WO2016204289A1 - 血液処理フィルター用フィルター要素及び血液処理フィルター - Google Patents

血液処理フィルター用フィルター要素及び血液処理フィルター Download PDF

Info

Publication number
WO2016204289A1
WO2016204289A1 PCT/JP2016/068171 JP2016068171W WO2016204289A1 WO 2016204289 A1 WO2016204289 A1 WO 2016204289A1 JP 2016068171 W JP2016068171 W JP 2016068171W WO 2016204289 A1 WO2016204289 A1 WO 2016204289A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
filter
blood
filter element
treatment
Prior art date
Application number
PCT/JP2016/068171
Other languages
English (en)
French (fr)
Inventor
信量 島田
多佳子 甲斐
Original Assignee
旭化成メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成メディカル株式会社 filed Critical 旭化成メディカル株式会社
Priority to CN201680035107.7A priority Critical patent/CN107735116B/zh
Priority to JP2017524873A priority patent/JP6437651B2/ja
Priority to US15/736,548 priority patent/US10814051B2/en
Priority to EP16811763.8A priority patent/EP3311857B1/en
Publication of WO2016204289A1 publication Critical patent/WO2016204289A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/02Blood transfusion apparatus
    • A61M1/029Separating blood components present in distinct layers in a container, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/02Blood transfusion apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/01Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/0057Special media to be introduced, removed or treated retained by adsorption
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/0071Special media to be introduced, removed or treated product to be retained or harvested, e.g. by pheresis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/04Liquids
    • A61M2202/0413Blood
    • A61M2202/0439White blood cells; Leucocytes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0471Surface coating material
    • B01D2239/0478Surface coating material on a layer of the filter

Definitions

  • the present invention relates to blood used for removing unnecessary components from blood, that is, whole blood and blood products (liquids prepared from whole blood and liquids to which various additives are added).
  • the present invention relates to a filter for a processing filter and a filter element therefor.
  • the present invention relates to a blood treatment filter suitable for removing leukocytes from a leukocyte-containing liquid as described above and a filter element therefor.
  • the blood components required by the recipient are separated from the whole blood product in addition to transfusion of the whole blood product with anticoagulant added to the blood collected from the donor.
  • component transfusion in which the blood component is transfused, is performed.
  • red blood cell transfusions, platelet transfusions, plasma transfusions, etc. depending on the types of blood components required by the recipient, and blood products used for these transfusions include red blood cell preparations, platelet preparations, plasma preparations, etc. There is.
  • leukocyte-removed blood transfusion in which a blood product is transfused after removing leukocytes contained in the blood product, has become widespread.
  • This includes relatively minor side effects such as headaches, nausea, chills, and non-hemolytic fever reactions associated with blood transfusions, as well as severe allergies such as alloantigen sensitization, viral infections, and post-transfusion GVHD.
  • serious side effects were caused mainly by leukocytes mixed in blood products used for blood transfusion.
  • leukocytes in blood products should be removed until the residual rate is 10 ⁇ 1 to 10 ⁇ 2 or less. Yes.
  • leukocytes need to be removed until the residual rate becomes 10 ⁇ 4 to 10 ⁇ 6 or less.
  • leukocyte removal therapy by extracorporeal circulation of blood has been performed for the treatment of diseases such as rheumatism and ulcerative colitis, and a high clinical effect has been obtained.
  • a leukocyte removal filter device using a leukocyte removal filter material having a high leukocyte removal ability per unit volume and filled with a smaller amount of filter material is required. It is expected that the amount of blood remaining in the filter decreases as the filling amount of the filter material decreases, and the recovery rate of useful components can be improved as compared with the conventional filter device.
  • the leukocyte removal filter device needs to have a shape equal to or larger than the cross-sectional area of the conventional device and the filter material having a small thickness.
  • the filter material in order to reduce the thickness of the filter material while maintaining the leukocyte removal capability, it is necessary to increase the leukocyte removal capability per unit volume.
  • Patent Document 1 The mechanism of leukocyte removal by a filter material such as a fiber aggregate or a porous structure having continuous pores is mainly due to the fact that leukocytes in contact with the surface of the filter material are adhered or adsorbed on the surface of the filter material. Therefore, in order to satisfy the above requirements, studies have been made to reduce the fiber diameter of the nonwoven fabric or increase the bulk density as means for improving the leukocyte removal ability of the conventional filter material (Patent Document 1, Patent Document 2).
  • a leukocyte removal filter in which a specific structure in the thickness direction, that is, the liquid flow direction is made uniform over the entire filtration surface of the nonwoven fabric has a high leukocyte removal ability and can be processed without causing clogging.
  • a method of removing leukocytes with a short time has been proposed (see Patent Document 3).
  • Blood treatment filters especially leukocyte removal filters, are usually sterilized by steam heat treatment before use to prevent contamination of blood products with infectious substances. It was found that the characteristics changed and as a result, the leukocyte removal ability decreased.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a blood treatment filter filter element and a blood treatment filter having a leukocyte removal ability equal to or higher than that of a conventional filter element even after steam heat treatment. .
  • the present inventor has conducted extensive research to achieve a high ability to remove white blood cells and the like after steam heat treatment in a blood treatment filter in which a filter element including a nonwoven fabric is carried in a container. It has been found that the ability to remove leukocytes and the like after steam heat treatment can be greatly improved by making the degree of crystallinity of the non-woven fabric at or above a certain level as compared with conventional filter elements.
  • a filter element for a blood treatment filter comprising a nonwoven fabric having an uncrystallized heat quantity of 5 J / g or less before steam heat treatment.
  • a filter element for a blood treatment filter according to [1] wherein a value obtained by subtracting the amount of heat of crystallization from the amount of heat of crystal melting before steam heat treatment of the nonwoven fabric is 50 J / g or more.
  • a value obtained by subtracting the amount of heat of crystallization from the amount of heat of crystal melting before steam heat treatment of the nonwoven fabric is 50 J / g or more.
  • the non-woven fabric has a thermal shrinkage rate of 5-24%, an elongation rate in a direction in which the elongation rate becomes maximum, and an elongation rate in a direction perpendicular thereto are 1% or more and 3% or less.
  • [7] The filter element for a blood treatment filter according to [6], wherein a difference between an elongation rate in a direction in which the elongation rate of the nonwoven fabric is maximized and an elongation rate in a direction perpendicular thereto is 1% or less.
  • a blood treatment filter having the filter element according to any one of [1] to [7], an inlet-side container material, and an outlet-side container material, wherein the inlet-side container material and the outlet-side container material are hard The outer edge of the filter element is sandwiched and held between the inlet-side container material and the outlet-side container material, and the inner space of the blood treatment filter is partitioned into the inlet space and the outlet space by the filter element.
  • a blood processing filter having the filter element according to any one of [1] to [7], an inlet-side container material, and an outlet-side container material, wherein the inlet-side container material and the outlet-side container material are hard The outer edge of the filter element is sandwiched and held between
  • a blood treatment filter having a filter element according to any one of [1] to [7] and a container having an inlet and an outlet, wherein the container is made of a soft material and is disposed at a peripheral portion of the container.
  • the blood processing filter wherein the filter element is welded, and an internal space of the blood processing filter is partitioned into an inlet space and an outlet space by the filter element.
  • the filter element Before the steam heating treatment of the nonwoven fabric in contact with the inlet-side container material and / or the nonwoven fabric in contact with the outlet-side container material among the plurality of nonwoven fabrics, wherein the filter element includes a plurality of nonwoven fabrics
  • the filter element of the present invention is used, it is possible to provide a blood processing filter that can maintain high white blood cell removal performance even after the steam heat treatment.
  • FIG. 1 It is a schematic diagram of a blood processing filter provided with the filter element for blood processing filters which is one Embodiment of this invention. It is sectional drawing of a blood processing filter provided with the filter element for blood processing filters which is one Embodiment of this invention.
  • the filter element includes a nonwoven fabric.
  • the filter element may include only one nonwoven fabric or a plurality of sheets, and may further include other sheets in combination with the nonwoven fabric.
  • the plurality of nonwoven fabrics may be of a single type or a plurality of types.
  • the nonwoven fabric may be the one fed from the nonwoven fabric raw material, or may be provided with a surface layer such as a coat layer, or may be subjected to surface treatment processing such as heat processing or electron beam irradiation. It may be applied.
  • the coating agent used is not limited, and examples thereof include hydrophilic polymers.
  • the hydrophilic polymer as a coating agent may swell in water but does not dissolve in water.
  • the nonwoven fabric is not particularly limited.
  • polyamide polyethylene terephthalate (PET), polybutylene terephthalate (PBT), etc.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • polyacrylonitrile polyurethane
  • polyvinyl formal polyvinyl acetal
  • polytrifluorochloroethylene polytrifluorochloroethylene
  • resin fibers formed by spinning a resin that does not affect blood such as poly (meth) acrylate, polysulfone, polystyrene, polyethylene, polypropylene, cellulose, cellulose acetate, etc., by a melt blow method or the like.
  • the amount of uncrystallized heat before the steam heating treatment of the nonwoven fabric included in the filter element is 5 J / g or less.
  • the steam heat treatment means exposure to steam at 100 ° C. or higher.
  • the blood processing filter including the filter element of the present embodiment includes a container having an inlet for introducing a processing liquid (for example, blood, blood product) into the container and an outlet for discharging the liquid outside the container.
  • a processing liquid for example, blood, blood product
  • examples include those filled with filter elements.
  • the internal space in the filter is partitioned into an inlet space and an outlet space by a filter element.
  • a filter element includes a filter element and an inlet-side container material and an outlet-side container material arranged with the filter element interposed therebetween, and the inlet-side container material and the outlet-side container material sandwich an outer edge portion of the filter element.
  • the filter element is sandwiched between soft members (containers) made of a soft material such as a flexible synthetic resin sheet having an inlet and an outlet.
  • the blood treatment filter may contain a filter element other than the filter element of the present embodiment inside the container.
  • the blood treatment filter is minute on the upstream side (the side closer to the container inlet than the filter element of the present embodiment) inside the container.
  • FIG. 1 is a schematic view of a blood processing filter (leukocyte removal filter) provided with the filter element of this embodiment
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • the blood processing filter 10 includes a flat container 1 and a blood processing filter element 5 housed therein and substantially in a dry state.
  • the container 1 for storing the blood treatment filter element 5 is composed of two elements: an inlet side container material having an end first entrance 3 on the main surface and an outlet side container material having a second entrance 4 on the end of the main surface. Become.
  • the space in the flat container 1 is partitioned by the blood processing filter element 5 into a first entrance / exit side space 7 and a second entrance / exit side space 8.
  • the inlet side container material and the outlet side container material are arranged with the filter element 5 interposed therebetween, and the two container materials are each provided with a grip portion provided at a part of the inside of each peripheral edge portion.
  • a structure in which the outer edge portion 9 of the filter element 5 is sandwiched and gripped by (a rib-shaped convex portion or the like) is employed.
  • the blood treatment filter 1 is usually sterilized by a steam heat treatment method before use. At this time, it is considered that the physical structure of the nonwoven fabric is greatly changed by the steam heat treatment. Among these, when the shrinkage occurs in the plane direction of the nonwoven fabric, as a result, the above-mentioned gripping part structure becomes unstable, and the ability to remove leukocytes and the like and the handleability of the blood treatment filter 1 are lowered.
  • the change in the physical properties of the nonwoven fabric accompanying the steam heat treatment includes a change in the shape of the fibers constituting the nonwoven fabric in addition to the shrinkage in the planar direction.
  • the surface area (specific surface area) per unit mass of the filter element is reduced, and the ability to remove leukocytes and the like may be reduced.
  • the ventilation pressure loss of the filter element per unit weight decreases, which may lead to a decrease in the ability to remove leukocytes and the like.
  • the change in the physical properties of the nonwoven fabric caused by the steam heat treatment causes a significant deterioration in the structure and performance balance of the blood treatment filter.
  • the present inventor examined the cause of the change in the physical properties of the nonwoven fabric due to the steam heat treatment, one reason is that the crystallinity of the resin (polyethylene terephthalate resin, etc.) forming the nonwoven fabric is insufficient. There was found. That is, by heat-treating a resin having low crystallinity at a high temperature (in particular, a high temperature equal to or higher than its glass transition temperature (Tg)), the crystallization of the nonwoven fabric is promoted, and the resin density in the nonwoven fabric is increased. It is considered that the volume per weight decreases, which causes changes in physical characteristics such as shrinkage and changes in the shape of the fiber, resulting in an unstable structure of the blood treatment filter and a loss in performance balance.
  • a resin having low crystallinity at a high temperature in particular, a high temperature equal to or higher than its glass transition temperature (Tg)
  • Tg glass transition temperature
  • the amount of uncrystallized heat before steam heat treatment of the nonwoven fabric included in the filter element is set to 5 J / g or less.
  • “Non-crystallization heat quantity” is an index indicating the crystallinity of a resin, and the smaller this value, the higher the crystallinity of the resin.
  • the amount of uncrystallized heat is preferably 3 J / g or less, more preferably 2 J / g or less, and even more preferably 1 J / g or less.
  • the steam heat treatment conditions are generally different for each bag manufacturer that incorporates a blood treatment filter to produce a kit. Compared to blood treatment filters using conventional filter elements, it has thermal stability that can withstand a wider range of steam heat treatment conditions.
  • a filter element using such a nonwoven fabric an effect of improving the performance and handleability as a blood treatment filter can be obtained.
  • a filter as shown in FIGS. 1 and 2 in which a filter element is sandwiched and held by a rigid container, the resilience strength of the filter element with respect to the holding part of the container becomes high even after the steam heating treatment, and the container holding part Phenomenon of blood passing between the gripping part and the filter element without flowing through the filter element and flowing from the inlet space into the outlet space (side leak phenomenon) And the effect of improving the ability to remove leukocytes and the like can be obtained.
  • the amount of uncrystallized heat of the nonwoven fabric is controlled to a certain level or less.
  • the strength of the joint of the filter element is improved, and the anti-centrifugal resistance of the filter (difficult to break the joint between the container and the filter element when the filter is centrifuged (when centrifugal force is applied)) is improved. Effect is also obtained.
  • the value obtained by subtracting the heat of uncrystallization from the heat of crystal fusion before the steam heating treatment of the nonwoven fabric included in the filter element is 50 J / g or more.
  • This “value obtained by subtracting the amount of heat of crystallization from the amount of heat of crystal fusion” is also an index indicating the degree of crystallinity of the resin, and the larger this value, the higher the degree of crystallinity of the resin.
  • the uncrystallized calorie and the crystal melting calorie are values measured for the nonwoven fabric by the differential scanning calorimeter method (DSC method).
  • DSC method differential scanning calorimeter method
  • the measurement method will be described below. Separate 3-4 mg of non-woven fabric and place in an aluminum standard container, and measure the initial temperature rise curve (DSC curve) in an atmosphere with an initial temperature of 35 ° C., a temperature rise rate of 10 ° C./min, and a nitrogen flow of 50 mL / min .
  • DSC curve initial temperature rise curve
  • exothermic peak an exothermic peak and a melting peak (endothermic peak) are detected, and the calorific value (J) obtained from each peak area is divided by the nonwoven fabric mass to obtain the uncrystallized heat (J / G) and the heat of crystal fusion (J / g) are calculated.
  • the measuring device for example, a TA-60WS system manufactured by Shimadzu Corporation can be used.
  • the X-ray crystallinity of the nonwoven fabric included in the filter element before the steam heat treatment is 60 or more.
  • the crystallinity of the filter element is further increased, and changes in physical properties (shrinkage and the like) of the filter material before and after the steam heat treatment are suppressed, thereby obtaining an effect of improving the ability to remove leukocytes and the like as described above.
  • the X-ray crystallinity is more preferably 63 or more, and still more preferably 66 or more.
  • the X-ray crystallinity is measured by an X-ray diffraction method.
  • the measurement can be performed using the X-ray diffractometer (for example, MiniFlex II (Rigaku, model number 2005H301)) according to the following measurement procedures 1) to 5).
  • X-ray diffractometer for example, MiniFlex II (Rigaku, model number 2005H301)
  • 1) One piece of non-woven fabric having a size of 3 cm ⁇ 3 cm is set on the sample stage. 2) Perform measurement under the following conditions.
  • the nonwoven fabric Before performing the steam heat treatment, the nonwoven fabric having an uncrystallization heat amount of 5 J / g or less, the nonwoven fabric having a value obtained by subtracting the uncrystallization heat amount from the crystal melting heat amount, 50 J / g or more, and an X-ray crystallinity of 60 or more
  • the non-woven fabric can be easily manufactured, for example, by selecting the material and manufacturing conditions thereof as described in this specification.
  • the area shrinkage rate of the nonwoven fabric is preferably 10% or less, more preferably 3% or less, particularly preferably 2% or less, and most preferably 1% or less. If the area shrinkage ratio is larger than 10%, not only the pore diameter of the non-woven fabric is reduced but also the blood cells are not uniform when subjected to steam heat treatment, particularly particularly severe steam heat treatment such as high-pressure steam sterilization. There is a tendency for clogging to increase and the processing speed to decrease. An area shrinkage ratio of 10% or less is preferable because uniformity in pore diameter is maintained even after sterilization treatment, fluctuations in treatment speed can be prevented, and a stable performance balance tends to be exhibited.
  • polybutylene terephthalate has a higher crystallization speed than other polyester fibers, such as polyethylene terephthalate fiber, and therefore it is easy to increase the degree of crystallinity. Even if it is applied, shrinkage in the plane direction is unlikely to occur (the area shrinkage rate is easy to be reduced), and therefore a stable leukocyte removal ability and processing speed can be exhibited regardless of sterilization conditions.
  • the area shrinkage ratio of the nonwoven fabric in the present embodiment is 115 without accurately fixing the nonwoven fabric with a pin or the like after accurately measuring the vertical and horizontal dimensions of the nonwoven fabric before steam heat treatment cut into a square of about 20 cm ⁇ 20 cm. Steam heat treatment is carried out at 240 ° C. for 240 minutes, and then the vertical and horizontal dimensions are measured again and calculated by the following formula.
  • Area shrinkage (%) (Vertical length of the nonwoven fabric before heat treatment (cm) ⁇ Horizontal length of the nonwoven fabric before heat treatment (cm) -The longitudinal length (cm) of the nonwoven fabric after heat treatment x the lateral length (cm) of the nonwoven fabric after heat treatment) ⁇ (longitudinal length of the nonwoven fabric before heat treatment (cm) ⁇ horizontal length of the nonwoven fabric before heat treatment (cm)) ⁇ 100
  • the nonwoven fabric contained in a filter element contain the nonwoven fabric which has a nonionic hydrophilic group and a basic nitrogen-containing functional group in the surface part.
  • the fiber itself constituting the nonwoven fabric may have a nonionic hydrophilic group and a basic nitrogen-containing functional group on the surface portion thereof, or the coating layer formed on the nonwoven fabric may be nonionic on the surface portion. It may have a hydrophilic hydrophilic group and a basic nitrogen-containing functional group.
  • the surface portion of the nonwoven fabric is the surface portion of the coating layer when the surface of the nonwoven fabric is coated with a coating layer containing a monomer and / or polymer, and the surface of the spun fiber when no coating layer is formed on the fiber. Say part.
  • the filter element has a nonionic hydrophilic group and a basic nitrogen-containing functional group on the surface part, so that it is possible to increase the affinity between the nonwoven fabric and the white blood cells in the blood while increasing the permeability of the blood product to the nonwoven fabric. Thus, leukocyte removal can be performed efficiently.
  • At least one nonwoven fabric may have a nonionic hydrophilic group and a basic nitrogen-containing functional group on the surface portion.
  • the ratio of the basic nitrogen-containing functional group to the total of the nonionic hydrophilic group and the basic nitrogen-containing functional group in the surface portion is preferably 0.2 to 4.0% by mass, more preferably 0.00. 3 to 1.5% by mass.
  • the proportion of the basic nitrogen-containing functional group can be measured by analysis using NMR, IR, TOF-SIMS or the like.
  • nonionic hydrophilic group examples include an alkyl group, an alkoxy group, a carbonyl group, an aldehyde group, a phenyl group, an amide group, and a hydroxyl group.
  • the basic nitrogen-containing functional group examples include —NH 2 , —NHR 1 , —NR 2 R 3 , —N + R 4 R 5 R 6 (R 1 , R 2 , R 3 , R 4 , R 5 and R 6 is an amino group represented by an alkyl group having 1 to 3 carbon atoms.
  • the coating layer includes, for example, a copolymer having a monomer unit having a nonionic hydrophilic group and a monomer unit having a basic nitrogen-containing functional group.
  • the monomer unit having a nonionic hydrophilic group include units derived from 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, vinyl alcohol, (meth) acrylamide, N-vinylpyrrolidone and the like. It is done.
  • 2-hydroxyethyl (meth) acrylate is preferably used from the viewpoints of availability, ease of handling during polymerization, performance when blood is shed, and the like.
  • the monomer unit of vinyl alcohol is usually produced by hydrolysis after polymerization of vinyl acetate.
  • monomer units having basic nitrogen-containing functional groups include diethylaminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate, and 3-dimethylamino-2-hydroxypropyl (meth) acrylate.
  • (meth) acrylic acid such as; styrene derivatives such as p-dimethylaminomethylstyrene and p-diethylaminoethylstyrene; vinyls of nitrogen-containing aromatic compounds such as 2-vinylpyridine, 4-vinylpyridine and 4-vinylimidazole Derivatives; and units derived from derivatives in which the vinyl compound is converted to a quaternary ammonium salt with an alkyl halide or the like.
  • diethylaminoethyl (meth) acrylate and dimethylaminoethyl (meth) acrylate are preferably used from the viewpoint of easy availability, ease of handling at the time of polymerization, performance when blood is flowed, and the like.
  • the mass of the coat layer is, for example, about 1.0 to 40.0 mg with respect to 1 g of the total mass of the nonwoven fabric and the coat layer.
  • the mass of the coat layer can be calculated by the following procedure, for example.
  • the nonwoven fabric before carrying the coat layer is dried for 1 hour in a dryer set at 60 ° C., and then left in a desiccator for 1 hour or more, and then the mass (Ag) is measured.
  • the non-woven fabric carrying the coat layer is similarly dried in a dryer at 60 ° C. for 1 hour, then left in a desiccator for 1 hour or more, and then the mass (Bg) is measured.
  • the coat layer containing a polymer can be formed, for example, by immersing the nonwoven fabric in a polymer solution containing a polymer and a solvent and then removing the solvent from the polymer solution attached to the nonwoven fabric.
  • the filter element When producing a filter by sandwiching and holding the filter element between the two parts of the outlet side and inlet side container material constituting the rigid container (for example, as shown in FIGS. 1 and 2), the filter element When a plurality of nonwoven fabrics are included, steam heating treatment is performed by using a nonwoven fabric having a high degree of crystallinity as a nonwoven fabric that is in contact with the outlet-side container material (non-woven fabric disposed closest to the outlet-side container material).
  • the gripping part of the container material on the outlet side on the rear side can be further squeezed with respect to the filter element. This allows blood to pass between the gripping part and the filter element without penetrating the filter element and exit from the inlet space. Suppresses the phenomenon of flowing directly into the space (side leak phenomenon) and improves the ability to remove leukocytes, etc., further improving performance as a blood treatment filter It is possible to above.
  • the non-woven fabric that comes into contact with the equipment includes the following (1), and more preferably includes (2) and / or (3) in addition to (1).
  • Uncrystallized calorie before steam heat treatment is 5 J / g or less
  • the value obtained by subtracting the uncrystallized calorie from the heat of crystal melting before steam heat treatment is 50 J / g or more
  • Steam X-ray crystallinity before heat treatment is 60 or more
  • the degree of crystallization of all the nonwoven fabrics included in the filter element is high. It is excellent from the viewpoint of the ability to remove leukocytes after steam heat treatment, but the filter element is inferior in the ease of holding or joining the filter element between container materials due to the increased repulsive strength of the filter element.
  • the nonwoven fabric in contact with the inlet side container material and the outlet side container material or the nonwoven fabric in contact with the inlet side container material and the outlet container material and It is preferable that the degree of crystallinity of the non-woven fabric other than a predetermined number (usually 1 to several non-woven fabrics) arranged adjacent thereto is rather not too high.
  • the filter element held by the rigid container includes first and second nonwoven fabric layers (described later) in order from the inlet side, the plurality of nonwoven fabrics included in the second nonwoven fabric layer
  • the non-woven fabric in contact with the outlet side container material (and the predetermined number of non-woven fabrics arranged adjacent to the non-woven fabric) satisfies at least the above (1), and part or all of the other non-woven fabric is the above (1) It is preferable from the viewpoint of productivity at the time of manufacturing the filter that it has a larger amount of uncrystallized heat before the steam heating treatment than the nonwoven fabric in contact with the outlet side container material even if it does not satisfy .
  • the nonwoven fabric included in the filter element 5 of the present embodiment preferably has a formation index corresponding to a thickness of 0.3 mm of 15 or more and 70 or less.
  • the formation index is greater than 70, the structure in the thickness direction of the nonwoven fabric is not uniform with respect to the filtration surface direction, and blood does not flow evenly through the nonwoven fabric, so that the ability to remove leukocytes and the like tends to decrease.
  • the formation index is less than 15, clogging is likely to occur due to an increase in liquid flow resistance, and the processing speed is reduced.
  • the formation index is more preferably 15 or more and 65 or less, further preferably 15 or more and 60 or less, and particularly preferably 15 or more and 50 or less. Most preferably, it is 15-40.
  • the formation index referred to in the present embodiment is a porous body that is detected by each pixel of the CCD camera by applying light from below the nonwoven fabric, detecting the transmitted light with a charge coupled device camera (hereinafter abbreviated as CCD camera). This is a value obtained by multiplying the coefficient of variation (%) of the absorbance of the non-woven fabric 10 times.
  • the formation index can be measured by, for example, a formation tester FMT-MIII (Nomura Corporation, manufactured in 2002, S / N: 130). The basic setting of the tester is not changed from the factory shipment, and the total number of pixels of the CCD camera can be measured at about 3400, for example.
  • the measurement size may be changed so that the number of pixels becomes equal to 3400.
  • the formation index equivalent to thickness 0.3mm is calculated with the following method. First, three nonwoven fabrics having a thickness of 0.3 mm or less are prepared, and the formation index and thickness of each are measured.
  • the thickness of the nonwoven fabric is the average value when the thickness of any four points is measured at a measurement pressure of 0.4 N using a constant pressure thickness meter (for example, model FFA-12, manufactured by OZAKI).
  • a constant pressure thickness meter for example, model FFA-12, manufactured by OZAKI.
  • two of the three nonwoven fabrics measured are overlapped so that the thickness is 0.3 mm or more, and the formation index and thickness are measured for the two nonwoven fabrics in the stacked state.
  • a regression linear equation of thickness and formation index is obtained, and an formation index corresponding to a thickness of 0.3 mm is obtained from the equation.
  • the formation index is measured by stacking a plurality of nonwoven fabrics so that the stacked thickness is 0.3 mm or more.
  • the specific surface area of the nonwoven fabric contained in the filter element 5 of the present embodiment is preferably 0.8 m 2 / g or more 5.0m 2 / g or less.
  • the specific surface area is larger than 5.0 m 2 / g, useful components such as plasma proteins are adsorbed on the filter element during blood treatment, and the recovery rate of useful components tends to decrease. Furthermore, the blood filtration rate may be extremely reduced, or the filter element may not be stably produced.
  • the specific surface area is less than 0.8 m 2 / g, the contact probability between the leukocytes and the filter element decreases, and the amount of leukocytes adsorbed decreases, so that the ability to remove leukocytes and the like tends to decrease compared to conventional filter elements.
  • the specific surface area of the nonwoven fabric is more preferably 1.0 m 2 / g or more 3.2 m 2 / g or less, more preferably 1.1 m 2 / g or more 2.9 m 2 / g or less, particularly preferably 1.2 m 2 / g or more and 2.9 m 2 / g or less, and most preferably 1.2 m 2 / g or more and 2.6 m 2 / g or less.
  • a plurality of filter elements having a specific surface area may be arranged so that the specific surface area becomes larger toward the outlet side.
  • the specific surface area referred to in the present embodiment is the surface area of the nonwoven fabric per unit mass, and is a value measured by the BET adsorption method using an adsorption gas of nitrogen, for example, a Tristar 3000 device manufactured by Micromeritics, It can be measured using “Accusorb 2100” manufactured by Shimadzu Corporation or a device having specifications equivalent to these. It shows that the larger the specific surface area of the nonwoven fabric, the larger the area capable of adsorbing cells, plasma proteins, etc. when blood is processed using a filter element containing the nonwoven fabric of the same mass.
  • the ventilation resistance of the nonwoven fabric contained in the filter element 5 of this embodiment is 25 Pa ⁇ s ⁇ m / g or more and 100 Pa ⁇ s ⁇ m / g or less. More preferably, it is 30 Pa ⁇ s ⁇ m / g or more and 90 Pa ⁇ s ⁇ m / g or less, and further preferably 40 Pa ⁇ s ⁇ m / g or more and 80 Pa ⁇ s ⁇ m / g or less. If the airflow resistance is less than 25 Pa ⁇ s ⁇ m / g, the number of contact with white blood cells tends to decrease and it becomes difficult to capture white blood cells. If the airflow resistance of the nonwoven fabric is greater than 100 Pa ⁇ s ⁇ m / g, clogging of blood cells increases and the processing speed tends to decrease.
  • the airflow resistance of the nonwoven fabric of the embodiment is a value measured as a differential pressure generated when air of a constant flow rate is passed through the nonwoven fabric, and a breathability test apparatus (for example, KES-F8-AP1 manufactured by Kato Tech KK). ) Is measured on the pressure loss (Pa ⁇ s / m) generated when the non-woven fabric is placed on the vent hole and air is allowed to vent for about 10 seconds, and the obtained pressure loss is measured based on the non-woven fabric weight (g / m 2 ). The value divided by. However, the measurement is performed five times while changing the part to be cut out, and the average value is taken as the ventilation resistance.
  • a breathability test apparatus for example, KES-F8-AP1 manufactured by Kato Tech KK.
  • the high airflow resistance of the nonwoven fabric means that air is difficult to pass through, and the fibers constituting the nonwoven fabric are entangled in a dense or uniform state, and the nonwoven fabric has the property that blood products do not flow easily. It shows that.
  • the low airflow resistance of the nonwoven fabric means that the fibers constituting the nonwoven fabric are rough or entangled in a non-uniform state, indicating that the nonwoven fabric has a property that blood products can easily flow.
  • the nonwoven fabric contained in the filter element 5 of the present embodiment preferably has an average flow pore size of 1.0 ⁇ m or more and 60 ⁇ m or less, more preferably 1.0 ⁇ m or more and 30 ⁇ m or less, and 1.0 ⁇ m or more and 20 ⁇ m. It is more preferable that the thickness is 1.0 ⁇ m or more and 8.0 ⁇ m or less.
  • the average flow pore size is larger than 60 ⁇ m, the number of contact with white blood cells tends to decrease and the ability to remove white blood cells and the like tends to decrease. If the average flow pore size is less than 1.0 ⁇ m, clogging of blood cells and pressure loss increase, blood products do not flow easily, and the processing speed tends to decrease.
  • the average flow pore size is more preferably 1.5 ⁇ m to 7.5 ⁇ m, further preferably 2.5 ⁇ m to 7.0 ⁇ m, particularly preferably 3.5 ⁇ m to 6.5 ⁇ m, and most preferably 4.5 ⁇ m to 6. 5 ⁇ m or less.
  • the average flow pore diameter of the nonwoven fabric is determined according to ASTM F316-86, for example, a porometer (for example, a palm porometer CFP-1200AEXS (porous material automatic pore size distribution measuring system) manufactured by PMI) or manufactured by Coulter Electronics. It is a mean flow pore size (MFP) when measured using a sample of about 50 mg using a Coulter R porometer or the like.
  • MFP mean flow pore size
  • the nonwoven fabric having a large average flow pore size the blood product can easily flow, but the ability to remove leukocytes and the like is reduced.
  • the nonwoven fabric having a small average flow pore size the ability to remove leukocytes and the like is improved, but the blood product is difficult to flow and the nonwoven fabric is likely to be blocked.
  • the filter element of the present embodiment is composed of a plurality of non-woven fabrics
  • a plurality of non-woven fabrics having different average flow pore sizes may be laminated so that the average flow pore size decreases from the inlet side to the outlet side of the container.
  • a pre-filter with an average flow pore size of 50 ⁇ m or more and 200 ⁇ m or less is mainly placed on the inlet side from the filter element, or an average aiming at preventing drift from the filter element to the outlet side
  • a post filter having a flow hole diameter of 50 ⁇ m or more and 200 ⁇ m or less may be arranged.
  • the porosity of the filter element of this embodiment and the nonwoven fabric contained therein is preferably 65% or more and 90% or less, and more preferably 75% or more and 88% or less. If the porosity is less than 65%, the filtration rate of blood or the like tends to be low, and it tends to take a long time to remove leukocytes. Moreover, when the porosity exceeds 90%, the entangled portion of the fibers and the fibers to which the leukocytes are easy to adhere decreases, so that it is difficult to obtain high leukocyte removal performance.
  • the porosity (%) of the filter element (nonwoven fabric) is the volume ratio of the space in the filter element (nonwoven fabric), for example, the filter element (nonwoven fabric) calculated from the thickness of the filter element (nonwoven fabric).
  • Unit of filter element (nonwoven fabric) calculated from the volume of filter element (nonwoven fabric) per unit area and the basis weight (mass per unit area) of filter element (nonwoven fabric) and the specific gravity of the resin constituting the filter element (nonwoven fabric) It is a value calculated by the following formula from the resin volume per area.
  • Porosity (%) (1-resin volume / filter element (nonwoven fabric) volume) ⁇ 100
  • the filter element and the non-woven fabric included therein maintain the above porosity even when the blood treatment filter is filled and compressed.
  • the filter element of this embodiment may be comprised from the nonwoven fabric of 1 sheet, and may be comprised from the some nonwoven fabric. Furthermore, when the filter element is composed of a plurality of nonwoven fabrics, it may be composed of a single type of nonwoven fabric, or may be composed of a plurality of types of nonwoven fabric. In addition, it is not necessary that all of the plurality of nonwoven fabrics are nonwoven fabrics specified in the present embodiment, and at least one of the nonwoven fabrics in the present embodiment is sufficient, and the nonwoven fabric in the present embodiment accounts for 30% or more of the total thickness of the filter elements. The contribution ratio is more preferably 40% or more, and still more preferably 50% or more.
  • the filter element When the filter element is composed of multiple types of non-woven fabric, the filter element removes the first non-woven fabric layer that removes the micro-aggregates arranged upstream, and the white blood cells that are arranged downstream of the first non-woven fabric layer. It is preferable to have the 2nd nonwoven fabric layer for doing.
  • Each of the first and second nonwoven fabric layers may be a single nonwoven fabric or a plurality of nonwoven fabrics.
  • the 1st and 2nd nonwoven fabric layer consists of a some nonwoven fabric, each may be comprised by the single type nonwoven fabric, and may be comprised from multiple types of nonwoven fabric.
  • the first nonwoven fabric layer disposed on the inlet side is preferably a nonwoven fabric layer made of nonwoven fabric having an average fiber diameter of 3 to 60 ⁇ m from the viewpoint of removing aggregates.
  • the second nonwoven fabric layer is preferably a nonwoven fabric layer made of a nonwoven fabric having an average fiber diameter of 0.3 to 3.0 ⁇ m from the viewpoint of removing leukocytes and the like.
  • the number of non-woven fabrics forming each non-woven fabric layer can be appropriately selected in consideration of the ability to remove leukocytes and the like required for the blood processing filter, the processing time, or the balance thereof. For example, one non-woven fabric layer may be used.
  • the first nonwoven fabric layer of the filter element is disposed on the upstream side (inlet side) of the second nonwoven fabric layer, and the nonwoven fabric forming the second nonwoven fabric layer is the first nonwoven fabric.
  • the average fiber diameter is smaller than the nonwoven fabric forming the layer.
  • the average fiber diameter of the nonwoven fabric forming the first nonwoven fabric layer is 3 to 60 ⁇ m, it is effective for suppressing clogging of the filter element, and the average fiber diameter of the nonwoven fabric of the second nonwoven fabric layer is less than 3 ⁇ m. If it is, the fall of filtration performance (leukocyte removal performance) can be prevented. Furthermore, when the average fiber diameter of the nonwoven fabric forming the first nonwoven fabric layer is 4 to 40 ⁇ m, more preferably 30 to 40 ⁇ m and / or 10 to 20 ⁇ m, it is possible to more reliably suppress clogging of the filter element. Therefore, it is more preferable.
  • the average fiber diameter of the nonwoven fabric forming the second nonwoven fabric layer is 0.3 ⁇ m or more, clogging with white blood cells or the like is prevented, and an increase in pressure loss is preferably prevented.
  • the average fiber diameter is more preferably 0.5 to 2.5 ⁇ m, and even more preferably 0.7 ⁇ m to 1.5 ⁇ m.
  • the second nonwoven fabric layer may have a configuration in which a plurality of nonwoven fabrics having different average fiber diameters are stacked so that the average fiber diameter becomes smaller in order from the inlet side toward the outlet side.
  • a third nonwoven fabric layer made of a nonwoven fabric having an average fiber diameter of 1.2 to 1.5 ⁇ m and / or 0.9 to 1.2 ⁇ m may be disposed and used further downstream of the second nonwoven fabric layer.
  • the first nonwoven layer containing a nonwoven fabric having a thick average fiber diameter and the second nonwoven layer containing a nonwoven fabric having a thin average fiber diameter may be alternately arranged. In this case, the flowability is improved by forming a cascade structure. From the viewpoint, it is preferable that the first nonwoven fabric layer, the second nonwoven fabric layer, the first nonwoven fabric layer, and the second nonwoven fabric layer are arranged in this order from the entrance side.
  • the average fiber diameter in the present embodiment refers to a value obtained according to the following procedure. That is, the non-woven fabric actually constituting the filter element, or one or a plurality of non-woven fabrics substantially the same as this, sampled at substantially five portions in the sampled non-woven fabric. A photo of the fiber is taken with a scanning electron microscope so that its diameter is reflected. A transparent sheet on which a lattice is drawn is superimposed on the photograph obtained in this way, and it is reflected in the above photograph or overlapped with the intersection of the lattice with the diameter of polystyrene latex taken at the same magnification as a control. Further, the total thickness (width) of 100 fibers is measured as the diameter, and the average value is defined as the average fiber diameter.
  • the diameter means the width of the fiber in the direction perpendicular to the fiber axis.
  • the filter element includes a plurality of non-woven fabrics, if the fiber diameters measured in each non-woven fabric are clearly different, since they are different types of non-woven fabrics, find the interface between the two, Re-measure the average fiber diameter separately.
  • “obviously the average fiber diameter is different” means that a statistically significant difference is recognized.
  • the filter element is discharged by the positive pressure on the inlet side generated during filtration. This is preferable because it is pressed against the side container and further prevents the outlet side container from coming into close contact with the filter element due to the negative pressure on the outlet side, thereby preventing the blood flow from being hindered and improving the weldability between the flexible container and the filter element.
  • a known filtration medium such as a fibrous porous medium such as a nonwoven fabric, a woven fabric, or a mesh and a porous body having three-dimensional network continuous pores can be used.
  • the post filter layer is a nonwoven fabric, it is preferable from the viewpoint of productivity and the welding strength of the blood treatment filter. If the post filter layer has a plurality of protrusions by embossing or the like, the blood flow is further uniform. This is particularly preferable.
  • each nonwoven fabric constituting the filter element may be modified by known techniques such as coating, chemical treatment, and radiation treatment for the purpose of controlling the selective separation of blood cells and the hydrophilicity of the surface.
  • the bulk density of the nonwoven fabric forming the first nonwoven fabric layer is preferably 0.05 to 0.50 g / cm 3 , more preferably 0.10 to It may be 0.40 g / cm 3 . If the bulk density of the non-woven fabric of the first non-woven fabric layer exceeds 0.50 g / cm 3 , clogging of the non-woven fabric may occur due to the capture of aggregates and leukocytes, and the filtration rate may decrease. On the other hand, if it is less than 0.05 g / cm 3 , the ability to capture aggregates is reduced, the nonwoven fabric of the second nonwoven fabric layer may be clogged, and the filtration rate may be reduced. The strength may decrease.
  • the “bulk density of the nonwoven fabric” is obtained by cutting a nonwoven fabric with a size of 2.5 cm ⁇ 2.5 cm from a portion considered to be homogeneous, and measuring the basis weight (g / m 2 ) and thickness (cm) by the method described later. Calculate by dividing the basis weight by the thickness. However, the area to be cut out is changed, the basis weight and the thickness are measured three times, and the average value is defined as the bulk density.
  • the basis weight of the nonwoven fabric is obtained by sampling the nonwoven fabric from a location that is considered to be homogeneous with a size of 2.5 cm ⁇ 2.5 cm, measuring the weight of the nonwoven fabric piece, and converting this to the mass per unit square meter. It is done.
  • the thickness of a nonwoven fabric is calculated
  • the pressure applied with the constant-pressure thickness meter is 0.4 N, and the area of the measurement part is 2 cm 2 .
  • the bulk density of the nonwoven fabric forming the second nonwoven fabric layer is preferably 0.05 to 0.50 g / cm 3 , more preferably 0.07 to 0.40 g / cm 3 , and still more preferably 0.00. 10 to 0.30 g / cm 3 .
  • the bulk density of the nonwoven fabric of the second nonwoven fabric layer is larger than 0.50 g / cm 3 , the flow resistance of the nonwoven fabric increases, blood cell clogging increases, and the processing speed tends to decrease.
  • the bulk density is less than 0.05 g / cm 3 , the number of contact with the white blood cells tends to be reduced, and it becomes difficult to capture the white blood cells, and the mechanical strength of the nonwoven fabric may be lowered.
  • the filling density which is the bulk density of the filter element when the blood treatment filter is filled, is preferably 0.1 g / cm 3 or more and 0.5 g / cm 3 or less, preferably 0.1 g / Cm 3 or more and 0.3 g / cm 3 or less is more preferable. If the packing density of the filter element exceeds 0.5 g / cm 3 , it tends to cause clogging of blood cells and an increase in pressure loss, and if it is less than 0.1 g / cm 3 , filtration performance (leukocyte removal ability). Tend to decrease.
  • the packing density can be determined by, for example, cutting the filter element into a packing cut size (cm 2 ), measuring its mass (g), filling it into an actual filter container and compressing it into its thickness ( cm), and can be calculated from mass (g) / ⁇ cut size (cm 2 ) ⁇ thickness (cm) ⁇ .
  • the filling rate of the nonwoven fabric forming the first nonwoven fabric layer in this embodiment is preferably 0.04 or more and 0.40 or less, and more preferably 0.08 or more and 0.30 or less. If the filling rate is greater than 0.40, the flow resistance of the nonwoven fabric increases due to the capture of aggregates, leukocytes, etc., and clogging of blood cells increases, and the processing speed tends to decrease. On the other hand, when the filling rate is less than 0.04, the ability to capture aggregates is reduced, the nonwoven fabric of the second nonwoven fabric layer may be clogged, and the filtration rate may be reduced. The strength may decrease.
  • the filling rate of the nonwoven fabric forming the second nonwoven fabric layer is preferably 0.04 to 0.40, more preferably 0.06 to 0.30, and still more preferably 0.08 to 0.22. Also good.
  • the filling rate of the nonwoven fabric of the second nonwoven fabric layer is larger than 0.40, the flow resistance of the nonwoven fabric increases, the clogging of blood cells increases, and the processing speed tends to decrease.
  • the filling rate is less than 0.04, the number of contact with white blood cells or the like tends to decrease, and it tends to be difficult to capture white blood cells, and the mechanical strength of the nonwoven fabric may decrease.
  • the non-woven fiber material included in the filter element is not limited, and may include, for example, a polymer material such as polyester, polyamide, polyacrylonitrile, polymethyl methacrylate, polyethylene, and polypropylene. Moreover, you may use a metal fiber partially. By using fibers made of a synthetic polymer material as a filter element in this way, blood denaturation can be prevented. More preferably, the nonwoven fabric of the 1st nonwoven fabric layer and the 2nd nonwoven fabric layer of the stable fiber diameter can be obtained by employ
  • the CWST (critical wet surface tension) of the nonwoven fabric included in the filter element is 70 dyn / cm or more. More preferably, it is 85 dyn / cm or more, More preferably, it is 95 dyn / cm or more.
  • Such a non-woven fabric having a critical wet surface tension can efficiently remove leukocytes while allowing the platelets in the blood product to pass through by ensuring stable wettability to blood.
  • CWST refers to a value obtained according to the following method. That is, aqueous solutions having different concentrations of sodium hydroxide, calcium chloride, sodium nitrate, acetic acid or ethanol are prepared so that the surface tension changes by 2 to 4 dyn / cm.
  • the surface tension (dyn / cm) of each aqueous solution is 94-115 for sodium hydroxide aqueous solution, 90-94 for calcium chloride aqueous solution, 75-87 for sodium nitrate aqueous solution, 72.4 for pure water, and 38- for acetic acid aqueous solution.
  • aqueous solution is obtained ("Chemical Handbook Basic Edition II" revised 2nd edition, The Chemical Society of Japan, Maruzen, 1975, 164 pages).
  • the aqueous solutions having different surface tensions of 2 to 4 dyn / cm thus obtained are placed on the nonwoven fabric in order of decreasing surface tension and left for 10 minutes. After standing for 10 minutes, it is defined as a wet state when 9 or more of 10 drops are absorbed by the nonwoven fabric, and is defined as a non-wet state when absorption is less than 9 of 10 drops.
  • it measures one by one from the liquid with small surface tension on a nonwoven fabric it will change on the way from a wet state to a non-wet state.
  • the average value of the surface tension value of the liquid in which the wet state was observed last and the surface tension value of the liquid in which the non-wet state was first observed is defined as the CWST value of the nonwoven fabric.
  • the CWST value of the nonwoven fabric is 65 dyn / cm.
  • the steam heat treatment may be performed at a high temperature (for example, 110 ° C. or higher) or a high pressure in order to obtain a higher sterilization effect.
  • a high temperature for example, 110 ° C. or higher
  • a high pressure in order to obtain a higher sterilization effect.
  • Japanese Patent Publication No. 8-6239 describes a material that can maintain high blood filtration performance by maintaining high compressibility and bulkiness after high-pressure steam sterilization.
  • Japanese Patent No. 4565762 describes a method for preventing the surface polymer from being peeled off from the filter medium during the high-pressure steam sterilization treatment to thereby reduce the white blood cell removal performance.
  • these are all focused only on the performance degradation when viewed by the filter element alone, and are actually built in the filter container and held by the container holding part, or the peripheral part thereof is the container. This is not a reduction in physical properties or performance due to high-pressure steam sterilization after being deposited on the filter, and it does not have a sufficient effect on the performance degradation of the filter itself.
  • the present inventor causes a decrease in filtration performance even after high pressure steam sterilization, which is a more severe condition, when the thermal shrinkage rate of the nonwoven fabric constituting the filter element and the elongation rate in the predetermined direction are within a certain range. It has been found that a filter for blood treatment can be provided.
  • the thermal shrinkage of the nonwoven fabric contained in the filter element is preferably 5% or more and 24% or less, more preferably 10% or more and 20% or less, and more preferably 10% or more. More preferably, it is 15% or less.
  • the thermal shrinkage rate of the nonwoven fabric exceeds 24%, the nonwoven fabric is significantly shrunk after high-pressure steam sterilization, resulting in a decrease in filtration performance (leukocyte removal performance). That is, when the heat shrinkage rate of the nonwoven fabric increases, the change in the shape of the fibers constituting the nonwoven fabric after high-pressure steam sterilization increases, and the specific surface area of the nonwoven fabric also decreases accordingly. Relatively decreases.
  • the filtration time tends to be shorter because the resistance decreases.
  • the thermal shrinkage rate of the nonwoven fabric is too small (specifically, less than 5%)
  • the elongation rate is reduced, and the container cannot properly grip the filter element when the filter is assembled. It has been found that the filter performance is likely to deteriorate.
  • the heat shrinkage ratio of the nonwoven fabric is a ratio of the difference in length between the central portions in the X and Y directions before and after cutting the nonwoven fabric into a 30 cm square and dry-heat treatment at 140 ° C. for 1 minute. It is an average value of (%).
  • the elongation rate in the direction in which the elongation rate when the nonwoven fabric filter is filled is the maximum and the elongation rate in the direction perpendicular thereto are both 1% or more and 3% or less, more preferably 1. 5% or more and 2.5% or less.
  • the difference between the elongation in the direction in which the elongation is maximum and the elongation in the direction perpendicular thereto is 1% or less.
  • the filter element can be compressed to a sufficiently high density at the gripping part or welded part of the container and the filter element when the filter is assembled. This may result in inadequate filter assembly or side leakage that passes through the outer edge of the filter element without filtration. Further, if the elongation rate in either the direction of maximum elongation or the elongation rate in the direction perpendicular thereto exceeds 3%, the deformation of the filter element during the high-pressure steam sterilization treatment or filtration is remarkable, and the blood filtration performance deteriorates.
  • the difference between the elongation rate in the direction in which the elongation rate is maximum and the elongation rate in the direction perpendicular thereto is preferably 1% or less, and more preferably 0.5% or less. If this difference exceeds 1%, the filter element compressibility in the vicinity of the filter element gripping part or the filter element welded part of the container at the time of filter molding becomes non-uniform, and the blood filtration performance tends to deteriorate.
  • the elongation percentage is a ratio (%) to the original length of elongation when a tensile load of 0.26 N / cm is applied to the nonwoven fabric before the steam heat treatment.
  • the nonwoven fabric has the maximum elongation in a direction perpendicular to the winding direction of the original fabric. Therefore, when the direction of the nonwoven fabric contained in the filter element is known, the direction in which the elongation percentage of the nonwoven fabric is maximized can be determined based on the direction.
  • the nonwoven fabric constituting the filter element in addition to the condition that the heat of uncrystallization is 5 J / g or less, the thermal shrinkage is 5-24%, and the elongation in the direction in which the elongation is maximized. And when the one that satisfies the condition that both the elongation rate in the direction perpendicular to it is 1% or more and 3% or less is used, the steam heat treatment is further enhanced, and the high pressure steam sterilization treatment is performed without affecting the filter assembly property. It becomes possible to provide a blood treatment filter that does not cause a decrease in filtration performance later.
  • the nonwoven fabric used in this embodiment has a high degree of crystallinity, but such a nonwoven fabric can be produced by either a wet method or a dry method. In the present embodiment, it is particularly preferable to produce the nonwoven fabric having the formation index and the average fiber diameter that are optimally obtained by a melt blow method.
  • melt blow method An example of a melt blow method will be described as a method for producing a nonwoven fabric used in the present embodiment.
  • the melt-blowing method the molten polymer stream melted in the extruder is filtered by an appropriate filter, guided to a molten polymer introduction portion of a melt-blowing die, and then discharged from an orifice nozzle.
  • the heated gas introduced into the heated gas introduction part is guided to a heated gas ejection slit formed by a melt blow die and a lip, and ejected from here, and the discharged molten polymer is refined to form ultrafine fibers.
  • the nonwoven fabric is obtained by laminating
  • the nonwoven fabric which has a desired crystallinity degree can be obtained by heat-processing a nonwoven fabric using a hot suction drum, a hot plate, hot water, a hot air heater, etc.
  • the temperature of the heat source is preferably [polymer melting point ⁇ 120] ° C. or higher, more preferably [polymer melting point ⁇ 20] ° C. [Melting point of polymer -60] ° C.
  • the heating time depends on the heating temperature, but is preferably 3 seconds or more, more preferably 10 seconds or more, still more preferably 20 seconds or more, and particularly preferably 30 seconds or more.
  • the temperature of the heat source is less than [melting point of polymer ⁇ 120] ° C., or when the heating time is less than 3 seconds, it is not preferable because satisfactory crystallinity of the polymer tends to be hardly obtained.
  • a sufficient amount of heat suitable for this embodiment can be added.
  • the material of the container which accommodates a filter element For example, resin is mentioned, In this case, any of hard resin and soft resin may be sufficient.
  • Hard resin materials include phenolic resin, acrylic resin, epoxy resin, formaldehyde resin, urea resin, silicon resin, ABS resin, nylon, polyurethane, polycarbonate, vinyl chloride, polyethylene, polypropylene, polyester, styrene-butadiene copolymer Etc.
  • the material of the flexible resin container should be similar to the filter element in terms of thermal and electrical properties.
  • the shape of the container is not particularly limited as long as it has a processing liquid (leukocyte-containing liquid) inlet and a processed (leukocyte-removed) liquid outlet, but it has a shape corresponding to the shape of the filter element. It is preferable.
  • the filter element has a flat plate shape, it can be formed into a polygonal shape such as a quadrangle or a hexagon, or a flat shape such as a circle or an ellipse according to the shape. More specifically, as shown in FIG. 1 or 2, the container 1 includes an inlet side container material having a first inlet / outlet 3 as a liquid inlet / outlet and an outlet side container material having a second inlet / outlet 4 as a liquid inlet / outlet.
  • the container is preferably cylindrical as well. More specifically, the container is composed of a cylindrical body portion that accommodates the filter element, an inlet-side header having a liquid inlet, and an outlet-side header having a liquid outlet, and the inside of the container is introduced from the inlet by potting. Is preferably divided into two chambers so as to flow from the outer peripheral portion of the cylindrical filter to the inner peripheral portion (or from the inner peripheral portion to the outer peripheral portion) to form a cylindrical blood treatment filter.
  • a member made of a soft material such as a flexible synthetic resin sheet formed with an inlet and an outlet is used, and the filter element is sandwiched between them or wound around the filter element.
  • the soft member and the filter element can be welded at the periphery of the element to form a container.
  • the thickness of the filter element after incorporation with respect to the thickness of the filter element before incorporation into the filter that is, the gripping portions provided in each of the inlet side container material and the outlet side container material (
  • the ratio of the thickness of the filter element sandwiched between the convex portions) is preferably 0.5 to 0.55.
  • the sealing performance between the soft member and the filter element is generally improved by pushing the filter element into the soft member while melting the soft member and the filter element. It is preferable that the thickness of the filter element in the welded portion after welding is 0.15 to 0.20. In this configuration, when the thermal shrinkage of the nonwoven fabric contained in the filter element is high, the welded part is fixed, so the filter element is significantly deformed after steam heat treatment (especially high-pressure steam sterilization).
  • the blood flow in the filter becomes non-uniform and the blood filtration performance decreases.
  • the thermal shrinkage rate of the nonwoven fabric contained in the filter element is low and the elongation rate of the filter element is low, the welded portion between the soft member and the filter element cannot be sufficiently compressed during filter assembly, and the filter is assembled. Inability to leak or blood leaks outside from the assembled filter.
  • the method includes the step of passing the leukocyte-containing liquid through a blood treatment filter having a filter element contained in a container and including a non-woven fabric, and removing leukocytes from the leukocyte-containing liquid.
  • the leukocyte-containing liquid is a generic term for bodily fluids and synthetic blood containing leukocytes, and specifically includes whole blood, concentrated erythrocyte solution, washed erythrocyte suspension, thawed erythrocyte concentrate, synthetic blood, and poor blood.
  • whole blood and whole blood such as platelet plasma (PPP), platelet rich plasma (PRP), plasma, frozen plasma, platelet concentrate and buffy coat (BC)
  • PPP platelet plasma
  • PRP platelet rich plasma
  • plasma frozen plasma
  • platelet concentrate and buffy coat a blood product
  • a blood product such as a whole blood product, a red blood cell product, a platelet product, or a plasma product.
  • whole blood preparations include Citrate Phosphate Dextrose (CPD), Citrate Phosphate Dextrose Adenine-1 (CPDA-1), Citrate Phosphate-2-Dextrose (CP2D), Acid Citrate DextroseA-CD A), a blood product to which an additive such as a preservative solution such as Acid Citrate Dextroform Formula-B (ACD-B) or heparin and an anticoagulant is added.
  • a liquid obtained by processing the above liquid by the method of the present embodiment is referred to as a liquid from which white blood cells have been removed.
  • whole blood stored at room temperature or refrigerated is within 72 hours, more preferably within 24 hours, particularly preferably 12 hours after blood collection.
  • the leukocyte-removed whole blood product can be obtained by removing leukocytes using a blood treatment filter at room temperature or refrigerated within 8 hours, most preferably within 8 hours.
  • a preservation solution such as CPD, CPDA-1, CP2D, ACD-A, ACD-B, and heparin and an anticoagulant are added to the collected whole blood.
  • a method for separating each blood component there are a case where centrifugation is performed after removing white blood cells from whole blood, and a case where white blood cells are removed from red blood cells or red blood cells and BC after the whole blood is centrifuged.
  • centrifugation is performed after removing leukocytes from whole blood, a leukocyte-removed erythrocyte preparation can be obtained by centrifuging leukocyte-removed whole blood.
  • centrifugation conditions When centrifuging whole blood before leukocyte removal, there are two types of centrifugation conditions: weak centrifugation conditions for separating red blood cells and PRP, and strong centrifugation conditions for separating red blood cells, BC, and PPP.
  • a leukocyte-removed erythrocyte preparation can be obtained by removing leukocytes from the blood.
  • whole blood stored preferably at room temperature or under refrigeration is preferably within 72 hours after blood collection, more preferably within 48 hours, particularly preferably within 24 hours, most preferably within 12 hours. Centrifugation can be performed.
  • leukocyte removal prior to storage preferably within 120 hours, more preferably within 72 hours, particularly preferably within 24 hours, most preferably within 12 hours after blood collection from a red blood cell preparation stored at room temperature or refrigerated at room temperature.
  • a leukocyte-removed erythrocyte preparation can be obtained by removing leukocytes using a blood treatment filter under or under refrigeration.
  • a leukocyte-removed erythrocyte preparation is preferably obtained by removing leukocytes from a red blood cell preparation stored at room temperature, refrigerated or frozen within 24 hours before use using a blood treatment filter. Can do.
  • a preservation solution such as CPD, CPDA-1, CP2D, ACD-A, ACD-B, and heparin and an anticoagulant are added to the collected whole blood.
  • a method for separating each blood component there are a case of performing centrifugation after removing leukocytes from whole blood, and a case of removing leukocytes from PRP or platelets after centrifuging whole blood.
  • a leukocyte-removed platelet preparation can be obtained by centrifuging leukocyte-removed whole blood.
  • centrifugation conditions When centrifuging whole blood before leukocyte removal, there are two types of centrifugation conditions: weak centrifugation conditions for separating red blood cells and PRP, and strong centrifugation conditions for separating red blood cells, BC, and PPP.
  • weak centrifugation conditions after removing leukocytes from the PRP separated from whole blood with a blood treatment filter, a leukocyte-removed platelet preparation is obtained by centrifugation, or the PRP is centrifuged to obtain platelets and PPP, Leukocytes can be removed with a blood treatment filter to obtain a leukocyte-free platelet preparation.
  • strong centrifugation conditions platelets are obtained by adding a preservative solution, plasma, etc.
  • the obtained platelets can be made into a leukocyte-removed platelet preparation by removing leukocytes with a blood treatment filter.
  • a platelet preparation stored preferably at room temperature is preferably within 120 hours after blood collection, more preferably within 72 hours, particularly preferably within 24 hours, most preferably within 12 hours at room temperature.
  • a leukocyte-removed platelet preparation can be obtained by removing leukocytes using a blood treatment filter.
  • a leukocyte-removed platelet preparation is preferably obtained by removing leukocytes from a platelet preparation stored at room temperature, refrigerated or frozen within 24 hours before use using a blood treatment filter. Can do.
  • a preservation solution such as CPD, CPDA-1, CP2D, ACD-A, ACD-B, and heparin and an anticoagulant are added to the collected whole blood.
  • a method for separating each blood component there are a case of performing centrifugation after removing leukocytes from whole blood, and a case of removing leukocytes from PPP or PRP after centrifuging whole blood.
  • a leukocyte-removed plasma preparation can be obtained by centrifuging leukocyte-removed whole blood.
  • centrifugation conditions When centrifuging whole blood before leukocyte removal, there are two types of centrifugation conditions: weak centrifugation conditions for separating red blood cells and PRP, and strong centrifugation conditions for separating red blood cells, BC, and PPP.
  • weak centrifugation conditions remove leukocytes with PRP from a blood treatment filter and then obtain a leukocyte-removed plasma product by centrifugation, or remove leukocytes with a blood treatment filter after centrifugation from PRP to PPP and platelets.
  • a leukocyte-free plasma preparation can be obtained.
  • strong centrifugal conditions a leukocyte-removed plasma preparation can be obtained by removing leukocytes from PPP with a blood treatment filter.
  • whole blood stored preferably at room temperature or under refrigeration is preferably within 72 hours after blood collection, more preferably within 48 hours, particularly preferably within 24 hours, and most preferably within 12 hours. Centrifugation can be performed.
  • blood is collected from a plasma preparation stored at room temperature or refrigerated within 120 hours after blood collection, more preferably within 72 hours, particularly preferably within 24 hours, most preferably within 12 hours at room temperature or refrigerated.
  • a leukocyte-removed plasma preparation can be obtained by removing leukocytes using a treatment filter.
  • a leukocyte-removed plasma preparation is preferably obtained by removing leukocytes using a blood treatment filter within 24 hours before use from a plasma preparation stored at room temperature, refrigerated or frozen. Can do.
  • blood is collected with a blood collection needle connected to a container for whole blood, and a blood processing filter is connected to a container containing whole blood or blood components after centrifugation.
  • Blood removed by leukocyte removal, or at least blood collected by a circuit in which a blood collection needle, blood container, and blood treatment filter are aseptically connected, and leukocyte removal before or after centrifugation, or blood obtained by an automatic blood collection device The blood treatment filter may be connected to the container containing the components or the leukocyte removal may be performed using a blood treatment filter connected in advance, but this embodiment is not limited to these forms. Absent.
  • erythrocytes red blood cells containing BC, BC, platelets, PRP, PPP are immediately added to the blood treatment filter.
  • the leukocyte-removed erythrocyte preparation, the leukocyte-removed platelet preparation, or the leukocyte-removed plasma preparation may be obtained by removing leukocytes through any of the above.
  • This embodiment has a higher leukocyte-removing ability than any of the above blood, and has the effect of shortening the treatment time without causing clogging.
  • the treatment of an erythrocyte-containing solution that tends to prolong the blood treatment time is preferable.
  • leukocyte removal is performed by dropping leukocyte-containing blood from a container containing leukocyte-containing liquid placed higher than the blood treatment filter to the blood treatment filter via a tube.
  • it may be performed by flowing white blood cell-containing blood under pressure from the inlet side of the blood processing filter and / or pressure reduction from the outlet side of the blood processing filter using means such as a pump. .
  • the leukocyte removal method using the blood treatment filter in extracorporeal circulation therapy is described below.
  • the solution is replaced with a solution containing an anticoagulant such as heparin, nafamostat mesylate, ACD-A, or ACD-B.
  • an anticoagulant such as heparin, nafamostat mesylate, ACD-A, or ACD-B.
  • blood can be flowed from the circuit connected to the person to the inlet of the blood processing filter at a flow rate of 10 to 200 mL / min, and the white blood cells can be removed by the blood processing filter. .
  • the leukocyte removal start period (treatment amount of 0 to 0.5 L), a flow rate of 10 to 50 mL / min is preferable, and 20 to 40 mL / min is more preferable.
  • the treatment is preferably performed at a flow rate of 30 to 120 mL / min, more preferably 40 to 100 mL / min, and particularly preferably 40 to 60 mL / min.
  • the blood treatment filter preferably removes 99% or more of the white blood cell count in the blood (preparation), more preferably 99.9% or more, when the blood (preparation) is filtered. More preferably, it is possible to remove at least%.
  • the value calculated according to the following formula preferably shows a removal performance of 1.0 ⁇ 10 ⁇ 2 or less, and preferably shows a removal performance of 1.0 ⁇ 10 ⁇ 3 or less. Is more preferable, and it is even more preferable that the removal performance is 1.0 ⁇ 10 ⁇ 4 or less.
  • Leukocyte residual rate ⁇ [White blood cell concentration (cells / ⁇ L) (blood after filtration)] ⁇ [White blood cell concentration (pieces / ⁇ L) (blood before filtration)] ⁇
  • the specific surface area (m 2 / g) of the nonwoven fabric was determined by a gas adsorption method (BET method) using “Accusorb 2100” manufactured by Shimadzu Corporation. Specifically, a non-woven fabric weighed in the range of 0.50 g to 0.55 g was filled into a sample tube, and degassed for 20 hours at a reduced pressure (room temperature) of 1 ⁇ 10 ⁇ 4 mmHg with the above accusorb body.
  • adsorption gas whose adsorption occupation area is known as the adsorption gas
  • adsorption gas adsorb it on the surface of the nonwoven fabric under the temperature of liquid nitrogen, determine the total surface area in the nonwoven fabric weighed from the amount of adsorption, and divide by the weight of the weighed nonwoven fabric I asked for it.
  • Elongation rate ((average distance between chucks after tension ⁇ 20) / 20) ⁇ 100 (%)
  • the nonwoven fabric has the maximum elongation in the lateral direction (direction perpendicular to the winding direction of the nonwoven fabric original (longitudinal direction of the nonwoven fabric)). Therefore, when measuring the elongation rate of the nonwoven fabric, the measurement was performed with the transverse direction of the nonwoven fabric as the direction in which the elongation rate was maximized.
  • the blood bag filled with the blood before filtration and the inlet of the filter were connected by a 40 cm vinyl chloride tube having an inner diameter of 3 mm and an outer diameter of 4.2 mm. Furthermore, the outlet of the filter and the blood bag for collection were connected with a 60 cm vinyl chloride tube having an inner diameter of 3 mm and an outer diameter of 4.2 mm.
  • the pre-filtered blood was allowed to flow into the filter at a drop of 100 cm from the bottom of the blood bag filled with pre-filtered blood, and the filtration time was measured until the amount of blood flowing into the collection bag reached 0.5 g / min. Further, 3 mL of blood (hereinafter referred to as blood after filtration) was recovered from the recovery bag.
  • the leukocyte removal ability was evaluated by determining the leukocyte residual rate.
  • the leukocyte residual rate was calculated according to the following formula by measuring the white blood cell count of pre-filtered blood and post-filtered blood using a flow cytometry method (apparatus: FACSCanto manufactured by BECTON DICKINSON).
  • Leukocyte residual rate [white blood cell concentration (cells / ⁇ L) (blood after filtration)] ⁇ [white blood cell concentration (cells / ⁇ L) (blood before filtration)]
  • the number of leukocytes was measured by sampling 100 ⁇ L of each blood, and using a leukocount kit with beads (Nippon Becton Dickinson) and measuring it by flow cytometry (apparatus: FACSCalibur manufactured by BECTON Dickinson).
  • the filter element has a performance such that the filtration time is 30 minutes or less and the residual rate of leukocytes is 10.0 ⁇ 10 ⁇ 3 or less under these conditions, if the filter design is suitable for actual use, It is possible to manufacture a filter that can achieve a leukocyte residual rate of 10 ⁇ 4 to 10 ⁇ 6 or less, which is necessary for preventing adverse side effects.
  • Example 1 Preparation of non-woven fabric
  • PET polyethylene terephthalate
  • Example 2 Preparation of non-woven fabric
  • PET polyethylene terephthalate
  • a non-woven fabric having a thickness of 0.13 mm, a filling rate of 0.12, an average fiber diameter of 1.0 ⁇ m, a heat of uncrystallization before steam heat treatment of 0.1 J / g, and a heat of crystal melting of 45 J / g was used.
  • the crystallinity of the nonwoven fabric was measured by DSC method using TA-60WS system manufactured by Shimadzu Corporation. The X-ray crystallinity was 57%.
  • the nonwoven fabric was coated with a hydrophilic polymer by the following method.
  • a copolymer of 2-hydroxyethyl methacrylate (hereinafter abbreviated as HEMA) and diethylaminoethyl methacrylate (hereinafter abbreviated as DEAMA) was synthesized by ordinary solution radical polymerization.
  • the polymerization reaction was carried out at 60 ° C. for 8 hours in the presence of 1/200 mol of azoisobutyronitrile (AIBN) as an initiator at a monomer concentration of 1 mol / L in ethanol.
  • AIBN azoisobutyronitrile
  • the nonwoven fabric taken out from the polymer solution was squeezed to remove the excess polymer solution absorbed, and the polymer solution was dried while sending dry air to form a coat layer covering the surface of the nonwoven fabric.
  • the molar ratio of the nonionic hydrophilic group to the basic nitrogen-containing functional group in the surface portion (surface portion of the coat layer) of the nonwoven fabric coated with the polymer coat layer is 32.3, and the mass of the coat layer in 1 g is It was 9.0 mg / g (nonwoven fabric + coat layer), and the CWST value was 100 dyn / cm.
  • the obtained 64 non-woven fabrics provided with the coating layer were used as filter elements to fill a rigid container having an effective filtration area of 45 cm 2 and ultrasonically welded to produce a filter.
  • This filter was steam-heated at 115 ° C. for 240 minutes, and then vacuum-dried at 40 ° C. for 15 hours or longer to prepare a filter after steam heating.
  • the leukocyte residual rate was 0.7 ⁇ 10 ⁇ 3 and the filtration time was 20 minutes, indicating a low blood treatment pressure and a high leukocyte removal ability.
  • Example 2 It is made of PET fiber and has a basis weight of 22 g / m 2 , a thickness of 0.13 mm, a filling rate of 0.12, an average fiber diameter of 1.0 ⁇ m, an uncrystallization heat of 0.1 J / g, and a crystal melting heat of 55 J / g.
  • Nonwoven fabric was used. The X-ray crystallinity was 69%.
  • a nonwoven fabric was prepared in the same manner as in Example 1 by a method of subjecting the fiber assembly after spinning to a dry heat treatment, and the same polymer coating treatment as in Example 1 was performed. The CWST value after the polymer coating treatment was 100 dyn / cm.
  • a filter was produced by the same method as in Example 1 using the nonwoven fabric after the polymer coating treatment, and a blood test was performed.
  • the leukocyte residual rate was 0.3 ⁇ 10 ⁇ 3 and the filtration time was 18 minutes, indicating a low blood treatment pressure and a high leukocyte removal ability.
  • Nonwoven fabric made of PET fiber having a basis weight of 22 g / m 2 , a thickness of 0.13 mm, a filling factor of 0.12, an average fiber diameter of 1.0 ⁇ m, an uncrystallization heat of 4.7 J / g, and a crystal melting heat of 47 J / g It was used.
  • the X-ray crystallinity was 58%.
  • a nonwoven fabric was prepared in the same manner as in Example 1 by a method of subjecting the fiber assembly after spinning to a dry heat treatment, and the same polymer coating treatment as in Example 1 was performed.
  • the CWST value after the polymer coating treatment was 100 dyn / cm.
  • a filter was produced by the same method as in Example 1 using the nonwoven fabric after the polymer coating treatment, and a blood test was performed. As a result, the leukocyte residual rate was 5.3 ⁇ 10 ⁇ 3 and the filtration time was 19 minutes, indicating a low blood treatment pressure and a high leukocyte removal ability.
  • Nonwoven fabric made of PET fiber having a basis weight of 22 g / m 2 , a thickness of 0.13 mm, a filling rate of 0.12, an average fiber diameter of 1.0 ⁇ m, an uncrystallization heat of 4.8 J / g, and a crystal melting heat of 53 J / g It was used.
  • the X-ray crystallinity was 68%.
  • a nonwoven fabric was prepared in the same manner as in Example 1 by a method of subjecting the fiber assembly after spinning to a dry heat treatment, and the same polymer coating treatment as in Example 1 was performed.
  • the CWST value after the polymer coating treatment was 100 dyn / cm.
  • a filter was produced by the same method as in Example 1 using the nonwoven fabric after the polymer coating treatment, and a blood test was performed. As a result, the leukocyte residual rate was 4.3 ⁇ 10 ⁇ 3 and the filtration time was 17 minutes, indicating a low blood treatment pressure and a high leukocyte removal ability.
  • Nonwoven fabric made of PET fiber having a basis weight of 22 g / m 2 , a thickness of 0.13 mm, a filling factor of 0.12, an average fiber diameter of 1.0 ⁇ m, an uncrystallization heat of 0.1 J / g, and a crystal melting heat of 45 J / g It was used.
  • the X-ray crystallinity was 57%.
  • the nonwoven fabric was prepared by a method of subjecting the fiber assembly after spinning to a dry heat treatment, as in Example 1, and no polymer coating treatment was performed. Using this nonwoven fabric, a filter was prepared in the same manner as in Example 1, and a blood test was performed. As a result, the leukocyte residual rate was 3.3 ⁇ 10 ⁇ 3 and the filtration time was 23 minutes, indicating a low blood treatment pressure and a high leukocyte removal ability.
  • Nonwoven fabric made of PET fiber having a basis weight of 22 g / m 2 , a thickness of 0.13 mm, a filling factor of 0.12, an average fiber diameter of 1.0 ⁇ m, an uncrystallization heat of 0.1 J / g, and a crystal melting heat of 55 J / g It was used.
  • the X-ray crystallinity was 69%.
  • the nonwoven fabric was prepared by a method of subjecting the fiber assembly after spinning to a dry heat treatment, as in Example 1, and no polymer coating treatment was performed. Using this nonwoven fabric, a filter was prepared in the same manner as in Example 1, and a blood test was performed. As a result, the leukocyte residual rate was 2.8 ⁇ 10 ⁇ 3 and the filtration time was 21 minutes, indicating a low blood treatment pressure and a high leukocyte removal ability.
  • Nonwoven fabric made of PET fiber having a basis weight of 22 g / m 2 , a thickness of 0.13 mm, a filling factor of 0.12, an average fiber diameter of 1.0 ⁇ m, an uncrystallization heat of 4.7 J / g, and a crystal melting heat of 47 J / g It was used.
  • the X-ray crystallinity was 58%.
  • the nonwoven fabric was prepared by a method of subjecting the fiber assembly after spinning to a dry heat treatment, as in Example 1, and no polymer coating treatment was performed. Using this nonwoven fabric, a filter was prepared in the same manner as in Example 1, and a blood test was performed. As a result, the leukocyte residual rate was 8.3 ⁇ 10 ⁇ 3 , and the filtration time was 22 minutes, indicating a low blood treatment pressure and a high leukocyte removal ability.
  • Nonwoven fabric made of PET fiber having a basis weight of 22 g / m 2 , a thickness of 0.13 mm, a filling rate of 0.12, an average fiber diameter of 1.0 ⁇ m, an uncrystallization heat of 4.8 J / g, and a crystal melting heat of 53 J / g It was used.
  • the X-ray crystallinity was 68%.
  • the nonwoven fabric was prepared by a method of subjecting the fiber assembly after spinning to a dry heat treatment, as in Example 1, and no polymer coating treatment was performed. Using this nonwoven fabric, a filter was prepared in the same manner as in Example 1, and a blood test was performed. As a result, the leukocyte residual rate was 7.3 ⁇ 10 ⁇ 3 , and the filtration time was 18 minutes, indicating a low blood treatment pressure and a high leukocyte removal ability.
  • Example 9 It is made of polybutylene terephthalate (hereinafter abbreviated as PBT) fiber, has a basis weight of 22 g / m 2 , a thickness of 0.13 mm, a filling factor of 0.12, an average fiber diameter of 1.0 ⁇ m, an uncrystallization heat of 0.1 J / g, and a crystal A nonwoven fabric with a heat of fusion of 45 J / g was used. The X-ray crystallinity was 58%.
  • a nonwoven fabric was prepared in the same manner as in Example 1 by a method of subjecting the fiber assembly after spinning to a dry heat treatment, and the same polymer coating treatment as in Example 1 was performed.
  • the CWST value after the polymer coating treatment was 98 dyn / cm.
  • a filter was produced by the same method as in Example 1 using the nonwoven fabric after the polymer coating treatment, and a blood test was performed.
  • the leukocyte residual rate was 0.5 ⁇ 10 ⁇ 3 and the filtration time was 20 minutes, indicating a low blood treatment pressure and a high leukocyte removal ability.
  • Nonwoven fabric made of PBT fiber having a basis weight of 22 g / m 2 , a thickness of 0.13 mm, a filling rate of 0.12, an average fiber diameter of 1.0 ⁇ m, an uncrystallization heat of 0.1 J / g, and a crystal melting heat of 55 J / g It was used.
  • the X-ray crystallinity was 70%.
  • a nonwoven fabric was prepared in the same manner as in Example 1 by a method of subjecting the fiber assembly after spinning to a dry heat treatment, and the same polymer coating treatment as in Example 1 was performed.
  • the CWST value after the polymer coating treatment was 98 dyn / cm.
  • a filter was produced by the same method as in Example 1 using the nonwoven fabric after the polymer coating treatment, and a blood test was performed.
  • the leukocyte residual rate was 0.2 ⁇ 10 ⁇ 3 and the filtration time was 18 minutes, indicating a low blood treatment pressure and a high leukocyte removal ability.
  • Nonwoven fabric made of PBT fiber having a basis weight of 22 g / m 2 , a thickness of 0.13 mm, a filling rate of 0.12, an average fiber diameter of 1.0 ⁇ m, an uncrystallized heat of 4.7 J / g, and a crystal melting heat of 47 J / g It was used.
  • the X-ray crystallinity was 59%.
  • a nonwoven fabric was prepared in the same manner as in Example 1 by a method of subjecting the fiber assembly after spinning to a dry heat treatment, and the same polymer coating treatment as in Example 1 was performed.
  • the CWST value after the polymer coating treatment was 98 dyn / cm.
  • a filter was produced by the same method as in Example 1 using the nonwoven fabric after the polymer coating treatment, and a blood test was performed. As a result, the leukocyte residual rate was 4.3 ⁇ 10 ⁇ 3 and the filtration time was 19 minutes, indicating a low blood treatment pressure and a high leukocyte removal ability.
  • Nonwoven fabric made of PBT fiber having a basis weight of 22 g / m 2 , a thickness of 0.13 mm, a filling rate of 0.12, an average fiber diameter of 1.0 ⁇ m, an uncrystallized heat of 4.8 J / g, and a crystal melting heat of 53 J / g It was used. The X-ray crystallinity was 69%.
  • a nonwoven fabric was prepared in the same manner as in Example 1 by a method of subjecting the fiber assembly after spinning to a dry heat treatment, and the same polymer coating treatment as in Example 1 was performed. The CWST value after the polymer coating treatment was 98 dyn / cm.
  • a filter was produced by the same method as in Example 1 using the nonwoven fabric after the polymer coating treatment, and a blood test was performed. As a result, the leukocyte residual rate was 3.7 ⁇ 10 ⁇ 3 and the filtration time was 17 minutes, indicating a low blood treatment pressure and a high leukocyte removal ability.
  • Nonwoven fabric made of PBT fiber having a basis weight of 22 g / m 2 , a thickness of 0.13 mm, a filling rate of 0.12, an average fiber diameter of 1.0 ⁇ m, an uncrystallization heat of 0.1 J / g, and a crystal melting heat of 55 J / g It was used. The X-ray crystallinity was 58%.
  • the nonwoven fabric was prepared by a method of subjecting the fiber assembly after spinning to a dry heat treatment, as in Example 1, and no polymer coating treatment was performed. Using this nonwoven fabric, a filter was prepared in the same manner as in Example 1, and a blood test was performed. As a result, the leukocyte residual rate was 2.5 ⁇ 10 ⁇ 3 and the filtration time was 29 minutes, indicating a low blood treatment pressure and a high leukocyte removal ability.
  • Nonwoven fabric made of PBT fiber having a basis weight of 22 g / m 2 , a thickness of 0.13 mm, a filling rate of 0.12, an average fiber diameter of 1.0 ⁇ m, an uncrystallization heat of 0.1 J / g, and a crystal melting heat of 55 J / g It was used.
  • the X-ray crystallinity was 70%.
  • the nonwoven fabric was prepared by a method of subjecting the fiber assembly after spinning to a dry heat treatment, as in Example 1, and no polymer coating treatment was performed. Using this nonwoven fabric, a filter was prepared in the same manner as in Example 1, and a blood test was performed. As a result, the leukocyte residual rate was 2.1 ⁇ 10 ⁇ 3 and the filtration time was 28 minutes, indicating a low blood treatment pressure and a high leukocyte removal ability.
  • Nonwoven fabric made of PBT fiber having a basis weight of 22 g / m 2 , a thickness of 0.13 mm, a filling rate of 0.12, an average fiber diameter of 1.0 ⁇ m, an uncrystallized heat of 4.7 J / g, and a crystal melting heat of 47 J / g It was used. The X-ray crystallinity was 59%.
  • the nonwoven fabric was prepared by a method of subjecting the fiber assembly after spinning to a dry heat treatment, as in Example 1, and no polymer coating treatment was performed. Using this nonwoven fabric, a filter was prepared in the same manner as in Example 1, and a blood test was performed. As a result, the leukocyte residual rate was 7.3 ⁇ 10 ⁇ 3 , and the filtration time was 28 minutes, indicating a low blood treatment pressure and a high leukocyte removal ability.
  • Nonwoven fabric made of PBT fiber having a basis weight of 22 g / m 2 , a thickness of 0.13 mm, a filling rate of 0.12, an average fiber diameter of 1.0 ⁇ m, an uncrystallized heat of 4.8 J / g, and a crystal melting heat of 53 J / g It was used. The X-ray crystallinity was 69%.
  • the nonwoven fabric was prepared by a method of subjecting the fiber assembly after spinning to a dry heat treatment, as in Example 1, and no polymer coating treatment was performed. Using this nonwoven fabric, a filter was prepared in the same manner as in Example 1, and a blood test was performed. As a result, the leukocyte residual rate was 6.7 ⁇ 10 ⁇ 3 , and the filtration time was 28 minutes, indicating a low blood treatment pressure and a high leukocyte removal ability.
  • Nonwoven fabric made of PET fiber having a basis weight of 22 g / m 2 , a thickness of 0.13 mm, a filling rate of 0.12, an average fiber diameter of 1.1 ⁇ m, an uncrystallization heat of 0.1 J / g, and a crystal melting heat of 43 J / g It was used.
  • the X-ray crystallinity was 54%.
  • a nonwoven fabric was prepared in the same manner as in Example 1 by a method of subjecting the fiber assembly after spinning to a dry heat treatment, and the same polymer coating treatment as in Example 1 was performed.
  • the CWST value after the polymer coating treatment was 100 dyn / cm.
  • a filter was prepared in the same manner as in Example 1, and a blood test was performed.
  • ultrasonic fabrication was difficult at the time of filter preparation, and assemblability was bad. It is thought that the thermal shrinkage and elongation of the nonwoven fabric were low.
  • the leukocyte residual rate was 0.2 ⁇ 10 ⁇ 3 and the filtration time was 17 minutes, indicating a low blood treatment pressure and a high leukocyte removal ability.
  • Nonwoven fabric made of PET fiber having a basis weight of 22 g / m 2 , a thickness of 0.13 mm, a filling factor of 0.12, an average fiber diameter of 1.15 ⁇ m, an uncrystallized heat of 0.1 J / g, and a crystal melting heat of 55 J / g It was used.
  • the X-ray crystallinity was 71%.
  • the nonwoven fabric was prepared by a method of subjecting the fiber assembly after spinning to a dry heat treatment, as in Example 1, and no polymer coating treatment was performed. Using this nonwoven fabric, a filter was prepared in the same manner as in Example 1, and a blood test was performed. As a result, the leukocyte residual rate was 3.0 ⁇ 10 ⁇ 3 and the filtration time was 22 minutes, indicating a low blood treatment pressure and a high leukocyte removal ability.
  • Nonwoven fabric made of PET fiber having a basis weight of 22 g / m 2 , a thickness of 0.13 mm, a filling rate of 0.12, an average fiber diameter of 1.0 ⁇ m, an uncrystallization heat of 5.3 J / g, and a crystal melting heat of 45 J / g It was used.
  • the X-ray crystallinity was 51%.
  • a nonwoven fabric was prepared in the same manner as in Example 1 by a method of subjecting the fiber assembly after spinning to a dry heat treatment, and the same polymer coating treatment as in Example 1 was performed.
  • the CWST value after the polymer coating treatment was 100 dyn / cm.
  • a filter was produced by the same method as in Example 1 using the nonwoven fabric after the polymer coating treatment, and a blood test was performed. As a result, the leukocyte residual ratio was 12.5 ⁇ 10 ⁇ 3 and the filtration time was 20 minutes. Although the filtration time was short, the leukocyte removal ability was low, and it was found that this filter material was not suitable for practical use.
  • Nonwoven fabric made of PET fiber having a basis weight of 22 g / m 2 , a thickness of 0.13 mm, a filling rate of 0.12, an average fiber diameter of 1.0 ⁇ m, an uncrystallization heat of 5.4 J / g, and a crystal melting heat of 55 J / g It was used.
  • the X-ray crystallinity was 62%.
  • a nonwoven fabric was prepared in the same manner as in Example 1 by a method of subjecting the fiber assembly after spinning to a dry heat treatment, and the same polymer coating treatment as in Example 1 was performed.
  • the CWST value after the polymer coating treatment was 100 dyn / cm.
  • a filter was prepared in the same manner as in Example 1, and a blood test was performed.
  • the leukocyte residual rate was 10.8 ⁇ 10 ⁇ 3
  • the filtration time was 21 minutes.
  • the leukocyte removal ability was low, and it was found that this filter material was not suitable for practical use.
  • Nonwoven fabric made of PET fiber having a basis weight of 22 g / m 2 , a thickness of 0.13 mm, a filling rate of 0.12, an average fiber diameter of 1.0 ⁇ m, an uncrystallization heat of 5.3 J / g, and a crystal melting heat of 45 J / g It was used.
  • the X-ray crystallinity was 51%.
  • the nonwoven fabric was prepared by a method of subjecting the fiber assembly after spinning to a dry heat treatment, as in Example 1, and no polymer coating treatment was performed. Using this nonwoven fabric, a filter was prepared in the same manner as in Example 1, and a blood test was performed. As a result, the leukocyte residual rate was 16.5 ⁇ 10 ⁇ 3 , the filtration time was 29 minutes, and although the filtration time was short, the leukocyte removal ability was low, and it was found that this filter material was not suitable for practical use.
  • Nonwoven fabric made of PET fiber having a basis weight of 22 g / m 2 , a thickness of 0.13 mm, a filling rate of 0.12, an average fiber diameter of 1.0 ⁇ m, an uncrystallization heat of 5.4 J / g, and a crystal melting heat of 55 J / g It was used.
  • the X-ray crystallinity was 62%.
  • the nonwoven fabric was prepared by a method of subjecting the fiber assembly after spinning to a dry heat treatment, as in Example 1, and no polymer coating treatment was performed. Using this nonwoven fabric, a filter was prepared in the same manner as in Example 1, and a blood test was performed. As a result, the leukocyte residual ratio was 15.4 ⁇ 10 ⁇ 3 , and the filtration time was 30 minutes. Although the filtration time was acceptable, the leukocyte removal ability was low, and it was found that this filter material is not suitable for practical use.
  • Nonwoven fabric composed of PBT fibers, having a basis weight of 22 g / m 2 , a thickness of 0.13 mm, a filling rate of 0.12, an average fiber diameter of 1.0 ⁇ m, an uncrystallized heat of 5.3 J / g, and a crystal melting heat of 45 J / g It was used.
  • the X-ray crystallinity was 52%.
  • a nonwoven fabric was prepared in the same manner as in Example 1 by a method of subjecting the fiber assembly after spinning to a dry heat treatment, and the same polymer coating treatment as in Example 1 was performed.
  • the CWST value after the polymer coating treatment was 98 dyn / cm.
  • a filter was produced by the same method as in Example 1 using the nonwoven fabric after the polymer coating treatment, and a blood test was performed.
  • the leukocyte residual rate was 11.5 ⁇ 10 ⁇ 3
  • the filtration time was 20 minutes, and although the filtration time was short, the leukocyte removal ability was low, and it was found that this filter material was not suitable for practical use.
  • Nonwoven fabric made of PBT fiber having a basis weight of 22 g / m 2 , a thickness of 0.13 mm, a filling rate of 0.12, an average fiber diameter of 1.0 ⁇ m, an uncrystallized heat of 5.4 J / g, and a crystal melting heat of 55 J / g It was used.
  • the X-ray crystallinity was 63%.
  • a nonwoven fabric was prepared in the same manner as in Example 1 by a method of subjecting the fiber assembly after spinning to a dry heat treatment, and the same polymer coating treatment as in Example 1 was performed.
  • the CWST value after the polymer coating treatment was 98 dyn / cm.
  • a filter was prepared in the same manner as in Example 1, and a blood test was performed.
  • the leukocyte residual rate was 10.1 ⁇ 10 ⁇ 3 and the filtration time was 21 minutes.
  • the filtration time was short, the leukocyte removal ability was low, and it was found that this filter material was not suitable for practical use.
  • Nonwoven fabric composed of PBT fibers, having a basis weight of 22 g / m 2 , a thickness of 0.13 mm, a filling rate of 0.12, an average fiber diameter of 1.0 ⁇ m, an uncrystallized heat of 5.3 J / g, and a crystal melting heat of 45 J / g It was used. The X-ray crystallinity was 52%.
  • the nonwoven fabric was prepared by a method of subjecting the fiber assembly after spinning to a dry heat treatment, as in Example 1, and no polymer coating treatment was performed. Using this nonwoven fabric, a filter was prepared in the same manner as in Example 1, and a blood test was performed. As a result, the leukocyte residual ratio was 14.5 ⁇ 10 ⁇ 3 and the filtration time was 40 minutes. It was found that this filter material is not suitable for practical use because the leukocyte removal ability is low and the filtration time is long.
  • Nonwoven fabric made of PBT fiber having a basis weight of 22 g / m 2 , a thickness of 0.13 mm, a filling rate of 0.12, an average fiber diameter of 1.0 ⁇ m, an uncrystallized heat of 5.4 J / g, and a crystal melting heat of 55 J / g It was used. The X-ray crystallinity was 63%.
  • the nonwoven fabric was prepared by a method of subjecting the fiber assembly after spinning to a dry heat treatment, as in Example 1, and no polymer coating treatment was performed. Using this nonwoven fabric, a filter was prepared in the same manner as in Example 1, and a blood test was performed. As a result, the leukocyte residual rate was 13.4 ⁇ 10 ⁇ 3 , and the filtration time was 39 minutes. It was found that the filter material was not practically suitable because the leukocyte removal ability was low and the filtration time was long.
  • Tables 1 to 3 collectively show the blood evaluation results of Examples 1 to 16 and Comparative Examples 1 to 8, the longitudinal and lateral elongation rates of the filter elements, and the specific surface area of the nonwoven fabric.
  • a leukocyte removal filter was produced using a non-woven fabric having an uncrystallized heat of 5 J / g or less. It was confirmed that the removal ability and the short filtration time, that is, good flowability can be achieved. Furthermore, it was also confirmed that leukocyte removal ability could be further improved by setting the heat of crystal fusion and the X-ray crystallinity of the nonwoven fabric to be high. In addition, it was confirmed that by performing polymer coating treatment on the nonwoven fabric, the leukocyte removal ability can be further improved and the filtration time can be shortened, and it has been confirmed that the application of the coat layer contributes to the improvement of the performance balance.
  • the PET nonwoven fabric can be designed without any coating treatment when the leukocyte removal ability sufficiently satisfies the standards (Examples 5 and 6), and can be effective in reducing the manufacturing cost. .
  • a copolymer composed of 97 mol% 2-hydroxyethyl (meth) acrylate and 3 mol% dimethylaminoethyl (meth) acrylate was used.
  • Nonwoven fabrics P and A, and B were laminated with a symmetrical structure in which the layers were stacked in the order of PABBAP from the upstream to obtain a filter element.
  • the filter element is sandwiched between flexible vinyl chloride resin sheets having ports that serve as inlets or outlets, and the peripheral portion of the filter element and flexible sheet are welded and integrated using a high-frequency welding machine, thereby providing an effective filtration area.
  • a 43 cm 2 blood treatment filter was prepared.
  • Each blood treatment filter was subjected to high-pressure steam sterilization treatment (steam heat treatment) at 115 ° C. for 60 minutes, and then vacuum-dried at 40 ° C. for 15 hours or more to obtain a filter after high-pressure steam sterilization treatment.
  • steam sterilization treatment steam heat treatment
  • Examples 26 and 36, Comparative Examples 22 to 24 As the nonwoven fabric, P (polyester nonwoven fabric with an average fiber diameter of 12 ⁇ m, basis weight 30 g / m 2 , specific surface area 0.24 m 2 / g), A (polyester nonwoven fabric with an average fiber diameter of 1.8 ⁇ m coated, basis weight 60 g / m 2 , specific surface area 1.1 m 2 / g), and B (non-woven fabric made of polyester (PET or PBT) prepared in each example and comparative example, basis weight 40 g / m 2 ) used.
  • PET polyester
  • a copolymer composed of 97 mol% 2-hydroxyethyl (meth) acrylate and 3 mol% dimethylaminoethyl (meth) acrylate was used for the coating treatment in A and B.
  • a laminated body in which P, A, and B were stacked in order of PAB in order from the upstream was used as a filter element.
  • This filter element is filled in a polycarbonate container having a port serving as a blood inlet or outlet so that the peripheral edge of the filter element is held by a continuous convex portion provided inside the hard container, and an ultrasonic welding machine Was used to weld and integrate the peripheral part of the filter element and the container to produce a blood treatment filter having an effective filtration area of 43 cm 2 . All filters were subjected to high-pressure steam sterilization (steam heat treatment) at 115 ° C. for 60 minutes.
  • Nonwoven fabric B is made of PET fiber, has a thermal shrinkage rate of 5%, an average fiber diameter of 1.1 ⁇ m, a specific surface area of 1.366 m 2 / g, a longitudinal elongation of 1.63%, and a lateral elongation of 2.24.
  • the leukocyte removal performance before and after high-pressure steam sterilization was as shown in Table 4, and the performance degradation due to sterilization was I could't see it.
  • Nonwoven fabric B is made of PET fiber, has a heat shrinkage rate of 10%, an average fiber diameter of 1.1 ⁇ m, a specific surface area of 1.357 m 2 / g, a longitudinal elongation of 1.64%, and a lateral elongation of 2.05.
  • a blood treatment filter was prepared using the same method as described above and a leukocyte removal performance test was conducted, the leukocyte removal performance before and after high-pressure steam sterilization was as shown in Table 4; I could't.
  • Nonwoven fabric B is made of PET fiber, has a heat shrinkage rate of 15%, an average fiber diameter of 1.1 ⁇ m, a specific surface area of 1.352 m 2 / g, a longitudinal elongation of 1.66%, and a lateral elongation of 1.87
  • a blood treatment filter was prepared using the same method as described above and a leukocyte removal performance test was conducted, the leukocyte removal performance before and after high-pressure steam sterilization was as shown in Table 4; I could't.
  • Nonwoven fabric B is made of PET fiber, has a heat shrinkage rate of 21%, an average fiber diameter of 1.2 ⁇ m, a specific surface area of 1.289 m 2 / g, a longitudinal elongation of 1.71%, and a lateral elongation of 1.91.
  • a blood treatment filter was prepared using the same method as described above and a leukocyte removal performance test was conducted, the leukocyte removal performance before and after high-pressure steam sterilization was as shown in Table 4; I could't.
  • Nonwoven fabric B is made of PET fiber and has a thermal shrinkage rate of 24%, an average fiber diameter of 1.2 ⁇ m, a specific surface area of 1.275 m 2 / g, a longitudinal elongation of 1.75%, and a lateral elongation of 2.52
  • a blood treatment filter was prepared using the same method as described above and a leukocyte removal performance test was conducted, the leukocyte removal performance before and after high-pressure steam sterilization was as shown in Table 4; I could't.
  • Nonwoven fabric B is made of PET fiber, has a thermal shrinkage of 15%, an average fiber diameter of 1.2 ⁇ m, a specific surface area of 1.352 m 2 / g, a longitudinal elongation of 1.66%, and a lateral elongation of 1.87.
  • a blood treatment filter was prepared using the same method as described above and a leukocyte removal performance test was conducted, the leukocyte removal performance before and after high-pressure steam sterilization was as shown in Table 4; I could't.
  • Nonwoven fabric B is made of PBT fiber, has a heat shrinkage rate of 5%, an average fiber diameter of 1.1 ⁇ m, a specific surface area of 1.360 m 2 / g, a longitudinal elongation of 1.62%, and a lateral elongation of 2.17.
  • the blood treatment filter was prepared as described above, and the leukocyte removal performance test was conducted.
  • the leukocyte removal performance before and after high-pressure steam sterilization was as shown in Table 5; I could't see it.
  • Nonwoven fabric B is made of PBT fibers, has a heat shrinkage rate of 10%, an average fiber diameter of 1.1 ⁇ m, a specific surface area of 1.358 m 2 / g, a longitudinal elongation of 1.66%, and a lateral elongation of 2.42.
  • the leukocyte removal performance before and after high-pressure steam sterilization was as shown in Table 5; I could't.
  • Nonwoven fabric B is made of PBT fiber, has a thermal shrinkage of 15%, an average fiber diameter of 1.1 ⁇ m, a specific surface area of 1.351 m 2 / g, a longitudinal elongation of 1.69%, and a lateral elongation of 1.88.
  • the leukocyte removal performance before and after high-pressure steam sterilization was as shown in Table 5; I could't.
  • Nonwoven fabric B is made of PBT fibers, has a heat shrinkage rate of 21%, an average fiber diameter of 1.2 ⁇ m, a specific surface area of 1.287 m 2 / g, a longitudinal elongation of 1.73%, and a lateral elongation of 2.25.
  • the leukocyte removal performance before and after high-pressure steam sterilization was as shown in Table 5; I could't.
  • Nonwoven fabric B is made of PBT fiber, has a heat shrinkage rate of 24%, an average fiber diameter of 1.2 ⁇ m, a specific surface area of 1.275 m 2 / g, a longitudinal elongation of 1.67%, and a lateral elongation of 2.33.
  • the leukocyte removal performance before and after high-pressure steam sterilization was as shown in Table 5; I could't.
  • Nonwoven fabric B is made of PBT fibers, has a heat shrinkage ratio of 14%, an average fiber diameter of the nonwoven fabric of 1.1 ⁇ m, a specific surface area of 1.355 m 2 / g, a longitudinal elongation ratio of 1.69%, and a lateral elongation ratio of 1
  • a blood treatment filter was prepared as described above, and a leukocyte removal performance test was performed.
  • the leukocyte removal performance before and after high-pressure steam sterilization was as shown in Table 5, and the performance declined due to sterilization. Was not seen.
  • Nonwoven fabric B having a thermal shrinkage of 25%, an average fiber diameter of 1.2 ⁇ m, a specific surface area of 1.268 m 2 / g, a longitudinal elongation of 1.65% and a lateral elongation of 3.87% is used.
  • the blood treatment filter was prepared as described above and the leukocyte removal performance test was performed, the leukocyte removal performance before and after high-pressure steam sterilization was as shown in Table 6, and a decrease in performance due to sterilization was observed.
  • Nonwoven fabric B having a thermal shrinkage of 30%, an average fiber diameter of 1.2 ⁇ m, a specific surface area of 1.246 m 2 / g, a longitudinal elongation of 1.72% and a lateral elongation of 2.11% is used.
  • the blood treatment filter was prepared as described above and the leukocyte removal performance test was performed, the leukocyte removal performance before and after high-pressure steam sterilization was as shown in Table 6, and a decrease in performance due to sterilization was observed.
  • Nonwoven fabric B having a thermal shrinkage of 38%, an average fiber diameter of 1.3 ⁇ m, a specific surface area of 1.222 m 2 / g, a longitudinal elongation of 1.67% and a lateral elongation of 3.55% is used.
  • the blood treatment filter was prepared as described above and the leukocyte removal performance test was performed, the leukocyte removal performance before and after high-pressure steam sterilization was as shown in Table 6, and a decrease in performance due to sterilization was observed.
  • Nonwoven fabric B having a heat shrinkage rate of 25%, an average fiber diameter of 1.2 ⁇ m, a specific surface area of 1.268 m 2 / g, a longitudinal elongation rate of 1.65% and a lateral elongation rate of 2.87%,
  • a blood treatment filter was prepared as described above and a white blood cell removal performance test was performed, the white blood cell removal performance before and after high-pressure steam sterilization was as shown in Table 6, and a decrease in performance due to sterilization was observed.
  • the filter element of the present invention is used to remove unnecessary components (for example, aggregates, pathogenic substances (viruses, bacteria, protozoa, infected erythrocytes, etc.), blood treatment agents, etc.) contained in blood. it can.
  • the filter element of the present invention has a higher leukocyte removing ability than that of the conventional method and can reduce the processing time without clogging, and in particular, leukocytes for capturing leukocytes mixed in blood. It can be suitably used as a removal filter element.
  • the blood treatment filter using the filter element of the present invention has a small performance degradation due to steam heat treatment such as high-pressure steam sterilization, so that the pharmaceutical use using steam heat treatment under severe conditions such as prevention of blood transfusion side effects due to leukocytes It is preferably used for medical use and general industrial use.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • External Artificial Organs (AREA)

Abstract

蒸気加熱処理前における未結晶化熱量が5J/g以下である不織布を含む、血液処理フィルター用フィルター要素。

Description

血液処理フィルター用フィルター要素及び血液処理フィルター
 本発明は、血液、すなわち、全血及び血液製剤(全血から調製して得られた液体、及び、これに各種添加剤が添加された液体)から不要成分を除去するために使用される血液処理フィルター用フィルター及びそのためのフィルター要素に関する。とりわけ、上記のような白血球含有液からの白血球除去に適した血液処理フィルター及びそのためのフィルター要素に関する。
 輸血の分野においては、供血者から採血した血液に抗凝固剤を添加した全血製剤を輸血する、いわゆる全血輸血に加えて、全血製剤から受血者が必要とする血液成分を分離し、その血液成分を輸注する、いわゆる成分輸血が一般的に行われるようになっている。成分輸血には、受血者が必要とする血液成分の種類により、赤血球輸血、血小板輸血、血漿輸血などがあり、これらの輸血に用いられる血液製剤には、赤血球製剤、血小板製剤、血漿製剤などがある。
 また、最近では、血液製剤中に含まれている白血球を除去してから血液製剤を輸血する、いわゆる白血球除去輸血が普及してきている。これは、輸血に伴う頭痛、吐き気、悪寒、非溶血性発熱反応などの比較的軽微な副作用、及び、受血者に深刻な影響を及ぼすアロ抗原感作、ウィルス感染、輸血後GVHDなどの重篤な副作用が、主として輸血に用いられた血液製剤中に混入している白血球が原因で引き起こされることが明らかになったためである。頭痛、吐き気、悪寒、発熱などの比較的軽微な副作用を防止するためには、血液製剤中の白血球を、残存率が10-1~10-2以下になるまで除去すればよいと言われている。また、重篤な副作用であるアロ抗原感作やウィルス感染を防止するためには、白血球を残存率が10-4~10-6以下になるまで除去する必要があると言われている。
 また、近年ではリウマチ、潰瘍性大腸炎等の疾患の治療に、血液の体外循環による白血球除去療法が行なわれるようになってきており、高い臨床効果が得られている。
 現在、血液製剤から白血球を除去する方法には、大きく分けて、遠心分離機を用いて血液成分の比重差を利用して白血球を分離除去する遠心分離法と、不織布等の繊維集合体又は連続気孔を有する多孔構造体などからなるフィルター材を用いて白血球を除去するフィルター法の2種類がある。白血球を粘着又は吸着により除去するフィルター法は、操作が簡便であること、及びコストが安いことなどの利点を有するため現在最も普及している。
 近年、医療現場においては白血球除去フィルターに対して新たな要求が提起されてきている。その要求のひとつは、血漿蛋白などの血液製剤として用いられる有用成分の回収率を向上させることである。血液製剤の原料である血液は、善意による献血でまかなわれている貴重な血液である場合が多いが、白血球除去フィルター中のフィルター材に吸着して回収不能となった血漿蛋白及び赤血球製剤は、そのままフィルターと共に廃棄されて無駄になってしまうという問題点がある。そのため現行の白血球除去フィルターよりも有用成分の吸着量を低減させ、回収率を向上させることは極めて有意義である。
 従って、上記の医療現場の要求を満たすため、単位体積当たりの白血球除去能が高い白血球除去フィルター材を使用し、これまでより少ない量のフィルター材を充填した白血球除去フィルター装置が求められている。フィルター材の充填量の減量に伴って、フィルター内に残留する血液量が減少し、従来のフィルター装置よりも有用成分の回収率が向上できると期待される。
 さらに、市場においては白血球除去フィルターに対し、短時間で所望量の血液を処理したいといった要求がある。そのためには、白血球除去フィルター装置は、従来の装置の断面積と同等もしくはさらに大きく、フィルター材の厚みが薄い形状とする必要があると考えられる。しかしながら、白血球除去能を維持しながらフィルター材の厚みを薄くするためには、単位体積あたりの白血球除去能を高くする必要がある。
 繊維集合体や連続気孔を有する多孔構造体などのフィルター材による白血球除去の機構は、主としてフィルター材表面と接触した白血球が、フィルター材表面に粘着又は吸着されることによるとされている。そこで、上記の要求を満たすため、従来のフィルター材における白血球除去能の向上の手段として、不織布の繊維径を小さくしたり、嵩密度を高めることなどの検討が行われている(特許文献1、特許文献2参照)。
 また別の手段として、厚み方向、すなわち液体の流れ方向の特定の構造を不織布の濾過面全域にわたって均一化させた白血球除去フィルターを用いることにより、白血球除去能が高く、かつ目詰まりを起こさず処理時間の短い白血球除去方法が提案されている(特許文献3参照)。
特開昭60-193468号公報 米国特許第5580465号明細書 特許第4134043号公報
 しかしながら、特許文献1~3の記載に従ってフィルター要素の物理的特性を最適化した場合でも、白血球除去能が向上しないケースが多発することが分かった。
 本発明者が原因を検討したところ、該フィルター要素を組み込んだ白血球除去フィルターには滅菌等の目的で蒸気加熱処理を施すことが行われているが、これにより、該フィルターの白血球除去能が滅菌前に比べて著しく低下することが判明した。
 血液処理フィルター、特に白血球除去フィルターは、血液製剤への感染性物質混入を防止するため、使用前に蒸気加熱処理等の滅菌処理が通常行われるが、これらの処理に伴いフィルター内部のフィルター要素の特性が変化し、結果として白血球除去能が低下することが判明した。
 本発明は、上記従来技術の問題点に鑑み、蒸気加熱処理後においても従来のフィルター要素と同等以上の白血球除去能を有する血液処理フィルター用フィルター要素及び血液処理フィルターを提供することを目的とする。
 本発明者は、不織布を含むフィルター要素を容器に担持させた血液処理フィルターにおいて、蒸気加熱処理後において高い白血球等の除去能を達成する為に鋭意研究を重ねた結果、蒸気加熱処理を施す前の不織布の結晶化度を一定以上とすることにより、従来のフィルター要素より大幅に蒸気加熱処理後の白血球等除去能を向上させられることを見出した。
 すなわち、本発明は以下のとおりである。
 
[1]蒸気加熱処理前における未結晶化熱量が5J/g以下である不織布を含む、血液処理フィルター用フィルター要素。
[2]前記不織布の蒸気加熱処理前における結晶融解熱量から未結晶化熱量を引いた値が50J/g以上である、[1]に記載の血液処理フィルター用フィルター要素。
[3]前記不織布の蒸気加熱処理前におけるX線結晶化度が60以上である、[1]または[2]に記載の血液処理フィルター用フィルター要素。
[4]前記不織布の面積収縮率が10%以下である、[1]~[3]のいずれかに記載のフィルター要素。
[5]前記不織布が、表面部分に非イオン性基と塩基性含窒素官能基とを有する、[1]~[4]のいずれかに記載のフィルター要素。
[6]前記不織布の熱収縮率が5-24%、伸び率が最大になる方向の伸び率、及び、それに垂直な方向の伸び率が、共に、1%以上3%以下である、[1]~[5]のいずれかに記載の血液処理フィルター用フィルター要素。
[7]前記不織布の伸び率が最大になる方向の伸び率とそれに垂直な方向の伸び率の差が1%以下である、[6]に記載の血液処理フィルター用フィルター要素。
[8][1]~[7]のいずれかに記載のフィルター要素、入口側容器材及び出口側容器材を有する血液処理フィルターであって、前記入口側容器材及び前記出口側容器材が硬質材料からなり、前記フィルター要素の外縁部が、前記入口側容器材と前記出口側容器材によって挟まれて把持され、前記血液処理フィルターの内部空間が、前記フィルター要素によって入口空間及び出口空間に仕切られている、血液処理フィルター。
[9] [1]~[7]のいずれかに記載のフィルター要素、及び、入口及び出口を有する容器を有する血液処理フィルターであって、前記容器は軟質材料からなり、前記容器の周縁部に前記フィルター要素が溶着されており、前記血液処理フィルターの内部空間が、前記フィルター要素によって入口空間及び出口空間に仕切られている、血液処理フィルター。
 [10]前記フィルター要素が複数の不織布を含み、当該複数の不織布のうち、前記入口側容器材と接触している不織布及び/又は前記出口側容器材と接触している不織布の蒸気加熱処理前における未結晶化熱量が5J/g以下である、[8]または[9]に記載の血液処理フィルター。
[11]前記フィルター要素の充填密度が0.1g/cm以上0.5g/cm以下である、[8]~[10]のいずれかに記載の血液処理フィルター。
 本発明のフィルター要素を用いれば、蒸気加熱処理を施した後も高い白血球等除去性能を維持できる血液処理フィルターを提供することが可能となる。
本発明の一実施形態である血液処理フィルター用フィルター要素を備える血液処理フィルターの模式図である。 本発明の一実施形態である血液処理フィルター用フィルター要素を備える血液処理フィルターの断面図である。
 以下、本発明を実施するための形態(以下、本実施の形態という。)について、詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 本実施形態において、フィルター要素は不織布を含む。
 具体的には、フィルター要素は、不織布を一枚のみ含むものであっても、複数枚含むものであってもよく、さらに不織布と組み合わせて他のシートを含んでいてもよい。
 また、フィルター要素が複数枚の不織布を含む場合、複数枚の不織布は単一の種類のものであってもよいし、複数種類のものであってもよい。
 さらに、本実施形態のフィルター要素において、不織布は、不織布原反から繰り出したものそのままでもよいし、コート層等の表面層等が設けられていたり、熱加工や電子線照射などの表面処理加工を施したものであってもよい。不織布にコート処理をして表面層を設ける場合、用いられるコート剤に限定はなく、例えば、親水性ポリマーが挙げられる。コート剤としての親水性ポリマーは、水中で膨潤するが、水に溶解しないものであれば良い。
 本実施形態において、不織布は、特に限定されないが、例えば、ポリアミド、ポリエステル(ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等)、ポリアクリロニトリル、ポリウレタン、ポリビニルホルマール、ポリビニルアセタール、ポリトリフルオロクロルエチレン、ポリ(メタ)アクリレート、ポリスルホン、ポリスチレン、ポリエチレン、ポリプロピレン、セルロース、セルロールアセテート等の血液に対して影響のない樹脂をメルトブロー法等により紡糸して形成された樹脂繊維を含む。
 本実施形態において、フィルター要素に含まれる不織布の蒸気加熱処理を施す前の未結晶化熱量は5J/g以下である。
 ここで、蒸気加熱処理とは、100℃以上の蒸気に曝すことをいう。
 本実施形態のフィルター要素を含む血液処理フィルターとしては、処理液体(例えば、血液、血液製剤)を容器内部に導入するための入口、及び、これを容器外に排出するための出口を有する容器にフィルター要素を充填したものが挙げられる。このようなフィルターにおいては、フィルター内の内部空間が、フィルター要素によって入口空間及び出口空間に仕切られる。
 例えば、フィルター要素と、該フィルター要素を挟んで配置された入口側容器材及び出口側容器材とを含み、前記入口側容器材及び前記出口側容器材が、前記フィルター要素の外縁部を挟み付けて把持するための把持部を有している構成としたり、入口と出口を形成した可撓性の合成樹脂製のシート等の軟質材料からなる軟質部材(容器)でフィルター要素を挟んだり、軟質部材をフィルター要素の周囲に巻いたりした後、軟質部材の周縁部とフィルター要素とを溶着した構成や、軟質部材でフィルター要素の外縁部を接合し、その接合部の軟質部材と入口と出口を形成した軟質部材等を接合してなる構成とすることもできる。
 なお、血液処理フィルターは、容器内部に本実施形態のフィルター要素以外のものを含んでいてもよく、例えば、容器内部の上流側(本実施形態のフィルター要素よりも容器入口に近い側)に微小凝集物を捕捉するためのプレフィルターがあっても良いし、容器内部の下流側(フィルター要素よりも出口に近い側)にポストフィルターがあっても良い。
 図1は本実施形態のフィルター要素を備える血液処理フィルター(白血球除去フィルター)の模式図であり、図2は図1のII-II線断面図である。
 図1及び図2に示すように、血液処理フィルター10は、扁平型の容器1と、その内部に収容され実質的に乾燥状態である血液処理フィルター要素5とを有している。血液処理フィルター要素5を収容する容器1は、主面の端部第1出入口3を有する入口側容器材と、主面の端部に第2出入口4を有する出口側容器材の2つの要素からなる。血液処理フィルター要素5によって、扁平型の容器1内の空間は第1出入口側の空間7と第2出入口側の空間8とに仕切られている。
 この血液処理フィルター1においては、入口側容器材と出口側容器材がフィルター要素5を挟んで配置されており、2つの容器材が、各々の周縁部の内側の一部に設けられた把持部(リブ状の凸部等)でフィルター要素5の外縁部9を挟みつけて把持する構造をとる。この凸部同士が互いに押し付け合うことで、フィルター要素を挟み込み、その凸部の内側のフィルター要素に主に血液が流れて濾過される。凸部でフィルター要素を高密度に圧縮することによって、血液がフィルター要素の外縁部を乗り越えて濾過されずに通過する横漏れ(サイドフロー)の発生を防ぐことができる。
 血液処理フィルター1には、通常、使用前に蒸気加熱処理法による滅菌処理が施される。この際に、蒸気加熱処理により不織布の物理的構造が大きく変化すると考えられる。中でも、不織布の平面方向に収縮が発生すると、結果として前述の把持部構造が不安定になり、血液処理フィルター1の白血球等除去能並びに取扱い性が低下する。
 蒸気加熱処理に伴う不織布の物理的特性の変化としては、平面方向の収縮の他に、不織布を構成する繊維形状の変化挙げられる。その結果、フィルター要素の単位質量当たりの表面積(比表面積)が低下し、白血球等除去能の低下が発生しうる。また、フィルター要素の垂直方向(厚み方向)の平均流量孔径が増加するため、その結果、単位重量当たりのフィルター要素の通気圧損が低下し、白血球等除去能の低下に繋がると考えられる。以上のように、蒸気加熱処理に伴う不織布の物理的特性の変化は、血液処理フィルターの構造や性能バランスを大きく悪化させる原因となる。
 蒸気加熱処理による不織布の物理的特性の変化の原因について本発明者が検討したところ、不織布を形成する樹脂(ポリエチレンテレフタレート樹脂等)の結晶化度が不十分であることがその一因であることが判明した。すなわち、結晶性が低い樹脂を高温(特に、そのガラス転移温度(Tg)以上の高温)で熱処理することにより、不織布の結晶化が亢進し、不織布中の樹脂密度が高まることで、不織布の単位重量当たりの体積が減少し、これにより、収縮や繊維の形状の変化等の物理的特性の変化が起こり、血液処理フィルターの構造が不安定になったり、性能バランスが崩れるものと考えられる。
 本実施形態においては、フィルター要素に含まれる不織布の蒸気加熱処理前の未結晶化熱量が5J/g以下となるようにする。「未結晶化熱量」は、樹脂の結晶化度を示す指標であり、この値が小さいほど当該樹脂の結晶化度が高いことを意味する。未結晶化熱量は、3J/g以下であることが好ましく、2J/g以下であることがより好ましく、1J/g以下であることが更に好ましい。
 これにより、蒸気加熱処理等に伴う不織布の物理的特性の変化を抑制し、白血球等の除去能を高く維持することが可能となる。また、蒸気加熱処理条件は、血液処理フィルターを組み込んでキットを生産するバッグメーカー毎に種々異なるのが一般的であるところ、本実施形態のフィルター要素は熱的に安定な性状を有することから、従前のフィルター要素を使用する血液処理フィルターに比べて、より広範囲な蒸気加熱処理条件に耐えうる熱安定性を有する。
 またそのような不織布を用いたフィルター要素を用いることで、血液処理フィルターとしての性能、取扱い性が向上する効果が得られる。
 例えば、図1、2に示したような、フィルター要素を硬質性容器で挟み把持したフィルターにおいては、蒸気加熱処理後においても、容器の把持部に対するフィルター要素の反発強度が高くなり、容器把持部とフィルター要素の間の挟み付けが強固な状態が維持されるため、血液がフィルター要素を貫通せずに把持部とフィルター要素の間をすり抜けて入口空間から出口空間に流れ込む現象(サイドリーク現象)を抑制することができ、白血球等除去能を向上させる効果が得られる。
 また、フィルター要素を軟質性(可撓性)容器で挟み、容器とフィルター要素とを高周波溶着で接合したフィルターの場合には、不織布の未結晶化熱量を一定以下に制御することで、容器とフィルター要素の接合部の強度が向上し、フィルターの耐遠心性(フィルターに対して遠心処理を施した際(遠心力を付与した際)の容器とフィルター要素の接合部の割れ難さ)が向上する効果も得られる。フィルター要素に含まれる不織布の未結晶化熱量を一定以下に制御すると、容器とフィルター要素の高周波溶着接合部の強度が向上する理由は明らかではないが、不織布の結晶化度が高くなると、高周波溶着する際に不織布の反発力が上昇することで、不織布の圧着による過剰な溶融を抑制し、均質な(過剰溶融により発生する陥没孔などが無い)接合部を形成することが可能になるためと考えられる。
 さらに、フィルター要素に含まれる不織布の、蒸気加熱処理を施される前における結晶融解熱量から未結晶化熱量を引いた値が50J/g以上であることが好ましい。この「結晶融解熱量から未結晶化熱量を引いた値」もまた、樹脂の結晶化度を示す指標であり、この値が大きいほど当該樹脂の結晶化度が高いことを意味する。フィルター要素の結晶化度がより高まることで、蒸気加熱処理前後でのフィルター要素の物理的特性の変化(収縮等)がさらに抑制され、前述の通り白血球等除去能が高まる効果が得られる。
 結晶融解熱量から未結晶化熱量を引いた値は、55J/g以上がより好ましく、60J/g以上がさらに好ましく、最も好ましくは65J/g以上である。
 本実施形態において、未結晶化熱量と結晶融解熱量は、不織布について示差走査熱量計法(DSC法)にて測定した値である。測定方法を以下に説明する。
 不織布3~4mgを分離してアルミ製標準容器にセットし、初期温度35℃、昇温速度10℃/分、窒素流50mL/分の雰囲気下で、初期昇温曲線(DSC曲線)を測定する。この初期昇温曲線(DSC曲線)から、発熱ピークと融解ピーク(吸熱ピーク)を検出し、各々のピーク面積から得られる熱量値(J)を不織布質量で除すことによって未結晶化熱量(J/g)と結晶融解熱量(J/g)を算出する。
 測定装置としては、例えば、島津製作所製TA-60WSシステムを用いることができる。
 本実施形態においては、フィルター要素に含まれる不織布の、蒸気加熱処理を施す前のX線結晶化度が60以上であることが好ましい。フィルター要素の結晶化度がより高まり、蒸気加熱処理前後でのフィルター材の物理的特性の変化(収縮等)が抑制されることによって、前述の通り白血球等除去能が高まる効果が得られる。
 X線結晶化度は、63以上がより好ましく、66以上がさらに好ましい。
 本実施形態において、X線結晶化度は、X線回折法により測定する。
 測定は、X線回折装置(例えば、MiniFlexII(リガク、型番2005H301))を用いて、以下の1)~5)の測定手順で行うことができる。
1)試料台に3cm×3cmのサイズの不織布を1枚セットする。
2)下記条件にて測定を実施する。
 ・走査範囲:5°~50°
 ・サンプリング幅(データを取り込む幅):0.02°
 ・スキャンスピード:2.0°/分
 ・電圧:30kV
 ・電流:15mA3)測定後、非晶部と結晶部のピークが分離したデータを得る。
4)3)のデータから、非晶質ピーク面積(Aa)と総ピーク面積(At)を求める。例えば、解析ソフトウェア(MDI JADE 7)にて、3)で測定したデータを開き、「自動ピーク分離」機能を実施する。その結果、非晶質ピーク面積(Aa)及び総ピーク面積(At)が自動で算出される。
5)非晶質ピーク面積(Aa)及び総ピーク面積(At)から、結晶化度は以下の式によりで算出される。
 結晶化度(%)=(At-Aa)/At×100
 蒸気加熱処理を施す前において、未結晶化熱量が5J/g以下の不織布、結晶融解熱量から未結晶化熱量を引いた値が50J/g以上の不織布、及び、X線結晶化度が60以上の不織布は、例えば、その材料や製造条件を本明細書に記載するように選択することにより容易に製造することができる。
 本実施形態において、不織布の面積収縮率は、10%以下であることが好ましく、より好ましくは3%以下、特に好ましくは2%以下、最も好ましくは1%以下である。面積収縮率が10%より大きいと、蒸気加熱処理、特に高圧蒸気滅菌等の特に過酷な蒸気加熱処理を行った場合に不織布の孔径が小さくなるのみならず、孔径が不均一となることで血球の目詰まりが増加し、処理速度が低下する傾向にある。面積収縮率を10%以下とすると、滅菌処理後も孔径の均一性が保持され、処理速度の変動を防ぐことができ、安定した性能バランスを発揮することができる傾向にあるため好ましい。
 この点、例えば、ポリブチレンテレフタレートは他のポリエステル繊維、例えばポリエチレンテレフタレート繊維、に比べて、結晶化速度が速いため、結晶化度を高くしやすいことから、高圧蒸気滅菌等の過酷な蒸気加熱処理を施しても平面方向への収縮が起こりにくく(面積収縮率を小さくしやすく)、従って滅菌条件によらず安定した白血球等除去能及び処理速度を発揮することができる。
 本実施形態における不織布の面積収縮率とは、約20cm×20cmの正方形にカットした蒸気加熱処理前の不織布の縦・横の寸法を正確に測定した後に、不織布をピン等で固定せずに115℃で240分間蒸気加熱処理を行い、その後再度縦・横の寸法を測定し、以下の式により算出されるものである。
 面積収縮率(%)
 =(熱処理前の不織布の縦の長さ(cm)×熱処理前の不織布の横の長さ(cm)
 -熱処理後の不織布の縦の長さ(cm)×熱処理後の不織布の横の長さ(cm))
 ÷(熱処理前の不織布の縦の長さ(cm)×熱処理前の不織布の横の長さ(cm))×100
 さらに、フィルター要素に含まれる不織布が、表面部分に非イオン性親水基と塩基性含窒素官能基とを有する不織布を含むようにしてもよい。例えば、不織布を構成する繊維自体がその表面部分に非イオン性親水基と塩基性含窒素官能基とを有していてもよいし、不織布上に形成されたコート層がその表面部分に非イオン性親水基と塩基性含窒素官能基とを有していてもよい。
 不織布の表面部分とは、不織布の表面をモノマー及び/又はポリマー等を含むコート層によってコートする場合、コート層の表面部分であり、繊維上にコート層を形成しない場合、紡糸された繊維の表面部分をいう。
 フィルター要素が表面部分に非イオン性親水基と塩基性含窒素官能基を有することによって、血液製剤の不織布への浸透性を高めながら、不織布と血液中の白血球の親和性を高めることが可能になり、白血球除去を効率よく行うことが可能になる。
 フィルター要素が、二枚以上の不織布を含む場合(後述)、少なくとも一枚の不織布が、表面部分に非イオン性親水基と塩基性含窒素官能基とを有していればよい。
 該表面部分中の非イオン性親水基と塩基性含窒素官能基の合計に対する塩基性含窒素官能基の割合は、0.2~4.0質量%であることが好ましく、より好ましくは0.3~1.5質量%である。塩基性含窒素官能基の割合は、NMR、IR、TOF-SIMS等による解析によって測定することができる。このように塩基性含窒素官能基と非イオン性親水基の割合を規定することで、血液に対する安定した濡れ性を確保すると共に、血小板などの血液成分の不要な目詰まりを抑制しながら、白血球等除去を効率よく行うことが可能になる。
 非イオン性親水基としては、例えば、アルキル基、アルコキシ基、カルボニル基、アルデヒド基、フェニル基、アミド基、及びヒドロキシル基などが挙げられる。
 塩基性含窒素官能基としては、例えば、-NH2,-NHR1,-NR23,-N+456(R1,R2,R3,R4,R5及びR6は炭素数1~3のアルキル基)で表されるアミノ基が挙げられる。
 コート層は、例えば、非イオン性親水基を有するモノマー単位と塩基性含窒素官能基を有するモノマー単位とを有するコポリマーを含む。非イオン性親水基を有するモノマー単位は、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ビニルアルコール、(メタ)アクリルアミド、N-ビニルピロリドンなどに由来する単位が挙げられる。以上のモノマーの中でも、入手のしやすさ、重合時の扱いやすさ、血液を流した時の性能などから、2-ヒドロキシエチル(メタ)アクリレートが好ましく用いられる。ビニルアルコールのモノマー単位は、通常、酢酸ビニルの重合後、加水分解により生成する。
 塩基性含窒素官能基を有するモノマー単位は、例えば、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート、3-ジメチルアミノ-2-ヒドロキシプロピル(メタ)アクリレート等の(メタ)アクリル酸の誘導体;p-ジメチルアミノメチルスチレン、p-ジエチルアミノエチルスチレン等のスチレン誘導体;2-ビニルピリジン、4-ビニルピリジン、4-ビニルイミダゾール等の含窒素芳香族化合物のビニル誘導体;および上記のビニル化合物をハロゲン化アルキル等によって4級アンモニウム塩とした誘導体などに由来する単位が挙げられる。以上のモノマーの中でも、入手のしやすさ、重合時の扱いやすさ、血液を流した時の性能などから、ジエチルアミノエチル(メタ)アクリレート、及びジメチルアミノエチル(メタ)アクリレートが好ましく用いられる。
 コート層の質量は、不織布とコート層の合計質量1gに対して、例えば1.0~40.0mg程度である。
 コート層の質量は、例えば以下の手順により算出することができる。コート層を担持させる前の不織布を60℃に設定した乾燥機中で1時間乾燥させた後、デシケーター内に1時間以上放置した後に質量(Ag)を測定する。コート層を担持させた不織布を同様に60℃の乾燥機中で1時間乾燥させた後、デシケーター内に1時間以上放置した後に質量(Bg)を測定する。コート層の質量は以下の算出式により算出される。
 不織布とコート層の合計1gに対するコート層の質量(mg/g)=(B-A)×1000/B
 ポリマー(コポリマー)を含むコート層は、例えば、ポリマー及び溶剤を含有するポリマー溶液に不織布を浸漬した後、不織布に付着したポリマー溶液から溶剤を除去する方法により、形成することができる。
 フィルター要素を、硬質性容器を構成する出口側及び入口側容器材の2つのパートで挟んで把持することでフィルターを作製する場合(例えば、図1、2で示すような場合)において、フィルター要素が複数の不織布を含む場合は,出口側容器材に接触している不織布(出口側容器材に最も近い位置に配置されている不織布)として結晶化度が高いものを用いることにより、蒸気加熱処理後の出口側容器材の把持部によるフィルター要素に対する挟みつけをより強くすることができ、これにより、血液がフィルター要素を貫通せずに把持部とフィルター要素との間をすり抜けて入口空間から出口空間に直接流れ込む現象(サイドリーク現象)を抑制し、白血球等除去能を向上させる効果が得られ、血液処理フィルターとしての性能をさらに向上させることができる。
 すなわち、フィルター要素を、硬質性容器を構成する出口側及び入口側容器材の2つのパートで挟んで把持することでフィルターを作製する場合は、フィルター要素に含まれる不織布のうち、前記出口側容器材と接触する不織布が、次の(1)を備えることが好ましく、(1)に加えて(2)及び/又は(3)も備えることがより好ましい。
(1)蒸気加熱処理を施す前における未結晶化熱量が5J/g以下
(2)蒸気加熱処理を施す前における結晶融解熱量から未結晶化熱量を引いた値が50J/g以上
(3)蒸気加熱処理を施す前におけるX線結晶化度が60以上
 また、フィルター要素を硬質性容器を構成する出口側及び入口側容器材の2つのパートで挟んで把持することでフィルターを作製する場合、フィルター要素に含まれる全ての不織布の結晶化度が高いと、蒸気加熱処理後の白血球等除去能の観点からは優れるが、フィルター要素の反発強度が増すことによりフィルター要素を容器材で挟んで把持或いは接合させる際の容易性に劣るから、フィルター製造の際の生産性の観点からは、フィルター要素に含まれる不織布のうち、入口側容器材や出口側容器材と接触している不織布(又は、入口側容器材や出口容器材と接触している不織布とこれに隣接して配置される所定の枚数(通常、1枚~数枚)の不織布)以外の不織布の結晶化度はむしろ高すぎないことが好ましい。
 例えば、硬質性容器に把持される該フィルター要素が、入口側から順に第一及び第二の不織布層(後述)を含む場合には、第二の不織布層に含まれる複数枚の不織布のうち前記出口側容器材と接触している不織布(及び、これに隣接して配置される所定数の不織布)は、少なくとも上記(1)を満たし、それ以外の不織布の一部又は全部は上記(1)を満たさないか、満たしていても該出口側容器材と接している不織布よりも大きい蒸気加熱処理前未結晶化熱量を有していることが、フィルター製造の際の生産性の観点からは好ましい。
 また、本実施形態のフィルター要素5に含まれる不織布は、厚み0.3mm相当の地合指数が15以上70以下であることが好ましい。地合指数が70より大きいと、不織布の厚み方向の構造が濾過面方向に対して不均一であり、血液が不織布を均等に流れないため白血球等除去能が低下する傾向にある。反対に、地合指数が15より小さいと、通液抵抗の上昇により目詰まりが起こり易くなり、処理速度が低下する。地合指数はより好ましくは15以上65以下、更に好ましくは15以上60以下、特に好ましくは15以上50以下である。最も好ましくは15以上40以下である。
 本実施形態でいう地合指数とは、不織布の下から光を当て、その透過光を電荷結合素子カメラ(以下CCDカメラと略す)で検知し、CCDカメラの各画素が検知した多孔質体(不織布)の吸光度の変動係数(%)を10倍した値である。
 本実施形態において、地合指数は、例えばフォーメーションテスターFMT-MIII(野村商事株式会社、2002年製造、S/N:130)にて測定することができる。テスターの基本的な設定は工場出荷時から変更せず、CCDカメラの総画素数は、例えば約3400にて測定を行うことができる。具体的には、総画素数が約3400となるように測定サイズを7cm×3cm(1画素サイズ=0.78mm×0.78mm)にして測定を行えばよいが、サンプルの形状に合わせて総画素数が3400と等しくなるように測定サイズを変更してもよい。
 なお、地合指数は、不織布の厚みに大きく左右されるため、以下の方法により厚さ0.3mm相当の地合指数を算出する。
 まず、厚さ0.3mm以下の不織布を3枚用意し、それぞれの地合指数と厚さを測定する。不織布の厚さは、定圧厚み計(例えば、OZAKI製、型式FFA-12)を用いて、0.4Nの測定圧で任意の4点の厚さを測定したときの、その平均値とする。次に測定した不織布3枚のうち2枚を厚さが0.3mm以上となるように重ね、重ねた状態の2枚の不織布に関して地合指数と厚さを測定する。全3通りの組合せについて地合指数の測定を終了した後、厚さと地合指数の回帰直線式を求め、その式から厚さ0.3mm相当の地合指数を求める。
 不織布2枚の厚さが0.3mmに達しない場合は、重ねた厚さが0.3mm以上となるように複数枚の不織布を重ねて地合指数を測定し、次に重ねた厚さが0.3mm以下となるように不織布を減らして地合指数を測定すればよい。重ねた厚さが0.3mm以下となる全ての不織布の組合せで地合指数を測定し、厚さと地合指数の回帰直線式を求め、その式から厚さ0.3mmの地合指数を求めることができる。
 地合指数の測定に用いられる3枚以上の不織布は、同一フィルター要素から切り出すことが好ましい。通常、それらは実質的に同質な不織布、すなわち物性(材質、繊維径、嵩密度、など)が同一の不織布である。しかしながら、同一フィルター要素から実質的に同質な不織布が測定必要数量得られない場合には、同一種類のフィルター要素の不織布を組み合わせて測定してもよい。
 なお、地合指数の具体的な算出方法については、特許文献3の段落[0016]~[0018]にも記載されている。
 また、本実施形態のフィルター要素5に含まれる不織布の比表面積は、0.8m2/g以上5.0m2/g以下であることが好ましい。比表面積が5.0m2/gより大きいと、血液処理中に血漿蛋白等の有用成分がフィルター要素に吸着し、有用成分の回収率が低下する傾向にある。さらに、血液濾過速度が極端に低下したり、安定してフィルター要素を製造することができないこともある。また、比表面積が0.8m2/gより小さいと、白血球とフィルター要素の接触確率が低下し、白血球の吸着量が低下するため、従来のフィルター要素に比べて白血球等除去能が低下する傾向にある。
 不織布の比表面積は、より好ましくは1.0m2/g以上3.2m2/g以下、更に好ましくは1.1m2/g以上2.9m2/g以下、特に好ましくは1.2m2/g以上2.9m2/g以下、最も好ましくは1.2m2/g以上2.6m2/g以下である。
 また、血液処理フィルターにおいては、複数の比表面積のフィルター要素を出口側に向かって比表面積がより大きくなる様に配置するようにしてもよい。
 本実施形態でいう比表面積とは、単位質量あたりの不織布の表面積であり、吸着ガスを窒素とするBET吸着法で測定される値であり、例えばマイクロメリティックス社製トライスター3000装置や(株)島津製作所製「アキュソーブ2100」又はこれらと同等の仕様を持った装置を用い測定することが可能である。
 不織布の比表面積が大きいほど、同じ質量の不織布を含むフィルター要素を用いて血液を処理する際に、細胞及び血漿蛋白等を吸着し得る面積が大きいことを示している。
 また、本実施形態のフィルター要素5に含まれる不織布の通気抵抗は、25Pa・s・m/g以上100Pa・s・m/g以下であることが好ましい。より好ましくは30Pa・s・m/g以上90Pa・s・m/g以下、さらに好ましくは40Pa・s・m/g以上80Pa・s・m/g以下である。
 通気抵抗が25Pa・s・m/gより小さいと白血球との接触回数が減少して白血球の捕捉が困難になる傾向がある。不織布の通気抵抗が100Pa・s・m/gより大きいと血球の目詰まりが増加し、処理速度が低下する傾向にある。
 実施形態の不織布の通気抵抗とは、不織布に一定流量の空気を通した時に生じる差圧として測定された値であり、通気性試験装置(例えばカトーテックK.K社製、KES-F8-AP1)の通気穴の上に不織布を載せ、空気を約10秒間通気させたときに生じる圧力損失(Pa・s/m)を測定し、得られた圧力損失を不織布の目付(g/m2)で除した値である。ただし、切り出す部位を変えて測定を5回行い、その平均値を通気抵抗とする。
 不織布の通気抵抗が高いことは、空気が通過しにくく、不織布を構成する繊維が密な、或いは均一な状態で絡まっていることを意味し、不織布が血液製剤が流れにくい性質を有していることを示す。逆に不織布の通気抵抗が低いことは、不織布を構成する繊維が粗く、或いは不均一な状態で絡まっていることを意味し、不織布が血液製剤が流れやすい性質を有していることを示す。
 また、本実施形態のフィルター要素5に含まれる不織布は、その平均流量孔径が1.0μm以上60μm以下であることが好ましく、1.0μm以上30μm以下であることがより好ましく、1.0μm以上20μm以下であることが更に好ましく、1.0μm以上8.0μm以下であることが特に好ましい。平均流量孔径が60μmより大きいと白血球との接触回数が減少して白血球等除去能が低下する傾向がある。平均流量孔径が1.0μm未満では血球の目詰まりや圧力損失が増加し、血液製剤が流れ難くなり、処理速度が低下する傾向にある。平均流量孔径は、より好ましくは1.5μm以上7.5μm以下、さらに好ましくは2.5μm以上7.0μm以下、特に好ましくは3.5μm以上6.5μm以下、最も好ましくは4.5μm以上6.5μm以下である。
 本実施形態において、不織布の平均流量孔径は、ASTM F316-86に準じて、ポロメーター(例えば、PMI社製パームポロメーターCFP-1200AEXS(多孔質材料自動細孔径分布測定システム)やコールターエレクトロニクス社製コールターRポロメーター等)を用いて、約50mgの試料を用いて測定した際のミーン・フロー・ポアサイズ(MFP)である。平均流量孔径が大きい不織布では、血液製剤は流れやすくなるが、白血球等除去能が低下する。逆に平均流量孔径が小さい不織布では、白血球等除去能は向上するが、血液製剤が流れにくくなり、不織布の閉塞も起こり易くなる。
 本実施形態のフィルター要素が複数の不織布から構成されている場合、異なる平均流量孔径を有する複数の不織布を、容器の入口側から出口側に向かって平均流量孔径が小さくなる様に積層してもよい。
 必要に応じ、フィルター要素より入口側に微小凝集体除去を主な目的とした平均流量孔径50μm以上200μm以下のプレフィルターを配置したり、フィルター要素より出口側に偏流防止を主な目的とした平均流量孔径50μm以上200μm以下のポストフィルターを配置しても構わない。
 本実施形態のフィルター要素及びこれに含まれる不織布の空隙率は、いずれも65%以上90%以下が好ましく、75%以上88%以下がより好ましい。
 空隙率が65%未満であると血液等の濾過速度が低くなって、白血球の除去に長時間要するようになる傾向がある。また、空隙率が90%を超えると、白血球が接着しやすい繊維と繊維の交絡部が少なくなるため、高い白血球等除去性能が得られにくい傾向にある。
 ここで、フィルター要素(不織布)の空隙率(%)とは、フィルター要素(不織布)中に占める空間の体積割合であり、例えば、フィルター要素(不織布)の厚みから計算したフィルター要素(不織布)の単位面積あたりのフィルター要素(不織布)体積、及び、フィルター要素(不織布)の目付(単位面積あたりの質量)とフィルター要素(不織布)を構成する樹脂の比重とから計算したフィルター要素(不織布)の単位面積あたりの樹脂体積とから、以下の式で算出される値である。
 空隙率(%)=(1-樹脂体積/フィルター要素(不織布)体積)×100
 また、フィルター要素及びこれに含まれる不織布は、血液処理フィルターの充填され、圧縮された状態においても、上記の空隙率を維持していることが好ましい。
 本実施形態のフィルター要素は、一枚の不織布から構成されていてもよいし、複数の不織布から構成されていてもよい。さらに、フィルター要素が複数の不織布から構成されている場合、単一の種類の不織布で構成されてもよいし、また、複数種類の不織布から構成されてもよい。また、複数の不織布すべてが本実施形態で特定する不織布である必要はなく、少なくとも1つが本実施形態における不織布であればよく、フィルター要素の総厚みの3割以上を本実施形態における不織布が占めることが好ましく、寄与割合はより好ましくは4割以上、さらに好ましくは5割以上である。
 フィルター要素が複数種類の不織布から構成される場合、フィルター要素は、上流に配置された微小凝集物を除去する第一の不織布層と、第一の不織布層の下流に配置された白血球等を除去するための第二の不織布層とを有することが好ましい。なお、第一及び第二の不織布層は、各々、一枚の不織布であってもよいし、複数の不織布からなっていてもよい。また、第一及び第二の不織布層が複数の不織布からなる場合、各々、単一の種類の不織布で構成されてもよいし、また、複数種類の不織布から構成されてもよい。
 入口側に配置された第一の不織布層は、凝集物除去の観点から、平均繊維直径が3~60μmの不織布からなる不織布層であることが好ましい。
 第二の不織布層は、白血球等除去の観点からは、平均繊維直径が0.3~3.0μmの不織布からなる不織布層であることが好ましい。
 更に、必要に応じて、第二の不織布層の下流にポストフィルター層を配置してもよい。
 各不織布層を形成する不織布の枚数は、血液処理フィルターに求められる白血球等除去能や処理時間、或いはそのバランスなどを考慮して適宜に選択でき、例えば、各一枚であってもよい。
 この態様においては、フィルター要素の第一の不織布層が第二の不織布層よりも上流側(入口側)に配置されており、第二の不織布層を形成する不織布の方が、第一の不織布層を形成する不織布よりも平均繊直維径が小さくなっている。これにより、血液中に凝集物が発生している場合にも、目が粗い上流側(入口側)の第一の不織布層の不織布により凝集物が捕捉され、目の細かい下流側の第二の不織布層の不織布に到達する凝集物が低減される。したがって、凝集物によるフィルター材の目詰まりが抑制される。特に、第一の不織布層を形成する不織布の平均繊維直径が3~60μmであるとフィルター要素の目詰まり抑制に効果的であり、また、第二の不織布層の不織布の平均繊維直径が3μm未満であると、濾過性能(白血球等除去性能)の低下を防止できる。
 さらに、第一の不織布層を形成する不織布の平均繊維直径を4~40μm、より好ましくは30~40μm及び/又は10~20μm、とすると、フィルター要素の目詰まり抑制をより確実に図ることができるのでさらに好ましい。また、第二の不織布層を形成する不織布の平均繊維直径が0.3μm以上だと、白血球等での目詰まりや圧力損失の増大が防止されて好ましく、特に、白血球等除去性能などの点から、平均繊維直径0.5~2.5μmであることがより好ましく、0.7μm~1.5μmであることがさらに好ましい。第二の不織布層は、例えば、平均繊維直径の異なる複数の不織布を、入口側から出口側に向かって順に平均繊維直径がより細かくなる様に積層した構成としてもよい。
 更に、第二の不織布層のさらに下流側に、平均繊維直径が1.2~1.5μmおよび/または0.9~1.2μmの不織布からなる第三の不織布層を配置して用いてもよい。
 また太い平均繊維直径の不織布を含む第一の不織布層と細い平均繊維直径の不織布を含む第二の不織布層とが交互に配置されていてもよく、この場合、カスケード構造形成による流れ性の向上の視点からは、入口側から第一の不織布層、第二の不織布層、第一の不織布層、第二の不織布層・・という順で配置されていることが好ましい。
 本実施形態における平均繊維直径とは、以下の手順に従って求められる値をいう。
 即ちフィルター要素を実際に構成している不織布、または、これと実質的に同質な1枚又は複数枚の不織布から、実質的に均一と認められる部分を5箇所においてサンプリングし、サンプリングされた不織布中の繊維の写真をその直径が写るように走査型電子顕微鏡を用いて撮る。
 このようにして得た写真の上に格子が描かれた透明シートを重ね、上記写真に写り込ませるか或いは同倍率で撮影した直径が既知のポリスチレンラテックスの直径を対照として、格子の交点と重なった計100箇所の繊維の太さ(幅)を直径として測定し、その平均値を平均繊維直径とする。ここで直径とは、繊維軸に対して直角方向の繊維の幅をいう。但し、複数の繊維が重なり合っており、他の繊維の陰になってその直径が正確に測定できない場合、また複数の繊維が溶融するなどして、太い繊維になっている場合、更に著しく直径の異なる繊維が混在している場合、写真の焦点がずれて繊維の境界がはっきりしない、等々の場合には、これらのデータは算入しない。
 また、フィルター要素が複数の不織布を含んでいる場合、各々の不織布において測定される繊維の直径が明らかに異なる場合には、それらは異なる種類の不織布であるから、両者の境界面を見つけ、両者の平均繊維直径を別々に測定し直す。ここで「明らかに平均繊維直径が異なる」とは統計的に有意差が認められる場合をいう。
 なお、平板状かつ軟質性の容器を有する血液処理フィルターの場合には、特に、第二の不織布層の下流側にポストフィルター層を配置すると、濾過時に生ずる入口側の陽圧によってフィルター要素が出口側容器に押しつけられ、さらに出口側の陰圧によって出口側容器がフィルター要素に密着して血液の流れが阻害されることを防ぎ、また軟質性容器とフィルター要素との溶着性を高めるため好ましい。
 ポストフィルター層は、不織布や織布、メッシュなどの繊維状多孔性媒体および三次元網目状連続細孔を有する多孔質体などの公知の濾過媒体を用いることができる。これらの素材としては、例えば、ポリプロピレン、ポリエチレン、スチレン-イソブチレン-スチレン共重合体、ポリウレタン、ポリエステル、等が挙げられる。ポストフィルター層が不織布である場合には、生産性や血液処理フィルターの溶着強度の点から好ましく、ポストフィルター層がエンボス加工等により複数の突起部を有していると更に血液の流れが均一となるため特に好ましい。
 フィルター要素を構成する各不織布は、血球の選択分離性や表面の親水性などを制御する目的からコーティング、薬品処理、放射線処理等の公知の技術によりその表面が改質されていてもよい。
 フィルター要素の目詰まり抑制をより確実に図るには、第一の不織布層を形成する不織布の嵩密度は0.05~0.50g/cm3であることが好ましく、より好ましくは0.10~0.40g/cm3としてもよい。第一の不織布層の不織布の嵩密度が0.50g/cm3を超えると、凝集物や白血球の捕捉により不織布の目詰まりが発生し、濾過速度が低下するおそれがある。反対に、0.05g/cm3を下回ると、凝集物の捕捉能が低下し、第二の不織布層の不織布の目詰まりが発生し、濾過速度が低下するおそれがあり、且つ不織布の機械的強度が低下することがある。
 なお、「不織布の嵩密度」は、均質と思われる箇所から2.5cm×2.5cmの大きさで不織布を切り出し、後述の方法で目付(g/m2)と厚み(cm)を測定し、目付を厚みで除して求める。ただし、切り出す部位を変えて目付と厚みの測定を3回行い、その平均値を嵩密度とする。
 不織布の目付は、2.5cm×2.5cmの大きさで均質と思われる箇所から不織布をサンプリングし、不織布片の重さを測定して、これを単位平方メートル当たりの質量に換算することで求められる。また、不織布の厚みは、2.5cm×2.5cmの大きさで均質と思われる箇所から不織布をサンプリングし、その中央(1ヶ所)の厚みを定圧厚み計で測定することで求められる。定圧厚み計で荷重する圧力は0.4N、測定部の面積は2cm2とする。
 また、第二の不織布層を形成する不織布の嵩密度は0.05~0.50g/cm3であることが好ましく、より好ましくは0.07~0.40g/cm3、さらに好ましくは0.10~0.30g/cm3である。第二の不織布層の不織布の嵩密度が0.50g/cm3より大きいと不織布の流れ抵抗が増大して血球の目詰まりが増加し、処理速度が低下する傾向にある。反対に、嵩密度が0.05g/cm3より小さいと白血球がとの接触回数が減少して白血球の捕捉が困難になる傾向があり、また、不織布の機械的強度が低下することがある。
 なお、本実施形態において、血液処理フィルターに充填されている際のフィルター要素の嵩密度である充填密度は0.1g/cm3以上0.5g/cm3以下であることが好ましく、0.1g/cm3以上0.3g/cm3以下であることがより好ましい。フィルター要素の充填密度が0.5g/cm3を超えると血球の目詰まりや圧力損失の増大を引き起こしやすい傾向にあり、0.1g/cm3未満であると、濾過性能(白血球等除去能)が低下してしまう傾向にある。
 充填密度は、例えば、フィルター要素を充填カットサイズ(cm2)にカットし、その質量(g)を測定し、これを、実際のフィルター容器内に充填し圧縮された状態にしてその厚さ(cm)を測定し、質量(g)/{カットサイズ(cm2)×厚さ(cm)}から求めることができる。
 充填率をもって本実施形態の実施により好適な不織布を規定することも可能である。不織布の充填率とは、任意の寸法にカットした不織布(フィルターに充填されていない状態の不織布)の面積と厚み、質量および不織布を構成する材料の比重を測定し、以下の式により算出されるものである。
 充填率=[不織布の質量(g)÷{不織布の面積(cm2)×不織布の厚み(cm)}]÷不織布を構成する材料の比重(g/cm3
 本実施形態における第一の不織布層を形成する不織布の充填率は、0.04以上0.40以下であることが好ましく、より好ましくは0.08以上0.30以下としてもよい。充填率が0.40より大きいと凝集物や白血球等の捕捉により不織布の流れ抵抗が増大して血球の目詰まりが増加し、処理速度が低下する傾向にある。反対に、充填率が0.04より小さいと凝集物の捕捉能が低下し、第二の不織布層の不織布の目詰まりが発生し、濾過速度が低下するおそれがあり、また、不織布の機械的強度が低下することがある。
 また、第二の不織布層を形成する不織布の充填率は0.04~0.40であることが好ましく、より好ましくは0.06~0.30、さらに好ましくは0.08~0.22としてもよい。第二の不織布層の不織布の充填率が0.40より大きいと不織布の流れ抵抗が増大して血球の目詰まりが増加し、処理速度が低下する傾向にある。反対に、充填率が0.04より小さいと白血球等との接触回数が減少して白血球の捕捉が困難になる傾向があり、また、不織布の機械的強度が低下することがある。
 また、本実施形態において、フィルター要素に含まれる不織布の繊維材料に限定はなく、例えば、ポリエステル、ポリアミド、ポリアクリロニトリル、ポリメチルメタアクリレート、ポリエチレン、ポリプロピレン等の高分子材料を含むこととしてもよい。また、一部、金属繊維を用いてもよい。このように合成高分子材料からなる繊維をフィルター要素として用いることで、血液の変性を防ぐことができる。より好ましくは、ポリエステルを含む繊維を採用することで、安定した繊維径の第一の不織布層、及び第二の不織布層の各不織布を得ることができる。中でも、血液製剤との親和性や血液に対する安定した濡れ性を有する点で、ポリエチレンテレフタレートやポリブチレンテレフタレートが好ましい。
 また、本実施形態において、フィルター要素に含まれる不織布(不織布がコート層で被覆される場合は、不織布をコート層で被覆したもの)のCWST(臨界湿潤表面張力)は、70dyn/cm以上であることが好ましく、より好ましくは85dyn/cm以上であり、さらに好ましくは95dyn/cm以上である。このような臨界湿潤表面張力の不織布では、血液に対する安定した濡れ性を確保することで、血液製剤中の血小板を通過させながら白血球等除去を効率よく行うことが可能になる。
 なお、CWSTとは、以下の方法に従って求められる値をいう。即ち、2ないし4dyn/cmずつ表面張力が変化するように水酸化ナトリウム、塩化カルシウム、硝酸ナトリウム、酢酸又はエタノールの濃度の異なる水溶液を調製する。各水溶液の表面張力(dyn/cm)は、水酸化ナトリウム水溶液で94-115、塩化カルシウム水溶液で90-94、硝酸ナトリウム水溶液で75-87、純粋な水で72.4、酢酸水溶液で38-69、エタノール水溶液で22-35のものが得られる(「化学便覧 基礎編II」改訂2版、日本化学会編、丸善、1975年、164ページ)。このようにして得た表面張力が2ないし4dyn/cm異なる水溶液を表面張力が低いものから順番に不織布上に10滴ずつ乗せ10分間放置する。10分間放置後、10滴中9滴以上が不織布に吸収された場合に湿潤した状態であると定義し、吸収が10滴中9滴未満である場合に非湿潤状態であると定義する。このようにして不織布上に表面張力が小さい液体から順次測定していくと湿潤状態から非湿潤状態へと途中で変わる。この時、湿潤状態を最後に観察した液体の表面張力の値と非湿潤状態を最初に観察した液体の表面張力の値の平均値をその不織布のCWST値と定義する。例えば、64dyn/cmの表面張力を有する液体で湿潤し、66dyn/cmの表面張力を有する液体で非湿潤であった場合、その不織布のCWST値は65dyn/cmとなる。
 ところで、蒸気加熱処理は、より高い滅菌効果を得るために、高温下(例えば、110℃以上)や高圧下で行われることもある。このような高圧蒸気滅菌処理時には、血液処理フィルターが通常の蒸気加熱処理に比べて高い圧力と熱にさらされるため、白血球等除去性能の低下がより起こりやすいことが分かった。
 この点、特公平8-6239号公報には、高圧蒸気滅菌後に高圧縮性や嵩高性を維持して良好な血液濾過性能を維持することができる素材が記載されている。また、特許第4565762号公報には、高圧蒸気滅菌処理時に濾材から表面ポリマーが剥離して白血球等除去性能が低下するのを防ぐ方法が記載されている。
 しかしながら、これらは、いずれも、フィルター要素単独でみた場合の性能低下についてのみ着目されたものであり、実際にフィルター容器に内蔵され、容器の把持部によって把持されたあと、あるいはその周縁部が容器に溶着されたあとの高圧蒸気滅菌による物性や性能の変化まで低減されたものではなく、フィルター自体の性能低下には十分な効果はない。
 本発明者は、フィルター要素を構成する不織布の熱収縮率とその所定方向の伸び率が一定範囲であると、より過酷な条件である高圧蒸気滅菌後であっても濾過性能の低下を生じることがない血液処理用フィルターを提供できることを見出した。
 上記の観点から、本実施形態においては、フィルター要素に含まれる不織布の熱収縮率は5%以上24%以下であることが好ましく、10%以上20%以下であることがより好ましく、10%以上15%以下であることが更に好ましい。
  不織布の熱収縮率が24%を超えると高圧蒸気滅菌後の不織布の収縮が著しく、濾過性能(白血球除去性能)低下を生じる。すなわち、不織布の熱収縮率が高くなると高圧蒸気滅菌後の不織布を構成する繊維の形状の変化が大きくなり、それに伴い不織布の比表面積も低下し、この影響により濾過性能(白血球等除去性能)が相対的に低下する。逆に、抵抗が下がるため濾過時間は短くなる傾向にある。
 しかしながら、不織布の熱収縮率が小さすぎても(具体的には5%未満であると)、伸び率が低下し、フィルター組み立て時に容器がフィルター要素を適切に把持できないことにより血液等のリークが発生し、濾過性能の低下が起こりやすくなることがあることが判明した。
 ここで、不織布の熱収縮率とは、不織布を30cm四方の正方形に切出し、140℃で1分乾熱処理する前後のX及びY方向各々の中央部の長さの差の元の長さに対する割合(%)の平均値である。
 また、不織布のフィルターに充填される際の伸び率が最大になる方向の伸び率及びそれに垂直な方向の伸び率は、共に、1%以上3%以下であることが好ましく、より好ましくは1.5%以上2.5%以下である。また、伸び率が最大になる方向の伸び率とそれに垂直な方向の伸び率の差が1%以下である事が好ましい。
 伸び率が最大になる方向とそれに垂直な方向の伸び率どちらか一方でも1%以下の場合、フィルター組み立て時に容器とフィルター要素の把持部あるいは溶着部においてフィルター要素を十分高密度に圧縮することができず、フィルターの組み立てが不十分となったり、血液がフィルター要素の外縁部を乗り越えて濾過されずに通過する横漏れが発生したりする。
 また、伸び率が最大になる方向とそれに垂直な方向の伸び率どちらか一方でも3%を超えると、高圧蒸気滅菌処理時や濾過時のフィルター要素の変形が著しく、血液濾過性能が低下する。
 さらに、伸び率が最大になる方向の伸び率とそれに垂直な方向の伸び率の差は1%以下であることが好ましく、0.5%以下であることがより好ましい。この差が1%を超えると、フィルター成形時に容器のフィルター要素把持部あるいはフィルター要素溶着部周辺におけるフィルター要素圧縮度が不均一となり、血液濾過性能が低下する傾向がある。
 ここで、伸び率とは、蒸気加熱処理前の不織布に0.26N/cmの引張荷重を付加した際の伸びの元の長さに対する割合(%)である。
 なお、不織布は、一般に、原反の巻取り方向に垂直な方向において伸び率が最大となる。したがって、フィルター要素に含まれる不織布の方向が既知の場合は、その方向に基づいて不織布の伸び率が最大になる方向を決定することができる。
 上述のように、フィルター要素を構成する不織布として、未結晶化熱量が5J/g以下という条件に加えて、さらに、熱収縮率が5-24%で、伸び率が最大になる方向の伸び率及びそれに垂直な方向の伸び率が、共に、1%以上3%以下という条件を満たすものを用いると、より一層蒸気加熱処理に強くなり、フィルター組み立て性に影響を与えることなく、高圧蒸気滅菌処理後に濾過性能の低下を招くことのない血液処理フィルターを提供することが可能となる。
 本実施形態のフィルター要素に含まれる不織布の製造方法に限定はない。本実施形態で用いる不織布は高い結晶化度を有するものであるが、このような不織布は湿式法、乾式法のいずれによっても製造することができる。本実施形態において、地合指数及び平均繊維直径が最適な不織布を安定して得られるという点では、特にメルトブロー法によって製造することが好ましい。
 本実施形態において用いる不織布の製造方法として、メルトブロー法の一例を説明する。メルトブロー法においては、押出機内で溶融された溶融ポリマー流は、適当なフィルターによって濾過された後、メルトブローダイの溶融ポリマー導入部へ導かれ、その後オリフィス状ノズルから吐出される。それと同時に加熱気体導入部に導入された加熱気体を、メルトブローダイとリップにより形成された加熱気体噴出スリットへ導き、ここから噴出させて、前記の吐出された溶融ポリマーを細化して極細繊維を形成し、形成された極細繊維を積層させることにより不織布を得る。更に、熱サクションドラムや熱板、熱水、熱風ヒーターなどを用いて不織布を加熱処理することにより、所望の結晶化度を有する不織布を得ることができる。
 この際、必要十分な熱量を付加できる様、ポリマーの特性に応じて加熱温度と時間を調整することが望ましい。本実施形態において用いる結晶化度の高い不織布を製造するためには、熱源の温度は[ポリマーの融点-120]℃以上の温度であることが好ましく、より好ましくは[ポリマーの融点-20]℃~[ポリマーの融点-60]℃である。また、加熱時間は加熱温度にもよるが、好ましくは3秒以上、より好ましくは10秒以上、更に好ましくは20秒以上、特に好ましくは30秒以上である。
 熱源の温度が[ポリマーの融点-120]℃未満の場合や、加熱時間が3秒未満の場合は、満足すべきポリマーの結晶化度が得られにくくなる傾向が生じるため好ましくない。一例として、140℃の乾燥空気中に紡糸後のポリエチレンテレフタレート不織布を120秒間滞留させることで、本実施形態に適した十分な熱量を付加することができる。
 フィルター要素を収容する容器の材質に限定はなく、例えば樹脂が挙げられ、この場合、硬質性樹脂及び軟質性樹脂のいずれでもよい。
 硬質性樹脂の素材としては、フェノール樹脂、アクリル樹脂、エポキシ樹脂、ホルムアルデヒド樹脂、尿素樹脂、ケイ素樹脂、ABS樹脂、ナイロン、ポリウレタン、ポリカーボネート、塩化ビニル、ポリエチレン、ポリプロピレン、ポリエステル、スチレン-ブタジエン共重合体などが挙げられる。
 軟質性樹脂の容器の材質はフィルター要素と熱的、電気的性質が類似のものがよく、例えば、軟質ポリ塩化ビニル、ポリウレタン、エチレン-酢酸ビニル共重合体、ポリエチレン及びポリプロピレンのようなポリオレフィン、スチレン-ブタジエン-スチレン共重合体の水添物、スチレン-イソプレン-スチレン共重合体またはその水添物等の熱可塑性エラストマー、及び、熱可塑性エラストマーとポリオレフィン、エチレン-エチルアクリレート等の軟化剤との混合物等が好適な材料として挙げられる。好ましくは、軟質塩化ビニル、ポリウレタン、エチレン-酢酸ビニル共重合体、ポリオレフィン、及び、これらを主成分とする熱可塑性エラストマーであり、更に好ましくは軟質塩化ビニル、ポリオレフィンである。
 上記容器の形状は、処理液体(白血球含有液)の入口と処理済み(白血球が除去された)液体の出口とを有する形状であれば特に限定されないが、フィルター要素の形状に応じた形状であることが好ましい。
 例えば、フィルター要素が平板状の場合には、その形状に合わせて四角形、六角形などの多角形や、円形、楕円形などの扁平形状とすることができる。より詳細には、図1又は2に示すように、容器1は液体出入口としての第1出入口3を有する入口側容器材と、液体出入口としての第2出入口4を有する出口側容器材から構成され、両者がフィルター要素5を直接あるいは支持体を介して挟み込むことによりフィルター内部を二室に分け、扁平状の血液処理フィルター10を形成するような構成のものが挙げられる。
 また、別の例として、フィルター要素が円筒状の場合には、容器も同様に円筒状であることが好ましい。より詳細には、容器は、フィルター要素を収容する筒状胴部と液体入口を有する入口側ヘッダーおよび液体出口を有する出口側ヘッダーから構成され、ポッティング加工により、容器内部が入口から導入された液体が円筒状フィルターの外周部から内周部(または内周部から外周部)に流れるように二室に分け、円筒状の血液処理フィルターを形成するような形状であれば好ましい。
 さらに、例えば、入口と出口を形成した可撓性の合成樹脂製のシート等の軟質材料からなる部材を用い、これでフィルター要素を挟んだり、これをフィルター要素の周囲に巻いたりした後、フィルター要素周縁部でこの軟質部材とフィルター要素とを溶着して容器とすることもできる。
 上記の図1のような容器を用いる場合、フィルター内部に組み込む前のフィルター要素の厚みに対する組み込み後のフィルター要素の厚み、すなわち、入口側容器材と出口側容器材各々に設けられた把持部(凸部)の間に挟まれたフィルター要素の厚み、の比が0.5~0.55になるようにすることが好ましい。また、上記凸部とフィルター要素外周端部との距離(フィルター要素のはみ出し長さ)が3~4mmになるよう、フィルター要素をカットすることが好ましい。
 なお、このような構成においてフィルター中のフィルター要素の充填密度が0.1g/cm3未満であると、フィルター要素に含まれる不織布の熱収縮率が高い場合には、蒸気加熱処理後にフィルター要素が容器に把持される部分からずれる、あるいは抜け落ちてしまいフィルター要素を有効に用いることができないため白血球等除去性能が低下することがある。一方、フィルター要素を構成する不織布の熱収縮率が低い場合には、フィルター要素が変形しにくく伸び率が低下する傾向にあるところ、伸び率が低いとフィルター成形時に容器とフィルター要素の把持部を十分に圧縮することが困難になり、容器がフィルター要素を十分把持することができない、あるいは組み立てたフィルターから外部に血液が漏れるという不具合が生じやすくなることがある。
 また、容器の材料として軟質部材を用い、フィルター要素周縁部でこの軟質部材とフィルター要素を溶着する場合は、溶着部の内側のフィルター要素に血液が流れて濾過される。フィルター組み立て時、一般的には、軟質部材とフィルター要素を溶融させながら、軟質部材内にフィルター要素を押し込むことにより軟質部材とフィルター要素との密封性を高めているが、溶着前のフィルター要素厚みに対する溶着後の溶着部のフィルター要素厚みの比が0.15~0.20となるように作製されることが好ましい。
 なお、このような構成においてフィルター要素に含まれる不織布の熱収縮率が高い場合には、溶着部が固定されているため蒸気加熱処理(とりわけ高圧蒸気滅菌)後のフィルター要素の変形が著しく、それによりフィルター内の血液流れが不均一となり血液濾過性能が低下する。また、フィルター要素に含まれる不織布の熱収縮率が低く、フィルター要素の伸び率が低い場合には、フィルター組み立て時に軟質部材とフィルター要素の溶着部を十分に圧縮することができず、フィルターを組み立てることができない、あるいは組み立てたフィルターから外部に血液が漏れるという不具合を生じる。
 次に、本実施形態の血液処理フィルターを用いた白血球除去方法について説明する。
 本実施形態においては、容器内に収容され不織布を含むフィルター要素を有する血液処理フィルターに白血球含有液を通過させ、白血球含有液から白血球を除去する工程を含む。
 ここで、白血球含有液とは、白血球を含む体液や合成血液を総称するものであり、具体的には、全血や、濃厚赤血球溶液、洗浄赤血球浮遊液、解凍赤血球濃厚液、合成血、乏血小板血漿(PPP)、多血小板血漿(PRP)、血漿、凍結血漿、血小板濃厚液およびバフィーコート(BC)などの、全血及び全血から調製して得られる単一もしくは複数種類の血液成分からなる液体、またはそれらの液体に抗凝固剤や保存液などが添加された溶液、もしくは全血製剤、赤血球製剤、血小板製剤、血漿製剤などの血液製剤ことである。なお、全血製剤とは、全血に、Citrate Phosphate Dextrose(CPD)、Citrate Phosphate Dextrose Adenine-1(CPDA-1)、Citrate Phosphate-2-Dextrose(CP2D)、Acid Citrate Dextrose Formula-A(ACD-A)、Acid Citrate Dextrose Formula-B(ACD-B)、ヘパリンなどの保存液、抗凝固剤等の添加剤を添加した血液製剤のことである。
 また、上記の液体を本実施形態の方法によって処理して得られる液体を白血球が除去された液体と称する。
 以下、白血球除去方法により白血球を除去し各血液製剤を調製する方法の一形態について説明する。
(白血球除去全血製剤の調製)
 採血された全血にCitrate Phosphate Dextrose(CPD)、Citrate Phosphate Dextrose Adenine-1(CPDA-1)、Citrate Phosphate-2-Dextrose(CP2D)、Acid Citrate Dextrose Formula-A(ACD-A)、Acid Citrate Dextrose Formula-B(ACD-B)、ヘパリンなどの保存液、抗凝固剤等を添加した全血製剤を用意し、その後、本実施形態の血液処理フィルターを用いてこの全血製剤から白血球を除去することにより白血球除去全血製剤を得ることができる。
 白血球除去全血製剤の調製においては、保存前白血球除去の場合、好ましくは室温下または冷蔵下にて保存された全血を採血後72時間以内、更に好ましくは24時間以内、特に好ましくは12時間以内、最も好ましくは8時間以内に室温下または冷蔵下にて血液処理フィルターを用いて白血球除去を行うことにより白血球除去全血製剤を得ることができる。保存後白血球除去の場合、室温下、冷蔵下または冷凍下にて保存された全血を、好ましくは使用前24時間以内に血液処理フィルターを用いて白血球を除去することにより白血球除去全血製剤を得ることができる。
(白血球除去赤血球製剤の調製)
 採血された全血にCPD、CPDA-1、CP2D、ACD-A、ACD-B、ヘパリンなどの保存液、抗凝固剤を添加する。各血液成分の分離方法は、全血から白血球を除去した後に遠心分離を行う場合と、全血を遠心分離した後に赤血球もしくは赤血球とBCから白血球を除去する場合がある。
 全血から白血球を除去した後に遠心分離を行う場合、白血球除去全血を遠心分離することにより白血球除去赤血球製剤を得ることができる。
 白血球除去前に全血を遠心分離する場合、遠心条件は、赤血球、PRPに分離される弱遠心条件と、赤血球、BC、PPPに分離される強遠心条件の2種類がある。必要に応じて全血から分離された赤血球、もしくはBCを含んだ赤血球に、SAGM、AS-1、AS-3、AS-5、MAPなどの保存液を添加後、白血球除去フィルターを用いて赤血球から白血球を除去することにより白血球除去赤血球製剤を得ることができる。
 白血球除去赤血球製剤調製においては、好ましくは室温下または冷蔵下にて保存された全血を採血後72時間以内、更に好ましくは48時間以内、特に好ましくは24時間以内、最も好ましくは12時間以内に遠心分離を行うことができる。
 保存前白血球除去の場合、好ましくは室温下または冷蔵下にて保存された赤血球製剤から採血後120時間以内、更に好ましくは72時間以内、特に好ましくは24時間以内、最も好ましくは12時間以内に室温下または冷蔵下にて血液処理フィルターを用いて白血球を除去することにより白血球除去赤血球製剤を得ることができる。保存後白血球除去の場合、好ましくは室温下、冷蔵下または冷凍下にて保存された赤血球製剤から使用前24時間以内に血液処理フィルターを用いて白血球を除去することにより白血球除去赤血球製剤を得ることができる。
(白血球除去血小板製剤の調製)
 採血された全血にCPD、CPDA-1、CP2D、ACD-A、ACD-B、ヘパリンなどの保存液、抗凝固剤を添加する。
 各血液成分の分離方法は、全血から白血球を除去した後に遠心分離を行う場合と、全血を遠心分離した後にPRPもしくは血小板から白血球を除去する場合がある。
 全血から白血球を除去した後に遠心分離を行う場合、白血球除去全血を遠心分離することにより白血球除去血小板製剤を得ることができる。
 白血球除去前に全血を遠心分離する場合、遠心条件は、赤血球、PRPに分離される弱遠心条件と、赤血球、BC、PPPに分離される強遠心条件の2種類がある。弱遠心条件の場合、全血から分離されたPRPから血液処理フィルターにて白血球を除去した後に遠心分離により白血球除去血小板製剤を得るか、もしくはPRPを遠心分離して血小板とPPPを得た後、血液処理フィルターにて白血球を除去し白血球除去血小板製剤を得ることができる。強遠心条件の場合、全血から分離されたBCを一単位もしくは数~十数単位プールしたものに必要に応じて保存液、血漿などを添加して遠心分離を行うことにより血小板を得て、得られた血小板を血液処理フィルターにて白血球を除去することにより白血球除去血小板製剤とすることができる。
 白血球除去血小板製剤調製において、好ましくは室温下にて保存された全血を採血後24時間以内、更に好ましくは12時間以内、特に好ましくは8時間以内に遠心分離を行う。保存前白血球除去の場合、好ましくは室温下にて保存された血小板製剤を採血後120時間以内、更に好ましくは72時間以内、特に好ましくは24時間以内、最も好ましくは12時間以内に室温下にて血液処理フィルターを用いて白血球を除去することにより白血球除去血小板製剤を得ることができる。保存後白血球除去の場合、好ましくは室温下、冷蔵下または冷凍下にて保存された血小板製剤から使用前24時間以内に血液処理フィルターを用いて白血球を除去することにより白血球除去血小板製剤を得ることができる。
(白血球除去血漿製剤の調製)
 採血された全血にCPD、CPDA-1、CP2D、ACD-A、ACD-B、ヘパリンなどの保存液、抗凝固剤を添加する。
 各血液成分の分離方法は、全血から白血球を除去した後に遠心分離を行う場合と、全血を遠心分離した後にPPPもしくはPRPから白血球を除去する場合がある。
 全血を白血球除去した後に遠心分離を行う場合、白血球除去全血を遠心分離することにより白血球除去血漿製剤を得ることができる。
 白血球除去前に全血を遠心分離する場合、遠心条件は、赤血球、PRPに分離される弱遠心条件と、赤血球、BC、PPPに分離される強遠心条件の2種類がある。弱遠心条件の場合、PRPを血液処理フィルターにて白血球を除去した後に遠心分離により白血球除去血漿製剤を得るか、またはPRPからPPPと血小板に遠心分離した後に血液処理フィルターにて白血球を除去することにより白血球除去血漿製剤を得ることができる。強遠心条件の場合、PPPを血液処理フィルターにて白血球を除去することにより白血球除去血漿製剤を得ることができる。
 白血球除去血漿製剤調製においては、好ましくは室温下または冷蔵下にて保存された全血を採血後72時間以内、更に好ましくは48時間以内、特に好ましくは24時間以内、最も好ましくは12時間以内に遠心分離を行うことができる。好ましくは室温下または冷蔵下にて保存された血漿製剤から採血後120時間以内、更に好ましくは72時間以内、特に好ましくは24時間以内、最も好ましくは12時間以内に室温下または冷蔵下にて血液処理フィルターを用いて白血球を除去することにより白血球除去血漿製剤を得ることができる。保存後白血球除去の場合、好ましくは室温下または冷蔵下または冷凍下にて保存された血漿製剤から使用前24時間以内に血液処理フィルターを用いて白血球を除去することにより白血球除去血漿製剤を得ることができる。
 採血から白血球除去血液製剤を調製するまでの形態として、全血用容器に接続された採血針にて採血し、全血または遠心分離後の血液成分が入った容器と血液処理フィルターを接続して白血球除去を行う、もしくは少なくとも採血針と血液容器、血液処理フィルターが無菌的に接続された回路にて採血し、遠心分離前または遠心分離後に白血球除去を行う、もしくは自動採血装置により得られた血液成分の入った容器に血液処理フィルターを接続もしくはあらかじめ接続された血液処理フィルターにより白血球除去を行う、などいずれの形態で行われてもよいが、本実施形態はこれらの形態に限定されるものではない。また、自動成分採血装置にて全血を各成分に遠心分離し、必要に応じて保存液を添加した後、すぐに血液処理フィルターへ赤血球、BCを含んだ赤血球、BC、血小板、PRP、PPPのいずれかを通し、白血球を除去することにより白血球除去赤血球製剤もしくは白血球除去血小板製剤もしくは白血球除去血漿製剤を得てもよい。
 本実施形態は、上記いずれの血液に対しても白血球除去能がより高く、かつ目詰まりを起こさず処理時間を短縮する効果を有するが、特に血液の処理時間が延長しやすい赤血球含有溶液の処理において好適である。
 これらの血液製剤の調製においては、白血球除去は、血液処理フィルターよりも高い位置に設置された白血球含有液の入った容器から、落差によって白血球含有血液がチューブを経由して血液処理フィルターに流れることによって行われてもよいし、また、ポンプなどの手段を用いて白血球含有血液を血液処理フィルターの入口側から加圧および/または血液処理フィルターの出口側から減圧して流すことによって行ってもよい。
 以下に体外循環療法における血液処理フィルターを用いた白血球除去方法について記載する。
 生理食塩水などで血液処理フィルター内をプライミングした後に、ヘパリン、メシル酸ナファモスタット、ACD-A、ACD-Bなどの抗凝固剤を含む溶液で置換する。体外へ導かれた血液へ抗凝固剤を加えながら、人に接続された回路から血液処理フィルターの入口へ血液を流量10~200mL/minで流し込み、血液処理フィルターにて白血球を除去することができる。
 白血球除去開始期(処理量0~0.5L)は10~50mL/minの流量が好ましく、20~40mL/minが更に好ましい。白血球除去開始期以降(処理量0.2~12L)は流量30~120mL/minで処理を行うのが好ましく、流量40~100mL/minが更に好ましく、流量40~60mL/minが特に好ましい。白血球除去後、生理食塩水などで血液処理フィルター内を置換して返血すると、血液処理フィルター内の血液が無駄にならないため好ましい。
 本実施形態において、血液処理フィルターは血液(製剤)を濾過したときに、血液(製剤)中の白血球数を99%以上除去できることが好ましく、99.9%以上除去できることがより好ましく、99.99%以上除去できることが更に好ましい。
 これを白血球残存率で言い換える場合には下式に従い算出される値で、1.0×10-2以下の除去性能を示すことが好ましく、1.0×10-3以下の除去性能を示すことがより好ましく、1.0×10-4以下の除去性能を示すことが更に好ましい。
 白血球残存率
 ={[白血球濃度(個/μL)(濾過後血液)]
 ÷[白血球濃度(個/μL)(濾過前血液)]}
 以下、本発明を実施例に基づいて説明するが、本発明はこれらに限定されるものではない。
 なお、実施例、比較例における物性等は以下の方法によって測定した。
(不織布の熱収縮率)
 不織布の熱収縮率は、不織布原反から30cm×30cmの正方形に切出したものを3枚準備し、X、Y方向を決めて、それぞれの方向の中央部の長さを測定した。その後140℃で1分間乾熱処理した後に再度中央部の長さを測定し、以下の式により求めた値を算出し、X方向とY方向における収縮率の平均値を熱収縮率とした。
 熱収縮率
 =((乾熱処理前の長さ-乾熱処理後の長さ)/乾熱処理前の長さ)×100(%)    
(不織布の比表面積)
 不織布の比表面積(m2/g)は、(株)島津製作所「アキュソーブ2100」を用いて、気体吸着法(BET法)によって求めた。
 具体的には、0.50g~0.55gの範囲で秤量した不織布を試料管に充填し、上記アキュソーブ本体で1×10-4mmHgの減圧度(室温下)にて20時間脱気処理した後、吸着ガスとして吸着占有面積の判っているクリプトンガスを用い、液体窒素の温度下で不織布の表面に吸着させ、その吸着量から秤量した不織布中の全表面積を求め、秤量した不織布質量で割ることで求めた。
(平均繊維直径の測定)
 不織布の電子顕微鏡写真を、不織布につき無作為に5カ所撮影し、格子が描かれた透明シートを上記で撮影した写真に重ね、直径が既知のポリスチレンラテックスを対照として、格子の交点と重なった、100箇所の繊維の直径を測定し、その平均を算出して平均繊維径とした。
(不織布の伸び率)
 フィルター容器に充填する不織布(蒸気加熱処理前)(ただし、実施例21~26、31~36、及び、比較例22~27については、不織布B)の伸び率の測定は、不織布を幅5cm、長さ30cmに切断した試料を3つ準備し、これについて測定した。
 具体的には、試料をオートグラフ万能試験機(型式AG-1、島津製作所製)に装着し、チャック間距離を20cmに設定し、長さ方向に徐々に不織布を引張り、2Nの力(0.26N/cm)で引っ張ったあとのチャック間距離を測定し、平均値を求め、以下の式より伸び率(%)を求めた。
 伸び率=((引張後チャック間距離平均値-20)/20)×100(%)
 なお、不織布は、一般に、横方向(不織布原反の巻取り方向(不織布の縦方向)に垂直な方向)において伸び率が最大となる。したがって、不織布の伸び率を測定する際においては、不織布の横方向を伸び率が最大となる方向として測定を行った。
(白血球除去性能評価)
 評価に用いる血液として、採血直後の血液500mLに対して抗凝固剤であるCPD溶液を70mL加えて混和し2時間静置した全血を用いた。以後、この評価用に調製された血液を濾過前血という。
 濾過前血が充填された血液バッグとフィルターの入口を内径3mm、外径4.2mmの塩化ビニル製のチューブ40cmで接続した。さらに、フィルターの出口と回収用血液バッグとを同じく内径3mm、外径4.2mmの塩化ビニル製チューブ60cmで接続した。その後、濾過前血を充填した血液バッグの下部から落差100cmにて濾過前血をフィルター内に流し、回収バッグに流入する血液量が0.5g/分になるまで濾過時間を計測した。
 さらに回収バッグから血液(以後、濾過後血という)3mLを回収した。白血球除去能は、白血球残存率を求めることにより評価した。白血球残存率は、フローサイトメトリー法(装置:BECTON DICKINSON社製 FACSCanto)を用いて濾過前血及び濾過後血の白血球数を測定し、次の式に従い計算した。
 白血球残存率
 =[白血球濃度(個/μL)(濾過後血)]÷[白血球濃度(個/μL)(濾過前血)]
 白血球数の測定は、各血液100μLをサンプリングし、ビーズ入りLeucocountキット(日本ベクトン・ディッキンソン社)を用い、フローサイトメトリー法(装置:BECTON DICKINSON社製 FACSCalibur)により測定した。   
 実施例1~18のフィルター形状(不織布64枚、有効濾過面積45cm2)の条件にて実施した場合に、濾過時間30分以下、かつ白血球の残存率10.0×10-3以下が達成できれば、実用上望ましい白血球除去フィルター要素といえる。すなわち、白血球残存率が10-4以下となると残存白血球数が測定限界近くになることから、ここでは、白血球残存率が10-4以上になるよう、フィルター形状の条件を上記のように設定したが、この条件で濾過時間30分以下、白血球の残存率10.0×10-3以下であるような性能を有するフィルター要素であれば、実際の使用に適したフィルター設計をすれば、重篤な副作用を防止するために必要な白血球残存率である10-4~10-6以下を実現できるフィルターを製造することができる。
<フィルター要素を同一種類の複数枚の不織布で構成する場合の例>
[実施例1]
(不織布の調製)
 不織布として、ポリエチレンテレフタレート(以下PETと略す)をメルトブロー法で紡糸して繊維集合体を形成し、得られた繊維集合体を140℃で120秒間乾熱処理する方法により作製した、目付22g/m2、厚さ0.13mm、充填率0.12、平均繊維直径1.0μm、蒸気加熱処理前における未結晶化熱量が0.1J/g、結晶融解熱量が45J/gの不織布を使用した。不織布の結晶化度は、島津製作所製TA-60WSシステムを用いてDSC法により測定した。X線結晶化度は、57%であった。
 更に、不織布に対して下記の方法で親水性ポリマーによるコーティングを行った。
 2-ヒドロキシエチル メタアクリレート(以下HEMAと略称する)とジエチルアミノエチル メタアクリレート(以下DEAMAと略称する)のコポリマーを通常の溶液ラジカル重合によって合成した。エタノール中のモノマー濃度1モル/Lで、開始剤としてアゾイソブチロニトリル(AIBN)1/200モルの存在下、60℃で8時間、重合反応を行なった。生成した親水性ポリマーのエタノール溶液に不織布を浸した。ポリマー溶液から取り出された不織布を押ししぼって、吸収された余分なポリマー溶液を除去し、乾燥空気を送りながらポリマー溶液を乾燥させて、不織布の表面を覆うコート層を形成させた。不織布をポリマーコート層で被覆したものの表面部分(コート層の表面部分)における非イオン性親水基の塩基性含窒素官能基に対するモル比は32.3であり、その1g中のコート層の質量は9.0mg/g(不織布+コート層)であり、そのCWST値は100dyn/cmであった。
(血液処理用フィルターの作製)
 得られたコート層を設けた不織布64枚をフィルター要素として、有効濾過面積45cm2の硬質性容器に充填し、超音波溶着してフィルターを作製した。
 このフィルターを、115℃で240分間蒸気加熱処理した後、40℃で15時間以上真空乾燥させて、蒸気加熱処理後フィルターを作成した。
 結果、白血球残存率は0.7×10-3、濾過時間は20分となり、低い血液処理圧と高い白血球除去能を示した。
[実施例2]
 PET繊維からなり、目付22g/m2、厚さ0.13mm、充填率0.12、平均繊維直径1.0μm、未結晶化熱量が0.1J/g、結晶融解熱量は55J/g、の不織布を使用した。X線結晶化度は、69%であった。
 不織布は、実施例1と同様に、紡糸後の繊維集合体に乾熱処理を施す方法により準備し、実施例1と同様のポリマーコート処理を行った。ポリマーコート処理後のCWST値は100dyn/cmであった。
 ポリマーコート処理後の不織布を用いて実施例1と同様の方法にてフィルターを作製し、血液試験を行った。
 結果、白血球残存率は0.3×10-3、濾過時間は18分となり、低い血液処理圧と高い白血球除去能が示された。
[実施例3]
 PET繊維からなり、目付22g/m2、厚さ0.13mm、充填率0.12、平均繊維直径1.0μm、未結晶化熱量が4.7J/g、結晶融解熱量は47J/gの不織布を使用した。X線結晶化度は、58%であった。
 不織布は、実施例1と同様に、紡糸後の繊維集合体に乾熱処理を施す方法により準備し、実施例1と同様のポリマーコート処理を行った。ポリマーコート処理後のCWST値は100dyn/cmであった。
 ポリマーコート処理後の不織布を用いて実施例1と同様の方法にてフィルターを作製し、血液試験を行った。
 結果、白血球残存率は5.3×10-3、濾過時間は19分となり、低い血液処理圧と高い白血球除去能が示された。
[実施例4]
 PET繊維からなり、目付22g/m2、厚さ0.13mm、充填率0.12、平均繊維直径1.0μm、未結晶化熱量が4.8J/g、結晶融解熱量は53J/gの不織布を使用した。X線結晶化度は、68%であった。
 不織布は、実施例1と同様に、紡糸後の繊維集合体に乾熱処理を施す方法により準備し、実施例1と同様のポリマーコート処理を行った。ポリマーコート処理後のCWST値は100dyn/cmであった。
 ポリマーコート処理後の不織布を用いて実施例1と同様の方法にてフィルターを作製し、血液試験を行った。
 結果、白血球残存率は4.3×10-3、濾過時間は17分となり、低い血液処理圧と高い白血球除去能が示された。
[実施例5]
 PET繊維からなり、目付22g/m2、厚さ0.13mm、充填率0.12、平均繊維直径1.0μm、未結晶化熱量が0.1J/g、結晶融解熱量は45J/gの不織布を使用した。X線結晶化度は、57%であった。
 不織布は、実施例1と同様に、紡糸後の繊維集合体に乾熱処理を施す方法により準備し、ポリマーコート処理は行わなかった。
 この不織布を用いて実施例1と同様の方法にてフィルターを作製し、血液試験を行った。
 結果、白血球残存率は3.3×10-3、濾過時間は23分となり、低い血液処理圧と高い白血球除去能が示された。
[実施例6]
 PET繊維からなり、目付22g/m2、厚さ0.13mm、充填率0.12、平均繊維直径1.0μm、未結晶化熱量が0.1J/g、結晶融解熱量は55J/gの不織布を使用した。X線結晶化度は、69%であった。
 不織布は、実施例1と同様に、紡糸後の繊維集合体に乾熱処理を施す方法により準備し、ポリマーコート処理は行わなかった。
 この不織布を用いて実施例1と同様の方法にてフィルターを作製し、血液試験を行った。
 結果、白血球残存率は2.8×10-3、濾過時間は21分となり、低い血液処理圧と高い白血球除去能が示された。
[実施例7]
 PET繊維からなり、目付22g/m2、厚さ0.13mm、充填率0.12、平均繊維直径1.0μm、未結晶化熱量が4.7J/g、結晶融解熱量は47J/gの不織布を使用した。X線結晶化度は、58%であった。
 不織布は、実施例1と同様に、紡糸後の繊維集合体に乾熱処理を施す方法により準備し、ポリマーコート処理は行わなかった。
 この不織布を用いて実施例1と同様の方法にてフィルターを作製し、血液試験を行った。
 結果、白血球残存率は8.3×10-3、濾過時間は22分となり、低い血液処理圧と高い白血球除去能が示された。
[実施例8]
 PET繊維からなり、目付22g/m2、厚さ0.13mm、充填率0.12、平均繊維直径1.0μm、未結晶化熱量が4.8J/g、結晶融解熱量は53J/gの不織布を使用した。X線結晶化度は、68%であった。
 不織布は、実施例1と同様に、紡糸後の繊維集合体に乾熱処理を施す方法により準備し、ポリマーコート処理は行わなかった。
 この不織布を用いて実施例1と同様の方法にてフィルターを作製し、血液試験を行った。
 結果、白血球残存率は7.3×10-3、濾過時間は18分となり、低い血液処理圧と高い白血球除去能が示された。
[実施例9]
 ポリブチレンテレフタレート(以下PBTと略す)繊維からなり、目付22g/m2、厚さ0.13mm、充填率0.12、平均繊維直径1.0μm、未結晶化熱量が0.1J/g、結晶融解熱量は45J/gの不織布を使用した。X線結晶化度は、58%であった。
 不織布は、実施例1と同様に、紡糸後の繊維集合体に乾熱処理を施す方法により準備し、実施例1と同様のポリマーコート処理を行った。ポリマーコート処理後のCWST値は98dyn/cmであった。
 ポリマーコート処理後の不織布を用いて実施例1と同様の方法にてフィルターを作製し、血液試験を行った。
 結果、白血球残存率は0.5×10-3、濾過時間は20分となり、低い血液処理圧と高い白血球除去能が示された。
[実施例10]
 PBT繊維からなり、目付22g/m2、厚さ0.13mm、充填率0.12、平均繊維直径1.0μm、未結晶化熱量が0.1J/g、結晶融解熱量は55J/gの不織布を使用した。X線結晶化度は、70%であった。
 不織布は、実施例1と同様に、紡糸後の繊維集合体に乾熱処理を施す方法により準備し、実施例1と同様のポリマーコート処理を行った。ポリマーコート処理後のCWST値は98dyn/cmであった。
 ポリマーコート処理後の不織布を用いて実施例1と同様の方法にてフィルターを作製し、血液試験を行った。
 結果、白血球残存率は0.2×10-3、濾過時間は18分となり、低い血液処理圧と高い白血球除去能が示された。
[実施例11]
 PBT繊維からなり、目付22g/m2、厚さ0.13mm、充填率0.12、平均繊維直径1.0μm、未結晶化熱量が4.7J/g、結晶融解熱量は47J/gの不織布を使用した。X線結晶化度は、59%であった。
 不織布は、実施例1と同様に、紡糸後の繊維集合体に乾熱処理を施す方法により準備し、実施例1と同様のポリマーコート処理を行った。ポリマーコート処理後のCWST値は98dyn/cmであった。
 ポリマーコート処理後の不織布を用いて実施例1と同様の方法にてフィルターを作製し、血液試験を行った。
 結果、白血球残存率は4.3×10-3、濾過時間は19分となり、低い血液処理圧と高い白血球除去能が示された。
[実施例12]
 PBT繊維からなり、目付22g/m2、厚さ0.13mm、充填率0.12、平均繊維直径1.0μm、未結晶化熱量が4.8J/g、結晶融解熱量は53J/gの不織布を使用した。X線結晶化度は、69%であった。
 不織布は、実施例1と同様に、紡糸後の繊維集合体に乾熱処理を施す方法により準備し、実施例1と同様のポリマーコート処理を行った。ポリマーコート処理後のCWST値は98dyn/cmであった。
 ポリマーコート処理後の不織布を用いて実施例1と同様の方法にてフィルターを作製し、血液試験を行った。
 結果、白血球残存率は3.7×10-3、濾過時間は17分となり、低い血液処理圧と高い白血球除去能が示された。
[実施例13]
 PBT繊維からなり、目付22g/m2、厚さ0.13mm、充填率0.12、平均繊維直径1.0μm、未結晶化熱量が0.1J/g、結晶融解熱量は55J/gの不織布を使用した。X線結晶化度は、58%であった。
 不織布は、実施例1と同様に、紡糸後の繊維集合体に乾熱処理を施す方法により準備し、ポリマーコート処理は行わなかった。
 この不織布を用いて実施例1と同様の方法にてフィルターを作製し、血液試験を行った。
 結果、白血球残存率は2.5×10-3、濾過時間は29分となり、低い血液処理圧と高い白血球除去能が示された。
[実施例14]
 PBT繊維からなり、目付22g/m2、厚さ0.13mm、充填率0.12、平均繊維直径1.0μm、未結晶化熱量が0.1J/g、結晶融解熱量は55J/gの不織布を使用した。X線結晶化度は、70%であった。
 不織布は、実施例1と同様に、紡糸後の繊維集合体に乾熱処理を施す方法により準備し、ポリマーコート処理は行わなかった。
 この不織布を用いて実施例1と同様の方法にてフィルターを作製し、血液試験を行った。
 結果、白血球残存率は2.1×10-3、濾過時間は28分となり、低い血液処理圧と高い白血球除去能が示された。
[実施例15]
 PBT繊維からなり、目付22g/m2、厚さ0.13mm、充填率0.12、平均繊維直径1.0μm、未結晶化熱量が4.7J/g、結晶融解熱量は47J/gの不織布を使用した。X線結晶化度は、59%であった。
 不織布は、実施例1と同様に、紡糸後の繊維集合体に乾熱処理を施す方法により準備し、ポリマーコート処理は行わなかった。
 この不織布を用いて実施例1と同様の方法にてフィルターを作製し、血液試験を行った。
 結果、白血球残存率は7.3×10-3、濾過時間は28分となり、低い血液処理圧と高い白血球除去能が示された。
[実施例16]
 PBT繊維からなり、目付22g/m2、厚さ0.13mm、充填率0.12、平均繊維直径1.0μm、未結晶化熱量が4.8J/g、結晶融解熱量は53J/gの不織布を使用した。X線結晶化度は、69%であった。
 不織布は、実施例1と同様に、紡糸後の繊維集合体に乾熱処理を施す方法により準備し、ポリマーコート処理は行わなかった。
 この不織布を用いて実施例1と同様の方法にてフィルターを作製し、血液試験を行った。
 結果、白血球残存率は6.7×10-3、濾過時間は28分となり、低い血液処理圧と高い白血球除去能が示された。
[実施例17]
 PET繊維からなり、目付22g/m2、厚さ0.13mm、充填率0.12、平均繊維直径1.1μm、未結晶化熱量が0.1J/g、結晶融解熱量は43J/gの不織布を使用した。X線結晶化度は、54%であった。
 不織布は、実施例1と同様に、紡糸後の繊維集合体に乾熱処理を施す方法により準備し、実施例1と同様のポリマーコート処理を行った。ポリマーコート処理後のCWST値は100dyn/cmであった。
 この不織布を用いて実施例1と同様の方法にてフィルターを作製し、血液試験を行った。
 なお、フィルター作製時において、超音波溶着が困難であり、組立性が悪かった。不織布の熱収縮率と伸び率が低かったことが原因と考えられる。
 結果、白血球残存率は0.2×10-3、濾過時間は17分となり、低い血液処理圧と高い白血球除去能が示された。
[実施例18]
 PET繊維からなり、目付22g/m2、厚さ0.13mm、充填率0.12、平均繊維直径1.15μm、未結晶化熱量が0.1J/g、結晶融解熱量は55J/gの不織布を使用した。X線結晶化度は、71%であった。
 不織布は、実施例1と同様に、紡糸後の繊維集合体に乾熱処理を施す方法により準備し、ポリマーコート処理は行わなかった。
 この不織布を用いて実施例1と同様の方法にてフィルターを作製し、血液試験を行った。
 結果、白血球残存率は3.0×10-3、濾過時間は22分となり、低い血液処理圧と高い白血球除去能が示された。
[比較例1]
 PET繊維からなり、目付22g/m2、厚さ0.13mm、充填率0.12、平均繊維直径1.0μm、未結晶化熱量が5.3J/g、結晶融解熱量は45J/gの不織布を使用した。X線結晶化度は、51%であった。
 不織布は、実施例1と同様に、紡糸後の繊維集合体に乾熱処理を施す方法により準備し、実施例1と同様のポリマーコート処理を行った。ポリマーコート処理後のCWST値は100dyn/cmであった。
 ポリマーコート処理後の不織布を用いて実施例1と同様の方法にてフィルターを作製し、血液試験を行った。
 結果、白血球残存率は12.5×10-3、濾過時間は20分となり、濾過時間は短いものの、白血球除去能が低く、このフィルター材は実用上適さないことが分かった。
[比較例2]
 PET繊維からなり、目付22g/m2、厚さ0.13mm、充填率0.12、平均繊維直径1.0μm、未結晶化熱量が5.4J/g、結晶融解熱量は55J/gの不織布を使用した。X線結晶化度は、62%であった。
 不織布は、実施例1と同様に、紡糸後の繊維集合体に乾熱処理を施す方法により準備し、実施例1と同様のポリマーコート処理を行った。ポリマーコート処理後のCWST値は100dyn/cmであった。
 ポリマーコート処理後の不織布を白血球除去フィルター材として用い実施例1と同様の方法にてフィルターを作製し、血液試験を行った。
 結果、白血球残存率は10.8×10-3、濾過時間は21分となり、濾過時間は短いものの、白血球除去能が低く、このフィルター材は実用上適さないことが分かった。
[比較例3]
 PET繊維からなり、目付22g/m2、厚さ0.13mm、充填率0.12、平均繊維直径1.0μm、未結晶化熱量が5.3J/g、結晶融解熱量は45J/gの不織布を使用した。X線結晶化度は、51%であった。
 不織布は、実施例1と同様に、紡糸後の繊維集合体に乾熱処理を施す方法により準備し、ポリマーコート処理は行わなかった。
 この不織布を用いて実施例1と同様の方法にてフィルターを作製し、血液試験を行った。
 結果、白血球残存率は16.5×10-3、濾過時間は29分となり、濾過時間は短いものの、白血球除去能が低く、このフィルター材は実用上適さないことが分かった。
[比較例4]
 PET繊維からなり、目付22g/m2、厚さ0.13mm、充填率0.12、平均繊維直径1.0μm、未結晶化熱量が5.4J/g、結晶融解熱量は55J/gの不織布を使用した。X線結晶化度は、62%であった。
 不織布は、実施例1と同様に、紡糸後の繊維集合体に乾熱処理を施す方法により準備し、ポリマーコート処理は行わなかった。
 この不織布を用いて実施例1と同様の方法にてフィルターを作製し、血液試験を行った。
 結果、白血球残存率は15.4×10-3、濾過時間は30分となり、濾過時間は許容内であるものの、白血球除去能が低く、このフィルター材は実用上適さないことが分かった。
[比較例5]
 PBT繊維からなり、目付22g/m2、厚さ0.13mm、充填率0.12、平均繊維直径1.0μm、未結晶化熱量が5.3J/g、結晶融解熱量は45J/gの不織布を使用した。X線結晶化度は、52%であった。
 不織布は、実施例1と同様に、紡糸後の繊維集合体に乾熱処理を施す方法により準備し、実施例1と同様のポリマーコート処理を行った。ポリマーコート処理後のCWST値は98dyn/cmであった。
 ポリマーコート処理後の不織布を用いて実施例1と同様の方法にてフィルターを作製し、血液試験を行った。
 結果、白血球残存率は11.5×10-3、濾過時間は20分となり、濾過時間は短いものの、白血球除去能が低く、このフィルター材は実用上適さないことが分かった。
[比較例6]
 PBT繊維からなり、目付22g/m2、厚さ0.13mm、充填率0.12、平均繊維直径1.0μm、未結晶化熱量が5.4J/g、結晶融解熱量は55J/gの不織布を使用した。X線結晶化度は、63%であった。
 不織布は、実施例1と同様に、紡糸後の繊維集合体に乾熱処理を施す方法により準備し、実施例1と同様のポリマーコート処理を行った。ポリマーコート処理後のCWST値は98dyn/cmであった。
 ポリマーコート処理後の不織布を白血球除去フィルター材として用いて実施例1と同様の方法にてフィルターを作製し、血液試験を行った。
 結果、白血球残存率は10.1×10-3、濾過時間は21分となり、濾過時間は短いものの、白血球除去能が低く、このフィルター材は実用上適さないことが分かった。
[比較例7]
 PBT繊維からなり、目付22g/m2、厚さ0.13mm、充填率0.12、平均繊維直径1.0μm、未結晶化熱量が5.3J/g、結晶融解熱量は45J/gの不織布を使用した。X線結晶化度は、52%であった。
 不織布は、実施例1と同様に、紡糸後の繊維集合体に乾熱処理を施す方法により準備し、ポリマーコート処理は行わなかった。
 この不織布を用いて実施例1と同様の方法にてフィルターを作製し、血液試験を行った。
 結果、白血球残存率は14.5×10-3、濾過時間は40分となり、白血球除去能が低い上に濾過時間が長く、このフィルター材は実用上適さないことが分かった。
[比較例8]
 PBT繊維からなり、目付22g/m2、厚さ0.13mm、充填率0.12、平均繊維直径1.0μm、未結晶化熱量が5.4J/g、結晶融解熱量は55J/gの不織布を使用した。X線結晶化度は、63%であった。
 不織布は、実施例1と同様に、紡糸後の繊維集合体に乾熱処理を施す方法により準備し、ポリマーコート処理は行わなかった。
 この不織布を用いて実施例1と同様の方法にてフィルターを作製し、血液試験を行った。
 結果、白血球残存率は13.4×10-3、濾過時間は39分となり、白血球除去能が低い上に濾過時間が長く、このフィルター材は実用上適さないことが分かった。
 実施例1~実施例16および比較例1~比較例8の血液評価結果、並びに、フィルター要素の縦・横の伸び率、及び、不織布の比表面積について、表1~3にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~表3に示すように、実施例1~18と比較例1~8の結果から、未結晶化熱量が5J/g以下である不織布を用いて白血球除去フィルターを製造することにより、白血球除去能と短い濾過時間、即ち良好な流れ性が達成されうることが確認できた。さらに、不織布の結晶融解熱量、及びX線結晶化度を高く設定することにより、白血球除去能を更に向上させうることも確認できた。加えて、不織布にポリマーコート処理を行うことにより、更なる白血球除去能の向上と濾過時間の短縮ができることが確認され、コート層の付与が性能バランス改善に寄与することが確認された。
 また、不織布を構成する材料がPETである場合とPBTである場合で比較すると、PBT不織布ではコート処理無しの場合にはコート処理有に比べて顕著に濾過時間が長くなるのに対し、PET不織布ではコート処理有無による濾過時間への影響はPBTほど大きくは見られなかった。このことから、PET不織布は白血球除去能が十分基準を満足できる場合(実施例5、6)には、コート処理無しでのフィルター設計が可能であり、製造コスト低減に効果が得られると考えられる。
<フィルター要素を異なる種類の複数枚の不織布で構成する場合の例>
(血液処理フィルターの作製)
1.実施例21~25、31~35、比較例25~27
 不織布として、P(平均繊維直径12μmのポリエステル製不織布、目付30g/m2、比表面積0.24m2/g)、A(平均繊維直径1.8μmのポリエステル製不織布にコート処理をしたもの、目付60g/m2、比表面積1.1m2/g)、及び、B(各実施例、比較例で準備したポリエステル(PET又はPBT)製不織布にコート処理をしたもの、目付40g/m2)を使用した。
 A及びBにおけるコート処理には、2-ヒドロキシエチル(メタ)アクリレート97モル%とジメチルアミノエチル(メタ)アクリレート3モル%からなる共重合体を用いた。
 不織布P及びA、並びにBを上流からP-A-B-A-Pの順で重ねという対称構造の積層体とし、フィルター要素とした。
 このフィルター要素を、入口又は出口となるポートを有する可撓性塩化ビニル樹脂シートで挟み、高周波溶着機を用いて、フィルター要素と可撓性シートの周縁部分を溶着、一体化させ、有効濾過面積43cm2の血液処理フィルターを作製した。
 なお、いずれの血液処理フィルターについても、115℃、60分間高圧蒸気滅菌処理(蒸気加熱処理)を実施した後、40℃で15時間以上真空乾燥させて、高圧蒸気滅菌処理後フィルターとした。
2.実施例26,36、比較例22~24
 不織布として、P(平均繊維直径12μmのポリエステル製不織布、目付30g/m2、比表面積0.24m2/g)、A(平均繊維直径1.8μmのポリエステル製不織布にコート処理をしたもの、目付60g/m2、比表面積1.1m2/g)、及び、B(各実施例、比較例で用意したポリエステル(PET又はPBT)製不織布にコート処理をしたもの、目付40g/m2)を使用した。
 A及びBにおけるコート処理には2-ヒドロキシエチル(メタ)アクリレート97モル%とジメチルアミノエチル(メタ)アクリレート3モル%からなる共重合体を用いた。
 P及びA、並びにBを上流から順番にP-A-Bの順に重ねた積層体とし、フィルター要素とした。
 このフィルター要素を、血液入口又は出口となるポートを有するポリカーボネート製容器に、フィルター要素周縁部が硬質容器の内側に設けられた連続する凸状部分により把持された状態に充填し、超音波溶着機を用いてフィルター要素と容器の周縁部分を溶着、一体化させ、有効濾過面積43cm2の血液処理フィルターを作製した。
 なお、いずれのフィルターについても、115℃、60分間高圧蒸気滅菌(蒸気加熱処理)を実施した。
〔実施例21〕
 不織布Bとして、PET繊維からなり、熱収縮率が5%、平均繊維直径が1.1μm、比表面積が1.366m2/g、縦伸び率が1.63%、横伸び率が2.24%のものを用いて、前述の要領で血液処理フィルターを作製し、白血球除去性能試験を行ったところ、高圧蒸気滅菌前後の白血球除去性能は各々表4に示すとおりであり、滅菌による性能低下は見られなかった。
〔実施例22〕
 不織布Bとして、PET繊維からなり、熱収縮率が10%、平均繊維直径が1.1μm、比表面積が1.357m2/g、縦伸び率が1.64%、横伸び率が2.05%のものを用いて、前述の要領で血液処理フィルターを作製し、白血球除去性能試験を行ったところ、高圧蒸気滅菌前後の白血球除去性能は各々表4に示すとおりであり滅菌による性能低下は見られなかった。
〔実施例23〕
 不織布Bとして、PET繊維からなり、熱収縮率が15%、平均繊維直径が1.1μm、比表面積が1.352m2/g、縦伸び率が1.66%、横伸び率が1.87%のものを用いて、前述の要領で血液処理フィルターを作製し、白血球除去性能試験を行ったところ、高圧蒸気滅菌前後の白血球除去性能は各々表4に示すとおりであり滅菌による性能低下は見られなかった。
〔実施例24〕
 不織布Bとして、PET繊維からなり、熱収縮率が21%、平均繊維直径が1.2μm、比表面積が1.289m2/g、縦伸び率が1.71%、横伸び率が1.91%のものを用いて、前述の要領で血液処理フィルターを作製し、白血球除去性能試験を行ったところ、高圧蒸気滅菌前後の白血球除去性能は各々表4に示すとおりであり滅菌による性能低下は見られなかった。
〔実施例25〕
 不織布Bとして、PET繊維からなり、熱収縮率が24%、平均繊維直径が1.2μm、比表面積が1.275m2/g、縦伸び率が1.75%、横伸び率が2.52%のものを用いて、前述の要領で血液処理フィルターを作製し、白血球除去性能試験を行ったところ、高圧蒸気滅菌前後の白血球除去性能は各々表4に示すとおりであり滅菌による性能低下は見られなかった。
〔実施例26〕
 不織布Bとして、PET繊維からなり、熱収縮率が15%、平均繊維径が1.2μm、比表面積が1.352m2/g、縦伸び率が1.66%、横伸び率が1.87%のものを用いて、前述の要領で血液処理フィルターを作製し、白血球除去性能試験を行ったところ、高圧蒸気滅菌前後の白血球除去性能は各々表4に示すとおりであり滅菌による性能低下は見られなかった。
〔実施例31〕
 不織布Bとして、PBT繊維からなり、熱収縮率が5%、平均繊維直径が1.1μm、比表面積が1.360m2/g、縦伸び率が1.62%、横伸び率が2.17%のものを用いて、前述の要領で血液処理フィルターを作製し、白血球除去性能試験を行ったところ、高圧蒸気滅菌前後の白血球除去性能は各々表5に示すとおりであり、滅菌による性能低下は見られなかった。
〔実施例32〕
 不織布Bとして、PBT繊維からなり、熱収縮率が10%、平均繊維直径が1.1μm、比表面積が1.358m2/g、縦伸び率が1.66%、横伸び率が2.42%のものを用いて、前述の要領で血液処理フィルターを作製し、白血球除去性能試験を行ったところ、高圧蒸気滅菌前後の白血球除去性能は各々表5に示すとおりであり滅菌による性能低下は見られなかった。
〔実施例33〕
 不織布Bとして、PBT繊維からなり、熱収縮率が15%、平均繊維直径が1.1μm、比表面積が1.351m2/g、縦伸び率が1.69%、横伸び率が1.88%のものを用いて、前述の要領で血液処理フィルターを作製し、白血球除去性能試験を行ったところ、高圧蒸気滅菌前後の白血球除去性能は各々表5に示すとおりであり滅菌による性能低下は見られなかった。
〔実施例34〕
 不織布Bとして、PBT繊維からなり、熱収縮率が21%、平均繊維直径が1.2μm、比表面積が1.287m2/g、縦伸び率が1.73%、横伸び率が2.25%のものを用いて、前述の要領で血液処理フィルターを作製し、白血球除去性能試験を行ったところ、高圧蒸気滅菌前後の白血球除去性能は各々表5に示すとおりであり滅菌による性能低下は見られなかった。
〔実施例35〕
 不織布Bとして、PBT繊維からなり、熱収縮率が24%、平均繊維直径が1.2μm、比表面積が1.275m2/g、縦伸び率が1.67%、横伸び率が2.33%のものを用いて、前述の要領で血液処理フィルターを作製し、白血球除去性能試験を行ったところ、高圧蒸気滅菌前後の白血球除去性能は各々表5に示すとおりであり滅菌による性能低下は見られなかった。
〔実施例36〕
 不織布Bとして、PBT繊維からなり、熱収縮率が14%、不織布の平均繊維径が1.1μm、比表面積が1.355m2/g、縦伸び率が1.69%、横伸び率が1.90%のものを用いて、前述の要領で血液処理フィルターを作製し、白血球除去性能試験を行ったところ、高圧蒸気滅菌前後の白血球除去性能は各々表5に示すとおりであり滅菌による性能低下は見られなかった。
〔比較例22〕
 不織布Bとして、熱収縮率が25%、平均繊維直径が1.2μm、比表面積が1.268m2/g、縦伸び率が1.65%、横伸び率が3.87%のものを用いて、前述の要領で血液処理フィルターを作製し、白血球除去性能試験を行ったところ、高圧蒸気滅菌前後の白血球除去性能は表6に示すとおりであり滅菌による性能低下が見られた。
〔比較例23〕
 不織布Bとして、熱収縮率が30%、平均繊維直径が1.2μm、比表面積が1.246m2/g、縦伸び率が1.72%、横伸び率が2.11%のものを用いて、前述の要領で血液処理フィルターを作製し、白血球除去性能試験を行ったところ、高圧蒸気滅菌前後の白血球除去性能は表6に示すとおりであり滅菌による性能低下が見られた。
〔比較例24〕
 不織布Bとして、熱収縮率が38%、平均繊維直径が1.3μm、比表面積が1.222m2/g、縦伸び率が1.67%、横伸び率が3.55%のものを用いて、前述の要領で血液処理フィルターを作製し、白血球除去性能試験を行ったところ、高圧蒸気滅菌前後の白血球除去性能は表6に示すとおりであり滅菌による性能低下が見られた。
〔比較例25〕
 不織布Bとして、熱収縮率25%、平均繊維直径が1.2μm、比表面積1.268m2/g、縦伸び率が1.65%、横伸び率が2.87%のものを用いて、前述の要領で血液処理フィルターを作製し、白血球除去性能試験を行ったところ、高圧蒸気滅菌前後の白血球除去性能は表6に示すとおりであり滅菌による性能低下が見られた。
〔比較例26〕
 不織布Bとして、熱収縮率30%、平均繊維直径1.2μm、比表面積1.246m2/g、縦伸び率が1.72%、横伸び率が2.11%のものを用いて、前述の要領で血液処理フィルターを作製し、白血球除去性能試験を行ったところ、高圧蒸気滅菌前後の白血球除去性能は表6に示すとおりであり滅菌による性能低下が見られた。
〔比較例27〕
 不織布Bとして、熱収縮率38%、平均繊維直径1.3μm、比表面積1.222m2/g、縦伸び率が1.67%、横伸び率が3.55%のものを用いて、前述の要領で血液処理フィルターを作製し、白血球除去性能試験を行ったところ、高圧蒸気滅菌前後の白血球除去性能は表6に示すとおりであり滅菌による性能低下が見られた。
 実施例21~26、31~36と比較例21~27の結果、並びに、各々で用いた不織布Bの厚み、充填率、未結晶化熱量(島津製作所製TA-60WSシステムを用いてDSC法により測定した値)、結晶融解熱量及びX線結晶化度を表4~6に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 本発明のフィルター要素は、血液に含まれる不要成分(例えば、凝集物、病原性物質(ウイルス、細菌、原虫、感染赤血球等)、及び、血液処理用薬剤など)を除去するのに用いることができる。
 特に、本発明のフィルター要素は、従来の方法に比べ白血球除去能が高く、かつ目詰まりがなく処理時間を短くすることができるので、特に、血液に混入している白血球を捕捉するための白血球除去フィルター要素として好適に使用できる。
 とりわけ、本発明のフィルター要素を用いた血液処理フィルターは、高圧蒸気滅菌等の蒸気加熱処理による性能低下が小さいので、白血球による輸血副作用の防止など、過酷な条件での蒸気加熱処理を用いる医薬用途、医療用途、及び一般工業用途に好ましく用いられる。
 本願は、2015年6月17日に日本国特許庁に出願された日本特許出願(特願2015-122448及び特願2015-122449)に基づくものであり、その内容はここに参照として取り込まれる。
 1…容器、3…第1出入口(液体出入口)、4…第2出入口(液体出入口)、5…フィルター要素、7…第1出入口側空間、8…第2出入口側空間、9…フィルター要素の外縁部、10…血液処理フィルター。

Claims (11)

  1.  蒸気加熱処理前における未結晶化熱量が5J/g以下である不織布を含む、血液処理フィルター用フィルター要素。
  2.  前記不織布の蒸気加熱処理前における結晶融解熱量から未結晶化熱量を引いた値が50J/g以上である、請求項1に記載の血液処理フィルター用フィルター要素。
  3.  前記不織布の蒸気加熱処理前におけるX線結晶化度が60以上である、請求項1または2に記載の血液処理フィルター用フィルター要素。
  4.  前記不織布の面積収縮率が10%以下である、請求項1~3のいずれかに記載のフィルター要素。
  5.  前記不織布が、表面部分に非イオン性基と塩基性含窒素官能基とを有する、請求項1~4のいずれかに記載のフィルター要素。
  6.  前記不織布の熱収縮率が5-24%、伸び率が最大になる方向の伸び率、及び、それに垂直な方向の伸び率が、共に、1%以上3%以下である、
     請求項1~5のいずれかに記載の血液処理フィルター用フィルター要素。
  7.  前記不織布の伸び率が最大になる方向の伸び率とそれに垂直な方向の伸び率の差が1%以下である、
     請求項6に記載の血液処理フィルター用フィルター要素。
  8.  請求項1~7のいずれか1項に記載のフィルター要素、入口側容器材及び出口側容器材を有する血液処理フィルターであって、
     前記入口側容器材及び前記出口側容器材が硬質材料からなり、
     前記フィルター要素の外縁部が、前記入口側容器材と前記出口側容器材によって挟まれて把持され、
     前記血液処理フィルターの内部空間が、前記フィルター要素によって入口空間及び出口空間に仕切られている、血液処理フィルター。
  9.  請求項1~7のいずれか1項に記載のフィルター要素、及び、入口及び出口を有する容器を有する血液処理フィルターであって、
     前記容器は軟質材料からなり、
     前記容器の周縁部に前記フィルター要素が溶着されており、
     前記血液処理フィルターの内部空間が、前記フィルター要素によって入口空間及び出口空間に仕切られている、血液処理フィルター。
  10.  前記フィルター要素が複数の不織布を含み、当該複数の不織布のうち、前記入口側容器材と接触している不織布及び/又は前記出口側容器材と接触している不織布の蒸気加熱処理前における未結晶化熱量が5J/g以下である、
     請求項8または9に記載の血液処理フィルター。
  11.  前記フィルター要素の充填密度が0.1g/cm以上0.5g/cm以下である、請求項8~10のいずれかに記載の血液処理フィルター。
PCT/JP2016/068171 2015-06-17 2016-06-17 血液処理フィルター用フィルター要素及び血液処理フィルター WO2016204289A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680035107.7A CN107735116B (zh) 2015-06-17 2016-06-17 血液处理过滤器用过滤部件和血液处理过滤器
JP2017524873A JP6437651B2 (ja) 2015-06-17 2016-06-17 血液処理フィルター用フィルター要素及び血液処理フィルター
US15/736,548 US10814051B2 (en) 2015-06-17 2016-06-17 Filter element for blood processing filter and blood processing filter
EP16811763.8A EP3311857B1 (en) 2015-06-17 2016-06-17 Blood-processing filter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-122448 2015-06-17
JP2015122449 2015-06-17
JP2015122448 2015-06-17
JP2015-122449 2015-06-17

Publications (1)

Publication Number Publication Date
WO2016204289A1 true WO2016204289A1 (ja) 2016-12-22

Family

ID=57546200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068171 WO2016204289A1 (ja) 2015-06-17 2016-06-17 血液処理フィルター用フィルター要素及び血液処理フィルター

Country Status (5)

Country Link
US (1) US10814051B2 (ja)
EP (1) EP3311857B1 (ja)
JP (1) JP6437651B2 (ja)
CN (1) CN107735116B (ja)
WO (1) WO2016204289A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021006331A1 (ja) * 2019-07-11 2021-01-14
JPWO2021010319A1 (ja) * 2019-07-12 2021-01-21
CN112384260A (zh) * 2018-07-13 2021-02-19 株式会社钟化 白血球除去用过滤材料、白血球除去过滤器及其制造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112020011704A2 (pt) * 2017-12-13 2020-11-17 Gvs S.P.A. unidade de filtragem para sangue integral e derivados de sangue
BR112021014918A2 (pt) * 2019-01-29 2021-09-28 Donaldson Company, Inc. Sistema e método para desaeração
EP4043085A4 (en) * 2019-10-11 2023-03-08 Asahi Kasei Medical Co., Ltd. BLOOD TREATMENT FILTERS AND METHODS OF MANUFACTURE THEREOF AND WHILE REMOVAL METHODS
CN114622334B (zh) * 2022-04-29 2024-01-23 青岛全季服饰有限公司 一种透气、防紫外线面料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001112862A (ja) * 1999-10-22 2001-04-24 Terumo Corp 血液フィルター
JP2008528789A (ja) * 2005-02-02 2008-07-31 エクソンモービル・ケミカル・パテンツ・インク 修飾ポリエチレン組成物

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3765537A (en) * 1970-11-10 1973-10-16 Pall Corp Dual blood filter
JPS60193468A (ja) 1984-03-15 1985-10-01 旭メデイカル株式会社 白血球除去フイルタ−
JPH086239B2 (ja) 1987-01-05 1996-01-24 東洋紡績株式会社 不織布
US4879273A (en) 1987-05-22 1989-11-07 The Rockefeller University Glucagon homologs and therapeutic use thereof
US5152905A (en) * 1989-09-12 1992-10-06 Pall Corporation Method for processing blood for human transfusion
EP0600793B1 (en) * 1992-12-01 1997-03-12 Terumo Kabushiki Kaisha Blood compatible materials
TW572927B (en) * 1999-12-15 2004-01-21 Asahi Chemical Corp Trimethyleneterephthalate copolymer
JP4565762B2 (ja) 2001-03-26 2010-10-20 旭化成メディカル株式会社 白血球除去フィルター及びその製造方法
US7795366B2 (en) 2002-08-12 2010-09-14 Exxonmobil Chemical Patents Inc. Modified polyethylene compositions
AU2003284534A1 (en) 2002-12-02 2004-06-23 Asahi Medical Co., Ltd. Method of removing leukocytes, leukocyte-removing filter and utilization thereof
ITTO20030039A1 (it) * 2003-01-24 2004-07-25 Fresenius Hemocare Italia Srl Filtro per separare leucociti da sangue intero e/o da preparati derivati dal sangue, procedimento per la fabbricazione del filtro, dispositivo e utilizzazione.
CN100478389C (zh) * 2005-11-25 2009-04-15 东华大学 聚偏氟乙烯和聚醚砜共混膜、制造方法和用途
CN101505811B (zh) * 2006-08-24 2012-05-23 弗雷泽纽斯医疗保健控股有限公司 从患者血液中除去液体的装置
KR101100462B1 (ko) 2006-09-21 2011-12-29 아사히 가세이 셍이 가부시키가이샤 내열성 부직포
WO2011001936A1 (ja) * 2009-06-30 2011-01-06 株式会社カネカ 血液成分の分離システム、分離材
CN202554574U (zh) * 2012-02-28 2012-11-28 旭化成医疗株式会社 白血球除去过滤器
CN202761782U (zh) * 2012-06-21 2013-03-06 上海输血技术有限公司 除病毒灭活药剂及去白细胞过滤装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001112862A (ja) * 1999-10-22 2001-04-24 Terumo Corp 血液フィルター
JP2008528789A (ja) * 2005-02-02 2008-07-31 エクソンモービル・ケミカル・パテンツ・インク 修飾ポリエチレン組成物

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112384260A (zh) * 2018-07-13 2021-02-19 株式会社钟化 白血球除去用过滤材料、白血球除去过滤器及其制造方法
CN112384260B (zh) * 2018-07-13 2024-06-04 株式会社钟化 白血球除去用过滤材料、白血球除去过滤器及其制造方法
US12083461B2 (en) 2018-07-13 2024-09-10 Kaneka Corporation Filter material for removing leukocytes, leukocyte removal filter and method for producing same
JPWO2021006331A1 (ja) * 2019-07-11 2021-01-14
WO2021006331A1 (ja) * 2019-07-11 2021-01-14 旭化成メディカル株式会社 血液処理フィルター
JP7181405B2 (ja) 2019-07-11 2022-11-30 旭化成メディカル株式会社 血液処理フィルター
US12102742B2 (en) 2019-07-11 2024-10-01 Jms Co., Ltd. Blood processing filter
JPWO2021010319A1 (ja) * 2019-07-12 2021-01-21
WO2021010319A1 (ja) * 2019-07-12 2021-01-21 旭化成メディカル株式会社 血液処理フィルター及び血液製剤の製造方法
JP7340020B2 (ja) 2019-07-12 2023-09-06 旭化成メディカル株式会社 血液処理フィルター及び血液製剤の製造方法

Also Published As

Publication number Publication date
EP3311857A4 (en) 2018-05-23
JP6437651B2 (ja) 2018-12-12
JPWO2016204289A1 (ja) 2018-03-22
US10814051B2 (en) 2020-10-27
CN107735116A (zh) 2018-02-23
US20180154053A1 (en) 2018-06-07
EP3311857A1 (en) 2018-04-25
EP3311857B1 (en) 2024-04-10
CN107735116B (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
JP6437651B2 (ja) 血液処理フィルター用フィルター要素及び血液処理フィルター
US11213776B2 (en) Leukocyte removal filter material and leukocyte removal method
US7591954B2 (en) Method for removing leukocytes, leukocyte-removing filter and utilization thereof
WO2016204297A1 (ja) 血液処理フィルター用フィルター要素、血液処理フィルター、及び血液処理方法
JP6752890B2 (ja) 血液処理フィルター用フィルター要素、血液処理フィルター及び白血球除去方法
JP7340020B2 (ja) 血液処理フィルター及び血液製剤の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811763

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524873

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15736548

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016811763

Country of ref document: EP