyl group, C1 to C20 silylalkyl group, C1 to C20 alkoxysilyl group, C1 to C20 alkoxy group, C6 to C20 aryl group, C7 to C20 alkylaryl group, or C7 to C20 arylalkyl group, Two or more adjacent to each other of R10 to R17 may be connected to each other to form a substituted or unsubstituted aliphatic or aromatic ring.
  • the present invention also provides a method for producing a polyolefin, which comprises polymerizing an olefin monomer in the presence of a metallocene supported catalyst.
  • the present invention also provides a polyolefin produced according to the above production method.
  • a method for preparing a metallocene supported catalyst, a metallocene supported catalyst prepared therefrom, a method for preparing polyolefin using the same, and a polyolefin prepared therefrom will be described.
  • a metallocene supported catalyst is prepared by supporting a specific molecular weight modifier composition with a metallocene compound on a carrier.
  • the method for preparing the metallocene supported catalyst may include mixing a cyclopentadienyl metal compound of Formula 1 and an organoaluminum compound of Formula 2 to stir at room temperature for 50 to 108 hours to prepare a molecular weight modifier composition; And supporting at least one metallocene compound represented by one of Chemical Formulas 3 to 6 and the molecular weight modifier composition on a carrier.
  • M 1 is a Group 4 transition metal
  • Cp 5 and Cp 6 are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, intenyl, 4,5,6,7-tetrahydro-1-indenyl, and fluorenyl radicals One, they may be substituted with a hydrocarbon of 1 to 20 carbon atoms;
  • R a and R b are the same as or different from each other, and each independently hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 Alkenyl to C20, alkylaryl of C7 to C40, arylalkyl of C7 to C40, arylalkenyl of C8 to C40, or alkynyl of C2 to C10;
  • Z 1 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene Or a substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy;
  • n 1 or 0;
  • M 2 is a Group 4 transition metal
  • Cp 7 and Cp 8 are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7—tetrahydro-1-indenyl and fluorenyl radicals They may be substituted with a hydrocarbon having 1 to 20 carbon atoms;
  • R c and R d are the same as or different from each other, and each independently hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 C20 to C40 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C8 to C40 arylalkenyl, or C2 to C10 alkynyl;
  • Z 2 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene Or a substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy;
  • B 1 is one or more of a carbon, germanium, silicon, phosphorus or nitrogen atom containing radical which crosslinks the Cp3 ⁇ 4 c ring with the Cp 4 R d ring or crosslinks one Cp 4 R d ring with M 2 or Is a combination of;
  • n 1 or 0;
  • M 3 is a Group 4 transition metal
  • Cp 9 is any one selected from the group consisting of cyclopentadienyl, indenyl, 4, 5, 6, 7-tetrahydro-1-indenyl and fluorenyl radicals, which are substituted with hydrocarbons having 1 to 20 carbon atoms Can be;
  • R e is hydrogen, alkyl of C1 to C20, alkoxy of C1 to C10, alkoxyalkyl of C2 to C20, aryl of C6 to C20, aryloxy of C6 to C10, C2 to C20 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C8 to C40 arylalkenyl, or C2 to C10 alkynyl;
  • Z 3 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene Or a substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy;
  • B 2 is at least one or a combination of carbon, germanium, silicon, phosphorus or nitrogen atom containing radicals which crosslink the Cp3 ⁇ 4 e ring and J;
  • J is any one selected from the group consisting of NR f , 0, PR f and S, wherein R f is C1 to C20 alkyl, aryl, substituted alkyl or substituted aryl,
  • A is hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group
  • C6 to C20 aryl group C7 to C20 alkylaryl group, C7 to C20 arylalkyl group, C1 to C20 alkoxy group, C2 to C20 alkoxyalkyl group, C3 to C20 heterocycloalkyl group, or C5 to C20 hetero Aryl group;
  • D is -0-, -S-, -N (R)-or -Si (R) (R ') _, wherein R and R' are the same as or different from each other, and are each independently hydrogen, halogen, C1 to An alkyl group of C20, an alkenyl group of C2 to C20, or an aryl group of C6 to C20;
  • L is a C1 to C10 straight or branched chain alkylene group
  • B is carbon, silicon or germanium
  • Q is hydrogen, halogen, C1 to C20 alkyl group, C2 to C20
  • M is a Group 4 transition metal
  • X 1 and X 2 are the same as or different from each other, and each independently halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, nitro group, amido group, C1 to C20 alkylsilyl group , A C1 to C20 alkoxy group, or a C1 to C20 sulfonate group;
  • C 1 and C 2 are the same as or different from each other, and are each independently represented by one of the following Formulas 7a, 7b, or 7c, except that C 1 and C 2 are both Formula 7c;
  • R1 to R17 and R1 'to R9' are the same as or different from each other, and each independently hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C1 to C20 Alkylsilyl group, C1 to C20 and silylalkyl group, C1 to C20 alkoxysilyl group, C1 to C20 alkoxy group, C6 to C20 aryl group, C7 to C20 alkylaryl group, or C7 to C20 arylalkyl group, two or more adjacent to each other of R10 to R17 are connected to each other to form a substituted or unsubstituted aliphatic or aromatic ring.
  • Cp 1 and Cp 2 are each independently a ligand including a cyclopentadienyl group, indenyl group, or fluorenyl group;
  • R 1 and R 2 are each independently a substituent of Cp 1 and Cp 2 , hydrogen, alkyl of 1 to 20 carbon atoms, alkenyl of 1 to 20 carbon atoms, alkylaryl of 7 to 20 carbon atoms, arylalkyl of 7 to 20 carbon atoms, Aryl having 6 to 20 carbon atoms, heteroalkyl having 1 to 20 carbon atoms, heteroalkenyl having 2 to 20 carbon atoms, heteroalkylaryl having 6 to 20 carbon atoms, heteroarylaryl having 6 to 20 carbon atoms or heteroaryl having 5 to 20 carbon atoms, ;
  • M 1 is a Group 4 transition metal element;
  • X is halogen.
  • R 1 and R 2 may be each independently selected from the group consisting of hydrogen, methyl, ethyl, butyl, and t-butoxy nucleus.
  • M 1 is a Group 4 transition metal element, preferably may be selected from the group consisting of titanium, zirconium and hafnium.
  • X is a halogen, preferably may be selected from the group consisting of F, (: 1, Br and I.
  • R 3 , R 4 and R 5 in Formula 2 are each independently an alkyl group having 4 to 20 carbon atoms or a halogen, and at least one of R 3 , R 4 and R 5 is an alkyl group having 4 to 20 carbon atoms.
  • R 3 , R 4 and R 5 may each independently be an isobutyl group.
  • the metal alkyl idenes made from metals have different partial charges between the metals and the alkyl groups, so that the alkyl idenes with partial negative charges are combined with the met l locenes of the forward transition metals with l ewi s acidic c than aluminum alkyls. It is expected to increase the molecular weight while having intermediates in the form and to enable the production of polyolefins having large molecular weights and wider distributions.
  • a metallocene supported catalyst may be prepared by reacting a specific molecular weight modifier composition with a metallocene compound as described above as described in Scheme 1 and supported on a carrier.
  • Helero extends the meaning of molecular weight control action by the hydrogen reactivity change of the existing Tebbe type reagent, the precursor and titanocene (Ti tanocene)
  • This technique is used to control the molecular weight by directing the reaction and controlling the reaction of hydrogen by using a small amount of Ti tanocene. This results in instability, ie, the use of a minimum molecular weight modifier to enable efficient molecular weight control.
  • the molecular weight regulator composition is 0.1 to 1.0 equivalent (eq.), Preferably 0.1 to 1 to the cyclopentadienyl metal compound of Formula 1 and the organoaluminum compound of Formula 2 Mixing in 0.5 equivalents, it can be produced by stirring at room temperature, for example 50 to 108 hours, preferably 62 to 90 hours at 22.5 to 25 I.
  • the molecular weight modifier composition is a mixture of the cyclopentadienyl metal compound of Formula 1 and the organoaluminum compound of Formula 2, or a reaction product thereof, for example, formed by reacting a compound of Formula 1 and Formula 2 Organometallic complexes.
  • the molecular weight regulator including a specific substituent in the cyclopentadienyl group of the formula (1) and the organic functional group of the formula (2) shows a significantly improved solubility compared to the conventional, uniformly catalyst with excellent precursor properties (homogenei ty) with the catalyst precursor
  • the composition can be formed to exhibit excellent polymerization performance.
  • the metallocene supported catalyst of the present invention has a molecular weight distribution in which the swell (swel l) is improved by increasing the molecular weight and polymer elasticity, it can exhibit excellent mechanical properties and processability, blow The polyolefin which can be preferably used for molding etc. can be manufactured more effectively.
  • the molecular weight modifier generated by reacting the cyclopentadienyl metal compound of Formula 1 and the organoaluminum compound of Formula 2 may be represented by the following Formula 8, Formula 9, Formula 10, or Formula 11.
  • Organo lithium and organo magnesium have a mechanism that acts as a strong base that has nothing to do with ti tanocene carbine.
  • the present invention focuses on the chemical reaction that Ti tanocene combined with organoaluminum can be formed by thermal decomposition of Ti tanium carbene, which can result from the carbene, and is most important in the formation of polymers.
  • the molecular weight modifier composition includes the compounds of Formulas 1 and 2 in the form of a mixture that does not react with each other, or a reaction product of the compounds of Formulas 1 and 2, for example, a metal of these compounds.
  • the elements may be included in the form of organometallic complexes in which X and / or R 1 , R 2 and R 3 are bonded to each other. In this case, together with the organometallic complex, some of the unreacted compounds of Formula 1 and / or Formula 2 may further be included.
  • the molecular weight modifier assists the activity of the metallocene catalyst, allowing polymerization to proceed with great activity even in the presence of a relatively small amount of metallocene catalyst, Increased elasticity allows the production of polyolefins having a molecular weight distribution with better swels.
  • cyclopentadienyl metal compound of Formula 3 examples include biscyclopentadienyl titanium dichloride, biscyclopentadienyl zirconium dichloride, biscyclopentadienyl hafnium dichloride, and bis indenyl.
  • Titanium dichloride or bisflorenyltitanium dichloride bis (2-ethylcyclopenta-2, 4-diene-1-yl) titanium dichloride, bis (2-butylcyclopenta-2, 4-diene-1-yl Titanium dichloride, bis (2- (6-t-subsidiary-nuclear) cyclopenta-2, 3-diene-1-yl) titanium dichloride, bis (2-ethylcyclopenta-2, 4-diene- 1-day) zirconium Dichloride, bis (2-ethylcyclopenta-2, 4-dieen-1-yl) hafnium dichloride, and the like.
  • organoaluminum compound of Formula 4 examples include triisobutyl aluminum, trinuclear aluminum, trioctyl aluminum, diisobutyl aluminum chloride, dinuxyl aluminum chloride, isobutyl aluminum dichloride, and the like.
  • the compound of Formula 1 and the compound of Formula 2 are each a metal element (M) contained in the formula (3), aluminum (A1) contained in the formula (4) as a molar ratio, about 1: 0.01 to 1: 100 Or in a molar ratio of about 1: 0.5 to 1: 10.
  • the molecular weight modifier may be used in an amount of about 0.01 to 10 parts by weight, or about 0.01 to 1 part by weight based on 100 parts by weight of the catalyst precursor.
  • the molecular weight modifier is about 1 to 85 mol, preferably about 3 to 70 mol, more preferably about 5 to 55 mol%, black 10 to 50 mol% based on the total amount of the catalyst precursor Can be used.
  • the effect and effect of the addition of the molecular weight modifier are optimized, and the polymer melt index is low, the molecular weight distribution is wide, the molecular weight is large, and the stress cracking resistance is improved more than the density or polymer melt index. Polyolefin can be obtained.
  • the present invention when an excessive amount of organoaluminum is present in the reaction vessel, it reacts with the metallocene catalyst as in general alkylaluminum, causing deactivation while causing deactivation. Accordingly, the present invention has the advantage of not inhibiting the activity of the existing metallocene precursor itself by reacting the catalytic amount of the molecular weight regulator with the maximum efficiency compared to the precursor. In addition, the present invention can effectively control the molecular weight of a single or common supported catalyst while using a small amount of the molecular weight regulator corresponding to the amount of catalyst of the metallocene precursor supported when preparing the metallocene supported catalyst.
  • the present invention has the advantage of finely adjusting the polymer structure according to the amount of the molecular weight regulator while maintaining the polymerization conditions without activity degradation.
  • the metallocene supported catalyst is to be used in the form of a supported catalyst in which the metallocene compound and the molecular weight modifier composition is supported on a carrier.
  • the metallocene catalyst may be used together by common hybridization of two different subphase metallocene compounds, or may include only one metallocene compound.
  • the metallocene compound represented by Chemical Formula 3 may be, for example, a compound represented by one of the following structural formulas, but is not limited thereto.
  • the compound represented by Chemical Formula 4 may be, for example, a compound represented by the following structural formula, but is limited thereto.
  • the compound represented by Formula 5 may be, for example, a compound represented by the following structural formula, but is not limited thereto.
  • Group 4 transition metal (M) may include titanium, zirconium, hafnium, and the like, but is not limited thereto.
  • R1 to R17 and R1 to R9 of Chemical Formulas 7a, 7b, and 7c are each independently hydrogen, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, pentyl group, nucleosil group, heptyl group, octyl group, phenyl group, halogen group, trimethylsilyl group, triethylsilyl group, tripropylsilyl group, tributylsilyl group, triisopropylsilyl group, It is more preferable that it is a trimethylsilyl methyl group, a meso group, or an ethoxy group, but it is not limited only to this.
  • L is more preferably a C4 to C8 linear or branched alkylene group, but is not limited thereto.
  • the alkylene group may be unsubstituted or substituted with an alkyl group of C1 to C20, an alkenyl group of C2 to C20, or an aryl group of C6 to C20.
  • A is hydrogen, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, methoxymethyl group, tert-subspecific methyl group, 1-specific It is preferably an ethyl group, 1-methyl-1-methoxyethyl group, tetrahydropyranyl group, or tetrahydrofuranyl group, but is not limited thereto.
  • B is preferably silicon, but is not limited thereto.
  • the metallocene compound of Formula 6 may be a non-covalent electron pair which forms a structure in which an indeno indol derivative and / or a fluorene derivative are crosslinked by a bridge, and may act as a Lewis base to the ligand structure.
  • the Lewis acid property of the carrier it has a high polymerization activity even when supported on the surface.
  • the activity is high, and due to the proper steric hindrance and the electronic effect of the ligand, the reaction is not only low but also maintains high activity even in the presence of hydrogen. .
  • the beta-hydrogen of the polymer chain in which the nitrogen atom of the intenoindole derivative is grown is stabilized by hydrogen bonding, thereby inhibiting the beta-hydrogen el itninat ion, thereby adding an ultra high molecular weight olefin polymer.
  • a specific example of the structure represented by Chemical Formula 7a may include a structure represented by one of the following structural formulas, but is not limited thereto.
  • Chemical Formula 7b may include a structure represented by one of the following structural formulas, but is not limited thereto.
  • Chemical Formula 7c may include a structure represented by one of the following structural formulas, but is not limited thereto.
  • metallocene compound represented by Chemical Formula 6 may include a compound represented by one of the following structural formulas, but only
  • the metallocene compound and the molecular weight modifier composition as described above are used in the form of a supported catalyst supported on a carrier.
  • the supporting step may be performed by mixing the carrier, the metallocene catalyst and the molecular weight modifier composition at a temperature of 30 to 100 ° C., preferably 35 to 90 t, or 40 to 80 ° C. at 1 hr to 12 hr, Preferably it can be carried out by stirring for 1 hr to 4 hr.
  • the metallocene supported catalyst may be in the form of a supported metallocene catalyst in which a metallocene compound and a promoter are supported on a carrier.
  • a metallocene compound and a promoter may be different from each other.
  • It may be a common supported metallocene catalyst comprising a.
  • the carrier may be silica, silica-alumina, silica-magnesia, or the like, and may be any carrier known to support other metallocene catalysts.
  • a carrier may be used in a dry state at a high temperature, the drying temperature may be, for example, about 180 to 800 ° C. If the drying temperature is too low, excess separation on the carrier may react with the promoter to degrade the performance. If the drying temperature is too high, the hydroxyl group content is too low on the surface of the carrier to reduce the reaction space with the promoter. can do.
  • the carrier may be one carrying an aluminum-containing first cocatalyst of the formula (12).
  • R 18 is each independently a halogen, a halogen substituted or unsubstituted hydrocarbyl group having 1 to 20 carbon atoms, n is an integer of 2 or more.
  • the molecular weight modifier composition may be supported immediately after the metallocene compound is supported on the carrier on which the first cocatalyst is supported.
  • the organo aluminum and precursors are first reacted with MA0 and then supported on silica.
  • Ti tani cene Ti tani cene
  • Tibec reagent Tibec reagent
  • the stability of the supported catalyst resulting from the heterogeneity of the MA0 solution according to the reactivity between the precursor and MA0, and the conventional Tebe reagent reaction are about 2 to 4 days in the present invention, for example, 3 Problems with reproducibility of catalyst properties can arise from shorter reaction times compared to days.
  • the present invention is a method in which the molecular weight regulator is added immediately after the metallocene compound catalyst precursor is added to silica loaded with a C 1 promoter such as MA0 to ensure uniformity of silica-MA0 itself,
  • the regulator can also sufficiently increase the molecular weight even with a catalytic amount compared to the precursor.
  • the present invention can prevent the occurrence of a problem of inhibiting the intrinsic activity of the precursor in a small amount of the molecular weight regulator.
  • the common supported metallocene catalyst it may further include a borate-based crab 2 co-catalyst of the formula (13):
  • T + is a + monovalent polyatomic ion
  • B is boron in the +3 oxidation state
  • Q is independently a hydride group, a dialkylamido group, a halide group, an alkoxide group, an aryl oxide group, Selected from the group consisting of hydrocarbyl groups, halocarbyl groups and halo-substituted hydrocarbyl groups, wherein Q has up to 20 carbons, but at less than one position Q is a halide group.
  • the first cocatalyst of Chemical Formula 12 may be an alkylaluminoxane compound having a repeating unit bonded in a linear, circular or reticulated form, and specific examples of the first cocatalyst include methylaluminoxane (MA0) and ethylalumina. Noxyl acid, isobutyl aluminoxane or butyl aluminoxane.
  • the C2 promoter of Formula 13 may be a borate-based compound in the form of a trisubstituted ammonium salt, or a dialkyl ammonium salt, a trisubstituted phosphonium salt.
  • Such a second cocatalyst include trimetalammonium tetraphenylborate, methyldioctadecylammonium tetraphenylborate, triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate, tri (n-butyl) ammonium tetraphenylborate , Methyltetracyclooctadecylammonium tetraphenylborate , ⁇ , ⁇ -dimethylanilinium tetraphenylborate , ⁇ , ⁇ -diethylanilinium tetraphenylborate , ⁇ dimethyl (2,4,6-trimethylanilinium) tetraphenyl Borate, trimethylammonium tetrakis (pentafluorophenyl) borate, methylditetradecylammonium tetrakis (
  • the carrier may be made of one metal.
  • the Rosene compound and the Crab 1 promoter are sequentially supported, the second metallocene compound and the Crab 2 promoter can be sequentially supported. In between these supporting steps, a washing step using a solvent may be further performed.
  • the production of a polyolefin comprising the step of polymerizing the olethene-based monomer in the presence of a metallocene-supported catalyst carrying a specific molecular weight modifier with a metallocene compound on the carrier A method is provided.
  • the polymerizing of the olefin monomer may be performed by mixing at least one metallocene compound represented by one of Chemical Formulas 3 to 6 with a cyclopentadienyl metal compound of Chemical Formula 1 and an organoaluminum compound of Chemical Formula 2 below.
  • a metallocene supported catalyst obtained by supporting together a molecular weight modifier composition obtained by stirring at 22.5 to 25 ° C. for 50 to 108 hours, preferably 62 to 90 hours.
  • a metallocene supported catalyst obtained by supporting together a molecular weight modifier composition obtained by stirring at 22.5 to 25 ° C. for 50 to 108 hours, preferably 62 to 90 hours.
  • a polyolefin may be prepared by polymerizing any olefin monomer.
  • the olefin monomer that can be used at this time include ethylene, propylene, 1-butene, 1-nuxene, 1-octene, 1-pentene, 4-methyl-1-pentene, 1-nucleene, 1-heptene, 1-decene , 1-Undecene, 1-dodecene, norbornene, ethylidenenorbornene, styrene, alpha -methylstyrene and 3- Chloromethyl styrene and the like.
  • polyethylene is produced using ethylene, or together with ethylene, propylene, 1-butene, 1-nuxene, 1-octene, 1-pentene, 4-methyl-1-pentene, 1
  • An ethylene-alpha olefin copolymer may be prepared by copolymerizing alpha olefins such as -nuxene, 1-heptene, 1-decene, 1-undecene or 1-dodecene.
  • the comonomer such as alpha olefin may be copolymerized by being used in an amount of about 30% by weight or less, or about 0 to 20% by weight, or about 0.01 to 15% by weight based on the total amount of the olefin monomer. have.
  • this amount of alpha olefins are copolymerized, the final polyolefins produced can exhibit excellent stress cracking resistance within a density range suitable for blow molding.
  • the density of the polymer may be decreased, leading to a decrease in flexural strength.
  • the polymerization method of the above-described embodiment may be carried out in a slurry phase in an aliphatic hydrocarbon solvent such as nucleic acid, butane or pentane, for example.
  • an aliphatic hydrocarbon solvent such as nucleic acid, butane or pentane, for example.
  • the metallocene catalyst including the molecular weight modifier exhibits excellent solubility in such a solvent, they can be stably supplied to the dissolution and reaction system so that the polymerization process can proceed effectively, and poly having a large molecular weight and a wider molecular weight distribution can be obtained. Lepin can be produced effectively.
  • the polymerization of the olefinic monomers may be performed by reacting at a temperature of about 25 to about 500 ° C. and about 1 to about 100 kgf / cm 2 for about 1 to about 24 hours. Specifically, the polymerization of the olefin monomer may be carried out at a temperature of about 25 to about 500 ° C, preferably about 25 to about 200 ° C, more preferably about 50 to about 100 ° C.
  • the reaction pressure may also be carried out at about 1 to about 100 kgf / cm 2 , preferably at about 1 to about 50 kgf / cm 2 , more preferably at about 5 to about 40 kgf / cm 2 .
  • the catalytic activity calculated from the ratio of the weight (g) of the polymer produced per unit weight content (g) of the catalyst used in the process for producing the polyolefin based on the unit time (h) is not less than 1.0 kg / gCat-hr or 1.0 to 15 0 kg / gCat ⁇ hr, preferably 10.0 kg / gCat ⁇ hr or more, and more preferably 8.0 kg / gCat ⁇ hr or more.
  • the present invention can effectively control the molecular weight of a single or common supported catalyst while using a small amount of the molecular weight regulator corresponding to the amount of catalyst of the metallocene precursor supported when preparing the metallocene supported catalyst.
  • Existing conventional techniques have been shown to simply increase the molecular weight, but the present invention has the advantage of finely adjusting the polymer structure according to the amount of the molecular weight regulator while maintaining the polymerization conditions without activity degradation.
  • a polyolefin prepared according to the production method of the above-described embodiment.
  • Such a polyolefin may be preferably used for blow molding, injection molding, etc., as it has a molecular weight distribution in which a large molecular weight and a polymer elasticity increase to improve swell.
  • the polyolefin according to the present invention may have a large molecular weight of about 100,000 to 2,000,000 or about 110,000 to 1,500,000, about 120,000 to 700,000, about 150,000 to 550,000, about 200,000 to 450,000 by the action of the above-described molecular weight modifier, etc.
  • the elasticity can be increased to have a molecular weight distribution that improves the swell.
  • the polyolefins may have a greater molecular weight of at least about 250,000, or at least about 280,000, at least about 300,000, at least about 330,000.
  • the melt index (Ml 21.6 kg) of the polyolefin prepared through the slurry polymerization process or the like is 15.0 g / 10 m in or less, or 0.01 to 15 g / 10 min, preferably 10 g / 10 min or less, and more preferably 1 g /. can be iOmin or less. Due to such a large molecular weight and high polymer elasticity increases the molecular weight distribution of the swell (swell), can exhibit excellent mechanical properties and processability at the same time.
  • Such polyolefin may be used for blow molding, and may be used for injection molding, film, pipe or beam cap, and the like.
  • a polyolefin which can be preferably used for blow molding or injection molding is more effectively produced.
  • a method for producing a metallocene supported catalyst is provided.
  • the melt index is low, the molecular weight distribution is wide, and the high notch creep test (FNCT) is higher than the density or melt index, so that it is suitable for blow molding or injection molding.
  • FNCT high notch creep test
  • Particularly suitable polyolefins can be produced very effectively.
  • FIG. 1 is a graph showing the molecular weight distribution of a polymer for a polymerization reaction using a metallocene supported catalyst prepared according to Examples 10-12 and Comparative Example 4 (Brown: Test Example 10, Red: Test Example 11, Purple: Test Example 12, Blue: Comparative Test Example 4).
  • Figure 2 is a graph showing the molecular weight distribution of the polymer for the polymerization reaction using the metallocene supported catalyst prepared according to Comparative Example 3, Example 8 (red: test example 8, green: Comparative Test Example 3).
  • Figure 3 is a graph showing the molecular weight distribution of the polymer for the polymerization reaction using the metallocene supported catalyst prepared according to Comparative Example 2, Example 5 (red: Test Example 5, Blue: Comparative Test Example 2).
  • the reaction product was dried in vacuo to remove all volatiles, followed by addition of nucleic acid (hexane) to the remaining oily liquid material, followed by filtration using a schlenk glass filter.
  • the filtered solution was dried in vacuo to remove the nucleic acid, which was then added again to induce precipitation at low temperature (-20 ° C.).
  • the precipitate obtained was filtered at low temperature to give a white solid [t-Bu-0 (CH 2 ) 6 -C 5 H 4 ] 2 ZrCl 2 compound in a yield of 92>.
  • the measured KEL and 13 C NMR data of [t-Bu_ 0 (C3 ⁇ 4) 6 -C 5 H 4 ] 2 ZrCl 2 obtained were as follows.
  • the reaction mixture was stirred for 12 hours while slowly bringing the temperature to room temperature.
  • Tetramethylcyclopentadiene 1.2 mole (150 g) and 2.4 L of THF were added to the reactor, and the reactor temperature was changed to -20 ° C.
  • 480 mL of n-BuLi was added to the reactor at a rate of 5, L / min using a feed pump.
  • n—BuLi was added, followed by stirring for 12 hours while slowly raising the temperature to room temperature.
  • an equivalent of methyl (6-t-butoxy nucleosil) dichlorosilane (326 g, 350 mL) was added quickly to the reactor. The reaction mixture was stirred for 12 hours while slowly warming to room temperature.
  • TiCl 3 (THF) 3 n-BuLi and the ligand dimethyl (tetramethyl CpH) t-butylaminosilane (dimethyl (tetramethylCpH) t-butylaminosi lane) in the dilithium salt of -78 ° C ligand synthesized in THF solution 10 ⁇ l ol) was added rapidly. The reaction solution was stirred for 12 hours while slowly releasing to room temperature at -78 ° C.
  • silica (SYL0P0L 948, manufactured by Grace Davison) was dehydrated under vacuum at a temperature of 400 ° C. for 15 hours.
  • the metallocene supported catalyst was prepared in the same manner as in Example 1, except that 160 mg (30 mol%) and 270 mg (50 mol%) of the molecular weight modifier were added. Prepared.
  • Example 4 Preparation of Metallocene Supported Catalyst
  • a metallocene supported catalyst was prepared in the same manner as in Example 1, except that 465 mg (0.1 ⁇ L / gSi) of the catalyst precursor prepared in Synthesis Example 2 was used. .
  • the metallocene supported catalyst was prepared in the same manner as in Example 4, except that the content of the molecular weight modifier was 160 mg (30 mol%) and 270 mg (50 mol%), respectively. Prepared. .
  • Example 7 Preparation of Metallocene Supported Catalyst
  • a metallocene supported catalyst was prepared in the same manner as in Example 1, except that 690 mg (0.1 ⁇ l ol / gSi0 2 ) of the catalyst precursor prepared in Synthesis Example 3 was used. It was. Examples 8 and 9: Preparation of Metallocene Supported Catalysts
  • a metallocene supported catalyst was prepared in the same manner as in Example 7, except that the content of the molecular weight modifier was 160 mg (30 mol) and 270 mg (50 mol%), respectively. It was.
  • Example 10 Preparation of Metallocene Supported Catalysts
  • silica (SYL0P0L 948, manufactured by Grace Davi son) was dehydrated under vacuum at a temperature of 400 ° C. for 15 hours.
  • a 10 wt% methylaluminoxane (MAO) / luene solution was added to 49.7 mL in a glass reactor, and silica (SYL0P0L 948, manufactured by Grace Davi son) was added at 40 ° C. Stirring while stirring at ° C. After lowering the temperature to 80! after dissolving 520 mg (0.075 ⁇ ol / g Si0 2 ) catalyst precursor prepared in Synthesis Example 3 in 20 mL of toluene, 53 mgdO mol3 ⁇ 4 the molecular weight regulator prepared in Synthesis Example 4 Were put together and immediately put into the reaction machine.
  • MAO methylaluminoxane
  • aninium borate N, N-dimethyl ani 1 Indium tetraki s (pentaf luorophenyl) borate, AB
  • 948 mg (l .2 ⁇ ol / gSi0 2 ) was pre-dissolved in 20 mL of toluene, added as a solution and stirred at 40 ° C for 2 hours.
  • the metallocene supported catalyst was prepared in the same manner as in Example 10, except that the content of the molecular weight modifier was 160 mg (30 mol%) and 270 mg (50 mol%), respectively. Prepared. Comparative Example 1: Preparation of Metallocene Supported Catalyst
  • silica (SYL0P0L 948, manufactured by Grace Davi son) was dehydrated under vacuum at a temperature of 400 ° C. for 15 hours.
  • 10 wt% of methylaluminoxane (MAO) / luene solution was added to 49.7 mL, and 9.1 g of silica (SYL0P0L 948, manufactured by Grace Davison) was added at 40 ° C., and the reactor temperature was increased to 80 ° C. Stirring while raising. After lowering the temperature to 80 ° C.
  • MAO methylaluminoxane
  • silica (SYL0P0L 948, manufactured by Grace Davison) was dehydrated under vacuum at a temperature of 400 ° C. for 15 hours.
  • Example 1 Using Parr reaction, 400 mL of nucleic acid was added to an isolated system filled with argon, and then 1 g of trimethylaluminum was dried to dry the reactor and discarded. After 400 mL of nucleic acid was filled in a reaction vessel, 0.5 g of triisobutylaluminum was added thereto.
  • the supported catalyst prepared in Example 1 was improved to 10 mg in an argon-filled glove box and placed in a reaction vessel, followed by argon venting, followed by polymerization for 1 hour by making ethylene 30 bar pressure at 78 ° C. Polymerization Test Examples 2-12
  • Test Example 1 Precursor 1/10 * 10.4 128,000 . 2.2 slurry synthesis
  • Test Example 5 30 * 2.3 660,000 2.3 slurry polymerization catalyst precursor 2 / soluble MWE
  • Test Example 8 Catalyst Precursor 3/30 * 2.0 972,000 3.1 Slurry Consolidation
  • the molecular weight distribution graph of the polymer for the polymerization reaction using the metallocene supported catalyst prepared according to Examples 10-12 and Comparative Example 4 is shown in FIG. And (brown: Test Example 10, Red: Test Example 11, Purple: Test Example 12, Blue: Comparative Test Example 4), and a polymerization reaction using a metallocene supported catalyst prepared according to Comparative Example 3 and Example 8.
  • the molecular weight distribution graph of the polymer is shown in Figure 2 (red: Test Example 8, Green: Comparative Test Example 3), Comparative Example 2, of the polymer against the polymerization reaction using the metallocene supported catalyst prepared according to Example 5
  • the molecular weight distribution graph is shown in FIG. 3 (red: test example 5, blue: comparative test example 2).
  • X axis is dlogwf / dlogM
  • y axis is logM
  • the vertical axis is the Intensity axis of the polymer
  • the horizontal axis is the molecular weight axis of the polymer.
  • the present invention is less active fluctuations compared to the prior art, and it can be seen that the molecular weight fluctuations fluctuate depending on the amount of the regulator, thereby enabling fine tuning in preparing the supported catalyst. have.
  • Figure 2 when the input of the existing molecular weight regulator during the polymerization, the activity deterioration is severe and the portion of the increase in molecular weight was not large, but it was confirmed that the increase in molecular weight and activity is maintained to some extent by the supported catalyst.
  • the polymer peaks move toward the polymer and the bimodal opening is narrowed to a single rod according to the change of the molecular weight regulator. This shows that the polymer elasticity, which is important in blow molding, is increased and thus the swell is changed to a model that improves the physical properties, thereby making the polymer of good orientation.
  • the non-reflective regulator may be expressed while entering the reaction step again in the recovery process. In this case, the process may be shaken by an undesired polymerization process, so adding a molecular weight regulator in a reaction vessel is not a commercially appropriate method.
  • the use of a molecular weight regulator during the polymerization process is not good in terms of reaction efficiency, and in the case of an actual mass production plant, reaction is caused by recycling raw materials. Unintentional action on other reaction processes can lead to unwanted polymerization processes. That is, the molecular weight control agent introduced during the polymerization may have instability in the overall polymerization process, but may have a molecular weight control effect at the laboratory level, but may cause process instability in a system of actual mass production scale.
  • the present invention used a molecular weight regulator of the catalytic amount relative to the precursor in order to actively solve this problem and has the advantage of almost no side effects due to the molecular weight regulator in the actual plant application.

Abstract

본 발명은 고분자 탄성이 증가하여 스웰 (swell)이 좋아지는 분자량 분포를 가짐에 따라 블로우몰딩용 등으로 바람직하게 사용 가능한 폴리올레핀을 보다 효과적으로 제조할 수 있는 메탈로센 담지 촉매의 제조 방법에 관한 것이다.

Description

【명세서】
【발명의 명칭】
메탈로센 담지 촉매의 제조 방법
【기술분야】
관련 출원들과의 상호 인용
본 출원은 2015년 6월 15일자 한국 특허 출원 제 10-2015-0084483 J: 및 2016년 3월 11일자 한국 특허 출원 제 10-2016-0029835호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 고분자 탄성이 증가하여 스웰 (swel l )이 좋아지는 분자량 분포를 가짐에 따라, 블로우몰딩용 등으로 바람직하게 사용 가능한 폴리을레핀을 보다 효과적으로 제조할 수 있는 메탈로센 담지 촉매의 제조 방법에 관한 것이다. 【배경기술】
일반적으로 블로우몰딩을 이용하여 제조한 제품의 경우, 우수한 가공성, 기계적 물성 및 내웅력 균열성이 요구된다. 따라서 이전부터 큰 분자량, 보다 넓은 다봉 분자량 분포 및 균일한 공단량체 분포 등을 층족하여, 블로우몰딩용 등으로 바람직하게 사용 가능한 폴리올레핀의 제조에 관한 기술이 계속적으로 요구되고 있다.
한편 , 4족 전이금속을 이용한 메탈로센 촉매는 기존의 지글러 나타 촉매에 비해 폴리올레핀의 분자량 및 분자량 분포 등을 제어하기 쉽고, 고분자의 공단량체 분포를 조절할 수 있어, 기계적 물성 및 가공성이 동시에 향상된 폴리올레핀 등을 제조하는데 사용되어 왔다. 그러나, 메탈로센 .촉매를 사용하여 제조된 폴리올레핀은 좁은 분자량 분포로 인해 가공성이 떨어지는 문제가 있다.
일반적으로 분자량 분포가 넓을수록 전단속도 (shear rate)에 따른 점도저하 정도가 커져 가공영역에서 우수한 가공성을 나타내는데, 메탈로센 촉매로 제조된 폴리을레핀은 상대적으로 좁은 분자량 분포 등으로 인해, 높은 전단속도에서 점도가 높아 압출시 부하나 압력이 많이 걸리게 되어 압출 생산성이 저하되고, 블로우몰딩 가공시 버블 안정성이 크게 떨어지며, 제조된 블로우몰딩 성형품 표면이 불균일해져 투명성 저하 등을 초래하는 단점이 있다.
또한, 기존의 에틸렌 중합에서 테베 물질 (Tebbe reagent)이라는 티타노센 (Titanocen)과 알킬알루미늄 (Alkylaluminium)의 복합체를 이용하여 중합에 참여해왔고 분자량 증대에 역할을 해왔다. 테베 물질 (Tebbe reagent)의 주요한 특성은 상기 테베 물질 (Tebbe reagent)이 염기 (base)에 의해 활성화 (activation)가 되어 티타늄알킬리덴 (Titaniumalkyl idene)이 형성되어 거기에 따른 이중 결합에 관련된 반웅 (olefination이나 metathesis 등)을 하는 것으로 알려져 있지만 루이스 염기 (lewis base) 첨가가 안되는 에틸렌 중합에서 테베 물질 (Tebbe reagent)의 역할은 명확하게 알려진 바가 없다. 1990년 Petasis 그룹이 테베 물질 (Tebbe reagent)를 단순히 열만 가해서 고리 닫힘 상호 교환반웅 (Ring Closing metathesis)을 성공한 전례가 있었다. 이에 따라 테베 물질 (Tebbe reagent)가 중합에 참여시 중합 온도에 의해 티타늄알킬리덴 (Titaniumalkyl idene)을 형성하여 알킬리덴 (alkylidene) 특유의 반웅을 이용한 중합 결과를 가져 온 것으로 추측되어진다.
이에, 고분자 탄성이 증가하여 스웰 (swell)이 좋아지는 분자량 분포를 가짐에 따라, 기계적 물성 및 가공성 등을 동시에 충족할 수 있고 블로우몰딩용 등으로 바람직하게 사용 가능한 폴리올레핀을 보다 효과적으로 제조할 수 있는 기술와 개발이 계속적으로 요구되고 있다.
【발명의 내용】
【해결하려는 과제】
이에 본 발명은 고분자 탄성이 증가하여 스웰 (swell)이 좋아지는 분자량 분포를 가짐에 따라, 블로우몰딩용 등으로 바람직하게 사용 가능한 폴리올레핀을 보다 효과적으로 제조할 수 있는 메탈로센 담지 촉매의 제조 방법을 제공하는 것이다.
또한, 본 발명은 상기 제조 방법으로부터 제조된 메탈로센 담지 촉매의 존재 하에서 제조되어, 기계적 물성 및 가공성을 동시에 충족할 수 있고, 블로우몰딩용 등으로 바람직하게 사용 가능한 폴리올레핀을 제공하는 것이다. '
【과제의 해결 수단】
본 발명은 하기 화학식 1의 시클로펜타디에닐 금속 화합물과 하기 화학식 2의 유기 알루미늄 화합물을 흔합하여 상온에서 50 내지 108 시간 동안 교반하여 분자량 조절제 조성물을 제조하는 단계; 및 담체에 하기 화학식 3 내지 6 중 하나로 표시되는 메탈로센 화합물 1종 이상과 상기 분자량 조절제 조성물을 담지시키는 단계;를 포함하는 메탈로센 담지 촉매의 제조 방법을 제공한다.
[화학식 1] 화학식 1에서 Cp1 및 Cp2는 각각 독립적으로 시클로펜타디에닐기, 인데닐기 또는 플루오레닐기를 포함하는 리간드이고; R1 및 R2는 Cp1 및 Cp2의 치환기로서 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬, 탄소수 1 내지 20의 알케닐, 탄소수 7 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 탄소수 6 내지 20의 아릴, 탄소수 1 내지 20의 헤테로 알킬, 탄소수 2 내지 20의 헤테로 알케닐, 탄소수 6 내지 20의 헤테로 알킬아릴, 탄소수 6 내지 20의 헤테로 아릴알킬 또는 탄소수 5 내지 20의 헤테로 아릴이며; M1은 4족 전이금속 원소이며; X는 할로겐이고,
[화학식 2]
R3R4R5A1
화학식 2에서 R3 , R4 및 R5는 각각 독립적으로 탄소수 4 내지 20의 알킬기 또는 할로겐이며, R3 , R4 및 R5 중 적어도 하나는 탄소수 4 내지 20의 알킬기이고,
[화학식 3]
(Cp5Ra )n(Cp6Rb)M1Z1 3-n
상기 화학식 3에서,
M1은 4족 전이금속이고;
Cp5 및 Cp6는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디엔닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐, 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
Ra 및 Rb는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고;
Z1은 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시, 또는 C7 내지 C40의 아릴알콕시이고;
n은 1 또는 0 이고;
[화학식 4]
(Cp7Rc)mB1(Cp8Rd)M2Z2 3-m
상기 화학식 4에서,
M2는 4족 전이 금속이고;
Cp7 및 Cp8는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디에닐, 인데닐, 4, 5,6, 7-테트라하이드로 -1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
Rc 및 Rd는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고;
Z2는 할로겐 원자, C1 '내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시, 또는 C7 내지 C40의 아릴알콕시이고;
B1은 Cp¾c 고리와 Cp4Rd 고리를 가교 결합시키거나, 하나의 Cp4Rd 고리를 M2에 가교 결합시키는, 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼 중 하나 이상 또는 이들의 조합이고;
m은 1 또는 0 이고;
[화학식 5] '
(Cp9Re)B2(J )M3Z3 2 '
상기 화학식 5에서,
M3은 4족 전이 금속이고;
Cp9는 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
Re는 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고;
Z3은 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시, 또는 C7 내지 C40의 아릴알콕시이고;
B2'Cp5Re 고리와 J를 가교 결합시키는 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼중 하나,이상 또는 이들의 조합이고;
J는 NRf , 0, PRf 및 S로 이루어진 군에서 선택된 어느 하나이고, 상기 Rf는 C1 내지 C20의 알킬, 아릴, 치환된 알킬 또는 치환된 아릴이고, [화학식 6]
Figure imgf000008_0001
상기 화학식 6에서,
A는 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, C7 내지 C20의 아릴알킬기, C1 내지 C20의 알콕시기, C2 내지 C20의 알콕시알킬기, C3 내지 C20의 헤테로시클로알킬기, 또는 C5 내지 C20의 헤테로아릴기이고;
D는 — 0—, -S- , -N(R)- 또는 -SKRKR ' )- 이고, 여기서 R 및 R '은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기 , C2 내지 C20의 알케닐기, 또는 C6 내지 C20의 아릴기이고;
L은 C1 내지 C10의 직쇄 또는 분지쇄 알킬렌기이고;
B는 탄소, 실리콘 또는 게르마늄이고;
Q는 수소, 할로겐, C1 내지 C20의 알킬기 , C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이고;
M은 4족 전이금속이며;
X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네이트기이고;
C1및 C2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식
7a , 화학식 7b 또는 하기 화학식 7c 증 하나로 표시되고, 단, C1 및 C2가 모두 화학식 7c인 경우는 제외하며 ;
[화학식 7a]
Figure imgf000009_0001
Figure imgf000009_0002
[화학식 7c]
Figure imgf000009_0003
상기 화학식 7a , 7b 및 7c에서, R1 내지 R17 및 R1 ' 내지 R9 '는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 실릴알킬기, C1 내지 C20의 알콕시실릴기, C1 내지 C20의 알콕시기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이며, 상기 R10 내지 R17 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있다. 본 발명은 또한, 메탈로센 담지 촉매의 존재 하에서, 올레핀 단량체를 중합하는 단계를 포함하는 폴리올레핀의 제조 방법을 제공한다. 본 발명은 또한, 상기 제조 방법에 따라 제조된 폴리을레핀을 제공한다. 이하 발명의 구현예에 따른 메탈로센 담지 촉매의 제조 방법과, 이로부터 제조된 메탈로센 담지 촉매, 이를 이용한 폴리을레핀의 제조 방법, 및 이로부터 제조된 폴리올레핀에 대해 설명하기로 한다.
발명의 일 구현예에 따르면, 담체에 메탈로센 화합물과 함께 특정의 분자량 조절제 조성물을 담지시켜 메탈로센 담지 촉매를 제조한다. 상기 메탈로센 담지 촉매의 제조 방법은 하기 화학식 1의 시클로펜타디에닐 금속 화합물과 하기 화학식 2의 유기 알루미늄 화합물을 흔합하여 상온에서 50 내지 108 시간 동안 교반하여 분자량 조절제 조성물을 제조하는 단계; 및 담체에 하기 화학식 3 내지 6 중 하나로 표시되는 메탈로센 화합물 1종 이상과 상기 분자량 조절제 조성물을 담지시키는 단계;를 포함한다.
[화학식 3]
Figure imgf000010_0001
상기 화학식 3에서,
M1은 4족 전이금속이고;
Cp5 및 Cp6는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디엔닐, 인테닐, 4,5,6,7-테트라하이드로 -1-인데닐, 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
Ra 및 Rb는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고;
Z1은 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시, 또는 C7 내지 C40의 아릴알콕시이고;
n은 1 또는 0 이고;
[화학식 4] 상기 화학식 4에서,
M2는 4족 전이 금속이고;
Cp7 및 Cp8는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디에닐, 인데닐, 4,5,6,7—테트라하이드로 -1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
Rc 및 Rd는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시 , C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬 , C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고;
Z2는 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시, 또는 C7 내지 C40의 아릴알콕시이고;
B1은 Cp¾c 고리와 Cp4Rd 고리를 가교 결합시키거나, 하나의 Cp4Rd 고리를 M2에 가교 결합시키는, 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼 중 하나 이상 또는 이들의 조합이고;
m은 1 또는 0 이고;
[화학식 5]
(Cp9Re)B2(J )M3Z3 2
상기 화학식 5에서,
M3은 4족 전이 금속이고;
Cp9는 시클로펜타디에닐, 인데닐, 4, 5,、6, 7-테트라하이드로 -1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
Re는 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고;
Z3은 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시, 또는 C7 내지 C40의 아릴알콕시이고;
B2는 Cp¾e 고리와 J를 가교 결합시키는 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼중 하나 이상 또는 이들의 조합이고;
J는 NRf , 0, PRf 및 S로 이루어진 군에서 선택된 어느 하나이고, 상기 Rf는 C1 내지 C20의 알킬, 아릴 , 치환된 알킬 또는 치환된 아릴이고,
[
Figure imgf000012_0001
상기 화학식 6에서,
A는 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기
C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, C7 내지 C20의 아릴알킬기, C1 내지 C20의 알콕시기, C2 내지 C20의 알콕시알킬기, C3 내지 C20의 헤테로시클로알킬기, 또는 C5 내지 C20의 헤테로아릴기이고;
D는 -0-, -S- , -N(R)- 또는 -Si (R) (R ' )_ 이고, 여기서 R 및 R '은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, 또는 C6 내지 C20의 아릴기이고;
L은 C1 내지 C10의 직쇄 또는 분지쇄 알킬렌기이고;
B는 탄소, 실리콘 또는 게르마늄이고;
Q는 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의
C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이고;
M은 4족 전이금속이며; X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네이트기이고;
C1및 C2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식 7a , 화학식 7b 또는 하기 화학식 7c 중 하나로 표시되고, 단, C1 및 C2가 모두 화학식 7c인 경우는 제외하며 ;
[
Figure imgf000013_0001
[
Figure imgf000013_0002
상기 화학샥 7a, 7b 및 7c에서, R1 내지 R17 및 R1 ' 내지 R9 '는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C1 내지 C20의 알킬실릴기, C1 내지 C20와 실릴알킬기, C1 내지 C20의 알콕시실릴기, C1 내지 C20의 알콕시기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이며, 상기 R10 내지 R17 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있고, [화학식 1] 화학식 1에서 Cp1 및 Cp2는 각각 독립적으로 시클로펜타디에닐기, 인데닐기 또는 플루오레닐기를 포함하는 리간드이고; R1 및 R2는 Cp1 및 Cp2의 치환기로서 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬, 탄소수 1 내지 20의 알케닐, 탄소수 7 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 탄소수 6 내지 20의 아릴, 탄소수 1 내지 20의 헤테로 알킬, 탄소수 2 내지 20의 헤테로 알케닐, 탄소수 6 내지 20의 헤테로 알킬아릴, 탄소수 6 내지 20의 헤테로 아릴알킬 또는 탄소수 5 내지 20의 헤테로 아릴이며; M1은 4족 전이금속 원소이며; X는 할로겐이다. 특히, R1 및 R2은 각각 독립적으로 수소, 메틸, 에틸, 부틸, 및 t-부록시 핵실로 이루어진 군에서 선택된 것일 수 있다. 또한, M1은 4족 전이금속 원소이며, 바람직하게는 티타늄, 지르코늄 및 하프늄으로 이루어진 군에서 선택되는 것일 수 있다. 또한, X는 할로겐이며, 바람직하게는 F, (: 1, Br 및 I로 이루어진 군에서 선택되는 것일 수 있다.
[화학식 2]
R3R4R5A1
화학식 2에서 R3 , R4 및 R5는 각각 독립적으로 탄소수 4 내지 20의 알킬기 또는 할로겐이며, R3 , R4 및 R5 중 적어도 하나는 탄소수 4 내지 20의 알킬기이다. 특히, R3 , R4 및 R5은 각각 독립적으로 이소부틸기일 수 있다.
본 발명자들의 실험 결과, 이러한 특정 분자량 조절제 조성물을 바로 촉매 전구체와 흔합하여 포함하는 메탈로센 촉매를 사용하면 향상된 활성으로 보다 큰 분자량 및 보다 넓은 분자량 분포를 갖는 폴리올레핀의 제조를 가능케 함이 확인되었다. 이러한 분자량 조절제의 작용 메커니즘은 구체적으로 밝혀지지는 않았지만, 이러한 특정 분자량 조절제를 촉매 전구체와 섞어 주게 되면 3~7족에 속하는 앞전이금속 (ear ly-t rans i t i on metal )으로부터 만들어진 metal alkyl idene은 금속과 알킬 그룹 사이의 부분전하량이 차이가 나기에 부분 음전하를 가진 alkyl idene이 알루미늄 알킬보다 더 l ewi s acidi c한 앞전이금속의 met l locene과 결합하여 br idge 형태의 중간체를 가지면서 분자량 증대를 통해 큰 분자량 및 보다 넓은 분포를 갖는 폴리올레핀의 제조를 가능케 하는 것으로 예측된다.
본 발명의 구체적인 일 구현예에 따르면, 하기 반응식 1에서와 같이 상술한 바와 같은 메탈로센 화합물과 함께 특정의 분자량 조절제 조성물을 반응시켜 담체에 담지시켜 메탈로센 담지 촉매를 제조할 수 있다.
'
Figure imgf000015_0001
Helero(Homo|dfniicleaf catalyst catalyst - 특히, 본 발명의 경우는 기존의 테베 타입 물질 (Tebbe Type reagent )의 수소 반응성 변화에 의한 분자량 조절 작용의 의미를 더욱 확장하여 전구체와 티타노센 (Ti tanocene)과의 직접적인 반웅을 유도하였고 적은 양의 티타노센 (Ti tanocene)을 이용하여 수소 반웅성을 조절 하여 분자량을 제어하는 기술이다. 불필요한 분자량 조절제 사용시 공정 중 남은 미반웅 유기 알루미늄들이 존재할 수 있으며 이러한 화합물은 차후에 공정 불안정성을 야기시킨다. 즉, 최소한의 분자량 조절제를 사용하여 효율적인 분자량 조절이 가능하도록 하는 것을 특징으로 한다.
이러한 일 구현예의 제조 방법에서는, 상기 분자량 조절제 조성물은 상기 화학식 1의 시클로펜타디에닐 금속 화합물과 상기 화학식 2의 유기 알루미늄 화합물을 0. 1 내지 1.0 당량 (eq . ) , 바람직하게는 0. 1 내지 0.5 당량으로 흔합하여, 상온에서, 예컨대, 22.5 내지 25 I에서 50 내지 108 시간, 바람직하게는 62 내지 90 시간 동안 교반하여 생성시킬 수 있다. 상기 분자량 조절제 조성물은 상기 화학식 1의 시클로펜타디에닐 금속 화합물과 상기 화학식 2의 유기 알루미늄 화합물과의 흔합물, 또는 이들의 반웅 생성물, 예를 들어, 화학식 1과 화학식 2의 화합물이 반웅하여 생성된 유기 금속 착화합물을 포함할 수 있다.
또한, 상기 화학식 1의 시클로펜타디에닐기 및 화학식 2의 유기 작용기 등에서 특정의 치환기를 포함하는 분자량 조절제는 기존에 비해 현저히 향상된 용해도를 나타냄으로써, 촉매 전구체와 우수한 일체화 특성 (homogenei ty)으로 균일하게 촉매 조성물을 형성할 수 있어 우수한 중합 성능을 나타낼 수 있다.
일 구현예에 따르면, 본 발명의 메탈로센 담지 촉매는 보다 큰 분자량 및 고분자 탄성이 증가하여 스웰 (swel l )이 좋아지는 분자량 분포를 가짐에 .따라, 뛰어난 기계적 물성 및 가공성을 나타낼 수 있고, 블로우몰딩용 등으로 바람직하게 사용 가능한 폴리올레핀을 보다 효과적으로 제조할 수 있다.
상기 화학식 1의 시클로펜타디에닐 금속 화합물 및 상기 화학식 2의 유기 알루미늄 화합물이 반웅하여 생성된 분자량 조절제는 하기 화학식 8, 화학식 9, 화학식 10, 또는 화학식 11로 표시되는 것일 수 있다.
Figure imgf000016_0001
Figure imgf000017_0001
한편, 기존의 방식으로 티타노센 단독 사용시 고분자 중합은 거의 일어나지 않으며 테베 타입 물질 (tebbe type reagent )도 역시 고분자 중합에 참여하지 않는다. 유기 리튬이나 유기 마그네슘은 강 염기로 작용하는 것을 티타노센 카르빈 (t i tanocene carbine)과는 전혀 상관이 없는 메카니즘을 가지고 있다. 본 발명은 유기 알루미늄과 결합된 티타노센 (Ti tanocene)이 열분해에 의해 티타늄 카르벤 (Ti tanium carbene)이 형성되어 이 카르벤 (carbene)으로부터 생길 수 있는 화학 반웅에 초점을 두었고 고분자 형성 시 가장 중요한 역할을 하는 메탈로센 전구체에 더 적극적으로 화학반응을 일으켜 최소한의 티타노센 (t i tanocene)을 이용하여 최대의 분자량 조절 효과를 얻을 수 있는 장점이 있다. 일 구현예의 제조 방법에서는, 이러한 분자량 조절제 조성물은 상기 화학식 1 및 2의 화합물을 서로 반응하지 않은 흔합물 형태로 포함하거나, 상기 화학식 1 및 2의 화합물의 반웅 생성물, 예를 들어, 이들 화합물의 금속 원소가 X 및 /또는 R1 , R2 및 R3 중 하나를 매개로 서로 결합되어 있는 유기 금속 착화합물 형태로 포함할 수 있다. 이때, 상기 유기 금속 착화합물과 함께, 일부의 미반응된 화학식 1 및 /또는 화학식 2의 화합물을 더 포함할 수도 있다.
이미 상술한 바와 같이, 상기 분자량 조절제는 메탈로센 촉매의 활성을 보조하여, 상대적으로 작은 양의 메탈로센 촉매의 존재 하에서도, 큰 활성으로 중합이 진행되게 할 수 있고, 보다 큰 분자량 및 고분자 탄성이 증가하여 스웰 (swel l )이 좋아지는 분자량 분포를 갖는 폴리올레핀의 제조를 가능케 한다.
상기 분자량 조절제 조성물에서, 화학식 3의 시클로펜타디에닐계 금속 화합물의 구체적인 예로는, 비스시클로펜타디에닐티타늄 디클로라이드, 비스시클로펜타디에닐지르코늄 디클로라이드, 비스시클로펜타디에닐하프늄 디클로라이드, 비스인데닐티타늄 디클로라이드 또는 비스플로레닐티타늄 디클로라이드 , 비스 (2-에틸사이클로펜타 -2, 4-디엔 -1—일 )티타늄 디클로라이드 , 비스 (2-부틸사이클로펜타 -2, 4-디엔 -1-일 )티타늄 디클로라이드, 비스 (2-(6-t-부특시-핵실)사이클로펜타 -2 , 3-디엔 -1- 일)티타늄 디클로라이드, 비스 (2-에틸사이클로펜타 -2 , 4-디엔 -1-일)지르코늄 디클로라이드, 비스 (2-에틸사이클로펜타 -2 , 4-디엔 -1-일)하프늄 디클로라이드 등올 들 수 있다. 또한, 화학식 4의 유기 알루미늄 화합물의 구체적인 예로는, 트리이소부틸 알루미늄, 트리핵실알루미늄, 트리옥틸 알루미늄, 디이소부틸알루미늄 클로라이드, 디핵실알루미늄 클로라이드 또는 이소부틸알루미늄 디클로라이드 등을 들 수 있다.
또한, 상기 화학식 1의 화합물과 화학식 2의 화합물은 각각 화학식 3에 포함된 금속 원소 (M)와, 화학식 4에 포함된 알루미늄 (A1 )와 몰비로서, 약 1 : 0. 1 내지 1 : 100, 혹은 약 1 : 0.5 내지 1 : 10의 몰비로 사용됨이 바람직하다.
그리고, 상기 분자량 조절제는 상기 촉매 전구체의 총 100 중량부를 기준으로 약 0. 1 내지 10 중량부, 혹은 약 0. 1 내지 1 중량부의 함량으로 사용될 수 있다. 또한, 상기 분자량 조절제는 상기 촉매 전구체의 총량을 기준으로 약 1 내지 85 mol , 바람직하게는 약 3 내지 70 mol , 좀더 바람직하게는 약 5 내지 55 mol%의 함량, 흑은 10 내지 50 mol%로 사용될 수 있다. 이러한 함량 범위로 사용됨에 따라, 분자량 조절제의 첨가로 인한 작용, 효과가 최적화되어, 고분자 용융지수가 낮고, 분자량 분포가 넓으며, 분자량이 크고, 밀도나 고분자 용융지수 대비 내응력 균열성이 더욱 향상된 폴리을레핀이 얻어질 수 있다. 특히, 반웅기 안에 유기알루미늄 등이 과량 존재하게 되면 일반적인 알킬알루미늄처럼 메탈로센 촉매와 반웅을 하여 비활성화 (Deact ivat ion)시키면서 활성 저하를 일으키게 된다. 이에 따라, 본 발명은 전구체 대비 촉매량의 분자량 조절제를 최대의 효율로 반응을 시켜 기존 메탈로센 전구체 자체의 활성에 저해가 되지 않는 장점이 있다. 또한, 본 발명은 메탈로센 담지 촉매 제조 시 담지되는 메탈로센 전구체의 촉매량 정도에 해당하는 소량의 분자량 조절제를 이용하면서도 단독 또는 흔성 담지 촉매의 분자량을 효과적으로 조절할 수 있다. 기존의 종래 기술들은 단순히 분자량을 증가 시키는 것에 그 특징을 보이고 있지만, 본 발명은 활성 저하가 없는 중합 조건을 유지하면서 분자량 조절제의 양에 따라 고분자 구조를 미세 조정할 수 있는 장점이 있다. 또한, 담지 촉매 제조 시 전구체에 따른 조촉매, 예컨대, MA0 등과의 상호작용 불안정에 따른 담지 불균일성 자체가 없어 촉매 안정성이 우수한 담지 촉매를 제공할 수 있다. 한편, 상기 일 구현예의 제조 방법에서, 메탈로센 담지 촉매는 메탈로센 화합물과 상기 분자량 조절제 조성물이 담체에 담지된 담지 촉매 형태로 사용되는 것이다. 또한, 상기 메탈로센 촉매는 서로 다른 2 종 아상의 메탈로센 화합물을 흔성 하이브리드 하여 함께 사용되거나, 1종의 메탈로센 화합물만을 포함하여 사용될 수 있다.
상기 화학식 3으로 표시되는 메탈로센 화합물로는 예를 들어 하기 구조식들 중 하나로 표시되는 화합물일 수 있으나, 이에만 한정되는 것은
Figure imgf000020_0001
Figure imgf000021_0001
또한, 화학식 4로 표시되는 화합물로는 예를 들어 하기 구조식으로 표시되는 화합물일 수 있으나, 이에만 한정 다.
Figure imgf000021_0002
Figure imgf000022_0001
또한, 화학식 5으로 표시되는 화합물로는 예를 들어 하기 구조식으로 는 화합물일 수 있으나, 이에만 한정되는 것은 아니다.
Figure imgf000022_0002
Figure imgf000022_0003
상기 화학식 6에서, 4족 전이금속 (M)으로는 티타늄, 지르코늄, 하프늄 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 화학식 6의 메탈로센 화합물에 있어서, 상기 화학식 7a , 7b 및 7c의 R1 내지 R17 및 R1 ' 내지 R9 '는 각각 독립적으로 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 펜틸기, 핵실기, 헵틸기, 옥틸기, 페닐기, 할로겐기, 트리메틸실릴기, 트리에틸실릴기, 트리프로필실릴기, 트리부틸실릴기, 트리이소프로필실릴기, 트리메틸실릴메틸기, 메특시기, 또는 에톡시기인 것이 더욱 바람직하나, 이에만 한정되는 것은 아니다.
상기 화학식 6의 메탈로센 화합물에 있어서, L은 C4 내지 C8의 직쇄 또는 분지쇄 알킬렌기인 것이 더욱 바람직하나, 이에만 한정되는 것은 아니다. 또한, 상기 알킬렌기는 C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, 또는 C6 내지 C20의 아릴기로 치환 또는 비치환될 수 있다.
상기 화학식 6의 메탈로센 화합물에 있어서, A는 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 메톡시메틸기, tert-부특시메틸기, 1-에특시에틸기, 1-메틸 -1-메록시에틸기, 테트라하이드로피라닐기, 또는 테트라하이드로퓨라닐기인 것이 바람직하나, 이에만 한정되는 것은 아니다. 또한, B는 실리콘인 것이 바람직하나, 이에만 한정되는 것은 아니다.
상기 화학식 6의 메탈로센 화합물은 인데노 인돌 ( indeno indol e) 유도체 및 /또는 플루오렌 ( f luorene) 유도체가 브릿지에 의해 가교된 구조를 형성하며, 리간드 구조에 루이스 염기로 작용할 수 있는 비공유 전자쌍을 가짐으로써 담체의 루이스 산 특성올 지니는 표면에 담지되어 담지 시에도 높은 중합 활성을 나타낸다. 또한 전자적으로 풍부한 인데노 인돌기 및 /또는 플루오렌기를 포함함에 따라 활성이 높고, 적절한 입체 장애와 리간드의 전자적인 효과로 인해 수소 반웅성이 낮을 뿐 아니라 수소가 존재하는 상황에서도 높은 활성이 유지된다. 또한 인테노인돌 유도체의 질소 원자가 자라나는 고분자 사슬의 beta-hydrogen을 수소결합에 의해 안정화시켜 beta-hydrogen el itninat ion을 억제하여 초고분자량의 올레핀계 중합체를 증합할 수 있다.
발명의 일 실시예에 따르면, 상기 화학식 7a로 표시되는 구조의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 구조를 들 수 있으나, 이에만 한정되는 것은 아니다.
Figure imgf000024_0001
그리고, 상기 화학식 7b로 표시되는 구조의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 구조를 들 수 있으나, 이에만 한정되는 것은 아니다.
Figure imgf000024_0002
Figure imgf000025_0001
또한, 상기 화학식 7c로 표시되는 구조의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 구조를 들 수 있으나, 이에만 한정되는 것은 아니다.
Figure imgf000026_0001
부가하여, 상기 화학식 6로 표시되는 메탈로센 화합물의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나, 이에만
Figure imgf000026_0002
Figure imgf000027_0001
?9Ζ900/9ΐΟΖΗΜ/Χ3<Ι 69»0Ζ/9ΐ0Ζ OAV
Figure imgf000028_0001
금속 전구체 화합물을 투입하여 메탈레이션 (metal l at i on)을 수행함으로써 수득될 수 있으나, 이에 제한되는 것은 아니다.
상기 일 구현.예의 제조 방법에서, 상술한 바와 같은 메탈로센 화합물과 분자량 조절제 조성물은 담체에 담지된 담지 촉매 형태로 사용되는 것이다. 상기 담지 단계는 상기 담체와 메탈로센 촉매, 분자량 조절제 조성물을 흔합하여 30 내지 100 °C , 바람직하게는 35 내지 90 t , 혹은 40 내지 80 °C의 온도에서 의 온도에서 1 hr 내지 12 hr , 바람직하게는 1 hr 내지 4 hr 동안 교반하여 수행할 수 있다.
한편, 상기 메탈로센 담지 촉매는 메탈로센 화합물 및 조촉매가 담체에 담지된 담지 메탈로센 촉매의 형태로 될 수 있으며, 일 예에 따르면, 서로 다른 2 종 이상의 메탈로센 화합물과 조촉매를 포함하는 흔성 담지 메탈로센 촉매로 될 수 있다.
이때, 상기 담체는 실리카, 실리카-알루미나 또는 실리카 -마그네시아 등으로 될 수 있고, 기타 메탈로센 촉매를 담지할 수 있는 것으로 알려진 임의의 담체로 될 수 있다. 또한, 이러한 담체는 고온에서 건조된 상태로 사용될 수 있는데, 건조 온도는, 예를 들어, 약 180 내지 800 °C로 될 수 있다. 만일, 건조 온도가 지나치게 낮으면, 담체 상의 과량의 구분이 조촉매와 반응하여 성능을 떨어뜨릴 수 있고, 건조 온도가 지나치게 높으면 담체 표면에 하이드록시기 함량이 지나치게 낮아져 조촉매와의 반웅자리가 감소할 수 있다.
특히, 상기 담체는 하기 화학식 12의 알루미늄 함유 제 1 조촉매가 담지된 것이 될 수 있다.
[화학식 12]
- [Al (R18)-0-]n- 화학식 12에서, R18은 각각 독립적으로 할로겐, 할로겐 치환 또는 비치환된 탄소수 1 내지 20의 하이드로카빌기이고, n은 2 이상의 정수이다. 본 발명에서 상기 제 1 조촉매가 담지된 담체에 메탈로센 화합물올 담지시킨 직후에 분자량 조절제 조성물을 담지시킬 수 있다. 특히, 기존의 종래 기술에 따르면, MA0에 유기알루미늄 및 전구체에 먼저 반웅을 시킨 후 실리카에 담지시킨다. 먼저, MA0 용액에 티타노센 (Ti tani cene)을 넣어 MAO내 존재하는 TMA와 티타노센 (Ti tanocene)의 테베 물질 (Tebbe reagent ) 반응을 인 -시튜 ( in— si tu)로 만들게 되며 이러한 얻어진 테베 물질, 즉, Tebbe reagent in MAO는 실리카 담지 시 고온의 영향으로 전구체와 반웅을 하는 문제가 발생할 수 있다. 그러나, 이러한 담지 촉매 제조 시에는 전구체와 MA0 사이 반응성에 따라 MA0 용액의 불균일성에서 오는 담지 촉매의 안정성 저하, 종래의 테베 물질 (Tebbe reagent ) 반웅은 본 발명에서 약 2일 내지 4일, 예컨대, 3일 정도 걸리는 것에 비해 반응시간이 짧은 것에서 오는 촉매 특성의 재현성 문제들이 생길 수 있다.
특히, 본 발명은 MA0 등의 게 1 조촉매가 담지된 실리카에 메탈로센 화합물 촉매 전구체를 투입 직후에 분자량 조절제를 투입하는 것으로 하는 방법으로 실리카 -MA0 자체의 균일성을 확보하였고, 투입되는 분자량 조절제 역시 전구체 대비 촉매량으로도 충분히 분자량 증가 효과를 볼 수 있다. 또한, 본 발명은 분자량 조절제의 양이 적기에 전구체 고유의 활성을 저해하는 문제 발생을 방지할 수 있다. 한편, 상술한 메탈로센 촉매, 특히, 흔성 담지 메탈로센 촉매에서, 하기 화학식 13의 보레이트계 게 2 조촉매를 추가로 포함할 수 있다:
[화학식 13]
T+[BQ4]"
화학식 13에서, T+은 +1가의 다원자 이온이고, B는 +3 산화 상태의 붕소이고, Q는 각각 독릴적으로 하이드라이드기, 디알킬아미도기, 할라이드기, 알콕사이드기, 아릴옥사이드기, 하이드로카빌기, 할로카빌기 및 할로-치환된 하이드로카빌기로 이루어진 군에서 선택되고, 상기 Q는 20개 이하의 탄소를 가지나, 단 하나 이하의 위치에서 Q는 할라이드기이다. 이러한 제 1 및 제 2 조촉매의 사용에 의해, 최종 제조된 폴리올레핀의 분자량 분포가 보다 균일하게 되면서, 중합 활성이 향상될 수 있다.
상기 화학식 12의 게 1 조촉매는 선형, 원형 또는 망상형으로 반복단위가 결합된 알킬알루미녹산계 화합물로 될 수 있고, 이러한 제 1 조촉매의 구체적인 예로는, 메틸알루미녹산 (MA0) , 에틸알루미녹산, 이소부틸알루미녹산 또는 부틸알루미녹산 등을 들 수 있다. 또한, 상기 화학식 13의 게 2 조촉매는 삼치환된 암모늄염, 또는 디알킬 암모늄염, 삼치환된 포스포늄염 형태의 보레이트계 화합물로 될 수 있다. 이러한 제 2 조촉매의 구체적인 예로는, 트리메탈암모늄 테트라페닐보레이트, 메틸디옥타데실암모늄 테트라페닐보레이트, 트리에틸암모늄 테트라페닐보레이트, 트리프로필암모늄 테트라페닐보레이트, 트리 (n-부틸)암모늄 테트라페닐보레이트, 메틸테트라데사이클로옥타데실암모늄 테트라페닐보레이트, Ν,Ν- 디메틸아닐리늄 테트라페닐보레이트, Ν,Ν-디에틸아닐리늄 테트라페닐보레이트, ^디메틸(2,4,6- 트리메틸아닐리늄)테트라페닐보레이트, 트리메틸암모늄 테트라키스 (펜타플로오로페닐)보레이트, 메틸디테트라데실암모늄 테트라키스 (펜타페닐)보레이트, 메틸디옥타데실암모늄 테트라키스 (펜타플루오로페닐)보레이트, 트리에틸암모늄, 테트라키스 (펜타 ¾루오로페닐)보레이트,
트리프로필암모늄테트라키스 (펜타프루오로페닐)보레이트, 트리 (η- 부틸)암모늄 테트라키스 (펜타플루오로페닐)보레이트, 트리 (2급- 부틸)암모늄테트라키스 (펜타플루오로페닐)보레이트, Ν,Ν-디메틸아닐리늄 테트라키스 (펜타플루오로페닐)보레이트, Ν,Ν- 디에틸아닐리늄테트라키스 (펜타플루오로페닐)보레이트, Ν,Ν-디메틸 (2 , 4, 6- 트리메틸아닐리늄)테트라키스 (펜타플루오로페닐)보레이트,
트리메틸암모늄테트라키스 (2, 3 , 4 , 6-테트라플루오로페닐)보레이트,
트리에틸암모늄 테트라키스 (2,3, 4, 6-테트라플루오로페닐)보레이트 트리프로필암모늄 테트라키스 (2,3,4, 6-테트라플루오로페닐)보레이트 트리 (η-부틸)암모늄 테트라키스 (2, 3, 4, 6-,테트라플루오로페닐)보레이트 디메틸 (t-부틸)암모늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트 Ν,Ν—디메틸아닐리늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트 Ν ,Ν-디에틸아닐리늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트 또는 Ν,Ν-디메틸 -(2,4,6-트리메틸아닐리늄)테트라키스 -(2 ,3,4 , 6- 테트라플루오로페닐)보레이트 등의 삼치환된 암모늄염 형태의 보레이트계 화합물; 디옥타데실암모늄 테트라키스 (펜타플루오로페닐)보레이트, 디테트라데실암모늄 테트라키스 (펜타플루오로페닐)보레이트 또는 디사이클로핵실암모늄 테트라키스 (펜타플루오로페닐)보레이트 등의 다알킬암모늄염 형태의 보레이트계 화합물; 또는 트리페닐포스포늄 테트라키스 (펜타플루오로페닐)보레이트, 메틸디옥타데실포스포늄 테트라키스 (펜타플루오로페닐)보레이트 또는 트리 (2 , 6- , 디메틸페닐)포스포늄 테트라키스 (펜타플루오로페닐)보레이트 등의 삼치환된 포스포늄염 형태의 보레이트계 화합물 등을 들 수 있다.
한편, 상술한 메탈로센 화합물 중 2종 이상의 게 1 및 게 2 메탈로센 화합물 과, 제 1 및 제 2 조촉매 등을 사용해 흔성 담지 메탈로센 촉매를 제조하는 경우에는, 담체에 게 1 메탈로센 화합물 및 게 1 조촉매를 순차 담지한 후, 이어서 제 2 메탈로센 화합물 및 게 2 조촉매를 순차 담지할 수 있다. 이러한 각 담지 단계 사이에는 용매를 사용한 세척 단계가 추가 진행될 수 있다. 한편, 발명의 다른 일 구현예에 따르면, 상술한 바와 같이 담체에 메탈로센 화합물과 함께 특정의 분자량 조절제를 담지시킨 메탈로센 담지 촉매 존재 하에서 을레괸계 단량체를 중합하는 단계를 포함하는 폴리올레핀의 제조 방법이 제공된다.
상기 올레핀 단량체를 중합하는 단계는 담체에 상기 화학식 3 내지 6 중 하나로 표시되는 메탈로센 화합물 1종 이상과, 상기 화학식 1의 시클로펜타디에닐 금속 화합물과 하기 화학식 2의 유기 알루미늄 화합물을 흔합하여 상은에서, 예컨대, 22.5 내지 25 °C에서 50 내지 108 시간, 바람직하게는 62 내지 90 시간 동안 교반하여 얻어진 분자량 조절제 조성물을 함께 담지시켜 얻어진 메탈로센 담지 촉매의 존재 하에, 올레핀계 단량체를 슬러리 중합하는 단계로 이뤄질 수 있다.
상기 일 구현예에 따른 폴리올레핀의 제조 방법에서는, 임의의 올레핀계 단량체를 중합하여 폴리올레핀를 제조할 수 있다. 이때 사용 가능한 올레핀계 단량체의 구체적인 예로는, 에틸렌, 프로필렌, 1-부텐, 1- 핵센, 1-옥텐, 1-펜텐, 4-메틸 -1-펜텐, 1-핵센, 1-헵텐, 1-데센, 1-운데센, 1-도데센, 노보넨, 에틸리덴노보넨, 스티렌, 알파 -메틸스티렌 및 3- 클로로메틸스티렌 등이 있다. 다만, 이러한 제조 방법의 일 예에서는, 에틸렌을 사용하여 폴리에틸렌을 제조하거나, 에틸렌과 함께, 프로필렌, 1- 부텐, 1-핵센, 1-옥텐, 1-펜텐, 4-메틸 -1-펜텐, 1-핵센, 1-헵텐, 1-데센, 1-운데센 또는 1-도데센 등의 알파올레핀을 공중합하여 에틸렌 -알파올레핀 공중합체를 제조할 수 있다. 이때, 상기 알파올레핀과 같은 공단량체는 전체 올레핀계 단량체의 함량에 대해, 약 30 중량 % 이하, 혹은 약 0 내지 20 중량 %, 혹은 약 0. 1 내지 15 중량 %의 양으로 사용되어 공중합될 수 있다. 이러한 함량의 알파올레핀이 공중합됨에 따라, 최종 제조된 폴리올레핀이 블로우 몰딩용으로 적합한 밀도 범위 내에서 우수한 내웅력 균열성을 나타낼 수 있다. 다만, 지나치게 큰 함량의 알파올레핀이 사용되는 경우, 중합체의 밀도를 떨어뜨려 굴곡강도의 저하를 가져올 수 있다.
부가하여, 상술한 일 구현예의 중합 방법은, 예를 들어, 핵산, 부탄 또는 펜탄 등의 지방족 탄화수소계 용매 내에서 슬러리상으로 진행될 수 있다. 상기 분자량 조절제를 포함하는 메탈로센 촉매는 이러한 용매에 대한 우수한 용해도를 나타냄에 따라, 이들이 안정적으로 용해 및 반응계에 공급되어 상기 중합 공정이 효과적으로 진행될 수 있고, 큰 분자량 및 보다 넓은 분자량 분포를 갖는 폴리을레핀이 효과적으로 제조될 수 있다.
한편, 상술한 일 구현예의 중합 방법은 하나의 연속식 슬러리 중합 반웅기, 루프 슬러리 반응기, 기상 반웅기 또는 용액 반응기를 이용하여, 하나의 을레핀 단량체로 호모중합하거나 또는 2종 이상의 단량체로 공중합하여 진행할 수 있다.
상기 을레핀계 단량체의 중합은 약 25 내지 약 500 °C의 온도 및 약 1 내지 약 100 kgf/cm2에서 약 1 내지 약 24시간 동안 반웅시켜 수행할 수 있다. 구체적으로, 상기 올레핀계 단량체의 중합은 약 25 내지 약 500 °C , 바람직하게는 약 25 내지 약 200 °C , 보다 바람직하게는 약 50 내지 약 100 °C 의 온도에서 수행할 수 있다. 또한 반웅 압력은 약 1 내지 약 100 kgf/cm2 , 바람직하게는 약 1 내지 약 50 kgf/cm2 , 보다 바람직하게는 약 5 내지 약 40 kgf/cm2에서 수행할 수 있다.
본 발명에 따르면 올레핀 중합 시 중합체의 우수한 분자량 증가 효과를 가지면서도 높은 활성을 유지할 수 있다. 특히, 본 발명의 폴리올레핀의 제조 방법에서 단위 시간 (h)을 기준으로 사용된 촉매 단위 중량 함량 (g)당 생성된 중합체의 중량 (g)의 비로 계산한 촉매 활성이 1.0 kg/gCat - hr 이상 또는 1.0 내지 15 · 0 kg/gCat · hr, 바람직하게는 10.0 kg/gCat - hr 이상, 좀더 바람직하게는 8.0 kg/gCat · hr 이상이 될 수 있다. 특히, 본 발명은 메탈로센 담지 촉매 제조 시 담지되는 메탈로센 전구체의 촉매량 정도에 해당하는 소량의 분자량 조절제를 이용하면서도 단독 또는 흔성 담지 촉매의 분자량을 효과적으로 조절할 수 있다. 기존의 종래 기술들은 단순히 분자량을 증가 시키는 것에 그 특징을 보이고 있지만, 본 발명은 활성 저하가 없는 중합 조건을 유지하면서 분자량 조절제의 양에 따라 고분자 구조를 미세 조정할 수 있는 장점이 있다. 한편, 발명의 또 다른 구현예에 따르면, 상술한 일 구현예의 제조 방법에 따라 제조된 폴리올레핀이 제공된다. 이러한 폴리올레핀은 큰 분자량 및 고분자 탄성이 증가하여 스웰 (swell)이 좋아지는 분자량 분포를 가짐에 따라, 블로우몰딩, 인젝션몰딩 등으로 바람직하게 사용 가능할 수 있다.
본 발명에 따른 폴리올레핀은 상술한 분자량 조절제 등의 작용으로, 약 100,000 내지 2,000,000 혹은 약 110,000 내지 1,500,000, 약 120,000 내지 700,000, 약 150,000 내지 550,000, 약 200,000 내지 450 ,000의 큰 분자량을 가질 수 있고, 고분자 탄성이 증가하여 스웰 (swell)이 좋아지는 분자량 분포를 가질 수 있다. 특히, 슬러리 중합 등을 통해 폴리올레핀을 제조하는 경우에는, 폴리올레핀은 약 250,000 이상, 또는 약 280,000 이상, 약 300,000 이상, 약 330,000 이상의 더욱 큰 분자량을 가질 수 있다. 또한, 슬러리 중합 공정 등을 통해 제조된 폴리올레핀의 용융지수 (Ml 21.6 kg)는 15.0 g/ 10m in 이하 또는 0.01 내지 15 g/10min, 바람직하게는 10 g/10min 이하, 좀더 바람직하게는 1 g/iOmin 이하가 될 수 있다. 이러한 큰 분자량 및 고분자 탄성이 증가하여 스웰 (swell)이 좋아지는 분자량 분포로 인해, 우수한 기계적 물성 및 가공성을 동시에 나타낼 수 있다. 특히, 본 발명에 따르면 높은 분자량으로 ESCR(Environmental Stress-Cracking Resistance), 저온층격강도 등의 기계적 물성이 우수한 폴리올레핀을 제조할 수 있다. 이러한 폴리을레핀은 블로우몰딩용으로 사용될 수 있고, 인젝션몰딩용, 필름용, 파이프용 또는 보를캡용 등으로 사용될 수 있다.
【발명의 효과】
상술한 바와 같이 본 발명에 따르면, 큰 분자량 및 보고분자 탄성이 증가하여 스웰 (swel l )이 좋아지는 분자량 분포를 가짐에 따라, 블로우몰딩용이나 인젝션몰딩용 등으로 바람직하게 사용 가능한 폴리올레핀을 보다 효과적으로 제조할 수 있는 메탈로센 담지 촉매의 제조 방법이 제공된다.
이러한 메탈로센 담지 촉매를 사용하면, 용융지수가 낮고, 분자량 분포가 넓으며, 밀도나 용융지수 대비 내웅력 균열성 (Ful l Notch Creep Test ; FNCT)이 높아 블로우몰딩용이나 인젝션몰딩용 등으로 특히 적합한 폴리을레핀이 매우 효과적으로 제조될 수 있다. 【도면꾀 간단한 설명】
도 1은 실시예 10-12 및 비교예 4에 따라 제조된 메탈로센 담지 촉매를 사용한 중합 반응에 대한 고분자의 분자량 분포를 나타낸 그래프이다 (갈색: 시험예 10, 적색: 시험예 11, 보라색: 시험예 12, 청색: 비교시험예 4) .
도 2은 비교예 3, 실시예 8 에 따라 제조된 메탈로센 담지 촉매를 사용한 중합 반웅에 대한 고분자의 분자량 분포를 나타낸 그래프이다 (적색: 사험예 8, 녹색: 비교시험예 3) .
도 3은 비교예 2, 실시예 5 에 따라 제조된 메탈로센 담지 촉매를 사용한 중합 반응에 대한 고분자의 분자량 분포를 나타낸 그래프이다 (적색: 시험예 5, 청색: 비교시험예 2) .
【발명을 실시하기 위한 구체적인 내용】
이하, 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예 는 발명을 예시하는 것일 뿐 발명의 범위가 하기 실시예에 한정되는 것은 아니다. [실시예]
<메탈로센 촉매 전구체의 제조 실시예 >
합성예 1
[t-Bu^OCCHg Csiy^rMez의 합성
Figure imgf000036_0001
t-Buᄋ〜
6-클로로핵사놀 (6-chlorohexanol)을 사용하여 ^헌 Tetrahedron Lett . 2951 (1988))에 제시된 방법으로 t-butyl-0-(CH2)6-Cl을 제조하고, 여기에 NaC5¾를 반응시켜 t-butyl-으 (C¾)6-C5H5를 얻었다 (수율 60¾>, b.p. 80 °C/0.1mmHg).
상기 t-butyl-0-(CH2)6-C5H5 2.0 g (9.0 隱 ol)를 -78 °C에서 THF에 녹이고, 여기에 노르말 부틸리튬 (n-BuLi) 1.0 당량을 천천히 가한 후, 실온으로 승온시킨 다음, 8시간 동안 반응시켰다. 이 반웅 용액을 - 78 °C에서 Zr(CH3)2(THF)2 (1.70g, 4.5 nmol)/THF (30 mL)의 서스펜견 (suspension) 용액에 천천히 가한 다음, 실온에서 6 시간 동안 더 반웅시켜 최종 반응 생성액을 얻었다.
상기 반웅 생성액을 진공 건조시켜 휘발성 물질을 모두 제거한 다음, 남은 오일성 액체 물질에 핵산 (hexane)을 가한 후 슬렝크 글라스 필터 (schlenk glass filter)을 이용하여 여과하였다. 여과된 용액을 진공 건조시켜 핵산을 제거한 다음, 여기에 다시 핵산을 가해 저온 (-20 °C)에서 침전을 유도하였다. 얻어진 침전물을 저온에서 걸러내어 흰색 고체의 [t- Bu-0(CH2)6-C5H4]2ZrCl2 화합물을 92 >의 수율로 수득하였다. 수득된 [t-Bu_ 0(C¾)6-C5H4]2ZrCl2의 측정된 羅 및 13C NMR 데이터는 다음과 같았다.
¾ NMR (300 MHz, CDC13): 6.28 (t, J=2.6Hz, 2H), 6.19 (t, J =2.6Hz, 2H), 3.31 (t-J=6.6Hz, 2H) , 2.62 (t, J=8Hz, 2H), 1.7-1.3 (m, 8H), 1.17 (s, 9H)
13C NMR (CDCls): 135.09, 116.66, 112.28, 72.42, 61.52, 30.66, 30. 14, 29. 18 , 27.58 , 26.00 합성예 2
Figure imgf000037_0001
상온에서 50g의 Mg(s)를 10L 반응기에 가한 후, THF 300 mL을 가하였다.
h 0.5g 정도를 가한 후, 반웅기 온도를 50°C로 유지하였다. 반웅기 온도가 안정화된 후, 250g의 6-t-부록시핵실 클로라이드 (6-t-buthoxyhexyl chlor ide)를 공급 펌프 ( feeding pump)를 이용하여 5 mL/min의 속도로 반응기에 가하였다. 6-t-부록시핵실 클로라이드를 가함에 따라, 반응기 온도가 4~5도 정도 상승하는 것을 관찰하였다. 계속적으로 6-t-부특시핵실 클로라이드를 가하면서 12시간 교반하였다.
반응 12시간 후 검은 색의 반응 용액을 얻을 수 있었다. 생성된 검은 색의 용액 2niL를 취한 뒤, 물을 가하여 유기층을 얻어 - MR을 통해 6_t_ 부특시핵산 (6-t-butoxyhexane)을 확인할 수 있었으며, 6-t- 부록시핵산으로부터 그리냐드 (Gr ignard) 반웅이 잘 진행되었음을 알 수 있었다. 그리하여, 6— t-부특시핵실 마그네슘 클로라이드 (6-t-buthoxyhexyl magnes ium chlor ide)를 합성하였다.
MeSiCls 500g과 1L의 THF를 반웅기에 가한 후 반응기 온도를 -
20°C까지 넁각하였다. 합성한 6-t-부특시 헥실 마그네슘 클로라이드 중 560g을 공급 펌프를 이용하여 5mL/min의 속도로 반웅기에 가하였다.
그리냐드 시약의 공급이 끝난 후, 반웅기 온도를 천천히 상온으로 을리면서 12시간 교반하였다.
반응 12시간 후 흰색의 MgCl2염이 생성되는 것을 확인하였다. 핵산
4L를 가하여 labdor i를 통해 염을 제거하여 필터 용액을 얻을 수 있었다. 얻은 필터 용액을 반웅기에 가한 후 70°C에서 .핵산을 제거하여 엷은 노란색의 액체를 얻을 수 있었다.
얻은 액체를 -NMR을 통해 원하는 메틸 (6-t- 부록시핵실)디클로로실란 (methyl (6-t- butoxyhexyl )dichlorosi lane)화합물임을 확인할 '수 있었다.
-匿 (CDCls): δ= 3.3 (t, 2H), 1.5(m, 3H), 1.3(m, 5H) , 1.2(s,
9H), l.Km, 2H), 0.7(s, 3H)
테트라메틸시클로펜타디엔 1.2mole(150g)과 2.4L의 THF를 반응기에 가한 후 반응기 온도를 -20°C로 넁각하였다. n-BuLi 480mL을 공급 펌프를 이용하여 5,L/min의 속도로 반응기에 가하였다. n— BuLi을 가한 후 반웅기 은도를 천천히 상온으로 올리면서 12시간 교반하였다. 반응 12시간 후, 당량의 메틸 (6-t-부록시 핵실)디클로로실란 (326g, 350mL)을 빠르게 반응기에 가하였다. 반웅기 온도를 천천히 상온으로 을리면서 12시간 교반하였다. 반응 12시간 후, THF를 제거하고 4L의 핵산을 가하여 labdori를 통해 염을 제거한 필터 용액을 얻을 수 있었다. 필터 용액을 다시 반응기에 가한 후, 핵산을 70°C에서 제거하여 노란색의 용액을 얻을 수 있었다. 얻은 노란색의 용액을 ᅳ NM을 통해 메틸 (6-t- 부록시핵실) (테트라메틸 CpH)t_부틸아미노실란 (methyl (6-t- butoxyhexyl KtetramethylCpH -butylaminosi lane) 화합물임을 확인할 수 있었다.
n-BuLi과 리간드 디메틸 (테트라메틸 CpH)t- 부틸아미노실란 (dimethyl (tetramethylCpH)t-butylaminosi lane)으로부터 THF용액에서 합성한 -78°C의 리간드의 디리튬염에 TiCl3(THF)3(10匪 ol)을 빠르게 가하였다. 반웅 용액을 천천히 -78°C에서 상온으로 을리면서 12시간 교반하였다.
12시간 교반 후, 상온에서 당량의 PbCl2(10醒 ol)을 반응용액에 가한 후 12시간 교반하였다. 12시간 교반 후, 푸른색을 띠는 짙은 검은색의 용액을 얻을 수 있었다. 생성된 반웅 용액에서 THF를 제거한 후, 핵산을 가하여 생성물을 여과하였다. 얻은 필터 용액에서 핵산을 제거한 후 ¾- NMR을 통해 원하는 [메틸 (6-t-부록시핵실)실릴 (η5-테트라메틸 Cp)(t- 부틸아미도)] TiCl2( [methyl (6-t-butoxyhexyl )silyl( ri 5-tetramethylCp)(t- butylamido)]TiCl2)화합물임을 확인할 수 있었다.
¾-NMR (CDCI3): δ= 3.3 (s, 4H), 2.2(s, 6H) , 2.1(s, 6G) 1.8~0.8(m), 1.4(s, 9H), 1.2(s, 9H), 0.7(3, 3H)
Figure imgf000039_0001
3-1 리간드화합물의 제조
f luorene 2 g을 5 mL MTBE, hexane 100 mL에 녹여 2.5 M n-BuLi hexane solution 5.5 mL를 dry ice/acetone bath에서 적 7]·하여 상온어】.서 밤새 교반하였다. (6-(tert-butoxy)hexyl)dichloro(niethyl)silane 3.6 g을 핵산 (hexane) 50 mL에 녹여 dry ice/acetone bath하에서 fluorene—Li 슬러리를 30분 동안 transfer하여 상온에서 밤새 교반하였다. 이와 동시에 5 , 8-di methyl -5 , 10-d i hydr 0 i ndeno [ 1 , 2-b] i ndo 1 e (12 隱 ol, 2.8 g) 또한 THF 60 mL에 녹여 2.5M n-BuLi hexane solut ion 5.5 mL를 dry ice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. f luorene과 (6— (tert- butoxy)hexyl )dichloro(methyl )si lane 과의 반응 용액을 NMR 샘플링하여 반응 완료를 확인한 후 5,8-dimethy卜 5,10-dihydroindeno[l,2-b]indole-Li solut ion을 dry ice/acetone bath하에서 transfer하였다. 상온에서 밤새 교반하였다. 반웅 후 ether/water로 추출 (extraction)하여 유기층의 잔류수분을 MgS04로 제거 후 리간드 화합물 (Mw 597.90, 12隱 ol)을 얻었으며 이성질체 (isomer) 두 개가 생성되었음을 1H-NMR에서 확인할 수 있었다.
¾ NMR (500 MHz, d6~benzene): -0.30 - -0.18 (3H, d), 0.40 (2H, m), 0.65 - 1.45 (8H, m), 1.12 (9H, d), 2.36 - 2.40 (3H, d), 3.17 (2H, m), 3.41 - 3.43 (3H, d), 4.17 - 4.21 (1H, d) , 4.34 - 4.38 (1H, d), 6.90 - 7.80 (15H, m)
3-2메탈로센 화합물의 제조 상기 3-1에서 합성한 리간드 화합물 7.2 g (12睡 ol)을 diethylether 50 mᄂ에 녹여 2.5 M n-BuLi hexane solution 11.5 mL를 dry ice/acetone bath에서 적가하여 상은에서 밤새 교반하였다. 진공 건조하여 갈색 (brown color)의 sticky oil을 얻었다. 를루엔에 녹여 슬러리를 얻었다. ZrCl4(THF)2를 준비하고 를루엔 50 mL를 넣어 슬러리로 준비하였다. ZrCl4(THF)2의 50 mL 를루엔 슬러리를 dry ice/acetone bath에서 transfer하였다. 상온에서 밤새 교반함에 따라 보라색 (violet color)으로 변화하였다. 반웅 용액을 필터하여 LiCl을 제거하였다. 여과액 (filtrate)의 틀루엔을 진공 건조하여 제거한 후 핵산을 넣고 1시간 동안 sonication하였다. 슬러리를 필터하여 여과된 고체 (filtered solid)인 질은 보라색 (dark violet)의 메탈로센 화합물 6 g(Mw 758.02, 7.92 隱 ol, yield 66 mol¾>)을 얻었다. 1H— NMR상에서 두 개의 isomer가 관찰되었다.
¾ NMR (500 MHz, CDC13): 1.19 (9H, d), 1.71 (3H, d), 1.50 - 1.70(4H, m), 1.79(2H, m), 1.98 - 2.19(4H, m), 2.58(3H, s), 3.38 (2H, m), 3.91 (3H, d) , 6.66 - 7.88 (15H, m)
<분자량조절제와 제조 실시예 >
합성예 4: 분자량조절제의 제조 i + 2 TIBAL
Figure imgf000040_0001
250 mL 등근바닥 플라스크에 비스 (2-부틸사이클로펜타 -2,4-디엔 -1- 일)티타늄 (IV) 클로라이드 (bis(2-butylcyclopenta-2,4-dien-l- yl)titanium(IV) chloride) 1.08 g (3 隱 ol)을 넣고 핵산 50 mL를 넣은 후 교반하였다. 여기에 트리이소부틸 알루미늄 (triisobutyl aluminum, 1M in hexane) 6 mL (6 睡 ol)를 투입하고 상은에서 3일 동안 교반하였다. 용매를 진공으로 제거한 후 푸른 액상흔합물을 얻었고, 이 흔합물은 티타늄이 환원된 상태로서 산화되거나 색이 변하지 않았다. 이하에서 상기 푸른색 흔합물은 정제 과정 없이 그대로 사용되었다. ¾ NMR (CDCI3, 500 MHz): 6.1-6.6 (br m, 8H), 2.2 (m, 4H), 1.0- 1.8 (br m, 16H), 0.4 (br s, 24H) 합성예 5: 분자량조절제의 제조
2 TIBAL
Figure imgf000041_0001
250 mL 등근바닥 플라스크에 비스 (2-에틸사이클로펜타 -2,4-디엔 -1- 일)티타늄 (IV) 클로라이드 (bis(2-ethylcyclopenta-2,4-dienᅳ 1- yl)titanium(IV) chloride) 0.91 g (3 瞧 ol)을 넣고 핵산 50 mL를 넣은 후 교반하였다. 여기에 트리이소부틸 알루미늄 (triisobutyl aluminum, 1M in hexane) 6 mL (6 隱 ol)를 투입하고 상온에서 3일 동안 교반하였다. 용매를 진공으로 제거한 후 푸른 액상흔합물을 얻었고, 이 흔합물은 티타늄이 환원된 상태로서 산화되거나 색이 변하지 않았다. 이하에서 상기 푸른색 흔합물은 정제 과정 없이 그대로 사용되었다.
¾ NMR (CDCls, 500 MHz): 6.2-6.6 (br m, 8H), 1.0-1.8 (br m, 7H), 0.8 (br s, 24H) 합성예 6: 분자량조절제의 제조
Figure imgf000041_0002
250 mL 등근바닥 플라스크에 비스 (2-(6-t-부톡시-핵실)사이클로펜타- 2,3—디엔 -1-일)티타늄 클로라이드 (bis(2-(6-t-butoxy-hexyl)cyclopenta- 2,4-dien-l-yl)titanium(IV) chloride) 1.68 g (3 誦 ol)을 넣고 핵산 50 mL를 넣은 후 교반한다. 여기에 트리이소부틸 알루미늄 (triisobutyl aluminum, 1M in hexane) 6 mL (6 mmol)를 투입하고 상온에서 3일 동안 교반하였다. 용매를 진공으로 제거한 후 푸른 액상흔합물을 얻었고, 이 흔합물은 티타늄이 환원된 상태로서 산화되거나 색이 변하지 않았다. 이하에서 상기 푸른색 흔합물은 정제 과정 없이 그대로 사용되었다.
¾ NMR (CDCls, 500 腿 z): 6.31 (br m, 8H) , 3.5 (m, 4Η), 1.1-1.9
(br m, 28H), 0.9 (br s, 18H), 0.3 (br s, 18H) 합성예 7: 분자량조절제의 제조
\
+ 2 기
— : 250 mL 둥근 바닥 플라스크 (round bottom flask)에 비스 (사이클로펜타디에닐)티타늄 디클로라이드 (bis(cyclopentadienyl)- titanium dichloride) 0.83 g 및 핵산 50 mL를 순차적으로 투입한 후 교반하였다. 여기에 트리이소부틸알루미늄 (triisobutylalunium, 1M in hexane) 6 mL를 투입하고 상온에서 3일 동안 교반한 다음, 용매를 진공으로 제거하여 녹색 흔합물을 수득하였고 이 흔합물은 티타늄이 환원된 상태로서 산화되거나 색이 변하지 않았다. 이하에서 상기 녹색 흔합물은 정제 과정 없이 그대로 사용되었다. '
¾ 丽 (CDCls, 500 MHz): 6.3-6.6 (br m, 10H), 1.2-1.8 (br m, 4H) 0.8 (br s, 18H) .
<메탈로센 담지 촉매의 제조실시예 >
실시예 1: 메탈로센 담지 촉매의 제조
먼저, 실리카 (Grace Davison사 제조 SYL0P0L 948)는 400 °C의 온도에서 15 시간 동안 진공을 가한 상태에서 탈수하였다.
유리 반웅기에 10 wt% 메틸알루미녹산 (MAO)/를루엔 용액을 49.7 mL로 투입하고 40 °C에서 실리카 (Grace Davison사 제조 . SYL0P0L 948) 9.1 g를 투입한 후, 반웅기 온도를 80 °C로 올리면서 교반하였다. 이후 온도를 80 °C로 유지한 후 상기 합성예 1에서 제조된 촉매 전구체 550 mg (0. 1 誦 ol /gSi02)를 를루엔 20 mL에 녹인 후, 상기 합성예 4에서 제조된 분자량 조절제를 53 mg (전구체의 10 m()l¾)를 함께 넣어서 바로 반응기에 투입하였다. 2 시간 동안 교반 후, 아닐리늄 보레이트 (N, N- dimethyl ani 1 inium tetraki s(pentaf luorophenyl )borate , AB) 948 mg(0. 12 隱 ol/gSi02)을 를루엔 20 mL에 미리 녹인후 용액 상태로 투입하고 40 °C로 2 시간 동안 교반하였다. 반웅이 끝난 후 교반을 멈추고 를루엔 층을 분리하여 제거한 후 40 °C에서 감압하여 남아 있는 를루엔을 제거 ¼여 메탈로센 담지 촉매를 제조하였다. 실시예 2 및 3: 메탈로센 담지 촉매의 제조
하기 표 1에 나타낸 바와 같이, 분자량 조절제의 함량을 각각 160 mg(30 mol%) 및 270 mg(50 mol%)으로 투입한 것을 제외하고는, 실시예 1과 동일한 방법으로 메탈로센 담지 촉매를 제조하였다. 실시예 4: 메탈로센 담지 촉매의 제조
하기 표 1에 나타낸 바와 같이, 상기 합성예 2에서 제조된 촉매 전구체 465 mg (0. 1 隱 ol /gSi )를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 메탈로센 담지 촉매를 제조하였다.
'
실시예 5및 6: 메탈로센 담지 촉매의 제조
하기 표 1에 나타낸 바와 같이, 분자량 조절제의 함량을 각각 160 mg(30 mol%) 및 270 mg(50 mol%)으로 투입한 것을 제외하고는, 실시예 4와 동일한 방법으로 메탈로센 담지 촉매를 제조하였다. . 실시예 7: 메탈로센 담지 촉매의 제조
. 하기 표 1에 나타낸 바와 같이, 상기 합성예 3에서 제조된 촉매 전구체 690 mg (0. 1 隱 ol /gSi02)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 메탈로센 담지 촉매를 제조하였다. 실시예 8 및 9: 메탈로센 담지 촉매의 제조
하기 표 1에 나타낸 바와 같이, 분자량 조절제의 함량을 각각 160 mg(30 mol ) 및 270 mg(50 mol%)으로 투입한 것을 제외하고는, 실시예 7과 동일한 방법으로 메탈로센 담지 촉매를 제조하였다. 실시예 10: 메탈로센 담지 촉매의 제조
먼저, 실리카 (Grace Davi son사 제조 SYL0P0L 948)는 400°C의 온도에서 15 시간 동안 진공을 가한 상태에서 탈수하였다.
유리 반응기에 10 wt% 메틸알루미녹산 (MAO)/를루엔 용액을 49.7 mL로 투입하고 40 °C에서 실리카 (Grace Davi son사 제조 SYL0P0L 948) 9. 1 g를 투입한 후, 반웅기 온도를 80 °C로 을리면서 교반하였다. 이후 온도를 80 !로 낮춘 후 상기 합성예 3에서 제조된 촉매 전구체 520 mg (0.075 隱 ol /gSi02)를 를루엔 20 mL에 녹인 후, 상기 합성예 4에서 제조된 분자량 조절제를 53 mgdO mol¾ 를 함께 넣어서 바로 반웅기에 투입하였다. 2 시간 동안 교반 후, 상기 합성예 1에서 제조된 촉매 전구체 550 mg (0. 1 隱 ol /gSi02)를 40 °C에서 2 시간 동안 반응시킨 후, 아닐리늄 보레이트 (N , N-dimethyl ani 1 inium tetraki s(pentaf luorophenyl )borate , AB) 948 mg( l .2 隱 ol /gSi02)을 를루엔 20 mL에 미리 녹인후 용액 상태로 투입하고 40 °C로 2 시간 동안 교반하였다. 반웅이 끝난 후 교반을 멈추고 를루엔 층올 분리하여 제거한 후 40 °C에서 감압하여 남아 있는 를루엔을 제거하여 메탈로센 담지 촉매를 제조하였다. 실시예 11 및 12: 메탈로센 담지 촉매의 제조
하기 표 1에 나타낸 바와 같이, 분자량 조절제의 함량을 각각 160 mg(30 mol%) 및 270 mg(50 mol%)으로 투입한 것을 제외하고는, 실시예 10과 동일한 방법으로 메탈로센 담지 촉매를 제조하였다. 비교예 1: 메탈로센 담지 촉매의 제조
먼저, 실리카 (Grace Davi son사 제조 SYL0P0L 948)는 400 °C의 온도에서 15 시간 동안 진공을 가한 상태에서 탈수하였다. 유리 반웅기에 10 wt% 메틸알루미녹산 (MAO)/를루엔 용액을 49.7 mL로 투입하고 40 °C에서 실리카 (Grace Davison사 제조 SYL0P0L 948) 9.1 g를 투입한 후, 반응기 온도를 80 °C로 올리면서 교반하였다. 이후 온도를 80 °C로 낮춘 후 상기 합성예 1에서 제조된 촉매 전구체 550 mg(0.1 讓 ol/gSi¾)를 를루엔 20 mL에 녹여 바로 반응기에 투입하였다. 2 시간 동안 교반 후, 아닐리늄 보레이트 (N, N-dimethylanilinium tetrakis(pentaf luorophenyDborate, AB) 948 mg(1.2 mmol/gSi02)을 를루엔 20 mL에 미리 녹인후 용액 상태로 투입하고 40 °C로 2 시간 동안 교반하였다, 반응이 끝난 후 교반을 멈추고 를루엔 층을 분리하여 제거한 후 40 °C에서 감압하여 남아 있는 를루엔을 제거하여 메탈로센 담지 촉매를 제조하였다. 비교예 2~3: 메탈로센 담지 촉매의 제조
하기 표 1에 나타낸 바와 같이, 상기 합성예 2에서 제조된 촉매 전구체 465 mg(0.1 隱 ol/gSi02) 및 상기 합성예 3에서 제조된 촉매 전구체 690 mg(0.1 隱 ol/gSi02)를 각각 사용한 것을 제외하고는, 비교예 1과 동일한 방법으로 메탈로센 담지 촉매를 제조하였다. 비교예 4: 메탈로센 담지 촉매의 제조
먼저, 실리카 (Grace Davison사 제조 SYL0P0L 948)는 400 °C의 온도에서 15 시간 동안 진공을 가한 상태에서 탈수하였다.
유리 반응기에 10 wt% 메틸알루미녹산 (MA0)/를루엔 용액을 49.7 mL로 투입하고 40 °C에서 실리카 (Grace Davison사 제조 SYL0P0L 948) 9.1 g를 투입한 후, 반웅기 온도를 80 °C로 을리면서 교반하였다. 이후 온도를 80 °C로 낮춘 후 상기 합성예 3에서 제조된 촉매 전구체 520 mg(0.075 匪 ol/gSi02)를 틀루엔 20 mL에 녹여 반웅기에 투입하여 2 사간 동안 교반 후, 상기 합성예 1에서 제조된 촉매 전구체 550 mg(0.1醒 ol/gSi02)를 40 °C에서 2 시간 동안 반응 후, 아닐리늄 보레이트 (N, N-dimethylanilinium tetrakis(pentaf luorophenyDborate, AB) 948 mg(0.12 mmol/gSi02)을 를루엔 20 mL에 미리 녹인후 용액 상태로 투입하고 40 °C로 2 시간 동안 교반하였다. 반웅이 끝난 후 교반을 멈추고 를루엔 층을 분리하여 제거한 후 40 °C에서 감압하여 남아 있는 를루엔을 제거하여 메탈로센 담지 촉매를 제조하였다.
<슬러리 중합 시험예 >
중합 시험예 1
파르 (Parr ) 반웅기를 이용하며, 아르곤으로 채워진 고립된 시스템에 핵산 400 mL를 넣은 뒤, 트리메틸알루미늄 1 g을 넣어서 반응기 내부를 건조시키고 핵산을 버렸다. 다시 핵산 400 mL을 반웅기에 채운 뒤, 트리이소부틸알루미늄 (tr i i sobutyl aluminium) 0.5 g을 넣었다. 상기 실시예 1에서 제조된 담지 촉매를 아르곤으로 채워진 글러브 박스에서 10 mg으로 개량하여 반웅기 안으로 넣은 뒤, 아르곤 벤트한 후 78 °C에서 에틸렌 30 bar 압력을 만들어서 1 시간 동안 중합을 진행하였다. 중합 시험예 2~12
하기 표 1에 나타낸 바와 같이 상기 실시예 2~12에서 제조된 담지 촉매를 각각 사용한 것을 제외하고는 : 중합 시험예 1과 동일한 방법으로 슬러리 중합을 진행하였다. 중합 비교시험예 1~4
하기 표 1에 나타낸 바와 같이 비교예 1~4에서 제조된 담지 촉매를 각각 사용한 것을 제외하고는, 시험예 1과 동일한 방법으로 슬러리 중합을 진행하였다. 중합 비교시험예 5~8
하기 표 1에 나타낸 바와 같이, 상기 비교예 1~4에서 제조된 담 촉매를 각각 사용하며, 상기 합성예 4에서 제조된 분자량 조절제를 1 mg(0.6 瞧 ol /gSi02)를 추가로 반웅기에 투입한 것을 제외하고는, 중 시험예 1과 동일한 방법으로 슬러리 중합을 진행하였다. <실험예 >
중합체 물성 평가실험예
중합 시험예 1 내지 12 및 중합 비교시험예 1 내지 4에서 제조된 폴리에틸렌의 특성을 하기의 방법으로 측정하고, 그 결과를 하기의 표 1에 나타내었다. a) 분자량 (Mw): 겔 투과 크로마토그래피 (GPC: gel permeation chromatography)를 이용하여 중량 평균분자량으로 측정하였다. b) 분자량 분포 (PDI): 겔 투과 크로마토그래피 (GPC: gel permeation chromatography) 를 이용하여 중량평균분자량을 수평균분자량으로 나눈 값으로 측정하였다. c) 촉매 활성 (Activity): 반응기 안에 TMA 0.5 g을 넣어 건조시킨 후 핵산 400 mL에 담지 촉매 약 100 mg을 알킬 알루미늄, 분자량조절제 (丽 E)와 함께 넣은 후 80 도에서 에틸렌 9 bar 하에서 중합을 1 시간 동안 진행한 후 중합체를 얻고 필터 후 밤새 건조시켜 무게를 측정한 후 단위 시간 (hr) 당 촉매 활성을 산측하였다. [표 1]
증합 촉매 丽 E 활성 Mw PDI 丁 ᄇ 1 " (gPE/
(mol ) gCat/hr)
담체 /
담지촉매
시험예 1 촉매전구체 1/ 10* 10.4 128,000. 2.2 slurry증합
soluble匪
담체 /
^지촉매
시험예 2 촉매전구체 1/ 30* 10.1 252,000 2.5 slurry중합
soluble匪
담체 /
담지촉매
시험예 3 촉매전구체 1/ 50* 9.8 281,000 2.4 slurry중합
soluble MWE
담체 /·■
담지촉매
시험예 4 촉매전구체 2/ 10* 2.6 594,000 2.4 slurry중합
soluble MWE
담지촉매 담체 /
시험예 5 30* 2.3 660,000 2.3 slurry중합 촉매전구체 2/ soluble MWE
담체 /
담지촉매
시험예 6 촉매전구체 2/ 50* 1.8 780,000 2.3 slurry 중합
soluble MWE
담체 /
담지촉매
시험예 7 촉매전구체 3/ 10* 2.3 791,000 3.4 slurry 증합
soluble丽 E
담체 /
담지촉매
시험예 8 촉매전구체 3/ 30* 2.0 972,000 3.1 slurry증합
soluble MWE
담체 /
담지촉매
시험예 9 촉매전구체 3/ 50* 1.5 1,020,900 3.1 slurry중합
soluble MWE
담체 /
시험예 담지촉매 촉매전구체 1(0.1)
10* 11.6 .. 273,000 3.4 10 slurry 증합 +3(0.075)/
soluble MWE
담체 /
시험예 담지촉매 촉매전구체 1(0.1)
30* 11.3 318,000 3.9 11 slurry 중합 +3(0.075)/
soluble MWE
담체 /
시험예 담지촉매 촉매전구체 1(0.1)
50* 11.5 298,000 3.3 12 slurry 증합 +3(0.075)/
soluble丽 E
비교 담지촉매 담체 / - 10.1 103,100 2.1 시험예 1 slurry 중합 촉매전구체 1
비교 담지촉매 담체 / - 2.8 553,000 2.5 시험예 2 slurry 중합 촉매전구체 2
비교 담지촉매 담체 /
2.3 693,000 3.6 시험예 3 slurry 증합 촉매전구체 3
담체 /
비교 담지촉쩨
촉매전구체 1(0.1) - 11.1 263,000 3.6 시험예 4 slurry중합
+3(0.075)
비교 담지촉매 담체 /
600" 6.3 228,000 2.2 시험예 5 slurry 증합 촉매전구체 1
비교 담지촉매 담체 /
600" 1.3 710,000 2.3 시험예 6 slurry 중합 촉매전구체 2
비교 담지촉매 담체 /
600" 1.0 730,000 3.4 시험예 7 slurry 중합 촉매전구체 3
담체 /
비교 담지촉매
촉매전구체 1(0.1) 600" 7.3 293,000 3.2 시험예 8 slurry중합
+3(0.075
* 시험예 1 내지 12: 분자량 조절제를 담체에 담지시켜 사용함
" 비교시험예 5 내지 8: 분자량 조절제로서 soluble丽 E를 중합공정에사 전구체 대비 -6당량의 함량을 투입함
또한, 실시예 10~12 및 비교예 4에 따라 제조된 메탈로센 담지 촉매를 사용한 중합 반응에 대한 고분자의 분자량 분포 그래프를 도 1에 나타내고 (갈색: 시험예 10 , 적색: 시험예 11, 보라색: 시험예 12, 청색: 비교시험예 4), 비교예 3, 실시예 8에 따라 제조된 메탈로센 담지 촉매를 사용한 중합 반응에 대한 고분자의 분자량 분포 그래프를 도 2에 나타내었으며 (적색: 시험예 8, 녹색: 비교시험예 3), 비교예 2, 실시예 5 에 따라 제조된 메탈로센 담지 촉매를 사용한 중합 반웅에 대한 고분자의 분자량 분포 그래프를 도 3에 나타내었다 (적색: 시험예 5, 청색: 비교시험예 2) . 여기서, X축은 dlogwf/dlogM이며 y축은 logM이며, 세로축은 고분자의 Intens i ty 축이며 가로축은 고분자의 분자량 축이다.
이러한 고분자의 분자량 분포 그래프에 따르면, 본 발명은 종래의 기술에 비해 활성 변동이 적으며 분자량 변동 폭이 조절제 양에 따라 변동하는 것을 확인할 수 있으며, 이로써 담지 촉매 제조시 미세 조정이 가능한 기술임을 알 수 있다. 특히, 도 2의 경우는 기존 분자량 조절제를 중합 중에 투입시 활성 저하가 심하고 분자량 증가하는 부분이 크지 않았지만 담지 촉매화를 함으로써 분자량 증가 및 활성이 어느 정도 유지되는 것을 확인할 수 있었다. 또한, 분자량 조절제의 변화에 따라 고분자 봉우리가 고분자 쪽으로 움직이고 쌍봉을 이루는 고분자 개형이 단일봉으로 좁혀지는 것을 확인할 수 있다. 이는 블로우 몰딩에서 중요하게 여기는 고분자 탄성이 증가하여 스웰 (swel l )이 좋아지는 모형으로 변경됨을 확인할 수 있기에 물성적으로 좋은 방향의 고분자를 만들고 있음을 알 수 있다.
상기 표 1에 나타낸 바와 같이, 본 발명에 따르면 올레핀 중합 시 중합체의 우수한 분자량 증가 효과를 가지면서도 활성이나 공중합성 등의 저하를 일으키지 않는 우수한 효과를 얻을 수 있다. 특히, 과량의 분자량 조절제가 들어가게 되면 미반웅한 조절제가 회수 공정에 다시 반웅기로 들어가면서 발현되는 경우가 있다. 이 경우 원하지 않는 중합 공정에 의해 공정이 흔들리는 경우가 생기게 되기에 반웅기내에 분자량 조절제를 투입하는 것은 상업적으로 적절한 방법이 되지 않는다.
더욱이, 비교시험예 5 내지 8에서와 같이, 중합 공정 중에 분자량 조절제를 사용하는 경우는 반웅 효율면에서 좋지 않고 실제 양산 공장의 경우 원부 원료의 recycle을 통해 반웅을 시키는데 미반응 분자량 조절제가 다른 반웅 공정에 의도치 않게 작용을 하게 되면 원치 않는 중합 공정을 가져올 수 있다. 즉, 중합 중에 투입하는 분자량 조절제는 전체적인 중합 공정에 불안정을 가질 수 있기에 실험실 수준에서는 분자량 조절 효과가 있을지 몰라도 실제 양산 scale의 system에서는 공정 불안정을 가져올 수 있다. 본 발명은 이러한 문제점을 적극적으로 해결하고자 전구체 대비 촉매량 수준의 분자량 조절제를 사용하였고 실제 공장 적용시 분자량 조절제에서 기인하는 부작용을 거의 없게 하는 장점이 있다.

Claims

【청구범위】
【청구항 1】
하기 화학식 1의 시클로펜타디에닐 금속 화합물과 하기 화학식 2의 유기 알루미늄 화합물을 흔합하여 상온에서 50 내지 108 시간 동안 교반하여 분자량 조절제 조성물을 제조하는 단계; 및
담체에 하기 화학식 3 내지 6 중 하나로 표시되는 메탈로센 화합물 1종 이상과 상기 분자량 조절제 조성물을 담지시키는 단계 ;
를 포함하는 메탈로센 담지 촉매의 제조 방법 :
[화학식 1]
(R^Cp^ CR^Cp^M^s
화학식 1에서 Cp1 및 Cp2는 각각 독립적으로 시클로펜타디에닐기, 인데닐기 또는 플루오레닐기를 포함하는 리간드이고; R1 및 R2는 Cp1 및 Cp2의 치환기로서 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬, 탄소수 1 내지 20의 알케닐, 탄소수 7 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 탄소수 6 내지 20의 아릴, 탄소수 1 내지 20의 헤테로 알킬, 탄소수 2 내지 20의 헤테로 알케닐, 탄소수 6 내지 20의 헤테로 알킬아릴, 탄소수 6 내지 20의 헤테로 아릴알킬 또는 탄소수 5 내지 20의 헤테로 아릴이며; M4은 4족 전이금속 원소이며; X는 할로겐이고,
[화학식 2]
4R5A1
화학식 2에서 R3 , R4 및 R5는 각각 독립적으로 탄소수 4 내지 20의 알킬기 또는 할로겐이며, R3 , R4 및 R5 중 적어도 하나는 탄소수 4 내지 20의 알킬기이고,
[화학식 3]
Figure imgf000051_0001
상기 화학식 3에서,
M1은 4족 전이금속이고;
Cp5 및 Cp6는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디엔닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐, 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
Ra 및 Rb는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아 1, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고;
Z1은 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시, 또는 C7 내지 C40의 아릴알콕시이고;
n은 1 또는 0 이고;
[화학식 4]
(Cp7Rc)mB1(Cp8Rd)M2Z2 3-m
상기 화학식 4에서 ,
M2는 4족 전이 금속이고;
Cp7 및 Cp8는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디에닐, 인데닐, 4, 5, 6 ,그테트라하이드로 -1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며 ;
Rc 및 Rd는 서로 동일하거나 상이하고, 각각 독림적으로 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬 , C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고;
Z2는 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 " C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시, 또는 C7 내지 C40의 아릴알콕시이고; B1은 Cp¾c 고리와 Cp4Rd 고리를 가교 결합시키거나, 하나의 Cp4Rd 고리를 M2에 가교 결합시키는, 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼 중 하나 이상 또는 이들의 조합이고;
m은 1 또는 0 이고;
[화학식 5]
(Cp9Re)B2(J )M3Z3 2
상기 화학식 5에서,
M3은 4족 전이 금속이고;
Cp9는 시클로펜타디에닐 인데닐, 4,5,6,7-테트라하이드로 -1ᅳ인테닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
Re는 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고;
Z3은 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시, 또는 C7 내지 C40의 아릴알콕시이고'; ᅳ
B2는 Cp¾e 고리와 J를 가교 결합시키는 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼중 하나 이상 또는 이들의 조합이고;
군에서 선택된 어느 하나이고, 상기 Rf ¾ 알킬 또는 치환된 아릴이고,
Figure imgf000053_0001
상기 화학식 6에서,
Α는 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아뮐기, C7 내지 C20의 알킬아릴기, C7 내지 C20의 아릴알킬기, C1 내지 C20의 알콕시기, C2 내지 C20의 알콕시알킬기, C3 내지 C20의 헤테로시클로알킬기, 또는 C5 내지 C20의 헤테로아릴기이고;
D는 — 0-, -S- , -N(R)- 또는 -Si (R) (R ' )- 이고, 여기서 R 및 R '은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, 또는 C6 내지 C20의 아릴기이고;
L은 C1 내지 C10의 직쇄 또는 분지쇄 알킬렌기이고;
B는 탄소, 실리콘 또는 게르마늄이고;
Q는 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기,
C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이고;
M은 4족 전이금속이며;
X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네이트기이고;
C1및 C2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식
7a , 화학식 7b 또는 하기 화학식 7c 중 하나로 표시되고, 단, C1 및 C2가 모두 화학식 7c인 경우는 제외하며;
[
Figure imgf000054_0001
Figure imgf000054_0002
[
Figure imgf000055_0001
상기 화학식 7a , 7b 및 7c에서, R1 내지 R17 및 R1 ' 내지 R9 '는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 실릴알킬기, C1 내지 C20의 알콕시실릴기, C1 내지 C20의 알콕시기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이며, 상기 R10 내지 R17 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있다.
【청구항 2】
제 1항에 있어서,
상기 담지 단계는 상기 담체와 메탈로센 촉매, 분자량 조절제 조성물을 흔합하여 30 내지 100 °C의 온도에서 1 내지 12 시간 동안 교반하는 것으로 이뤄지는 메탈로센 담지 촉매의 제조 방법.
【청구항 3]
제 1항에 있어서,
상기 분자량 조절제 조성물은 메탈로센 화합물와 총량을 기준으로 약 1 내지 85 mol >의 함량으로 담지시키는 메탈로센 담지 촉매의 제조 방법.
【청구항 4】
게 1항에 있어서,
상기 화학식 1에서 R1 및 R2은 각각 독립적으로 수소, 메틸, 에틸, 부틸, 및 t-부특시 핵실로 이루어진 군에서 선택된 것인 메탈로센 담지 촉매의 제조 방법. 【청구항 5】
제 1항에 있어서,
상기 화학식 2에서 R3, R4, 및 R5은 각각 독립적으로 이소부틸기인 메탈로센 담지 촉매의 제조 방법 .
【청구항 6】
제 1항에 있어서,
상기 화학식 1에서 M4은 티타늄, 지르코늄, 및 하프늄으로 이루어진 군에서 선택되는 것인 메탈로센 담지 촉매의 제조 방법.
【청구항 7】
거 U항에 있어서,
상기 올레핀계 단량체는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸- 1-펜텐, 1-핵센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1- 테트라데센, 1—핵사데센, 1-아이토센, 노보넨, 노보나디엔, 에틸리덴노보넨 페닐노보넨, 비닐노보넨, 디사이클로펜타디엔, 1,4—부타디엔, 1,5-펜타디엔 1,6-핵사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠 및 3- 클로로메틸스티렌으로 이루어진 군으로부터 선택된 1종 이상의 단량체를 포함하는 메탈로센 담지 촉매의 제조 방법 .
【청구항 8】
제 1항에 있어서,
상기 분자량 조절제 조성물은 하기 화학식 8, 화학식 9, 화학식 10, 또는 화학식 11로 표시되는 화합물을 포함하는 것인 메탈로센 담지 촉매의 제조 방법 .
Figure imgf000056_0001
[화학식 9]
Figure imgf000057_0001
【청구항 9】 제 1항에 있어서,
상기 담체는 실리카, 실리카 -알루미나, 및 실리카-마그네시아로 이루어진 군으로부터 선택되는 것인 메탈로센 담지 촉매의 제조 방법. 【청구항 10】
거 U항에 있어서,
상기 담체는 하기 화학식 12의 알루미늄 함유 제 1 조촉매가 담지된 것인 메탈로센 담지 촉매의 제조 방법 :
[화학식 12]
- [Al (R18)-0-]n- 화학식 12에서, R18은 각각 독립적으로 할로겐, 할로겐 치환 또는 비치환된 탄소수 1 내지 20의 하이드로카빌기이고, n은 2 이상의 정수이다.
【청구항 11】
제 10항에 있어서,
상기 제 1 조촉매가 담지된 담체에 메탈로센 화합물을 담지사킨 직후에 분자량 조절제 조성물을 담지시키는 메탈로센 담지 촉매의 제조 방법ᅳ 【청구항 12】
제 1항에 있어서,
하기 화학식 13의 보레이트계 제 2 조촉매를 추가로 담지시키는 메탈로센 담지 촉매의 제조 방법 .
[화학식 13]
T+[BQ4]"
화학식 13에서, T+은 +1가의 다원자 이온이고, B는 +3 산화 상태의 붕소이고, Q는 각각 독립적으로 하이드라이드기, 디알킬아미도기, 할라이드기, 알콕사이드기, 아릴옥사이드기, 하이드로카빌기, 할로카빌기 및 할로-치환된 하이드로카빌기로 이루어진 군에서 선택되고, 상기 Q는 20개 이하의 탄소를 가지나, 단 하나 이하의 위치에서 Q는 할라이드기이다. 【청구항 13】
제 1항 내지 제 12항 중 어느 한 항에 따라 제조되는 메탈로센 담지 촉매의 존재 하에서, 올레핀 단량체를 중합하는 단계를 포함하는 폴리올레핀의 제조 방법.
[청구항 14】
제 13항에 있어서,
상기 을레핀 단량체를 중합하는 단계는 담체에 메탈로센 화합물 및 시클로펜타디에닐 금속 화합물과 유기 알루미늄 화합물의 반응 생성물을 포함하는 분자량 조절제 조성물이 담지된 메탈로센 담지 촉매의 존재 하에, 올레핀계 단량체를 슬러리 중합하는 단계로 이뤄지는 폴리올레핀의 제조 방법 . 【청구항 15】
제 13항에 따른 폴리올레핀 제조 방법에 따라 제조된 폴리올레핀.
PCT/KR2016/006264 2015-06-15 2016-06-13 메탈로센 담지 촉매의 제조 방법 WO2016204469A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680021196.XA CN107531828B (zh) 2015-06-15 2016-06-13 制备负载型茂金属催化剂的方法
EP16811882.6A EP3255066B1 (en) 2015-06-15 2016-06-13 Method for producing metallocene-supported catalyst
US15/566,098 US10501563B2 (en) 2015-06-15 2016-06-13 Method of preparing supported metallocene catalyst
JP2017546872A JP6450467B2 (ja) 2015-06-15 2016-06-13 メタロセン担持触媒の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150084483 2015-06-15
KR10-2015-0084483 2015-06-15
KR1020160029835A KR101850985B1 (ko) 2015-06-15 2016-03-11 메탈로센 담지 촉매의 제조 방법
KR10-2016-0029835 2016-03-11

Publications (1)

Publication Number Publication Date
WO2016204469A1 true WO2016204469A1 (ko) 2016-12-22

Family

ID=57546074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006264 WO2016204469A1 (ko) 2015-06-15 2016-06-13 메탈로센 담지 촉매의 제조 방법

Country Status (1)

Country Link
WO (1) WO2016204469A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140114310A (ko) * 2014-07-21 2014-09-26 주식회사 엘지화학 폴리올레핀 중합체의 제조방법
KR20150058035A (ko) * 2013-11-18 2015-05-28 주식회사 엘지화학 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
KR20150057974A (ko) * 2013-11-18 2015-05-28 주식회사 엘지화학 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
KR20150059125A (ko) * 2013-11-21 2015-05-29 주식회사 엘지화학 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
KR20150062145A (ko) * 2013-11-28 2015-06-05 주식회사 엘지화학 담지 메탈로센 촉매의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150058035A (ko) * 2013-11-18 2015-05-28 주식회사 엘지화학 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
KR20150057974A (ko) * 2013-11-18 2015-05-28 주식회사 엘지화학 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
KR20150059125A (ko) * 2013-11-21 2015-05-29 주식회사 엘지화학 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
KR20150062145A (ko) * 2013-11-28 2015-06-05 주식회사 엘지화학 담지 메탈로센 촉매의 제조방법
KR20140114310A (ko) * 2014-07-21 2014-09-26 주식회사 엘지화학 폴리올레핀 중합체의 제조방법

Similar Documents

Publication Publication Date Title
KR101705340B1 (ko) 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
KR101644113B1 (ko) 혼성 담지 메탈로센 촉매
JP5671750B2 (ja) 担持メタロセン触媒の製造方法及びそれを用いたポリオレフィンの製造方法
KR101709688B1 (ko) 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
JP6499195B2 (ja) ポリオレフィンの製造方法およびこれから製造されたポリオレフィン
KR101631700B1 (ko) 혼성 담지 메탈로센 촉매의 제조방법
EP3255066B1 (en) Method for producing metallocene-supported catalyst
JP2017518423A (ja) 耐環境応力亀裂性に優れたポリオレフィン
JP2017530247A (ja) 混成担持触媒およびこれを用いるオレフィン系重合体の製造方法
CN107075008B (zh) 金属茂化合物、负载金属茂的催化剂以及使用该负载金属茂的催化剂制备聚烯烃的方法
EP3312201B1 (en) Supported hybrid catalyst and method for preparing olefin polymer using the same
US10544247B2 (en) Supported hybrid metallocene catalyst, and method for preparing polyolefin using the same
KR20170099691A (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법
JP6499280B2 (ja) メタロセン担持触媒およびこれを用いるポリオレフィンの製造方法
KR101606825B1 (ko) 혼성 담지 메탈로센 촉매의 제조방법
CN107406475B (zh) 过渡金属化合物、包含其的催化剂组合物和使用该催化剂组合物制备烯烃聚合物的方法
KR20180040998A (ko) 가공성이 우수한 에틸렌/알파-올레핀 공중합체
KR101725351B1 (ko) 혼성 담지 메탈로센 촉매의 제조방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매
KR20180068715A (ko) 가공성 및 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체
US10570221B2 (en) Metallocene supported catalyst and method for preparing polyolefin using the same
KR20190076136A (ko) 혼성 담지 메탈로센 촉매의 제조 방법, 상기 제조 방법으로 제조된 혼성 담지 메탈로센 촉매, 및 이를 이용하는 폴리올레핀의 제조 방법
WO2016204469A1 (ko) 메탈로센 담지 촉매의 제조 방법
KR20180066678A (ko) 가공성 및 기계적 물성이 우수한 에틸렌/1-헥센 공중합체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811882

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017546872

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016811882

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15566098

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE