WO2016204465A1 - 분리막 이차전지 - Google Patents

분리막 이차전지 Download PDF

Info

Publication number
WO2016204465A1
WO2016204465A1 PCT/KR2016/006247 KR2016006247W WO2016204465A1 WO 2016204465 A1 WO2016204465 A1 WO 2016204465A1 KR 2016006247 W KR2016006247 W KR 2016006247W WO 2016204465 A1 WO2016204465 A1 WO 2016204465A1
Authority
WO
WIPO (PCT)
Prior art keywords
material layer
active material
separator
electrode active
secondary battery
Prior art date
Application number
PCT/KR2016/006247
Other languages
English (en)
French (fr)
Inventor
홍지준
김인중
김경준
김유신
최승호
박지성
Original Assignee
주식회사 루트제이드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 루트제이드 filed Critical 주식회사 루트제이드
Publication of WO2016204465A1 publication Critical patent/WO2016204465A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a separator secondary battery, and specifically, to provide a secondary battery in the form of a separator capable of maintaining the function of a battery by omitting an electrode plate of a metal material serving as a current collector and applying an electrode active material to the separator itself. It relates to a separator secondary battery that can be formed in a variety of shapes.
  • the conventional flexible or fibrous battery is excellent in shape correspondence of the battery, but there is no change in the battery components compared to the conventional battery. That is, only the conductive material is formed of fibers, and the fiber-shaped conductive material of the separator, the positive electrode, and the negative electrode should be used. In this case, there is a limit in reducing the thickness of the battery, and there is also a limit in that the manufacturing process of the battery is complicated and the manufacturing cost is increased.
  • the present invention in order to solve the above problems, by providing a separator to replace the function of the positive electrode plate or the negative electrode plate as a current collector can be flexibly bent or unfolded to provide a separator secondary battery excellent in shape correspondence Can be.
  • the present invention may provide a separator secondary battery in which electrode components are integrally formed in the separator so as to simplify the configuration of the battery by omitting a separate collector and forming a collector function on the separator itself.
  • the present invention a porous separator; And an active material layer applied or formed on at least one surface of both surfaces of the porous separator, wherein the porous separator itself may replace the conductive material or the current collector.
  • the active material layer, the positive electrode active material layer is applied or formed on one surface of the porous separator; And a negative electrode active material layer applied or formed on the other side of the porous separator, wherein the positive electrode active material layer or the negative electrode active material layer may be formed on the porous separator so as not to penetrate or block pores formed in the porous separator. .
  • a metal coating layer may be provided between the porous separator and the positive electrode active material layer or between the porous separator and the negative electrode active material layer.
  • the metal coating layer may include any one metal of aluminum (Al), nickel (Ni), copper (Cu), silver (Ag), zinc (Zn), tin (Sn), and gold (Au).
  • a metal foil layer may be laminated or formed on at least a portion of the positive electrode active material layer or the negative electrode active material layer.
  • the metal foil layer may include any one metal of aluminum (Al), nickel (Ni), copper (Cu), silver (Ag), zinc (Zn), tin (Sn), and gold (Au).
  • a metal conductive yarn may be provided between the porous separator and the positive electrode active material layer or between the porous separator and the negative electrode active material layer.
  • At least one of the positive electrode active material layer or the negative electrode active material layer is provided with an electrode tab, and the electrode tab is bonded to the positive electrode active material layer or the negative electrode active material layer when the positive electrode active material layer or the negative electrode active material layer is in a liquid state. Can be.
  • the porous separator may have a porous polymer material.
  • the porous separator is polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), polybutylene terephthalate, polyester, polyacetal, polyamide, polycarbonate, polyimide, polyether ether ketone, polyether As sulfone, polyphenylene oxide, polyphenylene sulfide, any one selected from the group consisting of polyethylenenaphthalene, polyvinylidene fluoride (PVDF), polyethylene oxide and polyacrylonitrile or mixtures thereof may be used.
  • PP polypropylene
  • PE polyethylene
  • PET polyethylene terephthalate
  • PET polybutylene terephthalate
  • polyester polyacetal
  • polyamide polycarbonate
  • polyimide polyimide
  • polyether ether ketone polyether
  • polyether As sulfone polyphenylene oxide
  • polyphenylene sulfide any one selected from the group consisting of polyethylenenaphthalene, polyvinylidene flu
  • a porous separator In addition, the present invention, a porous separator; And a conductive material layer applied or formed on at least one surface of both surfaces of the porous separator, wherein the conductive material layer is formed in the porous separator so as not to penetrate or block pores formed in the porous separator, and the conductive material layer is
  • a separator secondary battery may be provided which is directly applied to or provided on a porous separator to form an electrode-integrated separator.
  • the conductive material layer may be formed of any one of a metal coating layer, a metal foil layer, or a metal conductive yarn.
  • the metal coating layer and the metal conductive yarn may be formed between the porous separator and the positive electrode active material layer or the negative electrode active material layer.
  • a positive electrode active material layer and a negative electrode active material layer are further formed on both surfaces of the porous separator, and the metal foil layer may be formed on the surface of any one of the positive electrode active material layer or the negative electrode active material layer to form an outermost layer.
  • the separator secondary battery of the present invention since the separator coated with the electrode active material maintains the function of the battery in place of the metal aggregate that is the current collector, the separator secondary battery can be flexed or unfolded more flexibly than the conventional secondary battery. It can be manufactured in various shapes beyond the shape.
  • a separate current collector in the form of an electrode plate is not required, and electrode components are applied to the separator by applying an electrode active material directly onto both surfaces or one end surface of the separator or by applying a conductive material and an active material together.
  • An integrally formed battery can be provided, which can simplify the configuration of the battery and simplify the battery manufacturing process.
  • an additional post-process operation for bonding the electrode tab to the separator functioning as an electrode may be omitted by bonding the electrode tabs before the active material applied to both surfaces or the end surfaces of the separator is hardened.
  • the tap joining process can be simplified.
  • FIG. 1 is a cross-sectional view of a separator secondary battery according to an embodiment of the present invention.
  • Figure 2 is a cross-sectional view showing a state in which a metal coating layer is provided in the separator secondary battery shown in Figure 1 as another embodiment of the present invention.
  • 3A and 3B are cross-sectional views illustrating a metal foil layer provided in the separator secondary battery illustrated in FIG. 1 as still another embodiment of the present invention.
  • FIG. 4 is a cross-sectional view illustrating a state in which an electrode tab is provided in the separator secondary battery illustrated in FIG. 2 as another embodiment of the present invention.
  • FIG. 5 is a cross-sectional view illustrating a metal conductive yarn provided in the separator secondary battery illustrated in FIG. 1 according to another embodiment of the present invention.
  • FIG. 6 is a perspective view illustrating metal conductive yarns laminated on the separator secondary battery of FIG. 5.
  • FIGS. 1 to 6 a separator secondary battery according to an exemplary embodiment of the present invention will be described in detail with reference to FIGS. 1 to 6.
  • specific descriptions of related well-known functions or configurations are omitted in order not to obscure the subject matter of the present invention.
  • the separator secondary battery 100 is coated on the porous separator 10, the cathode active material layer 10 coated on one surface of the porous separator 10, and the other surface of the porous separator 10.
  • the negative electrode active material layer 30 may be largely included.
  • the porous separator 10 may be used as a separator in the art, but in particular, the porous separator 10 may be used as a separator made of a porous base material on which fine pores are formed.
  • the electrolyte can pass through the micropores and ions can pass through it. Therefore, the fine pores preferably have a size such that the passage of the electrolyte or the passage of ions is smooth.
  • the porous separator 10 may have a form of a film or a nonwoven fabric, and for example, when manufactured in the form of a film, the porous separator 10 may be manufactured by extruding and stretching a composition for a base film and then forming fine pores. Can be.
  • the porous separator 10 is preferably a porous polymer material that may contain an electrolyte and an electrolyte, polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), polybutyl Lenterephthalates, polyesters, polyacetals, polyamides, polycarbonates, polyimides, polyetheretherketones, polyethersulfones, polyphenyleneoxides, polyphenylenesulfides, polyethylenenaphthalenes, polyvinylidene fluorides (PVDF) , Polyethylene oxide and polyacrylonitrile, any one selected from the group consisting of or a mixture thereof may be used.
  • it may be made of other polyolefin series, or may be made of Teflon (polytetrafluoroethylene, polytetrafluoroetylene).
  • the porous separator 10 is preferably manufactured by casting or coating.
  • the pore size and porosity formed in the porous separator 10 is preferably formed in a size and ratio that does not reduce the movement of the electrolyte.
  • the electrolyte consists of LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) N, LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 3 C and LiBPh 4 It may include any one or more selected from the group.
  • the electrolyte is Ethylene Carbonate (EC), Propylene Carbonate (PC), Dimethyl Carbonate (DMC), Diethyl Carbonate (DEC), Ethylmethyl Carbonate (EMC), 1,2-dimethoxyethane (DME), ⁇ -butyrolactone (GBL), Tetrahydrofuran (THF), 1,3-dioxolane (DOL), Diethylether (DEE), methyl formate (MF), methyl propionate (MP), Sulfolane (S), Dimethylsulfoxide (DMSO), acetonitrile (AN), Vinyl Carbonate (VC ) And Fluoroethylene Carbonate (FEC) may include any one or more selected from the group consisting of.
  • the porous separator 10 may be coated with electrode active materials having different polarities. That is, as shown in FIG. 1, in the separator secondary battery 100 according to an embodiment of the present invention, the cathode active material layer 20 is coated on the upper surface of the porous separator 10 to form a coating layer. In addition, the anode active material layer 30 is applied to the lower surface of the porous membrane 10 to form a coating layer.
  • the positive electrode active material layer 20 and the negative electrode active material layer 30 formed on the porous separator 10 penetrate into the fine pores formed in the porous separator 10, that is, the pores so as not to reduce the conductivity of the electrode ions. It is preferably formed so as not to enter or enter the fine pores. That is, the positive electrode active material layer 20 and the negative electrode active material layer 30 respectively formed on both surfaces of the porous separator 10 may be formed so as not to block pores of the porous separator 10.
  • the positive electrode active material layer 20 and the negative electrode active material layer 30 may be formed on the surface of the separator 10 by a known active material coating device (not shown), such as a coater, and the invention in the specification of the present invention In order not to obscure the subject matter, detailed description of the active material coating apparatus and description of the active material coating method are omitted.
  • the positive electrode active material layer 20 and the negative electrode active material layer 30 may be formed or coated on the surface of the porous separator 10 by vapor deposition or vacuum sputtering.
  • the active material layers 20 and 30 in the porous separator 10 by vacuum sputtering, impurities contained in the active material can be reduced.
  • the separator secondary battery 100 of the present invention configured as described above does not apply the electrode active material to the metal plates of the positive electrode and the negative electrode constituting the current collector, and the positive electrode active material layer on the porous separator 10. 20 and the negative electrode active material layer 30 are directly applied to form an electrode active material layer or an electrode coating layer, so that the porous separator 10 itself may be used as a metal current collector without a separate metal electrode plate.
  • the porous separator 10 itself may be used as a metal current collector without a separate metal electrode plate.
  • the separator secondary battery 100 is provided between the porous separator 10 and the positive electrode active material layer 20 or is provided between the porous separator 10 and the negative electrode active material layer 30. It may further include a conductive material layer for promoting the movement of ions or promote the movement of electrons.
  • the separator secondary battery 100 may further include metal coating layers 40 and 50.
  • the metal coating layers 40 and 50 may be provided between the porous separator 10 and the positive electrode active material layer 20 and between the porous separator 10 and the negative electrode active material layer 30, respectively. That is, before the electrode active material layers 20 and 30 are applied to the porous separator 10 to form a coating layer, the metal coating layers 40 and 50 may be formed first.
  • the metal coating layers 40 and 50 are made of any one of aluminum (Al), nickel (Ni), copper (Cu), silver (Ag), zinc (Zn), tin (Sn), and gold (Au). It can be said to be a conductive material layer containing.
  • an aluminum metal coating layer 40 may be provided between one surface of the porous separator 10 and the positive electrode active material layer 20, and the porous separator 10 may be Nickel or copper metal coating layer 50 may be provided between the other surface and the negative electrode active material layer 30.
  • the metal coating layers 40 and 50 may be sprayed onto one surface and the other surface of the porous separator 10 by various known coating or deposition methods such as electroless plating to form a coating layer.
  • various known coating or deposition methods such as electroless plating to form a coating layer.
  • detailed description thereof is omitted so as not to obscure the subject matter of the present invention.
  • the metal coating layers 40 and 50 may also be coated so as not to penetrate into a plurality of pores formed in the porous separator 10.
  • the metal coating layers 40 and 50 are preferably provided between the electrode active material layers 20 and 30 and the porous separator 10. When the metal coating layers 40 and 50 are applied directly to the porous separator 10, The binding force can be maintained.
  • the separator secondary battery 100 according to another embodiment of the present invention, as shown in Figure 3a and 3b, ion migration between the positive electrode active material layer 20 and the negative electrode active material layer 30 or
  • the metal foil layer 60 may be further included as a means for promoting electron transfer.
  • the metal foil layer 60 may also serve as a conductive material layer.
  • the metal foil layer 60 may be laminated or formed on the positive electrode active material layer 20 or the negative electrode active material layer 30, as shown in FIGS. 3A and 3B.
  • the metal foil layer 60 may not only be formed over the entire area of the porous separator 10, but may also be formed only on a part of the porous separator 10.
  • the metal foil layer 60 also includes a metal material of any one of aluminum (Al), nickel (Ni), copper (Cu), silver (Ag), zinc (Zn), tin (Sn), and gold (Au). can do.
  • a metal material of any one of aluminum (Al), nickel (Ni), copper (Cu), silver (Ag), zinc (Zn), tin (Sn), and gold (Au). can do.
  • Al aluminum
  • Ni nickel
  • Cu copper
  • silver Ag
  • Zn zinc
  • tin (Sn) tin
  • Au gold
  • the metal foil layer 60 may be formed only on one surface of the porous separator 10, and only the electrode active material layers 20 and 30 may be formed on the other surface. That is, in FIG. 3A, only the negative electrode active material layer 30 is formed on one surface of the porous separator 10, the positive electrode active material layer 20 is coated on the other surface of the separator 10, and the metal foil is applied to the positive electrode active material layer 20. Layer 60 may be formed or stacked. In addition, in FIG. 3B, only the cathode active material layer 20 is formed on one surface of the porous separator 10, the anode active material layer 30 is coated on the other surface of the separator 10, and the metal foil is applied to the anode active material layer 30. Layer 60 may be formed or stacked.
  • the separator secondary battery 100 has only one electrode active material 20 and 30 having one polarity on one surface of the porous separator 10, and the electrode having the other polarity is not a separator. It may be formed on the other surface of the porous separator 10 in the form of an electrode plate or foil. That is, in the case of FIGS. 3A and 3B, the metal foil layer 60 may serve as an electrode or a current collector having a form of a pole plate.
  • the metal foil layer 60 serving as a conventional electrode plate is provided, the metal foil layer 60 is provided only on the polar side of either the positive electrode or the negative electrode, and has a thin thickness and is folded or bent. Since it is provided in an easy foil form, it is possible to freely form or deform the battery form compared to the electrode of the existing electrode plate form.
  • the separator secondary battery 100 between the porous separator 10 and the positive electrode active material layer 20 or the porous separator 10 and It may include a metal conductive yarn (70, 80) provided between the negative electrode active material layer 30.
  • the metal conductive yarns 70 and 80 may function as the conductive material layer.
  • the metal conductive yarns 70 and 80 may be formed on one or the other surfaces of the porous separator 10 before the positive electrode active material layer 20 and the negative electrode active material layer 30 are coated on the porous separator 10 to form a coating layer.
  • Conductive yarns 70 and 80 may be formed or stacked.
  • the metal conductive yarns 70 and 80 may also be formed of any one of aluminum (Al), nickel (Ni), copper (Cu), silver (Ag), zinc (Zn), tin (Sn), and gold (Au). It may include.
  • a metal conductive yarn 70 made of aluminum may be provided between one surface of the porous separator 10 and the positive electrode active material layer 20, and the other surface of the porous separator 10. Between the negative electrode active material layer 30 may be provided with a metal conductive yarn 80 of nickel or copper.
  • the metal conductive yarns 70 and 80 may be formed by weaving a conductive metal thread as shown in FIG. 6, but are not limited thereto and may be formed by applying a metal coating to a woven fabric.
  • the metal conductive yarns 70 and 80 may have the form of metal fibers.
  • the metal conductive yarns 70 and 80 configured as described above are thin and easy to deform, unlike the conventional metal plate, the metal conductive yarns 70 and 80 may be deformed into a shape corresponding to the shape of the porous separator 10 and the anode Ion transfer or electron transfer between the active material layer 20 and the negative electrode active material layer 30 may be promoted.
  • electrode tabs 11 electrically connected to terminals of an external device (not shown) are provided in the cathode active material layer 20 and the anode active material layer 30, respectively. Can be.
  • the electrode tab 11 is applied to one surface and the other end of the porous separator 10 in a liquid state before the cathode active material layer 20 or the anode active material layer 20 is cured, or the metal coating layers 40 and 50.
  • the electrode tab 11 may be coupled to the positive electrode active material 20 and the negative electrode active material 30 when applied to the metal conductive yarns 70 and 80.
  • the cathode active material layer 20 and the anode active material layer 30 are dried in a state where the electrode tab 11 is positioned or placed in the positive electrode active material layer 20 and the negative electrode active material layer 30 in a liquid state.
  • the electrode tab 11 may be bound to each of the positive electrode active material layer 20 and the negative electrode active material layer 30.
  • the electrode tab 11 may be formed of a thin metal foil like the metal foil layer 60, but is not limited thereto.
  • the electrode tab 11 may be formed by weaving a conductive metal thread like the metal conductive yarns 70 and 80. You may.
  • the electrode tab 11 is illustrated to protrude upward or downward on the coating layer formed by the positive electrode active material layer 30 or the negative electrode active material layer 40. It is not limited to this.
  • one end of the electrode tab 11 may be accommodated inside the coating layer formed by the positive electrode active material layer 20 or the negative electrode active material layer 30.
  • the coating amount may be increased to be disposed at a position lower than the height of the coating layer formed by the positive electrode active material layer 20 or the negative electrode active material layer 30.
  • the electrode tabs 11 may be fixed to the electrode active material layers 20 and 30 in such a manner that the electrode active materials 20 and 30 surround the entire surface of the electrode tabs 11.
  • the separator secondary battery 100 does not include a separate current collector electrode plate, and has an electrode integrated separator secondary battery in which a metal coating layer or an active material layer is directly applied or formed on the separator. to be.
  • the separator secondary battery 100 has no electrode component corresponding to the metal electrode plate having mechanical rigidity as compared with the conventional secondary battery, and forms an electrode directly on the surface of the separator.
  • the integrated separator can be flexibly bent or unfolded, so that it can be manufactured in various shapes out of the standardized shape.
  • a binder may be formed in the porous separator 10 of the separator secondary battery 100 according to the present invention in addition to the electrode active material layer, and the binder may include a thermoplastic elastomer such as polyurethane.
  • the separator secondary battery 100 according to the present invention as described above may be applied to a device having an easy shape deformation since the function of the battery may be implemented using only a separator made of a porous polymer material.
  • the separator secondary battery according to the present invention may be applied to a watch battery provided in a watch band, a battery for combat equipment provided in a fiber form in a futuristic combat suit, a thin film cell, or the like.
  • the present invention can be applied to a variety of electronic devices such as smartphones, cameras, notebooks, and can be sold to consumers or sold separately along with the electronic devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은, 분리막 이차전지에 관한 것으로서, 구체적으로는, 다공성 분리막; 및 상기 다공성 분리막의 양면 중 적어도 일면에 도포되거나 형성되는 활물질층;을 포함하며, 상기 다공성 분리막 자체가 도전재 또는 집전체를 대체할 수 있다.

Description

분리막 이차전지
본 발명은 분리막 이차전지에 관한 것으로서, 구체적으로는, 집전체 역할을 하는 금속재의 전극 플레이트를 생략하고 분리막 자체에 전극활물질 등을 도포함으로써 전지의 기능을 유지할 수 있는 분리막 형태로 된 이차전지를 제공하여 다양한 형상으로 형성될 수 있는 분리막 이차전지에 관한 것이다.
휴대전화, 캠코더, 노트북 컴퓨터 등의 휴대용 전자기기 시장이 확대되고 다양화됨에 따라 재충전이 가능한 전원공급용 이차 전지에 대한 수요도 확대되고 있다. 휴대용 전자기기의 소형화, 경량화, 고성능화 및 다기능화는 전력원으로 사용되는 이차 전지의 에너지 저장밀도의 계속적인 향상을 요구하고 있다.
그리고, 전자기기의 급속한 박형화와 소형화는 얇은 두께의 박형 이차 전지에 대한 수요를 급속히 확대시키고 있는 반면, 기존의 원통형이나 각형 이차 전지의 조립방법을 그대로 채용하는 경우, 박형화에 따르는 부피당 에너지 밀도의 하락이 지나치게 큰 편이다. 따라서, 부피당 에너지 밀도가 높은 이차 전지의 개발은 다양한 휴대용 전자기기의 소형화, 경량화, 박형화를 이룩하는 데 필수적이다.
특히, 근래에는, 곡면형 형상을 갖는 휴대용 전자기기들이 많이 출시되고 있는 실정이고, 또한, 곡면형으로 변형 가능한 유연성을 갖는 휴대용 전자기기들이 개발되고 있기 때문에, 이에 상응하여 곡면형 형상 또는 곡면형으로 변형 가능한 이차전지의 개발이 요구되고 있다.
그러나, 기존의 이차전지는, 일정강도를 가지는 금속재의 양극 플레이트 및 음극 플레이트의 형상에 따라 코인(coin)형, 버튼(button)형 등의 편평형 또는 파우치 형태 등의 외장 케이스가 전형적인 형상으로 제조되는 것이 일반적이기 때문에, 이차전지가 사용되는 전자기기의 모양이나 형태가 바뀌면 전형적인 형상의 이차전지가 사용되지 못한다는 문제점은 여전히 남아 있다.
또한, 전지의 형상을 쉽게 형성하고 변형시킬 수 있는 기술에 대한 요구가 증대되고 있는데, 이러한 요구에 대응하여 플렉서블 전지(flexible battery) 또는 섬유형 전지(textile type battery)가 제안되기에 이르렀다.
그러나, 기존의 플렉서블 전지 또는 섬유형 전지는 전지의 형상 대응성은 우수하지만 기존의 전지와 비교할 때 전지 구성요소에는 변화가 없다. 즉, 도전재가 섬유로 형성될 뿐 분리막, 양극 및 음극의 섬유 형태 도전재는 모두 사용되어야 한다. 이럴 경우 전지의 두께를 줄이는데 한계가 있고, 전지의 제조 공정이 복잡하고 제조 비용이 상승한다는 한계도 있다.
따라서, 본 출원인은, 상기와 같은 문제점을 해결하기 위하여 본 발명을 제안하게 되었으며, 이와 관련된 선행기술문헌으로는 대한민국 공개특허 공개번호 10-2011-0054704호의 '이차 전지'가 있다.
본 발명은, 상기와 같은 문제점을 해결하기 위하여, 분리막이 집전체인 양극 플레이트 또는 음극 플레이트의 기능을 대신할 수 있도록 구성함으로써 유연하게 구부러지거나 펴질 수 있고 형상 대응성이 우수한 분리막 이차전지를 제공할 수 있다.
또한, 본 발명은 별도의 집전체를 생략하고 분리막 자체에 집전체 기능을 형성함으로써 전지의 구성을 단순화할 수 있도록 전극 구성요소가 분리막에 일체로 형성된 분리막 이차전지를 제공할 수 있다.
본 발명은, 다공성 분리막; 및 상기 다공성 분리막의 양면 중 적어도 일면에 도포되거나 형성되는 활물질층;을 포함하며, 상기 다공성 분리막 자체가 도전재 또는 집전체를 대체하는 것을 특징으로 하는 분리막 이차전지를 제공할 수 있다.
상기 활물질층은, 상기 다공성 분리막의 일면에 도포되거나 형성되는 양극 활물질층; 및 상기 다공성 분리막의 타면에 도포되거나 형성되는 음극 활물질층;을 포함하며, 상기 양극 활물질층 또는 상기 음극 활물질층은 상기 다공성 분리막에 형성된 기공에 침투되거나 기공을 막지 않도록 상기 다공성 분리막에 형성될 수 있다.
상기 다공성 분리막과 상기 양극 활물질층 사이 또는 상기 다공성 분리막과 상기 음극 활물질층 사이에는 금속 코팅층이 마련될 수 있다.
상기 금속 코팅층은 알루미늄(Al), 니켈(Ni), 구리(Cu), 은(Ag), 아연(Zn), 주석(Sn), 금(Au) 중 어느 하나의 금속을 포함할 수 있다.
상기 양극 활물질층 또는 상기 음극 활물질층에는 적어도 일부분에 금속 호일층이 적층되거나 형성될 수 있다.
상기 금속 호일층은 알루미늄(Al), 니켈(Ni), 구리(Cu), 은(Ag), 아연(Zn), 주석(Sn), 금(Au) 중 어느 하나의 금속을 포함할 수 있다.
상기 다공성 분리막과 상기 양극 활물질층 사이 또는 상기 다공성 분리막과 상기 음극 활물질층 사이에는 금속 도전사가 마련될 수 있다.
상기 양극 활물질층 또는 상기 음극 활물질층 중 적어도 하나에는 전극탭이 마련되며, 상기 전극탭은, 상기 양극 활물질층 또는 상기 음극 활물질층이 액체 상태일 시에 상기 양극 활물질층 또는 상기 음극 활물질층에 결합될 수 있다.
상기 다공성 분리막은 다공성 폴리머 재질을 가질 수 있다.
상기 다공성 분리막은 폴리프로필렌(PP), 폴리에틸렌(PE), 폴리에틸렌테레프탈레이트(PET), 폴리부틸렌테레프탈레이트, 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드로, 폴리에틸렌나프탈렌, 폴리비닐리덴 플루오라이드(PVDF), 폴리에틸렌옥사이드 및 폴리아크릴로나이트릴로 이루어진 군에서 선택된 어느 하나 또는 이들의 혼합물이 사용될 수 있다.
또한, 본 발명은, 다공성 분리막; 및 상기 다공성 분리막의 양면 중 적어도 일면에 도포되거나 형성되는 도전재층;을 포함하며, 상기 도전재층은 상기 다공성 분리막에 형성된 기공에 침투되거나 기공을 막지 않도록 상기 다공성 분리막에 형성되고, 상기 도전재층은 상기 다공성 분리막에 직접 도포되거나 마련되어 전극 일체형 분리막을 형성하는 것을 특징으로 하는 분리막 이차전지를 제공할 수 있다.
상기 도전재층은 금속 코팅층, 금속 호일층 또는 금속 도전사 중 어느 하나로 형성될 수 있다.
상기 금속 코팅층 및 상기 금속 도전사는 상기 다공성 분리막과 양극 활물질층 또는 음극 활물질층 사이에 형성될 수 있다.
상기 다공성 분리막의 양면에는 각각 양극 활물질층 및 음극 활물질층이 더 형성되며, 상기 금속 호일층은 최외층을 형성하도록 상기 양극 활물질층 또는 상기 음극 활물질층 중 어느 하나의 표면에 형성될 수 있다.
본 발명의 분리막 이차전지는, 전극 활물질이 도포된 분리막이 집전체인 금속 집합체를 대신하여 전지의 기능을 유지하므로, 기존의 이차전지와 비교해서 유연하게 구부러지거나 펴질 수 있으며, 이에 따라, 정형화된 형상에서 벗어나 다양한 형상으로 제작될 수 있다.
본 발명에 따른 분리막 이차전지는, 전극판 형태의 별도 집전체가 필요 없으며 분리막의 양면 또는 어느 한 쪽의 단면에 직접 전극 활물질을 도포하거나 도전재료와 활물질을 함께 도포함으로써, 분리막에 전극 구성요소가 일체로 형성된 전지를 제공할 수 있으며, 이로 인해 전지의 구성을 단순화할 수 있고 전지 제조 공정을 간소화할 수 있다.
본 발명에 따른 분리막 이차전지는, 분리막의 양면 또는 단면에 도포된 활물질이 굳어지기 전에 전극탭을 결합함으로써 전극 기능을 하는 분리막에 전극탭을 결합하기 위한 별도의 후공정작업을 생략할 수 있고 전극탭 결합 공정을 단순화할 수 있다.
도 1은 본 발명의 일 실시예에 따른 분리막 이차전지의 단면도.
도 2는 본 발명의 다른 일 실시예로서, 도 1에 도시된 분리막 이차전지에 금속 코팅층이 마련된 상태를 보여주는 단면도.
도 3a 및 도 3b는 본 발명의 또 다른 일 실시예로서, 도 1에 도시된 분리막 이차전지에 금속 호일층이 마련된 상태를 보여주는 단면도.
도 4는 본 발명의 또 다른 일 실시예로서, 도 2에 도시된 분리막 이차전지에 전극탭이 마련된 상태를 보여주는 단면도.
도 5는 본 발명의 또 다른 일 실시예로서, 도 1에 도시된 분리막 이차전지에 금속 도전사가 마련된 상태를 보여주는 단면도.
도 6은 도 5에 도시된 분리막 이차전지에 적층된 금속 도전사를 보여주는 사시도.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다.
그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
이하, 도 1 내지 도 6을 참조하여 본 발명의 실시예에 따른 분리막 이차전지가 상세하게 설명된다. 본 발명을 설명함에 있어, 관련된 공지기능 혹은 구성에 대한 구체적인 설명은 발명의 요지를 모호하지 않게 하기 위하여 생략된다.
본 발명의 실시예에 따른 분리막 이차전지(100)는, 다공성 분리막(10)과, 상기 다공성 분리막(10)의 일면에 코팅되는 양극 활물질층(10) 및 상기 다공성 분리막(10)의 타면에 코팅되는 음극 활물질층(30)을 크게 포함할 수 있다.
상기 다공성 분리막(10)은 당업계에서 통상적인 분리막(separator)으로 사용될 수 있으나, 특히, 미세 포어(pore)가 형성된 다공성 기재(base material)로 제작된 분리막으로 사용되는 것이 바람직하다. 미세 포어를 통해서 전해액이 통과할 수 있고 이온이 통과할 수 있다. 따라서, 미세 포어는 전해액 통과 또는 이온 통과가 원활한 정도의 크기를 가지는 것이 바람직하다.
그리고, 상기 다공성 분리막(10)은, 필름 또는 부직포의 형태를 가질 수 있으며, 예를 들어 필름 형태로 제조될 시에, 기재 필름용 조성물을 압출하고 연신한 뒤 미세 포어(pore)를 형성하여 제조될 수 있다.
그리고, 상기 다공성 분리막(10)은 전해질과 전해액을 함유할 수 있는 다공성 폴리머(polymer) 재질이 사용되는 것이 바람직하며, 폴리프로필렌(PP), 폴리에틸렌(PE), 폴리에틸렌테레프탈레이트(PET), 폴리부틸렌테레프탈레이트, 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드로, 폴리에틸렌나프탈렌, 폴리비닐리덴 플루오라이드(PVDF), 폴리에틸렌옥사이드 및 폴리아크릴로나이트릴로 이루어진 군에서 선택된 어느 하나 또는 이들의 혼합물이 사용될 수 있다. 이외에 기타 폴리올레핀 계열로 제조될 수도 있고, 테플론(폴리테트라플루오로에틸렌, polytetrafluoroetylene)으로 제조될 수도 있다.
여기서, 상기 다공성 분리막(10)은 캐스팅 또는 코팅에 의해서 제조되는 것이 바람직하다.
상기에서 언급한 바와 같이, 다공성 분리막(10)에 형성된 기공 크기 및 기공도는 전해액의 이동이 저하되지 않는 크기 및 비율로 형성되는 것이 바람직하다.
상기 전해질은 LiPF6, LiBF4, LiAsF6, LiClO4, LiCF3SO3, Li(CF3SO2)N, LiC4F9SO3, Li(CF3SO2)3C 및 LiBPh4로 이루어진 군에서 선택된 어느 하나 이상을 포함할 수 있다.
상기 전해액은, Ethylene Carbonate(EC), Propylene Carbonate(PC), Dimethyl Carbonate(DMC), Diethyl Carbonate(DEC), Ethylmethyl Carbonate(EMC), 1,2-dimethoxyethane(DME), γ-butyrolactone(GBL), Tetrahydrofuran(THF), 1,3-dioxolane(DOL), Diethylether(DEE), methyl formate(MF), methyl propionate(MP), Sulfolane(S), Dimethylsulfoxide(DMSO), acetonitrile(AN), Vinyl Carbonate(VC) 및 Fluoroethylene Carbonate(FEC)로 이루어진 군에서 선택된 어느 하나 이상을 포함할 수 있다.
상기 다공성 분리막(10)에는 전술한 바와 같이, 극성이 서로 상이한 전극 활물질이 코팅될 수 있다. 즉, 도 1에 도시된 바와 같이 본 발명의 일 실시예에 따른 분리막 이차전지(100)는, 상기 다공성 분리막(10)의 윗면에는 양극 활물질층(20)이 도포되어 코팅층을 형성할 수 있고, 또한, 상기 다공성 분리막(10)의 아랫면에는 음극 활물질층(30)이 도포되어 코팅층을 형성할 수 있다.
이때, 상기 다공성 분리막(10)에 형성되는 양극 활물질층(20) 및 음극 활물질층(30)은, 전극 이온의 전도도를 하락시키지 않도록 상기 다공성 분리막(10)에 형성된 미세 포어, 즉, 기공에 침투되거나 미세 포어에 들어가지 않게 형성되는 것이 바람직하다. 즉, 다공성 분리막(10)의 양면에 각각 형성되는 양극 활물질층(20) 및 음극 활물질층(30)은 다공성 분리막(10)의 기공을 막지 않도록 형성되는 것이 바람직하다.
상기 양극 활물질층(20) 및 음극 활물질층(30)은 코터(coater) 등 공지의 활물질 코팅 장치(미도시)에 의해 상기 분리막(10)의 표면에 형성될 수 있으며, 본 발명의 명세서 상에서는 발명의 요지를 모호하지 않도록 하기 위하여 활물질 코팅 장치의 세부구성 및 활물질 코팅방법에 관한 설명이 생략된다.
또한, 상기 양극 활물질층(20) 및 음극 활물질층(30)은 증착 또는 진공 스퍼터링(sputtering)에 의해서 다공성 분리막(10)의 표면에 형성되거나 코팅될 수 있다. 특히, 진공 스퍼터링에 의해서 활물질층(20,30)을 다공성 분리막(10)에 형성함으로써, 활물질에 포함되는 불순물을 줄일 수 있다.
한편, 양극 활물질층(20) 및 음극 활물질층(30)의 화학적 성분 등은 기존의 이차전지에 사용되는 양극 활물질 및 음극 활물질과 동일하므로, 이에 대한 설명은 생략한다.
상기와 같이 구성된 본 발명의 분리막 이차전지(100)는, 통상적인 이차전지와는 달리 집전체를 이루는 양극 및 음극의 금속 플레이트에 전극 활물질을 도포하는 것이 아니고, 다공성 분리막(10)에 양극 활물질층(20) 및 음극 활물질층(30)을 직접 도포하여 전극 활물질층 또는 전극 코팅층을 형성함으로써, 별도의 금속 전극판 없이 상기 다공성 분리막(10) 자체만으로 금속 집전체의 역할도 할 수 있도록 형성하였다. 이와 같이, 형성함으로써, 종래의 금속 집전체에 대응하는 구성이 필요 없기 때문에 금속 집전체의 기계적 강성에 의해서 전지를 접거나 휘게 하는 것이 어려웠던 한계를 극복할 수 있다. 즉, 쉽게 접거나 휘어질 수 있는 분리막에 전극 활물질이 직접 도포되어 있기 때문에 다양한 형상으로 전지를 만드는 것이 가능하다.
또한, 본 발명에 따른 분리막 이차전지(100)는, 상기 다공성 분리막(10)과 상기 양극 활물질층(20) 사이에 마련되거나 또는 상기 다공성 분리막(10)과 상기 음극 활물질층(30) 사이에 마련되어 이온의 이동을 촉진시키거나 전자의 이동을 촉진시키는 도전재층을 더 포함할 수 있다.
그 예로, 도 2에 도시된 바와 같이, 본 발명의 다른 일 실시예에 따른 분리막 이차전지(100)는, 금속 코팅층(40, 50)을 더 포함할 수 있다.
상기 금속 코팅층(40, 50)은, 상기 다공성 분리막(10)과 상기 양극 활물질층(20) 사이와, 상기 다공성 분리막(10)과 상기 음극 활물질층(30) 사이에 각각 마련될 수 있다. 즉, 상기 다공성 분리막(10)에 전극 활물질층(20, 30)을 도포하여 코팅층을 형성하기 전에, 금속 코팅층(40, 50)을 먼저 형성시킬 수 있다.
상기 금속 코팅층(40, 50)은, 알루미늄(Al), 니켈(Ni), 구리(Cu), 은(Ag), 아연(Zn), 주석(Sn), 금(Au) 중 어느 하나의 금속 재질을 포함하는 도전재층이라고 할 수 있다. 바람직하게는, 도 2에 도시된 바와 같이, 상기 다공성 분리막(10)의 일면과 상기 양극 활물질층(20) 사이에는 알루미늄재의 금속 코팅층(40)이 마련될 수 있고, 상기 다공성 분리막(10)의 타면과 상기 음극 활물질층(30) 사이에는 니켈 또는 구리의 금속 코팅층(50)이 마련될 수 있다.
상기 금속 코팅층(40, 50)은 무전해 도금법(electroless plating)등 다양한 공지의 코팅 또는 증착 방식에 의해 상기 다공성 분리막(10)의 일면 및 타면에 각각 분사되어 코팅층을 형성할 수 있다. 본 발명의 명세서 상에서는 발명의 요지를 모호하지 않도록 그 구체적인 설명이 생략된다.
그리고, 상기 금속 코팅층(40, 50) 또한, 상기 다공성 분리막(10)에 형성된 다수개의 기공에 침투되지 않도록 코팅되는 것이 바람직하다.
금속 코팅층(40, 50)은 전극 활물질층(20, 30)과 다공성 분리막(10) 사이에 마련되는 것이 바람직한데, 금속 코팅층(40, 50)이 다공성 분리막(10)에 직접 도포되면 분리막과의 결착력이 유지될 수 있다.
또한, 본 발명의 또 다른 일 실시예에 따른 분리막 이차전지(100)는, 도 3a 및 도 3b에 도시된 바와 같이, 상기 양극 활물질층(20) 및 상기 음극 활물질층(30) 간의 이온 이동 또는 전자 이동을 촉진시키기 위한 수단으로 금속 호일층(metal foil layer, 60)을 더 포함할 수 있다. 여기서, 금속 호일층(60)도 도전재층의 역할을 할 수 있다.
상기 금속 호일층(60)은, 도 3a 및 도 3b에 도시된 바와 같이, 상기 양극 활물질층(20) 또는 상기 음극 활물질층(30)에 적층되거나 형성될 수 있다. 여기서, 금속 호일층(60)은 다공성 분리막(10)의 전체 면적에 걸쳐 형성될 뿐만 아니라, 다공성 분리막(10)의 일부에만 형성될 수도 있다.
상기 금속 호일층(60) 또한 알루미늄(Al), 니켈(Ni), 구리(Cu), 은(Ag), 아연(Zn), 주석(Sn), 금(Au) 중 어느 하나의 금속 재질을 포함할 수 있다. 바람직하게는, 도 3a에 도시된 바와 같이, 상기 양극 활물질층(20)에 적층되거나 형성되는 경우에는 알루미늄재의 금속 호일층(60)이 사용될 수 있다. 또한, 도 3b에 도시된 바와 같이, 상기 음극 활물질(30)에 적층되거나 형성되는 경우에는 구리재의 금속 호일층(60)이 사용될 수 있다.
한편, 도 3a 및 도 3b에 도시된 바와 같이, 금속 호일층(60)은 다공성 분리막(10)의 어느 일면에만 형성되고 다른 일면에는 전극 활물질층(20, 30)만 형성되는 것이 바람직하다. 즉, 도 3a의 경우에는 다공성 분리막(10)의 일면에는 음극 활물질층(30)만 형성되고, 분리막(10)의 타면에는 양극 활물질층(20)이 도포되고 양극 활물질층(20)에 금속 호일층(60)이 형성되거나 적층될 수 있다. 또한, 도 3b의 경우에는 다공성 분리막(10)의 일면에는 양극 활물질층(20)만 형성되고, 분리막(10)의 타면에는 음극 활물질층(30)이 도포되고 음극 활물질층(30)에 금속 호일층(60)이 형성되거나 적층될 수 있다.
이와 같이, 본 발명의 일 실시예에 따른 분리막 이차전지(100)는 다공성 분리막(10)의 일면에는 하나의 극성을 가지는 전극 활물질(20, 30)만 마련되고 다른 극성의 전극은 분리막이 아닌 극판(electrode plate) 또는 호일의 형태를 가지며 다공성 분리막(10)의 타면에 형성될 수도 있다. 즉, 도 3a 및 도 3b의 경우 금속 호일층(60)이 극판의 형태를 가지는 전극 또는 집전체의 역할을 할 수 있다.
도 3a 및 도 3b의 경우 기존의 극판 역할을 하는 금속 호일층(60)이 마련된 경우에도, 금속 호일층(60)은 양극 또는 음극 중 어느 하나의 극성 쪽에만 마련되고두께가 얇고 접히거나 휘어지기 쉬운 호일 형태로 마련되기 때문에, 기존 전극판 형태의 전극에 비하여 전지형태를 자유롭게 형성하거나 변형할 수 있다.
또한, 본 발명의 또 다른 실시예에 따른 분리막 이차전지(100)는, 도 5에 도시된 바와 같이, 상기 다공성 분리막(10)과 상기 양극 활물질층(20) 사이 또는 상기 다공성 분리막(10)과 상기 음극 활물질층(30) 사이에 마련되는 금속 도전사(electrified yarn, 70, 80)를 포함할 수 있다. 여기서, 금속 도전사(70, 80)는 도전재층 기능을 할 수 있다.
상기 금속 도전사(70, 80)는, 상기 다공성 분리막(10)에 양극 활물질층(20) 및 음극 활물질층(30)이 도포되어 코팅층이 형성되기 전에 상기 다공성 분리막(10)의 일면 또는 타면에 금속 도전사(70, 80)가 형성되거나 적층될 수 있다.
상기 금속 도전사(70, 80) 또한 알루미늄(Al), 니켈(Ni), 구리(Cu), 은(Ag), 아연(Zn), 주석(Sn), 금(Au) 중 어느 하나의 금속 재질을 포함할 수 있다. 바람직하게, 도 5에 도시된 바와 같이, 상기 다공성 분리막(10)의 일면과 상기 양극 활물질층(20) 사이에는 알루미늄재의 금속 도전사(70)가 마련될 수 있고, 상기 다공성 분리막(10)의 타면과 상기 음극 활물질층(30) 사이에는 니켈 또는 구리의 금속 도전사(80)가 마련될 수 있다.
상기 금속 도전사(70, 80)는 도 6에 도시된 바와 같이 도전성을 가지는 금속재의 실을 직조하여 형성될 수 있으며, 이에 한정되지 않고, 직조된 원단에 금속 코팅을 하여 형성시킬 수도 있다. 또한, 금속 도전사(70, 80)는 금속 섬유의 형태를 가질 수도 있다.
상기와 같이 구성된 금속 도전사(70, 80)는, 기존의 금속 플레이트와는 달리 두께가 얇고 형상 변형이 용이하기 때문에, 상기 다공성 분리막(10)의 형상과 대응되는 형상으로 변형이 가능하고 또한 상기 양극 활물질층(20)과 상기 음극 활물질층(30) 간의 이온 전달 또는 전자 이동을 촉진시킬 수 있다.
한편, 도 4 및 도 5에 도시된 바와 같이, 상기 양극 활물질층(20) 및 상기 음극 활물질층(30)에는 외부기기(미도시)의 단자와 전기적으로 연결되는 전극탭(11)이 각각 마련될 수 있다. 상기 전극탭(11)은, 상기 양극 활물질층(20) 또는 상기 음극 활물질층(20)이 경화되기 전 액체 상태로 상기 다공성 분리막(10)의 일면 및 타단에 도포되거나 상기 금속 코팅층(40, 50) 또는 상기 금속 도전사(70, 80) 위에 도포되었을 시에 상기 양극 활물질(20) 및 상기 음극 활물질(30)에 위치시킴으로써 전극탭(11)이 결합될 수 있다.
즉, 상기 전극탭(11)을 액체 상태의 양극 활물질층(20) 및 음극 활물질층(30)에 위치시키거나 놓은 상태에서, 상기 양극 활물질층(20) 및 상기 음극 활물질층(30)이 건조되어 수분이 없어지고 활물질(20, 30)이 굳어지거나 경화되면 전극탭(11)이 상기 양극 활물질층(20) 및 음극 활물질층(30) 각각에 결속될 수 있다.
상기 전극탭(11)은, 상기금속 호일층(60)과 같이 얇은 금속박으로 형성할 수도 있으며, 이에 한정되지 않고, 상기 금속 도전사(70, 80)와 같이 도전성을 가지는 금속재의 실을 직조하여 형성할 수도 있다.
참고로, 본 발명의 명세서 도 4 내지 도 6에는 상기 전극탭(11)이 상기 양극 활물질층(30) 또는 상기 음극 활물질층(40)이 형성하는 코팅층 상에서 상부 또는 하부로 돌출되는 것으로 도시되었으나, 이에 한정되는 것은 아니다.
즉, 상기 전극탭(11)의 일단부가 상기 양극 활물질층(20) 또는 상기 음극 활물질층(30)이 형성하는 코팅층 내부에 수용되도록 상기 양극 활물질층(20) 또는 상기 음극 활물질층(30)의 도포량을 증가시켜 상기 양극 활물질층(20) 또는 상기 음극 활물질층(30)이 형성하는 코팅층 높이보다 낮은 위치에 배치되게 할 수도 있다. 다시 설명하면, 전극 활물질(20,30)이 전극탭(11)의 표면 전체를 둘러싸는 형태로 전극 활물질층(20, 30)에 전극탭(11)이 고정될 수도 있다.
상기와 같이 구성된 본 발명의 또 다른 일 실시예에 따른 분리막 이차전지(100)는 별도의 집전체 전극판을 구비하지 않고, 분리막에 직접 금속코팅층 또는 활물질층을 도포하거나 형성한 전극 일체형 분리막 이차전지이다.
따라서, 상기한 본 발명에 따른 분리막 이차전지(100)는, 기존의 이차전지와 비교해서 기계적 강성을 가지는 금속 전극판에 대응하는 전극 구성요소가 없고, 분리막의 표면에 직접 전극을 형성하기 때문에 전극 일체형 분리막이 유연하게 구부러지거나 펴질 수 있어서, 정형화된 형상에서 벗어나 다양한 형상으로 제작될 수 있다.
또한, 본 발명에 따른 분리막 이차전지(100)의 다공성 분리막(10)에는 전극 활물질층 외에 바인더(binder)가 형성될 수도 있고, 바인더는 폴리우레탄 등의 열가소성 탄성체를 포함할 수 있다.
상기한 바와 같은 본 발명에 따른 분리막 이차전지(100)는 다공성 폴리머 재질로 된 분리막만으로 전지의 기능을 구현할 수 있기 때문에 형상 변형이 용이한 기기 등에 적용될 수 있다. 예를 들면, 손목시계 밴드에 구비된 시계용 전지, 미래형 전투복에 섬유 형태로 구비되는 전투 장비용 전지, 박막셀 등에 본 발명에 따른 분리막 이차전지가 적용될 수 있다.
지금까지 본 발명에 따른 구체적인 실시예에 관하여 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능함은 물론이다.
그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 안되며, 후술하는 특허 청구의 범위뿐 아니라 이 특허 청구의 범위와 균등한 것들에 의해 정해져야 한다.
본 발명은 스마트폰, 카메라, 노트북 등 다양한 전자기기에 적용될 수 있으며, 전자기기와 함께 소비자에게 판매되거나 별도로 판매될 수 있다.

Claims (14)

  1. 다공성 분리막; 및
    상기 다공성 분리막의 양면 중 적어도 일면에 도포되거나 형성되는 활물질층;을 포함하며,
    상기 다공성 분리막 자체가 도전재 또는 집전체를 대체하는 것을 특징으로 하는 분리막 이차전지.
  2. 제 1 항에 있어서,
    상기 활물질층은,
    상기 다공성 분리막의 일면에 도포되거나 형성되는 양극 활물질층; 및
    상기 다공성 분리막의 타면에 도포되거나 형성되는 음극 활물질층;을 포함하며,
    상기 양극 활물질층 또는 상기 음극 활물질층은 상기 다공성 분리막에 형성된 기공에 침투되거나 기공을 막지 않도록 상기 다공성 분리막에 형성되는 것을 특징으로 하는 분리막 이차전지.
  3. 제 2 항에 있어서,
    상기 다공성 분리막과 상기 양극 활물질층 사이 또는 상기 다공성 분리막과 상기 음극 활물질층 사이에는 금속 코팅층이 마련되는 것을 특징으로 하는 분리막 이차전지.
  4. 제 3 항에 있어서,
    상기 금속 코팅층은 알루미늄(Al), 니켈(Ni), 구리(Cu), 은(Ag), 아연(Zn), 주석(Sn), 금(Au) 중 어느 하나의 금속을 포함하는 것을 특징으로 하는 분리막 이차전지.
  5. 제 2 항에 있어서,
    상기 양극 활물질층 또는 상기 음극 활물질층에는 적어도 일부분에 금속 호일층이 적층되거나 형성되는 것을 특징으로 하는 분리막 이차전지.
  6. 제 5 항에 있어서,
    상기 금속 호일층은 알루미늄(Al), 니켈(Ni), 구리(Cu), 은(Ag), 아연(Zn), 주석(Sn), 금(Au) 중 어느 하나의 금속을 포함하는 것을 특징으로 하는 분리막 이차전지.
  7. 제 2 항에 있어서,
    상기 다공성 분리막과 상기 양극 활물질층 사이 또는 상기 다공성 분리막과 상기 음극 활물질층 사이에는 금속 도전사가 마련되는 것을 특징으로 하는 분리막 이차전지.
  8. 제 1 항에 있어서,
    상기 양극 활물질층 또는 상기 음극 활물질층 중 적어도 하나에는 전극탭이 마련되며,
    상기 전극탭은,
    상기 양극 활물질층 또는 상기 음극 활물질층이 액체 상태일 시에 상기 양극 활물질층 또는 상기 음극 활물질층에 결합되는 것을 특징으로 하는 분리막 이차전지.
  9. 제 1 항에 있어서,
    상기 다공성 분리막은 다공성 폴리머 재질을 가지는 것을 특징으로 하는 분리막 이차전지.
  10. 제 9 항에 있어서,
    상기 다공성 분리막은,
    폴리프로필렌(PP), 폴리에틸렌(PE), 폴리에틸렌테레프탈레이트(PET), 폴리부틸렌테레프탈레이트, 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드로, 폴리에틸렌나프탈렌, 폴리비닐리덴 플루오라이드(PVDF), 폴리에틸렌옥사이드 및 폴리아크릴로나이트릴로 이루어진 군에서 선택된 어느 하나 또는 이들의 혼합물이 사용되는 것을 특징으로 하는 분리막 이차전지.
  11. 다공성 분리막; 및
    상기 다공성 분리막의 양면 중 적어도 일면에 도포되거나 형성되는 도전재층;을 포함하며,
    상기 도전재층은 상기 다공성 분리막에 형성된 기공에 침투되거나 기공을 막지 않도록 상기 다공성 분리막에 형성되고,
    상기 도전재층은 상기 다공성 분리막에 직접 도포되거나 마련되어 전극 일체형 분리막을 형성하는 것을 특징으로 하는 분리막 이차전지.
  12. 제 11 항에 있어서,
    상기 도전재층은 금속 코팅층, 금속 호일층 또는 금속 도전사 중 어느 하나로 형성된 것을 특징으로 하는 분리막 이차전지.
  13. 제 12 항에 있어서,
    상기 금속 코팅층 및 상기 금속 도전사는 상기 다공성 분리막과 양극 활물질층 또는 음극 활물질층 사이에 형성되는 것을 특징으로 하는 분리막 이차전지.
  14. 제 12 항에 있어서,
    상기 다공성 분리막의 양면에는 각각 양극 활물질층 및 음극 활물질층이 더 형성되며,
    상기 금속 호일층은 최외층을 형성하도록 상기 양극 활물질층 또는 상기 음극 활물질층 중 어느 하나의 표면에 형성되는 것을 특징으로 하는 분리막 이차전지.
PCT/KR2016/006247 2015-06-18 2016-06-13 분리막 이차전지 WO2016204465A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150086921A KR20160149632A (ko) 2015-06-18 2015-06-18 분리막 이차전지
KR10-2015-0086921 2015-06-18

Publications (1)

Publication Number Publication Date
WO2016204465A1 true WO2016204465A1 (ko) 2016-12-22

Family

ID=57545057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006247 WO2016204465A1 (ko) 2015-06-18 2016-06-13 분리막 이차전지

Country Status (2)

Country Link
KR (1) KR20160149632A (ko)
WO (1) WO2016204465A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111682267A (zh) * 2020-05-14 2020-09-18 南方科技大学 柔性锂离子电池及其制备方法
CN112448099A (zh) * 2020-11-30 2021-03-05 兰州大学 一种一体化柔性电池及其制备方法
CN113594406A (zh) * 2021-07-08 2021-11-02 珠海冠宇电池股份有限公司 一种极片

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019513287A (ja) * 2016-03-29 2019-05-23 セルガード エルエルシー 微多孔膜用の改良された堆積物また層、改良された膜、改良されたリチウム電池セパレータ、改良された電池、改良された高電圧リチウム電池、および関連する方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0927343A (ja) * 1995-07-10 1997-01-28 Hitachi Ltd 非水系二次電池及び該電池の作製法
JPH11176419A (ja) * 1997-12-15 1999-07-02 Tdk Corp リチウム二次電池およびその製造方法
JP2001052753A (ja) * 1999-08-04 2001-02-23 Nissan Motor Co Ltd 電池及びその製造方法
KR20020093536A (ko) * 2001-06-09 2002-12-16 한국과학기술연구원 분리막과 일체화된 리튬전극 및 이를 이용한 리튬전지
KR20130011973A (ko) * 2011-07-20 2013-01-30 주식회사 엘지화학 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0927343A (ja) * 1995-07-10 1997-01-28 Hitachi Ltd 非水系二次電池及び該電池の作製法
JPH11176419A (ja) * 1997-12-15 1999-07-02 Tdk Corp リチウム二次電池およびその製造方法
JP2001052753A (ja) * 1999-08-04 2001-02-23 Nissan Motor Co Ltd 電池及びその製造方法
KR20020093536A (ko) * 2001-06-09 2002-12-16 한국과학기술연구원 분리막과 일체화된 리튬전극 및 이를 이용한 리튬전지
KR20130011973A (ko) * 2011-07-20 2013-01-30 주식회사 엘지화학 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111682267A (zh) * 2020-05-14 2020-09-18 南方科技大学 柔性锂离子电池及其制备方法
CN111682267B (zh) * 2020-05-14 2023-01-31 南方科技大学 柔性锂离子电池及其制备方法
CN112448099A (zh) * 2020-11-30 2021-03-05 兰州大学 一种一体化柔性电池及其制备方法
CN113594406A (zh) * 2021-07-08 2021-11-02 珠海冠宇电池股份有限公司 一种极片

Also Published As

Publication number Publication date
KR20160149632A (ko) 2016-12-28

Similar Documents

Publication Publication Date Title
US10497930B2 (en) Anode comprising multiple protective layers, and lithium secondary battery comprising same
WO2011043587A2 (ko) 전지용 전극조립체 및 그 제조방법
WO2013055185A2 (ko) 케이블형 이차전지
KR101745631B1 (ko) 평균입경이 다른 무기물 입자의 이중 다공성 코팅층을 포함하는 이차전지용 분리막, 이를 포함하는 이차전지, 및 상기 분리막의 제조방법
WO2015065127A1 (ko) 스택-폴딩형 전극 조립체
WO2016204465A1 (ko) 분리막 이차전지
WO2014081242A1 (ko) 전극조립체의 제조 방법 및 이를 이용하여 제조된 전극조립체
WO2017171187A1 (ko) 다층 구조를 가지는 이차전지용 복합 전해질
WO2013055186A1 (ko) 케이블형 이차전지
WO2014182063A1 (ko) 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
WO2013055188A1 (ko) 케이블형 이차전지
WO2013055187A1 (ko) 케이블형 이차전지
KR20180009129A (ko) 천공 구조의 집전체를 포함하는 전극, 이를 포함하는 리튬 이차전지
WO2013062337A2 (ko) 케이블형 이차전지
US20170005318A1 (en) Laminated-type battery and method for manufacturing the same
KR20160051660A (ko) 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
WO2013055190A1 (ko) 케이블형 이차전지
CN108885946A (zh) 蓄电设备及其制造方法
WO2013042939A2 (ko) 케이블형 이차전지
WO2019203379A1 (ko) 전고체 리튬이차전지의 제조 방법
WO2017069586A1 (ko) 케이블형 이차전지
WO2015194908A1 (ko) 중공형의 케이블형 이차전지용 패키징 및 그를 포함하는 케이블형 이차전지
WO2015056973A1 (ko) 파우치형 이차전지 및 이를 포함하는 이차전지 모듈
WO2014200214A1 (ko) 내진동 특성이 향상된 전기화학소자 및 전지 모듈
WO2016137142A1 (ko) 스택-폴딩형 전극 조립체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811878

Country of ref document: EP

Kind code of ref document: A1