WO2021010319A1 - 血液処理フィルター及び血液製剤の製造方法 - Google Patents

血液処理フィルター及び血液製剤の製造方法 Download PDF

Info

Publication number
WO2021010319A1
WO2021010319A1 PCT/JP2020/027030 JP2020027030W WO2021010319A1 WO 2021010319 A1 WO2021010319 A1 WO 2021010319A1 JP 2020027030 W JP2020027030 W JP 2020027030W WO 2021010319 A1 WO2021010319 A1 WO 2021010319A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
filter
filter layer
woven fabric
orientation
Prior art date
Application number
PCT/JP2020/027030
Other languages
English (en)
French (fr)
Inventor
信量 島田
愛子 佐藤
Original Assignee
旭化成メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成メディカル株式会社 filed Critical 旭化成メディカル株式会社
Priority to CN202080049839.8A priority Critical patent/CN114080246A/zh
Priority to JP2021533036A priority patent/JP7340020B2/ja
Publication of WO2021010319A1 publication Critical patent/WO2021010319A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/02Blood transfusion apparatus
    • A61M1/0209Multiple bag systems for separating or storing blood components
    • A61M1/0218Multiple bag systems for separating or storing blood components with filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/02Blood transfusion apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/165Filtering accessories, e.g. blood filters, filters for infusion liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/01Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres

Definitions

  • the present invention relates to a blood processing filter and a method for producing a blood product.
  • component blood transfusion in addition to so-called whole blood transfusion, in which a whole blood preparation in which an anticoagulant is added to blood collected from a donor is transfused, the blood components required by the recipient are separated from the whole blood preparation.
  • component blood transfusion in which the blood component is infused, has become common.
  • Component transfusion includes erythrocyte transfusion, platelet transfusion, plasma transfusion, etc. depending on the type of blood component required by the recipient, and blood products used for these transfusions include erythrocyte preparation, platelet preparation, plasma preparation, etc. There is.
  • leukocyte-removing blood transfusion in which blood products are transfused after removing leukocytes contained in the blood product, has become widespread.
  • This includes relatively minor side effects such as headache, nausea, chills, and non-hemolytic fever reaction associated with blood transfusion, and severe effects such as alloantigen sensitization, viral infection, and post-transfusion GVHD that have a serious effect on blood recipients.
  • serious side effects are mainly caused by white blood cells contaminated in blood products used for blood transfusion.
  • white blood cells in blood products should be removed until the residual rate is 10 -1 to 10-2 or less. There is.
  • leukocytes need to be removed until the residual rate is 10 -4 to 10-6 or less. Further, in recent years, leukocyte depletion therapy by extracorporeal circulation of blood has been performed for the treatment of diseases such as rheumatoid arthritis and ulcerative colitis, and a high clinical effect has been obtained.
  • the methods for removing leukocytes from blood products are roughly divided into the centrifugal separation method in which leukocytes are separated and removed by using the difference in specific gravity of blood components using a centrifuge, and the fiber aggregate or continuous method such as non-woven fabric.
  • the filter method for removing leukocytes by sticking or adsorption is currently the most popular because of its advantages such as simple operation and low cost.
  • the idea of effective filter design is to increase the effective utilization rate of the filtration material used for the filter. This is because by improving the effective utilization rate, it becomes possible to adsorb a sufficient amount of leukocytes in blood even with a small amount of filtration material. As a means of doing so, when the blood flows into the filter, the filter material is uniformly distributed in the direction in which the blood spreads vertically with respect to the flow (usually in the plane direction of the filter), so that the blood spreads uniformly in the filter, which is effective as a result. The method of improving the utilization rate is often used.
  • Patent Document 1 a non-woven fabric, which is a kind of filtration material, is used to improve the homogeneity in the plane direction (improve the formation), thereby increasing the leukapheresis rate of the filtration material. It is disclosed to improve.
  • Patent Document 2 discloses a technique for achieving both an improvement in the leukocyte removal rate and an effect of shortening the filtration time by appropriately controlling the blood flow rate (penetration coefficient) in the planar direction and the vertical direction of the filter. Has been done.
  • Patent Document 2 does not particularly specify the anisotropy of the flow in the plane, it does not come up with how to control the flow in the plane and effectively utilize it, and as a result, In some cases, anisotropy occurred in the plane and the filtration performance could not be fully exhibited. That is, because the in-plane flow is non-uniform, low-viscosity blood passes through only a part of the filter area and the entire filter is not utilized, resulting in insufficient filtration performance and blood. There was a problem that the filter design was required to be changed depending on the properties of.
  • An object of the present invention is to provide a blood treatment filter having an excellent leukocyte removal rate and filtration time (filtration rate).
  • the present inventor has found that the above problem can be solved by adjusting the orientation of the fibers of the non-woven fabric contained in the filter layer constituting the filter medium. Further, the present inventors have found that the above-mentioned problems can be solved by providing a predetermined space inside the filter layer constituting the filter medium.
  • the filter medium contains a filter layer
  • the filter layer contains a non-woven fabric and contains The fibers of the non-woven fabric have a degree of orientation X in the X-axis plane direction of the filter layer and a degree of orientation Y in the Y-axis plane direction orthogonal to the X-axis plane direction.
  • the maximum value of the ratio of the degree of orientation X to the degree of orientation Y is 1.2 or more.
  • the blood processing filter is 1.2 or more.
  • the filter medium comprises one or more filter layers.
  • the filter layer has a space in which the maximum length in the plane direction is 50 ⁇ m or more and the maximum length in the thickness direction is 15 ⁇ m or more in the cross section in the thickness direction.
  • the blood processing filter [9] The blood treatment filter according to [8], wherein the filling rate of the filter layer is 0.09 to 0.26. [10] The blood treatment filter according to [8] or [9], wherein the difference between the minimum in-plane porosity in the thickness direction and the maximum in-plane porosity in the thickness direction of the filter layer is 0.08 to 0.28.
  • a method for producing a blood product which comprises a step of passing blood containing white blood cells through the blood treatment filter according to any one of [1] to [13].
  • a blood treatment filter having an excellent leukocyte removal rate and filtration time (filtration rate).
  • FIG. 8A It is a schematic diagram of the blood treatment filter which is one Embodiment of this invention. It is sectional drawing of the blood processing filter of FIG. It is a schematic diagram of the blood treatment filter which is one Embodiment of this invention. It is a schematic view which looked at the plane of the blood processing filter of FIG. 3 from the front. It is a figure which shows the adjustment method of Ac: Am. It is a figure which shows the adjustment method of Ac: Am. The test method of leukocyte depletion performance is shown. The cross section (cut surface cut in the thickness direction) of the filter layer of Example A1 in the thickness direction is shown. It is an enlarged view of the cross section of FIG. 8A. The in-plane porosity of the filter layer of Example A1 in the thickness direction is shown.
  • the in-plane porosity of the filter layer of Example A12 in the thickness direction is shown.
  • the in-plane porosity of the filter layer of Comparative Example A1 in the thickness direction is shown.
  • the in-plane porosity of the filter layer of Comparative Example A2 in the thickness direction is shown.
  • An example of a method for manufacturing a non-woven fabric is shown.
  • the present embodiment a mode for carrying out the present invention (hereinafter, referred to as “the present embodiment”) will be described in detail.
  • the present invention is not limited to the following embodiments, and can be variously modified and implemented within the scope of the gist thereof.
  • blood shall include blood and liquids containing blood components.
  • the blood component-containing liquid include blood products.
  • blood products include whole blood products, erythrocyte products, platelet products, plasma products and the like.
  • One embodiment of the present invention includes a container having an inlet and an outlet for blood.
  • a filter medium arranged between the inlet and the outlet in the container, It is a blood processing filter containing
  • the filter medium includes a filter layer (hereinafter, also referred to as "first filter layer").
  • the filter layer contains a non-woven fabric and contains The fibers of the non-woven fabric have a degree of orientation X in the X-axis plane direction of the filter layer and a degree of orientation Y in the Y-axis plane direction orthogonal to the X-axis plane direction.
  • the maximum value of the ratio of the degree of orientation X to the degree of orientation Y (degree of orientation X / degree of orientation Y) is 1.2 or more.
  • the present invention relates to the blood processing filter. By adjusting the orientation of the fibers of the non-woven fabric contained in the filter layer, an excellent leukocyte removal rate and an excellent filtration time (filtration rate) can be exhibited.
  • FIG. 1 is a schematic view of an embodiment of a blood treatment filter (leukocyte removal filter), and FIG. 2 is a sectional view taken along line II-II of FIG.
  • the blood treatment filter 10 has a flat container 1 and a filter medium 5 housed therein and in a substantially dry state.
  • the container 1 accommodating the filter medium 5 is composed of two elements, an inlet side container material having an inlet portion 3 and an outlet side container material having an outlet portion 4.
  • the space inside the flat container 1 is partitioned by the filter medium 5 into a space 7 on the inlet side and a space 8 on the outlet side.
  • the inlet side container material and the outlet side container material are arranged with the filter material 5 sandwiched between them, and the two container materials are formed by gripping portions provided in a part of the filter material 5. It has a structure in which the outer edge portion 9 is sandwiched and gripped.
  • the filter medium and the container may be joined by welding or the like, whereby the filter medium may be gripped by the container.
  • Examples of the material of the container include a hard resin and a flexible resin.
  • Examples of the rigid resin include phenol resin, acrylic resin, epoxy resin, formaldehyde resin, urea resin, silicon resin, ABS resin, nylon, polyurethane, polycarbonate, vinyl chloride, polyethylene, polypropylene, polyester, and styrene-butadiene copolymer. And so on.
  • the flexible resin preferably has properties that are thermally and electrically similar to those of the filter layer.
  • the flexible resin examples include soft polyvinyl chloride, polyurethane, ethylene-vinyl acetate copolymer, polyolefin such as polyethylene and polypropylene, styrene-butadiene-styrene copolymer hydrogenated product, and styrene-isoprene-styrene.
  • examples thereof include a thermoplastic elastomer such as a copolymer or a hydrogenated product thereof, and a mixture of the thermoplastic elastomer and a softening agent such as polyolefin or ethylene-ethyl acrylate.
  • Flexible resins preferably soft polyvinyl chloride, polyurethane, ethylene-vinyl acetate copolymers, polyolefins, and thermoplastic elastomers containing these as main components, more preferably soft polyvinyl chloride and polyolefins. ..
  • the shape of the container can be a polygon such as a quadrangle or a hexagon, or a flat shape such as a circle or an ellipse (for example, FIGS. 1 and 1 and FIG. 2).
  • the container is also preferably cylindrical.
  • the filter medium contains one or more first filter layers.
  • the plurality of first filter layers may be the same or different.
  • the first filter layer preferably contains a non-woven fabric.
  • the non-woven fabric is preferably laminated.
  • the material of the non-woven fabric is not particularly limited, and examples thereof include polyester (for example, polyethylene terephthalate (PET) and polybutylene terephthalate (PBT)), polyamide, polyacrylonitrile, polymethylmethacrylate, polyethylene, polypropylene and the like. By using such a material, denaturation of blood can be prevented.
  • the material of the non-woven fabric is preferably polyester, more preferably PET and PBT.
  • the non-woven fabric may be formed from only one kind of material, or may be formed from a plurality of kinds of materials.
  • the non-woven fabric contained in the first filter layer may have a coat layer on its surface.
  • the non-woven fabric which does not have a coat layer is also referred to as "fiber base material".
  • the coat layer preferably contains, for example, a copolymer having a monomer unit having a nonionic hydrophilic group and a monomer unit having a basic nitrogen-containing functional group.
  • a copolymer having a basic nitrogen-containing functional group By using a copolymer having a basic nitrogen-containing functional group, a positive charge can be imparted to the surface of the non-woven fabric by the coating treatment, and the affinity with leukocytes can be improved.
  • Examples of the monomer unit having a nonionic hydrophilic group include a monomer unit derived from 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, vinyl alcohol, (meth) acrylamide, N-vinylpyrrolidone and the like. Can be mentioned.
  • the monomer unit having a nonionic hydrophilic group is preferably a monomer derived from 2-hydroxyethyl (meth) acrylate from the viewpoints of easy availability, ease of handling during polymerization, performance when flowing blood, and the like. It is a unit.
  • Monomer units derived from vinyl alcohol are usually produced by hydrolysis after polymerization of vinyl acetate.
  • Examples of the monomer unit having a basic nitrogen-containing functional group include diethylaminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate, and 3-dimethylamino-2-hydroxypropyl (meth).
  • Derivatives of (meth) acrylic acid such as acrylate; styrene derivatives such as p-dimethylaminomethylstyrene and p-diethylaminoethylstyrene; nitrogen-containing aromatic compounds such as 2-vinylpyridine, 4-vinylpyridine and 4-vinylimidazole.
  • Examples thereof include a vinyl derivative; and a monomer unit derived from a derivative obtained by converting the above vinyl compound into a quaternary ammonium salt by alkyl halide or the like.
  • the monomer units having a basic nitrogen-containing functional group are preferably diethylaminoethyl (meth) acrylate and dimethylaminoethyl. It is a monomer unit derived from (meth) acrylate.
  • the mass of the coat layer is preferably about 0.1 to 40.0 mg when the total mass of the fiber base material and the coat layer is 1 g.
  • the mass of the coat layer can be calculated, for example, by the following procedure.
  • the non-woven fabric (fiber base material) before supporting the coat layer is dried in a dryer set at 60 ° C. for 1 hour, left in a desiccator for 1 hour or more, and then the mass (Ag) is measured.
  • the non-woven fabric on which the coat layer is supported is dried in a dryer at 60 ° C. for 1 hour, left in a desiccator for 1 hour or more, and then the mass (Bg) is measured.
  • the method for forming the coat layer on the fiber base material is not particularly limited.
  • the fiber base material is immersed in a coating liquid containing a monomer and / or a polymer (copolymer) or, if necessary, a solvent or the like, and then the coating liquid is appropriately applied.
  • a coating liquid containing a monomer and / or a polymer (copolymer) or, if necessary, a solvent or the like
  • Examples thereof include a method of removing (dip method) and a method of applying by bringing a fiber base material into contact with a roll in which a coating liquid is immersed (transfer method).
  • the non-woven fabric contained in the first filter layer preferably has a basic nitrogen-containing functional group on the peripheral surface portion thereof.
  • the peripheral surface portion of the non-woven fabric means all parts of the non-woven fabric exposed to the outside world. That is, when the nonwoven fabric has a coat layer, the peripheral surface portion is the surface portion of the coat layer. When the non-woven fabric does not have a coat layer, the peripheral surface portion means the surface portion of the fibrous substrate.
  • the peripheral surface portion of the non-woven fabric may further have a nonionic hydrophilic group.
  • the affinity of leukocytes between the non-woven fabric and blood is enhanced, and the leukocyte removal performance can be improved.
  • the presence of nonionic hydrophilic groups on the peripheral surface of the non-woven fabric enhances the wettability of the non-woven fabric surface to blood, improving the effective filtration area of the non-woven fabric (the area actually used for filtration), resulting in filtration. Both the effects of reducing the time and improving the removal performance of leukocytes and the like can be obtained.
  • a nonionic hydrophilic group or a basic nitrogen-containing functional group As a method for allowing a nonionic hydrophilic group or a basic nitrogen-containing functional group to exist on the peripheral surface portion of the nonwoven fabric, for example, in the case of a nonwoven fabric having a coat layer, a nonionic hydrophilic group or a basic nitrogen-containing functional group is used.
  • a method of coating a non-woven fabric with a coating material containing a monomer and / or a polymer containing the polymer, and in the case of a non-woven fabric having no coating layer, a monomer and / or a polymer containing a nonionic hydrophilic group or a basic nitrogen-containing functional group is used. Examples thereof include a method of spinning using a fiber material containing the material.
  • the ratio of the amount of substance of the basic nitrogen-containing functional group to the total amount of substance of the nonionic hydrophilic group and the basic nitrogen-containing functional group in the peripheral surface portion of the non-woven fabric is preferably 0.2 to 50.0 mol%. Yes, more preferably 0.25 to 10 mol percent, even more preferably 1 to 5 mol percent, and most preferably 2 to 4 mol percent.
  • the contents of the basic nitrogen-containing functional group and the nonionic hydrophilic group can be measured by analysis by NMR, IR, TOF-SIMS and the like.
  • nonionic hydrophilic group examples include an alkyl group, an alkoxy group, a carbonyl group, an aldehyde group, a phenyl group, an amide group, a hydroxyl group and the like.
  • the basic nitrogen-containing functional group examples include -NH 2 , -NHR 1 , -NR 2 R 3 , -N + R 4 R 5 R 6 (R 1 , R 2 , R 3 , R 4 , R 5 and R 6 is an amino group represented by an alkyl group having 1 to 3 carbon atoms.
  • the fibers of the non-woven fabric contained in the first filter layer have a degree of orientation X in the X-axis plane direction of the first filter layer and a degree of orientation Y in the Y-axis plane direction orthogonal to the X-axis plane direction.
  • the maximum value of the ratio of the degree of orientation X to the degree of orientation Y is 1.2 or more.
  • the maximum value of the degree of orientation X / degree of orientation Y is also referred to as a “maximum degree of orientation ratio”.
  • the “degree of orientation” indicates the degree to which the fibers are oriented in a predetermined direction.
  • a large degree of fiber orientation in the X-axis direction means a large degree of fiber alignment so as to be parallel to the X-axis direction.
  • the "X-axis plane direction” is an arbitrary direction in the plane direction of the first filter layer.
  • the "Y-axis plane direction” is a direction orthogonal to the X-axis in the plane direction of the first filter layer.
  • the “planar direction” is a direction orthogonal to the thickness direction of the first filter layer.
  • the "maximum value of the degree of orientation X / degree of orientation Y (maximum degree of orientation ratio) means the largest value among the respective values of the degree of orientation X / degree of orientation Y in all the plane directions of the first filter layer. ..
  • the degree of orientation can be calculated from the orientation index.
  • the orientation index indicates the degree to which the fibers are oriented in a predetermined direction, similar to the degree of orientation, but the orientation index becomes smaller as the degree of orientation increases.
  • the fiber orientation index in the X-axis direction is determined based on the cross-sectional area of the fiber on a plane orthogonal to the X-axis direction. When the fibers are arranged so as to be parallel to the X-axis direction, the area of the fibers on the plane orthogonal to the X-axis direction becomes small. That is, the orientation index in the X-axis direction becomes smaller.
  • the orientation index in the X-axis plane direction is the orientation index X
  • the orientation index in the Y-axis plane direction orthogonal to the X-axis plane direction is the orientation index Y
  • the orientation degree X / orientation degree Y is the orientation index Y /. It can be represented by the orientation index X.
  • the orientation index X and the orientation index Y of the non-woven fabric are obtained by X-ray CT and image analysis by the following method.
  • the X-ray CT apparatus and image analysis software used are as follows.
  • X-ray CT equipment Rigaku Co., Ltd.
  • High-resolution 3DX ray microscope nano3DX Image analysis software ImageJ
  • the non-woven fabric sample for X-ray CT measurement is cut in the plane to 2.5 mm ⁇ 2.5 mm, and the X-ray CT measurement is performed with the total thickness without cutting in the thickness direction.
  • the measurement conditions are as follows. Pixel resolution: 0.54 ⁇ m / pix Exposure time: 18 seconds / sheet Number of projections: 1500 sheets / 180 degrees X-ray tube voltage: 40 kV X-ray tube current: 30mA X-ray target: Cu Measurement point: Central part in the plane that is not affected by the cut surface at the end of the sample
  • the coordinate axes of the non-woven fabric are set so that the X-axis plane direction is the X-axis, the Y-axis plane direction is the Y-axis, and the thickness direction is the Z-axis.
  • the median filter of the image processing method is applied to the three-dimensional image 1 under the condition of a radius of 2 pix, and then the Otsu method of the image processing method is applied to divide the area.
  • the brightness value of the pixel after the region division is set so that the air is 0 and the non-woven fabric fiber is 255.
  • the image obtained in this way is referred to as a three-dimensional image 2.
  • the image processing method segmentation is performed on the pixels having a brightness value of 255 in the three-dimensional image 2, and among the fibers having a brightness value of 255 in a series, the fibers having a pixel count of 10000 pix or less are removed as noise.
  • the image obtained in this way is set as a three-dimensional image 3 by setting the brightness value of the pixels to 0 for air and 255 for fibers of the non-woven fabric.
  • this three-dimensional image 3 all the pixels on the XY plane are scanned one pixel at a time in the Z direction perpendicular to the XY plane, and the point where the luminance value changes from 0 to 255 and the point where the luminance value changes from 255 to 0.
  • the total number is obtained by image analysis and is defined as the projected area AXY .
  • orientation index X A YZ / (A XY + A YZ + A ZX )
  • Orientation index Y A ZX / (A XY + A YZ + A ZX )
  • the orientation index is obtained by calculating the cross-sectional area (projected area) when observing the non-woven fabric in that direction, and then proportionally distributing it so that the total projected area in each of the three-dimensional directions becomes 1. Be done. That is, the orientation index in each direction is a number from 0 to 1, and the stronger the orientation in that direction, the smaller the orientation index. In other words, if the non-woven fabric is completely isotropic, the orientation indexes in the X, Y, and Z directions are all 0.33.
  • the maximum value (maximum degree of orientation ratio) of the degree of orientation X / degree of orientation Y is 1.2 or more, preferably 1.3 to 2.0, and more preferably 1.4 to 1.8.
  • the maximum orientation ratio of the non-woven fabric contained in at least one first filter layer may be 1.2 or more, but the non-woven fabric contained in all the first filter layers
  • the maximum orientation ratio is preferably 1.2 or more.
  • the blood flow path in the plane of the first filter layer can be intentionally guided according to the properties of the blood, and the first filter layer can be effectively utilized and / or optimally.
  • a flow path can be formed. This makes it possible to improve blood flow and leukocyte removal ability.
  • the maximum orientation ratio is 2.0 or less, it is possible to prevent the inducibility of blood in the plane of the first filter layer from becoming too strong, so that the flowability and leukocyte removal performance tend to be improved.
  • the degree of orientation (Ac) of the fibers of the non-woven fabric in the plane direction of the first filter layer orthogonal to the filtration direction is parallel to the filtration direction in the plane direction of the first filter layer. It is preferable that the first filter layer is arranged so that the ratio (Ac / Am) to the degree of orientation (Am) of the fibers of the non-woven fabric is 1.2 or more. Ac / Am is more preferably 1.3 to 2.0, still more preferably 1.4 to 1.8.
  • the "filtration direction” means the direction in which blood flows in the blood processing filter, and corresponds to the direction from the inlet portion to the outlet portion of the container.
  • the plane direction of the first filter layer orthogonal to the filtration direction means, for example, as shown in FIGS. 3 and 4, the direction 13 orthogonal to the filtration direction 12 when the plane of the first filter layer 11 is viewed from the front.
  • the plane direction of the first filter layer parallel to the filtration direction means, for example, as shown in FIGS. 3 and 4, the direction 14 parallel to the filtration direction 12 when the plane of the first filter layer 11 is viewed from the front. Means.
  • the degree of orientation (Am) of the fibers of the non-woven fabric in the plane direction of the first filter layer parallel to the filtration direction is orthogonal to the filtration direction in the plane direction of the first filter layer. It is preferable that the first filter layer is arranged so that the ratio (Am / Ac) to the degree of orientation (Ac) of the fibers of the non-woven fabric is 1.2 or more. Am / Ac is more preferably 1.3 to 2.0, still more preferably 1.4 to 1.8.
  • Ac / Am or Am / Ac can be appropriately adjusted by changing the orientation of the first filter layer. Further, for example, as shown in FIG. 5, the first filter layer having a predetermined Ac / Am or Am / Ac is obtained by changing the orientation of the nonwoven fabric having a predetermined maximum orientation ratio and cutting the nonwoven fabric at a predetermined rotation angle. Can be created. As a result of arbitrarily changing the orientation of the non-woven fabric having a known maximum orientation ratio, it can be easily confirmed by using a line vector what the ratio of Ac and Am becomes.
  • the in-plane permeation coefficient (Ky) of Patent Document 2 is a concept similar to Ac or Am in the present specification, but Ky is a complex filter medium property derived from the flowability of the liquid in the planar direction. Yes, it cannot be directly subdivided into numerical values as Ac and Am.
  • the first filter layer preferably has a filling factor of 0.04 to 0.40, more preferably 0.06 to 0.30, and even more preferably 0.08 to 0.22. Has a filling rate.
  • the filling rate of the first filter layer is 0.40 or less, clogging of blood cells is reduced and the processing speed tends to be improved. Further, when the filling rate is 0.04 or more, the number of contacts with leukocytes or the like tends to increase and the capture rate of leukocytes or the like tends to improve, and the mechanical strength of the non-woven fabric tends to improve.
  • the filling rate of the first filter layer is measured by the following method.
  • the area, thickness, and mass of the first filter layer cut to an arbitrary size in the plane direction and the specific gravity of the fiber material constituting the non-woven fabric of the first filter layer are measured and calculated by the following formula (10).
  • Filling rate [mass of the first filter layer (g) ⁇ ⁇ area of the first filter layer in the plane direction (cm 2 ) ⁇ thickness of the first filter layer (cm) ⁇ ] ⁇ constitutes a non-woven fabric of the first filter layer Specific gravity of fiber material (g / cm 3 ) ⁇ ⁇ ⁇ (10)
  • the first filter layer preferably has a formation index corresponding to a thickness of 0.5 mm of 15 or more and 70 or less.
  • the formation index is 70 or less, the structure of the first filter layer in the thickness direction is uniform with respect to the filtration surface direction, blood flows evenly through the first filter layer, and the ability to remove leukocytes and the like is improved.
  • the processing speed tends to improve.
  • the formation index is 15 or more, clogging is less likely to occur due to a decrease in liquid passage resistance, and the processing speed is improved.
  • the formation index is more preferably 15 or more and 65 or less, further preferably 15 or more and 60 or less, particularly preferably 15 or more and 50 or less, and most preferably 15 or more and 40 or less.
  • the formation index is the absorbance of a porous body (nonwoven fabric) detected by each pixel of the CCD camera by shining light from under the non-woven fabric and detecting the transmitted light with a charge-coupled device camera (hereinafter abbreviated as CCD camera). It is a value obtained by multiplying the coefficient of variation (%) by 10.
  • the formation index can be measured by, for example, the formation tester FMT-MIII (Nomura Shoji Co., Ltd., manufactured in 2002, S / N: 130).
  • the basic settings of the tester are not changed from the time of shipment from the factory, and the total number of pixels of the CCD camera can be measured at, for example, about 3400.
  • the measurement size may be changed so that the number of pixels is equal to 3400.
  • the formation index equivalent to a thickness of 0.5 mm is calculated by the following method.
  • three non-woven fabrics having a thickness of 0.5 mm or less are prepared, and the formation index and thickness of each are measured.
  • the thickness of the non-woven fabric is the average value when the thickness of any four points is measured at a measurement pressure of 0.4 N using a constant pressure thickness gauge (for example, manufactured by OZAKI, model FFA-12).
  • two of the three measured non-woven fabrics are stacked so as to have a thickness of 0.5 mm or more, and the formation index and the thickness of the two laminated non-woven fabrics are measured.
  • the regression line equation of the thickness and the formation index is obtained, and the formation index equivalent to the thickness of 0.5 mm is obtained from the equation.
  • the formation index is measured by stacking multiple non-woven fabrics so that the stacked thickness is 0.5 mm or more, and then the laminated thickness is The formation index may be measured by reducing the amount of the non-woven fabric so as to be 0.5 mm or less.
  • the formation index was measured for all combinations of non-woven fabrics with a layered thickness of 0.5 mm or less, and the regression linear equation of the thickness and formation index was obtained. From that formula, the formation with a thickness of 0.5 mm was inserted. The index can be calculated.
  • the thickness of one non-woven fabric is larger than 0.5 mm, prepare three non-woven fabrics and stack two of the three non-woven fabrics to measure the formation index and thickness.
  • the formation index can be measured for all combinations of non-woven fabrics, the regression line equation of the thickness and the formation index can be obtained, and the formation index with a thickness of 0.5 mm can be obtained by extrapolation from the equation.
  • non-woven fabrics used for measuring the formation index are non-woven fabrics of substantially the same quality, that is, non-woven fabrics having the same physical characteristics (material, fiber diameter, bulk density, filling rate, etc.).
  • the non-woven fabric of the same type of filter layer may be combined for measurement.
  • the specific surface area of the first filter layer is preferably 0.8 m 2 / g or more and 3.2 m 2 / g or less.
  • the specific surface area is 3.2 m 2 / g or less, it is possible to suppress the adsorption of useful components such as plasma proteins to the filter element during blood treatment, and the recovery rate of the useful components tends to be improved.
  • the specific surface area is 0.8 m 2 / g or more, the amount of leukocytes adsorbed increases, so that the ability to remove leukocytes and the like tends to improve.
  • the specific surface area of the first filter layer is more preferably 1.0 m 2 / g or more and 3.2 m 2 / g or less, still more preferably 1.1 m 2 / g or more and 2.9 m 2 / g or less, and particularly preferably 1. It is 2 m 2 / g or more and 2.9 m 2 / g or less, most preferably 1.2 m 2 / g or more and 2.6 m 2 / g or less.
  • the specific surface area is the surface area of the first filter layer per unit mass, and is a value measured by the BET adsorption method using an adsorbed gas as krypton. For example, it is measured using a Tristar 3000 device manufactured by Micromeritix. It is possible. It is shown that the larger the specific surface area of the first filter layer, the larger the area where cells, plasma proteins and the like can be adsorbed when treating blood using a filter layer having the same mass.
  • the ventilation resistance of the first filter layer is preferably 25 Pa ⁇ s ⁇ m / g or more and 100 Pa ⁇ s ⁇ m / g or less, more preferably 30 Pa ⁇ s ⁇ m / g or more and 90 Pa ⁇ s ⁇ m / g or less, further preferably. Is 40 Pa ⁇ s ⁇ m / g or more and 80 Pa ⁇ s ⁇ m / g or less.
  • the aeration resistance is 25 Pa ⁇ s ⁇ m / g or more, the number of contacts with white blood cells and the like tends to increase, and the capture of white blood cells and the like tends to be easy.
  • the aeration resistance is 100 Pa ⁇ s ⁇ m / g or less, the clogging of blood cells tends to decrease and the processing speed tends to improve.
  • the ventilation resistance of the first filter layer is a value measured as a differential pressure generated when a constant flow rate of air is passed through the first filter layer, and is a breathability test device (for example, manufactured by Kato Tech KK, KES-.
  • the first filter layer was placed on the ventilation hole of F8-AP1), and the pressure loss (Pa ⁇ s / m) generated when air was ventilated at a flow rate of 4 mL / cm 2 / sec for about 10 seconds was measured.
  • It is a value obtained by dividing the obtained pressure loss by the scale (g / m 2 ) of the first filter layer.
  • the measurement is performed 5 times by changing the part to be cut out, and the average value is taken as the ventilation resistance.
  • the high ventilation resistance of the first filter layer means that air does not easily pass through and the fibers constituting the first filter layer are entwined in a dense or uniform state, and the first filter layer is a blood product. Indicates that it has the property of being difficult to flow.
  • the low ventilation resistance of the first filter layer means that the fibers constituting the first filter layer are entangled in a coarse or non-uniform state, and the first filter layer has a property that blood products easily flow. Indicates that it has.
  • the average flow hole diameter of the first filter layer is preferably smaller than 8.0 ⁇ m.
  • the average flow hole diameter is smaller than 8.0 ⁇ m, the number of contacts with leukocytes and the like tends to increase, and the capture of leukocytes and the like tends to be facilitated.
  • the average flow hole diameter is more preferably 1.5 ⁇ m or more and 7.5 ⁇ m or less, further preferably 2.5 ⁇ m or more and 7.0 ⁇ m or less, particularly preferably 3.5 ⁇ m or more and 6.5 ⁇ m or less, and most preferably 4.5 ⁇ m or more and 6. It is 5 ⁇ m or less.
  • the average flow hole diameter of the first filter layer can be measured by using a palm porometer CFP-1200AEXS (porous material automatic pore size distribution measurement system) manufactured by PMI Co., Ltd. according to ASTM F316-86.
  • the critical wet surface tension (CWST) of the first filter layer is preferably 70 dyn / cm or more, more preferably 75 dyn / cm or more.
  • the upper limit of CWST is not particularly limited, but may be, for example, 200 dyn / cm, 150 dyn / cm, 100 dyn / cm, or the like.
  • CWST refers to a value obtained according to the following method. That is, aqueous solutions having different concentrations of sodium hydroxide, calcium chloride, sodium nitrate, acetic acid or ethanol are prepared so that the surface tension changes by 2 to 4 dyn / cm.
  • the surface tension (dyn / cm) of each aqueous solution is 94 to 115 for sodium hydroxide aqueous solution, 90 to 94 for calcium chloride aqueous solution, 75 to 87 for sodium nitrate aqueous solution, 72.4 for pure water, and 38 to 38 for acetic acid aqueous solution.
  • 69, 22-35 can be obtained with an aqueous ethanol solution ("Chemical Handbook Basic Edition II" Revised 2nd Edition, Japan Chemical Society, Maruzen, 1975, p. 164).
  • Aqueous solutions having different surface tensions of 2 to 4 dyn / cm thus obtained are placed on the non-woven fabric in order from the one having the lowest surface tension, and left for 10 minutes. After standing for 10 minutes, it is defined as a wet state when 9 or more drops out of 10 drops are absorbed by the non-woven fabric, and it is defined as a non-wet state when the absorption is less than 9 drops out of 10 drops.
  • the wet state changes to the non-wet state on the way.
  • the average value of the surface tension value of the liquid in which the wet state was last observed and the surface tension value of the liquid in which the non-wet state was first observed is defined as the CWST value of the non-woven fabric.
  • the CWST value of the non-woven fabric is 65 dyn / cm.
  • the average fiber diameter of the non-woven fabric contained in the first filter layer is preferably 0.3 ⁇ m to 3.0 ⁇ m, and more preferably 0.5 ⁇ m to 2.5 ⁇ m. Within such a range, the leukocyte removal performance can be improved while avoiding clogging.
  • the average fiber diameter is a value obtained according to the following procedure. That is, from the non-woven fabric that actually constitutes the filter layer, or one or a plurality of non-woven fabrics that are substantially the same as the filter layer, a portion that is considered to be substantially uniform is sampled at several points in the sampled non-woven fabric. A photograph of the fiber is taken using a scanning electron microscope so that its diameter can be seen. Continue taking pictures until a total of 100 diameters are taken. For the photograph obtained in this way, the diameters of all the fibers in the photograph are measured. Here, the diameter means the width of the fiber in the direction perpendicular to the fiber axis. The average fiber diameter is defined as the sum of the measured diameters of all the fibers divided by the number of fibers.
  • the bulk density of the first filter layer is preferably 0.05 to 0.50 g / cm 3 , more preferably 0.07 to 0.40 g / cm 3 , and even more preferably 0.10 to 0.30 g. / Cm 3 .
  • the bulk density of the first filter layer is 0.50 g / cm 3 or less, the flow resistance of the first filter layer is reduced, the clogging of blood cells is reduced, and the processing speed tends to be improved.
  • the bulk density is 0.05 g / cm 3 or more, the number of contacts with leukocytes and the like tends to increase and the leukocytes and the like tend to be easily captured, and the mechanical strength of the first filter layer increases. I have something to do.
  • a non-woven fabric having a size of 2.5 cm x 2.5 cm is cut out from a place that seems to be homogeneous, and the basis weight (g / m 2 ) and thickness (cm) are measured by the method described later. Then, divide the basis weight by the thickness to obtain. However, the basis weight and thickness are measured three times by changing the part to be cut out, and the average value is taken as the bulk density.
  • the basis weight of the first filter layer is 2.5 cm x 2.5 cm, and the non-woven fabric is sampled from a place that seems to be homogeneous, the weight of the non-woven fabric piece is measured, and this is converted into the mass per unit square meter. It is required by that.
  • the thickness of the first filter layer is determined by sampling the non-woven fabric from a location that is 2.5 cm x 2.5 cm and is considered to be homogeneous, and measuring the thickness at the center (1 location) with a constant pressure thickness gauge. Be done.
  • the pressure loaded by the constant pressure film thickness meter is 0.4 N, and the area of the measuring part is 2 cm 2 .
  • Blood treatment filters are usually sterilized by steam heat treatment before use. At this time, it is considered that the physical structure of the non-woven fabric contained in the filter layer is significantly changed by the steam heat treatment. Above all, when the non-woven fabric shrinks in the plane direction, the grip structure becomes unstable in the blood treatment filter having the structures shown in FIGS. 1 and 2, and the blood treatment filter has an ability to remove leukocytes and the like and is easy to handle. May decrease.
  • the amount of uncrystallized heat of the non-woven fabric contained in the filter layer before steam heat treatment is preferably 5 J / g or less, more preferably 3 J / g or less, still more preferably 2 J / g or less, and particularly preferably. It is 1 J / g or less.
  • the "caloric value of uncrystallized" is an index indicating the crystallinity of the resin, and the smaller this value is, the higher the crystallinity of the resin is.
  • the filtration performance and handleability as a blood treatment filter are improved.
  • a blood treatment filter in which a filter medium containing a filter layer is sandwiched between rigid containers and gripped as shown in FIGS. 1 and 2, the repulsive strength of the filter medium with respect to the grip portion of the container is high even after steam heat treatment.
  • the sandwiching between the container gripping portion and the filter medium is maintained in a strong state, so that the side leak phenomenon can be suppressed and the ability to remove leukocytes and the like can be improved.
  • the side leak phenomenon is a phenomenon in which blood does not penetrate the filter medium but passes between the grip portion and the filter medium and flows from the inlet space to the outlet space.
  • the amount of uncrystallized heat of the non-woven fabric is controlled to a certain level or less to bond the container and the filter medium.
  • the strength of the part is improved, and the centrifugal resistance of the blood treatment filter (difficulty of cracking at the joint between the container and the filter medium when the blood treatment filter is centrifuged (when centrifugal force is applied)) is improved. To do.
  • the value obtained by subtracting the calorific value of crystallization from the calorific value of crystal melting before the steam heat treatment of the non-woven fabric contained in the filter layer is preferably 50 J / g or more, more preferably 55 J / g or more, still more preferably. Is 60 J / g or more, particularly preferably 65 J / g or more.
  • This "value obtained by subtracting the amount of heat of crystallization from the amount of heat of crystal melting" is also an index indicating the degree of crystallinity of the resin, and the larger this value is, the higher the degree of crystallinity of the resin is.
  • the calorific value for crystallization and the calorific value for crystal melting are values measured by a differential scanning calorimetry method (DSC method) for a non-woven fabric (fiber base material).
  • DSC method differential scanning calorimetry method
  • the measuring method will be described below. Separate 3-4 mg of non-woven fabric (fiber base material) and set it in an aluminum standard container. Under an atmosphere of an initial temperature of 35 ° C., a heating rate of 10 ° C./min, and a nitrogen flow of 50 mL / min, an initial temperature rise curve (DSC). Curve) is measured.
  • the calorific value (J) obtained by detecting the exothermic peak and the melting peak (endothermic peak) from this initial temperature rise curve (DSC curve) and dividing the calorific value (J) obtained from each peak area by the mass of the non-woven fabric (J) / G) and the amount of heat of crystal fusion (J / g) are calculated.
  • a TA-60WS system manufactured by Shimadzu Corporation can be used as the measuring device.
  • the degree of X-ray crystallinity of the non-woven fabric contained in the filter layer before steam heat treatment is preferably 60 or more, more preferably 63 or more, still more preferably 66 or more.
  • the crystallinity of the non-woven fabric is further increased, and changes in the physical properties (shrinkage, etc.) of the filter layer before and after the steam heat treatment are suppressed, so that the ability to remove leukocytes and the like is enhanced.
  • the degree of X-ray crystallinity is measured by the X-ray diffraction method.
  • the measurement can be performed by using an X-ray diffractometer (for example, MiniFlexII (Rigaku, model number 2005H301)) and following the measurement procedures 1) to 5).
  • X-ray diffractometer for example, MiniFlexII (Rigaku, model number 2005H301)
  • a non-woven fabric having an uncrystallized heat quantity of 5 J / g or less Before the steam heat treatment, a non-woven fabric having an uncrystallized heat quantity of 5 J / g or less, a non-woven fabric having a value obtained by subtracting the uncrystallized heat quantity from the heat of crystallization of 50 J / g or more, and an X-ray crystallinity of 60 or more.
  • the non-woven fabric of No. 1 can be easily produced, for example, by selecting the material and production conditions thereof as described later.
  • the area shrinkage of the non-woven fabric is preferably 10% or less, more preferably 3% or less, particularly preferably 2% or less, and most preferably 1% or less.
  • the area shrinkage rate is 10% or less, the uniformity of the pore diameter is maintained even after the sterilization treatment, the fluctuation of the treatment speed can be prevented, and a stable performance balance tends to be exhibited, which is preferable.
  • polybutylene terephthalate has a faster crystallinity than other polyester fibers such as polyethylene terephthalate fiber, and therefore it is easy to increase the crystallinity. Therefore, harsh steam heat treatment such as high temperature and high pressure sterilization is performed.
  • shrinkage in the plane direction is unlikely to occur (the area shrinkage ratio is likely to be reduced), and therefore stable ability to remove leukocytes and the like and processing speed can be exhibited regardless of sterilization conditions.
  • the area shrinkage of the non-woven fabric is defined as the vertical and horizontal dimensions of the non-woven fabric (fiber base material) cut into a square of about 20 cm x 20 cm, and then the non-woven fabric is not fixed with pins or the like for 240 minutes at 115 ° C. After heat treatment, the vertical and horizontal dimensions are measured again, and the calculation is performed by the following formula.
  • Area shrinkage rate (%) (Vertical length of non-woven fabric before heat treatment (cm) x Horizontal length of non-woven fabric before heat treatment (cm)) -Vertical length of non-woven fabric after heat treatment (cm) x horizontal length of non-woven fabric after heat treatment (cm)) ⁇ (Vertical length of non-woven fabric before heat treatment (cm) x Horizontal length of non-woven fabric before heat treatment (cm)) x 100
  • a blood treatment filter When a blood treatment filter is produced by sandwiching and gripping a filter medium between two parts, an outlet side and an inlet side container material constituting a rigid container (for example, as shown in FIGS. 1 and 2). ), When the filter medium contains a plurality of non-woven fabrics, a non-woven fabric having a high degree of crystallinity is used as the non-woven fabric in contact with the outlet-side container material (the non-woven fabric arranged at the position closest to the outlet-side container material). And, the gripping portion of the outlet side container material after the steam heat treatment can be more strongly pinched to the filter medium, whereby blood can pass through between the grip portion and the filter medium without penetrating the filter medium and enter. It is possible to suppress the phenomenon of direct flow from the part space into the exit part space (side leak phenomenon), improve the ability to remove leukocytes and the like, and further improve the performance as a blood treatment filter.
  • the non-woven fabric in contact with the outlet-side container material preferably includes the following (1), and more preferably includes (2) and / or (3) in addition to (1).
  • the amount of uncrystallized heat before the steam heat treatment is 5 J / g or less
  • the value obtained by subtracting the amount of uncrystallized heat from the amount of heat of crystal melting before the steam heat treatment is 50 J / g or more
  • the degree of crystallization of all the non-woven fabrics contained in the filter medium If the value is high, it is excellent from the viewpoint of the ability to remove leukocytes and the like after the steam heat treatment, but the repulsive strength of the filter medium is increased, which makes it less easy to grip or join the filter medium by sandwiching it between the container materials.
  • the non-woven fabrics in contact with the inlet side container material and the outlet side container material (or the inlet side container material and the outlet side container material) It is preferable that the degree of crystallization of the non-woven fabric other than the non-woven fabric in contact with the non-woven fabric and a predetermined number (usually one to several) of non-woven fabrics arranged adjacent thereto is not too high.
  • the filter medium gripped by the rigid container includes the second filter layer (described later) and the first filter layer in order from the inlet side, the outlet of the plurality of non-woven fabrics contained in the first filter layer.
  • the non-woven fabric in contact with the part-side container material (and a predetermined number of non-woven fabrics arranged adjacent thereto) satisfy at least the above (1), and a part or all of the other non-woven fabrics satisfy the above (1). From the viewpoint of productivity in the production of blood treatment filters, it is not satisfied, or even if it is satisfied, it has a larger amount of uncrystallized heat before steam heat treatment than the non-woven fabric in contact with the outlet side container material. Is preferable.
  • the blood treatment filter may include an additional filter layer in addition to the first filter layer, as long as the effects of the present invention are not impaired.
  • the blood treatment filter may further include one or more second filter layers between the inlet of the container and the first filter layer.
  • the second filter layer has a structure suitable for removing microaggregates contained in blood.
  • the second filter layer preferably contains a non-woven fabric.
  • the material of the non-woven fabric for example, the same material as the material of the non-woven fabric contained in the first filter layer can be mentioned.
  • the average fiber diameter of the non-woven fabric contained in the second filter layer is preferably 3 ⁇ m to 60 ⁇ m, more preferably 4 ⁇ m to 40 ⁇ m, and further preferably 30 ⁇ m to 40 ⁇ m from the viewpoint of removing microaggregates in blood. / Or 10 ⁇ m to 20 ⁇ m.
  • the non-woven fabric of the second filter layer on the upstream side (entrance side) having a coarse mesh is used.
  • the agglomerates are trapped, and the agglomerates that reach the non-woven fabric of the first filter layer on the fine downstream side (outlet side) are reduced. Therefore, clogging of the first filter layer due to agglomerates is suppressed.
  • the bulk density of the second filter layer is preferably 0.05 to 0.50 g / cm 3 , and more preferably 0.10 to 0.40 g / cm 3 .
  • the bulk density of the second filter layer is 0.50 g / cm 3 or less, clogging of the non-woven fabric due to trapping of agglomerates and leukocytes is suppressed, and the filtration rate tends to be improved.
  • the bulk density of the non-woven fabric is 0.05 g / cm 3 or more, the ability to capture aggregates is increased, clogging of the non-woven fabric in the first filter layer is suppressed, and the filtration rate tends to be improved.
  • the mechanical strength of the non-woven fabric tends to improve.
  • the filter medium of the blood treatment filter may further contain one or more third filter layers between the first filter layer and the outlet portion of the container as long as the effects of the present invention are not impaired. Further, the filter medium of the blood treatment filter further includes one or more second filter layers between the inlet portion of the container and the first filter layer, and one or more between the first filter layer and the outlet portion of the container. The third filter layer of the above may be further contained.
  • the configuration of the third filter layer may be appropriately adjusted according to the required performance.
  • the third filter layer preferably contains a known filtration medium such as a fibrous porous medium such as a non-woven fabric, a woven fabric, or a mesh, or a porous body having three-dimensional network-like continuous pores.
  • a known filtration medium such as a fibrous porous medium such as a non-woven fabric, a woven fabric, or a mesh, or a porous body having three-dimensional network-like continuous pores.
  • these materials include polypropylene, polyethylene, styrene-isobutylene-styrene copolymer, polyurethane, polyester, and the like.
  • the third filter layer contains a non-woven fabric from the viewpoint of productivity and welding strength of the blood treatment filter. It is particularly preferable that the third filter layer has a plurality of protrusions by embossing or the like because the blood flow becomes more uniform.
  • the average fiber diameter of the non-woven fabric contained in the third filter layer is preferably 3 ⁇ m to 60 ⁇ m, more preferably 4 ⁇ m to 40 ⁇ m, still more preferably 30 ⁇ m to 40 ⁇ m and / or 10 ⁇ m to 20 ⁇ m.
  • the filter layer is pressed against the outlet side container by the positive pressure on the inlet side generated during filtration. It is preferable because the negative pressure on the outlet side prevents the container on the outlet side from coming into close contact with the filter layer and obstructing the blood flow, and also enhances the weldability between the flexible container and the filter layer.
  • each non-woven fabric constituting the filter layer may be modified by known techniques such as coating, chemical treatment, and radiation treatment for the purpose of controlling the selective separability of blood cells and the hydrophilicity of the surface.
  • the method for producing the non-woven fabric (fiber base material) is not limited, and the non-woven fabric (fiber base material) can be produced by either a wet method or a dry method. From the viewpoint of stably obtaining a non-woven fabric having a suitable maximum orientation ratio, it is particularly preferable to adopt the melt blow method.
  • melt blow method a method for manufacturing a non-woven fabric (fiber base material).
  • the molten polymer stream melted in the extruder is filtered by an appropriate filter, guided to the molten polymer introduction section of the melt blow die, and then discharged from an orifice nozzle.
  • the heated gas introduced into the heated air introduction section is guided to the heated air ejection slit formed by the melt blow die and the lip, and is ejected from here to refine the discharged molten polymer to form ultrafine fibers.
  • a non-woven fabric is obtained by laminating the formed ultrafine fibers. Further, when the nonwoven fabric is heat-treated using a heat suction drum, a hot plate, hot water, a hot air heater, or the like, a nonwoven fabric having a desired crystallinity can be obtained.
  • the method for producing a non-woven fabric having a maximum orientation ratio of 1.2 or more is not particularly limited, but for example, the winding speed of the collection conveyor (or roll) when the non-woven fabric is spun by a melt blow method or the like and collected. There is a way to speed it up. When the winding speed is increased, the fibers are strongly oriented in the winding direction (longitudinal direction) of the conveyor, and the difference from the degree of orientation in the direction orthogonal to it (width direction) becomes large.
  • the weight (basis weight) per unit area is small and the non-woven fabric becomes thin.
  • a filter medium having a desired weight or thickness can be produced. ..
  • the conveyor is designed so that the non-woven fabric can be collected in a circulating manner, it is possible to collect the non-woven fabric having a predetermined basis weight by spraying the non-woven fabric on the conveyor many times.
  • the non-woven fabric is easy to handle because of its high basis weight, and it is not necessary to excessively increase the number of laminated fabrics, so that the production efficiency of the filter medium is improved.
  • Another direction is to reduce the amount of polymer discharged (single-hole discharge amount) from one spun per unit time.
  • the discharge amount is reduced, the fibers constituting the non-woven fabric become thinner, so that the fibers are strongly oriented in the winding direction of the conveyor.
  • the average fiber diameter of the fiber changes, the leukocyte removal rate and the filtration time are affected by the change, so it is preferable that the discharge amount does not change significantly.
  • polystyrene resin generally has a lower melting point and melt viscosity than polyethylene terephthalate resin. Therefore, by using polybutylene terephthalate resin, a non-woven fabric having a high degree of orientation in the longitudinal direction during spinning can be produced. Cheap. Regarding resin selection, the melting point of polymers containing impurities such as copolymers and additives is more likely to decrease than so-called homopolymers (monopolymers), so these resin selections should be made appropriately. By doing so, the melt viscosity can be optimally adjusted.
  • monopolymers homopolymers
  • a non-woven fabric having a maximum orientation ratio of 1.2 or more can be produced by producing it using PBT resin under the following conditions.
  • the melt viscosity (shear rate 100 (1/sec), 280 ° C.) is known to be 100 to 500 (Pa ⁇ s).
  • the die temperature is set to 290 ° C. or lower, discoloration of fibers due to resin decomposition can be suppressed in the case of PBT, which is preferable.
  • the single-hole discharge amount is a parameter that is directly linked to the average fiber diameter of the non-woven fabric, it is necessary to adjust the pressure of the heated air as well in order to obtain a predetermined average fiber diameter when the discharge amount is changed. .. For example, when lowering the discharge amount, the average fiber diameter can be maintained by lowering the pressure of the heating air. Further, after setting the single-hole discharge amount, it is necessary to calculate and set the collection time on the conveyor in order to obtain a predetermined weight of the non-woven fabric. That is, since the single-hole discharge amount also affects the production amount of the non-woven fabric, it is necessary to return to the selection of the resin and the discharge amount again when considering the productivity and quality of the non-woven fabric.
  • the distance between the nozzle and the conveyor does not significantly affect the orientation ratio of the non-woven fabric, but it is important as a means of adjusting the thickness of the non-woven fabric.
  • the thickness can be reduced by adjusting within 3 to 60 cm and shortening the distance between the nozzle and the conveyor.
  • the bulk density can be easily adjusted to 0.10 to 0.30 g / cm 3 by adjusting the distance between the nozzle and the conveyor to 3 to 10 cm. is there.
  • One embodiment of the present invention includes a container having an inlet and an outlet for blood.
  • a filter medium arranged between the inlet and the outlet in the container, It is a blood processing filter containing
  • the filter medium includes one or more filter layers (hereinafter, also referred to as "first filter layer").
  • the filter layer has a space in which the maximum length in the plane direction is 50 ⁇ m or more and the maximum length in the thickness direction is 15 ⁇ m or more in the cross section in the thickness direction.
  • the present invention relates to the blood processing filter. By having a predetermined space inside the first filter layer, an excellent leukocyte removal rate and an excellent filtration time (filtration rate) can be exhibited.
  • the container is as described in the item of ⁇ 1st blood treatment filter>.
  • the filter medium contains one or more first filter layers.
  • the plurality of first filter layers may be the same or different.
  • the thickness of the first filter layer include 0.1 mm to 0.8 mm, 0.3 mm to 0.6 mm, 0.4 to 0.5 mm and the like. Sampling at least 3 locations in the spinning width direction (for example, 1 location from the left edge to the center, 1 location near the center, and 1 location from the center to the right end) in consideration of variations in physical properties during spinning. By doing so, the average thickness of the first filter layer can be measured.
  • the size of the sample is 2.5 cm x 2.5 cm, and the center (1 place) is measured with a constant pressure thickness meter to determine the thickness.
  • the pressure loaded by the constant pressure film thickness meter is 0.4 N, and the area of the measuring part is 2 cm 2 . If the spinning width direction cannot be specified, sample from the part used as the filter filter and measure.
  • the first filter layer preferably contains a non-woven fabric.
  • the non-woven fabric is as described in the item of ⁇ 1st blood treatment filter>.
  • the non-woven fabric contained in the first filter layer may have a coat layer on its surface.
  • the coat layer is as described in the item of ⁇ First blood treatment filter>.
  • the non-woven fabric contained in the first filter layer preferably has a basic nitrogen-containing functional group on the surrounding surface portion thereof.
  • the peripheral surface portion of the non-woven fabric may further have a nonionic hydrophilic group.
  • the basic nitrogen-containing functional group and the nonionic hydrophilic group are as described in the item of ⁇ 1st blood treatment filter>.
  • the first filter layer has a space in which the maximum length in the plane direction is 50 ⁇ m or more and the maximum length in the thickness direction is 15 ⁇ m or more in the cross section in the thickness direction (cut surface cut in the thickness direction) (for example). 8A and 8B).
  • the filter medium includes a plurality of first filter layers, at least one first filter layer may have the internal space, but it is preferable that all the first filter layers have the internal space. ..
  • the maximum length of the space in the plane direction is preferably 50 ⁇ m to 2000 ⁇ m, more preferably 100 ⁇ m to 1500 ⁇ m, and further preferably 200 ⁇ m to 1000 ⁇ m.
  • the maximum length of the space in the thickness direction is preferably 15 ⁇ m to 200 ⁇ m, more preferably 15 ⁇ m to 150 ⁇ m, and further preferably 20 ⁇ m to 100 ⁇ m.
  • the internal space of the first filter layer can be measured by the following method.
  • the size of the internal space of the first filter layer does not substantially change between the state in which the first filter layer is housed in the blood treatment filter and the state in which the first filter layer is taken out from the blood treatment filter.
  • From one first filter layer a portion having average physical properties (ventilation resistance, density, etc.) of the filter layer is sampled.
  • at least three locations in the spinning width direction for example, one location from the left end to the vicinity of the center, one location near the center, and one location from the center to the right end Sampling at the location
  • measuring the internal space of the cross section in the thickness direction of the sample for example, one location from the left end to the vicinity of the center, one location near the center, and one location from the center to the right end Sampling at the location.
  • sampling is performed from the part used as the filter filter.
  • the length of the internal space is determined using SEM (ProX) hole diameter analysis software (PHENOM POROMETRIC) manufactured by Phenom World.
  • the vacancy detection condition is the initial setting condition of the software described below. However, if the detection is insufficient, such as when the vacancies overlap, the vacancies detection conditions (Min Contrast, Merge Shared borders, Conductance, Min Detection, etc.) may be adjusted as appropriate.
  • the specific measurement method for the internal space is as follows. (1) The sample of the first filter layer to be photographed has a size of about 10 mm ⁇ about 3 mm, and a side of 10 mm is used for cross-sectional observation. Three samples with a size of about 10 mm ⁇ about 3 mm are used for measurement. At this time, the first filter layer is cut so that the cross section of the sample is not crushed. Since it is necessary to observe while maintaining the three-dimensional structure of the first filter layer, it is desirable to use a solution that wets the first filter layer (for example, water or 20% ethanol water. If the hydrophilicity is low, ethanol water is used. After immersing the first filter layer in (.), Immerse it in liquid nitrogen and fold the sufficiently frozen first filter layer.
  • a solution that wets the first filter layer for example, water or 20% ethanol water. If the hydrophilicity is low, ethanol water is used.
  • a fixing resin epoxy resin
  • Etc. epoxy resin
  • the maximum space length is the average value of 9 points of the maximum space length of each cross-sectional image.
  • the initial setting values of the hole diameter analysis software are as follows. Min shared borders: 0.3 Edge edges: Unselected Conductance: 0.3 Min detection size: 2.5 Foreground kernel size: 15 Segmenter anisotropy diffusion control: 10 Segmenter anisotropic diffusion iterations: 5 Segmenter gradient function type: normal Segmenter WS lower threshold: 0.001 Merge min size ratio: 2 Merge kernel size: 3
  • the in-plane porosity means the proportion of voids existing in the plane corresponding to a predetermined position in the thickness direction.
  • a large in-plane porosity means a low in-plane fiber density. Specifically, when the porosity in the plane is 1, it means that there are no fibers in the plane.
  • the fluctuation of the in-plane porosity is, for example, the ratio of the voids existing in the plane corresponding to the first position in the thickness direction and the ratio of the voids existing in the plane corresponding to the second position in the thickness direction. Means different.
  • FIG. 9 shows the in-plane porosity of the non-woven fabric of Example A1 in the thickness direction.
  • the "position” in FIG. 9 represents a predetermined position (distance from the surface of the first filter layer) in the thickness direction, and the "porosity” is the porosity existing in the plane corresponding to the predetermined position in the thickness direction.
  • FIG. 9 shows that the in-plane porosity fluctuates in the thickness direction.
  • FIG. 11 shows the in-plane porosity of the non-woven fabric of Comparative Example A1 in the thickness direction, but the variation in the in-plane porosity is small.
  • the smallest in-plane porosity is referred to as “in-plane porosity”, and the largest in-plane porosity is referred to as “in-plane maximum porosity”.
  • the difference between the in-plane minimum porosity and the in-plane maximum porosity is preferably 0.08 to 0.28, more preferably 0.10 to 0.20.
  • the minimum porosity in the plane and the maximum porosity in the plane may be appropriately changed according to the blood to be treated. For example, when treating highly viscous blood, the porosity may be increased in order to avoid clogging. On the other hand, when treating blood having a low viscosity and a large number of white blood cells, the porosity may be lowered in order to improve the leukocyte removal performance.
  • the minimum porosity in the plane is preferably 0.72 to 0.85, and more preferably 0.75 to 0.83.
  • the maximum porosity in the plane is preferably 0.85 to 1.00, more preferably 0.87 to 0.95.
  • the in-plane porosity of the first filter layer in the thickness direction can be measured by the following method. From one first filter layer, considering the variation in physical properties during spinning, at least 3 locations in the spinning width direction (for example, 1 location from the left end to the center, 1 location near the center, and from the center to the right end) Sampling is performed at one location between the two), and the porosity of the sample is calculated by X-ray CT measurement. If the direction of the spinning width cannot be specified, three points are sampled from the portion used as the filter filter section.
  • the X-ray CT apparatus and image analysis software used are as follows. X-ray CT equipment Rigaku Co., Ltd.
  • the in-plane cut of the sample for X-ray CT measurement is cut into 2.5 mm ⁇ 2.5 mm, and the X-ray CT measurement is performed with the total thickness. However, the measured thickness is 0.1 mm or more.
  • the measurement conditions are as follows.
  • the thickness direction of the non-woven fabric is defined as the Z-axis
  • the arbitrary direction perpendicular to the Z-axis is defined as the X-axis
  • the X-axis and the direction perpendicular to the Z-axis are defined as the Y-axis.
  • the XY plane corresponds to the in-plane of the non-woven fabric. For the X-ray measurement point in the sample, select the central part in the plane that is not affected by the cut surface at the end of the sample.
  • This is referred to as a three-dimensional image 1.
  • the median filter of the image processing method is applied to the three-dimensional image 1 under the condition of a radius of 2 pix, and then the Otsu method of the image processing method is applied to divide the area.
  • the brightness value of the pixel is set to 0 for air and 255 for non-woven fabric fibers.
  • the image obtained in this way is referred to as a three-dimensional image 2.
  • the image processing method segmentation was performed on the pixels having a brightness value of 255 in the three-dimensional image 2, and among the fibers having a brightness value of 255 in a series, the fibers having a pixel count of 10000 pix or less were removed as noise.
  • the image thus obtained is set as a three-dimensional image 3 by setting the luminance value of the pixels to 0 for air and 255 for fibers of the non-woven fabric.
  • the two-dimensional porosity at each location for each 1 pix on the Z axis in the thickness direction is calculated by the following equation.
  • Porosity number of pixels of air (luminance value 0) on the XY surface with a thickness of 1 pix / total number of pixels on the XY surface with a thickness of 1 pix This porosity is obtained for all pixels in the Z-axis direction (all in the thickness direction).
  • the in-plane minimum porosity, the in-plane maximum porosity, and their differences are preferably within the above numerical ranges.
  • the first filter layer preferably has a filling factor of 0.09 to 0.26, and more preferably has a filling factor of 0.12 to 0.19.
  • the filling rate of the first filter layer is 0.26 or less, clogging of blood cells and microaggregates is reduced, and the treatment speed tends to be improved.
  • the filling rate of the first filter layer is 0.09 or more, the number of contacts with leukocytes and the like tends to increase and the capture rate of leukocytes and the like tends to improve, and the mechanical strength of the filter medium is improved. Tend to do.
  • the filling rate of the first filter layer is measured by the following method.
  • the area, thickness, and mass of the cut first filter layer in the plane direction and the specific gravity of the fiber material constituting the non-woven fabric of the first filter layer are measured and calculated by the following formula (10).
  • the texture is obtained by sampling a non-woven fabric from a portion having a size of 2.5 cm ⁇ 2.5 cm and appearing to be homogeneous, measuring the weight of the non-woven fabric piece, and converting this into the mass per unit square meter.
  • the thickness of the first filter layer is determined by sampling the non-woven fabric from a location that is 2.5 cm x 2.5 cm and is considered to be homogeneous, and measuring the thickness at the center (1 location) with a constant pressure thickness gauge. Be done.
  • the pressure loaded by the constant pressure film thickness meter is 0.4 N, and the area of the measuring part is 2 cm 2 .
  • Filling rate [mass of the first filter layer (g) ⁇ ⁇ area of the first filter layer in the plane direction (cm 2 ) ⁇ thickness of the first filter layer (cm) ⁇ ] ⁇ constitutes a non-woven fabric of the first filter layer Specific gravity of fiber material (g / cm 3 ) ⁇ ⁇ ⁇ (10)
  • the formation index of the first filter layer is as described in the item of ⁇ First blood treatment filter>.
  • the specific surface area of the first filter layer is preferably 0.50 m 2 / g or more and 1.50 m 2 / g or less.
  • the specific surface area is 1.50 m 2 / g or less, the adsorption of useful components such as plasma proteins to the filter layer during blood treatment is suppressed, and the recovery rate of the useful components tends to be improved.
  • the specific surface area is 0.50 m 2 / g or more, the amount of adsorbed leukocytes or the like increases, so that the ability to remove leukocytes or the like tends to improve.
  • the specific surface area of the first filter layer is more preferably 0.70 m 2 / g or more 1.45 m 2 / g or less, more preferably 1.10 m 2 / g or more 1.40 m 2 / g or less.
  • the measurement of the specific surface area is as described in the item of ⁇ 1st blood treatment filter>.
  • Ventilation resistance The ventilation resistance of the first filter layer is as described in the item of ⁇ First blood treatment filter>.
  • the average flow hole diameter of the first filter layer is preferably smaller than 8.0 ⁇ m.
  • the average flow hole diameter is smaller than 8.0 ⁇ m, the number of contacts with leukocytes and the like tends to increase, and the capture of leukocytes and the like tends to be facilitated.
  • the average flow hole diameter is more preferably 1.5 ⁇ m or more and 7.5 ⁇ m or less, further preferably 2.5 ⁇ m or more and 7.0 ⁇ m or less, and most preferably 3.5 ⁇ m or more and 6.0 ⁇ m or less.
  • the measurement of the average flow hole diameter is as described in the item of ⁇ 1st blood treatment filter>.
  • the critical wet surface tension (CWST) of the first filter layer is preferably 70 dyn / cm or more, more preferably 85 dyn / cm or more, and further preferably 95 dyn / cm or more.
  • the upper limit of CWST is not particularly limited, but may be, for example, 200 dyn / cm, 150 dyn / cm, 100 dyn / cm, or the like.
  • the measurement of CWST is as described in the item of ⁇ 1st blood treatment filter>.
  • the average fiber diameter of the non-woven fabric contained in the first filter layer is as described in the item of ⁇ First blood treatment filter>.
  • the filter medium of the blood treatment filter may include an additional filter layer in addition to the first filter layer, as long as the effects of the present invention are not impaired.
  • the filter medium may further include one or more second filter layers between the inlet of the container and the first filter layer.
  • the second filter layer is as described in the ⁇ 1st blood treatment filter> section.
  • the filling rate of the second filter layer is preferably 0.04 to 0.36, and more preferably 0.07 to 0.29.
  • the filling rate of the second filter layer is 0.36 or less, clogging of the non-woven fabric due to trapping of agglomerates is suppressed, and the filtration rate tends to be improved.
  • it is 0.04 or more the ability to capture agglomerates increases, clogging of the first filter layer is suppressed, the filtration rate tends to be improved, and the mechanical strength of the non-woven fabric is improved. There is a tendency.
  • the filter medium of the blood treatment filter may further contain one or more third filter layers between the first filter layer and the outlet portion of the container as long as the effects of the present invention are not impaired. Further, the filter medium of the blood treatment filter further includes one or more second filter layers between the inlet portion of the container and the first filter layer, and one or more between the first filter layer and the outlet portion of the container. The third filter layer of the above may be further contained.
  • the third filter layer is as described in the item of ⁇ 1st blood treatment filter>.
  • the method for producing the non-woven fabric (fiber base material) is not limited, and the non-woven fabric (fiber base material) can be produced by either a wet method or a dry method. When forming a desired space inside the first filter layer, it is preferable to adopt the melt blow method.
  • melt blow method a method for manufacturing a non-woven fabric (fiber base material).
  • the molten polymer stream melted in the extruder is filtered by an appropriate filter, guided to the molten polymer introduction section of the melt blow die, and then discharged from an orifice nozzle.
  • the heated air introduced into the heated air introduction section is guided to the heated gas ejection slit formed by the melt blow die and the lip, and is ejected from here to refine the discharged molten polymer to form ultrafine fibers.
  • the formed ultrafine fibers are laminated on a collection conveyor or a collection drum to obtain a non-woven fabric.
  • non-woven fabric when the non-woven fabric is heat-treated using a hot suction drum, a hot plate, hot water, a hot air heater, high-pressure steam sterilization, or the like, a non-woven fabric having a small shrinkage rate and a stable shape can be obtained.
  • a rotary conveyor When collecting using a rotary conveyor, it is possible to spin the laminated non-woven fabric by spraying fibers onto the rotating conveyor and laminating them.
  • a take-up type belt conveyor When collecting using a take-up type belt conveyor, it is possible to spin a laminated non-woven fabric even if it is not a rotary type by installing a plurality of rows of spines in the longitudinal direction.
  • a predetermined space can be formed inside the filter layer by performing appropriate cooling until the fibers discharged from the spun and the newly discharged fibers overlapping the fibers are laminated. ..
  • Examples of the cooling method include a method of extending the time until the fiber layer is laminated on the fiber layer and naturally cooling the fiber layer.
  • a cooling effect can be obtained by ventilating the fibers while stably collecting the fibers. If the cooling is excessive, the fibers are not fused at all and the fiber layer is peeled off, making it impossible to form a single non-woven fabric, resulting in poor handleability and a decrease in blood recovery rate. Will come to do.
  • the internal space of the filter layer can be adjusted by appropriately adjusting the rotation speed of the collection conveyor, the melt blow die length, the spinning width, the distance (DCD) between the melt blow die and the collection drum, and the like.
  • Desirable spinning conditions for the non-woven fabrics described herein include the following conditions. ⁇ Number of melt blow die spines: 5 to 30 (hole / cm) ⁇ Collection conveyor rotation speed: 100-400 (m / min) ⁇ Discharge movement speed: 0.06 to 0.10 m / s -Single hole discharge amount: 0.12 to 0.20 (g / (min ⁇ hole)) ⁇ Amount of heating air: 100 to 400 (Nm 3 / hr) ⁇ DCD: 50 to 1000 (mm) Among these, particularly important conditions are the conveyor rotation speed and the discharge movement speed.
  • the means for laminating the non-woven fabric while rotating the collection conveyor in the longitudinal direction of the non-woven fabric can reduce the amount of the non-woven fabric applied per unit time and unit area and relatively increase the internal space of the filter layer. Therefore, it is effective. In particular, by increasing the rotation speed, the effect of improving the homogeneity of the non-woven fabric and increasing the internal space of the filter layer can be obtained.
  • a means for discharging fibers with a time difference in the width direction instead of simultaneously discharging the fibers from the spun in the width direction is effective because the internal space in the plane direction can be increased.
  • the principle is that when the discharge area reciprocates, a time interval is provided between the first discharge and the second discharge, so that the cooling of the first fiber layer progresses during that time and it is difficult to fuse with the latter fiber layer. As a result, the internal space in the plane direction can be increased. The larger the time interval, the greater the effect.
  • the discharge moving speed means the moving speed of the discharge spout area in the width direction per unit time calculated by the following formula.
  • Discharge movement speed width length (m) of collection conveyor / (switching time (s) x number of spines in the width direction)
  • FIG. 13 it is assumed that eight spouts having a width of 1.6 m and a width of 20 cm are installed on the collection conveyor. In this case, when spinning is continuously performed while switching from the rightmost spun 1 to the leftmost spun 8 in FIG. 13 every 2.5 seconds, the discharge moving speed is 1.6 / (2.5).
  • This discharge moving speed indicates the net speed at which the discharge range expands in the width direction. If you want to obtain the same effect more easily than discharging the time difference in the width direction, instead move the melt blow die itself back and forth in the width direction with respect to the conveyor, or move the conveyor in the width direction with respect to the die. The same effect can be obtained by moving it back and forth.
  • the number of die spines per unit length is an effective parameter in that it improves the homogeneity of the non-woven fabric in the plane direction and controls the size of the internal space within a suitable range.
  • the single-hole discharge amount and DCD can adjust the coating amount of the non-woven fabric and the thickness of the non-woven fabric per unit time, respectively, and are effective for relatively controlling the internal space.
  • the single-hole discharge amount is reduced, the cooling of the fiber layer is promoted, and the internal space can be relatively increased.
  • the resin becomes too thin and a phenomenon of scattering (flying) without being collected on the conveyor occurs, so it is desirable to adjust the resin within a certain range.
  • the amount of heating air can be adjusted for the average fiber diameter of the non-woven fabric, and it is effective to increase the amount of heating air in order to obtain a constant leukocyte removing ability. However, if it is too high, the fibers become too thin and scatter (fly) without being collected on the conveyor. Therefore, it is desirable to adjust the fiber to a certain level or less according to the single-hole discharge amount.
  • the leukocyte removal method includes, for example, a step of passing a leukocyte-containing liquid through a blood treatment filter to remove leukocytes from the leukocyte-containing liquid.
  • the leukocyte-containing solution is a general term for body fluids containing leukocytes and synthetic blood, and specifically, whole blood, concentrated erythrocyte solution, washed erythrocyte suspension solution, thawed erythrocyte concentrated solution, synthetic blood, and poor platelets.
  • Consists of single or multiple blood components prepared from whole blood and whole blood such as plasma (PPP), polycytoplasmic plasma (PRP), plasma, frozen plasma, platelet concentrate and buffy coat (BC).
  • PPP plasma
  • PRP polycytoplasmic plasma
  • plasma frozen plasma
  • It is a liquid, or a solution obtained by adding an anticoagulant or a preservative to the liquid, or a whole blood preparation, an erythrocyte preparation, a platelet preparation, a plasma preparation, or the like.
  • the liquid obtained by treating the above liquid by the method of the present embodiment is referred to as a liquid from which leukocytes have been removed.
  • leukocyte-removed whole blood preparations in the case of pre-preservation leukocyte removal, whole blood stored at room temperature or refrigerated is preferably collected within 72 hours, more preferably within 24 hours, and particularly preferably within 12 hours.
  • a leukocyte-removed whole blood preparation can be obtained by removing leukocytes using a blood treatment filter at room temperature or refrigerating within, most preferably within 8 hours.
  • a leukocyte-removing whole blood preparation is prepared by removing leukocytes from whole blood stored at room temperature, refrigeration or freezing, preferably within 24 hours before use using a blood treatment filter. Obtainable.
  • Preservatives such as CPD, CPDA-1, CP2D, ACD-A, ACD-B, heparin, and anticoagulants are added to the collected whole blood.
  • a method for separating each blood component there are a case where leukocytes are removed from whole blood and then centrifugation is performed, and a case where whole blood is centrifuged and then erythrocytes or erythrocytes and leukocytes are removed from BC.
  • a leukocyte-depleted erythrocyte preparation can be obtained by centrifuging the leukocyte-depleted whole blood.
  • centrifugation conditions When whole blood is centrifuged before leukocyte removal, there are two types of centrifugation conditions: weak centrifugation conditions that separate erythrocytes and PRP, and strong centrifugation conditions that separate erythrocytes, BC, and PPP. If necessary, add a preservative solution such as SAGM, AS-1, AS-3, AS-5, MAP to erythrocytes isolated from whole blood or erythrocytes containing BC, and then use a leukocyte depletion filter to add erythrocytes. A leukocyte-depleted erythrocyte preparation can be obtained by removing leukocytes from the cell.
  • a preservative solution such as SAGM, AS-1, AS-3, AS-5, MAP
  • whole blood stored at room temperature or refrigerated is preferably collected within 72 hours, more preferably within 48 hours, particularly preferably within 24 hours, and most preferably within 12 hours. Centrifugation can be performed.
  • room temperature is preferably within 120 hours, more preferably within 72 hours, particularly preferably within 24 hours, and most preferably within 12 hours after blood collection from the erythrocyte preparation stored at room temperature or refrigerated.
  • a leukocyte-depleted erythrocyte preparation can be obtained by removing leukocytes using a blood treatment filter under or in a refrigerator.
  • a leukocyte-removed erythrocyte preparation is obtained by removing leukocytes from a erythrocyte preparation stored at room temperature, refrigeration or freezing within 24 hours before use using a blood treatment filter. Can be done.
  • Preservatives such as CPD, CPDA-1, CP2D, ACD-A, ACD-B, heparin, and anticoagulants are added to the collected whole blood.
  • the method for separating each blood component is to remove leukocytes from whole blood and then centrifuge, or to centrifuge whole blood and then remove leukocytes from PRP or platelets.
  • a leukocyte-depleted platelet preparation can be obtained by centrifuging the leukocyte-depleted whole blood.
  • centrifugation conditions When whole blood is centrifuged before leukocyte removal, there are two types of centrifugation conditions: weak centrifugation conditions that separate erythrocytes and PRP, and strong centrifugation conditions that separate erythrocytes, BC, and PPP.
  • weak centrifugation conditions leukocyte-removed platelet preparation is obtained by centrifuging after removing leukocytes from PRP separated from whole blood with a blood treatment filter, or after centrifuging PRP to obtain platelets and PPP, Leukocytes can be removed with a blood treatment filter to obtain a leukocyte-depleted platelet preparation.
  • platelets are obtained by pooling one unit or several to several dozen units of BC separated from whole blood and centrifuging by adding a preservation solution, plasma, etc. as necessary. By removing leukocytes from the obtained platelets with a blood treatment filter, a leukocyte-depleted platelet preparation can be obtained.
  • the whole blood stored at room temperature is centrifuged, preferably within 24 hours, more preferably within 12 hours, and particularly preferably within 8 hours after blood collection.
  • the platelet preparation stored at room temperature is preferably stored at room temperature within 120 hours, more preferably within 72 hours, particularly preferably within 24 hours, and most preferably within 12 hours after blood collection.
  • a leukocyte-depleted platelet preparation can be obtained by removing leukocytes using a blood treatment filter.
  • a leukocyte-depleted platelet preparation is obtained by removing leukocytes from a platelet preparation stored at room temperature, refrigeration or freezing within 24 hours before use using a blood treatment filter. Can be done.
  • Preservatives such as CPD, CPDA-1, CP2D, ACD-A, ACD-B, heparin, and anticoagulants are added to the collected whole blood.
  • a leukocyte-depleted plasma preparation can be obtained by centrifuging the leukocyte-depleted whole blood.
  • centrifugation conditions When whole blood is centrifuged before leukocyte removal, there are two types of centrifugation conditions: weak centrifugation conditions that separate erythrocytes and PRP, and strong centrifugation conditions that separate erythrocytes, BC, and PPP.
  • weak centrifugation conditions the leukocyte-removed plasma preparation is obtained by centrifuging the PRP after removing the leukocytes with a blood treatment filter, or the leukocytes are removed with the blood treatment filter after centrifuging the PRP into PPP and platelets.
  • strong centrifugation conditions a leukocyte-depleted plasma preparation can be obtained by removing leukocytes from PPP with a blood treatment filter.
  • whole blood stored at room temperature or refrigerated is preferably collected within 72 hours, more preferably within 48 hours, particularly preferably within 24 hours, and most preferably within 12 hours. Centrifugation can be performed. Blood at room temperature or refrigerated within 120 hours, more preferably 72 hours, particularly preferably within 24 hours, most preferably within 12 hours after blood collection from plasma products stored at room temperature or refrigerated.
  • Leukocyte-depleted plasma preparations can be obtained by removing leukocytes using a treatment filter.
  • a leukocyte depleted plasma preparation is obtained by removing leukocytes from a plasma product stored at room temperature, refrigeration or freezing within 24 hours before use using a blood treatment filter. Can be done.
  • blood is collected with a blood collection needle connected to a whole blood container, and a container containing whole blood or the blood component after centrifugation is connected to a blood treatment filter.
  • whole blood is centrifuged into each component by an automatic component blood collection device, and after adding a preservative solution as needed, red blood cells, red blood cells containing BC, BC, platelets, PRP, PPP are immediately added to the blood processing filter.
  • a leukocyte-depleted erythrocyte preparation, a leukocyte-depleted platelet preparation, or a leukocyte-depleted plasma preparation may be obtained by removing leukocytes through any of the above.
  • leukocyte removal is performed by allowing leukocyte-containing blood to flow from a container containing a leukocyte-containing solution installed at a position higher than the blood treatment filter to the blood treatment filter via a tube due to a drop.
  • the leukocyte-containing blood may be pressurized from the inlet side of the blood treatment filter and / or depressurized from the outlet side of the blood treatment filter by using a means such as a pump.
  • the performance of the blood processing filter was measured by the following method.
  • the blood bag filled with pre-filtered blood and the inlet of the blood treatment filter after steam heat treatment were connected by a vinyl chloride tube 40 cm having an inner diameter of 3 mm and an outer diameter of 4.2 mm. Further, the outlet of the blood treatment filter and the blood bag for collection were connected by a vinyl chloride tube 85 cm having an inner diameter of 3 mm and an outer diameter of 4.2 mm.
  • the pre-filtered blood is poured into the blood treatment filter at a drop of 140 cm from the upper part of the blood bag filled with the pre-filtered blood, and the filtration time until the amount of blood flowing into the collection blood bag reaches 0.2 g / min. I measured it.
  • the leukocyte depletion ability was evaluated by determining the residual leukocyte count.
  • the residual white blood cell count is less than 1 ⁇ 10 6 and 45 in either the room temperature stored blood or the refrigerated stored blood. If filtration can be completed within minutes, it can be said to be a practically desirable leukocyte removal filter element. It is preferably within 40 minutes, more preferably within 35 minutes, and even more preferably within 30 minutes. This means that if the filtration time is short, more blood can be filtered per unit time in the limited space of the blood center, which leads to improvement of work efficiency. In addition, if the filtration time is long, unexpected quality defects such as hemolysis will occur, leading to disposal of the drug.
  • the residual white blood cell count is less than 1 ⁇ 106 per bag (less than 6 Log / Bag), serious side effects can be prevented. It is not necessary to satisfy all the requirements with one filter to satisfy either room temperature storage blood or refrigerated storage blood, and there is no practical problem if an appropriate filter is provided according to the usage environment. Because. It is preferably 5.8 Log / Bag or less, more preferably 5.5 Log / Bag or less, and even more preferably 5.3 Log or less. Since blood has a large individual difference, it is known that the residual white blood cell count (logarithm) shows a normal distribution even with the same filter type, and the standard deviation is about 0.20 Log.
  • a safer blood product can be prepared in consideration of the variation of 1 ⁇ (65%). Can be considered.
  • 5.3 Log it is possible to prepare a preparation in consideration of a high blood compatibility rate of 99.7%, and it is possible to dramatically suppress the risk of transfusion side effects due to the residual white blood cell count.
  • Example 1 Polybutylene terephthalate (PBT) was spun by the melt blow method to form a non-woven fabric (fiber base material).
  • the intrinsic viscosity of the PBT resin is 0.82 (dL / g)
  • the single-hole discharge amount is 0.21 (g / (minutes / hole))
  • the pressure of the heating air at the time of discharge is 0.30 (MPa).
  • the collection conveyor speed was 4.1 (m / sec).
  • the collection conveyor was circulated for 8.0 minutes to form a non-woven fabric on the conveyor.
  • the die temperature at the time of spinning was 280 ° C., and the distance between the nozzle and the collection conveyor was 6 cm.
  • the obtained fiber base material was coated with a hydrophilic polymer by the following method to obtain a non-woven fabric (first filter layer) having a coat layer.
  • the hydrophilic polymer used did not contain a carboxyl group, and the carboxyl group equivalent of the non-woven fabric after coating was 122 ⁇ eq / g, which was the same as that of the fiber base material.
  • a copolymer of 2-hydroxyethyl methacrylate (hereinafter abbreviated as HEMA) and diethylaminoethyl methacrylate (hereinafter abbreviated as DEAMA) was synthesized by ordinary solution radical polymerization. The polymerization reaction was carried out at 60 ° C.
  • the ratio of the amount of substance of the basic nitrogen-containing functional group to the total amount of substances of the nonionic group and the basic nitrogen-containing functional group in the peripheral surface portion (surface portion of the coat layer) of the obtained first filter layer is 3 It was 0.0 mol%, and the mass of the coat layer in 1 g of the first filter layer was 1.5 mg / g (fiber base material + coat layer).
  • the various physical characteristics of the first filter layer are as shown in Table 1.
  • the 14 first filter layers were cut so that Am: Ac had a ratio of 1.2: 1 (so that the direction of high orientation coincided with Am), and this was cut to have a softness of an effective filtration area of 45 cm 2 .
  • the container was filled and ultrasonically welded to prepare a blood treatment filter.
  • This blood treatment filter was steam-heated at 115 ° C. for 59 minutes and then vacuum dried at 40 ° C. for 15 hours or more.
  • the performance of the blood processing filter is as shown in Table 1.
  • Example 2 to 10 A non-woven fabric (fiber base material) was prepared in the same manner as in Example 1 except that the intrinsic viscosity of the PBT resin, the single-hole discharge amount, the collection conveyor speed, and the circulation time of the collection conveyor were changed as shown in Table 1. did. Coating was performed in the same manner as in Example 1 to obtain a first filter layer. The various physical characteristics of the first filter layer are as shown in Table 1. As shown in Table 1, the direction of high degree of orientation coincided with Am, and a blood treatment filter was prepared in the same manner as in Example 1. The performance of the blood processing filter is as shown in Table 1.
  • Examples 11 to 20 correspond to Examples 1 to 10, respectively.
  • the orientations of the first filter layers of Examples 1 to 10 were changed so that the orientation with a high degree of orientation coincided with Ac as shown in Table 2.
  • a blood treatment filter was prepared in the same manner as in 10.
  • the performance of the blood processing filter is as shown in Table 2.
  • Examples 21 to 30 correspond to Examples 1 to 10, respectively.
  • the blood treatment filter is the same as in Examples 1 to 10, except that the orientation of the first filter layer of Examples 1 to 10 is changed so that Am: Ac is 1: 1. It was created.
  • the performance of the blood processing filter is as shown in Table 3.
  • blood having a viscosity higher than that of the room temperature stored blood used in Examples 1 to 20 and containing a relatively large amount of agglomerates was used.
  • Example 1 The intrinsic viscosity of the PBT resin is 0.85 (dL / g), the single-hole discharge amount is 0.23 (g / (minutes / hole)), the pressure of the heating air at the time of discharge is 0.32 (MPa), and the collection is performed.
  • a non-woven fabric (fiber base material) was prepared in the same manner as in Example 1 except that the conveyor speed was changed to 3.5 (m / sec) and the circulation time of the collection conveyor was changed to 7.3 minutes. Coating was performed in the same manner as in Example 1 to obtain a filter layer.
  • the various physical characteristics of the filter layer are as shown in Table 4. As shown in Table 4, the direction of high degree of orientation coincided with Am, and a blood treatment filter was prepared in the same manner as in Example 1. The performance of the blood processing filter is as shown in Table 4.
  • Comparative Example 2 A blood treatment filter was prepared in the same manner as in Comparative Example 1 except that the orientation of the filter layer of Comparative Example 1 was changed so that the orientation having a high degree of orientation coincided with Ac as shown in Table 4.
  • the performance of the blood processing filter is as shown in Table 4.
  • Comparative Example 4 A blood treatment filter was prepared in the same manner as in Comparative Example 1 except that the orientation of the filter layer of Comparative Example 1 was changed so that Am: Ac was 1: 1.
  • the performance of the blood processing filter is as shown in Table 4.
  • Comparative Example 4 blood having a viscosity higher than that of the room temperature stored blood used in Comparative Example 1 and containing a relatively large amount of aggregates was used.
  • Comparative Example 5 The performance of the blood treatment filter of Comparative Example 3 was evaluated using blood having a viscosity higher than that of the room temperature stored blood used in Comparative Example 3 and containing a relatively large amount of aggregates. The results are shown in Table 4.
  • the maximum orientation ratio of the non-woven fabric was set to 1.2 or more, and the ratio of Am and Ac was appropriately adjusted according to the properties of blood. Good filtration time or white blood cell count can be achieved as compared to the case of using a comparative non-woven fabric in which is more isotropic.
  • the non-woven fabric having a maximum orientation ratio of 1.2 or more can filter highly viscous blood in a short time even if Am: Ac is set to 1: 1 and residual leukocytes. It turned out that the number can be reduced. This suggests that a high orientation ratio of the non-woven fabric forms a flow path for blood to flow, and even with high viscosity blood, a steady flow velocity is maintained without clogging, and as a result, the filtration time is shortened. ..
  • the residual white blood cell count was 5.5 Log or less and the filtration time was 40 minutes or less by refrigerated blood filtration, and the preparation quality and workability were improved with the improvement of the leukocyte removal ability. .. In particular, in Examples 2 to 6, the residual white blood cell count was 5.3 Log or less, and the leukocyte removal ability was further improved.
  • the residual white blood cell count was 5.8 Log or less and the filtration time was 40 minutes or less by room temperature blood filtration, and the preparation quality and workability were improved with the improvement of the leukocyte removal ability. .. In particular, in Examples 12 to 16, the filtration time was 35 minutes or less, and the work efficiency was further improved.
  • the residual white blood cell count was 5.5 Log or less and the filtration time was 40 minutes or less, and the preparation quality and workability were improved along with the improvement of the leukocyte removal ability.
  • the filtration time was 30 minutes or less, and the work efficiency was further improved.
  • the residual white blood cell count was 5.3 Log or less, and the leukocyte removal ability was further improved.
  • Example 31 (Making a blood treatment filter) The 14 first filter layers used in Example 1 were cut into 3 cm squares so that Am: Ac had a ratio of 1.2: 1 (so that the direction having a high degree of orientation coincided with Am). was filled in a soft container having an effective filtration area of 9 cm 2 and ultrasonically welded to prepare a blood treatment filter. This is because known filters vary in size, and in order to carry out the same size, only a small filter can perform relative evaluation.
  • This blood treatment filter was steam-heated at 115 ° C. for 59 minutes and then vacuum dried at 40 ° C. for 15 hours or more.
  • the performance of the blood processing filter is as shown in Table 5.
  • the blood bag filled with pre-filtered blood and the inlet of the blood treatment filter after steam heat treatment were connected by a vinyl chloride tube 40 cm having an inner diameter of 3 mm and an outer diameter of 4.2 mm. Further, the outlet of the blood treatment filter and the blood bag for collection were connected by a vinyl chloride tube 85 cm having an inner diameter of 3 mm and an outer diameter of 4.2 mm.
  • the pre-filtered blood is poured into the blood treatment filter at a drop of 140 cm from the upper part of the blood bag filled with the pre-filtered blood, and the filtration time until the amount of blood flowing into the collection blood bag reaches 0.2 g / min. I measured it.
  • blood after filtration 3 mL of blood (hereinafter referred to as blood after filtration) was collected from the blood bag for collection.
  • the leukocyte depletion ability was evaluated by determining the residual leukocyte count.
  • the method for measuring the residual white blood cell count is as described above.
  • the residual white blood cell count is less than 5.3 Log / Bag and 45 in either the room temperature stored blood or the refrigerated stored blood. If filtration can be completed within minutes, it can be said to be a practically desirable leukocyte removal filter element.
  • the residual white blood cell count is preferably 5.12 Log / Bag or less, more preferably 4.95 Log / Bag or less, and further preferably 4.77 Log / Bag or less.
  • the filtration time is preferably 40 minutes or less, more preferably 35 minutes or less, still more preferably 30 minutes or less. This filtration time value is the same as in the case of the normal filter size described in Examples 1 to 30.
  • the effective filtration area is 1/5 of that of the normal filter and the filtered blood volume is also 1/5, so that the amount of blood flowing through the filter medium per unit area is the same. Therefore, the filtration time can be defined as the same time as that of a normal filter.
  • the remaining white blood cell count since the blood volume is 1/5, the reference is less than 0.2 ⁇ 10 6 per bag (less than 5.3Log / Bag), and the approximate standard deviation from becoming approximately 0.18Log , Suitable performance values will be changed. Table 5 shows the performance test results of the small blood treatment filter.
  • erythrocyte removal performance of blood processing filter As a blood product, 300 g of an erythrocyte preparation prepared according to European standards (the Guide to the Preparation, Use and Quality Assurance of Blood Components 19th Edition (2017)) was used, and this was used as an example and comparative example with a natural head of 110 cm.
  • the blood product was filtered and collected using the blood treatment filter of the above, and a blood product was obtained after filtration.
  • the head is from the bottom of the pre-filtration bag containing the erythrocyte preparation to the bottom of the post-filtration collection bag of the erythrocyte preparation (in the example of FIG. 7, the top plate of the balance). Then, the residual white blood cell count was calculated according to the following formula.
  • Residual white blood cell count log [(white blood cell concentration in blood product after filtration) x (blood collection volume after filtration)]
  • the white blood cell concentration in the blood product before and after filtration was measured using a white blood cell count measurement kit "LeucoCOUNT" manufactured by Becton Deckonson (BD) and a flow cytometer FACS Canto II manufactured by BD.
  • the filtration time (Filtration time) In the above-mentioned "(leukocyte removal performance of blood treatment filter)", the time (minutes) required from the start of flowing the red blood cell preparation to the blood treatment filter until the mass increase of the collection bag of the red blood cell preparation after filtration stops is the filtration time (minute). ).
  • the stoppage of the mass increase of the recovery bag means the time when the mass of the recovery bag is measured every 1 minute from the start of filtration and the mass change of the recovery bag becomes 0.1 g / min or less. The final 1 minute determined to stop the mass increase was included in the filtration time and calculated.
  • Blood loss rate 100 (%) x ((pre-filtration blood volume (g) -blood recovery volume (g)) / pre-filtration blood volume (g)) [Evaluation criteria] ⁇ : less than 8.0% ⁇ : 8.0% or more and less than 9.2% ⁇ : 9.2% or more This time, the red blood cell preparation is adjusted to 300 g, but in actual use, the blood volume before filtration Since there are individual differences, it is necessary to calculate the amount of blood collected by the loss rate.
  • the blood loss rate needs to be practically less than 9.2%. Further, it is more preferably less than 8.0%. By doing so, useful blood loss can be reduced. As a result, the number of preparation bags to be administered to the same patient at the time of blood transfusion can be reduced, which leads to cost reduction and work efficiency in medical institutions.
  • Example A1 (Preparation of filter layer) Polybutylene terephthalate (PBT) was spun by the melt blow method to form a non-woven fabric (fiber base material).
  • a rotary conveyor type device was used for collection.
  • Ten melt blow dies having a spine number of 10 hole / cm and a die length (0.20 m) that was 1/10 of the collection width (2 m) of the collection conveyor were arranged.
  • a method of spinning with a time lag from the end in the width direction was adopted.
  • the single-hole discharge rate is 0.17 (g / (min ⁇ hole))
  • the collection conveyor rotation speed is 220 m / min
  • the switching time for each spun is 4.1 seconds
  • the discharge movement speed is 0.07 m / sec.
  • the distance (DCD) between the melt blow die and the collection conveyor was adjusted to be 50 mm.
  • the die temperature during spinning was 280 ° C.
  • the obtained non-woven fabric was coated with a hydrophilic polymer by the following method to obtain a non-woven fabric having a coat layer (first filter layer). After immersing the non-woven fabric in an ethanol solution of hydrophilic polymer (concentration: 1.5 g / L), the non-woven fabric removed from the polymer solution is squeezed to remove excess polymer solution absorbed, and while sending dry air. The polymer solution was dried to form a coat layer covering the outer peripheral surface of the non-woven fabric.
  • the ratio of the amount of substance of the basic nitrogen-containing functional group to the total amount of substances of the nonionic group and the basic nitrogen-containing functional group in the peripheral surface portion (surface portion of the coat layer) of the obtained first filter layer is 3 It was 0.0 mol%, and the mass of the coat layer in 1 g of the first filter layer was 3 mg / g (fiber base material + coat layer).
  • the various physical characteristics of the first filter layer are as shown in Table 6. Further, FIG. 9 shows the fluctuation of the in-plane porosity in the thickness direction of the first filter layer.
  • Non-woven fabric As the second filter layer and the third filter layer, polyethylene terephthalate having a basis weight of 30 (g / m 2 ) and a ventilation resistance per unit basis weight: 0.03 (kPa ⁇ s ⁇ m / g) (hereinafter, “PET”). (Abbreviated as) Non-woven fabric was used. From the upstream to the downstream of the blood flow, four second filter layers, 16 first filter layers, and four third filter layers were laminated in this order. This laminate is sandwiched between two flexible vinyl chloride resin sheets having ports that serve as blood inlets or outlets, and the peripheral portion of the filter medium and the flexible sheet is welded using a high-frequency welder.
  • the blood treatment filter was subjected to high-pressure steam sterilization at 115 ° C. for 59 minutes, and then various performances were tested. The results are shown in Table 6.
  • Example A2 Example A1 except that the spinning width was changed to 1.6 m, eight spinners were arranged in the width direction, and the discharge movement speed was changed to 0.08 to 0.09 m / sec by adjusting the spinner switching time.
  • the first filter layer and the blood treatment filter were prepared in the same manner as in the above.
  • the physical characteristics of the first filter layer and the performance of the blood treatment filter are as shown in Table 6.
  • Example A3 Example A1 except that the spinning width was changed to 1.8 m, nine spinners were arranged in the width direction, and the discharge movement speed was changed to 0.07 to 0.08 m / sec by adjusting the spinner switching time.
  • the first filter layer and the blood treatment filter were prepared in the same manner as in the above.
  • the physical characteristics of the first filter layer and the performance of the blood treatment filter are as shown in Table 6.
  • Example A4 The first as in Example A1, except that the spun switching time was adjusted to change the discharge moving speed to 0.06 to 0.07 m / sec, and a residence time of 15 seconds was provided when the discharge area was turned back.
  • a filter layer and a blood treatment filter were prepared. The physical characteristics of the first filter layer and the performance of the blood treatment filter are as shown in Table 6.
  • Example A5 Adjust the spine switching time to change the discharge movement speed to 0.09 m / sec, change the collection conveyor rotation speed to 225 to 230 m / min, change the melt blow die length to 0.40 m, and change the spine in the width direction.
  • a first filter layer and a blood treatment filter were prepared in the same manner as in Example A1 except that five units were arranged.
  • the physical characteristics of the first filter layer and the performance of the blood treatment filter are as shown in Table 6.
  • Examples A6 to A8 The rotation speed of the collection conveyor was changed to 223 to 228 m / min in Example A6, 220 to 225 m / min in Example A7, and 215 to 220 m / min in Example A8, except that it was changed to Example A1. Similarly, a first filter layer and a blood treatment filter were prepared. The physical characteristics of the first filter layer and the performance of the blood treatment filter are as shown in Table 6.
  • Example A9 Example A1 except that the discharge movement speed was changed to 0.08 to 0.09 m / sec, the melt blow die length was changed to 0.40 m, and five spouts were arranged in the width direction by adjusting the spun switching time.
  • the first filter layer and the blood treatment filter were prepared in the same manner as in the above.
  • the physical characteristics of the first filter layer and the performance of the blood treatment filter are as shown in Table 6.
  • Example A10 The first filter layer and the blood treatment filter were used in the same manner as in Example A1 except that the discharge movement speed was changed to 0.07 to 0.08 m / sec and the DCD was changed to 48 to 50 mm by adjusting the spine switching time. Created.
  • the physical characteristics of the first filter layer and the performance of the blood treatment filter are as shown in Table 6.
  • Example A11 The first filter layer and the blood treatment filter were used in the same manner as in Example A1 except that the discharge movement speed was changed to 0.06 to 0.07 m / sec and the DCD was changed to 46 to 48 mm by adjusting the spine switching time. Created.
  • the physical characteristics of the first filter layer and the performance of the blood treatment filter are as shown in Table 6.
  • Example A12 The first filter layer and the blood treatment filter were prepared in the same manner as in Example A1 except that the rotation speed of the collection conveyor was changed to 220 to 225 m / min and the DCD was changed to 58 to 60 mm.
  • the physical characteristics of the first filter layer and the performance of the blood treatment filter are as shown in Table 6. Further, FIG. 10 shows the fluctuation of the in-plane porosity in the thickness direction of the first filter layer.
  • Example A13 Adjust the spine switching time to change the discharge movement speed to 0.06 to 0.07 m / sec, change the collection conveyor rotation speed to 220 to 225 m / min, change the DCD to 55 to 60 mm, and change the melt blow die length.
  • the first filter layer and the blood treatment filter were prepared in the same manner as in Example A1 except that the speed was changed to 0.153 m and 13 spouts were arranged in the width direction.
  • the physical characteristics of the first filter layer and the performance of the blood treatment filter are as shown in Table 6.
  • Example A14 Adjust the spine switching time to change the discharge movement speed to 0.06 to 0.07 m / sec, change the collection conveyor rotation speed to 225 to 230 m / min, change the DCD to 60 to 65 mm, and change the melt blow die length.
  • the first filter layer and the blood treatment filter were prepared in the same manner as in Example A1 except that the speed was changed to 0.153 m and 13 spouts were arranged in the width direction.
  • the physical characteristics of the first filter layer and the performance of the blood treatment filter are as shown in Table 6.
  • Examples A15 and A16 By adjusting the spine switching time, the discharge moving speed is changed to 0.06 to 0.07 m / sec, the rotation speed of the collection conveyor is changed to 225 to 228 m / min in Example A15, and 220 to 225 m in Example A16.
  • the first filter layer and the blood treatment filter were prepared in the same manner as in Example A1 except that the value was changed to / min.
  • the physical characteristics of the first filter layer and the performance of the blood treatment filter are as shown in Table 7.
  • Example A17 The first filter layer and the blood treatment filter were prepared in the same manner as in Example A1 except that the discharge movement speed was changed to 0.06 to 0.07 m / sec by adjusting the spine switching time.
  • the physical characteristics of the first filter layer and the performance of the blood treatment filter are as shown in Table 7.
  • Examples A18 and A19 The DCD was changed to 55 to 60 mm in Example A18, changed to 40 to 45 mm in Example A19, and the single-hole discharge amount was changed to 0.28 g / min / hole in Example A18, and 0 in Example A19.
  • a first filter layer and a blood treatment filter were prepared in the same manner as in Example A1 except that the value was changed to .18 g / min / hole.
  • the physical characteristics of the first filter layer and the performance of the blood treatment filter are as shown in Table 7.
  • Examples A20 to A22 The concentration of the hydrophilic polymer solution in the coating was changed to 0.3 g / L in Example A20, 1.0 g / L in Example A21, and 5.0 g / L in Example A22.
  • a first filter layer and a blood treatment filter were prepared in the same manner as in Example A1. The physical characteristics of the first filter layer and the performance of the blood treatment filter are as shown in Table 7.
  • Examples A23 and A24 The first filter layer and the blood treatment filter were prepared in the same manner as in Example A1 except that the DCD was changed to 55 to 60 mm in Example A23 and 45 to 50 mm in Example A24.
  • the non-woven fabric (fiber base material) was pressed with a weak pressure in Example A23, and pressed with a strong pressure in Example A24 to adjust the filling rate.
  • the physical characteristics of the first filter layer and the performance of the blood treatment filter are as shown in Table 7.
  • Example A1 The first filter layer and the blood treatment filter were prepared in the same manner as in Example A1 except that the melt blow die length was changed to 0.3 m, the spinning width was changed to 0.3 m, and discharge was not performed with a time lag.
  • the physical characteristics of the first filter layer and the performance of the blood treatment filter are as shown in Table 7. Further, FIG. 11 shows the fluctuation of the in-plane porosity in the thickness direction of the first filter layer.
  • Comparative Example A2 The first filter layer and the blood treatment filter were prepared in the same manner as in Comparative Example A1 except that the single-hole discharge amount was changed to 0.24 g / min / hole.
  • the physical characteristics of the first filter layer and the performance of the blood treatment filter are as shown in Table 7. Further, FIG. 12 shows the fluctuation of the in-plane porosity in the thickness direction of the first filter layer.
  • Example A4 A non-rotating belt conveyor type net was used as a collecting device, and spinning was performed while sucking under the net.
  • PET resin single-hole discharge rate is adjusted to 0.08 g / min / hole, DCD is adjusted to 50 mm, melt blow die length is 0.3 m, spinning width is 0.3 m, and belt conveyor moving speed is 0.05 m /.
  • the non-woven fabric was formed in seconds by a method in which discharge was not performed with a time lag.
  • the obtained non-woven fabric was coated with a hydrophilic polymer in the same manner as in Example A1 to prepare a first filter layer.
  • the various physical characteristics of the first filter layer are as shown in Table 7.
  • a blood treatment filter was prepared in the same manner as in Example A1. The various performances of the blood treatment filter are shown in Table 7.
  • the blood filtration time is shortened and the residual white blood cell count is also reduced. You can get the effect you can. It is considered to have industrial applicability because it has the merit of improving the quality of blood in the blood transfusion market, shortening the time required for preparation of the preparation at the manufacturing site, and improving the productivity.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Anesthesiology (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cardiology (AREA)
  • External Artificial Organs (AREA)
  • Filtering Materials (AREA)

Abstract

白血球除去率及び濾過時間(濾過速度)において優れた血液処理フィルターの提供を課題とする。前記課題は、次の血液処理フィルターによって解決することができる。 血液の入口部及び出口部を有する容器と、 前記容器内の、前記入口部と前記出口部との間に配置された濾材と、 を含む血液処理フィルターであって、 前記濾材が、フィルター層を含み、 前記フィルター層が、不織布を含み、 前記不織布の繊維が、前記フィルター層のX軸平面方向への配向度Xと、前記X軸平面方向に直交するY軸平面方向への配向度Yと、を有し、 前記配向度Xの、前記配向度Yに対する比(配向度X/配向度Y)の最大値が1.2以上である、 前記血液処理フィルター。

Description

血液処理フィルター及び血液製剤の製造方法
 本発明は、血液処理フィルター及び血液製剤の製造方法に関する。
 輸血の分野においては、供血者から採血した血液に抗凝固剤を添加した全血製剤を輸血する、いわゆる全血輸血に加えて、全血製剤から受血者が必要とする血液成分を分離し、その血液成分を輸注する、いわゆる成分輸血が一般的に行われるようになっている。成分輸血には、受血者が必要とする血液成分の種類により、赤血球輸血、血小板輸血、血漿輸血などがあり、これらの輸血に用いられる血液製剤には、赤血球製剤、血小板製剤、血漿製剤などがある。
 また、最近では、血液製剤中に含まれている白血球を除去してから血液製剤を輸血する、いわゆる白血球除去輸血が普及してきている。これは、輸血に伴う頭痛、吐き気、悪寒、非溶血性発熱反応などの比較的軽微な副作用、及び、受血者に深刻な影響を及ぼすアロ抗原感作、ウィルス感染、輸血後GVHDなどの重篤な副作用が、主として輸血に用いられた血液製剤中に混入している白血球が原因で引き起こされることが明らかになったためである。頭痛、吐き気、悪寒、発熱などの比較的軽微な副作用を防止するためには、血液製剤中の白血球を、残存率が10-1~10-2以下になるまで除去すればよいと言われている。また、重篤な副作用であるアロ抗原感作やウィルス感染を防止するためには、白血球を残存率が10-4~10-6以下になるまで除去する必要があると言われている。
 また、近年ではリウマチ、潰瘍性大腸炎等の疾患の治療に、血液の体外循環による白血球除去療法が行なわれるようになってきており、高い臨床効果が得られている。
 現在、血液製剤から白血球を除去する方法には、大きく分けて、遠心分離機を用いて血液成分の比重差を利用して白血球を分離除去する遠心分離法と、不織布等の繊維集合体又は連続気孔を有する多孔構造体などからなるフィルター要素を用いて白血球を除去するフィルター法の2種類がある。白血球を粘着又は吸着により除去するフィルター法は、操作が簡便であること、及びコストが安いことなどの利点を有するため現在最も普及している。
 近年、医療現場においては白血球除去フィルターに対して新たな要求が提起されてきている。その要求のひとつは、フィルターの廃棄コストを抑えるために、フィルターをより小型化する、軽量化するということである。理由は、血液を濾過した後のフィルターは感染性廃棄物に相当し、一般に重量あたりの単価で廃棄コストがかかるためである。小型化することで、医療機関にとっては、不要なコストをより抑制することが可能となる。
 この場合に、効果的なフィルター設計の考え方は、フィルターに使用される濾過材料の有効活用率を上昇させることが良いとされている。有効活用率を向上させることで、少ない濾過材料でも血液中の白血球を十分量吸着することが可能となるからである。その手段としては、血液がフィルターに流れ込む際に流れに対して鉛直に広がる方向(通常はフィルタの平面方向)に濾過材料を均質に分布させることで、血液が均質にフィルター内に広がり、結果有効活用率が向上するという方法がよく使われる。
 その具体的な例としては、特許文献1には、濾過材料の一種である不織布を用いて、平面方向の均質性を向上させる(地合を良くする)ことにより、濾過材料の白血球除去率を向上させることが開示されている。
 また、特許文献2には、フィルターの平面方向と鉛直方向への血液の流れる速度(浸透係数)を好適に制御することで、白血球除去率の向上と濾過時間の短縮効果を両立させる技術が開示されている。
国際公開第2004/050146号公報 国際公開第2005/120600号公報
 不織布繊維が均一に分布する特許文献1の濾過材料では、血液に含まれる凝集物が不織布表面で均質に目詰まりを起こしてしまい、濾過時間の延長や濾過停止による血液廃棄のリスクが高く、濾過に適さないことが判明した。また、粘度が低い血液は、直ちにフィルターを通過してしまうため、フィルター内での滞留時間が短すぎて、白血球除去率が低いことも判明した。つまり、適度な粘度を有しつつ、目詰まりを誘発するサイズの凝集物を極力含まない特定の血液のろ過にしか対応できないという問題があった。
 特許文献2は、平面内での流れの異方性については特に規定していないので、面内での流れをどのように制御し、有効に活用するかにまで想到しておらず、結果として面内で偏流れが発生してしまい、濾過性能が十分に発揮できないケースが生じていた。つまり、面内の流れが不均一であるという理由から、低粘度の血液は、フィルターの一部の領域のみを通過してしまい、フィルター全体が活用されないため、ろ過性能が不十分であり、血液の性状によってフィルター設計の変更が要求されるという問題があった。
 本発明は、白血球除去率及び濾過時間(濾過速度)において優れた血液処理フィルターを提供することを課題とする。
 本発明者は、鋭意研究を重ねた結果、濾材を構成するフィルター層に含まれる不織布の繊維の向きを調節することにより、前記課題を解決できることを見いだした。また、本発明者等は、濾材を構成するフィルター層の内部に所定の空間を設けることによっても、前記課題を解決できることを見いだした。
 すなわち、本発明は以下のとおりである。
[1]
 血液の入口部及び出口部を有する容器と、
 前記容器内の、前記入口部と前記出口部との間に配置された濾材と、
を含む血液処理フィルターであって、
 前記濾材が、フィルター層を含み、
 前記フィルター層が、不織布を含み、
 前記不織布の繊維が、前記フィルター層のX軸平面方向への配向度Xと、前記X軸平面方向に直交するY軸平面方向への配向度Yと、を有し、
 前記配向度Xの、前記配向度Yに対する比(配向度X/配向度Y)の最大値が1.2以上である、
前記血液処理フィルター。
[2]
 配向度X/配向度Yの最大値が1.4以上である、[1]に記載の血液処理フィルター。
[3]
 濾過方向に直交する、前記フィルター層の平面方向への前記繊維の配向度(Ac)の、濾過方向に平行する、前記フィルター層の平面方向への前記繊維の配向度(Am)に対する比(Ac/Am)が、1.2以上となるように、前記フィルター層が配置されている、[1]又は[2]に記載の血液処理フィルター。
[4]
 Ac/Amが1.4以上である、[3]に記載の血液処理フィルター。
[5]
 濾過方向に平行する、前記フォイター層の平面方向への前記繊維の配向度(Am)の、濾過方向に直交する、前記フィルター層の平面方向への前記繊維の配向度(Ac)に対する比(Am/Ac)が、1.2以上となるように、前記フィルター層が配置されている、[1]又は[2]に記載の血液処理フィルター。
[6]
 Am/Acが1.4以上である、[5]に記載の血液処理フィルター。
[7]
 前記不織布がポリエステル不織布である、[1]~[6]のいずれかに記載の血液処理フィルター。
[8]
 血液の入口部及び出口部を有する容器と、
 前記容器内の、前記入口部と前記出口部との間に配置された濾材と、
を含む血液処理フィルターであって、
 前記濾材が、1以上のフィルター層を含み、
 前記フィルター層が、厚み方向の断面において、平面方向の最大長さが50μm以上であり、かつ厚み方向の最大長さが15μm以上である空間を有する、
前記血液処理フィルター。
[9]
 前記フィルター層の充填率が0.09~0.26である、[8]に記載の血液処理フィルター。
[10]
 前記フィルター層の、厚み方向における平面内最小空隙率と厚み方向における平面内最大空隙率との差が0.08~0.28である、[8]又は[9]に記載の血液処理フィルター。
[11]
 前記厚み方向における平面内最小空隙率が0.72~0.85であり、前記厚み方向における平面内最大空隙率が0.85~1.00である、[10]に記載の血液処理フィルター。
[12]
 前記フィルター層の比表面積が0.50~1.50m/gである、[8]~[11]のいずれかに記載の血液処理フィルター。
[13]
 前記フィルター層の臨界湿潤表面張力が70~100dyn/cmである、[8]~[12]のいずれかに記載の血液処理フィルター。
[14]
 [1]~[13]のいずれかに記載の血液処理フィルターに、白血球を含有する血液を通過させる工程を含む、血液製剤の製造方法。
 本発明によれば、白血球除去率及び濾過時間(濾過速度)において優れた血液処理フィルターを提供することができる。
本発明の一実施形態である血液処理フィルターの模式図である。 図1の血液処理フィルターの断面図である。 本発明の一実施形態である血液処理フィルターの模式図である。 図3の血液処理フィルターの平面を正面から見た模式図である。 Ac:Amの調節方法を示す図である。 Ac:Amの調節方法を示す図である。 白血球除去性能の試験方法を示す。 実施例A1のフィルター層の厚み方向の断面(厚み方向に切断した切断面)を示す。 図8Aの断面の拡大図である。 実施例A1のフィルター層の、厚み方向における、平面内空隙率を示す。 実施例A12のフィルター層の、厚み方向における、平面内空隙率を示す。 比較例A1のフィルター層の、厚み方向における、平面内空隙率を示す。 比較例A2のフィルター層の、厚み方向における、平面内空隙率を示す。 不織布の製造方法の一例を示す。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について、詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 以下、特に明記しない限り、「血液」の用語には、血液及び血液成分含有液体が含まれるものとする。血液成分含有液体としては、例えば、血液製剤が挙げられる。血液製剤としては、例えば、全血製剤、赤血球製剤、血小板製剤、血漿製剤等が挙げられる。
<第1の血液処理フィルター>
 本発明の一実施形態は、血液の入口部及び出口部を有する容器と、
 前記容器内の、前記入口部と前記出口部との間に配置された濾材と、
を含む血液処理フィルターであって、
 前記濾材が、フィルター層(以下「第1フィルター層」とも称する。)を含み、
 前記フィルター層が、不織布を含み、
 前記不織布の繊維が、前記フィルター層のX軸平面方向への配向度Xと、前記X軸平面方向に直交するY軸平面方向への配向度Yと、を有し、
 前記配向度Xの、前記配向度Yに対する比(配向度X/配向度Y)の最大値が1.2以上である、
前記血液処理フィルターに関する。
 フィルター層に含まれる不織布の繊維の向きを調節することによって、優れた白血球除去率及び優れた濾過時間(濾過速度)を発揮することができる。
 図1は血液処理フィルター(白血球除去フィルター)の一実施形態の模式図であり、図2は図1のII-II線断面図である。
 図1及び図2に示すように、血液処理フィルター10は、扁平型の容器1と、その内部に収容され実質的に乾燥状態である濾材5とを有している。濾材5を収容する容器1は、入口部3を有する入口部側容器材と、出口部4を有する出口部側容器材の2つの要素からなる。濾材5によって、扁平型の容器1内の空間は入口部側の空間7と出口部側の空間8とに仕切られている。
 この血液処理フィルター1においては、入口部側容器材と出口部側容器材が濾材5を挟んで配置されており、2つの容器材が、各々の一部に設けられた把持部で濾材5の外縁部9を挟みつけて把持する構造をとる。
 また、一実施形態においては、濾材と容器とを溶着等により接合し、これにより濾材を容器に把持させた構造としてもよい。
[容器]
 容器の材質としては、例えば、硬質性樹脂、可撓性樹脂等が挙げられる。
 硬質性樹脂としては、例えば、フェノール樹脂、アクリル樹脂、エポキシ樹脂、ホルムアルデヒド樹脂、尿素樹脂、ケイ素樹脂、ABS樹脂、ナイロン、ポリウレタン、ポリカーボネート、塩化ビニル、ポリエチレン、ポリプロピレン、ポリエステル、スチレン-ブタジエン共重合体等が挙げられる。
 可撓性樹脂は、フィルター層と熱的及び電気的に性質が類似したものが好ましい。可撓性樹脂としては、例えば、軟質ポリ塩化ビニル、ポリウレタン、エチレン-酢酸ビニル共重合体、ポリエチレン及びポリプロピレンのようなポリオレフィン、スチレン-ブタジエン-スチレン共重合体の水添物、スチレン-イソプレン-スチレン共重合体またはその水添物等の熱可塑性エラストマー、及び、熱可塑性エラストマーとポリオレフィン、エチレン-エチルアクリレート等の軟化剤との混合物等が挙げられる。可撓性樹脂、好ましくは、軟質ポリ塩化ビニル、ポリウレタン、エチレン-酢酸ビニル共重合体、ポリオレフィン、及び、これらを主成分とする熱可塑性エラストマーであり、更に好ましくは軟質ポリ塩化ビニル、ポリオレフィンである。
 容器の形状は、例えば、濾材が平板状の場合には、その形状に合わせて四角形、六角形などの多角形や、円形、楕円形などの扁平形状とすることができる(例えば図1及び図2)。また、濾材が円筒状の場合には、容器も同様に円筒状であることが好ましい。
[濾材]
(第1フィルター層)
 濾材は、1以上の第1フィルター層を含む。濾材が複数の第1フィルター層を含む場合、複数の第1フィルター層はそれぞれ、同一であってもよいし、異なっていてもよい。
 第1フィルター層は、不織布を含むことが好ましい。不織布は、積層されていることが好ましい。不織布の材料は特に限定されないが、例えば、ポリエステル(例えば、ポリエチレンテレフタレート(PET)及びポリブチレンテレフタレート(PBT))、ポリアミド、ポリアクリロニトリル、ポリメチルメタアクリレート、ポリエチレン、ポリプロピレン等が挙げられる。このような材料を使用することによって、血液の変性を防ぐことができる。血液製剤との親和性や血液に対する濡れ性の観点から、不織布の材料は、好ましくはポリエステルであり、より好ましくはPET及びPBTである。不織布は、一種の材料のみから形成されていてもよいし、複数種の材料から形成されていてもよい。
 第1フィルター層に含まれる不織布は、その表面にコート層を有していてもよい。なお、本明細書において、コート層を有しない不織布を「繊維基材」とも称する。コート層の材料を適宜選択することによって、表面のζ電位を容易に0mV以上とすることができる。
 コート層は、例えば、非イオン性親水基を有するモノマー単位と塩基性含窒素官能基を有するモノマー単位とを有するコポリマーを含むことが好ましい。塩基性含窒素官能基を有するコポリマーを用いることで、コート処理により不織布表面に陽性荷電を付与することができ、また、白血球との親和性を向上させることができる。
 非イオン性親水基を有するモノマー単位としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ビニルアルコール、(メタ)アクリルアミド、N-ビニルピロリドンなどに由来するモノマー単位が挙げられる。入手のしやすさ、重合時の扱いやすさ、血液を流した時の性能等の観点から、非イオン性親水基を有するモノマー単位は、好ましくは2-ヒドロキシエチル(メタ)アクリレートに由来するモノマー単位である。ビニルアルコールに由来するモノマー単位は、通常、酢酸ビニルの重合後、加水分解により生成する。
 塩基性含窒素官能基を有するモノマー単位としては、例えば、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート、3-ジメチルアミノ-2-ヒドロキシプロピル(メタ)アクリレート等の(メタ)アクリル酸の誘導体;p-ジメチルアミノメチルスチレン、p-ジエチルアミノエチルスチレン等のスチレン誘導体;2-ビニルピリジン、4-ビニルピリジン、4-ビニルイミダゾール等の含窒素芳香族化合物のビニル誘導体;および上記のビニル化合物をハロゲン化アルキル等によって4級アンモニウム塩とした誘導体などに由来するモノマー単位が挙げられる。入手のしやすさ、重合時の扱いやすさ、血液を流した時の性能等の観点から、塩基性含窒素官能基を有するモノマー単位は、好ましくはジエチルアミノエチル(メタ)アクリレート、及びジメチルアミノエチル(メタ)アクリレートに由来するモノマー単位である。
 コート層の質量は、繊維基材とコート層の合計質量を1gとした場合、0.1~40.0mg程度であることが好ましい。このような範囲のコート量とすることによって、均一なコートが容易となり、血球が目詰まりを起こしたり、血液が偏流れを起こしたりすることで濾過性能を悪化させるという問題を回避することができる。
 コート層の質量は、例えば以下の手順により算出することができる。コート層を担持させる前の不織布(繊維基材)を、60℃に設定した乾燥機中で1時間乾燥させた後、デシケーター内に1時間以上放置した後に質量(Ag)を測定する。コート層を担持させた不織布を同様に60℃の乾燥機中で1時間乾燥させた後、デシケーター内に1時間以上放置した後に質量(Bg)を測定する。コート層の質量は以下の算出式により算出される。
 不織布(繊維基材)とコート層の合計(1g)に対するコート層の質量(mg/g)
 =(B-A)×1000/B
 繊維基材にコート層を形成させる方法は特に限定されず、例えば、繊維基材をモノマー及び/又はポリマー(コポリマー)や必要に応じて溶剤等を含むコート液に浸漬し、その後適宜コート液を除去する方法(ディップ法)、コート液を浸漬させたロールに繊維基材を接触させることで塗布する方法(転写法)などが挙げられる。
 第1フィルター層に含まれる不織布は、その周囲表面部分に塩基性含窒素官能基を有することが好ましい。
 不織布の周囲表面部分とは、外界に露出している不織布の全ての部分を意味する。すなわち、不織布がコート層を有する場合には、周囲表面部分は、コート層の表面部分である。不織布がコート層を有しない場合には、周囲表面部分は、繊維基材の表面部分を意味する。
 不織布の周囲表面部分は、さらに非イオン性親水基を有していてもよい。
 不織布の周囲表面部分に塩基性含窒素官能基が存在すると、不織布と血液中との白血球の親和性が高まり、白血球除去性能を向上させることができる。
 また、不織布の周囲表面部分に非イオン性親水基が存在すると、不織布表面の血液への濡れ性が高まり、不織布の有効濾過面積(実際に濾過に使用される面積)が向上し、結果として濾過時間の低下と白血球等除去性能の向上の両方の効果が得られる。
 不織布の周囲表面部分に非イオン性親水基や塩基性含窒素官能基を存在させる方法としては、例えば、コート層を有する不織布の場合には、非イオン性親水基や塩基性含窒素官能基を含むモノマー及び/又はポリマーを含むコート材を用いて不織布をコーティングする方法、コート層を有しない不織布の場合には、非イオン性親水基や塩基性含窒素官能基を含むモノマー及び/又はポリマーを含む繊維材料を用いて紡糸する方法等が挙げられる。
 不織布の周囲表面部分中の非イオン性親水基と塩基性含窒素官能基の物質量の合計に対する塩基性含窒素官能基の物質量の割合は、好ましくは0.2~50.0モルパーセントであり、より好ましくは0.25~10モルパーセントであり、さらに好ましくは1~5モルパーセントであり、最も好ましくは2~4モルパーセントである。塩基性含窒素官能基、及び非イオン性親水基の含量は、NMR、IR、TOF-SIMS等による解析によって測定することができる。このように塩基性含窒素官能基と非イオン性親水基の割合を規定することで、血液に対する安定した濡れ性を確保すると共に、血小板などの血液成分による不要な目詰まりを抑制しながら、白血球等の除去を効率よく行うことが可能になる。
 非イオン性親水基としては、例えば、アルキル基、アルコキシ基、カルボニル基、アルデヒド基、フェニル基、アミド基、及びヒドロキシル基などが挙げられる。
 塩基性含窒素官能基としては、例えば、-NH,-NHR,-NR,-N(R,R,R,R,R及びRは炭素数1~3のアルキル基)で表されるアミノ基が挙げられる。
(配向度)
 第1フィルター層に含まれる不織布の繊維は、第1フィルター層のX軸平面方向への配向度Xと、前記X軸平面方向に直交するY軸平面方向への配向度Yと、を有し、前記配向度Xの、前記配向度Yに対する比(配向度X/配向度Y)の最大値が1.2以上である。以下、配向度X/配向度Yの最大値を、「最大配向度比」ともいう。
 「配向度」とは、所定の方向へ繊維が配向する度合いを示す。例えば、X軸方向への繊維の配向度が大きいとは、X軸方向と平行するように繊維が並んでいる度合いが大きいことを意味する。
 「X軸平面方向」とは、第1フィルター層の平面方向における任意の方向である。
 「Y軸平面方向」とは、第1フィルター層の平面方向における、X軸と直交する方向である。
 「平面方向」とは、第1フィルター層の厚み方向に直交する方向である。
 「配向度X/配向度Yの最大値(最大配向度比)」とは、第1フィルター層の全ての平面方向における配向度X/配向度Yの各値のうち、最も大きな値を意味する。
 配向度は配向指標から計算することができる。配向指標は、配向度と同様に、所定の方向へ繊維が配向する度合いを示すが、配向指標は、配向度が大きくなるほど、小さくなる。例えば、X軸方向への繊維の配向指標は、X軸方向に直交する平面上の繊維の断面積に基づいて決定される。X軸方向と平行するように繊維が並んでいる場合、X軸方向に直交する平面上の繊維の面積は小さくなる。つまり、X軸方向への配向指標は小さくなる。
 X軸平面方向への配向指標を配向指標Xとし、前記X軸平面方向に直交するY軸平面方向への配向指標を配向指標Yとすると、配向度X/配向度Yは、配向指標Y/配向指標Xで表すことができる。
 不織布の配向指標X及び配向指標Yは以下の方法で、X線CTと画像解析により求める。使用するX線CT装置及び画像解析ソフトウェアは以下のとおりである。
 X線CT装置:株式会社リガク製 高分解能3DX線顕微鏡 nano3DX
 画像解析ソフトウェア:ImageJ
 X線CT測定用の不織布の試料は面内を2.5mm×2.5mmに切断し、厚み方向は切断せず全厚みのまま、X線CT測定を実施する。測定条件は以下の通りである。
 画素解像度:0.54μm/pix
 露光時間:18秒/枚
 投影数:1500枚/180度
 X線管電圧:40kV
 X線管電流:30mA
 X線ターゲット:Cu
 測定箇所:試料端部の切断面の影響が出ない面内の中心部分
 不織布の座標軸を、X軸平面方向がX軸、Y軸平面方向がY軸、厚み方向がZ軸となるように設定する。XY平面が不織布の面内に相当することになる。
 X線CT測定から得られたトモグラム画像から、X軸×Y軸×Z軸=500μm×500μm×厚み全部の直方体で画像をトリミングする。これを3次元画像1とする。
 3次元画像1に対して、画像処理方法のmedianフィルターを半径2pixの条件で実施し、続けて画像処理方法のOtsu法を適用し領域分割を実施する。領域分割後の画素の輝度値を空気が0、不織布の繊維が255となるように設定する。このようにして得られる画像を3次元画像2とする。
 この3次元画像2の輝度値255の画素に対して、画像処理方法のsegmentationを実施し、一つながりの輝度値255の繊維のうち画素数が10000pix以下の繊維はノイズとして除去する。このようにして得られる画像を、画素の輝度値を空気が0、不織布の繊維が255となるように設定し、3次元画像3とする。
 この3次元画像3において、XY面のすべての画素に対してXY面に垂直なZ方向に1画素ずつ走査し、輝度値が0から255に変わる点と輝度値が255から0に変わる点の総数を画像解析により求め、投影面積AXYとする。同様にYZ面に対してX方向に走査した総数を投影面積AYZとし、ZX面に対してY方向に走査した総数を投影面積AZXとする。これらの投影面積から次式で配向指標X及び配向指標Yを求める。
 配向指標X=AYZ/(AXY+AYZ+AZX
 配向指標Y=AZX/(AXY+AYZ+AZX
 端的にいうと配向指標とは、その方向に不織布を観察した際の断面積(投影面積)を算出し、さらに三次元各方向の投影面積の総和が1になるように比例配分することで求められる。つまり、各方向の配向指標は0から1までの数字になり、且つその方向に強く配向するほど、配向指標は小さい値となる。いいかえれば、完全に等方的な不織布であれば、X、Y、Z方向の配向指標は全て0.33となる。
 配向度X/配向度Yの最大値(最大配向度比)は、1.2以上であり、好ましくは1.3~2.0であり、より好ましくは1.4~1.8である。濾材が複数の第1フィルター層を含む場合、少なくとも1つの第1フィルター層に含まれる不織布の最大配向度比が1.2以上であればよいが、全ての第1フィルター層に含まれる不織布の最大配向度比が1.2以上であることが好ましい。最大配向度比が1.2以上である不織布を有する第1フィルター層を少なくとも1つ含むことによって、凝集物を含む高粘度な血液に対しても、低粘度な血液に対しても、あるいはその中間的な血液に対しても、血液の性状に応じて、第1フィルター層の面内における血液の流路を意図的に誘導して、第1フィルター層を有効に活用でき、及び/又は最適流路を形成することができる。これによって、血液の流れ性・白血球除去能を向上することができる。最大配向度比が2.0以下であると、第1フィルター層の面内における血液の誘導性が強くなりすぎることを抑えることができるため、流れ性・白血球除去性能が向上する傾向にある。
 一実施形態に係る血液処理フィルターでは、濾過方向に直交する、第1フィルター層の平面方向への不織布の繊維の配向度(Ac)の、濾過方向に平行する、第1フィルター層の平面方向への不織布の繊維の配向度(Am)に対する比(Ac/Am)が、1.2以上となるように、第1フィルター層が配置されていることが好ましい。Ac/Amは、より好ましくは1.3~2.0であり、更に好ましくは1.4~1.8である。
 「濾過方向」とは、血液処理フィルター内において血液が流れる方向を意味し、容器の入口部から出口部への方向に対応する。
 「濾過方向に直交する、第1フィルター層の平面方向」とは、例えば図3及び4に示すとおり、第1フィルター層11の平面を正面から見た場合において、濾過方向12に直交する方向13を意味する。
 「濾過方向に平行する、第1フィルター層の平面方向」とは、例えば図3及び4に示すとおり、第1フィルター層11の平面を正面から見た場合において、濾過方向12に平行する方向14を意味する。
 低粘度のために流れ速度が速くなって白血球が除去されにくい血液を処理する場合、Ac/Amが1.2以上であると、第1フィルター層への血液の浸透速度が緩やかになり、第1フィルター層中での血液の滞留時間が長くなるため、白血球の除去能を向上させることができる。
 一実施形態に係る血液処理フィルターでは、濾過方向に平行する、第1フィルター層の平面方向への不織布の繊維の配向度(Am)の、濾過方向に直交する、第1フィルター層の平面方向への不織布の繊維の配向度(Ac)に対する比(Am/Ac)が、1.2以上となるように、第1フィルター層が配置されていることが好ましい。Am/Acは、より好ましくは1.3~2.0であり、更に好ましくは1.4~1.8である。
 高粘度のために流れ速度が遅くなって濾過時間が長くなる血液を処理する場合、Am/Acが1.2以上であると、第1フィルター層への血液の浸透速度が速くなり、濾過時間を短くすることができる。
 Ac/Am又はAm/Acは、第1フィルター層の向きを変えることによって適宜調節することができる。また、例えば図5に示すように、所定の最大配向度比を有する不織布の向き変え、所定の回転角度で不織布を裁断することによって、所定のAc/Am又はAm/Acを有する第1フィルター層を作成することができる。最大配向度比が既知となっている不織布の向きを任意に変えた結果、AcとAmとの比がどのようになるかは、線ベクトルを用いて容易に確認できる。
 また、図6に示すように、最大配向度比1.2を有する不織布の向きを変えて裁断することによって、Am≒Acとすることも可能である。この場合、一見すると、最大配向度比が1.0の不織布を用いたフィルターと同じ性能を有するように見えるが、実際にはフィルター内に斜めに繊維が配向していることで、血液を誘導しつつ一定のフィルター内の滞留時間を確保することができる。これにより、血液の粘度が中程度で多少凝集物を含み、流れや白血球除去能が標準的な血液に対応可能となる。
 なお補足すると、特許文献2の面内浸透係数(Ky)は、本明細書におけるAcまたはAmと類似の概念ではあるが、Kyは平面方向の液体の流れ性から導かれる複合的な濾材特性であり、AcやAmとしての数値に直接細分化できるものではない。
(充填率)
 第1フィルター層は、好ましくは0.04~0.40の充填率を有し、より好ましくは0.06~0.30の充填率を有し、更に好ましくは0.08~0.22の充填率を有する。
 第1フィルター層の充填率が0.40以下であることにより、血球の目詰まりが少なくなり、処理速度が向上する傾向にある。また、充填率が0.04以上であることにより、白血球等との接触回数が増加して白血球等の捕捉率が向上する傾向にあり、また、不織布の機械的強度が向上する傾向にある。
 第1フィルター層の充填率は、以下の方法で測定する。任意の寸法にカットした第1フィルター層の平面方向の面積、厚み、質量、および第1フィルター層の不織布を構成する繊維材料の比重を測定し、以下の式(10)により算出する。
 充填率=[第1フィルター層の質量(g)÷{第1フィルター層の平面方向の面積(cm)×第1フィルター層の厚み(cm)}]÷第1フィルター層の不織布を構成する繊維材料の比重(g/cm) ・・・(10)
(地合指数)
 第1フィルター層は、厚み0.5mm相当の地合指数が15以上70以下であることが好ましい。地合指数が70以下であると、第1フィルター層の厚み方向の構造が濾過面方向に対して均一であり、血液が第1フィルター層を均等に流れ、白血球等除去能が向上したり、処理速度が向上する傾向にある。反対に、地合指数が15以上であると、通液抵抗の低下により目詰まりが起こり難くなり、処理速度が向上する。地合指数はより好ましくは15以上65以下、更に好ましくは15以上60以下、特に好ましくは15以上50以下、最も好ましくは15以上40以下である。
 地合指数とは、不織布の下から光を当て、その透過光を電荷結合素子カメラ(以下CCDカメラと略す)で検知し、CCDカメラの各画素が検知した多孔質体(不織布)の吸光度の変動係数(%)を10倍した値である。
 地合指数は、例えばフォーメーションテスターFMT-MIII(野村商事株式会社、2002年製造、S/N:130)にて測定することができる。テスターの基本的な設定は工場出荷時から変更せず、CCDカメラの総画素数は、例えば約3400にて測定を行うことができる。具体的には、総画素数が約3400となるように測定サイズを7cm×3cm(1画素サイズ=0.78mm×0.78mm)にして測定を行えばよいが、サンプルの形状に合わせて総画素数が3400と等しくなるように測定サイズを変更してもよい。
 なお、地合指数は、不織布の厚みに大きく左右されるため、以下の方法により厚さ0.5mm相当の地合指数を算出する。
 まず、厚さ0.5mm以下の不織布を3枚用意し、それぞれの地合指数と厚さを測定する。不織布の厚さは、定圧厚み計(例えば、OZAKI製、型式FFA-12)を用いて、0.4Nの測定圧で任意の4点の厚さを測定したときの、その平均値とする。次に測定した不織布3枚のうち2枚を厚さが0.5mm以上となるように重ね、重ねた状態の2枚の不織布に関して地合指数と厚さを測定する。全3通りの組合せについて地合指数の測定を終了した後、厚さと地合指数の回帰直線式を求め、その式から厚さ0.5mm相当の地合指数を求める。
 不織布2枚の厚さが0.5mmに達しない場合は、重ねた厚さが0.5mm以上となるように複数枚の不織布を重ねて地合指数を測定し、次に重ねた厚さが0.5mm以下となるように不織布を減らして地合指数を測定すればよい。重ねた厚さが0.5mm以下となる全ての不織布の組合せで地合指数を測定し、厚さと地合指数の回帰直線式を求め、その式から内挿により厚さ0.5mmの地合指数を求めることができる。
 逆に、不織布1枚の厚さが0.5mmより大きい場合は、不織布を3枚用意し、3枚のうち2枚を重ねて地合指数と厚さを測定する。全ての不織布の組合せで地合指数を測定し、厚さと地合指数の回帰直線式を求め、その式から外挿により厚さ0.5mmの地合指数を求めることができる。
 地合指数の測定に用いられる3枚以上の不織布は、同一フィルター層から切り出すことが好ましい。通常、それらは実質的に同質な不織布、すなわち物性(材質、繊維径、嵩密度、充填率など)が同一の不織布である。しかしながら、同一フィルター層から実質的に同質な不織布が測定必要数量得られない場合には、同一種類のフィルター層の不織布を組み合わせて測定してもよい。
(比表面積)
 第1フィルター層の比表面積は、0.8m/g以上3.2m/g以下であることが好ましい。比表面積が3.2m/g以下であると、、血液処理中に血漿蛋白等の有用成分がフィルター要素に吸着することを抑制し、有用成分の回収率が向上する傾向にある。また、比表面積が0.8m/g以上であると、白血球等の吸着量が増加するため、白血球等除去能が向上する傾向にある。
 第1フィルター層の比表面積は、より好ましくは1.0m/g以上3.2m/g以下、更に好ましくは1.1m/g以上2.9m/g以下、特に好ましくは1.2m/g以上2.9m/g以下、最も好ましくは1.2m/g以上2.6m/g以下である。
 比表面積とは、単位質量あたりの第1フィルター層の表面積であり、吸着ガスをクリプトンとするBET吸着法で測定される値であり、例えばマイクロメリティックス社製トライスター3000装置を用い測定することが可能である。
 第1フィルター層の比表面積が大きいほど、同じ質量のフィルター層を用いて血液を処理する際に、細胞及び血漿蛋白等を吸着し得る面積が大きいことを示している。
(通気抵抗)
 第1フィルター層の通気抵抗は、好ましくは25Pa・s・m/g以上100Pa・s・m/g以下、より好ましくは30Pa・s・m/g以上90Pa・s・m/g以下、さらに好ましくは40Pa・s・m/g以上80Pa・s・m/g以下である。
 通気抵抗が25Pa・s・m/g以上であると、白血球等との接触回数が増加して白血球等の捕捉が容易になる傾向がある。通気抵抗が100Pa・s・m/g以下であると、血球の目詰まりが減少し、処理速度が向上する傾向にある。
 第1フィルター層の通気抵抗とは、第1フィルター層に一定流量の空気を通した時に生じる差圧として測定された値であり、通気性試験装置(例えばカトーテックK.K社製、KES-F8-AP1)の通気穴の上に第1フィルター層を載せ、空気を4mL/cm/秒秒の流量で約10秒間通気させたときに生じる圧力損失(Pa・s/m)を測定し、得られた圧力損失を第1フィルター層の目付(g/m)で除した値である。ただし、切り出す部位を変えて測定を5回行い、その平均値を通気抵抗とする。
 第1フィルター層の通気抵抗が高いことは、空気が通過しにくく、第1フィルター層を構成する繊維が密な、或いは均一な状態で絡まっていることを意味し、第1フィルター層が血液製剤が流れにくい性質を有していることを示す。逆に第1フィルター層の通気抵抗が低いことは、第1フィルター層を構成する繊維が粗く、或いは不均一な状態で絡まっていることを意味し、第1フィルター層が血液製剤が流れやすい性質を有していることを示す。
(平均流量孔径)
 第1フィルター層は、その平均流量孔径が8.0μmより小さいことが好ましい。平均流量孔径が8.0μmより小さいと、白血球等との接触回数が増加して白血球等の捕捉が容易になる傾向がある。平均流量孔径が1.0μm以上では血球の目詰まりが減少し、処理速度が増加する傾向にある。平均流量孔径は、より好ましくは1.5μm以上7.5μm以下、さらに好ましくは2.5μm以上7.0μm以下、特に好ましくは3.5μm以上6.5μm以下、最も好ましくは4.5μm以上6.5μm以下である。
 第1フィルター層の平均流量孔径は、ASTM F316-86に準じて、PMI社製パームポロメーターCFP-1200AEXS(多孔質材料自動細孔径分布測定システム)を用いて測定することができる。
(臨界湿潤表面張力)
 第1フィルター層の臨界湿潤表面張力(CWST)は、好ましくは70dyn/cm以上であり、より好ましくは75dyn/cm以上である。このような臨界湿潤表面張力の第1フィルター層では、血液に対する安定した濡れ性を確保することで、血液製剤中の血小板を通過させながら白血球等除去を効率よく行うことが可能になる。CWSTの上限は特に限定されないが、例えば、200dyn/cm、150dyn/cm、100dyn/cm等としてもよい。
 CWSTは、以下の方法に従って求められる値をいう。即ち、2~4dyn/cmずつ表面張力が変化するように水酸化ナトリウム、塩化カルシウム、硝酸ナトリウム、酢酸又はエタノールの濃度の異なる水溶液を調製する。各水溶液の表面張力(dyn/cm)は、水酸化ナトリウム水溶液で94~115、塩化カルシウム水溶液で90~94、硝酸ナトリウム水溶液で75~87、純粋な水で72.4、酢酸水溶液で38~69、エタノール水溶液で22~35のものが得られる(「化学便覧 基礎編II」改訂2版、日本化学会編、丸善、1975年、164ページ)。このようにして得た表面張力が2~4dyn/cm異なる水溶液を表面張力が低いものから順番に不織布上に10滴ずつ乗せ10分間放置する。10分間放置後、10滴中9滴以上が不織布に吸収された場合に湿潤した状態であると定義し、吸収が10滴中9滴未満である場合に非湿潤状態であると定義する。このようにして不織布上に表面張力が小さい液体から順次測定していくと湿潤状態から非湿潤状態へと途中で変わる。この時、湿潤状態を最後に観察した液体の表面張力の値と非湿潤状態を最初に観察した液体の表面張力の値の平均値をその不織布のCWST値と定義する。例えば、64dyn/cmの表面張力を有する液体で湿潤し、66dyn/cmの表面張力を有する液体で非湿潤であった場合、その不織布のCWST値は65dyn/cmとなる。
(平均繊維直径)
 第1フィルター層に含まれる不織布の平均繊維直径は、好ましくは0.3μm~3.0μmであり、より好ましくは0.5μm~2.5μmである。このような範囲とすることによって、目詰まりを回避しながら、白血球除去性能を向上させることができる。
 平均繊維直径とは、以下の手順に従って求められる値をいう。
 即ちフィルター層を実際に構成している不織布、または、これと実質的に同質な1枚又は複数枚の不織布から、実質的に均一と認められる部分を数箇所においてサンプリングし、サンプリングされた不織布中の繊維の写真をその直径が写るように走査型電子顕微鏡を用いて撮る。
 合計100本分の直径が撮影されるまで写真を撮り続ける。このようにして得た写真について、写っている全ての繊維の直径を測定する。ここで直径とは、繊維軸に対して直角方向の繊維の幅をいう。測定した全ての繊維の直径の和を、繊維の数で割った値を平均繊維直径とする。但し、複数の繊維が重なり合っており、他の繊維の陰になってその直径が正確に測定できない場合、また複数の繊維が溶融するなどして、太い繊維になっている場合、更に著しく直径の異なる繊維が混在している場合、写真の焦点がずれて繊維の境界がはっきりしない、等々の場合には、これらのデータは算入しない。
 また、フィルター層が複数の不織布を含んでいる場合、各々の不織布において測定される繊維の直径が明らかに異なる場合には、それらは異なる種類の不織布であるから、両者の境界面を見つけ、両者の平均繊維直径を別々に測定し直す。ここで「明らかに平均繊維径が異なる」とは統計的に有意差が認められる場合をいう。
(嵩密度)
 第1フィルター層の嵩密度は、好ましくは0.05~0.50g/cmであり、より好ましくは0.07~0.40g/cmであり、さらに好ましくは0.10~0.30g/cmである。第1フィルター層の嵩密度が0.50g/cm以下であると、第1フィルター層の流れ抵抗が減少して血球の目詰まりが減少し、処理速度が向上する傾向にある。また、嵩密度が0.05g/cm以上であると、白血球等との接触回数が増加して白血球等の捕捉が容易になる傾向があり、また、第1フィルター層の機械的強度が増加することがある。
 「第1フィルター層の嵩密度」は、均質と思われる箇所から2.5cm×2.5cmの大きさで不織布を切り出し、後述の方法で目付(g/m)と厚み(cm)を測定し、目付を厚みで除して求める。ただし、切り出す部位を変えて目付と厚みの測定を3回行い、その平均値を嵩密度とする。
 第1フィルター層の目付は、2.5cm×2.5cmの大きさで均質と思われる箇所から不織布をサンプリングし、不織布片の重さを測定して、これを単位平方メートル当たりの質量に換算することで求められる。また、第1フィルター層の厚みは、2.5cm×2.5cmの大きさで均質と思われる箇所から不織布をサンプリングし、その中央(1ヶ所)の厚みを定圧厚み計で測定することで求められる。定圧厚み計で荷重する圧力は0.4N、測定部の面積は2cmとする。
(未結晶化熱量及び結晶融解熱量)
 血液処理フィルターは、通常、使用前に蒸気加熱処理法による滅菌処理が施される。この際に、蒸気加熱処理によりフィルター層に含まれる不織布の物理的構造が大きく変化すると考えられる。中でも、不織布の平面方向に収縮が発生すると、例えば図1及び図2のような構造の血液処理フィルターにおいては、把持部構造が不安定になり、血液処理フィルターの白血球等除去能並びに取扱い性が低下する可能性がある。
 このような観点から、フィルター層に含まれる不織布の蒸気加熱処理前の未結晶化熱量は、好ましくは5J/g以下、より好ましくは3J/g以下、更に好ましくは2J/g以下、特に好ましくは1J/g以下である。「未結晶化熱量」は、樹脂の結晶化度を示す指標であり、この値が小さいほど当該樹脂の結晶化度が高いことを意味する。
 上記の未結晶化熱量を満たす不織布を用いたフィルター層を用いることで、血液処理フィルターとしての濾過性能、取扱い性が向上する。
 例えば、図1及び図2に示したような、フィルター層を含む濾材を硬質性容器で挟み把持した血液処理フィルターにおいては、蒸気加熱処理後においても、容器の把持部に対する濾材の反発強度が高くなり、容器把持部と濾材との間の挟み付けが強固な状態が維持されるため、サイドリーク現象を抑制することができ、白血球等除去能を向上させることができる。なお、サイドリーク現象とは、血液が濾材を貫通せずに把持部と濾材との間をすり抜けて入口部空間から出口部空間に流れ込む現象である。
 また、濾材を可撓性容器で挟み、容器と濾材とを高周波溶着で接合した血液処理フィルターの場合には、不織布の未結晶化熱量を一定以下に制御することで、容器と濾材との接合部の強度が向上し、血液処理フィルターの耐遠心性(血液処理フィルターに対して遠心処理を施した際(遠心力を付与した際)の容器と濾材との接合部の割れ難さ)が向上する。フィルター層に含まれる不織布の未結晶化熱量を一定以下に制御すると、容器と濾材との高周波溶着接合部の強度が向上する理由は明らかではないが、結晶化度が高くなると、高周波溶着する際に不織布の反発力が上昇することで、不織布の圧着による過剰な溶融を抑制し、均質な(過剰溶融により発生する陥没孔などが無い)接合部を形成することが可能になるためと考えられる。
 さらに、フィルター層に含まれる不織布の、蒸気加熱処理を施される前における結晶融解熱量から未結晶化熱量を引いた値は、好ましくは50J/g以上、より好ましくは55J/g以上、更に好ましくは60J/g以上、特に好ましくは65J/g以上である。この「結晶融解熱量から未結晶化熱量を引いた値」もまた、樹脂の結晶化度を示す指標であり、この値が大きいほど当該樹脂の結晶化度が高いことを意味する。結晶化度がより高まることで、蒸気加熱処理前後でのフィルター層の物理的特性の変化(収縮等)がさらに抑制され、前述の通り白血球等除去能が高まる。
 未結晶化熱量と結晶融解熱量は、不織布(繊維基材)について示差走査熱量計法(DSC法)にて測定した値である。測定方法を以下に説明する。
 不織布(繊維基材)3~4mgを分離してアルミ製標準容器にセットし、初期温度35℃、昇温速度10℃/分、窒素流50mL/分の雰囲気下で、初期昇温曲線(DSC曲線)を測定する。この初期昇温曲線(DSC曲線)から、発熱ピークと融解ピーク(吸熱ピーク)を検出し、各々のピーク面積から得られる熱量値(J)を不織布質量で除すことによって未結晶化熱量(J/g)と結晶融解熱量(J/g)を算出する。
 測定装置としては、例えば、島津製作所製TA-60WSシステムを用いることができる。
(X線結晶化度)
 本実施形態においては、フィルター層に含まれる不織布の、蒸気加熱処理を施す前のX線結晶化度は、好ましくは60以上、より好ましくは63以上、更に好ましくは66以上である。不織布の結晶化度がより高まり、蒸気加熱処理前後でのフィルター層の物理的特性の変化(収縮等)が抑制されることによって、前述の通り白血球等除去能が高まる。
 X線結晶化度は、X線回折法により測定する。
 測定は、X線回折装置(例えば、MiniFlexII(リガク、型番2005H301))を用いて、以下の1)~5)の測定手順で行うことができる。
1)試料台に3cm×3cmのサイズの不織布(繊維基材)を1枚セットする。
2)下記条件にて測定を実施する。
  ・走査範囲:5°~50°
  ・サンプリング幅(データを取り込む幅):0.02°
  ・スキャンスピード:2.0°/分
  ・電圧:30kV
  ・電流:15mA
3)測定後、非晶部と結晶部のピークが分離したデータを得る。
4)3)のデータから、非晶質ピーク面積(Aa)と総ピーク面積(At)を求める。例えば、解析ソフトウェア(MDI JADE 7)にて、3)で測定したデータを開き、「自動ピーク分離」機能を実施する。その結果、非晶質ピーク面積(Aa)及び総ピーク面積(At)が自動で算出される。
5)非晶質ピーク面積(Aa)及び総ピーク面積(At)から、結晶化度は以下の式によりで算出される。
  結晶化度(%)=(At-Aa)/At×100
 蒸気加熱処理を施す前において、未結晶化熱量が5J/g以下の不織布、結晶融解熱量から未結晶化熱量を引いた値が50J/g以上の不織布、及び、X線結晶化度が60以上の不織布は、例えば、その材料や製造条件を後述のように選択することにより容易に製造することができる。
(面積収縮率)
 本実施形態において、不織布の面積収縮率は、好ましくは10%以下、より好ましくは3%以下、特に好ましくは2%以下、最も好ましくは1%以下である。面積収縮率を10%以下とすると、滅菌処理後も孔径の均一性が保持され、処理速度の変動を防ぐことができ、安定した性能バランスを発揮することができる傾向にあるため好ましい。
 この点、ポリブチレンテレフタレートは他のポリエステル繊維、例えばポリエチレンテレフタレート繊維、に比べて、結晶化速度が速いため、結晶化度を高くし易いことから、高温高圧滅菌等の過酷な蒸気加熱処理を施しても平面方向への収縮が起こりにくく(面積収縮率を小さくしやすく)、従って滅菌条件によらず安定した白血球等除去能及び処理速度を発揮することができる。
 不織布の面積収縮率とは、約20cm×20cmの正方形にカットした不織布(繊維基材)の縦・横の寸法を正確に測定した後に、不織布をピン等で固定せずに115℃で240分間熱処理を行い、その後再度縦・横の寸法を測定し、以下の式により算出されるものである。
 面積収縮率(%)
 =(熱処理前の不織布の縦の長さ(cm)×熱処理前の不織布の横の長さ(cm)
 -熱処理後の不織布の縦の長さ(cm)×熱処理後の不織布の横の長さ(cm))
 ÷(熱処理前の不織布の縦の長さ(cm)×熱処理前の不織布の横の長さ(cm))×100
 濾材を、硬質性容器を構成する出口部側及び入口部側の容器材の2つのパートで挟んで把持することで血液処理フィルターを作製する場合(例えば、図1及び図2で示すような場合)において、濾材が複数の不織布を含む場合は、出口部側容器材に接触している不織布(出口部側容器材に最も近い位置に配置されている不織布)として結晶化度が高いものを用いると、蒸気加熱処理後の出口部側容器材の把持部による濾材に対する挟みつけをより強くすることができ、これにより、血液が濾材を貫通せずに把持部と濾材との間をすり抜けて入口部空間から出口部空間に直接流れ込む現象(サイドリーク現象)を抑制し、白血球等除去能を向上させ、血液処理フィルターとしての性能をさらに向上させることができる。
 すなわち、濾材を、硬質性容器を構成する出口部側及び入口部側の容器材の2つのパートで挟んで把持することで血液処理フィルターを作製する場合は、濾材に含まれる不織布のうち、前記出口部側容器材と接触する不織布が,次の(1)を備えることが好ましく、(1)に加えて(2)及び/又は(3)も備えることがより好ましい。
(1)蒸気加熱処理を施す前における未結晶化熱量が5J/g以下
(2)蒸気加熱処理を施す前における結晶融解熱量から未結晶化熱量を引いた値が50J/g以上
(3)蒸気加熱処理を施す前におけるX線結晶化度が60以上
 また、濾材を硬質性容器を構成する出口部側及び入口部側の容器材の2つのパートで挟んで把持することで血液処理フィルターを作製する場合、濾材に含まれる全ての不織布の結晶化度が高いと、蒸気加熱処理後の白血球等除去能の観点からは優れるが、濾材の反発強度が増すことにより濾材を容器材で挟んで把持或いは接合させる際の容易性に劣るから、血液処理フィルター製造の際の生産性の観点からは、濾材に含まれる不織布のうち、入口部側容器材や出口部側容器材と接触している不織布(又は、入口部側容器材や出口部側容器材と接触している不織布とこれに隣接して配置される所定の枚数(通常、1枚~数枚)の不織布)以外の不織布の結晶化度はむしろ高すぎないことが好ましい。
 例えば、硬質性容器に把持される濾材が、入口部側から順に第2フィルター層(後述)及び第1フィルター層を含む場合には、第1フィルター層に含まれる複数枚の不織布のうち前記出口部側容器材と接触している不織布(及び、これに隣接して配置される所定数の不織布)は、少なくとも上記(1)を満たし、それ以外の不織布の一部又は全部は上記(1)を満たさないか、満たしていても該出口部側容器材と接している不織布よりも大きい蒸気加熱処理前未結晶化熱量を有していることが、血液処理フィルター製造の際の生産性の観点からは好ましい。
[第2フィルター層]
 本発明の効果を損なわない範囲において、血液処理フィルターは、第1フィルター層に加えて、更なるフィルター層を含んでいてもよい。例えば、血液処理フィルターは、容器の入口部と第1フィルター層との間に、1以上の第2フィルター層を更に含んでいてもよい。
 第2フィルター層は、血液に含まれる微小凝集物の除去に適した構成を有していることが好ましい。第2フィルター層は、不織布を含むことが好ましい。不織布の材料としては、例えば、第1フィルター層に含まれる不織布の材料と同一のものを挙げることができる。
 第2フィルター層に含まれる不織布の平均繊維直径は、血液中の微小凝集物を除去する観点から、好ましくは3μm~60μmであり、より好ましくは4μm~40μmであり、更に好ましくは30μm~40μm及び/又は10μm~20μmである。
 第1フィルター層の上流に第2フィルター層を配置する態様においては、血液中に凝集物が発生している場合にも、目が粗い上流側(入口部側)の第2フィルター層の不織布により凝集物が捕捉され、目の細かい下流側(出口部側)の第1フィルター層の不織布に到達する凝集物が低減される。したがって、凝集物による第1フィルター層の目詰まりが抑制される。
 第2フィルター層の嵩密度は、好ましくは0.05~0.50g/cmであり、より好ましくは0.10~0.40g/cmである。第2フィルター層の嵩密度が0.50g/cm以下であると、凝集物や白血球等の捕捉による不織布の目詰まりが抑制され、濾過速度が向上する傾向にある。また、不織布の嵩密度が0.05g/cm以上であると、凝集物の捕捉能が増加し、第1フィルター層の不織布の目詰まりが抑制され、濾過速度が向上する傾向にあり、また、不織布の機械的強度が向上する傾向にある。
[第3フィルター層]
 本発明の効果を損なわない範囲において、血液処理フィルターの濾材は、第1フィルター層と容器の出口部との間に、1以上の第3フィルター層を更に含んでいてもよい。
また、血液処理フィルターの濾材は、容器の入口部と第1フィルター層との間に、1以上の第2フィルター層を更に含み、第1フィルター層と容器の出口部との間に、1以上の第3フィルター層を更に含んでいてもよい。
 第3フィルター層の構成は、要求される性能に応じて適宜調整すればよい。
 第3フィルター層は、不織布や織布、メッシュなどの繊維状多孔性媒体、又は三次元網目状連続細孔を有する多孔質体などの公知の濾過媒体を含むことが好ましい。これらの素材としては、例えば、ポリプロピレン、ポリエチレン、スチレン-イソブチレン-スチレン共重合体、ポリウレタン、ポリエステル、等が挙げられる。第3フィルター層が不織布を含むことは、生産性や血液処理フィルターの溶着強度の点から好ましい。第3フィルター層がエンボス加工等により複数の突起部を有していると更に血液の流れが均一となるため特に好ましい。
 第3フィルター層に含まれる不織布の平均繊維直径は、好ましくは3μm~60μmであり、より好ましくは4μm~40μmであり、更に好ましくは30μm~40μm及び/又は10μm~20μmである。
 なお、平板状かつ可撓性の容器を有する血液処理フィルターの場合には、第3フィルター層を配置すると、濾過時に生ずる入口部側の陽圧によってフィルター層が出口部側容器に押しつけられること、及び出口部側の陰圧によって出口部側容器がフィルター層に密着して血液の流れが阻害されることを防ぎ、また可撓性容器とフィルター層との溶着性を高めるため好ましい。
 フィルター層を構成する各不織布は、血球の選択分離性や表面の親水性などを制御する目的からコーティング、薬品処理、放射線処理等の公知の技術によりその表面が改質されていてもよい。
<第1の血液処理フィルターの製造方法>
 不織布(繊維基材)の製造方法に限定はなく、湿式法、乾式法のいずれによっても製造することができる。好適な最大配向度比を有する不織布を安定して得るという観点から、特にメルトブロー法を採用することが好ましい。
 不織布(繊維基材)の製造方法として、メルトブロー法の一例を説明する。メルトブロー法においては、押出機内で溶融された溶融ポリマー流は、適当なフィルターによって濾過された後、メルトブローダイの溶融ポリマー導入部へ導かれ、その後オリフィス状ノズルから吐出される。それと同時に加熱エア導入部に導入された加熱気体を、メルトブローダイとリップにより形成された加熱エア噴出スリットへ導き、ここから噴出させて、前記の吐出された溶融ポリマーを細化して極細繊維を形成し、形成された極細繊維を積層させることにより不織布を得る。更に、熱サクションドラムや熱板、熱水、熱風ヒーターなどを用いて不織布を加熱処理すると、所望の結晶化度を有する不織布を得ることができる。
 最大配向度比が1.2以上である不織布を作製する方法は特に限定されないが、例えば、不織布をメルトブロー法などで紡糸し、捕集する際の捕集コンベア(またはロール)の巻き取り速度を速める方法が挙げられる。巻き取り速度を速めると、コンベアの巻き取る向き(長手方向)に繊維が強く配向し、相対的にそれと直交する向き(幅方向)への配向度との差が大きくなる。
 なお、上記方法を用いると、単位面積あたりの重量(目付)が小さく、厚みの薄い不織布となるが、不織布の積層枚数を増やすことで、所望の重量ないし厚みを有する濾材を作製することができる。あるいは、コンベアが循環式に不織布を捕集できるように設計すれば、コンベア上で不織布を何度も吹き付けることで、所定の目付の不織布を採取することも可能である。この方法では、濾材に組み立てる際に、目付が高いために不織布を取り扱いやすく、また積層枚数を過分に増やす必要がないため、濾材の生産効率が向上する。
 また、単位時間あたりの1つの紡口からのポリマーの吐出量(単孔吐出量)を小さくする方向も挙げられる。吐出量を小さくすると、不織布を構成する繊維が細くなるため、コンベアの巻き取る向きに繊維が強く配向する。但し、繊維の平均繊維直径が変化すると、その変化に伴い白血球除去率や濾過時間が影響を受けるため、吐出量は大きく変えないことが好ましい。
 また、樹脂がより薄く引き伸ばされるように、固有粘度の低いポリマーを使用することも有効である。例えば、ポリエステルの中でもポリブチレンテレフタレート樹脂はポリエチレンテレフタレート樹脂に比べて融点や溶融粘度が一般に低いので、ポリブチレンテレフタレート樹脂を使用することで、紡糸時の長手方向に高い配向度を有する不織布を作製しやすい。なお、樹脂選択については、いわゆるホモポリマー(単一重合体)に比べてコポリマー(共重合体)や添加剤などの不純物を含むポリマーの方が融点が低下しやすい為、これらの樹脂選択を適切に行うことでも、溶融粘度を最適に調整することができる。
 より具体的には、PBT樹脂を用いて下記の条件で作製することで、最大配向度比1.2以上の不織布を作製することができる。
 ・捕集コンベア速度    :4.0~6.0(m/秒)
 ・単孔吐出量       :0.10~0.21(g/(分・hole))
 ・固有粘度(IV)    :0.63~0.82(dL/g)
 ・ダイ温度        :270~290(℃)
 ・エア圧力        :0.25~0.40(MPa)
  上記の場合に、溶融粘度(せん断速度100(1/秒秒)、280℃)は、100~500(Pa・s)になることが分かっている。
 この中でも、現実的には固有粘度と単孔吐出量、およびダイ温度をまず設定し、その上で配向度を確認しながらコンベア速度を調整する手段が有効である。理由は、固有粘度とダイ温度に依存する樹脂の溶融粘度によっては、吐出される際に前記のダイに強い圧力がかかり、ダイが割れる恐れがあるため、単孔吐出量は低く設定せざるを得ない場合があるからである。また、ダイ温度は290℃以下に設定すると、PBTの場合は樹脂分解による繊維の変色を抑制できるため、好ましい。
 但し、単孔吐出量は不織布の平均繊維直径に直結するパラメータであるため、吐出量を変更した場合に所定の平均繊維直径を得るためには、加熱空気の圧力も併せて調整する必要がある。例えば、吐出量を下げる場合は、加熱エアの圧力を低くすることで、平均繊維直径を維持することができる。また、単孔吐出量を設定した後に、所定の不織布重量を得るために、コンベア上の捕集時間を計算し、設定する必要がある。すなわち、単孔吐出量は不織布の生産量にも影響するので、不織布の生産性や品質を考慮した場合に、再度樹脂や吐出量の選択に戻ることも必要である。
 最後に、ノズルとコンベアの距離は不織布の配向度比に顕著な影響を及ぼすものではないが、不織布の厚みを調整する手段として重要である。一般に3~60cmの中で調整を行い、ノズルとコンベアの距離を短くすることで、厚みを小さくすることができる。特に、平均繊維直径が1~3μmの場合は、ノズルとコンベアの距離を3~10cmに調整することで、嵩密度を0.10~0.30g/cmに容易に調整することが可能である。
<第2の血液処理フィルター>
 本発明の一実施形態は、血液の入口部及び出口部を有する容器と、
 前記容器内の、前記入口部と前記出口部との間に配置された濾材と、
を含む血液処理フィルターであって、
 前記濾材が、1以上のフィルター層(以下「第1フィルター層」とも称する。)を含み、
 前記フィルター層が、厚み方向の断面において、平面方向の最大長さが50μm以上であり、かつ厚み方向の最大長さが15μm以上である空間を有する、
前記血液処理フィルターに関する。
 第1フィルター層が、その内部に所定の空間を有することによって、優れた白血球除去率及び優れた濾過時間(濾過速度)を発揮することができる。
[容器]
 容器については、<第1の血液処理フィルター>の項目で記載した通りである。
[濾材]
(第1フィルター層)
 濾材は、1以上の第1フィルター層を含む。濾材が複数の第1フィルター層を含む場合、複数の第1フィルター層はそれぞれ、同一であってもよいし、異なっていてもよい。第1フィルター層の厚さとしては、例えば、0.1mm~0.8mm、0.3mm~0.6mm、0.4~0.5mm等が挙げられる。紡糸時の物性バラつきを考慮して、紡糸幅方向における少なくとも3箇所(例えば、左端から中央付近までの間で1箇所、中央付近で1箇所、中央付近から右端までの間で1箇所)でサンプリングすることで、第1フィルター層の平均的な厚みを測定することができる。サンプルのサイズは、2.5cm×2.5cmとし、その中央(1ヶ所)を定圧厚み計で測定して、厚みを求める。定圧厚み計で荷重する圧力は0.4N、測定部の面積は2cmとする。紡糸幅方向が特定できない場合は、フィルター濾過部として使用する部分からサンプリングし測定する。
 第1フィルター層は、不織布を含むことが好ましい。不織布については、<第1の血液処理フィルター>の項目で記載したとおりである。
 第1フィルター層に含まれる不織布は、その表面にコート層を有していてもよい。コート層については、<第1の血液処理フィルター>の項目で記載したとおりである。
 第1フィルター層に含まれる不織布は、その周囲表面部分に塩基性含窒素官能基を有することが好ましい。不織布の周囲表面部分は、さらに非イオン性親水基を有していてもよい。塩基性含窒素官能基、及び非イオン性親水基については、<第1の血液処理フィルター>の項目で記載したとおりである。
(内部空間)
 第1フィルター層は、厚み方向の断面(厚み方向に切断した切断面)において、平面方向の最大長さが50μm以上であり、かつ厚み方向の最大長さが15μm以上である空間を有する(例えば図8A及び図8B参照)。このような大きさの空間を有することによって、血液に含まれる血球、微小凝集物等による目詰まりを回避し、かつ有効濾過面積を増加させることによって、白血球除去性能及び濾過時間を向上させることができる。濾材が複数の第1フィルター層を含む場合、少なくとも1つの第1フィルター層が前記内部空間を有していればよいが、全ての第1フィルター層が前記内部空間を有していることが好ましい。
 空間の平面方向の最大長さは、好ましくは50μm~2000μmであり、より好ましくは100μm~1500μmであり、さらに好ましくは200μm~1000μmである。
 空間の厚み方向の最大長さは、好ましくは15μm~200μmであり、より好ましくは15μm~150μmであり、さらに好ましくは20μm~100μmである。
 平面方向及び厚み方向の最大長さの上限を上記のように設定することによって、血液流れの偏りを抑え、有効濾過面積をさらに増加させることができる。また、第1フィルター層の内部に血液が残留することを防ぎ、血液回収量が減少することを回避できる。
 第1フィルター層の内部空間は、以下の方法で測定することができる。なお、第1フィルター層の内部空間の大きさは、第1フィルター層が血液処理フィルター内に収納されている状態と、血液処理フィルターから取り出された状態とで、実質的に変化しない。
 1枚の第1フィルター層から、フィルター層の平均的な物性(通気抵抗や密度など)を有する部分をサンプリングする。具体的には、紡糸時の物性バラつきを考慮し、紡糸幅方向において少なくとも3箇所(例えば、左端から中央付近までの間で1箇所、中央付近で1箇所、中央付近から右端までの間で1箇所)でサンプリングし、サンプルの厚み方向の断面の内部空間を測定する。紡糸幅方向が特定できない場合は、フィルター濾過部として使用する部分からサンプリングする。
 内部空間の長さは、Phenom World社製のSEM(ProX)の孔径解析ソフト(PHENOM POROMETRIC)を用いて求める。空孔検出条件は、以下に記載する当該ソフトの初期設定条件である。ただし、空孔が重なり合っている場合など、検出が不十分であれば空孔検出条件(Min Contrast、Merge Shared borders、Conductance、Min Detectionなど)を適宜調整してもよい。
 内部空間は、具体的な測定方法は以下のとおりである。
(1)撮影する第1フィルター層のサンプルは約10mm×約3mmのサイズにし、10mmの辺を断面観察に用いる。約10mm×約3mmのサイズのサンプルを3枚測定に用いる。
 この際、サンプルの断面がつぶれないよう第1フィルター層を切断する。第1フィルター層の立体構造を維持したまま観察する必要があるため、第1フィルター層に湿潤する溶液(例えば水や20%エタノール水。親水性が低い場合は、エタノール水を使用することが望ましい。)に第1フィルター層を浸した後、液体窒素に浸漬し、充分凍結させた第1フィルター層を折り割る。
 折り割れない場合(例えば、繊維が切断されずに折れ曲がってしまう場合や第1フィルター層が折り割れないほど小さい場合等)は、第1フィルター層を構成する繊維と異なる固定用の樹脂(エポキシ樹脂等)を繊維間に流し込み固化した後に、断面を研磨し観察する方法を採用する。
(2)撮影倍率は、第1フィルター層の厚みが全て観察できるような倍率(好ましくは100倍)とする。第1フィルター層の厚みや内部空間の大きさに応じて倍率の最適化は可能である。
(3)サンプル1枚につき3箇所の断面撮影を行う。断面撮影した画像について、孔径解析ソフト(PHENOM POROMETRIC)を用いて平面方向の空孔サイズと厚み方向の孔径サイズを求める。各断面撮影画像の最大空間長9点の平均値を最大空間長とする。
 孔径解析ソフト(PHENOM POROMETRIC)の初期設定値は以下の通りとする。
Min shared borders:0.3
Exclude edge particles:未選択
Conductance:0.3
Min detection size:2.5
Foreground kernel size:15
Segmenter anisotropic diffuse conductance:10
Segmenter anisotropic diffuse iterations:5
Segmenter gradient function type:normal
Segmenter WS lower threshold:0.001
Merging min size ratio:2
Merging kernel size:3
(空隙率)
 第1フィルター層は、厚み方向において、平面内空隙率が変動していることが好ましい。平面内空隙率とは、厚み方向における所定の位置に対応する平面内に存在する空隙の割合を意味する。平面内空隙率が大きいことは、平面内における繊維密度が小さいことを意味する。具体的には、平面内空隙率が1である場合、平面内における繊維が存在しないことを意味する。平面内空隙率の変動とは、例えば、厚み方向における第1の位置に対応する平面内に存在する空隙の割合と、厚み方向における第2の位置に対応する平面内に存在する空隙の割合とが異なることを意味する。
 例えば、図9は、実施例A1の不織布の、厚み方向における、平面内空隙率を示す。図9における「位置」が、厚み方向における所定の位置(第1フィルター層の表面からの距離)を表し、「空隙率」が、厚み方向における所定の位置に対応する平面内に存在する空隙率を表す。図9は、厚み方向において、平面内空隙率が変動していることを示している。一方、図11は、比較例A1の不織布の、厚み方向における、平面内空隙率を示すが、平面内空隙率の変動は小さい。厚み方向において平面内空隙率が変動することによって、第1フィルター層に含まれる前記内部空間に加えて、第1フィルター層全体として、目詰まりを回避することができる。
 両端から80μmまでの部分を除いた厚み方向において、最も小さな平面内空隙率を「平面内最小空隙率」と称し、最も大きな平面内空隙率を「平面内最大空隙率」と称する。平面内最小空隙率と平面内最大空隙率との差は、好ましくは0.08~0.28であり、より好ましくは0.10~0.20である。このような範囲とすることによって、目詰まりを回避しながら、優れた白血球除去性能を発揮することができる。なお、厚み方向において、両端から80μmまでの部分を除く理由は、当該部分は、第1フィルター層の表面近傍の繊維の毛羽立ち等の影響によって、空隙率を安定して測定できないためである。
 平面内最小空隙率及び平面内最大空隙率は、処理すべき血液に応じて適宜変更すればよい。例えば、粘度の高い血液を処理する場合には、目詰まりを回避するために、空隙率を高くすればよい。一方、粘度の低く、かつ白血球数が多い血液を処理する場合には、白血球除去性能を高めるために、空隙率を低くすればよい。特に限定するものではないが、前記平面内最小空隙率は、好ましくは0.72~0.85であり、より好ましくは0.75~0.83である。前記平面内最大空隙率は、好ましくは0.85~1.00であり、より好ましくは0.87~0.95である。
 第1フィルター層の厚み方向における平面内空隙率は、以下の方法で測定することができる。
 1枚の第1フィルター層から、紡糸時の物性バラつきを考慮し、紡糸幅方向において少なくとも3箇所(例えば、左端から中央付近までの間で1箇所、中央付近で1箇所、中央付近から右端までの間で1箇所)でサンプリングし、X線CT測定によりサンプルの空隙率を計算する。紡糸幅方向が特定できない場合は、フィルター濾過部として使用する部分から、3点サンプリングする。使用したX線CT装置並びに画像解析ソフトウェアは以下のとおりである。
 X線CT装置 株式会社リガク製 高分解能3DX線顕微鏡 nano3DX
 画像解析ソフトウェア ImageJ
 X線CT測定用のサンプルは面内を2.5mm×2.5mmに切断し、全厚みのまま、X線CT測定を実施する。ただし、測定厚みは0.1mm以上とする。
測定条件は以下の通りである。
 画素解像度 0.54μm/pix
 露光時間 18秒/枚
 投影数 1500枚/180度
 X線管電圧 40kV
 X線管電流 30mA
 X線ターゲット Cu
 不織布の厚み方向をZ軸、Z軸に垂直な任意の方向をX軸、X軸とZ軸に垂直な方向をY軸を定義する。XY平面が不織布の面内に相当することになる。試料内のX線測定箇所は試料端部の切断面の影響が出ない面内の中心部分を選ぶ。
 X線CT測定から得られたトモグラム画像から、X軸×Y軸×Z軸=500μm×500μm×厚み全部の直方体で画像をトリミングする。これを3次元画像1とする。
 3次元画像1に対して、画像処理方法のmedianフィルターを半径2pixの条件で実施し、続けて画像処理方法のOtsu法を適用し領域分割を実施する。画素の輝度値を空気が0、不織布の繊維が255となるように設定する。このようにして得られた画像を3次元画像2とする。
 この3次元画像2の輝度値255の画素に対して、画像処理方法のsegmentationを実施し、一つながりの輝度値255の繊維のうち画素数が10000pix以下の繊維はノイズとして除去した。このようにして得られた画像を、画素の輝度値を空気が0、不織布の繊維が255となるように設定し、3次元画像3とする。
 この3次元画像3において、厚み方向であるZ軸に1pixごとの各場所での2次元的な空隙率を次式で求める。
  空隙率=厚み1pixのXY面での空気(輝度値0)の画素数/厚み1pixのXY面の全画素数
 この空隙率をZ軸方向のすべての画素(厚み方向全て)に対して求める。
 3つのサンプルの少なくとも1つについて、平面内最小空隙率、平面内最大空隙率、及びこれらの差が、上記の数値範囲に含まれていることが好ましい。
(充填率)
 第1フィルター層は、好ましくは0.09~0.26の充填率を有し、より好ましくは0.12~0.19の充填率を有する。第1フィルター層の充填率が0.26以下であることにより、血球や微小凝集物の目詰まりが少なくなり、処理速度が向上する傾向にある。また、第1フィルター層の充填率が0.09以上であることにより、白血球等との接触回数が増加して白血球等の捕捉率が向上する傾向にあり、また、濾材の機械的強度が向上する傾向にある。
 第1フィルター層の充填率は、以下の方法で測定する。カットした第1フィルター層の平面方向の面積、厚み、質量、および第1フィルター層の不織布を構成する繊維材料の比重を測定し、以下の式(10)により算出する。目付は、2.5cm×2.5cmの大きさで均質と思われる箇所から不織布をサンプリングし、不織布片の重さを測定して、これを単位平方メートル当たりの質量に換算することで求められる。また、第1フィルター層の厚みは、2.5cm×2.5cmの大きさで均質と思われる箇所から不織布をサンプリングし、その中央(1ヶ所)の厚みを定圧厚み計で測定することで求められる。定圧厚み計で荷重する圧力は0.4N、測定部の面積は2cmとする。
 充填率=[第1フィルター層の質量(g)÷{第1フィルター層の平面方向の面積(cm)×第1フィルター層の厚み(cm)}]÷第1フィルター層の不織布を構成する繊維材料の比重(g/cm) ・・・(10)
(地合指数)
 第1フィルター層の地合指数については、<第1の血液処理フィルター>の項目で記載したとおりである。
(比表面積)
 第1フィルター層の比表面積は、0.50m/g以上1.50m/g以下であることが好ましい。比表面積が1.50m/g以下であると、血液処理中に血漿蛋白等の有用成分がフィルター層に吸着することを抑制し、有用成分の回収率が向上する傾向にある。また、比表面積が0.50m/g以上であると、白血球等の吸着量が増加するため、白血球等除去能が向上する傾向にある。第1フィルター層の比表面積は、より好ましくは0.70m/g以上1.45m/g以下、さらに好ましくは1.10m/g以上1.40m/g以下である。
 比表面積の測定については、<第1の血液処理フィルター>の項目で記載したとおりである。
(通気抵抗)
 第1フィルター層の通気抵抗については、<第1の血液処理フィルター>の項目で記載したとおりである。
(平均流量孔径)
 第1フィルター層は、その平均流量孔径が8.0μmより小さいことが好ましい。平均流量孔径が8.0μmより小さいと、白血球等との接触回数が増加して白血球等の捕捉が容易になる傾向がある。平均流量孔径が1.0μm以上では血球の目詰まりが減少し、処理速度が増加する傾向にある。平均流量孔径は、より好ましくは1.5μm以上7.5μm以下、さらに好ましくは2.5μm以上7.0μm以下、最も好ましくは3.5μm以上6.0μm以下である。
 平均流量孔径の測定については、<第1の血液処理フィルター>の項目で記載したとおりである。
(臨界湿潤表面張力)
 第1フィルター層の臨界湿潤表面張力(CWST)は、好ましくは70dyn/cm以上であり、より好ましくは85dyn/cm以上であり、さらに好ましくは95dyn/cm以上である。このような臨界湿潤表面張力の第1フィルター層では、血液に対する安定した濡れ性を確保することで、血液製剤中の血小板を通過させながら白血球等除去を効率よく行うことが可能になる。CWSTの上限は特に限定されないが、例えば、200dyn/cm、150dyn/cm、100dyn/cm等としてもよい。
 CWSTの測定については、<第1の血液処理フィルター>の項目で記載したとおりである。
(平均繊維直径)
 第1フィルター層に含まれる不織布の平均繊維直径については、<第1の血液処理フィルター>の項目で記載したとおりである。
[第2フィルター層]
 本発明の効果を損なわない範囲において、血液処理フィルターの濾材は、第1フィルター層に加えて、更なるフィルター層を含んでいてもよい。例えば、濾材は、容器の入口部と第1フィルター層との間に、1以上の第2フィルター層を更に含んでいてもよい。
 第2フィルター層については、<第1の血液処理フィルター>の項目で記載したとおりである。なお、第2フィルター層の充填率は、好ましくは0.04~0.36であり、より好ましくは0.07~0.29である。第2フィルター層の充填率が0.36以下であると、凝集物の捕捉による不織布の目詰まりが抑制され、濾過速度が向上する傾向にある。反対に、0.04以上であると、凝集物の捕捉能が増加し、第1フィルター層の目詰まりが抑制され、濾過速度が向上する傾向にあり、また、不織布の機械的強度が向上する傾向にある。
[第3フィルター層]
 本発明の効果を損なわない範囲において、血液処理フィルターの濾材は、第1フィルター層と容器の出口部との間に、1以上の第3フィルター層を更に含んでいてもよい。また、血液処理フィルターの濾材は、容器の入口部と第1フィルター層との間に、1以上の第2フィルター層を更に含み、第1フィルター層と容器の出口部との間に、1以上の第3フィルター層を更に含んでいてもよい。
 第3フィルター層については、<第1の血液処理フィルター>の項目で記載したとおりである。
<第2の血液処理フィルターの製造方法>
 不織布(繊維基材)の製造方法に限定はなく、湿式法、乾式法のいずれによっても製造することができる。第1フィルター層の内部に所望の空間を形成する場合には、メルトブロー法を採用することが好ましい。
 不織布(繊維基材)の製造方法として、メルトブロー法の一例を説明する。メルトブロー法においては、押出機内で溶融された溶融ポリマー流は、適当なフィルターによって濾過された後、メルトブローダイの溶融ポリマー導入部へ導かれ、その後オリフィス状ノズルから吐出される。それと同時に加熱エアー導入部に導入された加熱エアーを、メルトブローダイとリップにより形成された加熱気体噴出スリットへ導き、ここから噴出させて、前記の吐出された溶融ポリマーを細化して極細繊維を形成し、形成された極細繊維を捕集コンベアや捕集ドラムに積層させることにより不織布を得る。更に、熱サクションドラムや熱板、熱水、熱風ヒーター、高圧蒸気滅菌などを用いて不織布を加熱処理すると、収縮率が小さく安定した形状を有する不織布を得ることができる。
 回転コンベアを用いて捕集を行う場合、回転するコンベアに繊維を噴きつけて積層することにより、積層された不織布を紡糸することが可能である。巻き取り式のベルトコンベアを用いて捕集を行う場合は、紡口を長手方向に複数列設置することにより回転式でなくとも、積層した不織布を紡糸することが可能である。ここで、紡口から吐出された繊維と、その繊維に重なる新たに吐出された繊維とが積層するまでに適度な冷却を行うことにより、フィルター層の内部に所定の空間を形成することができる。冷却の方法としては、例えば、繊維層上に繊維層を積層するまでの時間を延長して自然冷却する方法等が挙げられる。一方、コンベアにサクション機能があれば、繊維を安定して捕集しつつ、繊維に通風させることで冷却効果も得られる。なお、冷却が過剰であれば繊維の融着が全く起きずに繊維層が剥離し1枚の不織布を形成することができなくなり、取り扱い性が悪くなったり、血液回収率の減少が見られたりするようになる。
 捕集コンベアの回転数、メルトブローダイ長、紡糸幅、メルトブローダイと捕集ドラムとの距離(DCD)等を適宜調節して、フィルター層の内部空間を調整することができる。
 本明細書に記載する不織布の望ましい紡糸条件としては、以下の条件が挙げられる。
 ・メルトブローダイ紡口数:5~30(hole/cm)
 ・捕集コンベア回転速度 :100~400(m/min)
 ・吐出移動速度     :0.06~0.10m/s
 ・単孔吐出量      :0.12~0.20(g/(min・hole))
 ・加熱エアー量     :100~400(Nm/hr)
 ・DCD        :50~1000(mm)
 この中で、特に重要な条件はコンベア回転速度と吐出移動速度である。
 捕集コンベアを不織布の長手方向に回転させながら不織布を積層する手段は、単位時間・単位面積あたりに塗布される不織布の量を小さくさせ、相対的にフィルター層の内部空間を大きくすることができるため、有効である。特に、回転速度を速くすることによって、不織布の均質性を向上させ、かつフィルター層の内部空間を大きくする効果が得られる。
 また、幅方向に紡口から同時に繊維を吐出するのではなく、幅方向に時間差を設けて吐出する手段は、平面方向の内部空間を大きくすることができるため、有効である。その原理は、吐出域が往復する際に、先の吐出と後の吐出の間に時間的間隔を設けることで、その間に先の繊維層の冷却が進み、後の繊維層と融着しにくくなり、結果として平面方向の内部空間を大きくすることができる。時間的間隔が大きいと、その効果は更に大きくなる。
 加えて吐出移動速度を小さくすることによって、先の繊維層の冷却が進むため、より平面方向の内部空間を大きくすることができる。ここで、吐出移動速度とは、下記式で算出される、単位時間あたりの幅方向の吐出紡口域の移動速度をいう。
 <式>
  吐出移動速度=捕集コンベアの幅長(m)/(切り替え時間(s)×幅方向の紡口数)
 例えば図13において、捕集コンベアの幅を1.6m、20cm幅の紡口を8台設置しているとする。この場合に、図13の右端の紡口1から左端の紡口8までを2.5秒ごとに切り替えながら連続して紡糸を行った場合に、吐出移動速度は1.6/(2.5×8)=0.08m/sとなる。この吐出移動速度は、幅方向に吐出域が広がる正味の速さを示すものである。
 なお、幅方向に時間差の吐出を行うよりも簡便に同様の効果を得たい場合は、代わりにメルトブローダイ自体をコンベアに対して幅方向に往復移動させるか、コンベアをダイに対して幅方向に往復移動させることでも同様の効果が得られる。
 単位長あたりのダイ紡口数は、不織布の平面方向の均質性を向上させ、内部空間の大きさを好適範囲に制御する点で有効なパラメータである。また、単孔吐出量とDCDはそれぞれ単位時間あたりの不織布の塗布量、および不織布の厚みを調整することができ、相対的に内部空間を制御するために有効である。特に、単孔吐出量を小さくすると、繊維層の冷却が促進され、相対的に内部空間を大きくすることができる。しかし、小さくしすぎると樹脂が細くなりすぎてコンベアに捕集されずに飛散する(フライ)現象が発生するので、一定範囲に調整することが望ましい。
 加熱エアー量は、不織布の平均繊維直径を調整することができ、一定の白血球除去能を得るためには高くすることが有効である。但し、高すぎると繊維が細くなりすぎてコンベアに捕集されずに飛散する(フライ)現象が発生するので、単孔吐出量に合わせて一定以下に調整することが望ましい。
<白血球除去方法>
 白血球除去方法は、例えば、血液処理フィルターに白血球含有液を通過させ、白血球含有液から白血球を除去する工程を含む。
 ここで、白血球含有液とは、白血球を含む体液や合成血液を総称するものであり、具体的には、全血、濃厚赤血球溶液、洗浄赤血球浮遊液、解凍赤血球濃厚液、合成血、乏血小板血漿(PPP)、多血小板血漿(PRP)、血漿、凍結血漿、血小板濃厚液およびバフィーコート(BC)などの、全血及び全血から調製して得られる単一もしくは複数種類の血液成分からなる液体、またはそれらの液体に抗凝固剤や保存液などが添加された溶液、もしくは全血製剤、赤血球製剤、血小板製剤、血漿製剤などのことである。
 また、上記の液体を本実施形態の方法によって処理して得られる液体を白血球が除去された液体と称する。
 以下、白血球除去方法により白血球を除去し各血液製剤を調製する方法の一形態について説明する。
(白血球除去全血製剤の調製)
 採血された全血にCitrate Phosphate Dextrose(CPD)、Citrate Phosphate Dextrose Adenine-1(CPDA-1)、Citrate Phosphate-2-Dextrose(CP2D)、Acid Citrate Dextrose Formula-A(ACD-A)、Acid Citrate Dextrose Formula-B(ACD-B)、ヘパリンなどの保存液、抗凝固剤等を添加した全血製剤を用意し、その後、本実施形態の血液処理フィルターを用いてこの全血製剤から白血球を除去することにより白血球除去全血製剤を得ることができる。
 白血球除去全血製剤の調製においては、保存前白血球除去の場合、好ましくは室温下または冷蔵下にて保存された全血を採血後72時間以内、更に好ましくは24時間以内、特に好ましくは12時間以内、最も好ましくは8時間以内に室温下または冷蔵下にて血液処理フィルターを用いて白血球除去を行うことにより白血球除去全血製剤を得ることができる。保存後白血球除去の場合、室温下、冷蔵下または冷凍下にて保存された全血を、好ましくは使用前24時間以内に血液処理フィルターを用いて白血球を除去することにより白血球除去全血製剤を得ることができる。
(白血球除去赤血球製剤の調製)
 採血された全血にCPD、CPDA-1、CP2D、ACD-A、ACD-B、ヘパリンなどの保存液、抗凝固剤を添加する。各血液成分の分離方法は、全血から白血球を除去した後に遠心分離を行う場合と、全血を遠心分離した後に赤血球もしくは赤血球とBCから白血球を除去する場合がある。
 全血から白血球を除去した後に遠心分離を行う場合、白血球除去全血を遠心分離することにより白血球除去赤血球製剤を得ることができる。
 白血球除去前に全血を遠心分離する場合、遠心条件は、赤血球、PRPに分離される弱遠心条件と、赤血球、BC、PPPに分離される強遠心条件の2種類がある。必要に応じて全血から分離された赤血球、もしくはBCを含んだ赤血球に、SAGM、AS-1、AS-3、AS-5、MAPなどの保存液を添加後、白血球除去フィルターを用いて赤血球から白血球を除去することにより白血球除去赤血球製剤を得ることができる。
 白血球除去赤血球製剤調製においては、好ましくは室温下または冷蔵下にて保存された全血を採血後72時間以内、更に好ましくは48時間以内、特に好ましくは24時間以内、最も好ましくは12時間以内に遠心分離を行うことができる。
 保存前白血球除去の場合、好ましくは室温下または冷蔵下にて保存された赤血球製剤から採血後120時間以内、更に好ましくは72時間以内、特に好ましくは24時間以内、最も好ましくは12時間以内に室温下または冷蔵下にて血液処理フィルターを用いて白血球を除去することにより白血球除去赤血球製剤を得ることができる。保存後白血球除去の場合、好ましくは室温下、冷蔵下または冷凍下にて保存された赤血球製剤から使用前24時間以内に血液処理フィルターを用いて白血球を除去することにより白血球除去赤血球製剤を得ることができる。
(白血球除去血小板製剤の調製)
 採血された全血にCPD、CPDA-1、CP2D、ACD-A、ACD-B、ヘパリンなどの保存液、抗凝固剤を添加する。
 各血液成分の分離方法は、全血から白血球を除去した後に遠心分離を行う場合と、全血を遠心分離した後にPRPもしくは血小板から白血球を除去する場合がある。
 全血から白血球を除去した後に遠心分離を行う場合、白血球除去全血を遠心分離することにより白血球除去血小板製剤を得ることができる。
 白血球除去前に全血を遠心分離する場合、遠心条件は、赤血球、PRPに分離される弱遠心条件と、赤血球、BC、PPPに分離される強遠心条件の2種類がある。弱遠心条件の場合、全血から分離されたPRPから血液処理フィルターにて白血球を除去した後に遠心分離により白血球除去血小板製剤を得るか、もしくはPRPを遠心分離して血小板とPPPを得た後、血液処理フィルターにて白血球を除去し白血球除去血小板製剤を得ることができる。強遠心条件の場合、全血から分離されたBCを一単位もしくは数~十数単位プールしたものに必要に応じて保存液、血漿などを添加して遠心分離を行うことにより血小板を得て、得られた血小板を血液処理フィルターにて白血球を除去することにより白血球除去血小板製剤とすることができる。
 白血球除去血小板製剤調製において、好ましくは室温下にて保存された全血を採血後24時間以内、更に好ましくは12時間以内、特に好ましくは8時間以内に遠心分離を行う。保存前白血球除去の場合、好ましくは室温下にて保存された血小板製剤を採血後120時間以内、更に好ましくは72時間以内、特に好ましくは24時間以内、最も好ましくは12時間以内に室温下にて血液処理フィルターを用いて白血球を除去することにより白血球除去血小板製剤を得ることができる。保存後白血球除去の場合、好ましくは室温下、冷蔵下または冷凍下にて保存された血小板製剤から使用前24時間以内に血液処理フィルターを用いて白血球を除去することにより白血球除去血小板製剤を得ることができる。
(白血球除去血漿製剤の調製)
 採血された全血にCPD、CPDA-1、CP2D、ACD-A、ACD-B、ヘパリンなどの保存液、抗凝固剤を添加する。
 各血液成分の分離方法は、全血から白血球を除去した後に遠心分離を行う場合と、全血を遠心分離した後にPPPもしくはPRPから白血球を除去する場合がある。
 全血を白血球除去した後に遠心分離を行う場合、白血球除去全血を遠心分離することにより白血球除去血漿製剤を得ることができる。
 白血球除去前に全血を遠心分離する場合、遠心条件は、赤血球、PRPに分離される弱遠心条件と、赤血球、BC、PPPに分離される強遠心条件の2種類がある。弱遠心条件の場合、PRPを血液処理フィルターにて白血球を除去した後に遠心分離により白血球除去血漿製剤を得るか、またはPRPからPPPと血小板に遠心分離した後に血液処理フィルターにて白血球を除去することにより白血球除去血漿製剤を得ることができる。強遠心条件の場合、PPPを血液処理フィルターにて白血球を除去することにより白血球除去血漿製剤を得ることができる。
 白血球除去血漿製剤調製においては、好ましくは室温下または冷蔵下にて保存された全血を採血後72時間以内、更に好ましくは48時間以内、特に好ましくは24時間以内、最も好ましくは12時間以内に遠心分離を行うことができる。好ましくは室温下または冷蔵下にて保存された血漿製剤から採血後120時間以内、更に好ましくは72時間以内、特に好ましくは24時間以内、最も好ましくは12時間以内に室温下または冷蔵下にて血液処理フィルターを用いて白血球を除去することにより白血球除去血漿製剤を得ることができる。保存後白血球除去の場合、好ましくは室温下または冷蔵下または冷凍下にて保存された血漿製剤から使用前24時間以内に血液処理フィルターを用いて白血球を除去することにより白血球除去血漿製剤を得ることができる。
 採血から白血球除去血液製剤を調製するまでの形態として、全血用容器に接続された採血針にて採血し、全血または遠心分離後の血液成分が入った容器と血液処理フィルターを接続して白血球除去を行う、もしくは少なくとも採血針と血液容器、血液処理フィルターが無菌的に接続された回路にて採血し、遠心分離前または遠心分離後に白血球除去を行う、もしくは自動採血装置により得られた血液成分の入った容器に血液処理フィルターを接続もしくはあらかじめ接続された血液処理フィルターにより白血球除去を行う、などいずれの形態で行われてもよいが、本実施形態はこれらの形態に限定されるものではない。また、自動成分採血装置にて全血を各成分に遠心分離し、必要に応じて保存液を添加した後、すぐに血液処理フィルターへ赤血球、BCを含んだ赤血球、BC、血小板、PRP、PPPのいずれかを通し、白血球を除去することにより白血球除去赤血球製剤もしくは白血球除去血小板製剤もしくは白血球除去血漿製剤を得てもよい。
 本実施形態において、白血球除去は、血液処理フィルターよりも高い位置に設置された白血球含有液の入った容器から、落差によって白血球含有血液がチューブを経由して血液処理フィルターに流れることによって行われてもよいし、また、ポンプなどの手段を用いて白血球含有血液を血液処理フィルターの入口側から加圧および/または血液処理フィルターの出口側から減圧して流すことによって行ってもよい。
 以下、本発明を実施例に基づいて説明するが、本発明はこれらに限定されるものではない。血液処理フィルターの性能は、以下の方法によって測定した。
(白血球除去能評価・濾過時間評価)
 評価に用いる血液として、採血直後の血液400mLに対して抗凝固剤であるCPD溶液を56mL加えて混和し2時間静置した全血を用いた。以後、この血液評価用に調製された血液を濾過前血という。
 但し、血液は輸血市場において、室温保存血と冷蔵保存血を用いる場合があるので、今回は両方のケースで評価を行った。
 濾過前血が充填された血液バッグと蒸気加熱処理後の血液処理フィルターの入口部とを内径3mm、外径4.2mmの塩化ビニル製のチューブ40cmで接続した。さらに、血液処理フィルターの出口部と回収用血液バッグとを同じく内径3mm、外径4.2mmの塩化ビニル製チューブ85cmで接続した。その後、濾過前血を充填した血液バッグの上部から落差140cmにて濾過前血を血液処理フィルター内に流し、回収用血液バッグに流入する血液量が0.2g/分になるまでの濾過時間を計測した。
 さらに回収用血液バッグから血液(以後、濾過後血という)3mLを回収した。白血球除去能は、残存白血球数を求めることにより評価した。残存白血球数は、フローサイトメトリー法(装置:BECTON DICKINSON社製 FACSCanto)を用いて濾過後血の白血球数を測定し、下記の式に従い計算した。白血球数の測定は、各血液100μLをサンプリングし、ビーズ入りLeucocountキット(日本ベクトン・ディッキンソン社)を用いて行った。
 残存白血球数 =log[白血球濃度(個/μL)(濾過後血)]×血液量(mL)
 上記フィルター形状(不織布14枚、有効濾過面積45cm)の条件にて実施した場合に、室温保存血または冷蔵保存血のいずれかにおいて、残存白血球数が1×10個未満であり、かつ45分以内に濾過完了が達成できれば、実用上望ましい白血球除去フィルター要素といえる。好ましくは、40分以内、より好ましくは35分以内、更に好ましくは30分以内である。これは濾過時間が短ければ、血液センターの限られたスペースでより多くの血液を単位時間当たりに濾過することができ、作業効率の向上につながる。また、濾過時間が長いと予期しない溶血などの品質不良が発生し、製剤廃棄につながるためである。
 残存白血球数がバッグ当たり1×10未満(6Log/Bag未満)となると重篤な副作用を防止することが可能となる。室温保存血または冷蔵保存血のいずれかを満たせばよいというのは、1つのフィルターですべての要求条件を満たす必要はなく、使用環境に応じて適切なフィルターを提供すれば実用上は支障はないからである。好ましくは5.8Log/Bag以下、より好ましくは5.5Log/Bag以下、更に好ましくは5.3Log以下である。血液は個体差が大きいため、残存白血球数(対数)は同一フィルター種でも正規分布を示すことがわかっており、凡そ標準偏差は0.20Log程度となっている。すなわち、5.8Log以下であれば1σ分のバラつき(65%)を考慮してより安全な血液製剤を作製でき、5.5Log以下であれば2σ、5.3Log以下であれば3σ分のバラつきを考慮できる。言い換えれば、5.3Logであれば、99.7%の高い血液適合率を考慮した製剤作製が可能で、残存白血球数に起因する輸血副作用のリスクを飛躍的に抑制することが可能となる。
[実施例1]
(フィルター層の調製)
 ポリブチレンテレフタレート(PBT)をメルトブロー法で紡糸して不織布(繊維基材)を形成した。ここで、PBT樹脂の固有粘度は0.82(dL/g)、単孔吐出量は0.21(g/(分・hole))、吐出時の加熱エアの圧力は0.30(MPa)、捕集コンベア速度は4.1(m/秒)であった。捕集コンベアを8.0分間循環させて、コンベア上に不織布を形成させた。また、紡糸時のダイ温度は280℃、ノズルと捕集コンベアとの距離は6cmであった。
 得られた繊維基材に対して下記の方法で親水性ポリマーによるコーティングを行い、コート層を有する不織布(第1フィルター層)を得た。なお、使用した親水性ポリマーにはカルボキシル基は含まれておらず、コート後の不織布のカルボキシル基当量は繊維基材のそれと同じ122μeq/gであった。
 2-ヒドロキシエチル メタアクリレート(以下HEMAと略称する)とジエチルアミノエチル メタアクリレート(以下DEAMAと略称する)のコポリマーを通常の溶液ラジカル重合によって合成した。エタノール中のモノマー濃度1モル/Lで、開始剤としてアゾイソブチロニトリル(AIBN)1/200モルの存在下、60℃で8時間、重合反応を行なった。生成した親水性ポリマーのエタノール溶液に繊維基材を浸した。ポリマー溶液から取り出された繊維基材を押ししぼって、吸収された余分なポリマー溶液を除去し、乾燥空気を送りながらポリマー溶液を乾燥させて、繊維基材の表面を覆うコート層を形成させた。
 得られた第1フィルター層の周囲表面部分(コート層の表面部分)における非イオン性基と塩基性含窒素官能基の物質量の合計に対する前記塩基性含窒素官能基の物質量の割合は3.0モルパーセントであり、その第1フィルター層1g中のコート層の質量は1.5mg/g(繊維基材+コート層)であった。
 第1フィルター層の各種物性は表1に示すとおりである。
(血液処理フィルターの作製)
 第1フィルター層14枚を、Am:Acが1.2:1となるように(配向度の高い向きがAmと一致するように)して裁断し、これを有効濾過面積45cmの軟質性容器に充填し、超音波溶着して血液処理フィルターを作製した。
 この血液処理フィルターを、115℃で59分間蒸気加熱処理した後、40℃で15時間以上真空乾燥させた。血液処理フィルターの性能は表1に示すとおりである。
[実施例2~10]
 PBT樹脂の固有粘度、単孔吐出量、捕集コンベア速度、及び捕集コンベアの循環時間を表1に示すように変更したこと以外は、実施例1と同様に不織布(繊維基材)を作成した。
 実施例1と同様にコーティングを行い、第1フィルター層を得た。第1フィルター層の各種物性は表1に示すとおりである。
 表1に示すように配向度の高い向きがAmと一致するようにし、実施例1と同様に血液処理フィルターを作成した。血液処理フィルターの性能は表1に示すとおりである。
[実施例11~20]
 実施例11~20は、それぞれ、実施例1~10に対応する。実施例11~20では、実施例1~10の第1フィルター層の向きを変えて、表2に示すように配向度の高い向きがAcと一致するようにしたこと以外は、実施例1~10と同様に血液処理フィルターを作成した。血液処理フィルターの性能は表2に示すとおりである。
[実施例21~30]
 実施例21~30は、それぞれ、実施例1~10に対応する。実施例21~30では、実施例1~10の第1フィルター層の向きを変えて、Am:Acが1:1となるようにしたこと以外は、実施例1~10と同様に血液処理フィルターを作成した。血液処理フィルターの性能は表3に示すとおりである。なお、実施例21~30では、実施例1~20で使用した室温保存血よりも粘度が高く、凝集物を比較的多く含む血液を使用した。
[比較例1]
 PBT樹脂の固有粘度を0.85(dL/g)、単孔吐出量を0.23(g/(分・hole))、吐出時の加熱エアの圧力を0.32(MPa)、捕集コンベア速度を3.5(m/秒)、捕集コンベアの循環時間を7.3分に変更したこと以外は、実施例1と同様に不織布(繊維基材)を作成した。
 実施例1と同様にコーティングを行い、フィルター層を得た。フィルター層の各種物性は表4に示すとおりである。
 表4に示すように配向度の高い向きがAmと一致するようにし、実施例1と同様に血液処理フィルターを作成した。血液処理フィルターの性能は表4に示すとおりである。
[比較例2]
 比較例1のフィルター層の向きを変えて、表4に示すように配向度の高い向きがAcと一致するようにしたこと以外は、比較例1と同様に血液処理フィルターを作成した。血液処理フィルターの性能は表4に示すとおりである。
[比較例3]
 PBT樹脂の固有粘度を0.88(dL/g)、単孔吐出量を0.25(g/(分・hole))、吐出時の加熱エアの圧力を0.35(MPa)、捕集コンベア速度を3.2(m/秒)、捕集コンベアの循環時間を6.7分に変更したこと以外は、実施例1と同様に不織布(繊維基材)を作成した。
 実施例1と同様にコーティングを行い、フィルター層を得た。フィルター層の各種物性は表4に示すとおりである。比較例3のフィルター層の不織布の配向度は、完全に等方的であった。
 実施例1と同様に血液処理フィルターを作成した。血液処理フィルターの性能は表4に示すとおりである。
[比較例4]
 比較例1のフィルター層の向きを変えて、Am:Acが1:1となるようにしたこと以外は、比較例1と同様に血液処理フィルターを作成した。血液処理フィルターの性能は表4に示すとおりである。なお、比較例4では、比較例1で使用した室温保存血よりも粘度が高く、凝集物を比較的多く含む血液を使用した。
[比較例5]
 比較例3で使用した室温保存血よりも粘度が高く、凝集物を比較的多く含む血液を使用して、比較例3の血液処理フィルターの性能を評価した。結果は表4に示すとおりである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例1~30、比較例1~5の結果から、不織布の最大配向度比を1.2以上にし、さらにAmおよびAcの比を血液の性状に合わせて適切に調節することで、配向度がより等方的である比較例の不織布を使用する場合に比べて、良好な濾過時間または白血球数を達成することができる。
 とりわけ、実施例21~30の結果から、1.2以上の最大配向度比を有する不織布は、Am:Acを1:1にしたとしても、粘性の高い血液を短時間で濾過でき、残存白血球数を低減できることが判明した。これは、不織布の配向度比が高いと血液が流れる流路が形成され、粘度が高い血液でも目詰まりを起こすことなく定常的な流速を維持し、結果として濾過時間を短縮させることを示唆する。また、流路閉塞を防止することで濾材の有効活用性を向上させ、本来トレードオフの関係にある残存白血球数についても、比較例4(既存品)に比べて向上させる効果が得られることを示した。
 さらに、実施例2~9では冷蔵血濾過で残存白血球数が5.5Log以下、且つ濾過時間が40分以下となり、白血球除去能の向上に伴う製剤品質の向上ならびに作業性の向上がみられた。とりわけ、実施例2~6では残存白血球数が5.3Log以下と更に白血球除去能が向上した。
 さらに、実施例12~19では室温血濾過で残存白血球数が5.8Log以下、且つ濾過時間が40分以下となり、白血球除去能の向上に伴う製剤品質の向上ならびに作業性の向上がみられた。とりわけ、実施例12~16では濾過時間が35分以下と更に作業効率が向上した。
 さらに、実施例22~29では残存白血球数が5.5Log以下、且つ濾過時間が40分以下となり、白血球除去能の向上に伴う製剤品質の向上ならびに作業性の向上がみられた。加えて、実施例22~27では濾過時間が30分以下と更に作業効率が向上した。とりわけ、実施例22~25では残存白血球数が5.3Log以下と更に白血球除去能が向上した。
 以上の結果から、最大配向度比が1.28~2.0の不織布はより濾過性能が向上し、最大配向度比が1.28~1.42の不織布は更に性能が向上することが分かった。
 次に、既存の白血球除去フィルターまたは公知文献に記載の製造方法に基づき調製したフィルター層を用いて、全血濾過による性能比較を行うこととした。
[実施例31]
 (血液処理フィルターの作製)
 実施例1で使用した第1フィルター層14枚を、Am:Acが1.2:1となるように(配向度の高い向きがAmと一致するように)して3cm角に裁断し、これを有効濾過面積9cmの軟質性容器に充填し、超音波溶着して血液処理フィルターを作製した。公知のフィルターは大きさがまちまちであるため、サイズを揃えて実施するためには、小型のフィルターでなければ相対評価ができないためである。
 この血液処理フィルターを、115℃で59分間蒸気加熱処理した後、40℃で15時間以上真空乾燥させた。血液処理フィルターの性能は表5に示すとおりである。
(白血球除去能評価・濾過時間評価)
 評価に用いる血液として、採血直後の血液80mLに対して抗凝固剤であるCPD溶液を11.2mL加えて混和し2時間静置した全血を用いた。以後、この血液評価用に調製された血液を濾過前血という。
 但し、血液は輸血市場において、室温保存血と冷蔵保存血を用いる場合があるので、今回は両方のケースで評価を行った。
 濾過前血が充填された血液バッグと蒸気加熱処理後の血液処理フィルターの入口部とを内径3mm、外径4.2mmの塩化ビニル製のチューブ40cmで接続した。さらに、血液処理フィルターの出口部と回収用血液バッグとを同じく内径3mm、外径4.2mmの塩化ビニル製チューブ85cmで接続した。その後、濾過前血を充填した血液バッグの上部から落差140cmにて濾過前血を血液処理フィルター内に流し、回収用血液バッグに流入する血液量が0.2g/分になるまでの濾過時間を計測した。
 さらに回収用血液バッグから血液(以後、濾過後血という)3mLを回収した。白血球除去能は、残存白血球数を求めることにより評価した。残存白血球数の計測方法は、上記のとおりである。
 上記フィルター形状(不織布14枚、有効濾過面積9cm)の条件にて実施した場合に、室温保存血または冷蔵保存血のいずれかにおいて、残存白血球数が5.3Log/Bag未満であり、かつ45分以内に濾過完了が達成できれば、実用上望ましい白血球除去フィルター要素といえる。
 残存白血球数は、好ましくは5.12Log/Bag以下、より好ましくは4.95Log/Bag以下、更に好ましくは4.77Log/Bag以下である。濾過時間は、好ましくは、40分以内、より好ましくは35分以内、更に好ましくは30分以内である。
 この濾過時間値は、実施例1~30に記載の通常フィルターサイズの場合と同じである。なぜならば、有効濾過面積が通常フィルターの場合の1/5であり、濾過血液量も1/5であるため、単位面積あたりの濾材に流れる血液量は両者同じである。従って、濾過時間は通常フィルターの場合と同じ時間で規定できる。
 但し、残存白血球数は、血液量が1/5となるため、基準はバッグ当たり0.2×10未満(5.3Log/Bag未満)となり、凡そ標準偏差は0.18Log程度となることから、好適な性能値が変更となる。小型の血液処理フィルターの性能試験結果を表5に示す。
[比較例6及び7]
 ヘモネティクス社製eWBF3Jを解体し、平均繊維直径が1.6~1.8μmと比較的目の細かいフィルター層を採取し、実施例31と同様の方法で小型フィルターによる血液濾過を行った。但し、不織布の目付が88g/mであったので、フィルターに使用する不織布の重量を揃えるために、不織布15枚を積層して使用した。
 最大配向度比が1.65であったので、Am:Ac=1.65:1、及び1:1.65となるようにフィルターに積層して、それぞれ評価した。試験結果を表5に示す。
[比較例8及び9]
 旭化成メディカル社製RZ-2000Fを解体し、平均繊維直径が1.3μmと目の細かいフィルター層を採取し、実施例31と同様の方法で小型フィルターによる血液濾過を行った。但し、不織布の目付が40g/mであったので、不織布32枚を積層して使用した。
 最大配向度比が1.13であったので、Am:Ac=1.13:1、及び1:1.13となるようにフィルターに積層して、それぞれ評価した。試験結果を表5に示す。
[比較例10~13]
 フレゼニウス・カビ社製Compoflowシステムに含まれる白血球除去フィルターを解体し、平均繊維直径が小さい、嵩密度の異なる2種類のフィルター層を採取し、それぞれのフィルター層を用いて、実施例31と同様の方法で小型フィルターによる血液濾過を行った。但し、不織布の目付がそれぞれ55g/m、53g/mであったので、不織布をそれぞれ23枚、24枚を積層して使用した。試験結果を表5に示す。目付55g/mの不織布を比較例10及び11、目付53g/mの不織布を比較例12及び13に記載する。
[比較例14及び15]
 特表H10-508343の実施例60に記載の不織布を作製した。但し、製造条件で本実施例に記載のない条件として、樹脂粘度は0、82g/dL、各ノズルの中心間距離は0.1cm、ノズルは200個の1列構成とし、ノズルの傾斜角度は0度として行った。その結果、実施例に記載の物性を有する不織布が得られたので、本願実施例31と同様の方法で小型フィルターによる血液濾過を行った。不織布の目付は54g/mであるので、不織布24枚を積層して使用した。試験結果を表5に示す。
[比較例16及び17]
 国際公開第2018/034213号の実施例1に記載のPBT不織布を用いて、本願実施例31と同様の方法で小型フィルターによる血液濾過を行った。不織布の目付は22g/mであるので、不織布59枚を積層して使用した。試験結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 次に、全血に比べて粘度がより高く、濾過時間がより精度よく検出できる赤血球製剤を用いて、不織布の内部空間の形成効果を以下の試験で確認した。
(血液処理フィルターの白血球除去性能)
 血液製剤として欧州基準(the Guide to the Preparation,Use and Quality Assurance of Blood Components第19版(2017年))に従って調製された赤血球製剤300gを用い、これを落差110cmの自然落差で実施例、比較例の血液処理フィルターを用いて濾過、回収し、濾過後血液製剤を得た。ここで、落差とは、赤血球製剤の入った濾過前バッグの最下部から赤血球製剤の濾過後回収バッグの最下部(図7の例では天秤の天板)までとした。
 次いで、以下の計算式に従い残存白血球数を算出した。
 残存白血球数=log[(濾過後血液製剤中の白血球濃度)×(濾過後血液回収量)]
 なお、濾過前後の血液製剤中の白血球濃度の測定は、べクトンデッキンソン社(BD社)製白血球数測定用キット「LeucoCOUNT」及びBD社製フローサイトメーター FACS CantoIIを使用して行った。
[残存白血球数の評価基準]
◎:5.0未満
〇:5.0以上5.5未満
×:5.5以上
 残存白血球数がバッグ当たり1×10未満(6log/Bag未満)となると重篤な副作用を防止することが可能となる点は全血と同じである。但し、赤血球製剤はもともとの全血の個体差に加えて、赤血球製剤調製時の手技上のバラつきにより、血液性状により大きな違いが生じることが分かっており、同一フィルター種使用時の残存白血球数の正規分布において、標準偏差は0.30Log程度となっている。すなわち、言い換えれば、5.0Log未満であれば、99.7%以上の高い血液適合率を考慮した製剤作製が可能で、残存白血球数に起因する輸血副作用のリスクを飛躍的に抑制することが可能となる。一方で5.5Log未満であれば90%の適合率を満たすため、実用上の使用は可能となる。
(濾過時間)
 前記「(血液処理フィルターの白血球除去性能)」において、赤血球製剤を血液処理フィルターに流し始めてから濾過後赤血球製剤の回収バッグの質量増加が停止するまでに要した時間(分)を濾過時間(分)とした。なお、回収バッグの質量増加の停止とは、回収バッグの質量を濾過開始から1分毎に測定し、回収バッグの質量変化が0.1g/分以下となった時点をさす。質量増加の停止と判断した最終の1分は濾過時間に含んで算出した。
[評価基準]
◎:20分未満
〇:20分以上26分未満
×:26分以上
 赤血球製剤の濾過時間は、既存の白血球除去フィルター(旭化成メディカル社赤血球製剤用フィルターR-S11)の実績を踏まえると、実用上26分未満であることが必要である。更には、20分未満であることがより好ましい。
(血液ロス率)
 1分間の回収バッグの重量変化が0.1g以下になった時点で回収を終了し、回収終了時の天秤の値を血液回収量とした。また、血液ロス率を以下の式から求めた。
 血液ロス率(%)=100(%)×((濾過前血液量(g)-血液回収量(g))/濾過前血液量(g)
[評価基準]
◎:8.0%未満
〇:8.0%以上9.2%未満
×:9.2%以上
 今回は赤血球製剤を300gに合わせて実施するが、実使用時は濾過前の血液量には個体差があるため、血液の回収量はロス率で算出する必要がある。既存の白血球除去フィルター(旭化成メディカル社赤血球製剤用フィルターR-S11)の実績を踏まえると、血液ロス率は実用上9.2%未満であることが必要である。更には、8.0%未満であることがより好ましい。このようにすることで、有用な血液のロスを低減させることができる。結果として輸血時に同一の患者に投与する製剤バッグ数を減少できるので、医療機関でのコスト削減や作業の効率化につながる。
[実施例A1]
(フィルター層の調製)
 ポリブチレンテレフタレート(PBT)をメルトブロー法で紡糸して不織布(繊維基材)を形成した。捕集には回転コンベア式装置を使用した。メルトブローダイとして、紡口数が10hole/cmであり、捕集コンベアの捕集幅(2m)に対し10分の1のダイ長(0.20m)を有するものを10台配置した。幅方向に端から時間差で紡糸を行う方法を採用した。単孔吐出量は0.17(g/(min・hole))、捕集コンベア回転速度は220m/min、紡口ごとの切り替え時間は4.1秒とし、吐出移動速度は0.07m/秒とした。さらに、メルトブローダイと捕集コンベアまでの距離(DCD)が50mmになるよう調整した。また、紡糸時のダイ温度は280℃とした。
 得られた不織布に対して下記の方法で親水性ポリマーによるコーティングを行い、コート層を有する不織布(第1フィルター層)を得た。親水性ポリマーのエタノール溶液(濃度:1.5g/L)に不織布を浸した後、ポリマー溶液から取り出された不織布を押ししぼって、吸収された余分なポリマー溶液を除去し、乾燥空気を送りながらポリマー溶液を乾燥させて、不織布の外周面を覆うコート層を形成させた。
 得られた第1フィルター層の周囲表面部分(コート層の表面部分)における非イオン性基と塩基性含窒素官能基の物質量の合計に対する前記塩基性含窒素官能基の物質量の割合は3.0モルパーセントであり、その第1フィルター層1g中のコート層の質量は3mg/g(繊維基材+コート層)であった。
 第1フィルター層の各種物性は表6に示すとおりである。また、第1フィルター層の厚み方向における平面内空隙率の変動を図9に示す。
(血液処理フィルターの作製)
 第2フィルター層及び第3フィルター層として、目付:30(g/m)、単位目付あたりの通気抵抗:0.03(kPa・s・m/g)であるポリエチレンテレフタレート(以下、「PET」と略す)不織布を使用した。
 血液の流れの上流から下流に向かって、第2フィルター層4枚、第1フィルター層16枚、及び第3フィルター層4枚を順に積層させた。この積層体を、血液の入口部又は出口部となるポートを有する2枚の可撓性塩化ビニル樹脂シートの間に挟み、高周波溶着機を用いて、濾材と可撓性シートの周縁部分を溶着、一体化させ、有効濾過面積43cmの血液処理フィルターを作製した。該血液処理フィルターに対して115℃、59分間高圧蒸気滅菌を実施した後、各種性能について試験した。結果を表6に示す。
[実施例A2]
 紡糸幅を1.6mに変え、紡口を幅方向に8台配置し、紡口切り替え時間を調節して吐出移動速度を0.08~0.09m/秒に変えたこと以外は実施例A1と同様に第1フィルター層及び血液処理フィルターを作成した。第1フィルター層の物性及び血液処理フィルターの性能は表6に示すとおりである。
[実施例A3]
 紡糸幅を1.8mに変え、紡口を幅方向に9台配置し、紡口切り替え時間を調節して吐出移動速度を0.07~0.08m/秒に変えたこと以外は実施例A1と同様に第1フィルター層及び血液処理フィルターを作成した。第1フィルター層の物性及び血液処理フィルターの性能は表6に示すとおりである。
[実施例A4]
 紡口切り替え時間を調節して吐出移動速度を0.06~0.07m/秒に変え、さらに吐出域が折り返す際に15秒の滞留時間を設けたこと以外は実施例A1と同様に第1フィルター層及び血液処理フィルターを作成した。第1フィルター層の物性及び血液処理フィルターの性能は表6に示すとおりである。
[実施例A5]
 紡口切り替え時間を調節して吐出移動速度を0.09m/秒に変え、捕集コンベア回転速度を225~230m/minに変え、メルトブローダイ長を0.40mに変え、紡口を幅方向に5台配置したこと以外は実施例A1と同様に第1フィルター層及び血液処理フィルターを作成した。第1フィルター層の物性及び血液処理フィルターの性能は表6に示すとおりである。
[実施例A6~A8]
 捕集コンベア回転速度を、実施例A6では223~228m/minに変え、実施例A7では220~225m/minに変え、実施例A8では215~220m/minに変えたこと以外は実施例A1と同様に第1フィルター層及び血液処理フィルターを作成した。第1フィルター層の物性及び血液処理フィルターの性能は表6に示すとおりである。
[実施例A9]
 紡口切り替え時間を調節して吐出移動速度を0.08~0.09m/秒に変え、メルトブローダイ長を0.40mに変え、紡口を幅方向に5台配置したこと以外は実施例A1と同様に第1フィルター層及び血液処理フィルターを作成した。第1フィルター層の物性及び血液処理フィルターの性能は表6に示すとおりである。
[実施例A10]
 紡口切り替え時間を調節して吐出移動速度を0.07~0.08m/秒に変え、DCDを48~50mmに変えたこと以外は実施例A1と同様に第1フィルター層及び血液処理フィルターを作成した。第1フィルター層の物性及び血液処理フィルターの性能は表6に示すとおりである。
[実施例A11]
 紡口切り替え時間を調節して吐出移動速度を0.06~0.07m/秒に変え、DCDを46~48mmに変えたこと以外は実施例A1と同様に第1フィルター層及び血液処理フィルターを作成した。第1フィルター層の物性及び血液処理フィルターの性能は表6に示すとおりである。
[実施例A12]
 捕集コンベア回転速度を220~225m/minに変え、DCDを58~60mmに変えたこと以外は実施例A1と同様に第1フィルター層及び血液処理フィルターを作成した。第1フィルター層の物性及び血液処理フィルターの性能は表6に示すとおりである。また、第1フィルター層の厚み方向における平面内空隙率の変動を図10に示す。
[実施例A13]
 紡口切り替え時間を調節して吐出移動速度を0.06~0.07m/秒に変え、捕集コンベア回転速度を220~225m/minに変え、DCDを55~60mmに変え、メルトブローダイ長を0.153mに変え、紡口を幅方向に13台配置したこと以外は実施例A1と同様に第1フィルター層及び血液処理フィルターを作成した。第1フィルター層の物性及び血液処理フィルターの性能は表6に示すとおりである。
[実施例A14]
 紡口切り替え時間を調節して吐出移動速度を0.06~0.07m/秒に変え、捕集コンベア回転速度を225~230m/minに変え、DCDを60~65mmに変え、メルトブローダイ長を0.153mに変え、紡口を幅方向に13台配置したこと以外は実施例A1と同様に第1フィルター層及び血液処理フィルターを作成した。第1フィルター層の物性及び血液処理フィルターの性能は表6に示すとおりである。
[実施例A15及びA16]
 紡口切り替え時間を調節して吐出移動速度を0.06~0.07m/秒に変え、捕集コンベア回転速度を、実施例A15では225~228m/minに変え、実施例A16では220~225m/minに変えたこと以外は実施例A1と同様に第1フィルター層及び血液処理フィルターを作成した。第1フィルター層の物性及び血液処理フィルターの性能は表7に示すとおりである。
[実施例A17]
 紡口切り替え時間を調節して吐出移動速度を0.06~0.07m/秒に変えたこと以外は実施例A1と同様に第1フィルター層及び血液処理フィルターを作成した。第1フィルター層の物性及び血液処理フィルターの性能は表7に示すとおりである。
[実施例A18及びA19]
 DCDを、実施例A18では55~60mmに変え、実施例A19では40~45mmに変え、また、単孔吐出量を、実施例A18では0.28g/min/holeに変え、実施例A19では0.18g/min/holeに変えたこと以外は実施例A1と同様に第1フィルター層及び血液処理フィルターを作成した。第1フィルター層の物性及び血液処理フィルターの性能は表7に示すとおりである。
[実施例A20~A22]
 コーティングにおける親水性ポリマー溶液の濃度を、実施例A20では0.3g/Lに変え、実施例A21では1.0g/Lに変え、実施例A22では5.0g/Lに変えたこと以外は実施例A1と同様に第1フィルター層及び血液処理フィルターを作成した。第1フィルター層の物性及び血液処理フィルターの性能は表7に示すとおりである。
[実施例A23及びA24]
 DCDを、実施例A23では55~60mmでに変え、実施例A24では45~50mmに変えたこと以外は実施例A1と同様に第1フィルター層及び血液処理フィルターを作成した。なお、不織布(繊維基材)に対して、実施例A23では弱い圧力でプレス処理を行うことにより、実施例A24では強い圧力でプレス処理を行うことにより、充填率を調整した。第1フィルター層の物性及び血液処理フィルターの性能は表7に示すとおりである。
[比較例A1]
 メルトブローダイ長を0.3mに変え、紡糸幅を0.3mに変え、時間差での吐出を行わないこと以外は実施例A1と同様に第1フィルター層及び血液処理フィルターを作成した。第1フィルター層の物性及び血液処理フィルターの性能は表7に示すとおりである。また、第1フィルター層の厚み方向における平面内空隙率の変動を図11に示す。
[比較例A2]
 単孔吐出量を0.24g/min/holeに変えたこと以外は比較例A1と同様に第1フィルター層及び血液処理フィルターを作成した。第1フィルター層の物性及び血液処理フィルターの性能は表7に示すとおりである。また、第1フィルター層の厚み方向における平面内空隙率の変動を図12に示す。
[比較例A3]
 単孔吐出量を0.23g/min/holeに変え、DCDを45~50mmに変えたこと以外は比較例A1と同様に第1フィルター層及び血液処理フィルターを作成した。第1フィルター層の物性及び血液処理フィルターの性能は表7に示すとおりである。
[比較例A4]
 捕集装置として非回転式のベルトコンベア式ネットを用い、ネット下へ吸引しながら紡糸した。PET樹脂を使用し、単孔吐出量を0.08g/min/hole、DCDを50mmで調整し、メルトブローダイ長を0.3m、紡糸幅を0.3m、ベルトコンベア移動速度を0.05m/秒として、時間差での吐出を行わない方法で不織布を形成した。得られた不織布に対して実施例A1と同様の方法で親水性ポリマーによるコーティングを行い、第1フィルター層を作成した。第1フィルター層の各種物性は表7に示すとおりである。
 得られた第1フィルター層を使用して、実施例A1と同様の方法で血液処理フィルターを作成した。血液処理フィルターの各種性能は表7に示すとおりである。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 最大配向度比を一定以上に制御した不織布を用いてフィルターを作製すること、又は内部に所定の空間を有するフィルター層を使用することで、血液の濾過時間を短縮させ、且つ残存白血球数も低減できる効果が得られる。これは輸血市場において血液の品質を向上させ、且つ製造現場での製剤調製に要する時間を短縮させ生産性を向上させるメリットを生むことから、産業上の利用可能性を有すると考える。
 1…容器、3…入口部、4…出口部、5…濾材、7…入口部側空間、8…出口部側空間、9…濾材の外縁部、10…血液処理フィルター、11…第1フィルター層、12…濾過方向、13…濾過方向に直交する平面方向、14…濾過方向に平行する平面方向、15…血液流れ(入口部)、16…血液流れ(出口部)、17…平面方向の最大長さ、18…厚み方向の最大長さ

Claims (14)

  1.  血液の入口部及び出口部を有する容器と、
     前記容器内の、前記入口部と前記出口部との間に配置された濾材と、
    を含む血液処理フィルターであって、
     前記濾材が、フィルター層を含み、
     前記フィルター層が、不織布を含み、
     前記不織布の繊維が、前記フィルター層のX軸平面方向への配向度Xと、前記X軸平面方向に直交するY軸平面方向への配向度Yと、を有し、
     前記配向度Xの、前記配向度Yに対する比(配向度X/配向度Y)の最大値が1.2以上である、
    前記血液処理フィルター。
  2.  配向度X/配向度Yの最大値が1.4以上である、請求項1に記載の血液処理フィルター。
  3.  濾過方向に直交する、前記フィルター層の平面方向への前記繊維の配向度(Ac)の、濾過方向に平行する、前記フィルター層の平面方向への前記繊維の配向度(Am)に対する比(Ac/Am)が、1.2以上となるように、前記フィルター層が配置されている、請求項1又は2に記載の血液処理フィルター。
  4.  Ac/Amが1.4以上である、請求項3に記載の血液処理フィルター。
  5.  濾過方向に平行する、前記フォイター層の平面方向への前記繊維の配向度(Am)の、濾過方向に直交する、前記フィルター層の平面方向への前記繊維の配向度(Ac)に対する比(Am/Ac)が、1.2以上となるように、前記フィルター層が配置されている、請求項1又は2に記載の血液処理フィルター。
  6.  Am/Acが1.4以上である、請求項5に記載の血液処理フィルター。
  7.  前記不織布がポリエステル不織布である、請求項1~6のいずれか一項に記載の血液処理フィルター。
  8.  血液の入口部及び出口部を有する容器と、
     前記容器内の、前記入口部と前記出口部との間に配置された濾材と、
    を含む血液処理フィルターであって、
     前記濾材が、1以上のフィルター層を含み、
     前記フィルター層が、厚み方向の断面において、平面方向の最大長さが50μm以上であり、かつ厚み方向の最大長さが15μm以上である空間を有する、
    前記血液処理フィルター。
  9.  前記フィルター層の充填率が0.09~0.26である、請求項8に記載の血液処理フィルター。
  10.  前記フィルター層の、厚み方向における平面内最小空隙率と厚み方向における平面内最大空隙率との差が0.08~0.28である、請求項8又は9に記載の血液処理フィルター。
  11.  前記厚み方向における平面内最小空隙率が0.72~0.85であり、前記厚み方向における平面内最大空隙率が0.85~1.00である、請求項10に記載の血液処理フィルター。
  12.  前記フィルター層の比表面積が0.50~1.50m/gである、請求項8~11のいずれか一項に記載の血液処理フィルター。
  13.  前記フィルター層の臨界湿潤表面張力が70~100dyn/cmである、請求項8~12のいずれか一項に記載の血液処理フィルター。
  14.  請求項1~13のいずれか一項に記載の血液処理フィルターに、白血球を含有する血液を通過させる工程を含む、血液製剤の製造方法。
PCT/JP2020/027030 2019-07-12 2020-07-10 血液処理フィルター及び血液製剤の製造方法 WO2021010319A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080049839.8A CN114080246A (zh) 2019-07-12 2020-07-10 血液处理过滤器及血液制剂的制造方法
JP2021533036A JP7340020B2 (ja) 2019-07-12 2020-07-10 血液処理フィルター及び血液製剤の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-130505 2019-07-12
JP2019-130515 2019-07-12
JP2019130515 2019-07-12
JP2019130505 2019-07-12

Publications (1)

Publication Number Publication Date
WO2021010319A1 true WO2021010319A1 (ja) 2021-01-21

Family

ID=74210910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027030 WO2021010319A1 (ja) 2019-07-12 2020-07-10 血液処理フィルター及び血液製剤の製造方法

Country Status (3)

Country Link
JP (1) JP7340020B2 (ja)
CN (1) CN114080246A (ja)
WO (1) WO2021010319A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148504A1 (ja) * 2013-03-18 2014-09-25 旭化成メディカル株式会社 凝集物除去フィルター材、凝集物除去方法、白血球除去フィルター及び血液製剤のろ過方法
WO2016204289A1 (ja) * 2015-06-17 2016-12-22 旭化成メディカル株式会社 血液処理フィルター用フィルター要素及び血液処理フィルター

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904385A (en) * 1985-05-23 1990-02-27 The Dow Chemical Company Porous filter media and membrane support means
JP3799262B2 (ja) * 2001-10-31 2006-07-19 日本バイリーン株式会社 積層型濾過材、これを用いたフィルタエレメント、及びこれらの製造方法
JP4833486B2 (ja) * 2002-05-28 2011-12-07 住友化学株式会社 ミクロフィルター用濾材の製造方法およびミクロフィルター用濾材
JP4144707B2 (ja) * 2004-01-21 2008-09-03 旭化成メディカル株式会社 血液処理フィルター
JP4787842B2 (ja) * 2004-12-10 2011-10-05 フレゼニウス・ヘモケア・イタリア・ソシエタ・ア・レスポンサビリタ・リミタータ とくに生体液を濾過するための多孔性ウェブ
JP5164241B2 (ja) * 2005-12-20 2013-03-21 旭化成メディカル株式会社 血液処理フィルター装置
JP2010196235A (ja) * 2009-01-28 2010-09-09 Toyobo Co Ltd 成形性の優れた長繊維不織布およびその製造方法
JP5461948B2 (ja) * 2009-10-13 2014-04-02 旭化成メディカル株式会社 体外循環用白血球除去器
JP5548041B2 (ja) * 2010-06-21 2014-07-16 花王株式会社 不織布
JP5988811B2 (ja) * 2012-09-30 2016-09-07 ユニ・チャーム株式会社 吸収性物品
CN105813663B (zh) * 2013-12-13 2017-09-22 旭化成医疗株式会社 去除白血球的过滤材料、以及去除白血球的方法
US10441909B2 (en) * 2014-06-25 2019-10-15 Hollingsworth & Vose Company Filter media including oriented fibers
WO2018034213A1 (ja) * 2016-08-18 2018-02-22 旭化成メディカル株式会社 血液処理フィルター用フィルター要素、血液処理フィルター及び白血球除去方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148504A1 (ja) * 2013-03-18 2014-09-25 旭化成メディカル株式会社 凝集物除去フィルター材、凝集物除去方法、白血球除去フィルター及び血液製剤のろ過方法
WO2016204289A1 (ja) * 2015-06-17 2016-12-22 旭化成メディカル株式会社 血液処理フィルター用フィルター要素及び血液処理フィルター

Also Published As

Publication number Publication date
JP7340020B2 (ja) 2023-09-06
CN114080246A (zh) 2022-02-22
JPWO2021010319A1 (ja) 2021-01-21

Similar Documents

Publication Publication Date Title
JP4134043B2 (ja) 白血球除去方法、白血球除去フィルター及びその使用
KR101759459B1 (ko) 백혈구 제거 필터재, 및 백혈구를 제거하는 방법
JP6437651B2 (ja) 血液処理フィルター用フィルター要素及び血液処理フィルター
JP2019188188A (ja) 血液処理フィルター用フィルター要素、血液処理フィルター、及び血液処理方法
JP6752890B2 (ja) 血液処理フィルター用フィルター要素、血液処理フィルター及び白血球除去方法
WO2021010319A1 (ja) 血液処理フィルター及び血液製剤の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20839990

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021533036

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20839990

Country of ref document: EP

Kind code of ref document: A1