WO2016204287A1 - 地熱発電システム、地熱発電装置、地熱発電方法又は媒体移送管、その媒体移送管を利用した地熱発電装置及び地熱発電方法並びに破砕帯に媒体移送管を設置する方法 - Google Patents

地熱発電システム、地熱発電装置、地熱発電方法又は媒体移送管、その媒体移送管を利用した地熱発電装置及び地熱発電方法並びに破砕帯に媒体移送管を設置する方法 Download PDF

Info

Publication number
WO2016204287A1
WO2016204287A1 PCT/JP2016/068163 JP2016068163W WO2016204287A1 WO 2016204287 A1 WO2016204287 A1 WO 2016204287A1 JP 2016068163 W JP2016068163 W JP 2016068163W WO 2016204287 A1 WO2016204287 A1 WO 2016204287A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
steam
geothermal
power generation
water
Prior art date
Application number
PCT/JP2016/068163
Other languages
English (en)
French (fr)
Inventor
健彦 横峯
秀男 坂本
Original Assignee
ジャパン・ニュー・エナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジャパン・ニュー・エナジー株式会社 filed Critical ジャパン・ニュー・エナジー株式会社
Priority to JP2017524871A priority Critical patent/JP6596494B2/ja
Publication of WO2016204287A1 publication Critical patent/WO2016204287A1/ja
Priority to PH12017502365A priority patent/PH12017502365A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/30Geothermal collectors using underground reservoirs for accumulating working fluids or intermediate fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Definitions

  • the present invention relates to a geothermal power generation system, a geothermal power generation apparatus, a geothermal power generation method or a medium transfer pipe, a geothermal power generation apparatus and a geothermal power generation method using the medium transfer pipe, and a method of installing a medium transfer pipe in a crushing zone.
  • the method of obtaining energy using geothermal energy can extract heat energy semipermanently because it uses a high-temperature magma layer as a heat source, and does not generate greenhouse gases in the process of power generation. For this reason, it has recently attracted attention as an alternative to fossil fuels.
  • Such geothermal exchangers can transport high-temperature and high-pressure hot water and steam existing in the underground and other heat retained by the heat transfer medium to the ground and obtain steam on the ground. Is an effective invention for providing a very small geothermal exchanger.
  • a first object of the present invention is to further develop a heat exchanger according to the prior art, and to provide a geothermal power generation system, a geothermal power generation apparatus, and a geothermal power generation method with higher thermal efficiency.
  • Conventional geothermal power generation equipment uses a natural steam that is extracted from the natural tropics using natural pressure and is separated into steam and water. And other impurities. These impurities become scales and adhere to heat wells, piping, turbine blades, and the like. If the scale adheres, the amount of power generation decreases over time, making long-term use difficult.
  • a geothermal absorber in which water descends from the ground to the geotrophic region and absorbs heat in the geotropical zone and rises to the ground, and water that passes through the geothermal absorber has a boiling point on the primary side, rather than water.
  • a geothermal power generation system comprising: a heat exchanger in which a low liquid is supplied to the secondary side, heat is transferred from water to the liquid to vaporize the liquid, and a steam turbine that rotates with the steam generated by the heat exchanger.
  • a geothermal power generation system including a first circulation channel in which a geothermal absorber, a primary side of a heat exchanger, and a pump are provided in a channel and water is circulated by the pump has been proposed.
  • hot water heated in the basement may not necessarily be hot, although it depends on the temperature of the tropics. Therefore, when high temperature is required, it is necessary to excavate deeply, but there is a problem that costs are increased. Therefore, a method for effectively using steam and hot water with low heat has become necessary.
  • the present invention has been made in view of such a problem, and provides a geothermal power generation apparatus and a geothermal power generation method capable of enhancing power generation efficiency by effectively using the amount of heat obtained from the geotropy on the ground. Second purpose.
  • the geothermal power generation device of Patent Document 3 is configured so that the pressurized water injection pipe to which the treated water pressurized by the high-pressure feed water pump is supplied and the treated water descending to the geotrophic region from the geotropical zone.
  • Technology that has a hot water outlet pipe that rises when hot water is generated by the supply of heat, and the hot water extracted from the hot water outlet pipe is sent to a steam generator to generate electricity Has been proposed.
  • treated water pressurized by a high-pressure water supply pump is supplied to a pressurized water injection pipe, and the treated water descends through the pressurized water injection pipe to reach the earth tropics. Since heat is supplied to generate hot water, and the hot water rises in the hot water discharge pipe and is used for power generation, the steam used for power generation does not contain impurities, The scale does not adhere to the turbine or piping as in the case of directly using natural steam that exists in the tropics, so there is no need to remove the scale, maintenance is easy, and the power generator can be operated for a long time. It becomes possible.
  • Patent Document 1 uses the technique of Patent Document 3 and applies pressured water injection pipes to which treated water pressurized by a high-pressure feed water pump is supplied, and treated water descending to the ground in the pressurized water injection pipe.
  • Geothermal power generation devices have been proposed.
  • the present invention has been made in view of the above problems, and provides an apparatus and method for efficiently vaporizing hot water carried in a single-phase flow to improve the amount of power generation, and pressurizing.
  • a third object is to provide an apparatus and a method for reducing pressure loss as much as possible when transferring single-phase hot water to a steam generator.
  • Patent Document 4 constitutes a spiral flow path for promoting underground heat exchange, and in a low-temperature underground layer such as a shallow constant temperature layer or an aquifer, the medium is spirally flowed down to condense and liquefy by heat radiation cooling into the ground. Furthermore, in high-temperature underground layers such as deep high-temperature layers and geothermal layers, a spiral flow that facilitates medium temperature rise at the bottom of the double-pipe tunnel by promoting temperature rise preheating by endothermic heating from the ground A path configuration type coaxial double pipe heat exchanger has been proposed.
  • a fourth object is to provide a medium transfer pipe, a geothermal power generation apparatus and a geothermal power generation method using the medium transfer pipe.
  • the present invention is to further develop a heat exchanger according to the prior art, and to provide a geothermal power generation system, a geothermal power generation apparatus, and a geothermal power generation method with higher thermal efficiency.
  • the present invention adopts the following means in order to achieve the first object.
  • a geothermal power generation system includes a medium transfer pipe having a double region that has a descending region for lowering a medium and an ascending region for raising a medium, and has no opening in the geotropics, and the medium is placed in the medium transfer tube.
  • a production well for receiving geothermal water formed around the medium transfer pipe, and at least one steam separator, and a steam separator for extracting steam from the geothermal water;
  • the geothermal power generation system Since the geothermal power generation system according to the present invention has production wells around the closed circulation type medium geothermal well, the geothermal water cooled by the medium in the vicinity of the heat exchanging geothermal well is around the medium transfer pipe. Is always replaced with new heated geothermal water, and the geothermal water always heated by geothermal heat comes into contact with the medium transfer pipe, and the medium can be heated more effectively. In addition, you may have a reduction well which reduces at least one part of the said geothermal water which heat exchange was completed.
  • a geothermal power generation system includes a medium transfer pipe having a double region that has a descending region for lowering a medium and an ascending region for raising a medium, and has no opening in the geotropics, and the medium is placed in the medium transfer tube.
  • a steam separator A generator for generating electricity by the steam; With At least a part of the medium is heat-exchanged and heated by geothermal water separated by the steam separator, and is sent to the medium transfer pipe by the high-pressure circulation pump.
  • the geothermal power generation system by heating the temperature of the medium to be sent to the medium transfer pipe, it is possible to take in a medium having a higher temperature and a higher pressure, thereby improving the power generation output.
  • a geothermal power generation system includes a medium transfer pipe having a double region that has a descending region for lowering a medium and an ascending region for raising a medium, and has no opening in the geotropics, and the medium is placed in the medium transfer tube.
  • a first geothermal power generation facility comprising: a high-pressure circulation pump for sending; and a power generation facility for a medium that generates power by taking out steam from the medium heated by the heat of geothermal heat; It comprises a production well that receives geothermal water, a reduction well that reduces at least a portion of the geothermal water that has been subjected to heat exchange, and at least one steam separator, and extracts steam from the geothermal water.
  • a second geothermal power generation facility having a geothermal water power generation facility for generating electricity, With At least a part of the medium is heat-exchanged and heated by geothermal water separated by the steam separator, and is sent to the medium transfer pipe by the high-pressure circulation pump.
  • the medium of the first geothermal power generation facility has a completely different closed system from the geothermal water of the second geothermal power generation facility, and is thus taken out by the first geothermal power generation facility. Since the medium does not contain sulfur and other impurities peculiar to the earth and tropics, it does not adhere to heat wells, piping, turbines or the like as a scale and can be used for a long time.
  • the production well may be formed around the medium transfer pipe.
  • the steam / water separator includes a heat exchanger for exchanging heat of the geothermal water separated by the steam / water separator with the medium. It may be characterized by.
  • the medium can be effectively heated by heating the medium using the hot water separated by the air / water separator of the second geothermal power generation facility.
  • the geothermal water power generation facility includes a flasher, and the flasher includes a heat exchanger for exchanging heat with the medium. It may be a feature.
  • the medium can be effectively heated by exchanging heat in the flasher.
  • the medium power generation facility includes a condenser, and the medium cooled by the condenser is sent to the second geothermal power generation facility side. It may be a thing.
  • the medium can be circulated by sending the medium of the condenser after being used for power generation to the second geothermal power generation facility and heating it.
  • the production well may be formed around the medium transfer pipe.
  • the geothermal water around the medium transfer pipe is always replaced with new heated geothermal water, and since the geothermal water around the medium transfer pipe flows, the geothermal water always heated by geothermal heat is the medium.
  • the medium comes into contact with the transfer tube, and the medium can be heated more effectively.
  • the present invention also provides the following geothermal power generation method.
  • a geothermal power generation method includes a medium transfer pipe having a double pipe that has a descending area and a rising area to be raised, and has no opening in the geotropics, and high-pressure circulation for sending the medium to the medium transfer pipe
  • a pump and a steam generator for extracting steam from the medium heated by geothermal heat
  • a production well for receiving geothermal water formed around the medium transfer pipe
  • a reduction well for reducing at least a part of the geothermal water after heat exchange; and at least one steam separator.
  • the geothermal power generation method includes a medium transfer pipe having a lowering area for lowering the medium and an ascending area for raising the medium and having a double pipe having no opening in the geotropics, and A high-pressure circulation pump for delivering a medium, a steam generator for extracting steam from the medium heated by geothermal heat, a production well for receiving geothermal water, and at least a part of the geothermal water that has undergone heat exchange A reduction well for reducing water and at least one steam separator, and a steam separator for taking out steam from the geothermal water; A generator for generating electricity by the steam; With At least a part of the medium is heat-exchanged and heated by geothermal water separated by the steam separator, and is sent to the medium transfer pipe by the high-pressure circulation pump.
  • the geothermal power generation method includes a medium transfer pipe having a lowering area for lowering the medium and an ascending area for raising the medium, and having a double pipe having no opening in the geotropics, and
  • a first geothermal power generation facility comprising: a high-pressure circulation pump for delivering a medium; and a medium power generation facility for generating power by taking out steam from the medium heated by the heat of geothermal heat; It comprises a production well that receives geothermal water, a reduction well that reduces at least a portion of the geothermal water that has been subjected to heat exchange, and at least one steam separator, and extracts steam from the geothermal water.
  • a second geothermal power generation facility having a geothermal water power generation facility for generating electricity, With At least a part of the medium is heat-exchanged and heated by geothermal water separated by the steam separator, and is sent to the medium transfer pipe by the high-pressure circulation pump.
  • the geothermal power generation method is: (1) A step of taking the heated medium from a medium transfer pipe having a double pipe not having an opening in the tropics, which has a descending area for lowering the medium and an ascending area for raising the medium; (2) a step of separating the taken medium into a medium vapor and a medium liquid; (3) a step of generating electricity using the separated steam; (4) A process of taking geothermal water from the production well, (5) a step of separating the geothermal water taken into geothermal water vapor and geothermal water liquid; (6) heating the liquid of the medium with the liquid of geothermal water; And (7) a step of delivering a heated medium liquid to the medium transfer pipe.
  • the present invention adopts the following means.
  • a geothermal power generation apparatus that generates electricity using hot water heated by geothermal heat as a heat source, a medium injection pipe for transferring the hot water to the geotropics on the outside, and the geotropical heat on the inside of the medium injection pipe
  • a medium transfer pipe provided with a medium take-out pipe for taking out the hot water heated by the medium, the medium take-out pipe provided with a heat insulating structure having a low thermal conductivity in a low-temperature tropical region, and a high-temperature geotropical
  • the medium injection pipe provided with an endothermic structure having a high thermal conductivity is provided in the region, and the high-temperature hot water that has absorbed heat by the earth and the tropics is applied to the ground so as to be transferred at a pressure higher than the evaporation curve.
  • the pressure is controlled by a pressure pump, and it is transferred to a steam generator on the ground in a liquid state so as not to generate steam, and steam is generated by depressurizing and boiling with the steam generator.
  • pressurized water generator to perform Using the hot water that has not been converted to steam among the hot water transferred to the ground as a heat source, a binary power generator that generates power by evaporating a working medium having a boiling point lower than that of the hot water, and the pressurized water generator And a heating section that generates superheated steam by heating steam sent to a steam turbine provided, and that is driven by electric power obtained by the binary power generation device.
  • the heat obtained from the ground is converted into heat using water as a medium, so there is no need to consider the effects on equipment such as heat transfer inhibition due to scale or deterioration of heat exchange performance and clogging of pipes, In addition, there is no possibility of contamination due to scale removal or damage caused by harmful substances from the ground.
  • the thermal efficiency of the turbine causes a so-called wet loss in which the efficiency is significantly reduced as compared with the case of operating with dry steam.
  • water droplets in the steam collide with a turbine blade or a pipe inner wall that rotates at a high speed it is subject to erosion, causing not only a further decrease in efficiency but also damage to equipment.
  • a geothermal power generation apparatus that generates electricity using hot water heated by geothermal heat as a heat source, a medium injection pipe for transferring the hot water to the geotropics on the outside, and the geotropical heat on the inside of the medium injection pipe
  • a medium transfer pipe provided with a medium take-out pipe for taking out the hot water heated by the medium, the medium take-out pipe provided with a heat insulating structure having a low thermal conductivity in a low-temperature tropical region, and a high-temperature geotropical
  • the medium injection pipe provided with an endothermic structure having a high thermal conductivity is provided in the region, and the pressure is controlled by a ground pressure pump so as to be transferred at a pressure higher than the evaporation curve so as not to generate steam.
  • the liquid is transferred to the first steam generator on the ground, and the first steam generator is depressurized and boiled to generate high-pressure first steam, and the first steam generates electric power, and It becomes steam in hot water
  • the hot water again is depressurized and boiled by the second steam generator to generate low-pressure second steam, and the pressurized water power generation device that generates power using the second steam, and the hot water transferred to the ground
  • a binary power generation device that uses hot water that has not become steam in the second steam generator as a heat source and vaporizes a working medium having a boiling point lower than that of the hot water to generate power, and steam provided in the pressurized water power generation device
  • a heating unit that heats steam sent to the turbine to generate superheated steam and that is driven by electric power obtained by the binary power generation device.
  • the heat obtained from the ground is converted into heat using water as a medium, so there is no need to consider the effects on equipment such as heat transfer inhibition due to scale or deterioration of heat exchange performance and clogging of pipes, In addition, there is no possibility of contamination due to scale removal or damage caused by harmful substances from the ground.
  • the thermal efficiency of the turbine causes a so-called wet loss in which the efficiency is significantly reduced as compared with the case of operating with dry steam.
  • water droplets in the steam collide with a turbine blade or a pipe inner wall that rotates at a high speed it is subject to erosion, causing not only a further decrease in efficiency but also damage to equipment.
  • the steam generator is provided with a steam generating nozzle that generates a steam containing microbubbles while reducing pressure to boiling.
  • the amount of steam can be increased.
  • a geothermal power generation apparatus that generates electricity using hot water heated by geothermal heat as a heat source, a medium injection pipe for transferring the hot water to the geotropics on the outside, and the geotropy inside the medium injection pipe
  • a medium transfer pipe provided with a medium take-out pipe for taking out the hot water heated by the heat of the medium, the medium take-out pipe provided with a heat insulating structure having a low thermal conductivity in a low temperature geotropical region, and a high temperature In the geotropical region, the medium injection pipe provided with an endothermic structure having a high thermal conductivity is provided so that the hot water that has absorbed heat by the geotropy is transferred at a pressure higher than the evaporation curve.
  • the pressure is controlled by a ground pressurization pump, and it is transferred to a steam generator on the ground in a liquid state so as not to generate steam, and the steam is decompressed and boiled by the steam generator to generate steam.
  • a binary power generation device that uses hot water that has not been converted to steam among the hot water transferred to the ground as a heat source and generates power by evaporating a working medium having a boiling point lower than that of the hot water. It is characterized by that.
  • a geothermal power generation apparatus that generates electricity using hot water heated by geothermal heat as a heat source, a medium injection pipe for transferring the hot water to the geotropics on the outside, and the geotropical heat on the inside of the medium injection pipe
  • a medium transfer pipe provided with a medium take-out pipe for taking out the hot water heated by the medium, the medium take-out pipe provided with a heat insulating structure having a low thermal conductivity in a low-temperature tropical region, and a high-temperature geotropical
  • the medium injection pipe provided with an endothermic structure having a high thermal conductivity is provided in the region of (5), and the high-temperature hot water that has absorbed heat by the earth's tropics is pressurized on the ground so as to be transferred at a pressure higher than the evaporation curve.
  • the pressure is controlled by a pump, and it is transferred to the first steam generator on the ground in a liquid state so as not to generate steam, and the first steam generator is decompressed and boiled to generate high-pressure first steam. Power generation by the first steam
  • the hot water that has not become steam among the hot water is again decompressed and boiled by the second steam generator to generate low-pressure second steam, and pressurized water power generation is performed using the second steam.
  • a power generation device is controlled by a pump, and it is transferred to the first steam generator on the ground in a liquid state so as not to generate steam, and the first steam generator is decompressed and boiled to generate high-pressure first steam. Power generation by the first steam
  • the hot water that has not become steam among the hot water is again decompressed and boiled by the
  • the heat obtained from the ground is converted into heat using water as a medium, so there is no need to consider the effects on equipment such as heat transfer inhibition due to scale or deterioration of heat exchange performance and clogging of pipes, In addition, there is no possibility of contamination due to scale removal or damage caused by harmful substances from the ground.
  • the thermal efficiency of the turbine causes a so-called wet loss in which the efficiency is significantly reduced as compared with the case of operating with dry steam.
  • water droplets in the steam collide with a turbine blade or a pipe inner wall that rotates at a high speed it is subject to erosion, causing not only a further decrease in efficiency but also damage to equipment.
  • the steam generator is provided with a steam generating nozzle that generates a steam containing microbubbles while reducing pressure to boiling.
  • the amount of steam can be increased.
  • the present invention employs the following means in order to achieve the third object described above.
  • a geothermal power generation apparatus comprising a path for transferring a liquid from a geotropy to a steam generator by a pressure pump, and generating electricity by evaporating the liquid transferred to the geotropy and heated by the heat of the geotropy
  • the geothermal power generation device includes a microbubble generating device that generates microbubbles before being vaporized, and generates electricity by evaporating the liquid in which the microbubbles are dissolved.
  • the microbubble generating device that generates the microbubbles by the pressure of the pressurizing pump (pressurizing water supply pump) is provided.
  • the liquid (hot water) containing microbubbles has an additional number of foaming nuclei and a surface area of the gas-liquid interface (evaporation interface) as compared with normal water.
  • the amount of steam can be increased, so that the amount of power generation can be improved.
  • a storage tank for storing the liquid remaining after the vaporization or the liquid after the used steam is returned to the liquid is provided, and the storage tank is provided with the microbubble generating device.
  • the liquid (hot water) containing microbubbles increases the number of foaming nuclei and the surface area of a gas-liquid interface (evaporation interface) more than normal water.
  • the amount of steam can be increased, so that the amount of power generation can be improved.
  • the steam generator that evaporates by boiling the heated liquid under reduced pressure includes the microbubble generating device.
  • the liquid (hot water) containing microbubbles increases the number of foaming nuclei and the surface area of a gas-liquid interface (evaporation interface) more than normal water.
  • the amount of steam can be further increased, so that the amount of power generation can be improved.
  • the steam generator includes the micro-bubble generating device in a nozzle that generates steam.
  • the liquid (hot water) containing microbubbles increases the number of foaming nuclei and the surface area of a gas-liquid interface (evaporation interface) more than normal water.
  • the amount of steam can be increased, so that the amount of power generation can be improved.
  • the pressurizing pump for transferring the liquid to the earth tropics includes the microbubble generating device. With this configuration, it is possible to reduce the frictional resistance of the wall surface by injecting microbubbles into the turbulent boundary layer. For this reason, the resistance of the path is reduced and the pressure loss can be reduced. And the burden of a pressurizing pump etc. can be reduced.
  • the microbubble generating device is provided that generates the microbubbles by a pressure of a circulation pump that transfers the liquid after the used vapor is returned to the liquid to the storage tank.
  • the microbubble generating device is provided in front of a path for transporting to the earth and the tropics.
  • the liquid (hot water) containing microbubbles increases the number of foaming nuclei and the surface area of a gas-liquid interface (evaporation interface) more than normal water.
  • the amount of steam can be increased, so that the amount of power generation can be improved.
  • the micro-bubble generating device is provided on an upper portion of a pressurized water injection pipe that is transferred to the earth and is provided along an inner periphery of the pressurized water injection pipe.
  • the liquid is introduced without resistance along with the inner periphery of the pressurized water injection tube and transferred to the deep portion with a centrifugal force, and is transferred without pressure loss. can do.
  • the liquid is transferred to the earth and tropics by a pressure pump, and the liquid heated by the heat of the earth and tropics is transferred to a steam generator, and microbubbles are generated until it is vaporized, and the microbubbles are dissolved.
  • the liquid is vaporized by the vapor generator to generate electric power.
  • the liquid (hot water) containing microbubbles increases the number of foaming nuclei and the surface area of the gas-liquid interface (evaporation interface) more than normal water. Thereby, when the liquid (hot water) becomes steam in the steam generator, the amount of steam can be increased, so that the amount of power generation can be improved.
  • the present invention employs the following means in order to achieve the fourth object.
  • a medium transfer pipe that is used in a geothermal power generation apparatus that generates electricity by vaporizing a medium heated by geothermal heat, and that transfers the medium, the medium transfer pipe outwardly transferring the medium to the geotropy
  • a rectifying unit for controlling the flow direction is provided, and the rectifying unit is provided with a plurality of plate-like rectifying pieces for controlling the flow direction of the medium in an annular body part.
  • the underground heat recovered in the medium can be transported with less loss, and the underground energy recovery efficiency can be increased.
  • the medium is introduced without resistance with a centrifugal force along the inner periphery of the medium injection pipe and transferred to the deep part, the medium is transferred without pressure loss, and the load on the pressure pump and the like can be reduced. It also prevents the backflow of hot water heated in the tropics.
  • it is possible to control the direction in which the medium flows in while reducing the weight by installing a plurality of plate-like rectifying pieces in a part of the flow path as compared with the case where a spiral path is provided in the entire flow path. is there. Further, the manufacturing operation and the installation operation are simple, and the manufacturing cost is low.
  • the rectifying unit includes the rectifying piece having an inclination of 45 degrees to 75 degrees with respect to a perpendicular to the central axis of the medium take-out pipe.
  • the underground heat recovered in the medium can be transported with less loss, and the underground energy recovery efficiency can be increased. Since the medium is introduced along the inner periphery of the medium injection pipe without resistance with a centrifugal force and transferred to the deep portion, the medium is transferred without pressure loss, and the burden on the pressure pump and the like can be reduced. Moreover, the reverse flow of the hot water heated by the earth tropical is prevented in several places. Furthermore, it is possible to allow the medium to flow spirally along the inclination of the rectifying piece.
  • the rectifying unit includes the rectifying piece having an inclination of 60 degrees with respect to a perpendicular to the central axis of the medium take-out pipe.
  • the underground heat recovered in the medium can be transported with less loss, and the underground energy recovery efficiency can be increased. Since the medium is introduced along the inner periphery of the medium injection pipe without resistance with a centrifugal force and transferred to the deep portion, the medium is transferred without pressure loss, and the burden on the pressure pump and the like can be reduced. Moreover, the reverse flow of the hot water heated by the earth tropical is prevented in several places. Furthermore, it is possible to allow the medium to flow spirally along the inclination of the rectifying piece.
  • An annular ring portion is arranged above and below, a space is provided between the ring portions, and the body portion in which the ring portions are connected and fixed by the rectifying piece is provided. Even with this configuration, the same effect as described above can be obtained.
  • the weight of the medium can be reduced, and at the same time, the medium is introduced along the inner periphery of the medium injection pipe without resistance with a centrifugal force and transferred to the deep part. Can be reduced. It also prevents the backflow of hot water heated in the tropics.
  • the rectifying unit is formed by spirally winding a rod along the outer periphery of the medium take-out pipe.
  • the weight can be reduced, and at the same time, the medium is introduced along the inner periphery of the medium injection pipe without resistance with a centrifugal force and transferred to the deep part.
  • the burden on the pressurizing pump can be reduced. Further, it is possible to allow the medium to flow spirally along the inclination of the rectifying unit.
  • An inner diameter larger than the outer diameter of the medium take-out pipe is provided, and the body portion formed so as to be insertable into the medium injection pipe from above is provided.
  • a connecting pipe for connecting the medium take-out pipes is provided, and the body portion has the inner diameter formed smaller than the outer diameter of the connecting pipe.
  • the body portion includes a screwing groove for connecting the medium take-out pipes to each other.
  • a medium transfer pipe that is used in a geothermal power generation apparatus that generates electricity by vaporizing a medium heated by geothermal heat, and that transfers the medium, the medium transfer pipe outwardly to the geotropy
  • a rectifying unit is provided which is wound in a spiral shape and controls the flow direction of the medium.
  • the underground heat recovered in the medium can be transported with less loss, and the underground energy recovery efficiency can be increased. Further, since the medium is introduced without resistance along the outer periphery of the medium take-out pipe and transferred to the deep part with centrifugal force, the medium is transferred without pressure loss and the burden on the pressure pump and the like can be reduced. It also prevents the backflow of hot water heated in the tropics. Furthermore, it is possible to control the direction in which the medium flows while reducing the weight as compared with the case where a spiral path is provided in the entire flow path.
  • the medium transfer pipe includes a medium injection pipe for transferring the medium to the earth and the outside, and a medium take-out pipe for taking out the medium heated by the geothermal heat inside the medium injection pipe
  • the medium transfer pipe includes a rectification unit including a rectification unit that spirally forms a groove on an inner periphery of the medium injection pipe and controls a flow direction of the medium.
  • the underground heat recovered in the medium can be transported with less loss, and the underground energy recovery efficiency can be increased.
  • the medium is introduced without resistance with a centrifugal force along the inner periphery of the medium injection pipe and transferred to the deep part, the medium is transferred without pressure loss, and the load on the pressure pump and the like can be reduced. It also prevents the backflow of hot water heated in the tropics. Furthermore, it is possible to control the direction in which the medium flows while reducing the weight as compared with the case where a spiral path is provided in the entire flow path.
  • a rectifying unit which controls a flow direction of the medium by winding a rod spirally along the outer periphery of the medium injection tube.
  • the groove and the rod face each other to form a spiral shape.
  • a swirling flow is generated, and the outer flow rate is increased by centrifugal force. Therefore, when descending the outer tube (medium injection tube), the inner tube that does not want to exchange heat very much in the outer tube section.
  • the flow rate can be reduced on the (medium take-out pipe) side, and the flow rate can be increased on the outside (underground side) where heat exchange (heat reception) is desired.
  • the flow rate on the outer tube side where heat recovery is required in the cross section of the outer tube due to centrifugal force is greater on the inner tube side where heat loss occurs. Lower than the flow rate.
  • the underground heat recovered in the medium can be transported with less loss, and the underground energy recovery efficiency can be increased. Furthermore, since the medium is introduced without resistance with a centrifugal force along the inner circumference of the medium injection pipe and the inner circumference of the medium take-out pipe and is transferred to the deep part, it is transferred without pressure loss and bears a burden on a pressure pump or the like. Can be reduced. It also prevents the backflow of hot water heated in the tropics. Furthermore, it is possible to control the direction in which the medium flows while reducing the weight as compared with the case where a spiral path is provided in the entire flow path.
  • a medium transfer pipe that is used in a geothermal power generation apparatus that generates electricity by vaporizing a medium heated by geothermal heat, and that transfers the medium, the medium transfer pipe outwardly to the geotropy
  • a medium transfer pipe comprising a rectification unit that spirally winds and controls the flow direction of the medium.
  • the underground heat recovered in the medium can be transported with less loss, and the underground energy recovery efficiency can be increased.
  • the medium is introduced without resistance with a centrifugal force along the inner periphery of the medium injection pipe and transferred to the deep part, the medium is transferred without pressure loss, and the load on the pressure pump and the like can be reduced. It also prevents the backflow of hot water heated in the tropics. Furthermore, it is possible to control the direction in which the medium flows while reducing the weight as compared with the case where a spiral path is provided in the entire flow path.
  • the rod is characterized in that an annular connecting ring connected to the tip is fixed to a connecting portion between the medium injection tubes. With this configuration, the annular connection ring is firmly fixed, and the medium take-out tube can be easily inserted therein.
  • the present invention is a medium transfer pipe used for a geothermal power generation device that generates electricity by vaporizing a medium heated by geotropical heat, and transfers the medium
  • the medium transfer pipe comprises a medium injection pipe for transferring the medium to the earth and the outside, and a medium take-out pipe for taking out the medium heated by the geothermal heat inside the medium injection pipe,
  • a medium transfer pipe characterized in that a heat transfer pipe made of a pipe narrower than the medium transfer pipe having both side end openings disposed in the medium injection pipe is provided at a lower end portion of the medium injection pipe.
  • This configuration allows the medium to pass through a narrower tube, so that the heat from the earth and the tropics can be efficiently transferred to the medium.
  • the heat transfer tube is characterized in that one end portion is arranged between the medium take-out tube and the medium injection tube, and the other end portion is arranged below the medium take-out tube.
  • the other end of the heat transfer tube extends into the medium take-out tube.
  • a part of the heat transfer tube is arranged outside the outer periphery of the medium injection tube.
  • a protective wall for protecting the heat transfer tube is provided on the outer peripheral side of the heat transfer tube.
  • the present invention provides a medium transfer pipe installation method.
  • the medium transfer pipe installation method according to the present invention is used in a geothermal power generation apparatus that generates electricity by vaporizing a medium heated by geothermal heat, and the medium transfer pipe for transferring the medium exists at least in the geotropics.
  • the method of installing a medium transfer pipe installed in a dry crushing zone or a crushing zone not filled with liquid Flowing liquid such as water or muddy water into the dry crushing zone or the crushing zone not filled with liquid, forming a water storage region including crushing zone rocks around the installation region of the medium transfer pipe,
  • the medium transfer pipe is installed in the water storage area.
  • the medium transfer pipe 1110 contacts the liquid in all or part of the lower side of the geothermal cement C, so that the thermal efficiency is increased. Moreover, it has the effect of improving the earth pressure resistance of the crushing zone F by flowing liquid, such as water or muddy water, into the crushing zone F.
  • the water storage region is formed in the crushing zone together with excavation by performing excavation by water excavation or mud excavation before reaching the crushing zone or before reaching the crushing zone.
  • an artificial crushing zone is formed in a tropical well, A liquid such as water or muddy water is allowed to flow into the artificial crushing zone, and a water storage area including crushing rocks is formed around the injection area of the medium transfer pipe.
  • the dry crushing zone, the crushing zone not filled with liquid or the artificial crushing zone is formed in a geotropical zone having a temperature gradient.
  • FIG. 1 is a schematic diagram showing a geothermal power generation system 100 according to the first embodiment.
  • FIG. 2 is a schematic diagram showing a geothermal power generation system 100 according to the second embodiment.
  • FIG. 3 is a schematic diagram showing a geothermal power generation system 100 according to the third embodiment.
  • FIG. 4 is a schematic diagram showing a geothermal power generation system 100 according to the fourth embodiment.
  • FIG. 5 is a schematic diagram showing a geothermal power generation system 100 according to the fifth embodiment.
  • FIG. 6 is a schematic diagram showing a geothermal power generation system 100 according to a comparative example.
  • FIG. 7 is a table showing data of Example 1 and Example 2.
  • FIG. 8 is a schematic diagram showing a configuration of a geothermal power generation apparatus 1000 according to the sixth embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the heating unit 130 of the present invention according to the sixth embodiment.
  • FIG. 10 is a schematic diagram showing an example of another heating unit 130 of the present invention according to the sixth embodiment.
  • FIG. 11 is a relationship diagram between the depth of the medium transfer pipe 110 of the conventional geothermal power generation apparatus 1000 and the temperature distribution of hot water.
  • FIG. 12 is a schematic diagram of a change in the state of water.
  • FIG. 13 is a relationship diagram of convective heat transfer coefficients due to changes in the state of water.
  • FIG. 14 is a diagram showing the relationship between the depth of the medium transfer pipe 110 and the temperature distribution of hot water in the geothermal power generation apparatus 1000 according to the sixth embodiment.
  • FIG. 15 is a schematic diagram which shows the structure of the geothermal power generation apparatus 1100 of this invention concerning 7th Embodiment.
  • FIG. 16 is a schematic diagram which shows the structure of the geothermal power generator 1200 of this invention concerning 8th Embodiment.
  • FIG. 17 is a schematic diagram showing a configuration of a geothermal power generation device 1300 according to the ninth embodiment of the present invention.
  • FIG. 18 is a schematic diagram which shows the structure of the geothermal power generator 1400 of this invention concerning 10th Embodiment.
  • FIG. 19 is a schematic diagram showing a configuration of a geothermal power generation device 1500 according to the eleventh embodiment of the present invention.
  • FIG. 20 is a schematic diagram showing a configuration of a geothermal power generation apparatus 1600 according to the twelfth embodiment of the present invention.
  • FIG. 21 is an operation diagram showing the microbubbles 213.
  • FIG. 22A is a schematic diagram illustrating a configuration of a microbubble generation nozzle 221a according to the twelfth and thirteenth embodiments.
  • FIG. 22B is a schematic diagram illustrating a configuration of a microbubble generation nozzle 221b according to the fourteenth embodiment and the fifteenth embodiment.
  • FIG. 23 is a schematic diagram showing a configuration of a geothermal power generation apparatus 1700 according to the thirteenth embodiment of the present invention.
  • FIG. 24 is a schematic diagram showing a configuration of a geothermal power generation apparatus 1800 according to the fourteenth embodiment of the present invention.
  • FIG. 25 is a perspective view showing the liquid take-out pipe 252 and the micro-bubble generating nozzle 221b in the upper part of the heat exchanger 250 according to the fourteenth embodiment.
  • FIG. 26 is a schematic diagram showing a configuration of a geothermal power generation apparatus 1900 according to the fifteenth embodiment of the present invention.
  • FIG. 27 is a schematic diagram which shows the structure of the geothermal power generator 1 of this invention concerning 16th Embodiment.
  • FIG. 28 is an enlarged perspective view centering on a connection portion of the medium injection pipe 11 of the medium transfer pipe 10 according to the sixteenth embodiment of the present invention.
  • FIG. 29 is a sectional view on the axis of the medium transfer tube 10 according to the sixteenth embodiment of the present invention.
  • FIG. 30 is a perspective view of the connection pipe 12 that connects the medium injection pipe 11 of the medium transfer pipe 10 according to the sixteenth embodiment of the present invention.
  • FIG. 31 is an enlarged cross-sectional view showing a part of a cross section taken along the line AA shown in FIG. 2 of the medium injection pipe 11 of the medium transfer pipe 10 according to the sixteenth embodiment of the present invention.
  • FIG. 32 is an enlarged perspective view centering on the connecting portion of the medium take-out pipe 21 of the medium transfer pipe 10 according to the sixteenth embodiment of the present invention.
  • FIG. 33 is an enlarged front view centering on the connection portion of the medium take-out pipe 21 of the medium transfer pipe 10 according to the sixteenth embodiment of the present invention.
  • FIG. 34 is a cross-sectional view in which the center of the plane of the medium take-out pipe 21 of the medium transfer pipe 10 according to the sixteenth embodiment is cut vertically.
  • FIG. 35 is a perspective view of the rectifying unit 40 of the medium transfer pipe 10 according to the sixteenth embodiment of the present invention.
  • FIG. 36 is an enlarged perspective view centering on the connection portion of the medium take-out pipe 121 of the medium transfer pipe 110 according to the seventeenth embodiment of the present invention.
  • FIG. 37 is a sectional view on the axis of the medium transfer tube 110 according to the seventeenth embodiment of the present invention.
  • FIG. 38 is an enlarged front view centering on the connection portion of the medium take-out pipe 121 of the medium transfer pipe 110 according to the seventeenth embodiment of the present invention.
  • FIG. 39 is a perspective view of the rectifying unit 50 of the medium transfer pipe 110 according to the seventeenth embodiment of the present invention.
  • FIG. 40 is a perspective view of the rectifying unit 250 of the medium transfer pipe 210 according to the eighteenth embodiment.
  • FIG. 41 is an enlarged view of a part of the rectifying unit 250 of the medium transfer pipe 210 according to the eighteenth embodiment of the present invention.
  • FIG. 42 is a sectional view on the axis of the medium transfer pipe 310 according to the nineteenth embodiment of the present invention.
  • FIG. 43 is a perspective view of the medium injection pipe 311 of the medium transfer pipe 310 according to the nineteenth embodiment as viewed obliquely from above.
  • FIG. 44 is a perspective view of the medium take-out pipe 321 of the medium transfer pipe 310 according to the nineteenth embodiment of the present invention.
  • FIG. 45 is a perspective view showing the medium take-out pipe 321 by cutting the medium injection pipe 311 of the medium transfer pipe 310 according to the nineteenth embodiment in the vertical direction.
  • FIG. 42 is a sectional view on the axis of the medium transfer pipe 310 according to the nineteenth embodiment of the present invention.
  • FIG. 43 is a perspective view of the medium injection pipe 311 of the medium transfer pipe 310 according to the nineteenth embodiment as
  • FIG. 46 is a perspective view showing a connection ring 446 by cutting the medium injection pipe 411 of the medium transfer pipe 410 according to the twentieth embodiment in the vertical direction.
  • FIG. 47 is a perspective view showing a rectifying unit 440 according to the twentieth embodiment of the present invention.
  • FIG. 48 is a ZZ sectional view of the rectifying piece 51 of the rectifying unit 50 of FIG. 12 according to the seventeenth embodiment.
  • FIG. 49 is a schematic diagram showing the medium transfer tube of the present invention according to the twenty-first embodiment. 50 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 51 is a schematic diagram showing another embodiment of the medium transfer tube of the present invention according to the twenty-first embodiment.
  • FIG. 52 is an explanatory diagram for explaining a method for installing a medium transfer pipe according to the twenty-second embodiment of the present invention.
  • FIG. 53 is a process diagram of a method for installing a medium transfer pipe according to the twenty-second embodiment of the present invention.
  • Embodiments of a geothermal power generation system 100 according to the present invention will be described in detail with reference to the drawings. It should be noted that the embodiments and drawings described below exemplify a part of the embodiments of the present invention, and are not used for the purpose of limiting to these configurations, and do not depart from the gist of the present invention. Can be changed as appropriate. Moreover, the same or similar code
  • the conceptual diagram of the geothermal power generation system 100 concerning 1st Embodiment is shown by FIG.
  • the solid line arrows in FIG. 1 indicate the liquid flow of the medium for heat exchange described later, and the dotted line arrows indicate the vapor flow.
  • the geothermal power generation system 100 according to the first embodiment mainly includes a medium transfer pipe 20 having a double pipe that does not have an opening in the geotropics S, and a medium transfer pipe 20 that has a lowering area for lowering the medium and an ascending area for raising the medium.
  • a high-pressure circulation pump 30 capable of controlling the pressure for sending the medium to the transfer pipe 20, a steam generator 41 for extracting steam from the medium heated by the heat of geothermal heat, a production well 61 for receiving geothermal water, A reduction well 62 for reducing at least a part of the geothermal water after the heat exchange, at least one steam / water separator 71, a steam / water separator 71 for extracting steam from the geothermal water, and power generation by steam And a generator 45.
  • the medium is preferably a low-boiling point liquid having a boiling point of 150 ° C. or lower at atmospheric pressure, such as water or water in which ammonia is dissolved, but is not limited thereto.
  • the medium transfer pipe 20 has a function of transporting the medium to the earth and tropics S and transporting the medium heated and exchanged in the earth and tropics S to the ground.
  • the medium transfer pipe 20 is a double pipe geothermal exchanger having a medium take-out pipe 21 and a medium injection pipe 22 arranged outside the medium take-out pipe 21.
  • the medium injection tube 22 is manufactured with its lower end closed.
  • the medium take-out pipe 21 is formed so that the lowermost end is opened below the medium injection pipe 22, and the inner area inside the medium take-out pipe 21 and the outer side between the medium take-out pipe 21 and the medium injection pipe 22 at the lowermost end. The area is formed in communication.
  • the medium that has descended in either the inner region or the outer region can be moved up to the other outer region or inner region and raised. That is, when the outer region is set as the descending region, the medium descends while the outer region is heated, and is introduced into the inner region of the medium take-out pipe 21 at the lowermost end, and rises in the inner region to rise above the ground. Carried to. On the other hand, when the inner region is a descending region, the medium descends while the inner region is heated, is introduced into the outer region of the medium take-out pipe 21 at the lowermost end, and rises while being heated even in the outer region. Then it is carried to the ground.
  • a heat insulating layer made of air, heat insulating material, or the like may be provided between the medium take-out pipe 21 and the medium injection pipe 22.
  • the place which is not the earth tropics is good also as what comprises the outer side heat insulation layer provided in the outer side of the medium extraction pipe
  • the outer heat insulating tube may be provided with an air layer as a triple tube structure, or a heat insulating material.
  • the medium transfer pipe 20 is produced by connecting a plurality of pipes.
  • a pipe to be used a pipe made of a ceramic composite material, a carbon-based material, or a resin-based material can be used in addition to a metal pipe such as an oil well pipe.
  • the outer surface of the medium injection pipe 22 is provided with unevenness on the surface of the pipe, or plated or sprayed with a metal such as copper in order to make it easier to receive heat from the earth and tropics S, thereby increasing the heat conduction area. May be.
  • the lowermost end of the medium injection tube 22 may be formed like a hemisphere or a semi-elliptical sphere so that the medium can move smoothly.
  • the high-pressure circulation pump 30 is a device for sending the medium to the medium transfer pipe 20.
  • a high-pressure circulation pump is used.
  • the production well 61 is a well for extracting geothermal water, and it is preferable to use a hot water-dominated type in which hot water and steam are mixed and ejected.
  • the configuration is not particularly limited as long as it is a well that can obtain geothermal water necessary for power generation.
  • the production well 61 is provided on the outer periphery of the medium transfer pipe 20.
  • the reduction well 62 is a well for returning part or all of the geothermal water taken out from the ground and other water to the ground.
  • the configuration of the reduction well 62 is not particularly limited, and various configurations can be used.
  • This geothermal power generation system has equipment for obtaining electric power from a medium taken out from the medium transfer pipe 20 and geothermal water containing high-temperature steam, and a steam generator (decompression pressure) for mainly treating the medium.
  • a flasher 42 for storing a medium by the high-pressure circulation pump 30, and the like, a steam / water separator 71 for treating geothermal water, and a second flasher 72
  • a multi-stage turbine 44 comprising a first turbine 44a and a second turbine 44b for generating electricity with the steam obtained from these, a generator 45, and a condenser 46 for treating the steam, medium and geothermal water after power generation.
  • a water storage tank 47 for storing the condensed water condensed by the condenser 46 is provided.
  • the equipment configured as described above is used as follows. First, the medium heated by the heat of the geothermal heat is taken in on the medium transfer pipe 20 side and boiled under reduced pressure by the steam generator 41 to generate high-temperature and high-pressure steam. The separated high-temperature and high-pressure steam is sent to the first turbine 44a, and the liquid separated from the steam is sent to the flasher 42 and separated from the steam, and the separated high-temperature and high-pressure steam is also fed into the first turbine. 44a, and the generator 45 generates power by the rotation of the first turbine 44a. On the other hand, geothermal water containing high-temperature steam is separated from steam by the steam separator 71, and the separated steam is sent to the second turbine 44b.
  • secondary steam is optionally obtained by the second flasher 72 and similarly sent to the second turbine 44b, and the generator 45 generates power by the rotation of the second turbine 44b.
  • the steam consumed by the turbine 44 is condensed by the condenser 46, and the condensed geothermal water or medium is cooled and drained or cooled and used as cooling water for the condenser 46, or by the reduction well 62. It is returned to the geotropy S or stored again in the high-pressure circulation pump tank 43 and sent again to the medium transfer pipe 20 by the high-pressure circulation pump 30 to receive geothermal heat and used again for power generation.
  • the geothermal power generation system 100 according to the present embodiment is not limited to the above-described configuration, and other components may be replaced with other devices or may be additionally provided.
  • the production well 61 is provided around the closed circulation type medium transfer pipe 20, so that the geothermal water around the medium transfer pipe 20 is the geothermal water around the medium transfer pipe. Therefore, the geothermal water cooled by the medium in the vicinity of the medium transfer pipe 20 is always replaced with new heated geothermal water, and the geothermal water always heated by the geothermal heat contacts the medium transfer pipe 20. As a result, the medium can be heated more effectively.
  • the conceptual diagram of the geothermal power generation system 100 concerning 2nd Embodiment is shown by FIG. 2 indicate the flow of heat exchange liquid and geothermal water, which will be described later, and the dotted arrow indicates the flow of steam.
  • the geothermal power generation system 100 according to the second embodiment mainly includes a medium transfer pipe 20 having a double region that has a descending region where the medium is lowered and an ascending region where the medium is raised and does not have an opening in the geotropical zone S, and a medium.
  • a high-pressure circulation pump 30 for sending the medium to the transfer pipe 20, a steam generator 41 for extracting steam from the medium heated by the heat of the geothermal heat, and at least one flasher 42;
  • the medium, the medium transfer pipe 20 and the high-pressure circulation pump 30 are the same as those in the first embodiment, description thereof is omitted.
  • the production well 61 is a well for extracting geothermal water, and it is preferable to use a hot water-dominated type in which hot water and steam are mixed and ejected.
  • the configuration is not particularly limited as long as it is a well that can obtain geothermal water necessary for power generation.
  • the production well 61 is provided adjacent to or in the vicinity of the medium transfer pipe 20 described above.
  • the reduction well 62 is a well for returning part or all of the geothermal water taken out from the ground and other water to the ground.
  • the configuration of the reduction well 62 is not particularly limited, and various configurations can be used.
  • first turbine 44a and the second turbine 44b for generating electricity with the steam obtained therefrom, the generator 45, the condenser 46 for treating the steam, the medium and the geothermal water after the power generation, the condenser 46
  • a water storage tank 47 for storing the condensed water condensed by the above-mentioned, a low-pressure circulation pump 48 for sending the condensed condensed water to the reducing well 62, and the like.
  • either or both of the steam separator 71 and the second flasher 72 is provided with a medium heat exchanger 76 for heating the ground medium separated by the flasher 42.
  • the heat exchanger 76 is formed, for example, through an elongated pipe on the hot water side separated by the steam separator 71 or the second flasher 72. Part or all of the medium is returned to the first geothermal power generation facility 10 side while being heated by passing through the heat exchanger 76.
  • the double flash method is illustrated, but a single flash method may be used.
  • the above equipment is used as follows. First, the medium heated by the geothermal heat is taken in the medium transfer pipe 20 side and boiled under reduced pressure by the steam generator 41 to generate high-temperature and high-pressure steam. The separated high-temperature and high-pressure steam is sent to the first turbine 44a, and the liquid separated from the steam is sent to the flasher 42 and separated from the steam, and the separated high-temperature and high-pressure steam is also fed into the first turbine. 44a, and the generator 45 generates power by the rotation of the first turbine 44a. The liquid ground medium separated by the flasher 42 is transported to the heat exchanger 76 and heated, then sent to the medium transfer pipe 20 and used again for power generation.
  • geothermal water containing high-temperature steam is separated from steam by the steam separator 71, and the separated steam is sent to the second turbine 44b. Further, secondary steam is optionally obtained by the second flasher 72 and similarly sent to the second turbine 44b, and the generator 45 generates power by the rotation of the second turbine 44b.
  • the steam consumed in the turbine 44 is condensed in the condenser 46, and the condensed geothermal water or medium is cooled and drained, or used as cooling water for the condenser 46, or reduced. It is used by the well 62 to be returned to the earth tropics S.
  • the geothermal water power generation facility 70 is not limited to the above-described configuration, and other components may be replaced with other devices or may be additionally provided.
  • the heat exchange liquid delivered to the medium transfer pipe 20 is heated in advance by the heat exchanger 76, the temperature of the heat exchange liquid is higher than that in the case of delivering an unheated medium.
  • the medium can be taken out and energy efficiency can be improved.
  • the air-water separated medium is sent to the heat exchanger 76 by the flasher 42.
  • the geothermal water or medium is sent to the heat exchanger 76 in the steam separator 71 by the low-pressure circulation pump 48, and the heated geothermal water or medium is sent to the medium transfer pipe 20 by the high-pressure circulation pump 30 to receive the geothermal heat. It may be used again for power generation.
  • a geothermal power generation system 100 includes a first geothermal power generation facility 10 and a second geothermal power generation facility 50.
  • the first geothermal power generation facility 10 is a type of geothermal heat that circulates the medium in a substantially closed system without releasing the medium that receives heat from the ground to the geotropics S or taking hot water from the geotropics S. It is a power generation facility.
  • the second geothermal power generation facility 50 uses the production well 61 for taking underground hot water and the hot water produced from the geotropics S for power generation, and uses steam condensate and other water that has been generated underground.
  • This is a geothermal power generation facility comprising a reduction well 62 that is returned to
  • symbol is attached
  • the first geothermal power generation facility 10 is a facility that circulates a medium between the geotropics S and extracts heat energy, and mainly includes a medium transfer pipe 20, a high-pressure circulation pump 30, and a medium power generation facility 40. I have.
  • the medium, the medium transfer pipe 20 and the high-pressure circulation pump 30 are the same as those in the first embodiment, description thereof is omitted.
  • the medium power generation facility 40 is a facility for obtaining electric power from a medium taken out from the medium transfer pipe 20 as high-temperature pressure water.
  • the medium power generation facility 40 includes a steam generator (decompressor) 41, a flasher 42, and a high-pressure circulation pump 30.
  • a low-pressure circulation pump 48 and the like that are sent to the power generation facility 50 are provided.
  • the medium power generation facility 40 having these devices takes a medium heated by geothermal heat from the medium transfer pipe 20 and boiles it under reduced pressure with a steam generator 41 to generate high-temperature and high-pressure steam.
  • the separated high-temperature and high-pressure steam is sent to the turbine.
  • the liquid medium separated from the steam is sent to the flasher 42 and separated from the steam, and the separated high-temperature and high-pressure steam is also sent to the turbine 44, and the generator 45 generates power by the rotation of the turbine 44.
  • the steam consumed in the turbine 44 is condensed in the condenser 46, transported to the heat exchanger 76, heated, and then sent out again to the medium transfer pipe 20 by the high-pressure circulation pump 30.
  • the medium and geothermal water are not mixed and can be reused. Of course, it may be drained or sent to a reduction well.
  • the liquid ground medium separated by the flasher 42 is transported to the heat exchanger 76 and heated, then sent to the medium transfer pipe 20 and used again for power generation.
  • the 1st geothermal power generation equipment 10 concerning this invention is a closed circulation type geothermal power generation equipment which circulates a medium and takes out geothermal heat. Therefore, the extracted steam and hot water do not contain sulfur and other impurities peculiar to geotropics S, the problem of scale is solved, and impurities can be used for a long time without adhering to the device.
  • the medium power generation facility 40 is not limited to the above-described configuration, and other constituent devices may be replaced with other devices, or may be additionally provided. For example, a heater for heating the generated steam may be further installed, or a double flash type flasher may be further added.
  • the second geothermal power generation facility 50 mainly generates power from a production well 61 that receives geothermal water, a reduction well 62 that reduces geothermal water and other water that has undergone heat exchange, and steam from the geothermal water. And a geothermal water power generation facility 70.
  • the geothermal water power generation facility 70 is a facility for taking geothermal water containing high-temperature steam and obtaining electric power from this geothermal water, and mainly includes a steam separator 71, a second flasher 72, a turbine. 73, a generator 74, a condenser 75, and the like.
  • a steam separator 71 for taking geothermal water containing high-temperature steam and obtaining electric power from this geothermal water
  • a second flasher 72 mainly includes a steam separator 71, a second flasher 72, a turbine. 73, a generator 74, a condenser 75, and the like.
  • FIG. 3 although the double flash system is illustrated as the geothermal water power generation equipment 70, a single flash system may be used.
  • the geothermal water power generation facility 70 takes geothermal water heated by geothermal heat, separates the steam by the steam separator 71, and the separated steam is sent to the turbine 73.
  • secondary steam is optionally obtained by the second flasher 72 and similarly sent to the turbine 73, and the generator 64 generates power by the rotation of the turbine 73.
  • the steam consumed by the turbine 73 is condensed by the condenser 75, and the condensed geothermal water is cooled and drained or cooled and used as cooling water for the condenser 75, It is used after being reduced to S.
  • the hot water separated by the steam / water separator 71 in the case of the single flash system and the hot water separated by the flasher in the case of the double flash are returned from the reduction well 62 to the geotrophic S.
  • the geothermal water power generation facility 70 is not limited to the above-described configuration, and other components may be replaced with other devices or may be additionally provided.
  • the second geothermal power generation facility 50 heats the medium sent by the low pressure circulation pump 48 from the water storage tank 47 on the first geothermal power generation facility 10 side, so that either the steam / water separator 71 or the second flasher 72 is provided. Or both are provided with a heat exchanger 76 for the medium.
  • the heat exchanger 76 is formed, for example, through an elongated pipe on the hot water side separated by the steam separator 71 or the second flasher 72. Part or all of the medium is returned to the first geothermal power generation facility 10 side while being heated by passing through the heat exchanger 76.
  • the medium sent to the medium transfer pipe 20 in the first geothermal power generation facility 10 is heated in advance by the heat exchanger 76, so that it is compared with the case of sending an unheated medium.
  • a higher temperature medium can be taken out, and energy efficiency can be improved.
  • the geothermal water or medium condensed by the condenser 46 is sent to the heat exchanger 76 in the steam separator 71 by the low-pressure circulation pump 48. Then, the heated geothermal water or medium may be sent to the medium transfer pipe 20 by the high-pressure circulation pump 30 to receive the geothermal heat and used again for power generation.
  • a geothermal power generation system 100 according to the fourth embodiment is shown in FIG.
  • the geothermal power generation system 100 according to the fourth embodiment differs from the third embodiment in the position of the production well 61 of the second geothermal power generation facility 50. Since other points are the same as those of the third embodiment, description thereof is omitted.
  • the production well 61 of the second geothermal power generation facility 50 according to the fourth embodiment is provided around the medium transfer pipe 20 of the first geothermal power generation facility 10. That is, the geothermal water for heating the medium transfer pipe 20 of the first geothermal power generation facility 10 and the geothermal water taken out by the second geothermal power generation facility use the same region of geothermal water.
  • the geothermal water around the medium transfer pipe 20 is taken in by the second geothermal power generation facility 50, new heated geothermal water always flows from the surrounding geotropics S. It will be. Therefore, since the high-temperature geothermal water heated by geothermal heat always contacts the medium transfer pipe 20, the medium of the geothermal well can be more effectively heated. Moreover, since the geothermal water intake position taken by the second geothermal power generation facility 50 is arranged above the bottom surface of the medium transfer pipe 20, the lower high-temperature geothermal water can be raised upward, Compared with the case where there is no production well 61, the temperature of the geothermal water on the upper side can be increased. Therefore, the medium can be heated more effectively.
  • the geothermal water or medium condensed by the condenser 46 is sent to the heat exchanger 76 in the steam / water separator 71 by the low-pressure circulation pump 48. Then, the heated geothermal water or medium may be sent to the medium transfer pipe 20 by the high-pressure circulation pump 30 to receive the geothermal heat and used again for power generation.
  • a geothermal power generation system 100 includes a first geothermal power generation facility 10 and a second geothermal power generation facility 50.
  • the first geothermal power generation facility 10 is a type of geothermal heat that circulates the medium in a substantially closed system without releasing the medium that receives heat from the ground to the geotropics S or taking hot water from the geotropics S. It is a power generation facility.
  • the second geothermal power generation facility 50 uses the production well 61 for taking underground hot water and the hot water produced from the geotropics S for power generation, and uses steam condensate and other water that has been generated underground.
  • This is a geothermal power generation facility comprising a reduction well 62 that is returned to
  • symbol is attached
  • the first geothermal power generation facility 10 is a facility that circulates a medium between the geotropics S and extracts heat energy, and mainly includes a medium transfer pipe 20, a high-pressure circulation pump 30, and a medium power generation facility 40. I have.
  • the medium, the medium transfer pipe 20 and the high-pressure circulation pump 30 are the same as those in the first embodiment, description thereof is omitted.
  • the medium power generation facility 40 is a facility for obtaining electric power from a medium taken out from the medium transfer pipe 20 as high-temperature pressure water.
  • the medium is generated by a steam generator (decompressor) 41, a flasher 42, and a high-pressure circulation pump.
  • a low-pressure circulation pump 48 and the like that are sent to the facility 50 are provided.
  • the medium power generation facility 40 having these devices takes a medium heated by geothermal heat from the medium transfer pipe 20 and boiles it under reduced pressure with a steam generator 41 to generate high-temperature and high-pressure steam.
  • the separated high-temperature and high-pressure steam is sent to the turbine, and the liquid medium separated from the steam is sent to the flasher 42 and separated from the steam, and the separated high-temperature and high-pressure steam is also sent to the turbine 44.
  • the power is generated by the generator 45 by the rotation of the turbine 44.
  • the steam consumed in the turbine 44 is condensed in the condenser 46, transported to the heat exchanger 76, heated, and then sent out again to the medium transfer pipe 20 by the high-pressure circulation pump 30.
  • the medium and geothermal water are not mixed and can be reused. Of course, it may be drained or sent to a reduction well.
  • the liquid medium separated by the flasher 42 is conveyed to the heat exchanger 76 and heated, and then sent to the medium transfer pipe 20 to be used again for power generation.
  • the steam consumed by the turbine 44 is condensed by the condenser 46 to be drained or sent to the reduction well for use.
  • the first geothermal power generation facility 10 is a closed circulation type geothermal power generation facility that circulates a medium and extracts geothermal heat. Therefore, the extracted steam and hot water do not contain sulfur and other impurities peculiar to geotropics S, the problem of scale is solved, and impurities can be used for a long time without adhering to the device. .
  • the medium power generation facility 40 is not limited to the above-described configuration, and other constituent devices may be replaced with other devices, or may be additionally provided. For example, a heater for heating the generated steam may be further installed, or a double flash type flasher may be further added.
  • the second geothermal power generation facility 50 mainly generates power from a production well 61 that receives geothermal water, a reduction well 62 that reduces geothermal water and other water that has undergone heat exchange, and steam from the geothermal water. And a geothermal water power generation facility 70.
  • the geothermal water power generation facility 70 is a facility for taking geothermal water containing high-temperature steam and obtaining electric power from the geothermal water. Mainly, the first distribution path through which the geothermal water of the production well 61 flows, the second distribution path through which the medium from the first geothermal power generation facility 10 flows, and the power generation liquid that receives and generates heat from the geothermal water flow. And a power generation path.
  • the first distribution channel mainly uses the steam obtained from the steam separator 71 for separating the geothermal water obtained from the production well 61 into steam, and uses the steam obtained from the steam separator 71 to exchange heat with the power generation liquid.
  • a second heat exchange device 78 that exchanges heat with the power generation liquid and medium using the heat of the liquid separated by the steam separator 71.
  • the configuration of the first heat exchanger 77 is not particularly limited, but the heat of the steam is generated by passing the thin pipe through which the power generating liquid passes through the steam atmosphere obtained by the steam separator 71. Can be replaced.
  • the second heat exchange device 78 can exchange the heat of the steam with the power generation liquid by passing a thin pipe through which the power generation liquid passes through the high-temperature liquid separated by the steam separator 71.
  • the geothermal water after the heat exchange is sent to the reduction well 62.
  • a medium pipe is further provided in the second heat exchange device 78, and the medium sent from the flasher 42 is heated again by the second heat exchange device 78 and again is a medium transfer pipe. 20 is sent out.
  • the power generation path includes a second heat exchange device 78, a first heat exchange device 77, a turbine 73, a generator 74, a condenser 75, a circulation pump, and the like, and the power generation liquid is a second heat exchange device 78. Is preheated and gas is generated by the first heat exchange device 77, and electricity is generated by the turbine 73 using this gas. The power generation liquid consumed in the power generation is returned to the liquid by the condenser 75 and returned again to the second heat exchange device 78 by the circulation pump.
  • the geothermal power generation system 100 of Example 1 is the first geothermal power generation facility 10 in the geothermal power generation system 100 according to the third embodiment, which is 120 ° C. to 140 ° C. at a depth of 250, 150 ° C. to 170 ° C. at a depth of 1000 ° C., and a depth of 1500 m.
  • a geothermal exchanger composed of a pipe made of a 1000 m medium take-out pipe was used as the medium transfer pipe 20 embedded in 1500 m.
  • the condensed water obtained by the condenser of the first geothermal power generation facility 10 is sent to the second geothermal power generation facility 50 by a low-pressure circulation pump, and heat exchange provided in the second flasher 72 is performed.
  • the water was returned to the high-pressure circulation pump 30 as water heated to about 164 ° C.
  • Output (enthalpy of well outlet (kj) ⁇ enthalpy of well entrance (Kj)) ⁇ flow rate (kg / s) ⁇ 1000
  • the steam obtained by the steam generator 41 and the flasher 42 has a temperature of 165 ° C., a pressure of 0.70 ° C., and a flow rate of 2.60 t / h.
  • the screw type generator of MSEG132KW Steam Star made by Shinko Shoji Co., Ltd.
  • the power generation output is 115KW.
  • Comparative Example 1 As shown in FIG. 6, the geothermal power generation system in Comparative Example 1 has a low pressure on the medium separated by the flasher 42 and the cooling water and makeup water obtained by the condenser 46 without providing the second geothermal power generation facility 50.
  • This is a simple-circulation power generation facility that sends the high-pressure circulation pump 30 to the high-pressure circulation pump tank 43 by the circulation pump 48.
  • the temperature of the water sent to the high-pressure circulation pump in this comparative example is 156 ° C.
  • the high-temperature pressure water taken out from the well is 1.254 MPa at 190 ° C.
  • the output of the production well is 1466 KW, and the power generation output is 100 KW.
  • FIG. 7A shows a table of the total power output including the pump.
  • FIG. 7B shows a table of the outputs of the high-pressure circulation pumps and the low-pressure circulation pumps when the power generation output is 102 KW in both Example 1 and Comparative Example 1, and the total output taking this into account.
  • Example 1 the amount of circulating water can be reduced by 36%, and the pump output can be lowered. This increases the total output by 28%.
  • FIG. 8 is a schematic diagram showing a configuration of a geothermal power generation apparatus 1000 according to the sixth embodiment of the present invention.
  • a geothermal power generation apparatus 1000 according to the first embodiment will be described with reference to FIG.
  • the geothermal power generation apparatus 1000 is configured by a pressurized water power generation apparatus A and a binary power generation apparatus B.
  • the pressurized water power generation apparatus A includes a pressurized feed water pump 103, a storage tank 104, a low pressure circulation pump 105, a condenser 106, a medium transfer pipe 110, a flasher F, a heating unit 130, a steam turbine T, and a generator capable of controlling pressure.
  • G, the power transmission equipment H, and the binary power generation apparatus B are comprised with the heat exchange part 150 connected.
  • the pressurized water power generator A supplies steam to the steam turbine T, rotates the generator G to generate power, supplies electricity to the power transmission equipment H, and supplies electricity to the power company via the power transmission network. It is.
  • the steam turbine T may be not only a turbine type but also a screw type, etc., as long as it can generate power by steam.
  • the steam supplied to the steam turbine T is generated by the flasher F by depressurizing and boiling the hot water.
  • the hot water heat-exchanged by the heat exchange part 150 is sent to the storage tank 104 by the low-pressure circulation pump 105.
  • the steam exhausted by the steam turbine T is condensed by the cooling water 107 by the condenser 106, returned to the water, and stored in the storage tank 104.
  • the water in the storage tank 104 is transferred by the pressurized water supply pump 103 to the medium transfer pipe 110 to be described later so that heat is exchanged as hot water again in a deep part of the earth and tropical zone S.
  • a medium transfer pipe 110 is buried from the ground surface K to the earth tropics S as a heat source in the deep underground.
  • a cylindrical medium injection pipe 111 is embedded on the outside of the medium transfer pipe 110, and the periphery of the medium injection pipe 111 is solidified by geothermal cement from the ground surface K to the front of the earth.
  • the medium injection pipe 111 of the medium transfer pipe 110 is sealed at its deepest part, and absorbs heat from a fluid such as hot spring water in the deep part of the geotropics S and the rock.
  • the medium injection tube 111 is made of a material such as steel or stainless steel. In the region of the geotropy S where the temperature is high, the medium injection pipe 111 is welded with a cylindrical fin having a circular cross section so that the heat of the geotropy S is easily transmitted to the outer periphery.
  • the medium injection pipe 111 has a heat insulating structure provided with a heat insulating material and an air layer so that the heat of water injected by being pressurized from the storage tank 104 is not taken away in a low temperature region close to the ground surface K. Yes.
  • a cylindrical medium extraction pipe 112 for transferring water heated in the earth and tropics S is provided inside the medium injection pipe 111.
  • the medium take-out pipe 112 is formed inside the medium injection pipe 111 and is coaxially formed in a cylindrical shape.
  • the medium take-out pipe 112 has a double structure in which a vertical cross section forms a fiber, a resin, or an air layer of a heat insulating material between an outer portion and an inner portion. By this double structure, not only the heat insulation effect, but also the volume is increased and the density is reduced to bring it closer to the density of water.
  • the medium take-out pipe 112 taken is submerged in water to generate buoyancy, and it is possible to reduce the load on the device that suspends the medium take-out pipe 112.
  • Hot water heated in the geotrophic S is depressurized by the flasher F and boiled to generate steam.
  • the flasher F may use a nozzle that can generate microbubbles or nanobubbles that become microbubbles by self-priming as a nozzle for generating steam. With this configuration, it is possible to increase the amount of steam. By increasing the amount of steam, it is possible to secure a sufficient amount of steam even if the speed of transferring water is reduced, so that the water absorbs heat by increasing the residence time of water in the heat absorption region of the geotropics S It takes time and can be hot hot water.
  • FIG. 9 is a schematic diagram of the heating unit 130 of the present invention according to the sixth embodiment.
  • the heating unit 130 will be described with reference to FIGS. 8 and 9.
  • a spiral electric heater 132 is disposed in a pipe that transfers steam generated by the flasher F to the steam turbine T.
  • the heating control device 131 is driven by the electric power sent from the heating unit power line 161, and the superheated steam V is generated in the pipe by the electric heater 132.
  • the electric heater 132 is heated to about 700 to 1200 ° C., and can generate superheated steam V of about 300 ° C.
  • superheated steam is steam in a state having a temperature equal to or higher than the saturated steam temperature at a certain pressure by further heating the saturated steam.
  • it may be used in the meaning which makes wet steam dry steam, and it is good also as heating steam. Both can improve enthalpy.
  • FIG. 10 shows another example of the heating unit 130.
  • a rod-shaped electric heater 136 is disposed in a pipe that transfers the steam generated by the flasher F to the steam turbine T.
  • the heating control device 131 is driven by the electric power sent from the heating unit power line 161, and the superheated steam V is generated in the pipe by the electric heater 132.
  • the electric heater 132 is heated to about 700 to 1200 ° C., and can generate superheated steam V of about 300 ° C.
  • heating unit 130 it is also conceivable to arrange a device or the like that can generate hot air of about 700 ° C. in a pipe that transfers to the steam turbine T.
  • These heaters are not limited to hot air, nichrome wire, or the like, and may be any device that can superheat steam.
  • water is used as a medium for heat exchange in the geotropics S, but a medium (such as a mixture of water and ammonia) having a lower boiling point than that of an inert gas or water used in binary power generation is considered. It is done. Even if the medium transfer pipe 110 is damaged or the like, water is not harmful to the environment and can be handled safely in terms of work.
  • the pressurized water power generation apparatus A described in the present embodiment is a system that circulates in a closed state and exchanges heat energy.
  • the binary power generation apparatus B includes a heat exchange unit 150 connected to the pressurized water power generation apparatus A, a steam turbine T3, a generator G, and a power transmission facility H. And a cooler 156 and a circulation pump 155.
  • the heat exchanger 150 passes through the heat exchanger 151 in which hot water separated from the steam by the flasher F is bent dozens of times.
  • the working medium heated in the heat exchange section 150 evaporates and rotates the steam turbine T3 to generate power.
  • the power transmission equipment H is connected to the heating unit 130, the pressurized water pump 103, the low pressure circulation pump 105, and the circulation pump 155 through the power line 165 for the pressurized water supply pump, the power line 166 for the low pressure circulation pump, and the power line 167 for the circulation pump. It is possible to supply phase AC 220V power.
  • an inert inert gas such as HFC-245fa or R245fa that is not flammable or toxic, a medium having a low boiling point (a mixture of water and ammonia, hydrocarbon (pentane), or the like) is used.
  • a medium having a low boiling point a mixture of water and ammonia, hydrocarbon (pentane), or the like
  • an expansion turbine or the like is used as the steam turbine T3.
  • the working medium that has passed through the steam turbine T3 is cooled by the cooling water 157 of the cooler 156, condensed from a gas to a liquid or the like, and sent again to the heat exchange unit 150 by the circulation pump 155.
  • the power generation method will be described with reference to FIG. 8.
  • the depth of a hole opened by boring to obtain heat of around 200 ° C. in the ground reaches a depth of about 700 m to 1500 m in the ground. It is thought that the deeper the depth, the higher the temperature can be obtained. However, the geotrophic S is best determined by the balance with the excavation cost. The following values also change appropriately depending on the temperature obtained from the vicinity.
  • the medium transfer pipe 110 is embedded in the ground, and the medium transfer pipe 110 is connected to the outside in contact with the ground with the medium injection pipe 111 connected to the ground. It has reached deep. Further, the medium injection pipe 111 reaches the bottom of the medium injection pipe 111 by connecting the medium take-out pipe 112 to the inside of the medium injection pipe 111. These medium transfer pipes 110 are used as a heat exchange unit that absorbs heat obtained from the earth and tropics S. The power generation method using the pressurized water power generation apparatus A will be described in detail below.
  • water (I1) in the storage tank 104 is pressurized to 5 MPa by the pressurized water supply pump 103 and sent to the medium injection pipe 111 of the medium transfer pipe 110 at a flow rate of 55 (ton (tons)) / h (hours). It is transported to the deep tropical S.
  • the hot water transferred to the geotrophic zone S at 220 ° C. absorbs heat from the geotrophic zone S through the medium injection pipe 111 having a high thermal conductivity, and finally becomes hot water (I 2) at 210 ° C.
  • the hot water (I3) taken out from the medium take-out pipe 112 is transferred to the flasher F at a temperature of 200 ° C. at the outlet and a pressure of 2.0 MPa.
  • the flasher F releases hot water at a temperature of 200 ° C. and boiled under reduced pressure to 0.61 MPa to generate steam with a flash rate of about 11% and steam with a steam volume of 6 t / h.
  • the flasher F sends the generated steam to the steam turbine T.
  • the sent steam is heated by the heating unit 130 to become superheated steam V of 300 ° C., and the generator G is driven by the rotation of the steam turbine T to generate electric power.
  • the enthalpy of the steam is 2757 kJ / kg at about 0.61 atm when not heated, but increases by 10% with superheated steam V at 0.61 atm and 300 ° C. to 3061 kJ / kg. For this reason, the amount of power generated by the steam can be at least 528 kWh when the efficiency is 80%. Compared with the case of not heating, 4.5 times the amount of power generation can be obtained.
  • the flasher F sends about 89% of hot water (I4) remaining without becoming steam to the heat exchanger 151 at a flow rate of 49 t / h at a pressure of 1.0 MPa while maintaining a temperature around 180 ° C. .
  • the hot water (I5) that has passed through the heat exchanger 151 is subjected to heat exchange, deprived of heat by the working medium, cooled to around 160 ° C., and transferred to the storage tank 104 by the low-pressure circulation pump 105 at a pressure of 0.47 MPa.
  • the steam exhausted by the steam turbine T is condensed by the cooling water 107 by the condenser 106 and returned to 140 ° C.
  • hot water (I6) having a pressure of 0.101 MPa, and stored in the storage tank 104 at a flow rate of 6 t / h. It is done.
  • the hot water (I1) around 160 ° C. in the storage tank 104 is again pressurized to 6 MPa by the pressurized water supply pump 103 and sent to the medium injection pipe 111 of the medium transfer pipe 110 at a flow rate of 55 t / h. Transported to tropical S.
  • FIG. 11 to FIG. 14 show a comparison between the conventional pressurized water power generation apparatus A and the present invention.
  • FIG. 11 is a relationship diagram between the depth of the medium transfer pipe 110 of the conventional pressurized water power generation apparatus A and the temperature distribution of hot water.
  • the broken line indicates the temperature distribution 121 in the ground, and the solid line indicates the temperature distribution 122 ⁇ of hot water when a material having a thermal conductivity of 50 W / m ⁇ K is adopted for the medium injection pipe 111 and the medium extraction pipe 112. 123 is shown.
  • the two-dot chain line employs a material having a thermal conductivity of 0.1 W / m ⁇ K, and shows a temperature distribution 121 in the case of 1.554 MPa or less, which is a point C at a temperature of 200 ° C. in the evaporation curve 126 of FIG. Show.
  • FIG. 12 is a schematic diagram of a change in the state of water.
  • FIG. 12 shows the temperature and pressure when water changes from solid to liquid to gas.
  • the solid line from the triple point to the critical point shows the evaporation curve 126.
  • the boiling point at atmospheric pressure is 100 ° C., indicating 0.101 MPa.
  • the point C on the line is a boundary line that changes from a water state to a gas, that is, a vapor when the temperature is 200 ° C. and less than 1.554 MPa.
  • the boundary line changes from a water state to a gas, that is, a vapor when the temperature is less than 1.907 MPa.
  • the temperature rises and reaches 220 ° C. as it approaches the deep part of the earth and tropical zone S. Since the heat conductivity of the medium injection pipe 111 and the medium take-out pipe 112 is 50 W / m ⁇ K, the hot water (I1) guided to the medium injection pipe 111 follows the temperature distribution 121 in the ground. As a result, the temperature distribution 122 rises. And hot water (I2) which reached 200 degreeC is taken out from the medium extraction pipe
  • the thermal conductivity of the medium take-out pipe 112 is set to be as small as 0.1 W / m ⁇ K, the pressure of the hot water I3 at the outlet of the medium take-out pipe 112 is lower than the point C shown in FIG. Since the temperature distribution 124 shown in FIG. 11 is lower than the evaporation curve 126, steam is generated, and the temperature is lowered so as to approach the boiling point.
  • FIG. 13 shows the convective heat transfer coefficient 127 of water.
  • the heat transfer coefficient is a measure showing how easily heat is transferred from a flowing fluid to a wall in contact therewith. As shown in the figure, when changing from water to steam, the heat transfer coefficient increases by several tens of times. Therefore, the more the amount of steam contained in the hot water, the more so-called gas-liquid two-phase flow becomes. Since it tends to be easy, heat is easily taken away. In order to prevent the heat loss and transfer the energy while storing it, it is necessary to make it difficult to cool the hot water.
  • the heat insulating regions of the medium injection pipe 111 and the medium take-out pipe 112 are formed of a material having a heat transfer coefficient of 0.1 W / m ⁇ K or less.
  • the best one has a heat insulation performance of 0.05 W / m ⁇ K to 0.01 W / m ⁇ K or less.
  • the outlet pressure of the hot water (I3) is set to be at least larger than the evaporation curve 126 of FIG. It was set as the pressure which does not generate
  • the medium injection tube 111 is formed of a material having a high thermal conductivity of 50 W / m ⁇ K in a region where the temperature distribution in the ground is high, that is, a heat absorption region necessary for power generation. If it is particularly high, it may be high conductivity. However, in consideration of pressure and corrosion in the ground, it is desirable to form with a metal material, and effective thermal conductivity is 20 W / m ⁇ K or more. Good.
  • hot water (I2) exceeding the boiling point from the geotropics absorbs heat, and the medium take-out pipe 112 and the pressurization with low thermal conductivity are absorbed.
  • hot water (I3) at 200 ° C. can be transferred to the flasher F on the ground at a pressure of 2.0 MPa without lowering the temperature.
  • the heat exchanging unit 150 supplies about 89% of hot water (I4) remaining without being vaporized by the flasher F to the heat exchanger 151 at a flow rate of 49 t / h at a pressure of 1.6 MPa while maintaining a temperature of about 180 ° C. supplied in h.
  • a bypass may be provided to branch off the hot water remaining in the storage tank 104.
  • the heat exchanger 151 evaporates the working medium (J1) having a low boiling point in the heat exchange unit 150, and sends the generated steam to the steam turbine T3.
  • the sent steam drives the generator G by the rotation of the steam turbine T3 to generate power.
  • the steam (J2) discharged from the steam turbine T3 is cooled by the cooling water 157 of the cooler 156, and the working medium used in the present invention is condensed from gas to liquid.
  • the working medium (J3) is again sent to the heat exchange unit 150 by the circulation pump 155.
  • the electricity obtained by the pressurized water power generation apparatus A is supplied to an electric power company or the like via the power transmission facility H. Electricity generated by the binary power generation apparatus B is used for electric power in the heating unit 130. Further, it may be consumed in the geothermal power generation apparatus 1000 or may be used for electric power in the pumps (103, 105, 155). It is also conceivable to use it after storing it in a storage battery or the like.
  • FIG. 15 is a schematic diagram which shows the structure of the geothermal power generation apparatus 1100 of this invention concerning 7th Embodiment.
  • a geothermal power generation apparatus 1100 according to the seventh embodiment will be described with reference to FIG.
  • the geothermal power generation apparatus 1100 is configured by a pressurized water power generation apparatus A and a binary power generation apparatus B.
  • the pressurized water generator A includes a pressurized feed water pump 103, a storage tank 104, a low-pressure circulation pump 105, a condenser 106, a medium transfer pipe 110, a heating unit 130, a flasher F, a steam turbine T, a generator G, a power transmission facility H, and
  • the heat exchanger 150 is connected to the binary power generator B.
  • the parts having the same configuration as that of the sixth embodiment are denoted by the same reference numerals as those of the sixth embodiment, and the description of the same parts as those of the sixth embodiment is omitted.
  • the difference from the sixth embodiment is that the pressurized water generator A is double flush (F1 and F2) and supplies steam to the high-pressure side steam turbine T1 and the low-pressure side steam turbine T2.
  • the flasher F1 supplies high-pressure steam to the steam turbine T1
  • the flasher F2 supplies low-pressure steam to the steam turbine T2.
  • the heating unit 130 includes an electric heater 132 or an electric heater 136 in a pipe that transfers the steam generated by the flashers F1 and F2 to both the high-pressure side and low-pressure side steam turbines T1 and T2.
  • the power generation method will be described with reference to FIG. 15.
  • the depth of a hole formed by boring to obtain heat of around 200 ° C. in the ground reaches a depth of about 700 m to 1500 m in the ground. It is thought that the deeper the depth, the higher the temperature can be obtained. However, the geotrophic S is best determined by the balance with the excavation cost. The following values also change appropriately depending on the temperature obtained from the vicinity.
  • the hot water (I12) exceeding the boiling point from the earth tropics absorbs heat.
  • a medium transfer pipe 110 is buried in the ground, and the medium transfer pipe 110 is connected to the outside in contact with the ground, and the medium injection pipe 111 is connected to the ground. Further, the medium injection pipe 111 reaches the bottom of the medium injection pipe 111 by connecting the medium take-out pipe 112 to the inside of the medium injection pipe 111.
  • These medium transfer pipes 110 are used as a heat exchange part that absorbs heat obtained from the earth and tropics S, and hot water is evaporated to generate power via the steam turbine T.
  • the water (I 11) in the storage tank 104 is pressurized to 5 MPa by the pressurized water supply pump 103, sent to the medium injection pipe 111 of the medium transfer pipe 110 at a flow rate of 55 t / h, and transferred to the deep tropical zone S. Is done.
  • the hot water transferred to the geotrophic S at 220 ° C. is transferred from the medium injection pipe 111 having a high thermal conductivity to the heat from the geotropical S, and finally becomes hot water (I 12) at 210 ° C.
  • the hot water (I13) taken out from the medium take-out pipe 112 is transferred to the flasher F1 at a temperature of 200 ° C. and a pressure of 2.0 MPa at the outlet.
  • the flasher F1 releases hot water at a temperature of 200 ° C., depressurizes it to 1.0 MPa, and boiles it to generate steam with a flash rate of about 7% at a steam volume of 4 t / h.
  • the flasher F1 sends the generated steam to the steam turbine T1 on the high pressure side.
  • the sent steam is heated by the heating unit 130 to become superheated steam at 300 ° C., rotates the steam turbine T, and generates electricity by the generator G.
  • the enthalpy of steam is 2777 kJ / kg at about 1 atm when not heated, but increases 11% at 30 atk and superheated steam V at 300 ° C. to 3051 kJ / kg.
  • the amount of power generated by the steam is 333 kWh when the efficiency is 80%. Compared to the case without heating, 3.7 times the amount of power generation is obtained. Further, about 93% of the hot water (I14) remaining without being vaporized by the flasher F1 is sent to the flasher F2 at a pressure of 1.0 MPa while maintaining a temperature of about 180 ° C.
  • the flasher F2 releases hot water at a temperature of 180 ° C. and boiled under reduced pressure to 0.6 MPa to generate steam with a flash rate of about 4% and steam with a steam amount of 2 t / h.
  • the flasher F2 sends the generated steam to the steam turbine T2 on the low pressure side.
  • the sent steam is heated by the heating unit 130 to become superheated steam V of 300 ° C., and the generator G is driven by the rotation of the steam turbine T to generate electric power.
  • the enthalpy of steam is 2757 kJ / kg at about 0.61 atm when not heated, but increases 11% with superheated steam at 0.61 atm and 300 ° C. to 3061 kJ / kg. Therefore, when the power generation amount generated by the steam is operated at an efficiency of 80%, at least the power generation amount is 183 kWh. The amount of power generation is 4.7 times that of the case without heating.
  • the flasher F2 is a heat exchanger that heats about 89% of the hot water (I13) pumped up first and remains without being steamed at a pressure of 0.6 MPa while maintaining a temperature around 160 ° C. 151 at a flow rate of 49 t / h.
  • the hot water (I15) that has passed through the heat exchanger 151 is subjected to heat exchange, deprived of heat by the working medium, cooled to around 140 ° C., and transferred to the storage tank 104 by the low-pressure circulation pump 105 at a pressure of 0.47 MPa (I16). ).
  • the steam exhausted by the steam turbine T is condensed by the cooling water 107 by the condenser 106 and returned to 140 ° C.
  • Hot water (I17) having a pressure of 0.101 MPa and stored in the storage tank 104 at a flow rate of 6 t / h. It is done.
  • Hot water (I11) around 140 ° C. in the storage tank 104 is again pressurized to 6 MPa by the pressurized water supply pump 103 and sent to the medium injection pipe 111 of the medium transfer pipe 110 at a flow rate of 55 t / h. Transported to tropical S.
  • the heat exchanging unit 150 supplies about 89% of hot water (I15) remaining without being vaporized by the flasher F2 to the heat exchanger 151 at a flow rate of 49 t / L at a pressure of 0.47 MPa while maintaining a temperature of about 160 ° C. supplied in h.
  • a bypass may be provided to branch off the hot water remaining in the storage tank 104.
  • the heat exchanger 151 evaporates the working medium (J1) having a low boiling point in the heat exchange unit 150, and sends the generated steam to the steam turbine T3.
  • the sent steam drives the generator G by the rotation of the steam turbine T3 to generate power.
  • the steam (J2) discharged from the steam turbine T3 is cooled by the cooling water 157 of the cooler 156, and the working medium used in the present invention is condensed from gas to liquid.
  • the working medium (J3) is again sent to the heat exchange unit 150 by the circulation pump 155.
  • the electricity obtained by the pressurized water generator A is supplied from the power transmission facility H to an electric power company or the like.
  • the electricity generated by the binary power generation apparatus B may be consumed in the geothermal power generation apparatus 1000, used for the power of the heating unit 130, and used for the power of the pumps (103, 105, 155). May be.
  • FIG. 16 is a schematic diagram which shows the structure of the geothermal power generator 1200 of this invention concerning 8th Embodiment.
  • a geothermal power generation apparatus 1200 according to the eighth embodiment will be described with reference to FIG.
  • the geothermal power generation apparatus 1200 is configured by a pressurized water power generation apparatus A and a binary power generation apparatus B.
  • the pressurized water generator A includes a pressurized feed water pump 103, a storage tank 104, a low-pressure circulation pump 105, a condenser 106, a medium transfer pipe 110, a heating unit 130, a flasher F, a steam turbine T, a generator G, a power transmission facility H, and
  • the heat exchanger 150 is connected to the binary power generator B.
  • the parts having the same configuration as that of the sixth embodiment are denoted by the same reference numerals as those of the sixth embodiment, and the description of the same parts as those of the sixth embodiment is omitted.
  • the difference from the sixth embodiment is that the pressurized water generator A is a double flash (F1 and F2), and a steam turbine and a power generator independent of the flasher are provided.
  • the flasher F1 supplies high-pressure steam to the steam turbine T1, and the flasher F2 supplies low-pressure steam to the steam turbine T2.
  • the heating unit 130 arranges each electric heater 132 or electric heater 136 in a pipe that transfers the steam generated by the flashers F1 and F2 to both the high-pressure side and low-pressure side steam turbines T1 and T2. .
  • the power generation method will be described with reference to FIG. 16.
  • the depth of a hole formed by boring to obtain heat of around 200 ° C. in the ground reaches a depth of about 700 m to 1500 m in the ground. It is thought that the deeper the depth, the higher the temperature can be obtained. However, the geotrophic S is best determined by the balance with the excavation cost. Depending on the temperature obtained from the vicinity, the following values change as appropriate.
  • the hot water (I12) exceeding the boiling point from the earth and the tropics absorbs the heat, and the absorbed heat is
  • the hot water (I13) at 200 ° C. is heated on the ground at a pressure of 2.0 MPa without lowering the temperature by being transferred while being pressurized by the medium take-out pipe 112 and the pressurized feed water pump 103 having low thermal conductivity. ⁇ It can be transferred to F2.
  • a medium transfer pipe 110 is buried in the ground, and the medium transfer pipe 110 is connected to the outside in contact with the ground, and the medium injection pipe 111 is connected to the ground. Further, the medium injection pipe 111 reaches the bottom of the medium injection pipe 111 by connecting the medium take-out pipe 112 to the inside of the medium injection pipe 111.
  • These medium transfer pipes 110 are used as a heat exchange part that absorbs heat obtained from the earth and tropics S, and hot water is evaporated to generate power via the steam turbine T.
  • the water (I 11) in the storage tank 104 is pressurized to 5 MPa by the pressurized water supply pump 103, sent to the medium injection pipe 111 of the medium transfer pipe 110 at a flow rate of 55 t / h, and transferred to the deep tropical zone S. Is done.
  • the hot water transferred to the geotrophic S at 220 ° C. is transferred from the medium injection pipe 111 having a high thermal conductivity to the heat from the geotropical S, and finally becomes hot water (I 12) at 210 ° C.
  • the hot water (I13) taken out from the medium take-out pipe 112 is transferred to the flasher F1 at a temperature of 200 ° C. and a pressure of 2.0 MPa at the outlet.
  • the flasher F1 releases hot water at a temperature of 200 ° C., depressurizes it to 1.0 MPa, and boiles it to generate steam with a flash rate of about 7% at a steam volume of 4 t (tons) / h (hours).
  • the flasher F1 sends the generated steam to the steam turbine T1 on the high pressure side.
  • the sent steam is heated by the heating unit 130 to become superheated steam V at 300 ° C. and sent to the steam turbine T.
  • the generator G is driven by the rotation of the steam turbine T to generate power.
  • the enthalpy of steam is 2777 kJ / kg at about 1 atm when not heated, but increases by 10% with superheated steam V at 1 atm and 300 ° C.
  • the amount of power generated by the steam can be at least 333 kWh when the efficiency is 80%. Compared to the case without heating, 3.7 times the amount of power generation is obtained. Further, about 93% of the hot water (I14) remaining without being vaporized by the flasher F1 is sent to the flasher F2 at a pressure of 1.0 MPa while maintaining a temperature of about 180 ° C.
  • the flasher F2 releases hot water at a temperature of 180 ° C., depressurizes it to 0.6 MPa, and boiles it to generate steam with a flash rate of about 4% at a steam volume of 2 t / h.
  • the flasher F2 sends the generated steam to the steam turbine T2 on the low pressure side.
  • the sent steam is heated by the heating unit 130 to become superheated steam V of 300 ° C., rotates the steam turbine T, drives the generator G, and is used for power generation.
  • the enthalpy of the steam is 2757 kJ / kg at about 0.61 atm when not heated, but increases 11% to 3061 kJ / kg with the superheated steam V at 0.61 atm and 300 ° C. Therefore, the amount of power generated by the steam is 183 kWh when the efficiency is 80%.
  • the amount of power generation is 4.7 times that of the case without heating.
  • the flasher F2 is a heat exchanger that heats about 89% of the hot water (I13) pumped up first and remains without being steamed at a pressure of 0.6 MPa while maintaining a temperature around 160 ° C. 151 is sent at a flow rate of 49 t / h.
  • the hot water (I15) that has passed through the heat exchanger 151 is subjected to heat exchange, deprived of heat by the working medium, cooled to around 140 ° C., and transferred to the storage tank 104 by the low-pressure circulation pump 105 at a pressure of 0.47 MPa ( I16). Further, the steam exhausted by the steam turbine T is condensed by the cooling water 107 by the condenser 106 and returned to 140 ° C.
  • Hot water (I11) around 140 ° C. in the storage tank 104 is again pressurized to 6 MPa by the pressurized water supply pump 103 and sent to the medium injection pipe 111 of the medium transfer pipe 110 at a flow rate of 55 t / h. It is transported to the tropics S.
  • the heat exchanging unit 150 supplies about 9.0% of hot water (I15) remaining without being vaporized by the flasher F2 to the heat exchanger 151 at a pressure of 0.47 MPa while maintaining a temperature of about 160 ° C. It is supplied at a flow rate of 50.4 t / h. At that time, the hot water (I15) may be branched to the storage tank 104 by providing a bypass if the flow rate is large.
  • the heat exchanger 151 evaporates the working medium (J1) having a low boiling point in the heat exchange unit 150, and sends the generated steam to the steam turbine T3. The sent steam drives the generator G by the rotation of the steam turbine T3 to generate power.
  • the amount of power generated by the steam is 113 to 160 kWh when the efficiency is 80%.
  • the steam (J2) discharged from the steam turbine T3 is cooled by the cooling water 157 of the cooler 156, and the working medium used in the present invention is condensed from gas to liquid.
  • the working medium (J3) is sent again to the heat exchange unit 150 by the circulation pump 155.
  • the electricity obtained by the pressurized water generator A is supplied from the power transmission facility H to an electric power company or the like.
  • electricity generated by the binary power generation apparatus B may be consumed in the geothermal power generation apparatus 1000 or may be used for power in the pumps (103, 105, 155). It is also conceivable that the generated electricity is stored in a storage battery or the like before use.
  • the binary power generation apparatus B is not limited to the above-described power generation apparatus.
  • As a condition of the binary power generation apparatus B 1.8 t / h of steam having a saturated steam temperature of 130 ° C. and a pressure of 0.169 MP is supplied to the binary power generation apparatus B. When cooled to 35 ° C. with cooling water or the like, 92 kWh can be generated.
  • hot water at 70 to 95 ° C. is supplied to the binary power generation device B at a flow rate of 12 to 28 t / h, and cooled at a cooling temperature of 20 to 30 ° C. and at a flow rate of 20 to 40 t / h with cooling water or the like. In this case, power generation of 20 KW is possible.
  • a binary power generation apparatus that uses steam discharged from a steam turbine of a pressurized water power generation apparatus as a heat source for binary power generation, vaporizes a working medium having a boiling point lower than that of the steam to generate power, and a steam turbine provided in the pressurized water power generation apparatus And a heating unit that generates superheated steam by heating the steam sent to the power generator and that is driven by the electric power obtained by the binary power generation device.
  • FIG. 17 is a schematic diagram which shows the structure of the geothermal power generation apparatus 1300 of this invention concerning 9th Embodiment.
  • a geothermal power generation apparatus 1300 according to the ninth embodiment will be described with reference to FIG.
  • the geothermal power generation apparatus 1300 is configured by a pressurized water power generation apparatus A and a binary power generation apparatus B.
  • the pressurized water power generation apparatus A includes a pressurized feed water pump 103, a storage tank 104, a low-pressure circulation pump 10155, a condenser 106, a medium transfer pipe 110, a flasher F, a steam turbine T, a generator G, and power transmission equipment that can control pressure.
  • the heat exchanger 150 is connected to the H and the binary power generator B.
  • the pressurized water power generator A supplies steam to the steam turbine T, rotates the generator G to generate power, supplies electricity to the power transmission equipment H, and supplies electricity to the power company via the power transmission network. It is.
  • the steam turbine T may be not only a turbine type but also a screw type, etc., as long as it can generate power by steam.
  • the steam supplied to the steam turbine T is generated by the flasher F by depressurizing and boiling the hot water.
  • the hot water heat-exchanged by the heat exchange part 150 is sent to the storage tank 104 by the low-pressure circulation pump 105.
  • the steam exhausted by the steam turbine T is condensed by the cooling water 107 by the condenser 106, returned to the water, and stored in the storage tank 104.
  • the water in the storage tank 104 is transferred by the pressurized water supply pump 103 to the medium transfer pipe 110 to be described later so that heat is exchanged as hot water again in a deep part of the earth and tropical zone S.
  • a medium transfer pipe 110 is buried from the ground surface K to the earth tropics S as a heat source in the deep underground.
  • a cylindrical medium injection pipe 111 is embedded on the outside of the medium transfer pipe 110, and the periphery of the medium injection pipe 111 is hardened by geothermal cement from the ground surface K to the front of the earth.
  • the medium injection pipe 111 of the medium transfer pipe 110 is sealed at its deepest part, and absorbs heat from a fluid such as hot spring water in the deep part of the geotropics S and the rock.
  • the medium injection tube 111 is made of a material such as steel or stainless steel. In the region of the geotropy S where the temperature is high, the medium injection pipe 111 is welded with a cylindrical fin having a circular cross section so that the heat of the geotropy S is easily transmitted to the outer periphery.
  • the medium injection pipe 111 has a heat insulating structure provided with a heat insulating material and an air layer so that the heat of water injected by being pressurized from the storage tank 104 is not taken away in a low temperature region close to the ground surface K. Yes.
  • a cylindrical medium extraction pipe 112 for transferring water heated in the earth and tropics S is provided inside the medium injection pipe 111.
  • the medium take-out pipe 112 is formed inside the medium injection pipe 111 and is coaxially formed in a cylindrical shape.
  • the medium take-out pipe 112 has a double structure in which a vertical cross section forms a fiber, a resin, or an air layer of a heat insulating material between an outer portion and an inner portion. By this double structure, not only the heat insulation effect, but also the volume is increased and the density is reduced to bring it closer to the density of water.
  • the medium take-out pipe 112 taken is submerged in water to generate buoyancy, and it is possible to reduce the load on the device that suspends the medium take-out pipe 112.
  • Hot water heated in the geotrophic S is depressurized by the flasher F and boiled to generate steam.
  • the flasher F may use a nozzle that can generate microbubbles or nanobubbles that become microbubbles by self-priming as a nozzle for generating steam. With this configuration, it is possible to increase the amount of steam. By increasing the amount of steam, it is possible to secure a sufficient amount of steam even if the speed of transferring water is reduced, so that it is possible to increase the residence time of water in the heat absorption region of the geotropics S, and the water absorbs heat It takes time to make it hot water.
  • water is used as a medium for heat exchange in the tropical zone S, but a medium (such as a mixture of water and ammonia) having a lower boiling point than that of an inert gas or water used for binary power generation can be considered as the medium. . Even if the medium transfer pipe 110 is damaged or the like, water is not harmful to the environment and can be handled safely in terms of work.
  • the pressurized water power generation apparatus A described in the present embodiment is a system that circulates in a closed state and exchanges heat energy.
  • the binary power generation apparatus B includes a heat exchange unit 150 connected to the pressurized water power generation apparatus A, a steam turbine T3, a generator G, and a power transmission facility H. And a cooler 156 and a circulation pump 155.
  • the heat exchanger 150 passes through the heat exchanger 151 in which hot water separated from the steam by the flasher F is bent dozens of times.
  • the working medium heated in the heat exchanging section 150 evaporates and rotates the steam turbine T3 to generate power.
  • the power transmission equipment H supplies electricity and supplies electricity to an electric power company or the like via a power transmission network.
  • an inert inert gas such as HFC-245fa or R245fa that is not flammable or toxic, a medium having a low boiling point (a mixture of water and ammonia, hydrocarbon (pentane), or the like) is used.
  • As the steam turbine T3, an expansion turbine or the like is used as the steam turbine T3, an expansion turbine or the like is used.
  • the working medium that has passed through the steam turbine T3 is cooled by the cooling water 157 of the cooler 156, condensed from a gas to a liquid or the like, and sent again to the heat exchange unit 150 by the circulation pump 155.
  • the power generation method will be described with reference to FIG. 17.
  • the depth of a hole opened by boring to obtain heat of around 200 ° C. in the ground reaches a depth of about 700 m to 1500 m in the ground. It is considered that the deeper the depth, the higher the temperature can be obtained, but it is determined by the balance with the excavation cost. Depending on the temperature obtained from the vicinity of the part, the following values also change appropriately.
  • the medium transfer pipe 110 is embedded in the ground, and the medium transfer pipe 110 is connected to the outside in contact with the ground with the medium injection pipe 111 connected to the ground. It has reached deep. Further, the medium injection pipe 111 reaches the bottom of the medium injection pipe 111 by connecting the medium take-out pipe 112 to the inside of the medium injection pipe 111. These medium transfer pipes 110 are used as a heat exchange part that absorbs heat obtained from the earth and tropics S.
  • the pressurized water power generation apparatus A generates power via a steam turbine T by evaporating hot water. The power generation method using the pressurized water power generation apparatus A will be described in detail below.
  • water (I1) in the storage tank 104 is pressurized to 5 MPa by the pressurized water supply pump 103 and sent to the medium injection pipe 111 of the medium transfer pipe 110 at a flow rate of 55 (ton (tons)) / h (hours). It is transported to the deep tropical S.
  • the hot water transferred to the geotrophic zone S at 220 ° C. absorbs heat from the geotrophic zone S through the medium injection pipe 111 having a high thermal conductivity, and finally becomes hot water (I 2) at 210 ° C.
  • the hot water (I3) taken out from the medium take-out pipe 112 is transferred to the flasher F at a temperature of 200 ° C. at the outlet and a pressure of 2.0 MPa.
  • the flasher F releases hot water having a temperature of 200 ° C., depressurizes it to about 0.6 MPa, and boiles it to generate steam with a flash rate of about 11% with a steam amount of 6 t / h.
  • the flasher F sends the generated steam to the steam turbine T.
  • the sent steam generates electric power by driving the generator G by the rotation of the steam turbine T.
  • the amount of power generated by the steam is about 112 kWh when the efficiency is 80%.
  • the flasher F sends about 89% of hot water (I4) remaining without becoming steam to the heat exchanger 151 at a flow rate of 49 t / h at a pressure of 0.6 MPa while maintaining a temperature around 160 ° C. .
  • the hot water (I5) that has passed through the heat exchanger 151 is heat-exchanged to take heat away from the working medium, cooled to around 140 ° C., and transferred to the storage tank 104 by the low-pressure circulation pump 105 at a pressure of 0.47 MPa.
  • the steam exhausted by the steam turbine T is condensed by the cooling water 107 by the condenser 106 and returned to 100 ° C.
  • Hot water (I6) having a pressure of 0.101 MPa, and is stored in the storage tank 104 at a flow rate of 6 t / h. It is done.
  • Hot water (I1) around 130 ° C. in the storage tank 104 is again pressurized to 6 MPa by the pressurized water supply pump 103 and sent to the medium injection pipe 111 of the medium transfer pipe 110 at a flow rate of 55 t / h. Transported to tropical S.
  • FIG. 11 to FIG. 14 show a comparison between the conventional pressurized water power generation apparatus A and the present invention.
  • FIG. 11 is a relationship diagram between the depth of the medium transfer pipe 110 of the conventional pressurized water power generation apparatus A and the temperature distribution of hot water.
  • the broken line indicates the temperature distribution 121 in the ground, and the solid line indicates the temperature distribution 122 ⁇ of hot water when a material having a thermal conductivity of 50 W / m ⁇ K is adopted for the medium injection pipe 111 and the medium extraction pipe 112. 123 is shown.
  • the two-dot chain line employs a material having a thermal conductivity of 0.1 W / m ⁇ K, and shows a temperature distribution 121 in the case of 1.554 MPa or less, which is a point C at a temperature of 200 ° C. in the evaporation curve 126 of FIG. Show.
  • FIG. 12 is a schematic diagram of a change in the state of water.
  • FIG. 12 shows the temperature and pressure when water changes from solid to liquid to gas.
  • the solid line from the triple point to the critical point shows the evaporation curve 126.
  • the boiling point at atmospheric pressure is 100 ° C., indicating 0.101 MPa.
  • the point C on the line is a boundary line that changes from a water state to a gas, that is, a vapor when the temperature is 200 ° C. and less than 1.554 MPa.
  • the boundary line changes from a water state to a gas, that is, a vapor when the temperature is less than 1.907 MPa.
  • the temperature rises and reaches 220 ° C as it approaches the deep part of the geotrophic S. Since the thermal conductivity of the medium injection pipe 111 and the medium extraction pipe 112 employs a material of 50 W / m ⁇ K, the hot water (I1) guided to the medium injection pipe 111 has a temperature distribution 121 in the ground. Along with this, the temperature distribution 122 rises. And hot water (I2) which reached 200 degreeC is taken out from the medium extraction pipe
  • the thermal conductivity of the medium take-out pipe 112 is set to be as small as 0.1 W / m ⁇ K, the pressure of the hot water I3 at the outlet of the medium take-out pipe 112 is lower than the point C shown in FIG. Since the temperature distribution 124 shown in FIG. 11 is lower than the evaporation curve 126, steam is generated, and the temperature is lowered so as to approach the boiling point.
  • FIG. 13 shows the convective heat transfer coefficient 127 of water.
  • the heat transfer coefficient is a measure showing how easily heat is transferred from a flowing fluid to a wall in contact therewith. As shown in the figure, when changing from water to steam, the heat transfer coefficient increases by several tens of times. Therefore, the more the amount of steam contained in the hot water, the more so-called gas-liquid two-phase flow becomes. Since it tends to be easy, heat is easily taken away. In order to prevent the heat loss and transfer the energy while storing it, it is necessary to make it difficult to cool the hot water.
  • the heat insulating regions of the medium injection pipe 111 and the medium take-out pipe 112 are formed of a material having a heat transfer coefficient of 0.1 W / m ⁇ K or less.
  • the best one has a heat insulation performance of 0.05 W / m ⁇ K to 0.01 W / m ⁇ K or less.
  • the outlet pressure of the hot water I3 is set to be at least larger than the evaporation curve 126 in FIG.
  • the pressure was set so as not to generate steam so that it could be transferred as hot water.
  • the medium injection tube 111 is formed of a material having a high thermal conductivity of 50 W / m ⁇ K in a region where the temperature distribution in the ground is high, that is, a heat absorption region necessary for power generation. If it is particularly high, it may be high conductivity. However, in consideration of pressure and corrosion in the ground, it is desirable to form with a metal material, and effective thermal conductivity is 20 W / m ⁇ K or more. Good.
  • hot water (I2) exceeding the boiling point from the geotropics absorbs heat, and the medium take-out pipe 112 and the pressurization with low thermal conductivity are absorbed.
  • hot water (I3) at 200 ° C. can be transferred to the flasher F on the ground at a pressure of 2.0 MPa without lowering the temperature.
  • the heat exchanging unit 150 supplies 89% hot water (I4) remaining without being vaporized by the flasher F to the heat exchanger 151 at a flow rate of 49 t / h at a pressure of 0.6 MPa while maintaining a temperature of about 160 ° C. Supplied in.
  • a bypass may be provided to branch off the hot water remaining in the storage tank 104.
  • the heat exchanger 151 evaporates the working medium (J1) having a low boiling point in the heat exchange unit 150, and sends the generated steam to the steam turbine T3.
  • the sent steam drives the generator G by the rotation of the steam turbine T3 to generate power.
  • the remaining hot water (I4) from the flasher F does not have to be used for the binary power generation apparatus B, but may be supplied according to the characteristics of the binary power generation apparatus B and the desired power generation amount.
  • the surplus hot water (I4) can be returned to the geotrophic zone S while maintaining heat to exchange heat.
  • the steam (J2) discharged from the steam turbine T3 is cooled by the cooling water 157 of the cooler 156, and the working medium used in the present invention is condensed from gas to liquid.
  • the working medium (J3) is again sent to the heat exchange unit 150 by the circulation pump 155.
  • the electricity obtained by the pressurized water power generation device A and the binary power generation device B is supplied from the power transmission facility H to an electric power company or the like. Moreover, the electricity generated by the binary power generation apparatus B may be consumed in the geothermal power generation apparatus 1300, or may be used for power for generating dry steam or power for pumps (103, 105, 155). . It is also conceivable to use it after storing it in a storage battery or the like.
  • FIG. 18 is a schematic diagram which shows the structure of the geothermal power generator 1400 of this invention concerning 10th Embodiment.
  • a geothermal power generation apparatus 1400 according to the second embodiment will be described with reference to FIG.
  • the geothermal power generation apparatus 1400 is configured by a pressurized water power generation apparatus A and a binary power generation apparatus B.
  • the pressurized water power generator A includes a pressurized feed water pump 103, a storage tank 104, a low pressure circulation pump 105, a condenser 106, a medium transfer pipe 110, a flasher F, a steam turbine T, a generator G, a power transmission facility H, and a binary power generator B. And a heat exchanging unit 150 connected thereto.
  • the parts having the same configurations as those of the ninth embodiment are denoted by the same reference numerals as those of the first embodiment, and the description of the same parts as those of the ninth embodiment is omitted.
  • the pressurized water generator A is double flash (F1 and F2), and supplies steam to the high-pressure side steam turbine T1 and the low-pressure side steam turbine T2. ing.
  • the flasher F1 supplies high-pressure steam to the steam turbine T1
  • the flasher F2 supplies low-pressure steam to the steam turbine T2.
  • the power generation method will be described with reference to FIG. 18.
  • the depth of a hole drilled by boring to obtain heat of around 200 ° C. in the ground reaches a depth of about 700 m to 1500 m in the ground. It is thought that the deeper the depth, the higher the temperature can be obtained. However, the geotrophic S is best determined by the balance with the excavation cost. The following values also change appropriately depending on the temperature obtained from the vicinity.
  • hot water (I12) absorbs heat from the geotrophic S in an endothermic region having a high underground temperature.
  • a medium transfer pipe 110 is buried in the ground, and the medium transfer pipe 110 is connected to the outside in contact with the ground, and the medium injection pipe 111 is connected to the ground. Further, the medium injection pipe 111 reaches the bottom of the medium injection pipe 111 by connecting the medium take-out pipe 112 to the inside of the medium injection pipe 111.
  • These medium transfer pipes 110 are used as a heat exchange part that absorbs heat obtained from the earth and tropics S, and hot water is evaporated to generate power via the steam turbine T.
  • the water (I 11) in the storage tank 104 is pressurized to 5 MPa by the pressurized water supply pump 103, sent to the medium injection pipe 111 of the medium transfer pipe 110 at a flow rate of 55 t / h, and transferred to the deep tropical zone S. Is done.
  • the hot water transferred to the geotrophic S at 220 ° C. is transferred from the medium injection pipe 111 having a high thermal conductivity to the heat from the geotropical S, and finally becomes hot water (I 12) at 210 ° C.
  • the hot water (I13) taken out from the medium take-out pipe 112 is transferred to the flasher F1 at a temperature of 200 ° C. and a pressure of 2.0 MPa at the outlet.
  • the flasher F1 releases hot water at a temperature of 200 ° C., depressurizes it to 1.0 MPa, and boiles it to generate steam with a flash rate of about 7% at a steam volume of about 4 t / h.
  • the flasher F1 sends the generated steam to the steam turbine T1 on the high pressure side.
  • the sent steam rotates the steam turbine T and generates power by the generator G.
  • the amount of power generated by the steam is 90 kWh when the efficiency is 80%.
  • about 93% of the hot water (I14) remaining without being vaporized by the flasher F1 is sent to the flasher F2 at a pressure of 1.0 MPa while maintaining a temperature of about 180 ° C.
  • the flasher F2 releases hot water having a temperature of 180 ° C. and boiled under reduced pressure to 0.6 MPa to generate steam with a flash rate of about 4% and steam with a steam amount of 2 t / h.
  • the flasher F2 sends the generated steam to the steam turbine T2 on the low pressure side.
  • the sent steam generates electric power by driving the generator G by the rotation of the steam turbine T.
  • an output of at least 40 kWh can be obtained.
  • the flasher F2 is a heat exchanger that heats about 89% of the hot water (I13) pumped up first and remains without being steamed at a pressure of 0.6 MPa while maintaining a temperature around 160 ° C. 151 is sent at a flow rate of about 49 t / h.
  • the hot water (I15) that has passed through the heat exchanger 151 is subjected to heat exchange, deprived of heat by the working medium, cooled to around 140 ° C., and transferred to the storage tank 104 by the low-pressure circulation pump 105 at a pressure of 0.47 MPa (I16). ).
  • the steam exhausted by the steam turbine T is condensed by the cooling water 107 by the condenser 106 and returned to 140 ° C.
  • Hot water (I17) having a pressure of 0.101 MPa and stored in the storage tank 104 at a flow rate of 6 t / h. It is done.
  • Hot water (I11) around 140 ° C. in the storage tank 4 is again pressurized to 6 MPa by the pressurized water supply pump 103 and sent to the medium injection pipe 111 of the medium transfer pipe 110 at a flow rate of 55 t / h. Transported to tropical S.
  • the heat exchanging unit 150 supplies about 89% of hot water (I15) remaining without being vaporized by the flasher F2 to the heat exchanger 151 at a flow rate of 49 t / L at a pressure of 0.47 MPa while maintaining a temperature of about 160 ° C. supplied in h.
  • a bypass may be provided to branch off the hot water remaining in the storage tank 104.
  • the heat exchanger 151 evaporates the working medium (J1) having a low boiling point in the heat exchange unit 150, and sends the generated steam to the steam turbine T3.
  • the sent steam drives the generator G by the rotation of the steam turbine T3 to generate power.
  • the amount of power generated by the steam is 113 to 160 kWh when the efficiency is 80%.
  • the steam (J2) discharged from the steam turbine T3 is cooled by the cooling water 157 of the cooler 156, and the working medium used in the present invention is condensed from gas to liquid.
  • the working medium (J3) is again sent to the heat exchange unit 150 by the circulation pump 155.
  • the electricity obtained by the pressurized water power generation device A and the binary power generation device B is supplied from the power transmission facility H to an electric power company or the like. Moreover, the electricity generated by the binary power generation apparatus B may be consumed in the geothermal power generation apparatus 1400, or may be used for power for generating dry steam or power for pumps (103, 105, 155). . It is also conceivable to use it after storing it in a storage battery or the like.
  • FIG. 19 is a schematic diagram illustrating a configuration of a geothermal power generation device 1500 according to the ninth embodiment of the present invention.
  • a geothermal power generation apparatus 1500 according to the tenth embodiment will be described with reference to FIG.
  • the geothermal power generation apparatus 1500 is configured by a pressurized water power generation apparatus A and a binary power generation apparatus B.
  • the pressurized water power generator A includes a pressurized feed water pump 103, a storage tank 104, a low pressure circulation pump 105, a condenser 106, a medium transfer pipe 110, a flasher F, a steam turbine T, a generator G, a power transmission facility H, and a binary power generator B. And a heat exchanging unit 150 connected thereto.
  • the parts having the same configurations as those of the eighth embodiment are denoted by the same reference numerals as those of the eighth embodiment, and the description of the same parts as those of the eighth embodiment is omitted.
  • the difference from the eighth embodiment is that the pressurized water power generation apparatus A is double flash (F1 and F2), and a steam turbine and a power generation apparatus independent from the flasher are provided.
  • the flasher F1 supplies high-pressure steam to the steam turbine T1
  • the flasher F2 supplies low-pressure steam to the steam turbine T2.
  • the power generation method will be described with reference to FIG. 19.
  • the depth of a hole opened by boring to obtain heat of around 200 ° C. in the ground reaches a depth of about 700 m to 1500 m in the ground. It is thought that the deeper the depth, the higher the temperature can be obtained. However, the geotrophic S is best determined by the balance with the excavation cost. The following values also change appropriately depending on the temperature obtained from the vicinity.
  • the hot water (I12) that has absorbed heat from the earth and tropical zone S is the medium take-out pipe 112 and the low thermal conductivity.
  • hot water (I13) at 200 ° C. can be transferred to the flashers F1 and F2 on the ground at a pressure of 2.0 MPa without lowering the temperature.
  • a medium transfer pipe 110 is buried in the ground, and the medium transfer pipe 110 is connected to the outside in contact with the ground, and the medium injection pipe 111 is connected to the ground. Further, the medium injection pipe 111 reaches the bottom of the medium injection pipe 111 by connecting the medium take-out pipe 112 to the inside of the medium injection pipe 111.
  • These medium transfer pipes 110 are used as a heat exchange part that absorbs heat obtained from the earth and tropics S, and hot water is evaporated to generate power via the steam turbine T.
  • the water (I 11) in the storage tank 104 is pressurized to 5 MPa by the pressurized water supply pump 103, sent to the medium injection pipe 111 of the medium transfer pipe 110 at a flow rate of 55 t / h, and transferred to the deep tropical zone S. Is done.
  • the water transferred to the geotropy S at 220 ° C. is transferred from the medium injection pipe 111 having a high thermal conductivity to the heat from the geotrophic S, and finally becomes hot water (I 12) at 210 ° C.
  • the hot water (I13) taken out from the medium take-out pipe 112 is transferred to the flasher F1 at a temperature of 200 ° C. and a pressure of 2.0 MPa at the outlet.
  • the flasher F1 releases hot water at a temperature of 200 ° C., depressurizes it to 1.0 MPa, and boiles it to generate steam with a flash rate of about 7% at a steam volume of 4 t (tons) / h (hours).
  • the flasher F1 sends the generated steam to the steam turbine T1 on the high pressure side.
  • the sent steam generates electric power by driving the generator G1 by the rotation of the steam turbine T1.
  • the amount of power generated by the steam can be 90 kWh with an efficiency of 80%.
  • 93% of the hot water (I14) remaining without being vaporized by the flasher F1 is sent to the flasher F2 at a pressure of 1.0 MPa while maintaining a temperature of about 180 ° C.
  • the flasher F2 releases the pressure of hot water at a temperature of 180 ° C., depressurizes to 0.6 MPa, and boiles to generate steam with a flash rate of about 4% at a steam volume of 2 t / h.
  • the flasher F2 sends the generated steam to the steam turbine T2 on the low pressure side.
  • the sent steam generates power by driving the generator G2 by the rotation of the steam turbine T2.
  • the amount of power generated by the steam can be 40 kWh with an efficiency of 80%.
  • the flasher F2 is a heat exchanger that heats about 89% of the hot water (I13) pumped up first and remains without being steamed at a pressure of 0.6 MPa while maintaining a temperature around 160 ° C. 151 is sent at a flow rate of about 49 t / h.
  • the hot water (I15) that has passed through the heat exchanger 151 is subjected to heat exchange, deprived of heat by the working medium, cooled to around 140 ° C., and transferred to the storage tank 104 by the low-pressure circulation pump 105 at a pressure of 0.47 MPa (I16). ).
  • the steam exhausted by the steam turbine T is condensed by the cooling water 107 by the condenser 106 and returned to 140 ° C.
  • Hot water (I17) having a pressure of 0.101 MPa and stored in the storage tank 104 at a flow rate of 6 t / h. It is done.
  • Hot water (I11) around 140 ° C. in the storage tank 104 is again pressurized to 6 MPa by the pressurized water supply pump 103 and sent to the medium injection pipe 111 of the medium transfer pipe 110 at a flow rate of 55 t / h. Transported to tropical S.
  • the heat exchanging unit 150 supplies about 89% of hot water (I15) remaining without being steamed by the flasher F2 to the heat exchanger 151 at a pressure of 0.47 MPa while maintaining a temperature of about 160 ° C. / H. At that time, if the flow rate of the hot water (I15) is large, a bypass may be provided to branch off the hot water remaining in the storage tank 104.
  • the heat exchanger 151 evaporates the working medium (J1) having a low boiling point in the heat exchange unit 150, and sends the generated steam to the steam turbine T3. The sent steam drives the generator G by the rotation of the steam turbine T3 to generate power.
  • the amount of power generated by the steam is 113 to 160 kWh when the efficiency is 80%. Further, the steam (J2) discharged from the steam turbine T3 is cooled by the cooling water 157 of the cooler 156, and the working medium used in the main generation is condensed from gas to liquid. The working medium (J3) is again sent to the heat exchange unit 150 by the circulation pump 155.
  • the electricity obtained by the pressurized water power generation device A and the binary power generation device B is supplied from the power transmission facility H to an electric power company or the like.
  • the electricity generated by the binary power generation apparatus B may be consumed in the geothermal power generation apparatus 1300, or may be consumed for power for generating dry steam or power for pumps (103, 105, 155). . It is also possible to use these electricity after storing them in a storage battery or the like.
  • the binary power generation device B is not limited to the above power generation device, and as a condition of the binary power generation device B, 1.8 t / h of steam having a saturated steam temperature of 130 ° C. and a pressure of 0.169 MP is supplied to the binary power generation device B. When cooled to 35 ° C. with cooling water or the like, 92 kWh can be generated. As another condition, hot water at 70 to 95 ° C. is supplied to the binary power generation device B at a flow rate of 12 to 28 t / h, and cooled at a cooling temperature of 20 to 30 ° C. at a flow rate of 20 to 40 t / h with cooling water or the like. In this case, power generation of 20 kWh is possible. T1 and T2 may also be binary power generation B with the working medium having a low boiling point. Power generation is possible even when steam and hot water are low.
  • a geothermal power generation apparatus that generates electricity using hot water heated by geothermal heat as a heat source, and a medium injection pipe for transferring the hot water to the geotropics on the outside, and the geotropical inside the medium injection pipe
  • the medium injection pipe provided with an endothermic structure having a high thermal conductivity is provided, and the hot water that has absorbed heat by the geotropy is applied with a pressure higher than the evaporation curve, It is transferred to a steam generator on the ground in a liquid state so that no steam is generated, and the hot water that has not been converted to steam in the steam generator is generated by a plurality of steam generators, and power is generated by the steam.
  • a geothermal power generation apparatus and a geothermal power generation method comprising: a binary power generation apparatus to perform.
  • a binary power generation device that uses steam generated by a plurality of steam generators provided in a pressurized water power generation device or hot water that has not become steam as a heat source, and generates power by evaporating a working medium having a boiling point lower than that of the hot water. And a geothermal power generation method and a geothermal power generation method. It is possible to increase the amount of power generation and to effectively use the heat of geothermal heat.
  • the single-phase flow liquid used is described by taking water as an example, but is not particularly limited, and is a low-boiling point medium used in binary power generation such as ammonia. Also good. Piping is provided in the location where the liquid of each white arrow flows. Further, a pressure reducing valve or the like is provided in front of each device or tank so that the flow rate can be adjusted.
  • FIGS. A geothermal power generation apparatus 1600 according to the twelfth embodiment is shown in FIGS. If it demonstrates mainly with reference to FIG. 20, FIG. 20 is a schematic diagram which shows the structure of the geothermal power generator 1600 of this invention concerning 12th Embodiment.
  • FIG. 21 is an operation diagram showing the microbubbles 213.
  • FIG. 223 (A) is a schematic diagram illustrating the configuration of a microbubble generating nozzle 221a according to the twelfth embodiment.
  • a geothermal power generation apparatus 1600 can be broadly divided into a microbubble generator 420, a circulation service tank 230 as a storage tank, a heat exchanger 250, a steam generator 260, a flasher 270, a steam turbine 280, and a condenser. 290, a pressurized water supply pump 241 and a low-pressure circulation pump 242.
  • the geothermal power generation apparatus 1600 generates power by rotating the power generation motor 281 by supplying steam to the steam turbine 280, supplies electricity to the power receiving facility 282, and supplies electricity to an electric power company or the like via a power transmission network.
  • the steam turbine 280 may be not only a turbine type but also a screw type and the like as long as it can generate power with steam.
  • the steam supplied to the steam turbine 280 is generated by the steam generator 260 by boiling the hot water under reduced pressure.
  • the generated steam is directly supplied to the high pressure portion of the steam turbine 280 through the pipe 261. When the amount of steam is insufficient, excess high-temperature water in the steam generator 260 is boiled under reduced pressure again by the flasher 270 to generate steam.
  • the generated steam is supplied to the steam turbine 280 in the low pressure section through the pipe 271. Since all the hot water is not made into steam, the reduced water from the flasher 270 is stored in the circulation service tank 230.
  • the condenser 290 is a device that condenses the steam used in the steam turbine 280 into water again with the cooling water 291. The condensed hot water is transferred to the circulation service tank 230 by the low-pressure circulation pump 242.
  • the circulation service tank 230 stores the reduced water from the flasher 270 and the hot water transferred from the condenser 290 by the low-pressure circulation pump 242.
  • the stored water is transferred to the pressurized water injection pipe 251 by the pressurized feed water pump 241 so that heat is exchanged again as hot water in the earth and tropics S.
  • the circulation service tank 230 includes a micro-bubble generating device 220, and a part of the water in the circulation service tank 230 is transferred to the micro-bubble generating device 420 via the liquid transport pipe 231.
  • the microbubble generating device 420 is provided by being separated into a power unit 224 and a microbubble generating nozzle 221a as a nozzle unit for discharging the microbubbles 213.
  • Water pressurized by a pump (not shown) of the power unit 224 provided in the microbubble generating device 420 is supplied to the microbubble generating nozzle 221a through the pressure injection pipe 223a.
  • the micro-bubble generating device 420 supplies air to the micro-bubble generating nozzle 221a via the gas injection pipe 222a by an air compressor (not shown) of the power unit 224, and the micro-bubble generating nozzle 221a is a nozzle for discharging hot water together with air.
  • 225a is provided.
  • the microbubble generation nozzle 221a is located in the middle of the microbubble generation nozzle 221a, and a spherical body 227 inserted into the microbubble generation nozzle 221a is fitted therein.
  • the microbubble generation nozzle 221a is provided with a small hole 229 that is formed on the circumference of the microbubble generation nozzle 221a downstream from the insertion center of the spherical body 227.
  • the micro-bubble generating nozzle 221a is provided with an air chamber 226 communicating with the atmosphere or an air compressor outside the small hole 229. Then, by flowing a pressurized high-pressure water stream, microbubbles 213 are generated as shown in FIG. 21 together with air that is self-primed or pressurized by an air compressor.
  • the microbubble generation nozzle 221a is preferably heat-resistant, and it is preferable to use a resin or metal that can withstand at least about 200 ° C.
  • microbubbles 213 generated by the present invention are microbubbles or nanobubbles, and microbubbles having a particle size of 20 microns or less are reduced to nanobubbles and eventually disappear.
  • gas dissolves in water in proportion to pressure. Therefore, it means that the smaller the bubbles, the higher the gas dissolving ability.
  • dissolved microbubble and nanobubble has the following effects.
  • hot water containing microbubbles 213 is sprayed with a nozzle, it contains a lot of microbubbles and nanobubbles. Therefore, compared with water that contains nothing, it is 2 to 3 in terms of the number of particles. Double the number of particles has been confirmed.
  • the hot water containing the microbubbles 213 increases the number of foaming nuclei and the surface area of the gas-liquid interface (evaporation interface) more than normal water. Thereby, when hot water turns into steam in the steam generator 260, it has been confirmed that at least the steam amount increases by 10 to 20%.
  • the microbubble 213 has a positive potential 216 on the water side and a negative potential on the air side at the air-liquid interface 214 due to static electricity due to electrostatic friction occurring at the gas-liquid interface 214 of air and water. 215 is generated and is transferred while collecting impurities in the liquid by the electrostatic friction force generated by the negative potential 215 generated at the gas-liquid interface 214. Thereby, there is also a purification effect in the transfer path, and it is possible to further reduce the pressure loss.
  • microbubbles 213 there are other methods for generating the microbubbles 213, such as a method of causing crushing using shock waves, ultrasonic waves, or a venturi tube, a method using cavitation, a method using shearing, electrolysis or pressure dissolution, and the like.
  • the heat exchanger 250 is embedded from the ground surface F to the geotropical zone S as a heat source in the deep underground.
  • the heat exchanger 250 is provided with a cylindrical pressurized water injection pipe 251 on the outer side, and the periphery of the pressurized water injection pipe 251 is solidified by geothermal cement from the ground surface F to the vicinity of the geotrophic S.
  • a cylindrical liquid extraction pipe 252 that transfers water heated in the earth and tropics S is provided inside the pressurized water injection pipe 251.
  • the pressurized water injection pipe 251 is made of a material such as steel or stainless steel, and fins or the like are attached to the outer periphery of the high-temperature tropical zone S so that the heat of the tropical zone S can be easily transmitted. Further, the outer periphery of the pressurized water injection pipe 251 is subjected to thermal spraying with a material mixed with aluminum or aluminum and lead in order to improve corrosion resistance and heat transfer.
  • the pressurized water injection pipe 251 has a heat insulating structure provided with a heat insulating material or an air layer so that the heat of the pressurized hot water is not taken away from the circulation service tank 230 in a low temperature region close to the ground surface F. As shown in FIG. 20, the deepest part of the pressurized water injection pipe 251 is formed in an arc shape so as not to cause pressure loss, and the pressurized water is smoothly transferred to the liquid take-out pipe 252.
  • the liquid extraction pipe 252 is provided with a cylindrical pipe inside the pressurized water injection pipe 251 in order to transfer hot water heated in the earth and tropics S to the ground.
  • the liquid take-out pipe 252 is formed of a material such as stainless steel, and the deepest part is formed in a shape in which a part (not shown) is cut away so that pressure loss does not occur, and the pressurized water rises smoothly.
  • the hot water taken out from the liquid take-out pipe 252 reaches the steam generator 260 in a pressurized state.
  • the pressurized hot water is boiled under reduced pressure to generate steam.
  • the weight ratio of steam that can be obtained as steam from hot water by the steam generator 260 is 30%, and 70% is returned as hot water.
  • the weight ratio of the vapor is improved to 40% due to the additional number of foaming nuclei and the increase of the gas-liquid interface.
  • FIG. 23 is a schematic diagram which shows the structure of the geothermal power generation apparatus 1700 which concerns on embodiment of this invention concerning 13th Embodiment.
  • the parts having the same configuration as that of the twelfth embodiment are denoted by the same reference numerals as those of the twelfth embodiment, and the description of the same parts as those of the twelfth embodiment is omitted.
  • a geothermal power generation apparatus 1700 according to the thirteenth embodiment is roughly divided into a microbubble generation apparatus 430, a circulation service tank 230, a heat exchanger 250, a steam generator 360, a flasher 270, a steam turbine 280, a condenser 290, and pressurization.
  • the feed water pump 241 and the low-pressure circulation pump 242 are configured.
  • the steam generator 360 is provided with a microbubble generator 430.
  • the micro-bubble generating device 430 is provided by being separated into a power unit 224 and a micro-bubble generating nozzle 221a as a nozzle unit that discharges the micro-bubble 213.
  • the microbubble generating device 430 supplies hot water pressurized by the pressurized water supply pump 241 to the microbubble generating nozzle 221a through the pressure injection pipe 223a, and air is supplied through the gas injection pipe 222a by an air compressor (not shown) of the power unit 224. Is supplied to the bubble generation nozzle 221a.
  • the minute bubble generation nozzle 221a is provided with a nozzle 225a for discharging hot water together with air.
  • a spherical body 227 that is located in the middle part of the microbubble generating nozzle 221a and inserted into the microbubble generating nozzle 221a is fitted.
  • a small hole 229 drilled on the circumference of the micro-bubble generating nozzle 221a is provided downstream from the insertion center of the spherical body 227. Outside the small hole 229, an air chamber 226 communicating with the air compressor is provided.
  • the steam generator 360 generates steam by boiling the hot water under reduced pressure, but the nozzle that generates the steam is configured by the microbubble generation nozzle 221a, and the steam is generated while generating the microbubble 213. Since hot water containing microbubbles 213 contains many microbubbles and nanobubbles, the number of additional foaming nuclei and the surface area of the gas-liquid interface are increased as compared with normal water. Thereby, when hot water turns into steam in the steam generator 360, there is an effect that the amount of steam increases.
  • FIGS. 22 (B), 24 and 25 A geothermal power generation apparatus 210 according to the fourteenth embodiment is shown in FIGS. 22 (B), 24 and 25.
  • FIG. 22B is a schematic diagram illustrating the configuration of a microbubble generating nozzle 221b according to the fourteenth embodiment.
  • FIG. 24 is a schematic diagram showing a configuration of a geothermal power generation apparatus 1800 according to the embodiment of the present invention according to the fourteenth embodiment.
  • FIG. 25 is a perspective view showing the liquid extraction pipe 252 and the microbubble generation nozzle 221b in the upper part of the heat exchanger 350 according to the fourteenth embodiment.
  • the parts having the same configuration as that of the twelfth embodiment are denoted by the same reference numerals as those of the twelfth embodiment, and the description of the same parts as those of the twelfth embodiment is omitted.
  • the geothermal power generation apparatus 1800 is roughly divided into a microbubble generation apparatus 440, a circulation service tank 230, a heat exchanger 350, a steam generator 260, a flasher 270, a steam turbine 280, a condenser 290, and pressurization.
  • the feed water pump 241 and the low-pressure circulation pump 242 are configured.
  • the microbubble generator 440 is provided in the heat exchanger 350.
  • the heat exchanger 350 is provided with a microbubble generator 440 near the ground surface F.
  • the microbubble generator 440 includes a pressure injection pipe 223 b connected to the pressurized water supply pump 241 between the liquid take-out pipe 252 and the pressurized water injection pipe 251, and a counterclockwise spiral along the inner periphery of the pressurized water injection pipe 251. It is provided in the shape. This is provided so that the water falls smoothly while reducing the pressure loss while drawing a spiral by injecting pressurized water along the inner periphery of the pressurized water injection tube 251.
  • the microbubble generator 440 includes an air compressor or the like (not shown) in the power unit 224 that supplies air through the gas injection pipe 222b. Further, a nozzle 225b is provided for supplying water pressurized by the pressurized water supply pump 241 through the pressure injection pipe 223b and discharging it together with air.
  • the micro-bubble generating nozzle 221b is located in the middle of the micro-bubble generating nozzle 221b and incorporates a spiral bubble cutter 228 inserted into the micro-bubble generating nozzle 221b.
  • a small hole 229 drilled on the circumference of the micro-bubble generating nozzle 221b is provided downstream from the insertion center of the bubble cutter 228.
  • An air chamber 226 is provided outside the small hole 229. Then, by flowing a pressurized high-pressure water flow, microbubbles 213 are generated as shown in FIG. 21 with air pressurized by an air compressor (not shown) of the power unit 224.
  • the generated microbubbles 440 are transferred to the deep part of the heat exchanger 350 while being dissolved in the hot water by the pressurized water supply pump 241 and then transferred to the steam generator 260 as hot water.
  • the microbubbles 213 have a reduced resistance in the tube and can reduce pressure loss. Therefore, the burden on the pressurized water supply pump 241 and the low-pressure circulation pump 242 is reduced. Since hot water containing microbubbles 213 contains many microbubbles and nanobubbles, the number of additional foaming nuclei and the surface area of the gas-liquid interface are increased as compared with normal water. Thereby, when hot water turns into steam in the steam generator 260, the effect of increasing the amount of steam is achieved.
  • FIG. 26 is a schematic diagram showing a configuration of a geothermal power generation apparatus 1900 according to an embodiment of the present invention according to the fifteenth embodiment.
  • the parts having the same configuration as that of the twelfth embodiment are denoted by the same reference numerals as those of the twelfth embodiment, and the description of the same parts as those of the twelfth embodiment is omitted.
  • the geothermal power generation apparatus 1900 is roughly divided into a microbubble generation apparatus 450, a circulation service tank 230, a heat exchanger 250, a steam generator 260, a flasher 270, a steam turbine 280, a condenser 290, and pressurization.
  • the feed water pump 341 and the low-pressure circulation pump 242 are configured.
  • the microbubble generator 450 is connected to the pressurized water supply pump 341.
  • the pressurized water supply pump 341 is structured to generate the fine bubbles 213 in FIG. 21 by stirring while taking in air.
  • the microbubble generator 450 is equipped with an air compressor (not shown) in the power unit 224, and supplies the air compressed by the compressor to the pressurized water supply pump 341 via the gas injection pipe 222b.
  • the supplied air is minutely formed by a bubble cutter (not shown) in the pressurized water supply pump 341.
  • the pressurized water supply pump 341 pressurizes water from the circulation service tank 230, dissolves microbubbles 213, and transfers hot water to the heat exchanger 250.
  • the generated micro bubbles 213 are transferred to the heat exchanger 250 while being dissolved in water by the pressurized water supply pump 341, and then transferred to the steam generator 260 as hot water.
  • the microbubbles 213 have a reduced resistance in the path and can reduce pressure loss. Therefore, the burden on the pressurized water supply pump 341 and the low-pressure circulation pump 242 is reduced. Since hot water containing microbubbles 213 contains many microbubbles and nanobubbles, the number of additional foaming nuclei and the surface area of the gas-liquid interface are increased as compared with normal water. Thereby, when hot water turns into steam in the steam generator 260, the effect of increasing the amount of steam is achieved. *
  • the power generation method will be described with reference to FIG. 20 and FIG. 21.
  • the depth of a hole formed by boring to obtain heat of about 200 ° C. in the ground reaches about 700 to 1500 m in the ground.
  • the water containing the microbubbles 213 in the circulation service tank 230 is pressurized to 1.65 Mpa by the pressurized water supply pump 241 and sent to the pressurized water injection pipe 251 of the heat exchanger 250 at a flow rate of 35.8 t / h.
  • To the tropical zone S. For example, the water transferred to the geotrophic zone S at 230 ° C.
  • the hot water having a temperature of 190 ° C. taken out from the liquid take-out pipe 252 is pressurized to 1.25 Mpa by the pressurized water supply pump 241 and transferred to the steam generator 260.
  • the steam generated by the steam generator 260 is directly supplied to the high pressure portion of the steam turbine 280 through the pipe 261.
  • excess high-temperature water in the steam generator 260 is boiled under reduced pressure again by the flasher 270 to generate steam.
  • the generated steam is supplied to the steam turbine 280 in the low pressure section through the pipe 271.
  • Hot water having a temperature of 162 ° C. transferred to the flasher 270 is expanded under reduced pressure to a pressure of 0.65 Mpa and sent to the steam turbine 280 as steam having a steam flow rate of 2.14 t / h, and power is generated by the rotation of the steam turbine 280.
  • the amount of power generated by this amount of steam is 102 KW.
  • the reduced water having a temperature of 157 ° C. obtained from the flasher 270 is transferred to the circulation service tank 230 and stored at a pressure of 0.57 Mpa.
  • the steam at a temperature of 103 ° C. from the steam turbine 280 is condensed again by the cooling water 291 into hot water at a temperature of 80 ° C. in the condenser 290.
  • This hot water is transferred to the circulation service tank 230 by the low-pressure circulation pump 242 at a pressure of 0.47 Mpa.
  • the hot water stored in the circulation service tank 230 is generated by the microbubble generator 420 and includes the microbubbles 213 and is sent again to the heat exchanger 250 by the pressurized water supply pump 241.
  • this depth depends on the temperature of the heat source of the geotrophic S and is not particularly limited. Moreover, it is also possible to obtain an output of 1 MW or more by adjusting the amount and temperature of the hot water to be transferred.
  • the microbubble generator (440) is characterized by having a pressurized water injection pipe (223b) which is formed in a spiral shape and transfers liquid to the earth. By configuring in this way, the liquid (hot water) is introduced without resistance along with the inner periphery of the pressurized water injection pipe and transferred to the deep part with centrifugal force, so that the pressurized pump (241) is transferred without pressure loss. Etc. can be reduced.
  • the micro-bubble generating device (440) includes a nozzle (221b) that discharges liquid (hot water) accompanied by micro-bubbles (213) along the spiral of the pressurized water injection tube (223b).
  • the liquid (hot water) is introduced without resistance along with the centrifugal force along the inner periphery of the pressurized water injection pipe 251 and transferred to the deep part, so that the liquid (hot water) is transferred without pressure loss.
  • the burden on the pressurized water supply pump (241) can be reduced.
  • the geothermal power generation devices (1600, 1700, 1800, 1900) are equipped with microbubble generators (420, 430, 440, 0) that generate microbubbles (213) until they are vaporized, and the microbubbles are dissolved.
  • the generated liquid is vaporized to generate electricity.
  • the liquid (hot water) containing microbubbles increases the number of foaming nuclei and the surface area of a gas-liquid interface (evaporation interface) more than normal water. Thereby, when the liquid (hot water) becomes steam in the steam generator, the amount of steam can be increased, so that the amount of power generation can be improved.
  • the microbubbles in the above embodiment may be air or inert gas (nitrogen, etc.), and it is inexpensive by using nitrogen, and it is possible to prevent oxidation of metals such as piping in the path. It is. Moreover, nitrogen can further reduce the flow resistance of the liquid in terms of physical properties. From the above, since resistance in the path is reduced and pressure loss can be reduced, the burden on the pressurized water supply pump 341 and the low-pressure circulation pump 242 is reduced.
  • microbubble generators (20, 120, 220, 450) that generate these microbubbles 213 may be installed at various locations. Further, it is not always necessary to use another power source such as an air compressor. Hot water or hot water is fed using the pressure of the pressurized water supply pump 241 or the low-pressure circulation pump 242, and pipes or bypasses between the devices are used. It is also possible to install a venturi pipe or the like in the middle of the piping of the path and send air by self-priming to generate microbubbles 213 in hot water or hot water.
  • Embodiments of a medium transfer pipe 510 and a geothermal power generation apparatus 2000 according to the present invention will be described in detail with reference to the drawings.
  • FIG. 27 is a schematic diagram showing a configuration of a geothermal power generation apparatus 2000 according to the sixteenth embodiment of the present invention.
  • FIG. 28 is an enlarged perspective view centering on the connection portion of the medium injection pipe 511 of the medium transfer pipe 510 according to the sixteenth embodiment of the present invention.
  • FIG. 29 is a sectional view on the axis of the medium transfer pipe 510 according to the sixteenth embodiment of the present invention.
  • FIG. 30 is a perspective view of a connection pipe 512 that connects the medium injection pipe 511 of the medium transfer pipe 510 according to the sixteenth embodiment of the present invention.
  • FIG. 31 is an enlarged cross-sectional view showing a part of a cross section taken along the line AA shown in FIG. 28 of the medium injection pipe 511 of the medium transfer pipe 510 according to the sixteenth embodiment of the present invention.
  • FIG. 32 is an enlarged perspective view centering on the connection pipe 530 of the medium take-out pipe 521 of the medium transfer pipe 510 according to the sixteenth embodiment of the present invention.
  • FIG. 33 is an enlarged front view centering on the connection portion of the medium take-out pipe 521 of the medium transfer pipe 510 of the present invention according to the sixteenth embodiment.
  • FIG. 34 is a cross-sectional view when the center of the plane of the medium take-out pipe 521 according to the sixteenth embodiment is cut vertically.
  • FIG. 35 is a perspective view of the rectifying unit 540 of the medium transfer pipe 510 according to the sixteenth embodiment of the present invention.
  • the geothermal power generation apparatus 2000 includes a circulation service tank 505 as a storage tank, a medium transfer pipe 510, a steam generator 560, a flasher (gas-water separation). 570), a steam turbine 580, a condenser 590, a pressurized feed water pump 506, and a low-pressure circulation pump 507.
  • the geothermal power generation apparatus 2000 supplies steam to the steam turbine 580 to rotate the power generation motor 581 to generate power, supply electricity to the power transmission facility 582, and supply electricity to an electric power company or the like via the power transmission network. It is.
  • the steam turbine 580 may be not only a turbine type but also a screw type, etc., as long as it can generate power by steam.
  • the steam supplied to the steam turbine 580 is generated by the steam generator 560 by boiling the hot water under reduced pressure.
  • the generated steam is sent to the brackish water separator 570 together with hot water.
  • the brackish water separator 570 separates the hot water and the generated steam and supplies the steam to the steam turbine 580.
  • the condenser 590 is a device that condenses the steam used in the steam turbine 580 into water again with the cooling water 591.
  • the condensed hot water is transferred to the circulation service tank 505 by the low-pressure circulation pump 507.
  • Circulation service tank 505 stores the reduced water from brackish water separator 570 and hot water transferred from condenser 590 by low-pressure circulation pump 507.
  • the stored hot water is transferred by a pressurized water supply pump 506 to a medium transfer pipe 510 (to be described later) so that heat is exchanged as hot water again in a deep part of the earth and tropical zone S.
  • a medium transfer pipe 510 is embedded from the ground surface F to the earth's tropics S as a heat source in the deep underground.
  • the medium transfer pipe 510 is embedded with a cylindrical medium injection pipe 511 on the outside, and the periphery of the medium injection pipe 511 is solidified by geothermal cement from the ground surface F to the vicinity of the earth.
  • a cylindrical medium extraction pipe 521 for transferring water heated in the earth and tropics S is provided inside the medium injection pipe 511.
  • the medium injection tube 511 will be described with reference to FIGS.
  • the medium injection tube 511 is made of a material such as steel or stainless steel.
  • the medium injection pipe 511 is welded with cylindrical fins 513 having a circular cross section so that the heat of the geotropy S can be easily transmitted to the outer periphery, as shown in FIG.
  • a welded ingot 515 welded at several places is provided between the end of the fin 513 and the middle thereof.
  • Other portions are provided with a coating layer 516 made of aluminum or a material in which aluminum and lead are mixed by thermal spraying in order to improve corrosion resistance and heat transfer.
  • the coating layer 516 has a different coating thickness between the coating layer 516A in the vicinity of the fin 513 and the coating layer 516B of the medium injection tube 511, and the coating layer 516B is thinned to increase heat transfer, and the coating layer 516A has a high strength. In order to improve the surface area, it is formed thick.
  • the coating layer 516B is about 0.1 mm, and the coating layer 516A is about 0.5 mm.
  • the fin 513 has been described with a circular cross-sectional shape, but it may be a triangle, a quadrangle, a polygon, an ellipse, or the like as long as the surface area increases.
  • the medium injection pipe 511 has a heat insulating structure provided with a heat insulating material or an air layer so that the heat of the hot water injected by being pressurized from the circulation service tank 505 is not taken away in the low temperature region close to the ground surface F. ing.
  • the connecting pipe 512 will be described with reference to FIGS.
  • the connection pipe 512 is a pipe for connecting the medium injection pipes 511 to each other, and screwing grooves 514 are formed inside so as to be screwed into screw grooves (not shown) provided at both ends of the medium injection pipe 511.
  • the medium injection pipe 511 is formed with a length of about 10 m, and is connected using a connection pipe 512 at an interval of about 10 m.
  • the medium take-out pipe 521 is formed inside the medium injection pipe 511 and coaxially with a cylindrical shape.
  • the medium take-out pipe 521 has a double structure in which the cross section forms an air layer 523 between the outer side portion 524 and the middle side portion.
  • connection pipe 530 is a pipe for connecting the medium extraction pipes 521 to each other, and is screwed with screw grooves 525 provided at both ends of the medium extraction pipe 521.
  • a screwing groove 531 is formed on the inner side.
  • the medium take-out pipes 521 are formed with a length of about 10 m, and are connected using connection pipes 530 at intervals of about 10 m.
  • the rectifying unit 540 is provided with a circular ring portion 542 as a body portion on the same axis as the medium take-out pipe 521.
  • a space is formed between the ring portions 542.
  • the ring portion 542 is fixed by welding the upper end of the rectifying piece 541 to the upper ring portion 542 and welding the lower end of the rectifying piece 541 to the lower ring portion 542.
  • the ring portion 542 has an inner diameter that is larger than the medium take-out pipe 521 and smaller than the outer diameter of the connection pipe 530.
  • the ring portion 542 has a structure that can be inserted from above the medium take-out pipe 521 and stopped at the upper end of the connection portion 530 by setting the dimensions of such an inner diameter. With such a structure, the rectifying unit 540 is simply inserted and dropped from above the medium take-out pipe 521, so that the connection pipe 530 stays at the connection part 530 and the construction becomes easy.
  • the rectifying unit 540 is located above the connection pipe 530 at an interval of about 10 m.
  • the ring portion 542 is formed in a circular shape when viewed from the plane, but may be a quadrangle, a triangle, a polygon, an ellipse, or the like without any particular limitation.
  • the rectifying piece 541 is a flat plate made of metal such as stainless steel, and the side ends are cut out along the outer periphery of the medium take-out pipe 521 and the inner periphery of the medium injection pipe 511, and the upper and lower ends are horizontal with the upper end of the ring portion 542. It is cut out and formed.
  • Four rectifying pieces 541 are arranged at an angle of approximately 90 degrees with the central axis Y of the ring portion 542 as the center when viewed from the plane, and four rectifying pieces 541 are provided toward the medium injection tube 511.
  • the angle ⁇ at which the straightening piece 541 is inclined and welded is approximately 45 degrees to 75 degrees as an angle formed with the perpendicular line of the central axis Y of the medium take-out pipe 521 or the ring portion 542. Optimal, 60 degrees is the best angle.
  • the rectifying piece 541 is provided particularly in the earth and tropics S, and guides the pressurized hot water along the arrow (counterclockwise) to lower the pressurized hot water while spirally turning, Hot water is led to the bottom so that no loss occurs. Further, the rectifying piece 541 prevents the reverse flow of hot water heated in the earth and tropics S by the plurality of rectifying pieces 541. Further, the rectifying piece 541 has a function to prevent the rectification as a function of not biasing the axial center of the medium take-out pipe 521. In the following embodiments, the rectifying piece 541 has the same function and effect.
  • the rectifying unit 540 is provided with a spiral bar 543 formed by spirally turning a linear bar having a circular cross section along the outer periphery of the medium take-out pipe 521.
  • the angle ⁇ of the spiral around which the spiral rod 543 is swung is optimally about 45 to 75 degrees as an angle formed with the perpendicular to the central axis Y of the medium take-out pipe 521 or the ring portion 542. 60 degrees is the best angle.
  • a linear support rod 544 having a circular cross section is extended along the outer periphery of the medium take-out pipe 521 obliquely and linearly from the ring portion 542, and the spiral rod 543 is supported. Welded with rod 544 at one location.
  • the spiral rod 543 is formed in a spiral state with a total length of 5 m, which is about 1 ⁇ 2 of the total length of the medium take-out pipe 521.
  • the spiral rod 543 or the support rod 544 is welded to the outer periphery of the ring portion 542 or the rectifying piece 541 and has an integral structure as the rectifying portion 540. Since the spiral rod 543 is spirally swung around the outer circumference of the medium take-out pipe 521, the pressurized hot water is spirally guided by guiding the pressurized hot water along the arrow (counterclockwise). The water is lowered while turning, and hot water is guided to the bottom so that no pressure loss occurs. Moreover, the spiral rod 543 prevents the backflow of hot water heated in the earth and tropics S at a plurality of locations. Furthermore, the direction in which the medium flows can be controlled while reducing the weight.
  • the spiral bar 543 or the support bar 544 has been described with a circular cross-sectional shape, but may have a triangular shape, a quadrangular shape, a polygonal shape, an elliptical shape, or the like, and the inside may be a hollow so that the weight can be reduced. Any shape can be used as long as it can control the flow direction. Further, the spiral rod 543 can be formed by extending a coil spring, and can be easily manufactured.
  • FIGS. 36 to 39 A medium transfer pipe 610 according to the seventeenth embodiment is shown in FIGS. 36 to 39 and FIG.
  • FIG. 36 is an enlarged perspective view centering on the connecting portion of the medium take-out pipe 621 of the medium transfer pipe 610 according to the seventeenth embodiment of the present invention.
  • FIG. 37 is a sectional view on the axis of the medium transfer pipe 610 according to the seventeenth embodiment of the present invention.
  • FIG. 38 is an enlarged front view centering on the connection portion of the medium take-out pipe 621 of the medium transfer pipe 610 according to the seventeenth embodiment of the present invention.
  • FIG. 39 is a perspective view of the rectifying unit 550 of the medium transfer pipe 610 according to the seventeenth embodiment of the present invention.
  • FIG. 48 is a ZZ cross-sectional view of the rectifying piece 551 of the rectifying unit 550 of FIG. 38 according to the seventeenth embodiment.
  • the parts having the same configuration as that of the sixteenth embodiment are denoted by the same reference numerals as those of the sixteenth embodiment, and the description of the same parts as those of the sixteenth embodiment is omitted.
  • connection pipe 630 is a pipe for connecting the medium take-out pipes 621 to each other, similarly to the medium injection pipe 511.
  • the connection pipe 630 is formed with a screw groove 531 (not shown) on the inside so as to screw with a screw groove 525 (not shown) provided at both ends of the medium take-out pipe 621.
  • the medium take-out pipe 621 is formed with a length of about 10 m, and is connected using a connection pipe 630 at an interval of about 10 m.
  • the rectifying unit 550 is provided with an annular ring part 552 as a body part coaxially with the medium take-out pipe 621.
  • the ring portion 552 is fixed by welding the side surface of the rectifying piece 551 along the outer periphery of the ring portion 552.
  • the ring portion 552 has an inner diameter larger than that of the medium take-out pipe 621 and smaller than an outer diameter of the connection pipe 630. By setting the ring portion 552 to have such an inner diameter, the ring portion 552 can be inserted from above the medium take-out pipe 621 and can be stopped at the upper end of the connection portion 630.
  • the rectifying unit 550 is retained from the connection pipe 630 by being inserted and dropped from above the medium take-out pipe 621, and the construction becomes easy.
  • straightening part 550 is located above the connection pipe 630 by about 10 m space
  • the rectifying piece 551 is a flat plate made of metal such as stainless steel, the upper and lower ends are cut out along the outer periphery of the ring portion 552 and the inner periphery of the medium injection pipe 511, and the upper and lower ends are horizontal with the upper end of the ring portion 552. It is cut out so as to become.
  • Six rectifying pieces 551 are arranged at an angle of approximately 60 degrees around the central axis Y of the ring portion 552 when viewed from the plane, and are provided toward the medium injection tube 511.
  • the rectifying unit 550 Since the rectifying unit 550 is arranged at a position where the rectifying piece 551 closes the flow path without a gap when viewed from above, the rectifying unit 550 prevents the backflow of hot water heated in the geotrophic zone S at a plurality of locations, and has a more effective backflow prevention effect. is there.
  • the angle ⁇ at which the straightening piece 551 is inclined and welded is approximately 45 to 75 degrees as an angle formed with the perpendicular line of the central axis Y of the medium take-out pipe 621 or the ring portion 552. Optimal, 60 degrees is the best angle.
  • the rectifying piece 551 is provided particularly in the earth and tropics S, and guides the pressurized hot water along an arrow (counterclockwise) to lower the pressurized hot water while spirally turning, Hot water is led to the bottom so that no loss occurs.
  • FIG. 48A is a ZZ sectional view of the rectifying piece 551 shown in FIG. 38 as another example of the rectifying piece 551.
  • the rectifying tip 553 of the rectifying piece 551 is provided with an inclination so that the hot water flowing down relaxes the resistance and guides it downstream.
  • the rectifying tip 553 reduces vortex and turbulence.
  • FIG. 48B is a ZZ sectional view of the rectifying piece 551 shown in FIG. 38 as another example of the rectifying piece 551.
  • the rectifying tip 554 of the rectifying piece 551 is swelled like a wing of an airplane and narrowed downstream so as to ease the resistance of the hot water flowing down and guide it downstream.
  • the rectifying tip 553 reduces vortex and turbulence. Moreover, although it is restrict
  • the structure of FIG. 48 can be applied to the following embodiments.
  • FIGS. 40 and 41 A rectifying unit 750 according to the eighteenth embodiment is shown in FIGS. 40 and 41.
  • FIG. 40 is a perspective view of the rectifying unit 750 of the medium transfer pipe 710 according to the eighteenth embodiment.
  • FIG. 41 is an enlarged view of a part of the rectifying unit 250 of the medium transfer pipe 710 of the present invention according to the eighteenth embodiment, and is an enlarged side view of a point C shown in FIG.
  • the portions showing the same configurations as those in the sixteenth and seventeenth embodiments are denoted by the same reference numerals as those in the sixteenth and seventeenth embodiments, and the configurations are the same as those in the sixteenth embodiment. Description is omitted.
  • connection pipe 730 is provided as a body part coaxially with a medium take-out pipe (not shown).
  • the connection pipe 730 has a threading groove 731 that is threadedly engaged with a thread groove 525 of a medium take-out pipe (not shown) on the inner periphery.
  • the connecting pipe 730 is connected to the medium take-out pipe 621 at the top and bottom. Further, the connecting pipe 730 has the rectifying piece 751 fixed to the outer periphery by welding or the like, and the angle and the number of attachment are the same as in the sixteenth embodiment.
  • rectifying pieces 751 are provided especially in the earth and tropics S, and by guiding the pressurized hot water along the rectifying pieces 751, the pressurized hot water is lowered while spirally turning so that the pressure loss is reduced. Hot water is led to the bottom to prevent it from occurring. Moreover, the rectifying piece 751 prevents the backflow of hot water heated in the earth and tropics S at a plurality of locations.
  • an introduction portion 733 having a predetermined angle of 45 to 60 degrees is provided above the connection pipe 730.
  • the introduction unit 733 introduces warm water so that turbulent flow and vortex flow are not formed in the rectifying piece 751 when the pressurized warm water descends while spirally swirling. In this way, the introduction unit 733 can lower the hot water without causing pressure loss.
  • FIG. 42 is a sectional view on the axis of the medium transfer tube 810 according to the nineteenth embodiment of the present invention.
  • FIG. 43 is a perspective view of the medium injection pipe 811 of the medium transfer pipe 810 according to the nineteenth embodiment as viewed obliquely from above.
  • FIG. 44 is a perspective view of the medium take-out pipe 821 of the medium transfer pipe 810 according to the nineteenth embodiment.
  • FIG. 45 is a perspective view showing the medium take-out pipe 321 by cutting the medium injection pipe 811 of the medium transfer pipe 810 according to the nineteenth embodiment in the vertical direction.
  • the medium transfer pipe 810 includes a medium take-out pipe 821 and a medium injection pipe 811.
  • a spiral groove 845 having a predetermined width and depth is provided on the inner periphery of the medium injection tube 811 spirally from the tip to the end.
  • the angle of the spiral is optimally about 45 to 75 degrees, and 60 degrees is the best angle with the central axis of the medium injection tube 811.
  • the number and shape of the spiral grooves 845 are not particularly limited, and may be provided so as to be uneven over the entire periphery on the axis.
  • spiral grooves 845 are provided particularly in the earth and tropics S, and guide the pressurized warm water along the spiral grooves 845 to lower the pressurized warm water while spirally swirling to reduce pressure loss. Hot water is guided to the bottom so that it does not occur. Moreover, the spiral groove 845 has prevented the backflow of the hot water heated by the earth and tropics S in several places.
  • the medium transfer pipe 810 is provided with a spiral bar 843 that spirally turns a linear bar having a circular cross section along the outer periphery of the medium take-out pipe 821 from the tip to the end.
  • the angle of the spiral around which the spiral bar 843 is swung is optimally about 45 to 75 degrees as the angle formed with the perpendicular to the central axis of the medium take-out pipe 821, and 60 degrees is the best. Is an angle.
  • These spiral rods 843 are provided especially in the earth and tropics S, and by guiding the pressurized hot water along the spiral rod 843, the pressurized warm water is lowered while spirally turning, and the pressure loss is reduced. Hot water is guided to the bottom so that it does not occur.
  • spiral groove 845 and the spiral rod 843 are arranged to face each other and are spirally swung from the front end to the end.
  • the spiral groove 845 and the spiral rod 843 are each effective.
  • the spiral groove 845 and the spiral rod 843 have an effect of smoothly descending while spirally turning.
  • a plurality of spiral grooves 845 and spiral rods 843 are provided as a pair, but there is no particular limitation, and one set may be provided.
  • FIG. 46 is a perspective view showing the connection ring 946 by cutting the medium injection pipe 911 of the medium transfer pipe 910 according to the twentieth embodiment in the vertical direction.
  • FIG. 47 is a perspective view showing a rectifying unit 940 according to the twentieth embodiment of the present invention.
  • the parts having the same configurations as those in the sixteenth embodiment to the nineteenth embodiment are denoted by the same reference numerals as those in the sixteenth embodiment to the nineteenth embodiment, and the configurations are the same as those in the sixteenth embodiment. Description is omitted.
  • the rectifying unit 940 is provided with an annular connection ring 946 at the upper end, and a linear bar having a circular cross section is spirally swiveled along the inner periphery of the medium injection pipe 910 below the connection ring 946.
  • a spiral rod 943 is provided from the tip to the end.
  • the angle of the spiral around which the spiral rod 943 is swung is optimally about 45 to 75 degrees as the angle formed with the perpendicular to the central axis of the medium injection tube 910, and 60 degrees is the best. Is an angle.
  • An annular connection pipe 912 is provided coaxially with the medium injection pipe 910.
  • the connection pipe 912 is formed with a screw groove 914 that is screwed into the screw groove 925 of the medium injection pipe 911 on the inner periphery.
  • the connection pipe 912 connects the medium injection pipe 911 vertically.
  • connection ring 946 is fixed in the gap between the medium injection pipes 911. By fixing in this way, the medium can be firmly fixed, and the medium take-out tube 821 can be easily inserted.
  • the spiral rod 943 is provided particularly in the earth and tropics S, and by guiding the pressurized hot water along the spiral rod 943, the pressurized warm water is lowered while spirally turning, causing a pressure loss. Hot water is led to the bottom so that there is no.
  • the power generation method will be described with reference to FIG. 27.
  • the depth of a hole formed by boring to obtain heat of around 200 ° C. in the ground reaches about 700 to 1500 m in the ground.
  • a medium transfer pipe 510 is embedded in the ground, and the medium transfer pipe 510 reaches the depth of the ground by connecting a medium injection pipe 511 to the outside in contact with the ground.
  • the medium injection pipe 511 reaches the bottom of the medium injection pipe 511 by connecting the medium extraction pipe 521 inside the medium injection pipe 511.
  • These medium transfer pipes 510 are used as a heat exchanger that absorbs heat obtained from the earth and tropics S, and the medium is evaporated to generate power via a steam turbine. The method for generating electricity will be described in detail below.
  • the hot water in the circulation service tank 505 is pressurized to 1.65 Mpa by the pressurized water supply pump 5066 and is sent to the medium injection pipe 511 of the medium transfer pipe 510 at a flow rate of 35.8 t / h, and is transferred to the deep tropical S in the ground. Is done.
  • the hot water transferred to the geotrophic zone S at 230 ° C. transfers the heat from the geotropical zone S through the medium injection pipe 511 having good thermal conductivity, and finally becomes hot water at 200 ° C.
  • the hot water having a temperature of 190 ° C. taken out from the medium take-out pipe 521 is pressurized to 1.25 Mpa through the medium take-out pipe 521 by the pressurized feed water pump 506 and transferred to the steam generator 560.
  • the steam generator 560 decompresses and expands hot water having a temperature of 162 ° C. to a pressure of 0.65 Mpa to generate steam having a steam flow rate of 2.14 t / h.
  • the brackish water separator 570 sends steam to the steam turbine 580 and is generated by the rotation of the steam turbine 580. The amount of power generated by this amount of steam is 102 KW. Further, the brackish water separator 570 is transferred to and stored in the circulation service tank 505 at a pressure of 0.57 Mpa, as reduced water having a temperature of 157 ° C. without remaining steam. Also, the 103 ° C.
  • steam from the steam turbine 580 is condensed again by the cooling water 591 into warm water having a temperature of 80 ° C. in the condenser 590.
  • This hot water is transferred to the circulation service tank 505 by the low-pressure circulation pump 507 at a pressure of 0.47 Mpa.
  • the hot water stored in the circulation service tank 505 is sent again to the medium transfer pipe 510 by the pressurized water supply pump 506.
  • water is circulated and used, and the path is a closed system. Therefore, it is a good system for generating electricity without pumping hot spring water.
  • this depth depends on the temperature of the heat source of the geotrophic S and is not particularly limited. Moreover, it is also possible to obtain an output of 1 MW or more by adjusting the amount of hot water that is also transferred.
  • a spiral spiral groove similar to the spiral groove 845 of the medium injection tube 811 may be formed on the outer periphery of the medium extraction tube 821. In that case, it is good to provide so that spiral grooves may face each other. By doing so, hot water can be easily introduced along the spiral, and the pressurized hot water can be lowered while swirling spirally, and the hot water can be guided to the lowermost part so that no pressure loss occurs.
  • the medium may be a medium (such as a mixture of water and ammonia) having a boiling point lower than that of hot water, hot water, steam, inert gas, or water used for binary power generation.
  • the structure in which the medium of the medium injection pipe flows down as a function of the rectifying unit has been described.
  • FIG. 23 is a schematic diagram showing the configuration of the medium transfer tube 1010 according to the twenty-first embodiment of the present invention.
  • the medium transfer pipe 1010 is embedded from the ground surface to the earth and tropics as a heat source in the deep underground.
  • the medium transfer pipe 1010 is embedded with a cylindrical medium injection pipe 1011 on the outer side, and the periphery of the medium injection pipe 1011 is solidified by geothermal cement from the ground surface to the vicinity of the earth.
  • a cylindrical medium extraction pipe 1012 for transferring water heated in the earth is provided inside the medium injection pipe 1011.
  • the medium transfer tube 1010 includes a heat transfer tube 1013 made of a tube thinner than the medium transfer tube 1010 at the lowermost end of the medium transfer tube 1010.
  • the heat transfer tube 1013 is formed of a material such as steel or stainless steel. Both ends of the heat transfer tube 1013 are disposed in the medium transfer tube 1010, and the medium flowing through the medium transfer tube 1010 passes through the heat transfer tube 1013, so that the geothermal heat can be transferred to the medium with higher efficiency. It has the function of transferring heat to It is preferable that the heat transfer tube 1013 has an opening at one end portion disposed between the medium extraction tube 1012 and the medium injection tube 1011 and an opening at the other end portion disposed below the medium extraction tube 1012.
  • the medium flows downward in the vicinity of one end, so that positive pressure is applied and the medium easily flows into the heat transfer tube 1013, and the medium rises in the vicinity of the other end. Therefore, since the vicinity of the opening becomes a negative pressure and a force is applied in the direction in which the medium is taken out, the medium can efficiently flow into the heat transfer tube 1013. More preferably, as shown by the dotted line in FIG. 23, the heat transfer tube 1013 at the other end may be further extended upward to the inside of the medium take-out tube.
  • the number of heat transfer tubes 1013 is not particularly limited. For example, as shown in FIG. 24, a plurality of heat transfer tubes 1013 may be provided radially.
  • the form of the heat transfer tube 1013 is not particularly limited, and may be provided in a U shape as shown in FIG. 23, or may be arranged outside the outer periphery of the medium injection tube 1011 as shown in FIG. May be provided. Further, in order to further improve the heat transfer property, it may be formed in a spiral shape or the like. Further, in order to protect the heat transfer tube 1013, a protective wall may be provided so as to surround the heat transfer tube 1013.
  • the medium transfer pipe used for the medium transfer pipe 1110 according to the twenty-second embodiment is not particularly limited, and is used for a geothermal power generation apparatus that generates power by vaporizing a medium heated by the heat of the geotrophic S, Any medium transfer pipe may be used as long as it is a medium transfer pipe for transferring the medium.
  • a liquid such as water or muddy water flows into the dry crush band F or the crush band F not filled with the liquid, and the medium transfer pipe 1110 is used.
  • This is a method of actively forming a water storage area having a function of a water storage tank around the water.
  • the medium transfer pipe 1110 comes into contact with the liquid in all or part of the lower side of the geothermal cement C, so that the thermal efficiency is improved.
  • it has the effect of improving the earth pressure resistance of the crushing zone F by flowing liquid, such as water or muddy water, into the crushing zone F.
  • liquid such as water or muddy water may flow after completion of the well drilling, or as shown in FIG. You may make it flow into the crushing zone F using the water or muddy water which were used as it is.
  • excavation may be performed by air drilling, and switching to water excavation or mud excavation after approaching the crushing zone F may be performed.
  • the shavings have the same function as the crushing zone at the bottom of the well, so that it is not necessary to collect the shavings near the crushing zone F. It is preferable to use low-viscosity muddy water because the muddy water used for the muddy water excavation can be easily penetrated into the crushing zone F and the shavings may settle in the muddy water.
  • the liquid such as water or muddy water flows into the crushing zone F in this way and the storage area is provided around the medium transfer pipe 1110, the liquid heated to the medium transfer pipe 1110 contacts the medium transfer pipe 1110. Heat can be transferred to the medium transfer tube 1110 more efficiently. Further, by providing the water storage area, liquid convection easily occurs in the water storage area, so that heat can be recovered from a farther heat source than in the case where the water storage area of the medium transfer pipe 1110 is not provided. In order to easily cause convection, it is preferable to form the water storage region in the crush zone region having a temperature gradient. Moreover, since the clearance gap between the crushing zone V is filled with the liquid by flowing liquids, such as water or muddy water, into the crushing zone F, the earth pressure resistance can also be improved.
  • the installation method of the medium transfer pipe 1110 according to the twenty-third embodiment is shown in the drawing.
  • the medium transfer tube 1110 according to the twenty-second embodiment is applicable to the first to twentieth embodiments described above.
  • the method for installing the medium transfer tube 1110 according to the twenty-third embodiment is the same as the method for installing the medium transfer tube 1110 according to the twenty-second embodiment, in which the medium transfer tube 1110 is placed in the dry crushing zone or the crushing zone not filled with liquid.
  • the method of installing the medium transfer pipe 1110 according to the twenty-third embodiment is artificially crushing the place where the medium transfer pipe 1110 is installed by explosives such as dynamite, hydraulic fracturing and other methods
  • an artificial crushing zone is formed in a well in a tropical zone.
  • a water storage region can be formed around the medium transfer pipe 1110 by flowing a liquid such as water or muddy water after artificially forming a crushing zone. Since other points are the same as those in the twenty-second embodiment, description thereof is omitted.
  • the medium transfer pipe 1110 installed by the method of installing the medium transfer pipe 1110 according to the twenty-first and twenty-second embodiments can be used in combination with the first to twentieth embodiments. Or heat can be efficiently recovered from geothermal heat by applying in the power generation direction.
  • it can be used as a heat exchanger for geothermal power generation. It can also be used for volcanic areas in the sea. Furthermore, it can be used for binary power generation, thermal power generation, heat exchangers, and the like.
  • SYMBOLS 10 ... 1st geothermal power generation equipment, 20 ... Medium transfer pipe, 21 ... Medium extraction pipe, 22 ... Medium injection pipe, 30 ... High pressure circulation pump, 40 ... Power generation equipment for medium, 41 ... Steam generator, 42 ... Flasher, 43 ... tank for high pressure circulation pump, 44 ... turbine, 44a ... first turbine, 44b ... second turbine, 45 ... generator, 46 ... condenser, 47 ... water storage tank, 48 ... low pressure circulation pump, 50 ... second geothermal heat Power generation equipment, 61 ... production well, 62 ... reduction well, 64 ... generator, 70 ... geothermal water power generation equipment, 71 ... steam separator, 72 ... second flasher, 73 ...
  • convection heat transfer coefficient 132,136 ... electric heating Heater, 150 ... heat exchange section, 151 ... heat exchanger, 155 ... circulation pump, 156 ... cooler, 161 ... power line for heating section, 165 ... power line for pressurized water supply pump, 166 ... power line for low pressure circulation pump 167 ... Power line for circulation pump, A ... Pressure water power generator, B ... Binary power generator, F / F1 / F2 ... Flasher (steam generator), G / 1 ⁇ G2 ⁇ G3 ... generator, H ⁇ H1 ⁇ H2 ⁇ H3 ... transmission facilities, T ⁇ T1 ⁇ T2 ⁇ T3 ... steam turbine, K ... ground, V ... superheated steam, S ...
  • Support bar 560 ... Steam generator, 570 ... Brackish water separator 580 ... steam turbine, 581 ... generator motor, 582 ... power transmission equipment, 590 ... condenser, 591 ... cooling water, 733 ... introduction, 845 ... spiral groove as the rectifying section, 946 ... connecting ring

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

【課題】地下深部で加熱された熱水を地上に運ぶ際に、非地熱帯に熱を奪われることを低減でき、熱効率の高い地熱交換器を提供すること。 【解決手段】媒体を下降させる下降領域及び上昇させる上昇領域を有し、地熱帯Sに開口を有さない二重管を有する媒体移送管20と、前記媒体移送管20に前記媒体を送出する高圧循環ポンプ30と、地熱の熱によって加熱された前記媒体から蒸気を取り出す蒸気発生器41と、前記媒体移送管20の周囲に形成されている地熱水を受領する生産井と、熱交換の完了した前記地熱水の少なくとも一部を還元する還元井と、少なくとも1つの気水分離器を含んでなり、前記地熱水から蒸気を取り出す気水分離器71と、前記蒸気によって発電する発電機45と、を備えていることを特徴とする地熱発電システム。

Description

地熱発電システム、地熱発電装置、地熱発電方法又は媒体移送管、その媒体移送管を利用した地熱発電装置及び地熱発電方法並びに破砕帯に媒体移送管を設置する方法
 本発明は、地熱発電システム、地熱発電装置、地熱発電方法又は媒体移送管、その媒体移送管を利用した地熱発電装置及び地熱発電方法並びに破砕帯に媒体移送管を設置する方法に関する。
 地熱発電のような地熱エネルギーを利用してエネルギーを得る手法は、高温のマグマ層を熱源とすることから半永久的に熱エネルギーを取り出すことができ、かつ、発電の過程において温室効果ガスを発生しないことから、化石燃料の代替手段として近年注目されている。
 従来の地熱発電は、地熱帯をボーリングし、地熱帯に存在する自然の蒸気、又は熱水を自然の圧力を利用して取り出し発電を行なう。それに対し、本権利者は、地熱帯に存在する蒸気及び熱水を直接取り出すことなく、熱のみを受領して発電可能な地熱交換器を提案している(特許文献1)。
 かかる地熱交換器は地下に賦存する高温・高圧の熱水および蒸気そのほか熱伝導媒体が保持する熱を地上に輸送し、地上で蒸気を得ることができるため、地熱帯付近における環境に及ぼす影響がとても小さい地熱交換器を提供するものとして有効な発明である。
 そこで、本発明は、従来技術にかかる熱交換器をさらに発展させ、さらに熱効率のよい地熱発電システム、地熱発電装置及び地熱発電方法を提供することを第1の目的とする。
 また、従来から地熱発電装置では、地熱帯に存在する自然の蒸気を自然の圧力を利用して取り出し、気水分離して使用する方法であるため、取り出された蒸気には地熱帯特有の硫黄やその他の不純物が多量に含まれている。この不純物はスケールとなって、熱井戸や配管類、あるいはタービンの羽根等に付着する。スケールが付着すると、経年的に発電量が減少し、長期間の使用が困難となる。
 特許文献2では、水が地上から地熱帯まで下降して該地熱帯で熱を吸収して地上まで上昇する地熱吸収器と、地熱吸収器を経由した水が一次側に、水よりも沸点が低い液体が二次側に供給され、水から前記液体へ熱を移動させて該液体を蒸気化させる熱交換器と、熱交換器で生成された蒸気で回転する蒸気タービンとを備える地熱発電システムであって、地熱吸収器、熱交換器の一次側、及びポンプが流路中に設けられ、ポンプにより水が循環される第一の循環流路を備えた地熱発電システムが提案されている。
 上記のように、温泉水を汲み上げて利用する発電方法では、配管設備やタービン等の設備にスケールが付着して経年的には発電量が低下し、又はメンテナンスが必要である。環境面においても温泉水を汲み上げて利用するため、温泉水の吐出量等に影響することも考えられる。また、汲み上げて温泉水を発電に利用した後の水は、還元井から大地に戻すのであるが、スケールを除去するための化学物質等が含まれており環境に与える影響が少なからず発生する。
 さらに、特許文献1に見られるように地下の熱だけを利用して発電を行う方法は、環境によく温泉水への湯量や化学物質等への懸念も考慮する必要がないため有効である。
 しかしながら、地下で熱せられた熱水は、地熱帯の温度にもよるが必ずしも高温でない場合がある。そのため、高温を必要とする場合には、深度を深く掘削する必要があるがコストが掛かってしまうという問題がある。そのため、低位熱での蒸気や熱水を有効に利用するための方法が必要になってきた。
 本発明は、このような課題を鑑みされたものであり、地熱帯から得られた熱量を地上で有効に利用して発電効率を高めることができる地熱発電装置及び地熱発電方法を提供することを第2の目的とする。
 さらに、このスケールによる問題を解決するために、地上から水を送り、加熱させて取り出す方式を採用した別技術が、提案されている。
 その一例として特許文献3の地熱発電装置は、高圧給水ポンプによって加圧された処理水が供給される加圧水注入管と、加圧水注入管中を地熱帯まで下降する処理水に対して、地熱帯から熱が供給されて生成される熱水が上昇する熱水取出管とを有し、熱水取出管から取出された熱水が蒸気発生器に送られて生成される蒸気によって発電がなされる技術が提案されている。
 この技術は、加圧水注入管に対して、高圧給水ポンプによって加圧された処理水が供給され、この処理水が加圧水注入管中を下降して地熱帯に達することにより、地熱帯から処理水に熱が供給されて熱水が生成され、この熱水が熱水取出管中を上昇して取出されて発電に使用されるため、発電に使用される蒸気に不純物が含まれておらず、地熱帯に存在する自然の蒸気を直接使用する場合のように、タービンや配管等にスケールが付着しないため、スケールを除去する必要がなく、メンテナンスが容易であり、発電装置を長時間稼働させることが可能となる。
 また、特許文献1は、特許文献3の技術を利用し、高圧給水ポンプによって加圧された処理水が供給される加圧水注入管と、加圧水注入管中を地熱帯まで下降する処理水に対して、地熱帯から熱が供給されて生成される熱水が蒸気を含まない状態で上昇する熱水取出管とを有し、熱水取出管から取出された熱水が蒸気発生器に送られて、蒸気発生器内のみで蒸気として取り出し、その加圧水注入管が熱水取出管の外周側に配置されており、熱水は加圧水注水管の下部を通って熱水取出管に移る構造を有した地熱発電装置が提案されている。
 これら技術は、地中深部にある熱源から得られる熱エネルギーを単相流の媒体によって熱交換し、熱源の熱を媒体、例えば水によって移送する装置である。ここで、気液二相流の場合には、単相流に比べて、熱伝達率は10倍から数10倍と大きく、伝わる量が格段に大きい、すなわち熱を奪われやすいため、地下深部で受熱した地中熱を地上に運ぶ前に、地下熱交換器内あるいは地中に戻すことになり、熱効率が低下するかあるいは蒸気を取り出すことができなくなる可能性がある。
 そのため、例えば単相流の水を採用し、地中で得られた熱を単相流の状態で蒸気発生器まで移送し、得られた熱水を効率よく蒸気化し、発電量を向上する更なる技術が望まれていた。
 また、加圧した単相流の熱水を蒸気発生器まで移送する際に、圧力損失をできるだけ減らすことで、加圧水を移送するポンプの出力を低減することができるため、ポンプのエネルギー消費を押さえる技術も望まれていた。
 本発明は、このような課題を鑑みされたものであり、単相流の状態で運ばれた熱水を効率よく蒸気化して発電量を向上させる装置及び方法を提供すること、また加圧した単相流の熱水を蒸気発生器まで移送する際に、圧力損失をできる限り少なくする装置及び方法を提供することを第3の目的とする。
 さらに、特許文献4は、地中熱交換促進用の螺旋流路を構成し、浅部恒温層や滞水層等の低温地中層では、媒体を螺旋流下させ地中への放熱冷却による凝縮液化を促進させ、さらに深部高温層や地熱層などの高温地中層では、地中からの吸熱加熱による昇温予熱を促進させることで、二重管坑底部での媒体昇温を容易にさせる螺旋流路構成型の同軸二重管熱交換器が提案されている。
 これら技術は、地中深部にある熱源から得られる熱エネルギーを単相流の媒体によって熱交換し、熱源の熱を媒体、例えば水によって移送する装置である。そのため、加圧した単相流の熱水を蒸気発生器まで移送する際に、圧力損失をできる限り少なくすることで、加圧水を移送するポンプの出力を低減することができ、ポンプのエネルギー消費を押さえる技術が望まれていた。
 また、特許文献4の技術のように、流路を閉塞しながら長い経路に亘って螺旋形状に流路を形成することで、装置全体が重くなってしまうという問題があり、2重管のうち内管を設置する際に、内管を吊り下げながら管を繋いで深部まで延長して設置しなければならなく、管を吊り下げるのにかなりの重量がかかってくる。そのため、装置全体を軽量化するめの装置を軽量化し設置作業を容易にしたいという要望があった。また、取り出す管の軸上に沿って螺旋構造を形成することは、螺旋形状の製造が大変煩雑であると共に製造コストがかかってしまうという問題があった。
 本発明は、このような課題を鑑みされたものであり、製造コストを安価にし、また施工作業が容易となるように軽量化し、また圧力損失をできる限り少なくしながら媒体を移送することができる媒体移送管、その媒体移送管を利用した地熱発電装置及び地熱発電方法を提供することを第4の目的とする。
特開2013-164062号公報 特開2014-156843号公報 特開2011-052621号公報 特開2014-202149号公報
 本発明は、従来技術にかかる熱交換器をさらに発展させ、さらに熱効率のよい地熱発電システム、地熱発電装置及び地熱発電方法を提供することにある。
 本発明は、第1の目的を達成するために、以下の手段を採った。
 本発明にかかる地熱発電システムは、媒体を下降させる下降領域及び上昇させる上昇領域を有し、地熱帯に開口を有さない二重管を有する媒体移送管と、前記媒体移送管に前記媒体を送出する高圧循環ポンプと、地熱の熱によって加熱された前記媒体から蒸気を取り出す蒸気発生器と、
 前記媒体移送管の周囲に形成されている地熱水を受領する生産井と、少なくとも1つの気水分離器を含んでなり、前記地熱水から蒸気を取り出す気水分離器と、
 前記蒸気によって発電する発電機と、
 を備えていることを特徴とする。
 本発明にかかる地熱発電システムは、閉鎖循環型の媒体地熱井の周囲に生産井を有しているので、媒体移送管の周囲は、熱交換用地熱井近傍の媒体によって冷やされた地熱水が常に新しい加熱された地熱水と交換され常に地熱によって加熱された地熱水が媒体移送管に接触することになり、より効果的に媒体を加熱することができる。なお、熱交換の完了した前記地熱水の少なくとも一部を還元する還元井を有していても良い。
 本発明にかかる地熱発電システムは、媒体を下降させる下降領域及び上昇させる上昇領域を有し、地熱帯に開口を有さない二重管を有する媒体移送管と、前記媒体移送管に前記媒体を送出する高圧循環ポンプと、地熱の熱によって加熱された前記媒体から蒸気を取り出す蒸気発生器と、
 地熱水を受領する生産井と、熱交換の完了した前記地熱水の少なくとも一部を還元する還元井と、少なくとも1つの気水分離器を含んでなり、前記地熱水から蒸気を取り出す気水分離器と、
 前記蒸気によって発電する発電機と、
 を備え、
 前記媒体の少なくとも一部は、前記気水分離器で分離された地熱水によって熱交換され加熱された状態で前記高圧循環ポンプによって前記媒体移送管に送出されることを特徴とする。
 本発明にかかる地熱発電システムによれば、媒体移送管に送出する媒体の温度を加熱することによって、より高温、高圧の媒体を取水することができ、発電出力を向上させることができる。
 本発明にかかる地熱発電システムは、媒体を下降させる下降領域及び上昇させる上昇領域を有し、地熱帯に開口を有さない二重管を有する媒体移送管と、前記媒体移送管に前記媒体を送出する高圧循環ポンプと、地熱の熱によって加熱された前記媒体から蒸気を取り出して発電する媒体用発電設備と、を有する第1地熱発電設備と、
 地熱水を受領する生産井と、熱交換の完了した前記地熱水の少なくとも一部を還元する還元井と、少なくとも1つの気水分離器を含んでなり、前記地熱水から蒸気を取り出して発電する地熱水用発電設備と、を有する第2地熱発電設備と、
 を備え、
 前記媒体の少なくとも一部は、前記気水分離器で分離された地熱水によって熱交換され加熱された状態で前記高圧循環ポンプによって前記媒体移送管に送出されることを特徴とする。
 かかる発明によれば、前述した発明の効果に加え、第1地熱発電設備の媒体は、第2地熱発電設備の地熱水とは全く異なる閉鎖系になるので、第1地熱発電設備によって取り出される媒体には、地熱帯特有の硫黄その他の不純物が含まれていないため、スケールとなって熱井戸、配管類又はタービン等に付着することがなく、長期間の使用が可能となる。
 さらに、本発明にかかる地熱発電システムにおいて、前記生産井は、前記媒体移送管の周囲に形成されていることを特徴とするものであってもよい。かかる構成を採用することによって、媒体移送管の周囲の地熱水は、媒体移送管の周囲の地熱水が流れているため、熱交換用地熱井近傍の媒体によって冷やされた地熱水が常に新しい加熱された地熱水と交換され常に地熱によって加熱された地熱水が媒体移送管に接触することになり、より効果的に媒体を加熱することができる。
 また、本発明にかかる地熱発電システムにおいて、前記気水分離器内には、前記気水分離器によって分離された地熱水の熱を前記媒体に交換するための熱交換器を備えていることを特徴とするものであってもよい。媒体を加熱する手段として、第2地熱発電設備の気水分離器によって気水分離された熱水を利用して媒体を加熱することにより、効果的に媒体を加熱することができる。
 さらに、本発明にかかる地熱発電システムにおいて、前記地熱水用発電設備は、フラッシャーを備えており、前記フラッシャー内には、前記媒体に熱を交換するための熱交換器を備えていることを特徴とするものであってもよい。第2地熱発電設備として、ダブルフラッシュ方式を採用した場合に、フラッシャー内で熱交換することによって、効果的に媒体を加熱することができる。
 さらに、本発明にかかる地熱発電システムにおいて、前記媒体用発電設備は、復水器を有し、前記復水器で冷却された媒体を前記第2地熱発電設備側に送出することを特徴とするものであってもよい。媒体を加熱するに際して、発電に使用した後の復水器の媒体を第2地熱発電設備側に送出して加熱することによって、媒体を循環させることができる。
 さらに、本発明にかかる地熱発電システムにおいて、前記生産井は、前記媒体移送管の周囲に形成されていることを特徴とするものであってもよい。媒体移送管の周囲の地熱水は常に新しい加熱された地熱水と交換される上、媒体移送管の周囲の地熱水が流れているため、常に地熱によって加熱された地熱水が媒体移送管に接触することになり、より効果的に媒体を加熱することができる。
 さらに、本発明は、以下の地熱発電方法をも提供する。
 本発明にかかる地熱発電方法は、下降領域及び上昇させる上昇領域を有し、地熱帯に開口を有さない二重管を有する媒体移送管と、前記媒体移送管に前記媒体を送出する高圧循環ポンプと、地熱の熱によって加熱された前記媒体から蒸気を取り出す蒸気発生器と、
 前記媒体移送管の周囲に形成されている地熱水を受領する生産井と、熱交換の完了した前記地熱水の少なくとも一部を還元する還元井と、少なくとも1つの気水分離器を含んでなり、前記地熱水から蒸気を取り出す気水分離器と、
 前記蒸気によって発電する発電機と、
 を備えており、
 媒体移送管の周囲に設けられた生産井の地熱水から取水して、前記地熱水から蒸気を取り出し、
 媒体移送管から媒体を取水して、前記媒体から蒸気を取り出し、
 地熱水の蒸気及び媒体の蒸気によりタービンで発電することを特徴とする。
 また、本発明にかかる地熱発電方法は、媒体を下降させる下降領域及び上昇させる上昇領域を有し、地熱帯に開口を有さない二重管を有する媒体移送管と、前記媒体移送管に前記媒体を送出する高圧循環ポンプと、地熱の熱によって加熱された前記媒体から蒸気を取り出す蒸気発生器と、地熱水を受領する生産井と、熱交換の完了した前記地熱水の少なくとも一部を還元する還元井と、少なくとも1つの気水分離器を含んでなり、前記地熱水から蒸気を取り出す気水分離器と、
 前記蒸気によって発電する発電機と、
 を備えており、
 前記媒体の少なくとも一部は、前記気水分離器で分離された地熱水によって熱交換され加熱された状態で前記高圧循環ポンプによって前記媒体移送管に送出されることを特徴とする。
 さらに、本発明にかかる地熱発電方法は、媒体を下降させる下降領域及び上昇させる上昇領域を有し、地熱帯に開口を有さない二重管を有する媒体移送管と、前記媒体移送管に前記媒体を送出する高圧循環ポンプと、地熱の熱によって加熱された前記媒体から蒸気を取り出して発電する媒体用発電設備と、を有する第1地熱発電設備と、
 地熱水を受領する生産井と、熱交換の完了した前記地熱水の少なくとも一部を還元する還元井と、少なくとも1つの気水分離器を含んでなり、前記地熱水から蒸気を取り出して発電する地熱水用発電設備と、を有する第2地熱発電設備と、
 を備えており、
 前記媒体の少なくとも一部は、前記気水分離器で分離された地熱水によって熱交換され加熱された状態で前記高圧循環ポンプによって前記媒体移送管に送出されることを特徴とする。
 さらに、本発明にかかる地熱発電方法は、
 (1)媒体を下降させる下降領域及び上昇させる上昇領域を有し、地熱帯に開口を有さない二重管を有する媒体移送管から加熱された媒体を取水する工程、
 (2)取水した前記媒体から媒体の蒸気と媒体の液体に分離する工程、
 (3)分離された蒸気を使用して発電する工程、
 (4)生産井から地熱水を取水する工程、
 (5)取水した地熱水を地熱水の蒸気と地熱水の液体に分離する工程、
 (6)媒体の液体を地熱水の液体によって加熱する工程、
 (7)加熱された媒体の液体を前記媒体移送管に送出する工程とを含むことを特徴とする。
 さらに本発明は、第2の目的を達成するために、以下の手段を採った。
 地熱帯の熱によって熱せられた熱水を熱源として発電する地熱発電装置であって、外側に地熱帯へ前記熱水を移送する媒体注入管と、その媒体注入管の内側に前記地熱帯の熱によって熱せられた前記熱水を取り出す媒体取出管とを備えた媒体移送管と、低温である地熱帯の領域では熱伝導率の低い断熱構造を設けた前記媒体取出管と、高温である地熱帯の領域では熱伝導率の高い吸熱構造を設けた前記媒体注入管と、を設け、地熱帯により熱を吸収した高温の前記熱水を、蒸発曲線よりも高い圧力で移送されるように地上加圧ポンプによって圧力を制御し、蒸気を発生しないように液体の状態で地上にある蒸気発生器まで移送し、前記蒸気発生器にて減圧し沸騰させることで蒸気を発生させ、その蒸気によって発電を行う加圧水発電装置と、地上へ移送された前記熱水のうち蒸気とならなかった熱水を熱源として使用し、前記熱水よりも沸点の低い作動媒体を蒸気化して発電を行うバイナリー発電装置と、前記加圧水発電装置に設けられる蒸気タービンへ送られる蒸気を加熱して過熱蒸気を生成し、前記バイナリー発電装置によって得られた電力によって駆動する加熱部と、を備えたことを特徴とする。
 以上の構成によって、地中から得られた熱を、水を媒体として熱変換するため、スケールによる伝熱阻害あるいは熱交換性能の低下や管の詰まり等の装置への影響を考える必要もなく、またスケール除去等による汚染や地中からの有害物質による障害も考えることはない。
熱水および蒸気の凝縮水が混入すると、タービンの熱効率は、乾き蒸気で作動する場合に比べて、効率が著しく低下する、いわゆる湿り損失が生じることが知られている。また、蒸気中の水滴が高速で回転するタービン動翼あるいは配管内壁に衝突することにより、エロージョンを受け、さらなる効率の低下のみならず機器損傷を引き起こす原因となる。本発明では、地上の蒸気発生器(フラッシャー)にて蒸気を生成するため、地中で蒸気を生成する場合に比較して熱効率よく地上に熱水を移送した後、減圧沸騰させ蒸気を発生させるため、エロージョンや効率低下という問題を解決することができる。
 また、蒸気とならなかった熱水を再利用して過熱蒸気を生成する加熱部を設けたことによって余剰の熱水を効率よく利用することができ、電力量をさらに増加させることが可能である。
 地熱帯の熱によって熱せられた熱水を熱源として発電する地熱発電装置であって、外側に地熱帯へ前記熱水を移送する媒体注入管と、その媒体注入管の内側に前記地熱帯の熱によって熱せられた前記熱水を取り出す媒体取出管とを備えた媒体移送管と、低温である地熱帯の領域では熱伝導率の低い断熱構造を設けた前記媒体取出管と、高温である地熱帯の領域では熱伝導率の高い吸熱構造を設けた前記媒体注入管と、を設け、蒸発曲線よりも高い圧力で移送されるように地上加圧ポンプによって圧力を制御し、蒸気を発生しないように液体の状態で地上にある第1蒸気発生器まで移送し、前記第1蒸気発生器にて減圧し沸騰させることで高圧の第1蒸気を発生させ、その第1蒸気によって発電を行うと共に、前記熱水のうち蒸気とならなかった熱水を再度、第2蒸気発生器にて減圧し沸騰させることで低圧の第2蒸気を発生させ、その第2蒸気によって発電を行う加圧水発電装置と、地上へ移送された前記熱水のうち第2蒸気発生器で蒸気とならなかった熱水を熱源として使用し、前記熱水よりも沸点の低い作動媒体を蒸気化して発電を行うバイナリー発電装置と、前記加圧水発電装置に設けられる蒸気タービンへ送られる蒸気を加熱して過熱蒸気を生成し、前記バイナリー発電装置によって得られた電力によって駆動する加熱部と、を備えたことを特徴とする。
 以上の構成によって、地中から得られた熱を、水を媒体として熱変換するため、スケールによる伝熱阻害あるいは熱交換性能の低下や管の詰まり等の装置への影響を考える必要もなく、またスケール除去等による汚染や地中からの有害物質による障害も考えることはない。
熱水および蒸気の凝縮水が混入すると、タービンの熱効率は、乾き蒸気で作動する場合に比べて、効率が著しく低下する、いわゆる湿り損失が生じることが知られている。また、蒸気中の水滴が高速で回転するタービン動翼あるいは配管内壁に衝突することにより、エロージョンを受け、さらなる効率の低下のみならず機器損傷を引き起こす原因となる。本発明では、地上の蒸気発生器(フラッシャー)にて蒸気を生成するため、地中で蒸気を生成する場合に比較して熱効率よく地上に熱水を移送した後、減圧し沸騰させ蒸気を発生させるため、エロージョンや効率低下という問題を解決することができる。
 また、蒸気とならなかった熱水を再利用して過熱蒸気を生成する加熱部を設けたことによって余剰の熱水を効率よく利用することができ、電力量をさら増加させることが可能である。
 さらに、熱水よりも沸点の低い作動媒体によって発電可能であるため、その作動媒体の沸点まで、地下から移送された高圧の熱水は蒸気とならなかった熱水を減圧することで複数回の蒸気を発生させることが可能であり、発電量を増やすことが可能である。
蒸気発生器は、減圧し沸騰させると共に微小気泡を含んだ蒸気を発生させる蒸気発生ノズルを備えたことを特徴とする。
 以上の構成によって、蒸気量を増やすことが可能である。蒸気量を増やすことによって、水を移送する速度を落としても充分な蒸気量を確保できるため、地熱帯Sの熱吸収領域での水の滞在時間を多くとることができ、水が熱を吸収する時間が取れ高温の熱水とすることができる。
 また、地熱帯の熱によって熱せられた熱水を熱源として発電する地熱発電装置であって、外側に地熱帯へ前記熱水を移送する媒体注入管と、その媒体注入管の内側に前記地熱帯の熱によって熱せられた前記熱水を取り出す媒体取出管とを備えた媒体移送管と、低温である地熱帯の領域では熱伝導率の低い断熱構造を設けた前記媒体取出管と、高温である地熱帯の領域では熱伝導率の高い吸熱構造を設けた前記媒体注入管と、を設け、地熱帯により熱を吸収した高温の前記熱水を、蒸発曲線よりも高い圧力で移送されるように地上加圧ポンプによって圧力を制御し、蒸気を発生しないように液体の状態で地上にある蒸気発生器まで移送し、前記蒸気発生器にて減圧し沸騰させることで蒸気を発生させ、その蒸気によって発電を行う加圧水発電装置と、地上へ移送された前記熱水のうち蒸気とならなかった熱水を熱源として使用し、前記熱水よりも沸点の低い作動媒体を蒸気化して発電を行うバイナリー発電装置と、を備えたことを特徴とする。
以上の構成によって、地中から得られた熱を、水を媒体として熱変換するため、スケールによる熱の温度低下や管の詰まり等の装置への影響を考える必要もなく、またスケール除去等による汚染や地中からの有害物質による障害も考えることはない。
熱水および蒸気の凝縮水が混入すると、タービンの熱効率は、乾き蒸気で作動する場合に比べて、効率が著しく低下する、いわゆる湿り損失が生じることが知られている。また、蒸気中の水滴が高速で回転するタービン動翼あるいは配管内壁に衝突することにより、エロージョンを受け、さらなる効率の低下のみならず機器損傷を引き起こす原因となる。本発明では、地上の蒸気発生器(フラッシャー)にて蒸気を生成するため、地中で蒸気を生成する場合に比較して熱効率よく地上に熱水を移送した後、減圧沸騰させ蒸気を発生させるため、エロージョンや効率低下という問題を解決することができる。
また、蒸気とならなかった熱水を再利用することで発電量を増量させることが可能である。
 地熱帯の熱によって熱せられた熱水を熱源として発電する地熱発電装置であって、外側に地熱帯へ前記熱水を移送する媒体注入管と、その媒体注入管の内側に前記地熱帯の熱によって熱せられた前記熱水を取り出す媒体取出管とを備えた媒体移送管と、低温である地熱帯の領域では熱伝導率の低い断熱構造を設けた前記媒体取出管と、高温である地熱帯の領域では熱伝導率の高い吸熱構造を設けた前記媒体注入管と、を設け、地熱帯により熱を吸収した高温の前記熱水を蒸発曲線よりも高い圧力で移送されるように地上加圧ポンプによって圧力を制御し、蒸気を発生しないように液体の状態で地上にある第1蒸気発生器まで移送し、前記第1蒸気発生器にて減圧し沸騰させることで高圧の第1蒸気を発生させ、その第1蒸気によって発電を行うと共に、前記熱水のうち蒸気とならなかった熱水を再度、第2蒸気発生器にて減圧し沸騰させることで低圧の第2蒸気を発生させ、その第2蒸気によって発電を行う加圧水発電装置と、地上へ移送された前記熱水のうち第2蒸気発生器で蒸気とならなかった熱水を熱源として使用し、前記熱水よりも沸点の低い作動媒体を蒸気化して発電を行うバイナリー発電装置と、を備えたことを特徴とする。
以上の構成によって、地中から得られた熱を、水を媒体として熱変換するため、スケールによる伝熱阻害あるいは熱交換性能の低下や管の詰まり等の装置への影響を考える必要もなく、またスケール除去等による汚染や地中からの有害物質による障害も考えることはない。
熱水および蒸気の凝縮水が混入すると、タービンの熱効率は、乾き蒸気で作動する場合に比べて、効率が著しく低下する、いわゆる湿り損失が生じることが知られている。また、蒸気中の水滴が高速で回転するタービン動翼あるいは配管内壁に衝突することにより、エロージョンを受け、さらなる効率の低下のみならず機器損傷を引き起こす原因となる。本発明では、地上の蒸気発生器(フラッシャー)にて蒸気を生成するため、地中で蒸気を生成する場合に比較して熱効率よく地上に熱水を移送した後、減圧し沸騰させ蒸気を発生させるため、エロージョンや効率低下という問題を解決することができる。
また、蒸気とならなかった熱水を、再利用することで発電量を増量させることが可能である。
さらに、熱水よりも沸点の低い作動媒体によって発電可能であるため、その作動媒体の沸点まで、地下から移送された高圧の熱水は、減圧することで複数回の蒸気を発生させることが可能であり、発電量を増やすことが可能である。
蒸気発生器は、減圧し沸騰させると共に微小気泡を含んだ蒸気を発生させる蒸気発生ノズルを備えたことを特徴とする。
以上の構成によって、蒸気量を増やすことが可能である。蒸気量を増やすことによって、水を移送する速度を落としても充分な蒸気量を確保できるため、地熱帯Sの熱吸収領域での水の滞在時間を多くとることができ、水が熱を吸収する時間を確保することができることで高温の熱水とすることができる。
 本発明は、上述の第3の目的を達成するために、以下の手段を採った。
 加圧ポンプによって液体を地熱帯から蒸気発生器まで移送する経路を備え、前記地熱帯まで移送され前記地熱帯の熱によって加熱された前記液体を蒸気化することによって発電する地熱発電装置であって、前記地熱発電装置は、蒸気化するまでの間に微小気泡を生成する微小気泡生成装置を備え、前記微小気泡を溶存させた前記液体を蒸気化して発電することを特徴とする。
 このように構成することによって、微小気泡を含んだ液体(熱水)は、通常の水よりも付加的な発泡核数及び気液界面(蒸発界面)の表面積が増大する。これにより、蒸気発生器で液体(熱水)が蒸気となる場合に、蒸気量を増すことができるので発電量を向上させることが可能となる。
 前記加圧ポンプ(加圧給水ポンプ)の圧力によって前記微小気泡を生成する前記微小気泡生成装置を備えたことを特徴とする。
 このように構成することによって、微小気泡を含んだ液体(熱水)は、通常の水よりも付加的な発泡核数及び気液界面(蒸発界面)の表面積が増大している。これにより、蒸気発生器で液体(熱水)が蒸気となる場合に、蒸気量を増すことができるので発電量を向上させることが可能となる。また、微小気泡を乱流境界層中に注入することにより、壁面の摩擦抵抗を低減することも可能である。このため、経路の抵抗が少なくなり圧力損失の低減を行うことが可能である。そして、加圧ポンプの負担を少なくすることができる。
 蒸気化した後に残った液体又は使用された蒸気を再び液体に戻した後の液体を貯留する貯留タンクを備え、前記貯留タンクに前記微小気泡生成装置を備えたことを特徴とする。このように構成することによって、微小気泡を含んだ液体(熱水)は、通常の水よりも付加的な発泡核数及び気液界面(蒸発界面)の表面積が増大する。これにより、蒸気発生器で液体(熱水)が蒸気となる場合に、蒸気量を増すことができるので発電量を向上させることが可能となる。また、微小気泡を乱流境界層中に注入することにより,壁面の摩擦抵抗を低減することも可能である。このため、経路の抵抗が少なくなり圧力損失の低減を行うことが可能である。そして、加圧ポンプの負担を少なくすることができる。
 熱せられた前記液体を減圧沸騰させることで蒸気化する前記蒸気発生器は、前記微小気泡生成装置を備えたことを特徴とする。
 このように構成することによって、微小気泡を含んだ液体(熱水)は、通常の水よりも付加的な発泡核数及び気液界面(蒸発界面)の表面積が増大する。これにより、蒸気発生器で液体(熱水)が蒸気となる場合に、さらに蒸気量を増すことができるので発電量を向上させることが可能となる。
 前記蒸気発生器は、蒸気を発生するノズルに前記微小気泡生成装置を備えたことを特徴とする。
 このように構成することによって、微小気泡を含んだ液体(熱水)は、通常の水よりも付加的な発泡核数及び気液界面(蒸発界面)の表面積が増大する。これにより、蒸気発生器で液体(熱水)が蒸気となる場合に、蒸気量を増すことができるので発電量を向上させることが可能となる。
 地熱帯に前記液体を移送する前記加圧ポンプは、前記微小気泡生成装置を備えたことを特徴とする。
 このように構成することによって、微小気泡を乱流境界層中に注入することにより,壁面の摩擦抵抗を低減することが可能である。このため、経路の抵抗が少なくなり圧力損失の低減を行うことが可能である。そして、加圧ポンプ等の負担を少なくすることができる。
 使用された蒸気を再び液体に戻した後の前記液体を、前記貯留タンクに移送する循環ポンプの圧力によって前記微小気泡を生成する前記微小気泡生成装置を備えたことを特徴とする。
 このように構成することによって、微小気泡を乱流境界層中に注入することにより,壁面の摩擦抵抗を低減することが可能である。このため、経路の抵抗が少なくなり圧力損失の低減を行うことが可能である。そして、加圧ポンプ等の負担を少なくすることができる。 
 前記微小気泡生成装置は、地熱帯へ移送する経路の前に設けられていることを特徴とする。
 このように構成することによって、微小気泡を含んだ液体(熱水)は、通常の水よりも付加的な発泡核数及び気液界面(蒸発界面)の表面積が増大する。これにより、蒸気発生器で液体(熱水)が蒸気となる場合に、蒸気量を増すことができるので発電量を向上させることが可能となる。また、微小気泡を乱流境界層中に注入することにより,壁面の摩擦抵抗を低減することが可能である。このため、経路の抵抗が少なくなり圧力損失の低減を行うことが可能である。そして、加圧ポンプ等の負担を少なくすることができる。
 前記微小気泡生成装置は、地熱帯へ移送する加圧水注入管の上部に設けられ、前記加圧水注入管の内周に沿って設けられていることを特徴とする。
 このように構成することによって、前記加圧水注入管の内周に沿って前記液体が遠心力を伴って抵抗なく導入され深部に移送されるので、圧力損失なく移送され加圧ポンプ等の負担を少なくすることができる。
 加圧ポンプによって液体を地熱帯まで移送し、前記地熱帯の熱によって熱せられた前記液体を蒸気発生器まで移送し、蒸気化するまでの間に微小気泡を生成し、前記微小気泡を溶存させた前記液体を前記蒸気発生器で蒸気化して発電する方法を特徴とする。
 このような方法を使用することによって、微小気泡を含んだ液体(熱水)は、通常の水よりも付加的な発泡核数及び気液界面(蒸発界面)の表面積が増大する。これにより、蒸気発生器で液体(熱水)が蒸気となる場合に、蒸気量を増すことができるので発電量を向上させることが可能となる。
 本発明は、第4の目的を達成するために、以下の手段を採った。
 地熱帯の熱によって熱せられた媒体を蒸気化することによって発電する地熱発電装置に使用され、前記媒体を移送する媒体移送管であって、前記媒体移送管は、外側に地熱帯へ前記媒体を移送する媒体注入管と、その媒体注入管の内側に前記地熱帯の熱によって熱せられた前記媒体を取り出す媒体取出管とを備え、前記媒体移送管は、前記媒体取出管の外周に前記媒体の流れる方向を制御する整流部を設け、前記整流部は、環状に形成された胴体部に前記媒体の流れる方向を制御する複数の板状の整流片を設けたことを特徴とする。
 このように構成することによって、旋回流が発生し、遠心力によって外側の流量が増えるので、外管(媒体注入管)を下降する際に、外管断面においてあまり熱交換をしたくない内管(媒体取出管)側には流量を少なくし、熱交換(受熱)したい外側(地中側)に流量が多く流れるようにすることができる。また、外管と内管との関係においても、旋回流を発生させることで、遠心力によって外管断面おいて、熱回収が必要な外管側の流量のほうが熱損失の生ずる内管側の流量より多くなって下降する。そのため旋回流を発生させない場合と比較して、媒体に回収した地中熱をより少ない損失で輸送することができ、地中エネルギー回収効率を上昇させることができる。また、前記媒体注入管の内周に沿って前記媒体が遠心力を伴って抵抗なく導入され深部に移送されるので、圧力損失なく移送され加圧ポンプ等の負担を少なくすることができる。また、地熱帯で熱せられた熱水の逆流を防いでいる。さらに、流路全体に螺旋状の経路を設ける場合に比較して、流路の一部に板状の整流片を複数設置することで軽量化しながら媒体を流入させる方向を制御することが可能である。また製造作業や設置作業が簡単であり、製造コストが安価となる。
 前記整流部は、前記媒体取出管の中心軸との垂線に対して45度から75度の間の傾斜を形成した前記整流片を備えたことを特徴とする。
 このように構成することによって、より効率良く、旋回流が発生し、遠心力によって外側の流量が増えるので、外管を下降する際に、外管断面においてあまり熱交換をしたくない内管側には流量を少なくし、熱交換(受熱)したい外側(地中側)に流量が多く流れるようにすることができる。また、外管と内管との関係においても、旋回流を発生させることで、遠心力によって外管断面おいて、熱回収が必要な外管側の流量のほうが熱損失の生ずる内管側の流量より多くなって下降する。そのため旋回流を発生させない場合と比較して、媒体に回収した地中熱をより少ない損失で輸送することができ、地中エネルギー回収効率を上昇させることができる。前記媒体注入管の内周に沿って前記媒体が遠心力を伴って抵抗なく導入され深部に移送されるので、圧力損失なく移送され加圧ポンプ等の負担を少なくすることができる。また、地熱帯で熱せられた熱水の逆流を複数箇所で防いでいる。さらに、整流片の傾斜に沿って螺旋状に媒体を流入させることが可能である。
 前記整流部は、前記媒体取出管の中心軸との垂線に対して60度の傾斜を形成した前記整流片を備えたことを特徴とする。
このように構成することによって、さらに効率良く、旋回流が発生し、遠心力によって外側の流量が増えるので、外管を下降する際に、外管断面においてあまり熱交換をしたくない内管側には流量を少なくし、熱交換(受熱)したい外側(地中側)に流量が多く流れるようにすることができる。また、外管と内管との関係においても、旋回流を発生させることで、遠心力によって外管断面おいて、熱回収が必要な外管側の流量のほうが熱損失の生ずる内管側の流量より多くなって下降する。そのため旋回流を発生させない場合と比較して、媒体に回収した地中熱をより少ない損失で輸送することができ、地中エネルギー回収効率を上昇させることができる。前記媒体注入管の内周に沿って前記媒体が遠心力を伴って抵抗なく導入され深部に移送されるので、圧力損失なく移送され加圧ポンプ等の負担を少なくすることができる。また、地熱帯で熱せられた熱水の逆流を複数箇所で防いでいる。さらに、整流片の傾斜に沿って螺旋状に媒体を流入させることが可能である。
 環状のリング部を上下に配置し、そのリング部同士の間は空間を設け、前記リング部同士を前記整流片で接続固定した前記胴体部を備えたことを特徴とする。
 このように構成することによっても、前述した効果と同様の効果を得ることができる。また、軽量化が可能であると同時に前記媒体注入管の内周に沿って前記媒体が遠心力を伴って抵抗なく導入され深部に移送されるので、圧力損失なく移送され加圧ポンプ等の負担を少なくすることができる。また、地熱帯で熱せられた熱水の逆流を防いでいる。
 前記媒体取出管の外周に沿って棒を螺旋状に巻き付け形成した前記整流部を備えたことを特徴とする。
 このように構成することによって、軽量化が可能であると同時に前記媒体注入管の内周に沿って前記媒体が遠心力を伴って抵抗なく導入され深部に移送されるので、圧力損失なく移送され加圧ポンプ等の負担を少なくすることができる。また、整流部の傾斜に沿って螺旋状に媒体を流入させることが可能である。
 前記媒体取出管の外径よりも大きな内径を設け、上方から前記媒体注入管に挿入可能に形成した前記胴体部を設けたことを特徴とする。このように構成することによって、上方から媒体取出管に整流部を挿入するため施工が容易である。
 前記媒体取出管同士を繋ぐ接続管を設け、前記胴体部は、前記接続管の外径よりも小さく形成した前記内径を備えたことを特徴とする。
 このように構成することによって、固定具等を必要とせずに上方から媒体取出管に整流部を挿入固定するため施工が容易である。
 前記胴体部は、前記媒体取出管同士を接続する螺合溝を備えたことを特徴とする。
このように構成することによって、固定具等を必要とせずに上方から媒体取出管に整流部を固定するため施工が容易である。また、軽量化が図られる。
 地熱帯の熱によって熱せられた媒体を蒸気化することによって発電する地熱発電装置に使用され、前記媒体を移送する媒体移送管であって、前記媒体移送管は、外側に前記地熱帯へ前記媒体を移送する媒体注入管と、その媒体注入管の内側に前記地熱帯の熱によって熱せられた前記媒体を取り出す媒体取出管とを備え、前記媒体移送管は、前記媒体取出管の外周に棒を螺旋状に巻き付け形成し前記媒体の流れる方向を制御する整流部を備えたことを特徴とする。
このように構成することによって、旋回流が発生し、遠心力によって外側の流量が増えるので、外管(媒体注入管)を下降する際に、外管断面においてあまり熱交換をしたくない内管(媒体取出管)側には流量を少なくし、熱交換(受熱)したい外側(地中側)に流量が多く流れるようにすることができる。また、外管と内管との関係においても、旋回流を発生させることで、遠心力によって外管断面おいて、熱回収が必要な外管側の流量のほうが熱損失の生ずる内管側の流量より多くなって下降する。そのため旋回流を発生させない場合と比較して、媒体に回収した地中熱をより少ない損失で輸送することができ、地中エネルギー回収効率を上昇させることができる。また、前記媒体取出管の外周に沿って前記媒体が遠心力を伴って抵抗なく導入され深部に移送されるので、圧力損失なく移送され加圧ポンプ等の負担を少なくすることができる。また、地熱帯で熱せられた熱水の逆流を防いでいる。さらに、流路全体に螺旋状の経路を設ける場合に比較して、軽量化しながら媒体を流入させる方向を制御することが可能である。
 地熱帯の熱によって熱せられた媒体を蒸気化することによって発電する地熱発電装置に使用され、前記媒体を移送する媒体移送管であって、
 前記媒体移送管は、外側に前記地熱帯へ前記媒体を移送する媒体注入管と、その媒体注入管の内側に前記地熱帯の熱によって熱せられた前記媒体を取り出す媒体取出管とを備え、前記媒体移送管は、前記媒体注入管の内周に溝を螺旋状に形成し前記媒体の流れる方向を制御する整流部を備えた整流部を備えたことを特徴とする。
このように構成することによって、旋回流が発生し、遠心力によって外側の流量が増えるので、外管(媒体注入管)を下降する際に、外管断面においてあまり熱交換をしたくない内管(媒体取出管)側には流量を少なくし、熱交換(受熱)したい外側(地中側)に流量が多く流れるようにすることができる。また、外管と内管との関係においても、旋回流を発生させることで、遠心力によって外管断面おいて、熱回収が必要な外管側の流量のほうが熱損失の生ずる内管側の流量より多くなって下降する。そのため旋回流を発生させない場合と比較して、媒体に回収した地中熱をより少ない損失で輸送することができ、地中エネルギー回収効率を上昇させることができる。また、前記媒体注入管の内周に沿って前記媒体が遠心力を伴って抵抗なく導入され深部に移送されるので、圧力損失なく移送され加圧ポンプ等の負担を少なくすることができる。また、地熱帯で熱せられた熱水の逆流を防いでいる。さらに、流路全体に螺旋状の経路を設ける場合に比較して、軽量化しながら媒体を流入させる方向を制御することが可能である。
 前記媒体注入管の外周に沿って棒を螺旋状に巻き付け形成し前記媒体の流れる方向を制御する整流部を備えたことを特徴とする。
このように構成することによって、上記の効果に加え流路全体に螺旋状の経路を設ける場合に比較して、軽量化しながら媒体を流入させる方向を制御することが可能である。
 前記溝と前記棒とは対面して螺旋状を形成することを特徴とする。このように構成することによって、旋回流が発生し、遠心力によって外側の流量が増えるので、外管(媒体注入管)を下降する際に、外管断面においてあまり熱交換をしたくない内管(媒体取出管)側には流量を少なくし、熱交換(受熱)したい外側(地中側)に流量が多く流れるようにすることができる。また、外管と内管との関係においても、旋回流を発生させることで、遠心力によって外管断面おいて、熱回収が必要な外管側の流量のほうが熱損失の生ずる内管側の流量より多くなって下降する。そのため旋回流を発生させない場合と比較して、媒体に回収した地中熱をより少ない損失で輸送することができ、地中エネルギー回収効率を上昇させることができる。さらに前記媒体注入管の内周や前記媒体取出管の内周に沿って前記媒体が遠心力を伴って抵抗なく導入され深部に移送されるので、圧力損失なく移送され加圧ポンプ等の負担を少なくすることができる。また、地熱帯で熱せられた熱水の逆流を防いでいる。さらに、流路全体に螺旋状の経路を設ける場合に比較して、軽量化しながら媒体を流入させる方向を制御することが可能である。
 地熱帯の熱によって熱せられた媒体を蒸気化することによって発電する地熱発電装置に使用され、前記媒体を移送する媒体移送管であって、前記媒体移送管は、外側に前記地熱帯へ前記媒体を移送する媒体注入管と、その媒体注入管の内側に前記地熱帯の熱によって熱せられた前記媒体を取り出す媒体取出管とを備え、前記媒体移送管は、前記媒体注入管の内周に棒を螺旋状に巻き付け形成し前記媒体の流れる方向を制御する整流部を備えたことを特徴とする媒体移送管。
 このように構成することによって、旋回流が発生し、遠心力によって外側の流量が増えるので、外管(媒体注入管)を下降する際に、外管断面においてあまり熱交換をしたくない内管(媒体取出管)側には流量を少なくし、熱交換(受熱)したい外側(地中側)に流量が多く流れるようにすることができる。また、外管と内管との関係においても、旋回流を発生させることで、遠心力によって外管断面おいて、熱回収が必要な外管側の流量のほうが熱損失の生ずる内管側の流量より多くなって下降する。そのため旋回流を発生させない場合と比較して、媒体に回収した地中熱をより少ない損失で輸送することができ、地中エネルギー回収効率を上昇させることができる。また、前記媒体注入管の内周に沿って前記媒体が遠心力を伴って抵抗なく導入され深部に移送されるので、圧力損失なく移送され加圧ポンプ等の負担を少なくすることができる。また、地熱帯で熱せられた熱水の逆流を防いでいる。さらに、流路全体に螺旋状の経路を設ける場合に比較して、軽量化しながら媒体を流入させる方向を制御することが可能である。
 前記棒は、先端に接続された環状の接続環が前記媒体注入管同士の接続部に固定されることを特徴とする。このように構成することによって、環状の接続リングが強固に固定されると共に、中に前記媒体取出管が容易に挿入可能となる。
 さらに、本発明は、地熱帯の熱によって熱せられた媒体を蒸気化することによって発電する地熱発電装置に使用され、媒体を移送する媒体移送管であって、
 前記媒体移送管は、外側に地熱帯へ前記媒体を移送する媒体注入管と、その媒体注入管の内側に前記地熱帯の熱によって熱せられた前記媒体を取り出す媒体取出管とを備え、
 前記媒体注入管の下端部に、両側端部開口が媒体注入管内に配置された前記媒体移送管より細い管からなる伝熱管が設けられていることを特徴とする媒体移送管を提供する。
 このように構成することで、より細い管に媒体を通過させることができるので、地熱帯の熱を効率よく媒体に伝熱させることができる。
 前記伝熱管は、一方端部が前記媒体取出管と媒体注入管の間に配置され、他方端部が前記媒体取出管の下方側に配置されていることを特徴とする。
 このように構成することで、一方端部近傍は、媒体が下方方向に流れているので正圧がかかり伝熱管内に媒体が流れやすくなり、他方端部近傍は、媒体が上昇しているので、開口付近が負圧となり媒体が取り出される方向に力がかかるため、効率よく媒体を伝熱管内に流すことができる
 前記伝熱管の他方端部は、前記媒体取出管の中まで延設されていることを特徴とする。このような構成を採用することで、さらに効率よく媒体を伝熱管内に流すことができる。
 前記伝熱管の一部は、前記媒体注入管の外周より外側に配置されていることを特徴とする。このように構成することでより伝熱管を長く設けることができ、伝熱効率を向上させることができる。
 前記伝熱管の外周側に伝熱管を保護する保護壁を備えていることを特徴とする。このような構成を採用することにより、伝熱管を保護することができ、破損する可能性を低減することができる。
 さらに、本発明は、媒体移送管設置方法を提供する。本発明にかかる媒体移送管設置方法は、地熱帯の熱によって熱せられた媒体を蒸気化することによって発電する地熱発電装置に使用され、前記媒体を移送する媒体移送管を少なくとも地熱帯に存在する乾燥破砕帯又は液体で充填していない破砕帯に設置する媒体移送管設置方法において、
 前記乾燥破砕帯又は液体で充填していない前記破砕帯に水又は泥水等の液体を流入し、前記媒体移送管の設置領域周辺に破砕帯の岩石を含む貯水領域を形成し、
 前記貯水領域に前記媒体移送管を設置してなることを特徴とする。
 このように構成することで、地熱セメントCの下方側の全部又は一部において、媒体移送管1110は液体に接することになるため、熱効率を高める。また、水又は泥水等の液体を破砕帯Fに流入することで破砕帯Fの地耐圧を向上させる効果を有する。
 前記破砕帯に到達又は破砕帯に到達する手前から水掘削又は泥水掘削による掘削を行なうことによって、掘削とともに破砕帯に貯水領域を形成することを特徴とする。このような方法を採用することで、改めて液体を破砕帯に流入する手間を省くことができる。
 ダイナマイト等の爆発物、水圧破砕その他の人工的破砕によって地熱帯の坑井に人工破砕帯を形成し、
 前記人工破砕帯に水又は泥水等の液体を流入し、前記媒体移送管の注入領域周辺に破砕帯の岩石を含む貯水領域を形成してなることを特徴とする。
 このような方法を採用することで、破砕帯が存在しない部位にも貯留領域も設けることができる。
 また、前記乾燥破砕帯、液体で充填していない前記破砕帯又は人工破砕帯は、温度勾配のある地熱帯に形成されることを特徴とする。かかる構成を採用することによって、貯水領域を対流させ、熱回収の効率を向上させることができる。
図1は、第1実施形態にかかる地熱発電システム100を示す模式図である。 図2は、第2実施形態にかかる地熱発電システム100を示す模式図である。 図3は、第3実施形態にかかる地熱発電システム100を示す模式図である。 図4は、第4実施形態にかかる地熱発電システム100を示す模式図である。 図5は、第5実施形態にかかる地熱発電システム100を示す模式図である。 図6は、比較例にかかる地熱発電システム100を示す模式図である。 図7は、実施例1及び実施例2のデータを示す表である。 図8は、第6実施形態にかかる本発明の地熱発電装置1000の構成を示す概要図である。 図9は、第6実施形態にかかる本発明の加熱部130の概要図である。 図10は、第6実施形態にかかる本発明の他の加熱部130の例を示す概要図である。 図11は、従来の地熱発電装置1000の媒体移送管110の深度と熱水の温度分布の  関係図である。 図12は、水の状態変化の概要図である。 図13は、水の状態変化による対流熱伝達係数の関係図である。 図14は、第6実施形態にかかる本発明の地熱発電装置1000の媒体移送管110の深度と熱水の温度分布の関係図である。 図15は、第7実施形態にかかる本発明の地熱発電装置1100の構成を示す概要図である。 図16は、第8実施形態にかかる本発明の地熱発電装置1200の構成を示す概要図である。 図17、第9実施形態にかかる本発明の地熱発電装置1300の構成を示す概要図である。 図18は、第10実施形態にかかる本発明の地熱発電装置1400の構成を示す概要図である。 図19は、第11実施形態にかかる本発明の地熱発電装置1500の構成を示す概要図である。 図20は、第12実施形態にかかる本発明の地熱発電装置1600の構成を示す概要図である。 図21は、微小気泡213を表す作用図である。 図22(A)は、第12実施形態及び第13実施形態にかかる微小気泡生成ノズル221aの構成を表す概要図である。図22(B)は、第14実施形態及び第15実施形態にかかる微小気泡生成ノズル221bの構成を表す概要図である。 図23は、第13実施形態にかかる本発明の地熱発電装置1700の構成を示す概要図である。 図24は、第14実施形態にかかる本発明の地熱発電装置1800の構成を示す概要図である。 図25は、第14実施形態にかかる熱交換器250の上方部分における液体取出管252と微小気泡生成ノズル221bを示す斜視図である。 図26は、第15実施形態にかかる本発明の地熱発電装置1900の構成を示す概要図である。 図27は、第16実施形態にかかる本発明の地熱発電装置1の構成を示す概要図である。 図28は、第16実施形態にかかる本発明の媒体移送管10の媒体注入管11の接続部分を中心に拡大した斜視図である。 図29は、第16実施形態にかかる本発明の媒体移送管10の軸上の断面図である。 図30は、第16実施形態にかかる本発明の媒体移送管10の媒体注入管11を接続する接続管12の斜視図である。 図31は、第16実施形態にかかる本発明の媒体移送管10の媒体注入管11の図2に示すA-A部分で切断した断面の一部分を示す拡大断面図である。 図32は、第16実施形態にかかる本発明の媒体移送管10の媒体取出管21の接続部分を中心に拡大した斜視図である。 図33は、第16実施形態にかかる本発明の媒体移送管10の媒体取出管21の接続部分を中心に拡大した正面図である。 図34は、第16実施形態にかかる本発明の媒体移送管10の媒体取出管21の平面の中心を垂直に切断した断面図である。 図35は、第16実施形態にかかる本発明の媒体移送管10の整流部40の斜視図である。 図36は、第17実施形態にかかる本発明の媒体移送管110の媒体取出管121の接続部分を中心に拡大した斜視図である。 図37は、第17実施形態にかかる本発明の媒体移送管110の軸上の断面図である。 図38は、第17実施形態にかかる本発明の媒体移送管110の媒体取出管121の接続部分を中心に拡大した正面図である。 図39は、第17実施形態にかかる本発明の媒体移送管110の整流部50の斜視図である。 図40は、第18実施形態にかかる本発明の媒体移送管210の整流部250の斜視図である。 図41は、第18実施形態にかかる本発明の媒体移送管210の整流部250の一部分の拡大図である。 図42は、第19実施形態にかかる本発明の媒体移送管310の軸上の断面図である。 図43は、第19実施形態にかかる本発明の媒体移送管310の媒体注入管311を斜め上方から見た斜視図である。 図44は、第19実施形態にかかる本発明の媒体移送管310の媒体取出管321の斜視図である。 図45は、第19実施形態にかかる本発明の媒体移送管310の媒体注入管311を垂直方向に切断し、媒体取出管321を表した斜視図である。 図46は、第20実施形態にかかる本発明の媒体移送管410の媒体注入管411を垂直方向に切断し、接続環446を表した斜視図である。 図47は、第20実施形態にかかる本発明の整流部440を表した斜視図である。 図48は、第17実施形態にかかる本発明の図12の整流部50の整流片51のZ-Z断面図である。 図49は、第21実施形態にかかる本発明の媒体移送管を示す模式図である。 図50は、図49のA-A断面図である。 図51は、第21実施形態にかかる本発明の媒体移送管の別実施形態を示す模式図である。 図52は、第22実施形態にかかる本発明の媒体移送管の設置方法を説明するための説明図である。 図53は、第22実施形態にかかる本発明の媒体移送管の設置方法の工程図である。
 本発明にかかる地熱発電システム100の実施形態について、図面を参照しつつ詳細に説明する。なお、以下に説明する実施形態及び図面は、本発明の実施形態の一部を例示するものであり、これらの構成に限定する目的に使用されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更することができる。また、各図において対応する構成要素には同一又は類似の符号が付されている。なお、図1においてα、βは冷却水の流れを指し、γは補給水の流れを指す。
 (第1実施形態)
 第1実施形態にかかる地熱発電システム100の概念図が図1に示されている。図1の実線の矢印は後述する熱交換用の媒体の液体の流れを示し、点線の矢印は蒸気の流れを示している。第1実施形態にかかる地熱発電システム100は、主として、媒体を下降させる下降領域及び上昇させる上昇領域を有し、地熱帯Sに開口を有さない二重管を有する媒体移送管20と、媒体移送管20に媒体を送出する圧力制御することが可能な高圧循環ポンプ30と、地熱の熱によって加熱された媒体から蒸気を取り出す蒸気発生器41と、地熱水を受領する生産井61と、熱交換の完了した地熱水の少なくとも一部を還元する還元井62と、少なくとも1つの気水分離器71を含んでなり、地熱水から蒸気を取り出す気水分離器71と、蒸気によって発電する発電機45と、を備えている。
  媒体は、大気圧において沸点が150℃以下、例えば、水、アンモニアが溶解した水等の低沸点液体を使用することが好ましいが、これらに限定するものではない。
 媒体移送管20は、媒体を地熱帯Sまで運搬し、地熱帯Sで熱交換し加熱された媒体を地上まで運搬する機能を有する。媒体移送管20は、媒体取出管21とこの媒体取出管21の外側に配置される媒体注入管22とを有する二重管の地熱交換器で構成される。媒体注入管22は、下端が閉塞して作製されている。媒体取出管21は、最下端が媒体注入管22の下方で開放して形成されており、最下端において媒体取出管21の内側の内側領域と媒体取出管21と媒体注入管22の間の外側領域とが連通して形成されている。このため、内側領域又は外側領域のいずれかを下降してきた媒体を他方の外側領域又は内側領域に移動させて上昇させることができる。すなわち、外側領域を下降領域とした場合には、媒体は外側領域を加熱されながら下降していき、最下端で媒体取出管21の内側領域内に導入されて、内側領域内を上昇して地上まで運ばれる。一方、内側領域を下降領域とした場合には、媒体は内側領域を加熱されながら下降していき、最下端で媒体取出管21の外側領域内に導入されて、外側領域内でも加熱されながら上昇して地上まで運ばれる。地熱帯領域においては、媒体取出管21と媒体注入管22との間に空気や断熱材等による断熱層を設けとよい。地熱帯でない場所は、媒体取出管の外側に設けられた外側断熱層を構成するものとしてもよい。外側断熱管は三重管構造として空気層を設けても良いし、断熱材を設けても良い。
 媒体移送管20は、複数のパイプを接続して作製されている。使用するパイプとしては、油井管等の金属管の他、セラミック系複合材料、炭素系材料又は樹脂系材料等のパイプを使用することもできる。また、媒体注入管22の外表面は、地熱帯Sから熱を受領しやすくするために、パイプの表面に凹凸を設けたり、銅等の金属をメッキ又は溶射したりして熱伝導面積を大きくしてもよい。また、媒体注入管22の最下端は、媒体がスムーズに移動することができるように、半球体又は半楕円球体のように形成してもよい。
 高圧循環ポンプ30は、媒体を媒体移送管20に送出するための装置である。好ましくは、高圧循環ポンプを使用するとよい。
 生産井61は、地熱水を取り出すための坑井であり、熱水と蒸気が混じって噴出する熱水卓越型のタイプを使用することが好ましい。発電に必要な地熱水を得ることができる坑井であれば、特にその構成は限定するものではない。生産井61は、媒体移送管20の外周に設けられる。
 還元井62は、地中から取り出した地熱水の一部又は全部、その他の水を地中に戻すための坑井である。この還元井62の構成も特に限定するものではなく、種々の構成のものを使用することができる。
 本地熱発電システムには、媒体移送管20から取り出された媒体及び高温の蒸気を含む地熱水から電力を得るための設備を有しており、媒体を主として処理するための蒸気発生器(減圧器)41、フラッシャー42、高圧循環ポンプ30による媒体を貯めておく高圧循環ポンプ用タンク43等を備え、地熱水を処理するための気水分離器71と、第2フラッシャー72とを備え、これらから得られた蒸気によって発電するための第1タービン44a及び第2タービン44bからなる多段式のタービン44、発電機45及び発電が終わった蒸気、媒体及び地熱水を処理する復水器46、復水器46によって凝縮された凝縮水を貯水する貯水タンク47等を備えている。
 以上のように構成された設備は、以下のようにして使用される。まず、媒体移送管20側で地熱の熱によって熱せられた媒体が取水され、蒸気発生器41で減圧沸騰させて高温・高圧の蒸気を発生させる。分離された高温・高圧の蒸気は、第1タービン44aに送られ、気水分離された液体はフラッシャー42に送られて気水分離された後、分離された高温、高圧の蒸気も第1タービン44aへ送られ、第1タービン44aの回転によって発電機45で発電する。一方、高温の蒸気を含む地熱水は、気水分離器71で蒸気と分離し、分離した蒸気は第2タービン44bへ送られる。さらに任意に第2フラッシャー72によって二次蒸気を得て同様に第2タービン44bへ送られ、第2タービン44bの回転によって発電機45で発電する。タービン44で消費された蒸気は復水器46で復水され、復水された地熱水又は媒体は、冷却排水又は冷却されて復水器46の冷却水として使用されたり、還元井62によって地熱帯Sに還元されたり、再び高圧循環ポンプ用タンク43へ貯められ、再度、高圧循環ポンプ30によって媒体移送管20へ送られて地熱を受領し、再度、発電に使用されたりする。なお、本実施形態にかかる地熱発電システム100は、上述した構成に限定するものではなく、その他の構成機器を他の機器で置換しても構わないし、追加で設けても構わない。
 かかる構成を採用することによって、閉鎖循環型の媒体移送管20の周囲に生産井61を有しているので、媒体移送管20の周囲の地熱水は、媒体移送管の周囲の地熱水が流れているため、媒体移送管20の近傍の媒体によって冷やされた地熱水が常に新しい加熱された地熱水と交換され常に地熱によって加熱された地熱水が媒体移送管20に接触することになり、より効果的に媒体を加熱することができる。
 (第2実施形態)
 第2実施形態にかかる地熱発電システム100の概念図が図2に示されている。図2の実線の矢印は後述する熱交換液、地熱水の液体の流れを示し、点線の矢印は蒸気の流れを示している。第2実施形態にかかる地熱発電システム100は、主として、媒体を下降させる下降領域及び上昇させる上昇領域を有し、地熱帯Sに開口を有さない二重管を有する媒体移送管20と、媒体移送管20に媒体を送出する高圧循環ポンプ30と、地熱の熱によって加熱された媒体から蒸気を取り出す蒸気発生器41と、少なくとも1つのフラッシャー42と、を含んでなり、また、地熱水を受領する生産井61と、熱交換の完了した地熱水の少なくとも一部を還元する還元井62と、地熱水から蒸気を取り出す気水分離器71と、蒸気発生器41及び気水分離器71によって発生した蒸気によって発電する発電機45と、を備えている。
 媒体、媒体移送管20及び高圧循環ポンプ30は、第1実施形態と同様であるので、説明を省略する。
 生産井61は、地熱水を取り出すための坑井であり、熱水と蒸気が混じって噴出する熱水卓越型のタイプを使用することが好ましい。発電に必要な地熱水を得ることができる坑井であれば、特にその構成は限定するものではない。生産井61は、前述した媒体移送管20に隣接して又は近傍に設けられる。
 還元井62は、地中から取り出した地熱水の一部又は全部、その他の水を地中に戻すための坑井である。この還元井62の構成も特に限定するものではなく、種々の構成のものを使用することができる。
 媒体移送管20から取り出された媒体及び高温の蒸気を含む地熱水から電力を得るための設備を有しており、媒体を主として処理するための蒸気発生器(減圧器)41、フラッシャー42、高圧循環ポンプによる媒体を貯めておく高圧循環ポンプ用タンク43等を備え、地熱水を処理するための気水分離器71と、第2フラッシャー72とを備えている。さらに、これらから得られた蒸気によって発電するための第1タービン44a及び第2タービン44b、発電機45及び発電が終わった蒸気、媒体及び地熱水を処理する復水器46,復水器46によって凝縮された凝縮水を貯水する貯水タンク47、凝縮された凝縮水を還元井に62に送出する低圧循環ポンプ48等を有している。
 さらに、気水分離器71及び第2フラッシャー72内のいずれか又は両方には、フラッシャー42によって分離された地媒体を加熱するため、媒体用の熱交換器76が設けられている。熱交換器76は、例えば、気水分離器71又は第2フラッシャー72によって分離された熱水側に細長いパイプを通して形成されている。媒体の一部又は全部は、この熱交換器76を通ることによって加熱された状態で第1地熱発電設備10側に戻される。なお、第2実施形態では、ダブルフラッシュ方式を図示しているが、シングルフラッシュ方式でも構わない。
 以上の設備は、以下のようにして使用される。まず、媒体移送管20側で地熱の熱によって熱せられた媒体を取水して、蒸気発生器41で減圧沸騰させて高温・高圧の蒸気を発生させる。分離された高温・高圧の蒸気は、第1タービン44aに送られ、気水分離された液体はフラッシャー42に送られて気水分離された後、分離された高温、高圧の蒸気も第1タービン44aへ送られ、第1タービン44aの回転によって発電機45で発電する。フラッシャー42で分離された液体の地媒体は、熱交換器76に運ばれ加熱された後、媒体移送管20に送出され、再度、発電に使用される。一方、高温の蒸気を含む地熱水は、気水分離器71で蒸気と分離し、分離した蒸気は第2タービン44bへ送られる。さらに任意に第2フラッシャー72によって二次蒸気を得て同様に第2タービン44bへ送られ、第2タービン44bの回転によって発電機45で発電する。タービン44で消費された蒸気は復水器46で復水され、復水された地熱水又は媒体は、冷却されて排水処理されたり、又は復水器46の冷却水として使用されたり、還元井62によって地熱帯Sに還元されたりするのに使用される。なお、地熱水用発電設備70は、上述した構成に限定するものではなく、その他の構成機器を他の機器で置換しても構わないし、追加で設けても構わない。
 かかる構成を採用することによって、媒体移送管20に送出される熱交換液
は、あらかじめ、熱交換器76によって加熱されているので、加熱されていない媒体を送出する場合と比較してより高温の媒体を取り出すことができ、エネルギー効率を向上させることができる。
 なお、第2実施形態においては、フラッシャー42で気水分離された媒体を熱交換器76に送出しているが、図2の2点鎖線に示すように、復水器46で復水された地熱水又は媒体を低圧循環ポンプ48によって気水分離器71内の熱交換器76に送って、加熱された地熱水又は媒体を高圧循環ポンプ30によって媒体移送管20へ送って地熱を受領し、再度、発電に使用してもよい。
 (第3実施形態)
 第3実施形態にかかる地熱発電システム100の概念図が図3に示されている。図3の実線の矢印は後述する熱交換液、地熱水の液体の流れを示し、点線の矢印は蒸気の流れを示している。第3実施形態にかかる地熱発電システム100は、第1地熱発電設備10と第2地熱発電設備50とを備えている。第1地熱発電設備10は、熱を地中から受領する媒体を地熱帯Sに放出したり、地熱帯Sの熱水を取水したりすることなく、媒体を略閉鎖系で循環させるタイプの地熱発電設備である。第2地熱発電設備50は、地中の熱水を取水する生産井61と、地熱帯Sから産出された熱水を発電に利用し、発電を終えた蒸気の凝縮水やその他の水を地下に戻す還元井62とからなる地熱発電設備である。なお、第1実施形態と同様の設備には同様の符号が付されている。
 第1地熱発電設備10は、媒体を地熱帯Sとの間で循環させて熱エネルギーを取り出す設備であり、主として、媒体移送管20と、高圧循環ポンプ30と、媒体用発電設備40と、を備えている。
 媒体、媒体移送管20及び高圧循環ポンプ30は、第1実施形態と同様であるので、説明を省略する。
 媒体用発電設備40は、高温の圧力水として媒体移送管20から取り出された媒体から電力を得るための設備であり、例えば、蒸気発生器(減圧器)41、フラッシャー42、高圧循環ポンプ30による媒体を貯めておく高圧循環ポンプ用タンク43、タービン44、発電機45、復水器46、復水器46によって凝縮された凝縮水を貯水する貯水タンク47、凝縮された凝縮水を第2地熱発電設備50に送出する低圧循環ポンプ48等を備えている。これらの機器を有する媒体用発電設備40は、地熱によって熱せられた媒体を媒体移送管20から取水して、蒸気発生器41で減圧沸騰させて高温・高圧の蒸気を発生させる。分離された高温・高圧の蒸気は、タービンに送られる。気水分離された液体の媒体はフラッシャー42に送られて気水分離された後、分離された高温、高圧の蒸気もタービン44へ送られ、タービン44の回転によって発電機45で発電する。タービン44で消費された蒸気は復水器46で復水され、熱交換器76に運ばれ加熱された後、再度、媒体移送管20に高圧循環ポンプ30によって送出される。本実施形態においては、媒体と地熱水が混合することがないので再利用することが可能である。勿論、排水処理したり、又は、還元井に送出したりしてもよい。一方、フラッシャー42で分離された液体の地媒体は、熱交換器76に運ばれ加熱された後、媒体移送管20に送出され、再度、発電に使用される。このように本発明にかかる第1地熱発電設備10は、媒体を循環させて地熱を取り出す閉鎖循環型の地熱発電設備である。そのため、取り出された蒸気と熱水に地熱帯S特有の硫黄その他の不純物が含まれておらず、スケールの問題が解消され、不純物が装置に付着することがなく長期間の使用が可能にある。なお、媒体用発電設備40は、上述した構成に限定するものではなく、その他の構成機器を他の機器で置換しても構わないし、追加で設けても構わない。例えば、発生した蒸気を加熱する加熱器をさらに設置したり、ダブルフラッシュ型のフラッシャーをさらに追加したりしても構わない。
 次に第2地熱発電設備50について説明する。第2地熱発電設備50は、主として、地熱水を受領する生産井61と、熱交換の完了した地熱水その他の水を還元する還元井62と、地熱水から蒸気を取り出して発電する地熱水用発電設備70と、を有している。
 生産井61及び還元井62は、第1実施形態と同様であるので説明を省略する。
 地熱水用発電設備70は、高温の蒸気を含む地熱水を取水して、この地熱水から電力を得るための設備であり、主として、気水分離器71、第2フラッシャー72、タービン73、発電機74、復水器75等を備えている。なお、図3においては、地熱水用発電設備70としてダブルフラッシュ方式を図示しているが、シングルフラッシュ方式でも構わない。地熱水用発電設備70は、地熱によって熱せられた地熱水を取水して、気水分離器71で蒸気を分離し、分離した蒸気はタービン73へ送られる。さらに任意に第2フラッシャー72によって二次蒸気を得て同様にタービン73へ送られ、タービン73の回転によって発電機64で発電する。タービン73で消費された蒸気は復水器75で復水され、復水された地熱水は、冷却排水又は冷却されて復水器75の冷却水として使用されたり、還元井62によって地熱帯Sに還元されたりして使用される。シングルフラッシュ方式の場合における気水分離器71で分離された熱水、ダブルフラッシュの場合におけるフラッシャーで分離された熱水は、還元井62から地熱帯Sに還元される。なお、地熱水用発電設備70は、上述した構成に限定するものではなく、その他の構成機器を他の機器で置換しても構わないし、追加で設けても構わない。
 さらに、第2地熱発電設備50は、第1地熱発電設備10側の貯水タンク47から低圧循環ポンプ48によって送られた媒体を加熱するため、気水分離器71及び第2フラッシャー72内のいずれか又は両方に媒体用の熱交換器76が設けられている。熱交換器76は、例えば、気水分離器71又は第2フラッシャー72によって分離された熱水側に細長いパイプを通して形成されている。媒体の一部又は全部は、この熱交換器76を通ることによって加熱された状態で第1地熱発電設備10側に戻される。
 かかる構成を採用することによって、第1地熱発電設備10において媒体移送管20に送出される媒体は、あらかじめ、熱交換器76によって加熱されているので、加熱されていない媒体を送出する場合と比較してより高温の媒体を取り出すことができ、エネルギー効率を向上させることができる。
 なお、第3実施形態においても、第2実施形態と同様に、復水器46で復水された地熱水又は媒体を低圧循環ポンプ48によって気水分離器71内の熱交換器76に送って、加熱された地熱水又は媒体を高圧循環ポンプ30によって媒体移送管20へ送って地熱を受領し、再度、発電に使用してもよい。
 (第4実施形態)
 第4実施形態にかかる地熱発電システム100が図4に示されている。第4実施形態にかかる地熱発電システム100は、第2地熱発電設備50の生産井61の位置が第3実施形態と異なる。その他の点は第3実施形態と同様であるので、説明を省略する。
 第4実施形態にかかる第2地熱発電設備50の生産井61は、第1地熱発電設備10の媒体移送管20の周囲に設けられている。すなわち、第1地熱発電設備10の媒体移送管20を加熱する地熱水と第2地熱発電設備で取り出す地熱水とは同じ領域の地熱水を使用している。
 かかる構成を採用することによって、媒体移送管20の周囲の地熱水は、第2地熱発電設備50によって取水されるため、常に新しい加熱された地熱水が周囲の地熱帯Sから流れ込んでくることになる。そのため、常に地熱によって加熱された高温の地熱水が媒体移送管20に接触することになるので、より効果的に地熱井の媒体を加熱することができる。また、第2地熱発電設備50によって取水する地熱水の取水位置を媒体移送管20の底面よりも上方に配置することによって、下方の高温の地熱水を上方に上昇させることができるので、生産井61がない場合と比較して、上方側の地熱水の温度を高くすることができる。そのため、より効果的に媒体を加熱することができる。
 なお、第4実施形態においても、第2実施形態と同様に、復水器46で復水された地熱水又は媒体を低圧循環ポンプ48によって気水分離器71内の熱交換器76に送って、加熱された地熱水又は媒体を高圧循環ポンプ30によって媒体移送管20へ送って地熱を受領し、再度、発電に使用してもよい。
 (第5実施形態)
 第5実施形態にかかる地熱発電システム100の概念図が図5に示されている。図5の実線の矢印は後述する熱交換液、地熱水の液体の流れを示し、点線の矢印は蒸気の流れを示している。第5実施形態にかかる地熱発電システム100は、第1地熱発電設備10と第2地熱発電設備50とを備えている。第1地熱発電設備10は、熱を地中から受領する媒体を地熱帯Sに放出したり、地熱帯Sの熱水を取水したりすることなく、媒体を略閉鎖系で循環させるタイプの地熱発電設備である。第2地熱発電設備50は、地中の熱水を取水する生産井61と、地熱帯Sから産出された熱水を発電に利用し、発電を終えた蒸気の凝縮水やその他の水を地下に戻す還元井62とからなる地熱発電設備である。なお、第1実施形態と同様の設備には同様の符号が付されている。
 第1地熱発電設備10は、媒体を地熱帯Sとの間で循環させて熱エネルギーを取り出す設備であり、主として、媒体移送管20と、高圧循環ポンプ30と、媒体用発電設備40と、を備えている。
 媒体、媒体移送管20及び高圧循環ポンプ30は、第1実施形態と同様であるので、説明を省略する。
 媒体用発電設備40は、高温の圧力水として媒体移送管20から取り出された媒体から電力を得るための設備であり、例えば、蒸気発生器(減圧器)41、フラッシャー42、高圧循環ポンプによる媒体を貯めておく高圧循環ポンプ用タンク43、タービン44、発電機45、復水器46、復水器46によって凝縮された凝縮水を貯水する貯水タンク47、凝縮された凝縮水を第2地熱発電設備50に送出する低圧循環ポンプ48等を備えている。これらの機器を有する媒体用発電設備40は、地熱によって熱せられた媒体を媒体移送管20から取水して、蒸気発生器41で減圧沸騰させて高温・高圧の蒸気を発生させる。分離された高温・高圧の蒸気は、タービンに送られ、気水分離された液体の媒体はフラッシャー42に送られて気水分離された後、分離された高温、高圧の蒸気もタービン44へ送られ、タービン44の回転によって発電機45で発電する。タービン44で消費された蒸気は復水器46で復水され、熱交換器76に運ばれ加熱された後、再度、媒体移送管20に高圧循環ポンプ30によって送出される。本実施形態においては、媒体と地熱水が混合することがないので再利用することが可能である。勿論、排水処理したり、又は、還元井に送出したりしてもよい。一方、フラッシャー42で分離された液体の媒体は、熱交換器76に運ばれ加熱された後、媒体移送管20に送出され、再度、発電に使用される。タービン44で消費された蒸気は復水器46で復水されて排水処理されたり又は、還元井に送出されたりして使用される。
 このように本発明にかかる第1地熱発電設備10は、媒体を循環させて地熱を取り出す閉鎖循環型の地熱発電設備である。そのため、取り出された蒸気と熱水に地熱帯S特有の硫黄その他の不純物が含まれておらず、スケールの問題が解消され、不純物が装置に付着することがなく長期間の使用が可能にある。なお、媒体用発電設備40は、上述した構成に限定するものではなく、その他の構成機器を他の機器で置換しても構わないし、追加で設けても構わない。例えば、発生した蒸気を加熱する加熱器をさらに設置したり、ダブルフラッシュ型のフラッシャーを、さらに追加したりしても構わない。
 次に第2地熱発電設備50について説明する。第2地熱発電設備50は、主として、地熱水を受領する生産井61と、熱交換の完了した地熱水その他の水を還元する還元井62と、地熱水から蒸気を取り出して発電する地熱水用発電設備70と、を有している。
 生産井61及び還元井62は、第1実施形態と同様であるので説明を省略する。
 地熱水用発電設備70は、高温の蒸気を含む地熱水を取水して、この地熱水から電力を得るための設備である。主として、生産井61の地熱水が流れる第1流通経路と、第1地熱発電設備10からの媒体が流れる第2流通経路と、地熱水の熱を受領して発電する発電用液体が流れる発電用経路と、を備えている。
 第1流通経路は、主として、生産井61から得られた地熱水を気水分離する気水分離器71、気水分離器71で得られた蒸気を使用して発電用液体に熱を交換する第1熱交換装置77、気水分離器71で分離された液体の熱を利用して発電用液体及び媒体に熱を交換する第2熱交換装置78と、を有している。第1熱交換装置77の構成は特に限定するものではないが、気水分離器71で得られた蒸気雰囲気内に、発電用液体が通過する細いパイプを通すことで蒸気の熱を発電用液体に交換することができる。第2熱交換装置78は、気水分離器71で分離された高温の液体中に発電用液体が通過する細いパイプを通すことで蒸気の熱を発電用液体に交換することができる。熱交換の終了した地熱水は、還元井62に送出される。
 第2流通経路は、第2熱交換装置78内にさらに媒体のパイプが設けられており、フラッシャー42から送られた媒体は、第2熱交換装置78で加熱された状態で再度、媒体移送管20に送出される。
 発電用経路は、第2熱交換装置78、第1熱交換装置77、タービン73、発電機74、復水器75、循環ポンプ等を備えており、発電用液体は、第2熱交換装置78で予熱がなされ、第1熱交換装置77で気体にされ、この気体でタービン73によって発電がされる。発電で消費された発電用液体は、復水器75で液体に戻されて循環ポンプによって、再度、第2熱交換装置78に戻される。
 かかる構成を採用することによって、第1地熱発電設備10において媒体移送管20に送出される媒体は、あらかじめ、第2熱交換装置78によって加熱されているので、加熱されていない媒体を送出する場合と比較してより高温の媒体を取り出すことができ、エネルギー効率を向上させることができる。
 (実施例1)
 実施例1の地熱発電システム100は、第3実施形態にかかる地熱発電システム100において第1地熱発電設備10として、深度250で120℃~140℃、深度1000で150℃~170℃、深度1500mで170℃~220℃、深度2000mで230~270℃の地熱帯Sに、1500mボーリングして、外径が0,2445mで内径が0.2245mの媒体注入管、外径0.1300mで内径が0.1000mの媒体取出管からなるパイプからなる地熱交換器を1500m埋設された媒体移送管20とした。第2地熱発電設備50には、第1地熱発電設備10の復水器で得られた凝縮水を低圧循環ポンプで第2地熱発電設備50に送出し、第2フラッシャー72に設けられた熱交換器76を介して、約164℃に加熱された水として高圧循環ポンプ30に戻した。なお、媒体として、水を使用した。計算すると、高圧循環ポンプで入口圧0.618MPa、吐出圧2.017MPa、流量40.73m/h、出力30.7KW、密度902.30kg/mで媒体を送出した場合、取水される高温の媒体は、温度195℃、圧力2.017MPa、流量44.89m/hとなる。かかる値から媒体移送管20の出力を以下の計算式で計算すると、1654KWとなる。
  出力=(坑井出口のエンタルピー(kj)-坑井入り口のエンタルピー(Kj))×流量(kg/s)×1000
 蒸気発生器41及びフラッシャー42によって得られる蒸気は、温度165℃、圧力0.70℃、流量2.60t/hとなる。MSEG132KWスチームスター(神鋼商事株式会社製)のスクリュー式子型発電機を使用した場合、発電出力は115KWとなる。
 (比較例1)
 比較例1における地熱発電システムは、第2地熱発電設備50を設けることなく、図6に示すように、フラッシャー42で分離された媒体及び復水器46で得られた冷却水及び補給水を低圧循環ポンプ48で高圧循環ポンプ用タンク43に送って、高圧循環ポンプ30に送る単純循環方式の発電設備である。この比較例における高圧循環ポンプに送られる水の温度は156℃となる。この場合坑井から取り出される高温圧力水は、190℃で1.254MPaとなる。この場合の生産井の出力は1466KWで、発電出力は100KWとなる。
 実施例1と比較例1のそれぞれの送出する媒体、取水される媒体、生産井出力、発電出力、熱効率、必要な高圧循環ポンプの出力、低圧循環ポンプの出力及び高圧循環ポンプの出力及び低圧循環ポンプを加味した総発電出力の表を図7Aに示す。
 この表によれば、取り出す熱水温度が190℃から195℃に上がることで、総発電出力が11%アップすることがわかる。
 次に、実施例1及び比較例1でいずれも発電出力102KWとした場合における各高圧循環ポンプ及び低圧循環ポンプの出力とこれを加味した総出力の表を図7Bに示す。実施例1では、循環水量は36%少なくすることができ、ポンプ出力を下げることができる。これにより、総出力は28%アップする。
 次に、本発明にかかる地熱発電装置1000、1100、1200の実施形態について、図面を参照しつつ詳細に説明する。
(第6実施形態)
 第6実施形態にかかる地熱発電装置1000を、図8を参照して説明する。図8は、第6実施形態にかかる本発明の地熱発電装置1000の構成を示す概要図である。図8を参照して第1実施形態にかかる地熱発電装置1000を説明する。大別すると地熱発電装置1000は、加圧水発電装置Aとバイナリー発電装置Bとに構成される。
 加圧水発電装置Aは、圧力制御することができる加圧給水ポンプ103、貯留タンク104、低圧循環ポンプ105、復水器106、媒体移送管110、フラッシャーF、加熱部130、蒸気タービンT、発電機G、送電設備H及びバイナリー発電装置Bと接続される熱交換部150とで構成されている。
 加圧水発電装置Aは、蒸気タービンTに蒸気を供給することで、発電機Gを回転させて発電を行い、送電設備Hに電気を供給し送電網を介して電力会社等に電気を供給するものである。
 蒸気タービンTは、タービン形式だけでなくスクリュー形式のもの等であってもよく、蒸気によって発電可能なものであればよい。蒸気タービンTに供給される蒸気は、熱水を減圧し沸騰させてフラッシャーFで生成される。
 フラッシャーFで蒸気となった熱水は、すべて蒸気とされることがないため、フラッシャーFから多量の熱水が熱交換部150に送られる。熱交換部150で熱交換された熱水は低圧循環ポンプ105で貯留タンク104へ送られる。また、蒸気タービンTで排気された蒸気は復水器106で冷却水107によって凝縮され水に戻され貯留タンク104に貯められる。
 貯留タンク104の水は、再度地熱帯Sのある深部で熱水として熱交換されるように後述する媒体移送管110へ加圧給水ポンプ103で移送される。
 次に、媒体移送管110を説明する。地表Kから地中深部にある熱源となる地熱帯Sまで媒体移送管110が埋設されている。媒体移送管110は、外側に円筒状の媒体注入管111が埋設され、その媒体注入管111の周囲は地表Kから地熱帯手前までは地熱セメントによって固められている。媒体移送管110の媒体注入管111は、最深部が密閉されており、地熱帯Sの深部の温泉水等の流体や岩盤からの熱を吸収するものである。
 媒体注入管111は、スチールやステンレス等の素材で形成されている。温度の高い地熱帯Sの領域では、媒体注入管111は、外周に地熱帯Sの熱が伝わりやすいように、断面が円形の円柱状のフィンが溶接されている。媒体注入管111は、地表Kに近い温度の低い領域では、貯留タンク104から加圧されて注入される水の熱が奪われないように断熱材や空気層を設けた断熱構造がとられている。
 媒体注入管111の内側には地熱帯Sで熱せられた水を移送する円筒状の媒体取出管112が設けられている。媒体取出管112は、媒体注入管111の内側であって同軸上に円筒状に形成されている。媒体取出管112は、垂直の断面は外側部と内側部との間に断熱材の繊維や樹脂や空気層を形成する2重構造となっている。この2重構造により、断熱効果だけでなく、体積が増し密度を小さくし水の密度に近づけることで、設置する際に媒体としての水を媒体注入管111に注入した後、この2重構造を取った媒体取出管112を水の中に沈めていくことで浮力が発生し、媒体取出管112を吊る装置への荷重を軽減することが可能となる。
 地熱帯Sで熱せられた熱水は、フラッシャーFで減圧し沸騰され蒸気を生成する。ここで、フラッシャーFは、蒸気を発生させる際のノズルは、自吸により微小気泡となるマイクロバブルやナノバブルを生成することができるノズルを使用しても良い。この構成により蒸気量を増やすことが可能である。蒸気量を増やすことによって、水を移送する速度を落としても充分な蒸気量を確保できるため、地熱帯Sの熱吸収領域での水の滞在時間を多くとることで、水が熱を吸収する時間が取れ、高温の熱水とすることができる。
 図9は、第6実施形態にかかる本発明の加熱部130の概要図である。図8及び図9を参照して加熱部130を説明する。加熱部130は、フラッシャーFで生成した蒸気を蒸気タービンTまで移送する配管内に、螺旋状の電熱ヒータ132を配置している。加熱部用電源ライン161から送られた電力により、加熱制御装置131を駆動し電熱ヒータ132により配管内に過熱蒸気Vが生成される。電熱ヒータ132は、700~1200℃程度に熱せられ、300℃程度の過熱蒸気Vを生成することも可能である。
ここで、過熱蒸気とは、飽和蒸気をさらに加熱することで、ある圧力における飽和蒸気温度以上の温度を持つ状態での蒸気である。また、加熱部によって過熱蒸気まで至らずとも湿り蒸気を乾き蒸気とする意味で使用しても良く、加熱蒸気としてもよい。いずれもエンタルピーを向上させることができる。
 また、図10は、加熱部130の他の例を示している。加熱部130は、フラッシャーFで生成した蒸気を蒸気タービンTまで移送する配管内に、棒状の電熱ヒータ136を配置している。加熱部用電源ライン161から送られた電力により、加熱制御装置131を駆動し電熱ヒータ132により配管内に過熱蒸気Vが生成される。電熱ヒータ132は、700~1200℃程度に熱せられ、300℃程度の過熱蒸気Vを生成することも可能である。
 その他の加熱部130として、700℃程度の熱風を生成することができる装置等を、蒸気タービンTまで移送する配管内に配置することも考えられる。これらヒータは温風やニクロム線等に限定されず、蒸気を過熱できる装置であれば良い。
 本実施例では、地熱帯Sで熱交換する媒体として水を使用しているが、媒体として不活性ガス又はバイナリー発電で利用される水より沸点が低い媒体(水とアンモニアの混合物等)が考えられる。媒体移送管110の破損等が有った場合であっても、水であれば環境に害を与えることはなく、作業面においても安全に扱うことが可能である。
 本実施例で説明する加圧水発電装置Aは、水が閉じられた状態で循環しており熱エネルギーの交換を行うシステムである。
 次に、バイナリー発電装置Bを、図8を参照して説明すると、バイナリー発電装置Bは、加圧水発電装置Aと接続される熱交換部150と、蒸気タービンT3と、発電機G、送電設備H、冷却器156及び循環ポンプ155とで構成されている。
 熱交換部150は、フラッシャーFで蒸気と分離された熱水が、幾十にも折り曲げられた熱交換器151を通過する。この熱交換部150の部分で熱せられた作動媒体が蒸発して蒸気タービンT3を回転させて発電を行っている。送電設備Hは、加圧給水ポンプ用電源ライン165、低圧循環ポンプ用電源ライン166や循環ポンプ用電源ライン167を通して、加熱部130、加圧給水ポンプ103、低圧循環ポンプ105や循環ポンプ155に3相の交流220Vの電力を供給可能である。
ここで作動媒体は、可燃性や毒性のない不活不活性ガスのHFC-245fa、R245fa等や沸点の低い媒体(水とアンモニアの混合物等、炭化水素(ペンタン))等が使用される。
 蒸気タービンT3は、膨張タービン等が使用されている。蒸気タービンT3を通過した作動媒体は、冷却器156の冷却水157によって冷却され、媒体を気体から液体等に凝縮させ循環ポンプ155によって再度、熱交換部150へ送られる。
 このような作動媒体を利用することによって、70℃から95℃の温水であっても9(ton(トン))/h(時間)から24t/hの流量が有れば発電が可能となる。このシステムにおいては、媒体が閉じられた系の中で熱交換を行うシステムとなっている。
(上記装置を利用して発電する発電方法)
 図8を参照して発電方法を説明すると、200℃前後の熱を地中で得るためにボーリングにより開けられた穴の深度は、地中700mから1500m程度までの深さに達している。この深さは深ければ深いほど高い温度が得られると考えられるが、掘削費用との兼ね合いにより決められ地熱帯Sは、150℃から300℃の温度があれば最もよく、地熱帯Sの最深部付近から得られる温度によって適宜以下の値も変化する。
先ず、加圧水発電装置Aの発電方法について説明すると、地中には、媒体移送管110が埋設されており、媒体移送管110は、地中と接する外側に媒体注入管111が連結されて地中深くまで達している。また、媒体注入管111は、媒体注入管111の内側に媒体取出管112が連結されて媒体注入管111の底部まで達している。これら媒体移送管110は、地熱帯Sから得られる熱を吸収する熱交換部として利用されている。以下に加圧水発電装置Aによる発電方法について詳述する。
 例えば、貯留タンク104の水(I1)は、加圧給水ポンプ103により5MPaに加圧され媒体移送管110の媒体注入管111に流量55(ton(トン))/h(時間)で送られ、地中深くの地熱帯Sまで移送される。220℃の地熱帯Sまで移送された温水は、地熱帯Sからの熱を熱伝導率の高い媒体注入管111から吸収し、最終的に210℃の熱水(I2)となる。そして、媒体取出管112から取り出された熱水(I3)は、出口での温度が200℃で、圧力が2.0MPaでフラッシャーFに移送される。
 フラッシャーFは、温度200℃の熱水を、圧力を解放して0.61MPaに減圧沸騰させてフラッシュ率約11%の蒸気を蒸気量6t/hの蒸気を発生させる。フラッシャーFは、その生成した蒸気を蒸気タービンTに送る。送られた蒸気は、加熱部130によって加熱され300℃の過熱蒸気Vとなって蒸気タービンTの回転により発電機Gを駆動させ発電する。蒸気のエンタルピーは、加熱しない場合では、約0.61気圧で2757kJ/kgであるが、0.61気圧、300℃の過熱蒸気Vでは10%増加し3061kJ/kgである。そのため、この蒸気により発電される発電量は、効率を80%とすると少なくとも528kWhの出力が得られる。加熱しない場合と比較すると4.5倍の発電量が得られる。
 また、フラッシャーFは、蒸気にならずに残った約89%の熱水(I4)を、温度180℃前後の温度を保ったまま圧力1.0MPaで熱交換器151に流量49t/hで送る。熱交換器151を通過した熱水(I5)は、熱交換されて作動媒体に熱を奪われ160℃前後に冷却され低圧循環ポンプ105によって圧力0.47MPaで貯留タンク104へ移送される。また、蒸気タービンTで排気された蒸気は、復水器106で冷却水107によって凝縮され圧力0.101MPaの140℃の熱水(I6)に戻され、流量6t/hで貯留タンク104に貯められる。
 貯留タンク104の160℃前後の熱水(I1)は、再び加圧給水ポンプ103により6MPaに加圧され媒体移送管110の媒体注入管111に流量55t/hで送られ、地中深くの地熱帯Sまで移送される。
 ここで、図11乃至図14によって従来の加圧水発電装置Aと本発明の比較を示す。図11は、従来の加圧水発電装置Aの媒体移送管110の深度と熱水の温度分布の関係図である。破線は、地中の温度分布121を示しており、実線は、媒体注入管111及び媒体取出管112の熱伝導率が50W/m・Kの材質を採用した場合の熱水の温度分布122・123を示している。2点鎖線は、熱伝導率が0.1W/m・Kの材質を採用し、図12の蒸発曲線126の200℃の温度でのC点となる1.554MPa以下の場合の温度分布121を示している。
 図12は、水の状態変化の概要図である。図12には、水が固体・液体・気体と変化する際の温度と圧力が示されている。三重点から臨界点までの実線は蒸発曲線126を示している。大気圧での沸点は100℃であって0.101MPaを示している。線上のC点では200℃の温度の場合には1.554MPaより少ない場合には水の状態から気体すなわち蒸気へと変化する境界ラインである。線上のD点では210℃の温度の場合には1.907MPaより少ない場合には水の状態から気体すなわち蒸気へと変化する境界ラインとなる。
温度分布121は、地熱帯Sの深部に近づくにつれて温度は上昇し220℃に達している。媒体注入管111及び媒体取出管112の熱伝導率は50W/m・Kの材質を採用しているため、媒体注入管111に導かれる熱水(I1)は、地中の温度分布121に沿って温度分布122が上昇する。そして、200℃に達した熱水(I2)を媒体取出管112から取り出すが、熱水(I2)は地表部Kまで上昇する際に、媒体取出管112の熱伝導率が高いため温度分布123に示すように熱水(I1)の温度に近づくように、熱水(I3)は、温度が低下する。
 ここで、媒体取出管112の熱伝導率を0.1W/m・Kと小さく設定したとしても、媒体取出管112の出口の熱水I3の圧力が図12に示すC点より低い場合を示しており、図11に示す温度分布124は、蒸発曲線126よりも低くなっているため蒸気が発生し、沸点に近づくように温度低下が発生している。
 また、図13は、水の対流熱伝達係数127を示している。この熱伝達係数とは、流れている流体から、それに接する壁へいかに熱が伝わりやすいかを示す尺度である。図に示しように水から蒸気へと変化すると、数10倍の熱伝達係数が大きくなるため、熱水に含まれる蒸気量が増えれば増えるほど、所謂気液2相流となり、熱しやすくまた冷めやすいという傾向となるので、熱が奪われやすくなる。その熱損失を防ぎエネルギーを蓄えたまま移送するためには、熱水を冷め難くする必要がある。
 そして、地熱帯Sで熱せられた沸点以上の熱水は、冷めないように蒸気を含まない状態でフラッシャーFまで運べれば熱損失が少なくなる。熱損失を少なくするには、上述したように図10の蒸発曲線126よりも高い圧力を保つ必要がある。特に、熱交換器内に温度差が生じ、これに伴って水の密度差に起因する重力水頭圧が発生するが、媒体注入管111及び媒体取出管112の圧力損失等を考慮すると蒸発曲線126よりも高い圧力を保つために加圧給水ポンプ103によって圧力を高いままに保って蒸気が発生しないように保つことが重要である。熱水のまま所謂単相流のままフラッシャーFまで移送することが地下の熱を有効に利用することができることとなる。
 以上のことから、本発明では図14の網掛けに示すように媒体注入管111及び媒体取出管112の断熱領域を、熱伝達係数を0.1W/m・K以下とする材料で形成した。最も良いのは0.05W/m・Kから0.01W/m・K以下の断熱性能を有するものがよい。断熱性能を保つことによって、出口での温度低下を防ぎ、結果加圧給水ポンプ103の圧力を高く設定しなくとも良い。図14において、破線は、地中の温度分布121を示しており、実線は、熱水の温度分布125を示している。
 また、熱水(I3)の出口圧力は、媒体注入管111及び媒体取出管112の圧力損失を考慮して、加圧給水ポンプによって少なくとも図12の蒸発曲線126よりも大きくし、温度が沸点以上である熱水のまま移送できるように蒸気を発生させない圧力とした。
 さらに地中の温度分布の高い領域すなわち発電に必要な吸熱領域において媒体注入管111は、熱伝導率の高い50W/m・Kの材料で形成した。特に高ければ高い伝導率であればよいが、地中内での圧力や腐食を考慮すると金属製の材料で形成するのが望ましく、有効な熱伝導率は、20W/m・K以上であればよい。
 このように形成することにより、地中の温度の高い吸熱領域において、地熱帯からの沸点を超えた熱水(I2)は、熱を吸収し、熱伝導率の低い媒体取出管112及び加圧給水ポンプ103により加圧しながら移送することによって、温度を低下することなく200℃の熱水(I3)を圧力2.0MPaで地上にあるフラッシャーFまで移送することができる。
 次に、バイナリー発電装置Bでの発電方法を説明する。
熱交換部150は、フラッシャーFで蒸気にならずに残った約89%の熱水(I4)を、温度180℃前後の温度を保ったまま圧力1.6MPaで熱交換器151に流量49t/hで供給される。その際、熱水(I4)の流量が多ければバイパスを設けて貯留タンク104に余った熱水を分岐させても良い。熱交換器151は、熱交換部150にて低沸点である作動媒体(J1)を蒸発させており、その生成した蒸気を蒸気タービンT3に送る。送られた蒸気は、蒸気タービンT3の回転により発電機Gを駆動させ発電する。この蒸気により発電される発電量は効率を80%で稼働させると少なくとも113~160kWhの出力が得られる。
 また、蒸気タービンT3から排出された蒸気(J2)は、冷却器156の冷却水157によって冷却され、本発明で使用される作動媒体を気体から液体等に凝縮させている。循環ポンプ155によって、作動媒体(J3)は再び熱交換部150へ送られる。
 これら、加圧水発電装置Aで得られた電気は、送電設備Hを介して電力会社等へ供給される。バイナリー発電装置Bで生成された電気は、加熱部130での電力に使用される。また地熱発電装置1000内で消費しても良く、ポンプ類(103、105、155)での電力に使用しても良い。また蓄電池等に蓄えてから使用することも考えられる。
(第7実施形態)
 第7実施形態にかかる地熱発電装置1100を、図15を参照して説明する。図15は、第7実施形態にかかる本発明の地熱発電装置1100の構成を示す概要図である。
 図15を参照して第7実施形態にかかる地熱発電装置1100を説明する。大別すると地熱発電装置1100は、加圧水発電装置Aとバイナリー発電装置Bとに構成される。
 加圧水発電装置Aは、加圧給水ポンプ103、貯留タンク104、低圧循環ポンプ105、復水器106、媒体移送管110、加熱部130、フラッシャーF、蒸気タービンT、発電機G、送電設備H及びバイナリー発電装置Bと接続される熱交換部150とで構成されている。第6実施形態と同様の構成を示す箇所は、第6実施形態と同様の符号を付して表してあり、構成は第6実施形態と同様な個所の説明は省略する。
 第6実施形態と異なる点は、加圧水発電装置Aは、ダブルフラッシュ(F1・F2)となっている点で異なっており、高圧側の蒸気タービンT1と低圧側の蒸気タービンT2に蒸気を供給している。
 フラッシャーF1は、高圧の蒸気を蒸気タービンT1に供給し、フラッシャーF2は、低圧の蒸気を蒸気タービンT2に供給している。
 また、加熱部130は、フラッシャーF1、F2で生成した蒸気を、高圧側と低圧側の両方の蒸気タービンT1、T2まで移送する配管内に電熱ヒータ132又は電熱ヒータ136を配置している。
(上記装置を利用して発電する発電方法)
 図15を参照して発電方法を説明すると、200℃前後の熱を地中で得るためにボーリングにより開けられた穴の深度は、地中700mから1500m程度までの深さに達している。この深さは深ければ深いほど高い温度が得られると考えられるが、掘削費用との兼ね合いにより決められ地熱帯Sは、150℃から300℃の温度があれば最もよく、地熱帯Sの最深部付近から得られる温度によって適宜以下の値も変化する。
また、第6実施形態で説明したように本発明は、地中の温度の高い吸熱領域において、地熱帯からの沸点を超えた熱水(I12)は、熱を吸収する。熱伝導率の低い媒体取出管112及び加圧給水ポンプ103により、加圧しながら移送することによって、温度を低下することなく200℃の熱水(I13)を圧力2.0MPaで地上にあるフラッシャーF1・F2まで移送することができる。
 先ず、加圧水発電装置Aによる発電方法について詳述する。地中には、媒体移送管110が埋設されており、媒体移送管110は、地中と接する外側に媒体注入管111が連結されて地中深くまで達している。また、媒体注入管111は、媒体注入管111の内側に媒体取出管112が連結されて媒体注入管111の底部まで達している。これら媒体移送管110を地熱帯Sから得られる熱を吸収する熱交換部として利用し、熱水を蒸発させて蒸気タービンTを介して発電を行っている。
 例えば、貯留タンク104の水(I11)は、加圧給水ポンプ103により5MPaに加圧され媒体移送管110の媒体注入管111に流量55t/hで送られ、地中深くの地熱帯Sまで移送される。220℃の地熱帯Sまで移送された温水は、地熱帯Sからの熱を熱伝導率の高い媒体注入管111から伝わり、最終的に210℃の熱水(I12)となる。そして、媒体取出管112から取り出された熱水(I13)は、出口での温度が200℃で、圧力が2.0MPaでフラッシャーF1に移送される。
フラッシャーF1は、温度200℃の熱水を、圧力を解放して1.0MPaに減圧し沸騰させてフラッシュ率約7%の蒸気を蒸気量4t/hで発生させる。フラッシャーF1は、その生成した蒸気を高圧側の蒸気タービンT1に送る。
 送られた蒸気は、加熱部130によって加熱され300℃の過熱蒸気となって蒸気タービンTを回転させ、発電機Gによって発電する。蒸気のエンタルピーは、加熱しない場合では、約1気圧で2777kJ/kgであるが、1気圧、300℃の過熱蒸気Vでは11%増加し3051kJ/kgである。
 そのため、この蒸気により発電される発電量は、効率を80%とすると、333kWhの出力が得られる。加熱しない場合と比較すると3.7倍の発電量が得られる。
 また、フラッシャーF1で蒸気にならずに残った約93%の熱水(I14)は、温度180℃前後の温度を保ったまま圧力1.0MPaでフラッシャーF2に送られる。
 フラッシャーF2は、温度180℃の熱水を、圧力を解放して0.6MPaに減圧沸騰させてフラッシュ率約4%の蒸気を蒸気量2t/hの蒸気を発生させる。フラッシャーF2は、その生成した蒸気を低圧側の蒸気タービンT2に送る。
 送られた蒸気は、加熱部130によって加熱され300℃の過熱蒸気Vとなって蒸気タービンTの回転により発電機Gを駆動させ発電する。蒸気のエンタルピーは、加熱しない場合では、約0.61気圧で2757kJ/kgであるが、0.61気圧、300℃の過熱蒸気では11%増加し3061kJ/kgである。
 そのため、この蒸気により発電される発電量は効率を80%で稼働させると少なくとも発電量は、183kWhの発電量が得られる。加熱しない場合と比較すると4.7倍の発電量が得られる。
 フラッシャーF2は、最初汲み上げた熱水(I13)のうち蒸気にならずに残った約89%の熱水(I15)を、温度160℃前後の温度を保ったまま圧力0.6MPaで熱交換器151に、流量49t/hで送る。熱交換器151を通過した熱水(I15)は、熱交換されて作動媒体に熱を奪われ140℃前後に冷却され低圧循環ポンプ105によって圧力0.47MPaで貯留タンク104へ移送される(I16)。また、蒸気タービンTで排気された蒸気は、復水器106で冷却水107によって凝縮され圧力0.101MPaの140℃の熱水(I17)に戻され、流量6t/hで貯留タンク104に貯められる。
 貯留タンク104の140℃前後の熱水(I11)は、再び加圧給水ポンプ103により6MPaに加圧され媒体移送管110の媒体注入管111に流量55t/hで送られ、地中深くの地熱帯Sまで移送される。
 次に、バイナリー発電装置Bでの発電方法を説明する。
 熱交換部150は、フラッシャーF2で蒸気にならずに残った約89%の熱水(I15)を、温度160℃前後の温度を保ったまま圧力0.47MPaで熱交換器151に流量49t/hで供給される。その際、熱水(I15)の流量が多ければバイパスを設けて貯留タンク104に余った熱水を分岐させても良い。熱交換器151は、熱交換部150にて低沸点である作動媒体(J1)を蒸発させており、その生成した蒸気を蒸気タービンT3に送る。送られた蒸気は、蒸気タービンT3の回転により発電機Gを駆動させ発電する。この蒸気により発電される発電量は効率を80%で稼働させると少なくとも113~160kWhの出力が得られる。
 また、蒸気タービンT3から排出された蒸気(J2)は、冷却器156の冷却水157によって冷却され、本発明で使用される作動媒体を気体から液体等に凝縮させている。循環ポンプ155によって、作動媒体(J3)は再び熱交換部150へ送られる。
 これら、加圧水発電装置Aで得られた電気は、送電設備Hから電力会社等へ供給される。また、バイナリー発電装置Bで生成された電気は、地熱発電装置1000内で消費しても良く、加熱部130の電力に使用され、またポンプ類(103、105、155)での電力に使用しても良い。また、これら生成された電気は、蓄電池等に蓄えてから使用することも考えられる。
(第8実施形態)
 第8実施形態にかかる地熱発電装置1200を、図16を参照して説明する。図16は、第8実施形態にかかる本発明の地熱発電装置1200の構成を示す概要図である。図16を参照して第8実施形態にかかる地熱発電装置1200を説明する。大別すると地熱発電装置1200は、加圧水発電装置Aとバイナリー発電装置Bとに構成される。
 加圧水発電装置Aは、加圧給水ポンプ103、貯留タンク104、低圧循環ポンプ105、復水器106、媒体移送管110、加熱部130、フラッシャーF、蒸気タービンT、発電機G、送電設備H及びバイナリー発電装置Bと接続される熱交換部150とで構成されている。
 第6実施形態と同様の構成を示す箇所は、第6実施形態と同様の符号を付して表してあり、構成は第6実施形態と同様な個所の説明は省略する。
 第6実施形態と異なる点は、加圧水発電装置Aは、ダブルフラッシュ(F1・F2)となっている点で異なっており、フラッシャーに対して独立した蒸気タービン及び発電装置が設けられている。
フラッシャーF1は、高圧の蒸気を蒸気タービンT1に供給し、フラッシャーF2は、低圧の蒸気を蒸気タービンT2に供給している。
また、加熱部130は、フラッシャーF1、F2で生成した蒸気を、高圧側と低圧側の両方の蒸気タービンT1、T2まで移送する配管内に、各電熱ヒータ132又は電熱ヒータ136を配置している。
(上記装置を利用して発電する発電方法)
 図16を参照して発電方法を説明すると、200℃前後の熱を地中で得るためにボーリングにより開けられた穴の深度は、地中700mから1500m程度までの深さに達している。この深さは深ければ深いほど高い温度が得られると考えられるが、掘削費用との兼ね合いにより決められ地熱帯Sは、150℃から300℃の温度があれば最もよく、地熱帯Sの最深部付近から得られる温度によって、適宜以下の値も変化する。
 また、第6実施形態で説明したように本発明は、地中の温度の高い吸熱領域において、地熱帯からの沸点を超えた熱水(I12)は、熱を吸収し、その吸収した熱は、熱伝導率の低い媒体取出管112及び加圧給水ポンプ103により加圧しながら移送することによって、温度を低下することなく200℃の熱水(I13)を圧力2.0MPaで地上にあるフラッシャーF1・F2まで移送することができる。
 先ず、加圧水発電装置Aによる発電方法について詳述する。地中には、媒体移送管110が埋設されており、媒体移送管110は、地中と接する外側に媒体注入管111が連結されて地中深くまで達している。また、媒体注入管111は、媒体注入管111の内側に媒体取出管112が連結されて媒体注入管111の底部まで達している。これら媒体移送管110を地熱帯Sから得られる熱を吸収する熱交換部として利用し、熱水を蒸発させて蒸気タービンTを介して発電を行っている。
 例えば、貯留タンク104の水(I11)は、加圧給水ポンプ103により5MPaに加圧され媒体移送管110の媒体注入管111に流量55t/hで送られ、地中深くの地熱帯Sまで移送される。220℃の地熱帯Sまで移送された温水は、地熱帯Sからの熱を熱伝導率の高い媒体注入管111から伝わり、最終的に210℃の熱水(I12)となる。そして、媒体取出管112から取り出された熱水(I13)は、出口での温度が200℃で、圧力が2.0MPaでフラッシャーF1に移送される。
フラッシャーF1は、温度200℃の熱水を、圧力を解放して1.0MPaに減圧し沸騰させてフラッシュ率約7%の蒸気を蒸気量4t(トン)/h(時間)で発生させる。フラッシャーF1は、その生成した蒸気を高圧側の蒸気タービンT1に送る。
 送られた蒸気は、加熱部130によって加熱され300℃の過熱蒸気Vとなって蒸気タービンTに送られる。そして蒸気タービンTの回転により発電機Gを駆動させ発電する。蒸気のエンタルピーは、加熱しない場合では、約1気圧で2777kJ/kgであるが、1気圧、300℃の過熱蒸気Vでは10%増加し3051kJ/kgである。
 そのため、この蒸気により発電される発電量は、効率を80%とすると少なくとも333kWhの出力が得られる。加熱しない場合と比較すると3.7倍の発電量が得られる。
 また、フラッシャーF1で蒸気にならずに残った約93%の熱水(I14)は、温度180℃前後の温度を保ったまま圧力1.0MPaでフラッシャーF2に送られる。
 フラッシャーF2は、温度180℃の熱水を、圧力を解放して0.6MPaに減圧し沸騰させてフラッシュ率約4%の蒸気を蒸気量2t/hで発生させる。フラッシャーF2は、その生成した蒸気を低圧側の蒸気タービンT2に送る。
 送られた蒸気は、加熱部130によって加熱され300℃の過熱蒸気Vとなって、蒸気タービンTを回転させ、発電機Gを駆動させて発電に使用される。蒸気のエンタルピーは、加熱しない場合では、約0.61気圧で2757kJ/kgであるが、0.61気圧、300℃の過熱蒸気Vでは11%増加し3061kJ/kgである。
 そのため、この蒸気により発電される発電量は、効率を80%とすると183kWhの発電量が得られる。加熱しない場合と比較すると4.7倍の発電量が得られる。
 フラッシャーF2は、最初汲み上げた熱水(I13)のうち蒸気にならずに残った約89%の熱水(I15)を、温度160℃前後の温度を保ったまま圧力0.6MPaで熱交換器151に流量49t/hで送る。熱交換器151を通過した熱水(I15)は、熱交換され、作動媒体に熱を奪われ140℃前後に冷却され、低圧循環ポンプ105によって圧力0.47MPaで貯留タンク104へ移送される(I16)。また、蒸気タービンTで排気された蒸気は、復水器106で冷却水107によって凝縮され、圧力0.101MPaの140℃の熱水(I17)に戻され、流量6t/hで貯留タンク104に貯められる。
 貯留タンク104の140℃前後の熱水(I11)は、再び加圧給水ポンプ103により6MPaに加圧され、媒体移送管110の媒体注入管111に流量55t/hで送られ、地中深くの地熱帯Sまで移送される。
 次に、バイナリー発電装置Bでの発電方法を説明する。
 熱交換部150は、フラッシャーF2で蒸気にならずに残った約9.0割の熱水(I15)を、温度160℃前後の温度を保ったまま圧力0.47MPaで熱交換器151に、流量50.4t/hで供給される。その際、熱水(I15)は、流量が多ければバイパスを設けて貯留タンク104に分岐させても良い。熱交換器151は、熱交換部150にて低沸点である作動媒体(J1)を蒸発させており、その生成した蒸気を、蒸気タービンT3に送る。送られた蒸気は、蒸気タービンT3の回転により発電機Gを駆動させ発電する。この蒸気により発電される発電量は効率を80%とすると113~160kWhの出力が得られる。また、蒸気タービンT3から排出された蒸気(J2)は、冷却器156の冷却水157によって冷却され、本発明で使用される作動媒体を気体から液体等に凝縮される。循環ポンプ155によって、作動媒体(J3)は、再び熱交換部150へ送られる。
 これら、加圧水発電装置Aで得られた電気は、送電設備Hから電力会社等へ供給される。また、バイナリー発電装置Bで生成された電気は、地熱発電装置1000内で消費しても良く、ポンプ類(103、105、155)での電力に使用しても良い。また、これら生成された電気は蓄電池等に蓄えてから使用することも考えられる。
 なお、バイナリー発電装置Bは、上記の発電装置に限定されず、バイナリー発電装置Bの条件として、飽和蒸気温度130℃、圧力0.169MPの蒸気を1.8t/hをバイナリー発電装置Bに供給し、冷却水等で冷却温度35℃に冷却した場合に92kWhの発電が可能である。また、他の条件として70~95℃の熱水を12~28t/hの流量をバイナリー発電装置Bに供給し、冷却水等で冷却温度20~30℃で20~40t/hの流量で冷却した場合に20KWの発電が可能である。
(上記第6実施形態から第8実施形態で考えられるその他の技術的特徴)
 加圧水発電装置の蒸気タービンで排出された蒸気をバイナリー発電の熱源として使用し、前記蒸気よりも沸点の低い作動媒体を蒸気化して発電を行うバイナリー発電装置と、前記加圧水発電装置に設けられる蒸気タービンへ送られる蒸気を加熱して過熱蒸気を生成し、前記バイナリー発電装置によって得られた電力によって駆動する加熱部と、を備えたことを特徴とする。
 利用した蒸気を再利用して過熱蒸気を生成する加熱部を設けたことによって、再利用した蒸気を効率よく利用することができ、電力量をさらに増加させることが可能である。
 次に、本発明にかかる地熱発電装置1300、1400、1500の実施形態について、図面を参照しつつ詳細に説明する。
(第9実施形態)
 第9実施形態にかかる地熱発電装置1300を、図17を参照して説明する。図17は、第9実施形態にかかる本発明の地熱発電装置1300の構成を示す概要図である。
 図17を参照して第9実施形態にかかる地熱発電装置1300を説明する。大別すると地熱発電装置1300は、加圧水発電装置Aとバイナリー発電装置Bとに構成される。
 加圧水発電装置Aは、圧力制御することができる加圧給水ポンプ103、貯留タンク104、低圧循環ポンプ10155、復水器106、媒体移送管110、フラッシャーF、蒸気タービンT、発電機G、送電設備H及びバイナリー発電装置Bと接続される熱交換部150とで構成されている。
 加圧水発電装置Aは、蒸気タービンTに蒸気を供給することで、発電機Gを回転させて発電を行い、送電設備Hに電気を供給し送電網を介して電力会社等に電気を供給するものである。
 蒸気タービンTは、タービン形式だけでなくスクリュー形式のもの等であってもよく、蒸気によって発電可能なものであればよい。蒸気タービンTに供給される蒸気は、熱水を減圧し沸騰させてフラッシャーFで生成される。
 フラッシャーFで蒸気となった熱水は、すべて蒸気とされることがないため、フラッシャーFからの多量の熱水が熱交換部150に送られる。熱交換部150で熱交換された熱水は低圧循環ポンプ105で貯留タンク104へ送られる。また、蒸気タービンTで排気された蒸気は復水器106で冷却水107によって凝縮され水に戻され貯留タンク104に貯められる。
 貯留タンク104の水は、再度地熱帯Sのある深部で熱水として熱交換されるように後述する媒体移送管110へ加圧給水ポンプ103で移送される。
 次に、媒体移送管110を説明する。地表Kから地中深部にある熱源となる地熱帯Sまで媒体移送管110が埋設されている。媒体移送管110は、外側に円筒状の媒体注入管111が埋設され、その媒体注入管111の周囲は地表Kから地熱帯手前まで地熱セメントによって固められている。媒体移送管110の媒体注入管111は、最深部が密閉されており、地熱帯Sの深部の温泉水等の流体や岩盤からの熱を吸収するものである。
 媒体注入管111は、スチールやステンレス等の素材で形成されている。温度の高い地熱帯Sの領域では、媒体注入管111は、外周に地熱帯Sの熱が伝わりやすいように、断面が円形の円柱状のフィンが溶接されている。媒体注入管111は、地表Kに近い温度の低い領域では、貯留タンク104から加圧されて注入される水の熱が奪われないように断熱材や空気層を設けた断熱構造がとられている。
 媒体注入管111の内側には地熱帯Sで熱せられた水を移送する円筒状の媒体取出管112が設けられている。媒体取出管112は、媒体注入管111の内側であって同軸上に円筒状に形成されている。媒体取出管112は、垂直の断面は外側部と内側部との間に断熱材の繊維や樹脂や空気層を形成する2重構造となっている。この2重構造により、断熱効果だけでなく、体積が増し密度を小さくし水の密度に近づけることで、設置する際に媒体としての水を媒体注入管111に注入した後、この2重構造を取った媒体取出管112を水の中に沈めていくことで浮力が発生し、媒体取出管112を吊る装置への荷重を軽減することが可能となる。
 地熱帯Sで熱せられた熱水は、フラッシャーFで減圧し沸騰され蒸気を生成する。ここで、フラッシャーFは、蒸気を発生させる際のノズルは、自吸により微小気泡となるマイクロバブルやナノバブルを生成することができるノズルを使用しても良い。この構成により蒸気量を増やすことが可能である。蒸気量を増やすことによって、水を移送する速度を落としても充分な蒸気量を確保できるため、地熱帯Sの熱吸収領域での水の滞在時間を多くとることができ、水が熱を吸収する時間が取れ高温の熱水とすることができる。
 本実施例では地熱帯Sで熱交換する媒体として水を使用しているが、媒体として不活性ガス又はバイナリー発電で利用される水より沸点が低い媒体(水とアンモニアの混合物等)が考えられる。媒体移送管110の破損等が有った場合であっても、水であれば環境に害を与えることはなく、作業面においても安全に扱うことが可能である。
 本実施例で説明する加圧水発電装置Aは、水が閉じられた状態で循環しており熱エネルギーの交換を行うシステムである。
 次に、バイナリー発電装置Bを、図17を参照して説明すると、バイナリー発電装置Bは、加圧水発電装置Aと接続される熱交換部150と、蒸気タービンT3と、発電機G、送電設備H、冷却器156及び循環ポンプ155とで構成されている。
 熱交換部150は、フラッシャーFで蒸気と分離された熱水が、幾十にも折り曲げられた熱交換器151を通過する。この熱交換部150の部分で熱せられた作動媒体は、蒸発して蒸気タービンT3を回転させ発電を行っている。送電設備Hは、電気を供給し送電網を介して電力会社等に電気を供給するものである。ここで作動媒体は、可燃性や毒性のない不活不活性ガスのHFC-245fa、R245fa等や沸点の低い媒体(水とアンモニアの混合物等、炭化水素(ペンタン))等が使用される。
 蒸気タービンT3は、膨張タービン等が使用されている。蒸気タービンT3を通過した作動媒体は、冷却器156の冷却水157によって冷却され、媒体を気体から液体等に凝縮させ循環ポンプ155によって再度、熱交換部150へ送られる。
 このような作動媒体を利用することによって、70℃から95℃の温水であっても9(ton(トン))/h(時間)から24t/hの流量が有れば発電が可能となる。このシステムにおいては、媒体が閉じられた系の中で熱交換を行うシステムとなっている。
(上記装置を利用して発電する発電方法)
 図17を参照して発電方法を説明すると、200℃前後の熱を地中で得るためにボーリングにより開けられた穴の深度は、地中700mから1500m程度までの深さに達している。この深さは深ければ深いほど高い温度が得られると考えられるが、掘削費用との兼ね合いにより決められ、地熱帯Sは、150℃から300℃の温度があれば最もよく、地熱帯Sの最深部付近から得られる温度によって適宜以下の値も変化する。
 先ず、加圧水発電装置Aの発電方法について説明すると、地中には、媒体移送管110が埋設されており、媒体移送管110は、地中と接する外側に媒体注入管111が連結されて地中深くまで達している。また、媒体注入管111は、媒体注入管111の内側に媒体取出管112が連結されて媒体注入管111の底部まで達している。これら媒体移送管110を地熱帯Sから得られる熱を吸収する熱交換部として利用されている。この加圧水発電装置Aは、熱水を蒸発させて蒸気タービンTを介して発電を行っている。以下に加圧水発電装置Aによる発電方法について詳述する。
 例えば、貯留タンク104の水(I1)は、加圧給水ポンプ103により5MPaに加圧され媒体移送管110の媒体注入管111に流量55(ton(トン))/h(時間)で送られ、地中深くの地熱帯Sまで移送される。220℃の地熱帯Sまで移送された温水は、地熱帯Sからの熱を熱伝導率の高い媒体注入管111から吸収し、最終的に210℃の熱水(I2)となる。そして、媒体取出管112から取り出された熱水(I3)は、出口での温度が200℃で、圧力が2.0MPaでフラッシャーFに移送される。
 フラッシャーFは、温度200℃の熱水を、圧力を解放して約0.6MPaに減圧し沸騰させてフラッシュ率約11%の蒸気を蒸気量6t/hの蒸気を発生させる。フラッシャーFは、その生成した蒸気を蒸気タービンTに送る。送られた蒸気は、蒸気タービンTの回転により発電機Gを駆動させ発電する。この蒸気により発電される発電量は効率を80%とすると約112kWhの出力が得られる。
 また、フラッシャーFは、蒸気にならずに残った約89%の熱水(I4)を、温度160℃前後の温度を保ったまま圧力0.6MPaで熱交換器151に流量49t/hで送る。熱交換器151を通過した熱水(I5)は、熱交換されて作動媒体に熱を奪われ140℃前後に冷却され低圧循環ポンプ105によって圧力0.47MPaで貯留タンク104へ移送される。また、蒸気タービンTで排気された蒸気は、復水器106で冷却水107によって凝縮され圧力0.101MPaの100℃の熱水(I6)に戻され、流量6t/hで貯留タンク104に貯められる。
 貯留タンク104の130℃前後の熱水(I1)は、再び加圧給水ポンプ103により6MPaに加圧され媒体移送管110の媒体注入管111に流量55t/hで送られ、地中深くの地熱帯Sまで移送される。
 ここで、図11乃至図14によって従来の加圧水発電装置Aと本発明の比較を示す。図11は、従来の加圧水発電装置Aの媒体移送管110の深度と熱水の温度分布の関係図である。破線は、地中の温度分布121を示しており、実線は、媒体注入管111及び媒体取出管112の熱伝導率が50W/m・Kの材質を採用した場合の熱水の温度分布122・123を示している。2点鎖線は、熱伝導率が0.1W/m・Kの材質を採用し、図12の蒸発曲線126の200℃の温度でのC点となる1.554MPa以下の場合の温度分布121を示している。
 図12は、水の状態変化の概要図である。図12には、水が固体・液体・気体と変化する際の温度と圧力が示されている。三重点から臨界点までの実線は蒸発曲線126を示している。大気圧での沸点は100℃であって0.101MPaを示している。線上のC点では200℃の温度の場合には1.554MPaより少ない場合には水の状態から気体すなわち蒸気へと変化する境界ラインである。線上のD点では210℃の温度の場合には1.907MPaより少ない場合には水の状態から気体すなわち蒸気へと変化する境界ラインとなる。
 温度分布121は、地熱帯Sの深部に近づくにつれて温度は上昇し220℃に達している。媒体注入管111及び媒体取出管112の熱伝導率は、50W/m・Kの材質を採用しているため、媒体注入管111に導かれる熱水(I1)は、地中の温度分布121に沿って温度分布122が上昇する。そして、200℃に達した熱水(I2)を媒体取出管112から取り出すが、熱水(I2)は地表部Kまで上昇する際、媒体取出管112の熱伝導率が高いため、温度分布123に示すように熱水(I1)の温度に近づくよう、熱水(I3)は温度が低下する。
ここで、媒体取出管112の熱伝導率を0.1W/m・Kと小さく設定したとしても、媒体取出管112の出口の熱水I3の圧力が図12に示すC点より低い場合を示しており、図11に示す温度分布124は、蒸発曲線126よりも低くなっているため蒸気が発生し、沸点に近づくように温度低下が発生している。
また、図13は、水の対流熱伝達係数127を示している。この熱伝達係数とは、流れている流体から、それに接する壁へいかに熱が伝わりやすいかを示す尺度である。図に示しように水から蒸気へと変化すると、数10倍の熱伝達係数が大きくなるため、熱水に含まれる蒸気量が増えれば増えるほど、所謂気液2相流となり、熱しやすくまた冷めやすいという傾向となるので、熱が奪われやすくなる。その熱損失を防ぎエネルギーを蓄えたまま移送するためには、熱水を冷め難くする必要がある。
 そして、地熱帯Sで熱せられた沸点以上の熱水は、冷めないように蒸気を含まない状態でフラッシャーFまで運べれば熱損失が少なくなる。熱損失を少なくするには、上述したように図12の蒸発曲線126よりも高い圧力を保つ必要がある。特に、熱交換器内に温度差が生じ、これに伴って水の密度差に起因する重力水頭圧が発生するが、媒体注入管111及び媒体取出管112の圧力損失等を考慮すると蒸発曲線126よりも高い圧力を保つために加圧給水ポンプ103によって圧力を高いままに保って蒸気が発生しないように保つことが重要である。熱水のまま所謂単相流のままフラッシャーFまで移送することが地下の熱を有効に利用することができることとなる。
 以上のことから、本発明では図14の網掛けに示すように媒体注入管111及び媒体取出管112の断熱領域を、熱伝達係数を0.1W/m・K以下とする材料で形成した。最も良いのは0.05W/m・Kから0.01W/m・K以下の断熱性能を有するものがよい。断熱性能を保つことによって、出口での温度低下を防ぎ、結果加圧給水ポンプ103の圧力を高く設定しなくとも良い。図14において、破線は、地中の温度分布121を示しており、実線は、熱水の温度分布125を示している。
また、熱水I3の出口圧力は、媒体注入管111及び媒体取出管112の圧力損失を考慮して、加圧給水ポンプによって少なくとも図12の蒸発曲線126よりも大きくし、温度が沸点以上である熱水のまま移送できるように蒸気を発生させない圧力とした。
さらに地中の温度分布の高い領域すなわち発電に必要な吸熱領域において媒体注入管111は、熱伝導率の高い50W/m・Kの材料で形成した。特に高ければ高い伝導率であればよいが、地中内での圧力や腐食を考慮すると金属製の材料で形成するのが望ましく、有効な熱伝導率は、20W/m・K以上であればよい。
 このように形成することにより、地中の温度の高い吸熱領域において、地熱帯からの沸点を超えた熱水(I2)は、熱を吸収し、熱伝導率の低い媒体取出管112及び加圧給水ポンプ103により加圧しながら移送することによって、温度を低下することなく200℃の熱水(I3)を圧力2.0MPaで地上にあるフラッシャーFまで移送することができる。
 次に、バイナリー発電装置Bでの発電方法を説明する。
 熱交換部150は、フラッシャーFで蒸気にならずに残った89%の熱水(I4)を、温度160℃前後の温度を保ったまま圧力0.6MPaで熱交換器151に流量49t/hで供給される。その際、熱水(I4)の流量が多ければバイパスを設けて貯留タンク104に余った熱水を分岐させても良い。熱交換器151は、熱交換部150にて低沸点である作動媒体(J1)を蒸発させており、その生成した蒸気を蒸気タービンT3に送る。送られた蒸気は、蒸気タービンT3の回転により発電機Gを駆動させ発電する。この蒸気により発電される発電量は効率を80%で稼働させると少なくとも113~160kWhの出力が得られる。フラッシャーFからの余った熱水(I4)は、全てバイナリー発電装置Bに使用する必要はなく、バイナリー発電装置Bの特性や希望する発電量に応じて供給すれば良く。余剰の熱水(I4)は、熱を保ったまま再び地熱帯Sへ戻して熱交換をさせることも可能である。
また、蒸気タービンT3から排出された蒸気(J2)は、冷却器156の冷却水157によって冷却され、本発明で使用される作動媒体を気体から液体等に凝縮させている。循環ポンプ155によって、作動媒体(J3)は再び熱交換部150へ送られる。
 これら、加圧水発電装置Aとバイナリー発電装置Bとで得られた電気は、送電設備Hから電力会社等へ供給される。また、バイナリー発電装置Bで生成された電気は、地熱発電装置1300内で消費しても良く、乾き蒸気を生成する電力やポンプ類(103、105、155)での電力に使用しても良い。また蓄電池等に蓄えてから使用することも考えられる。
(第10実施形態)
 第10実施形態にかかる地熱発電装置1400を、図18を参照して説明する。図18は、第10実施形態にかかる本発明の地熱発電装置1400の構成を示す概要図である。
 図18を参照して第2実施形態にかかる地熱発電装置1400を説明する。大別すると地熱発電装置1400は、加圧水発電装置Aとバイナリー発電装置Bとに構成される。
 加圧水発電装置Aは、加圧給水ポンプ103、貯留タンク104、低圧循環ポンプ105、復水器106、媒体移送管110、フラッシャーF、蒸気タービンT、発電機G、送電設備H及びバイナリー発電装置Bと接続される熱交換部150とで構成されている。
 第9実施形態と同様の構成を示す箇所は、第1実施形態と同様の符号を付して表してあり、構成は第9実施形態と同様な個所の説明は省略する。
 第9実施形態と異なる点は、加圧水発電装置Aは、ダブルフラッシュ(F1・F2)となっている点で異なっており、高圧側の蒸気タービンT1と低圧側の蒸気タービンT2に蒸気を供給している。
フラッシャーF1は、高圧の蒸気を蒸気タービンT1に供給し、フラッシャーF2は、低圧の蒸気を蒸気タービンT2に供給している。
(上記装置を利用して発電する発電方法)
 図18を参照して発電方法を説明すると、200℃前後の熱を地中で得るためにボーリングにより開けられた穴の深度は、地中700mから1500m程度までの深さに達している。この深さは深ければ深いほど高い温度が得られると考えられるが、掘削費用との兼ね合いにより決められ地熱帯Sは、150℃から300℃の温度があれば最もよく、地熱帯Sの最深部付近から得られる温度によって適宜以下の値も変化する。
 また、第9実施形態で説明したように本発明は、地中の温度の高い吸熱領域において、熱水(I12)は、地熱帯Sから熱を吸収する。熱伝導率の低い媒体取出管112及び加圧給水ポンプ103により、加圧しながら移送することによって、温度を低下することなく200℃の熱水(I13)を圧力2.0MPaで地上にあるフラッシャーF1・F2まで移送することができる。
 先ず、加圧水発電装置Aによる発電方法について詳述する。地中には、媒体移送管110が埋設されており、媒体移送管110は、地中と接する外側に媒体注入管111が連結されて地中深くまで達している。また、媒体注入管111は、媒体注入管111の内側に媒体取出管112が連結されて媒体注入管111の底部まで達している。これら媒体移送管110を地熱帯Sから得られる熱を吸収する熱交換部として利用し、熱水を蒸発させて蒸気タービンTを介して発電を行っている。
 例えば、貯留タンク104の水(I11)は、加圧給水ポンプ103により5MPaに加圧され媒体移送管110の媒体注入管111に流量55t/hで送られ、地中深くの地熱帯Sまで移送される。220℃の地熱帯Sまで移送された温水は、地熱帯Sからの熱を熱伝導率の高い媒体注入管111から伝わり、最終的に210℃の熱水(I12)となる。そして、媒体取出管112から取り出された熱水(I13)は、出口での温度が200℃で、圧力が2.0MPaでフラッシャーF1に移送される。
 フラッシャーF1は、温度200℃の熱水を、圧力を解放して1.0MPaに減圧し沸騰させてフラッシュ率約7%の蒸気を蒸気量約4t/hで発生させる。フラッシャーF1は、その生成した蒸気を高圧側の蒸気タービンT1に送る。送られた蒸気は、蒸気タービンTを回転させ発電機Gによって発電する。この蒸気により発電される発電量は効率を80%とすると90kWhの出力が得られる。また、フラッシャーF1で蒸気にならずに残った約93%の熱水(I14)は、温度180℃前後の温度を保ったまま圧力1.0MPaでフラッシャーF2に送られる。
 フラッシャーF2は、温度180℃の熱水を、圧力を解放して0.6MPaに減圧沸騰させてフラッシュ率約4%の蒸気を蒸気量2t/hの蒸気を発生させる。フラッシャーF2は、その生成した蒸気を低圧側の蒸気タービンT2に送る。送られた蒸気は、蒸気タービンTの回転により発電機Gを駆動させ発電する。この蒸気により発電される発電量は効率を80%で稼働させると少なくとも40kWhの出力が得られる。
フラッシャーF2は、最初汲み上げた熱水(I13)のうち蒸気にならずに残った約89%の熱水(I15)を、温度160℃前後の温度を保ったまま圧力0.6MPaで熱交換器151に流量約49t/hで送る。熱交換器151を通過した熱水(I15)は、熱交換されて作動媒体に熱を奪われ140℃前後に冷却され低圧循環ポンプ105によって圧力0.47MPaで貯留タンク104へ移送される(I16)。また、蒸気タービンTで排気された蒸気は、復水器106で冷却水107によって凝縮され圧力0.101MPaの140℃の熱水(I17)に戻され、流量6t/hで貯留タンク104に貯められる。
 貯留タンク4の140℃前後の熱水(I11)は、再び加圧給水ポンプ103により6MPaに加圧され媒体移送管110の媒体注入管111に流量55t/hで送られ、地中深くの地熱帯Sまで移送される。
 次に、バイナリー発電装置Bでの発電方法を説明する。
熱交換部150は、フラッシャーF2で蒸気にならずに残った約89%の熱水(I15)を、温度160℃前後の温度を保ったまま圧力0.47MPaで熱交換器151に流量49t/hで供給される。その際、熱水(I15)の流量が多ければバイパスを設けて貯留タンク104に余った熱水を分岐させても良い。熱交換器151は、熱交換部150にて低沸点である作動媒体(J1)を蒸発させており、その生成した蒸気を蒸気タービンT3に送る。送られた蒸気は、蒸気タービンT3の回転により発電機Gを駆動させ発電する。この蒸気により発電される発電量は効率を80%とすると113~160kWhの出力が得られる。また、蒸気タービンT3から排出された蒸気(J2)は、冷却器156の冷却水157によって冷却され、本発明で使用される作動媒体を気体から液体等に凝縮させている。循環ポンプ155によって、作動媒体(J3)は再び熱交換部150へ送られる。
 これら、加圧水発電装置Aとバイナリー発電装置Bとで得られた電気は、送電設備Hから電力会社等へ供給される。また、バイナリー発電装置Bで生成された電気は、地熱発電装置1400内で消費しても良く、乾き蒸気を生成する電力やポンプ類(103、105、155)での電力に使用しても良い。また蓄電池等に蓄えてから使用することも考えられる。
(第10実施形態)
 第10実施形態にかかる地熱発電装置1500を、図19を参照して説明する。図19は、第9実施形態にかかる本発明の地熱発電装置1500の構成を示す概要図である。
 図19を参照して第10実施形態にかかる地熱発電装置1500を説明する。大別すると地熱発電装置1500は、加圧水発電装置Aとバイナリー発電装置Bとに構成される。
 加圧水発電装置Aは、加圧給水ポンプ103、貯留タンク104、低圧循環ポンプ105、復水器106、媒体移送管110、フラッシャーF、蒸気タービンT、発電機G、送電設備H及びバイナリー発電装置Bと接続される熱交換部150とで構成されている。
 第8実施形態と同様の構成を示す箇所は、第8実施形態と同様の符号を付して表してあり、構成は第8実施形態と同様な個所の説明は省略する。
 第8実施形態と異なる点は、加圧水発電装置Aは、ダブルフラッシュ(F1・F2)となっている点で異なっており、フラッシャーに対して独立した蒸気タービン及び発電装置が設けられている。
フラッシャーF1は、高圧の蒸気を蒸気タービンT1に供給し、フラッシャーF2は、低圧の蒸気を蒸気タービンT2に供給している。
(上記装置を利用して発電する発電方法)
 図19を参照して発電方法を説明すると、200℃前後の熱を地中で得るためにボーリングにより開けられた穴の深度は、地中700mから1500m程度までの深さに達している。この深さは深ければ深いほど高い温度が得られると考えられるが、掘削費用との兼ね合いにより決められ地熱帯Sは、150℃から300℃の温度があれば最もよく、地熱帯Sの最深部付近から得られる温度によって適宜以下の値も変化する。
 また、第8実施形態で説明したように本発明は、地中の温度の高い吸熱領域において、地熱帯Sから熱を吸収した熱水(I12)は、熱伝導率の低い媒体取出管112及び加圧給水ポンプ103により加圧しながら移送することによって、温度を低下することなく200℃の熱水(I13)を圧力2.0MPaで地上にあるフラッシャーF1・F2まで移送することができる。
 先ず、加圧水発電装置Aによる発電方法について詳述する。地中には、媒体移送管110が埋設されており、媒体移送管110は、地中と接する外側に媒体注入管111が連結されて地中深くまで達している。また、媒体注入管111は、媒体注入管111の内側に媒体取出管112が連結されて媒体注入管111の底部まで達している。これら媒体移送管110を地熱帯Sから得られる熱を吸収する熱交換部として利用し、熱水を蒸発させて蒸気タービンTを介して発電を行っている。
 例えば、貯留タンク104の水(I11)は、加圧給水ポンプ103により5MPaに加圧され媒体移送管110の媒体注入管111に流量55t/hで送られ、地中深くの地熱帯Sまで移送される。220℃の地熱帯Sまで移送された水は、地熱帯Sからの熱を熱伝導率の高い媒体注入管111から伝わり、最終的に210℃の熱水(I12)となる。そして、媒体取出管112から取り出された熱水(I13)は、出口での温度が200℃で、圧力が2.0MPaでフラッシャーF1に移送される。
 フラッシャーF1は、温度200℃の熱水を、圧力を解放して1.0MPaに減圧し沸騰させてフラッシュ率約7%の蒸気を蒸気量4t(トン)/h(時間)で発生させる。フラッシャーF1は、その生成した蒸気を高圧側の蒸気タービンT1に送る。送られた蒸気は、蒸気タービンT1の回転により発電機G1を駆動させ発電する。この蒸気により発電される発電量は効率を80%として90kWhの出力が得られる。また、フラッシャーF1で蒸気にならずに残った93%の熱水(I14)は、温度180℃前後の温度を保ったまま圧力1.0MPaでフラッシャーF2に送られる。
 フラッシャーF2は、温度180℃の熱水の圧力を解放して0.6MPaに減圧し沸騰させてフラッシュ率約4%の蒸気を蒸気量2t/hで発生させる。フラッシャーF2は、その生成した蒸気を低圧側の蒸気タービンT2に送る。送られた蒸気は、蒸気タービンT2の回転により発電機G2を駆動させ発電する。この蒸気により発電される発電量は効率を80%として40kWhの出力が得られる。
 フラッシャーF2は、最初汲み上げた熱水(I13)のうち蒸気にならずに残った約89%の熱水(I15)を、温度160℃前後の温度を保ったまま圧力0.6MPaで熱交換器151に流量約49t/hで送る。熱交換器151を通過した熱水(I15)は、熱交換されて作動媒体に熱を奪われ140℃前後に冷却され低圧循環ポンプ105によって圧力0.47MPaで貯留タンク104へ移送される(I16)。また、蒸気タービンTで排気された蒸気は、復水器106で冷却水107によって凝縮され圧力0.101MPaの140℃の熱水(I17)に戻され、流量6t/hで貯留タンク104に貯められる。
 貯留タンク104の140℃前後の熱水(I11)は、再び加圧給水ポンプ103により6MPaに加圧され媒体移送管110の媒体注入管111に流量55t/hで送られ、地中深くの地熱帯Sまで移送される。
 次に、バイナリー発電装置Bでの発電方法を説明する。
 熱交換部150は、フラッシャーF2で蒸気にならずに残った約89%の熱水(I15)を、温度160℃前後の温度を保ったまま圧力0.47MPaで熱交換器151に流量約49t/hで供給される。その際、熱水(I15)の流量が多ければバイパスを設けて貯留タンク104に余った熱水を分岐させても良い。熱交換器151は、熱交換部150にて低沸点である作動媒体(J1)を蒸発させており、その生成した蒸気を蒸気タービンT3に送る。送られた蒸気は、蒸気タービンT3の回転により発電機Gを駆動させ発電する。この蒸気により発電される発電量は効率を80%とすると113~160kWhの出力が得られる。また、蒸気タービンT3から排出された蒸気(J2)は、冷却器156の冷却水157によって冷却され、本発で使用される作動媒体を気体から液体等に凝縮される。循環ポンプ155によって、作動媒体(J3)は再び熱交換部150へ送られる。
 これら、加圧水発電装置Aとバイナリー発電装置Bとで得られた電気は、送電設備Hから電力会社等へ供給される。また、バイナリー発電装置Bで生成された電気は、地熱発電装置1300内で消費しても良く、乾き蒸気を生成する電力やポンプ類(103、105、155)での電力に消費しても良い。またこれら電気は蓄電池等に蓄えてから使用することも考えられる。
 尚、バイナリー発電装置Bは、上記の発電装置に限定されず、バイナリー発電装置Bの条件として、飽和蒸気温度130℃、圧力0.169MPの蒸気を1.8t/hをバイナリー発電装置Bに供給し、冷却水等で冷却温度35℃に冷却した場合に92kWhの発電が可能である。また、他の条件として70~95℃の熱水を12~28t/hの流量をバイナリー発電装置Bに供給し、冷却水等で冷却温度20~30℃で20~40t/hの流量で冷却した場合に20kWhの発電が可能である。
尚、T1及びT2についても作動媒体を低沸点としたバイナリー発電Bであっても良い。蒸気や熱水が低い場合であっても発電が可能である。
(第8実施形態から第10実施形態から考えられるその他の技術的特徴)
地熱帯の熱によって熱せられた熱水を熱源として発電する地熱発電装置であって、外側に前記地熱帯へ前記熱水を移送する媒体注入管と、前記媒体注入管の内側に前記地熱帯の熱によって熱せられた前記熱水を取り出す媒体取出管とを備えた媒体移送管と、低温である前記地熱帯の領域では熱伝導率の低い断熱構造を設けた前記媒体取出管と、高温である前記地熱帯の領域では熱伝導率の高い吸熱構造を設けた前記媒体注入管と、を設け、前記地熱帯により熱を吸収した高温の前記熱水を蒸発曲線よりも高い圧力を加えて、蒸気を発生しないように液体の状態で地上にある蒸気発生器まで移送し、その蒸気発生器で蒸気とならなかった前記熱水をその後の複数の蒸気発生器によって蒸気を発生させて前記蒸気によって発電を行うことによって加圧水発電装置と、地上へ移送された前記熱水のうち蒸気発生器で蒸気とならなかった前記熱水を熱源として使用し、前記熱水よりも沸点の低い作動媒体を蒸気化して発電を行うバイナリー発電装置と、を備えたことを特徴とする地熱発電装置及び地熱発電方法。
 以上の構成によって、地中から得られた熱を、水を媒体として熱変換するため、スケールによる熱の温度低下や管の詰まり等の機器への影響を考える必要もなく、またスケール除去等による汚染や地中からの有害物質による障害も考えることはない。
熱水および蒸気の凝縮水が混入すると、タービンの熱効率は、乾き蒸気で作動する場合に比べて、効率が著しく低下する、いわゆる湿り損失が生じることが知られている。また、蒸気中の水滴が高速で回転するタービン動翼あるいは配管内壁に衝突することにより、エロージョンを受け、さらなる効率の低下のみならず機器損傷を引き起こす原因となる。本発明では、地上の蒸気発生器(フラッシャー)にて蒸気を生成するため、地中で蒸気を生成する場合に比較して熱効率よく地上に熱水を移送した後、減圧沸騰させ蒸気を発生させるため、エロージョンや効率低下という問題を解決することができる。
また、蒸気とならなかった熱水を再利用することで発電量を増量させることが可能である。
 加圧水発電装置に設けられた複数の蒸気発生器で発生した蒸気又は蒸気とならなかった熱水を熱源として使用し、前記熱水よりも沸点の低い作動媒体を蒸気化して発電を行うバイナリー発電装置と、を備えたことを特徴とする地熱発電装置及び地熱発電方法。
発電量を増量させることが可能であると共に地熱の熱を有効に利用することが可能である。
 次に、本発明にかかる地熱発電装置1600、1700、1800、1900の実施形態について、図面を参照しつつ詳細に説明する。なお、以下に説明する実施形態及び図面は、本発明の実施形態の一部を例示するものであり、これらの構成に限定する目的に使用されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更することができる。各図において対応する構成要素には同一又は類似の符号が付されている。
 図に示される白矢印は、媒体(温水、熱水及び還元水)が流れる方向を示している。ここで、本発明では使用される単相流の液体を水を例にとって説明しているが、特に限定されることはなく、アンモニア等のバイナリー発電等で使用される低沸点の媒体であっても良い。各白矢印の液体の流れる箇所は、配管が設けられている。また、各装置又はタンクの手前に減圧弁等が設けられており、流量の調整が可能なようになっている。
(第12実施形態)
 第12実施形態にかかる地熱発電装置1600が図20乃至図22に示されている。主に図20を参照して説明すると、図20は、第12実施形態にかかる本発明の地熱発電装置1600の構成を示す概要図である。図21は、微小気泡213を表す作用図である。図223(A)は、第12実施形態にかかる微小気泡生成ノズル221aの構成を表す概要図である。
 第12実施形態にかかる地熱発電装置1600は、大別すると微小気泡生成装置420、貯留タンクとしての循環サービスタンク230、熱交換器250、蒸気発生器260、フラッシャー270、蒸気タービン280、復水器290、加圧給水ポンプ241、低圧循環ポンプ242で構成されている。
 地熱発電装置1600は、蒸気タービン280に蒸気を供給することで発電モータ281を回転させて発電を行い、受電設備282に電気を供給し送電網を介して電力会社等に電気を供給するものである。蒸気タービン280は、タービン形式だけでなくスクリュー形式のもの等であってもよく、蒸気によって発電可能なものであればよい。
 蒸気タービン280に供給される蒸気は、熱水を減圧沸騰させて蒸気発生器260で生成する。生成した蒸気は、配管261によって蒸気タービン280の高圧部に直接供給される。蒸気量が足りない場合は、蒸気発生器260で余った高温水をフラッシャー270で再度減圧沸騰させ、蒸気を発生させる。発生した蒸気は、配管271によって低圧部の蒸気タービン280へ供給される。熱水は、すべて蒸気とされることがないため、フラッシャー270からの還元水は、循環サービスタンク230に貯められる。また、復水器290は、蒸気タービン280で使用された蒸気を冷却水291で再び水へ凝縮させる装置である。凝縮された温水は低圧循環ポンプ242で循環サービスタンク230へ移送される。
 循環サービスタンク230は、フラッシャー270からの還元水と復水器290から低圧循環ポンプ242で移送された温水を貯めている。貯められた水は、再度地熱帯Sで熱水として熱交換されるように加圧水注入管251へ加圧給水ポンプ241で移送される。
 循環サービスタンク230は、微小気泡生成装置220を含んでおり、循環サービスタンク230の水の一部を液体搬送管231を介して微小気泡生成装置420に移送される。微小気泡生成装置420は、図20及び図22(A)に示すように、動力部224と、微小気泡213を排出するノズル部としての微小気泡生成ノズル221aとに分離されて設けられている。
 微小気泡生成装置420に設けられた動力部224の図示しないポンプで加圧した水を圧力注入管223aにより微小気泡生成ノズル221aに供給する。微小気泡生成装置420は、動力部224の図示しないエアコンプレッサー等で気体注入管222aを介して空気を微小気泡生成ノズル221aに供給し、微小気泡生成ノズル221aは空気と共に温水を排出するためのノズル225aが設けられている。微小気泡生成ノズル221aは、微小気泡生成ノズル221aの中間部に位置し、微小気泡生成ノズル221aの中に挿入された球状体227が嵌め込まれている。微小気泡生成ノズル221aは、その球状体227の挿入中心から下流に微小気泡生成ノズル221aの周上に穿設された小孔229が設けられている。微小気泡生成ノズル221aは、小孔229の外側に大気又はエアコンプレッサーと連通している空気室226が設けられている。
 そして、加圧した高圧水流を流すことで、自吸又はエアコンプレッサーで加圧した空気を伴って図21に示すように微小気泡213が生成される。微小気泡生成ノズル221aは、耐熱性のものが良く、少なくとも200℃程度耐えるような樹脂や金属等を使用するとよい。
 本発明で生成した微小気泡213は、マイクロバブルやナノバブルであり、粒径が20マイクロ以下のマイクロバブルはナノバブルへと縮小し、最終的には消滅することが知られている。ヘンリーの法則によると、気体は圧力に比例して水の中に溶解する。そのため、小さな気泡ほど気体の溶解能力が高いことを意味している。そして、マイクロバブルやナノバブルを溶解した水は、以下のような効果を奏している。
 微小気泡213を含んだ熱水をノズルでスプレー状に散布した場合に、マイクロバブルやナノバブルを多く含んでいるため、何も含んでいない水と比較すれば、粒子数で換算すると2倍から3倍の粒子数が確認されている。微小気泡213を含んだ熱水は、通常の水よりも付加的な発泡核数及び気液界面(蒸発界面)の表面積が増大する。これにより、蒸気発生器260で熱水が蒸気となる場合に、少なくとも蒸気量が1割から2割増大することが確認されている。
 マイクロバブルを乱流境界層中に注入することにより、壁面の摩擦抵抗を低減することも可能である。このため、管内の抵抗が少なくなり圧力損失の低減を行うことが可能である。そして、加圧給水ポンプ241や低圧循環ポンプ242の負担が少なくなる。
 また、微小気泡213は、空気と水の気液界面214では静電摩擦が起こることにより、静電気により気液界面214を境にして水側に正の電位216が、空気側には負の電位215が発生し気液界面214に生じた負の電位215による静電摩擦の力により、液体中の不純物を集めながら移送される。これにより、移送路内の浄化効果もあり、さらに圧力損失の低減を行うことが可能である。
 また、微小気泡213の生成方法には他にも考えられ、衝撃波や超音波やベンチュリー管を使用して圧壊を起こす方法、キャビテーションによる方法、剪断、電気分解や加圧溶解による方法等が考えられる。
 次に、熱交換器250を説明すると、地表Fから地中深部にある熱源となる地熱帯Sまで熱交換器250が埋設されている。熱交換器250は、外側に円筒状の加圧水注入管251が設けられ、その加圧水注入管251の周囲は地表Fから地熱帯S付近までは地熱セメントによって固められている。加圧水注入管251の内側には地熱帯Sで熱せられた水を移送する円筒状の液体取出管252が設けられている。加圧水注入管251は、スチールやステンレス等の素材で形成されており、温度の高い地熱帯Sの領域では、外周は地熱帯Sの熱が伝わりやすいように、フィン等が取り付けられている。
 また、加圧水注入管251の外周は、耐腐食性や伝熱性を向上させるためにアルミやアルミと鉛を混合した材料で溶射加工が施されている。加圧水注入管251は、地表Fに近い温度の低い領域では、循環サービスタンク230から加圧された温水の熱が奪われないように断熱材や空気層を設けた断熱構造がとられている。図20に示すように加圧水注入管251の最深部は、圧力損失が生じないように断面弧状に形成され、加圧された水がスムーズに液体取出管252へ移送される。
 液体取出管252は、地熱帯Sで熱せられた熱水を地上まで移送するために円筒状の管が、加圧水注入管251の内部に設けられている。液体取出管252は、ステンレス等の素材で形成されており最深部は、圧力損失が生じないように図示しない一部分が欠き切られた形状に形成され、加圧された水がスムーズに上昇する。
 液体取出管252から取り出された熱水は、加圧された状態で蒸気発生器260まで到達する。蒸気発生器260では、加圧された熱水が減圧沸騰され、蒸気が発生する。通常、蒸気発生器260で熱水から蒸気として取得できる蒸気の重量割合は30%であり、70%は温水として戻される。しかしながら、微小気泡213を含んだ状態では、付加的な発泡核数及び気液界面の増大により蒸気の重量割合は40%まで向上している。
(第13実施形態)
 第13実施形態にかかる地熱発電装置1700が図23に示されている。図23は、第13実施形態にかかる本発明の実施形態に係る地熱発電装置1700の構成を示す概要図である。第12実施形態と同様の構成を示す箇所は、第12実施形態と同様の符号を付して表してあり、構成は第12実施形態と同様な個所の説明は省略する。
 第13実施形態にかかる地熱発電装置1700は、大別すると微小気泡生成装置430、循環サービスタンク230、熱交換器250、蒸気発生器360、フラッシャー270、蒸気タービン280、復水器290、加圧給水ポンプ241、低圧循環ポンプ242で構成されている。
 第12実施形態と異なる点のみ説明すると、蒸気発生器360に微小気泡生成装置430が設けられている。微小気泡生成装置430は、図22(A)及び図23に示すように、動力部224と、微小気泡213を排出するノズル部としての微小気泡生成ノズル221aとに分離されて設けられている。
 微小気泡生成装置430は、加圧給水ポンプ241で加圧した熱水を圧力注入管223aで微小気泡生成ノズル221aに供給し、動力部224の図示しないエアコンプレッサーで気体注入管222aを介して空気を気泡生成ノズル221aに供給している。微小気泡生成ノズル221aは、空気と共に熱水を排出するためのノズル225aが設けられている。微小気泡生成ノズル221aの中間部に位置し、微小気泡生成ノズル221aの中に挿入された球状体227が嵌め込まれている。その球状体227の挿入中心から下流に微小気泡生成ノズル221aの周上に穿設された小孔229が設けられている。小孔229の外側には、エアコンプレッサーと連通している空気室226が設けられている。
 そして、蒸気発生器360は、熱水を減圧沸騰させて蒸気を生成するが、蒸気を発生させるノズルが微小気泡生成ノズル221aで構成されており、微小気泡213を発生させながら蒸気としているため、微小気泡213を含んだ熱水は、マイクロバブルやナノバブルを多く含んでいるため、通常の水よりも付加的な発泡核数及び気液界面の表面積が増大している。これにより、蒸気発生器360で熱水が蒸気となる場合に、蒸気量が増大する効果を奏している。
(第14実施形態)
 第14実施形態にかかる地熱発電装置210が図22(B)、図24及び図25に示されている。図22(B)は、第14実施形態にかかる微小気泡生成ノズル221bの構成を表す概要図である。図24は、第14実施形態にかかる本発明の実施形態に係る地熱発電装置1800の構成を示す概要図である。図25は、第14実施形態にかかる熱交換器350の上方部分における液体取出管252と微小気泡生成ノズル221bを示す斜視図である。第12実施形態と同様の構成を示す箇所は、第12実施形態と同様の符号を付して表してあり、構成は第12実施形態と同様な個所の説明は省略する。
 第14実施形態にかかる地熱発電装置1800は、大別すると微小気泡生成装置440、循環サービスタンク230、熱交換器350、蒸気発生器260、フラッシャー270、蒸気タービン280、復水器290、加圧給水ポンプ241、低圧循環ポンプ242で構成されている。
 第12実施形態と異なる点のみ説明すると、微小気泡生成装置440が熱交換器350に設けられている。熱交換器350は、地表F近くに微小気泡生成装置440を設けている。微小気泡生成装置440は、加圧給水ポンプ241に接続される圧力注入管223bを、液体取出管252と加圧水注入管251の間にあって、加圧水注入管251の内周に沿って反時計回りの螺旋状に設けている。これは、加圧された水を加圧水注入管251の内周に沿って注入することで螺旋を描きながら圧力損失を低減しながらスムーズに水が降下するように設けられている。
 微小気泡生成装置440は、図24及び図22(B)に示すように、気体注入管222bを介して空気を供給する動力部224に図示しないエアコンプレッサー等を備えている。また、加圧給水ポンプ241で加圧した水を圧力注入管223bで供給し、空気と共に排出するためのノズル225bが設けられている。
 微小気泡生成ノズル221bは、微小気泡生成ノズル221bの中間部に位置し、微小気泡生成ノズル221bの中に挿入された螺旋状の気泡カッター228が内蔵されている。その気泡カッター228の挿入中心から下流に微小気泡生成ノズル221bの周上に穿設された小孔229が設けられている。小孔229の外側には、空気室226が設けられている。そして、加圧した高圧水流を流すことで、動力部224の図示しないエアコンプレッサーで加圧された空気を伴って図21に示すように微小気泡213が生成される。
 生成された微小気泡440は、加圧給水ポンプ241により、温水の中に溶存しながら熱交換器350の深部に移送された後、熱水となって蒸気発生器260に移送される。微小気泡213は、管内の抵抗が少なくなり圧力損失の低減を行うことが可能である。そのため、加圧給水ポンプ241や低圧循環ポンプ242の負担が少なくなる。微小気泡213を含んだ熱水は、マイクロバブルやナノバブルを多く含んでいるため、通常の水よりも付加的な発泡核数及び気液界面の表面積が増大している。これにより、蒸気発生器260で熱水が蒸気となる場合に、蒸気量が増大する効果を奏している。 
(第15実施形態)
 第15実施形態にかかる地熱発電装置1900が図26に示されている。図26は、第15実施形態にかかる本発明の実施形態に係る地熱発電装置1900の構成を示す概要図である。第12実施形態と同様の構成を示す箇所は、第12実施形態と同様の符号を付して表してあり、構成は第12実施形態と同様な個所の説明は省略する。
 第15実施形態にかかる地熱発電装置1900は、大別すると微小気泡生成装置450、循環サービスタンク230、熱交換器250、蒸気発生器260、フラッシャー270、蒸気タービン280、復水器290、加圧給水ポンプ341、低圧循環ポンプ242で構成されている。
 第12実施形態と異なる点のみ説明すると、微小気泡生成装置450が加圧給水ポンプ341に接続されている。加圧給水ポンプ341は、空気を取り入れながら攪拌して図21の微細気泡213を生成する構造となっている。
 微小気泡生成装置450は、動力部224に図示しないエアコンプレッサーを搭載し、コンプレッサーで圧縮した空気を気体注入管222bを介して加圧給水ポンプ341に供給する。供給された空気は、加圧給水ポンプ341内の図示しない気泡カッターによって微小に形成される。加圧給水ポンプ341は、循環サービスタンク230からの水を加圧し、微小気泡213を溶存させて、熱水を熱交換器250に移送する。生成された微小気泡213は、加圧給水ポンプ341により、水の中に溶存しながら熱交換器250に移送された後、熱水となって蒸気発生器260に移送される。
 微小気泡213は、経路内の抵抗が少なくなり圧力損失の低減を行うことが可能である。そのため、加圧給水ポンプ341や低圧循環ポンプ242の負担が少なくなる。微小気泡213を含んだ熱水は、マイクロバブルやナノバブルを多く含んでいるため、通常の水よりも付加的な発泡核数及び気液界面の表面積が増大している。これにより、蒸気発生器260で熱水が蒸気となる場合に、蒸気量が増大する効果を奏している。 
(上記装置を利用して発電する発電方法)
 図20及び図21を参照して発電方法を説明すると、温度200℃前後の熱を地中で得るためにボーリングにより開けられた穴の深度は、地中700mから1500m程度まで達している。循環サービスタンク230の微小気泡213を含んだ水は、加圧給水ポンプ241により1.65Mpaに加圧され熱交換器250の加圧水注入管251に流量35.8t/hで送られ、地中深くの地熱帯Sまで移送される。例えば、230℃の地熱帯Sまで移送された水は、地熱帯Sからの熱を熱伝導性の良い加圧水注入管251から伝わり、最終的に200℃の熱水となる。そして、液体取出管252から取り出された温度190℃の熱水は、加圧給水ポンプ241により1.25Mpaに加圧され蒸気発生器260に移送される。
 蒸気発生器260で生成した蒸気は、配管261によって蒸気タービン280の高圧部に直接供給される。蒸気量が足りない場合は、蒸気発生器260で余った高温水をフラッシャー270で再度減圧沸騰させ、蒸気を発生させる。発生した蒸気は、配管271によって低圧部の蒸気タービン280へ供給される。
 フラッシャー270に移送された温度162℃の熱水を、圧力0.65Mpaに減圧膨張させて蒸気流量2.14t/hの蒸気として蒸気タービン280に送り、蒸気タービン280の回転により発電される。この蒸気量により発電される発電量は102KWの出力が得られる。
 また、フラッシャー270から得られる温度157℃の還元水は、圧力0.57Mpaで循環サービスタンク230に移送され貯留される。蒸気タービン280からの温度103℃の蒸気は、復水器290で冷却水291によって再び温度80℃の温水へ凝縮される。この温水は、低圧循環ポンプ242によって圧力0.47Mpaで循環サービスタンク230へ移送される。
 そして、循環サービスタンク230に貯留された温水は、微小気泡生成装置420で生成され微小気泡213を含み再び熱交換器250に加圧給水ポンプ241で送られる。これらシステムでは水を循環利用し、経路が閉塞型のシステムである。そのため、温泉水を汲み上げることなく発電が行われる環境に良いシステムである。
 尚、この深度は地熱帯Sの熱源の温度に左右され、特に限定されるものではない。また、発電量も移送する熱水の量や温度を調整することで、1MW等やそれ以上の出力を得ることも可能である。
(上記実施の形態から考えられるその他の技術的特徴)
 微小気泡生成装置(440)は、螺旋状に形成し、液体を地熱帯へ移送する加圧水注入管(223b)を備えたことを特徴とする。このように構成することによって、加圧水注入管の内周に沿って液体(熱水)が遠心力を伴って抵抗なく導入され深部に移送されるので、圧力損失なく移送され加圧ポンプ(241)等の負担を少なくすることができる。
 微小気泡生成装置(440)は、加圧水注入管(223b)の螺旋に沿って微小気泡(213)を伴った液体(熱水)を排出するノズル(221b)を備えたことを特徴とする。このように構成することによって、加圧水注入管251の内周に沿って液体(熱水)が遠心力を伴って抵抗なく導入され深部に移送されるので、液体(熱水)が圧力損失なく移送され加圧給水ポンプ(241)等の負担を少なくすることができる。
 地熱発電装置(1600・1700・1800・1900)は、蒸気化するまでの間に微小気泡(213)を生成する微小気泡生成装置(420、430、440、0)を備え、前記微小気泡を溶存させた液体を蒸気化して発電することを特徴とする。
 このように構成することによって、微小気泡を含んだ液体(熱水)は、通常の水よりも付加的な発泡核数及び気液界面(蒸発界面)の表面積が増大する。これにより、蒸気発生器で液体(熱水)が蒸気となる場合に、蒸気量を増すことができるので発電量を向上させることが可能となる。
 尚、上記実施の形態の中の微小気泡は、空気又は不活性ガス(窒素等)としても良く、窒素を使用することで安価であり、経路内の配管等の金属の酸化を防ぐことも可能である。また窒素は物性的に液体の流動抵抗をさらに低減することが可能である。以上のことから、経路内の抵抗が少なくなり圧力損失の低減を行うことが可能であるため、加圧給水ポンプ341や低圧循環ポンプ242の負担が少なくなる。
 これら微小気泡213を生成する微小気泡生成装置(20、120、220、450)は、様々な個所に設置することが考えられる。また、必ずしもエアコンプレッサー等の別の動力を使用しなければならないわけではなく、加圧給水ポンプ241や低圧循環ポンプ242の圧力を利用し温水や熱水を送り込み、各装置間の配管内やバイパス経路の配管の途中にベンチュリー管等を設置して、空気を自吸による送り込んで温水や熱水の中に微小気泡213を生成することも可能である。
 本発明にかかる媒体移送管510及び地熱発電装置2000の実施形態について、図面を参照しつつ詳細に説明する。
(第16実施形態)
 第16実施形態にかかる媒体移送管510及び地熱発電装置2000が図27乃至図35に示されている。図27は、第16実施形態にかかる本発明の地熱発電装置2000の構成を示す概要図である。図28は、第16実施形態にかかる本発明の媒体移送管510の媒体注入管511の接続部分を中心に拡大した斜視図である。図29は、第16実施形態にかかる本発明の媒体移送管510の軸上の断面図である。図30は、第16実施形態にかかる本発明の媒体移送管510の媒体注入管511を接続する接続管512の斜視図である。図31は、第16実施形態にかかる本発明の媒体移送管510の媒体注入管511の図28に示すA-A部分で切断した断面の一部分を示す拡大断面図である。図32は、第16実施形態にかかる本発明の媒体移送管510の媒体取出管521の接続管530を中心に拡大した斜視図である。図33は、第16実施形態にかかる本発明の媒体移送管510の媒体取出管521の接続部分を中心に拡大した正面図である。図34は、第16実施形態にかかる本発明の媒体取出管521の平面の中心を垂直に切断した際の断面図である。図35は、第16実施形態にかかる本発明の媒体移送管510の整流部540の斜視図である。
 図27を参照して第16実施形態にかかる地熱発電装置2000を説明すると、地熱発電装置2000は、貯留タンクとしての循環サービスタンク505、媒体移送管510、蒸気発生器560、フラッシャー(気水分離器)570、蒸気タービン580、復水器590、加圧給水ポンプ506、低圧循環ポンプ507で構成されている。
 地熱発電装置2000は、蒸気タービン580に蒸気を供給することで、発電モータ581を回転させて発電を行い、送電設備582に電気を供給し送電網を介して電力会社等に電気を供給するものである。蒸気タービン580は、タービン形式だけでなくスクリュー形式のもの等であってもよく、蒸気によって発電可能なものであればよい。
 蒸気タービン580に供給される蒸気は、熱水を減圧沸騰させて蒸気発生器560で生成される。生成した蒸気は、熱水と共に汽水分離器570に送られる。汽水分離器570は、熱水と、発生した蒸気を分離させて、蒸気を蒸気タービン580に供給する。
 熱水は、すべて蒸気とされることがないため、汽水分離器570からの還元水は、循環サービスタンク505に貯められる。また、復水器590は、蒸気タービン580で使用された蒸気を冷却水591で再び水へ凝縮させる装置である。凝縮された温水は、低圧循環ポンプ507で循環サービスタンク505へ移送される。
 循環サービスタンク505は、汽水分離器570からの還元水と復水器590から低圧循環ポンプ507で移送された温水を貯めている。貯められた温水は、再度地熱帯Sのある深部で熱水として熱交換されるように後述する媒体移送管510へ加圧給水ポンプ506で移送される。
 次に、図27乃至図35を参照して媒体移送管510を説明する。地表Fから地中深部にある熱源となる地熱帯Sまで媒体移送管510が埋設されている。媒体移送管510は、外側に円筒状の媒体注入管511が埋設され、その媒体注入管511の周囲は地表Fから地熱帯付近までは地熱セメントによって固められている。媒体注入管511の内側には地熱帯Sで熱せられた水を移送する円筒状の媒体取出管521が設けられている。
 図28乃至図31を参照して媒体注入管511を説明する。媒体注入管511は、スチールやステンレス等の素材で形成されている。温度の高い地熱帯Sの領域では、媒体注入管511は、外周に地熱帯Sの熱が伝わりやすいように、断面が円形の円柱状のフィン513が溶接されており、図31に示すようにフィン513の端部と中間に数カ所溶接した溶接塊515が設けられている。その他の箇所は、耐腐食性や伝熱性を向上させるために溶射加工によってアルミ又はアルミと鉛を混合した材料で被膜層516が設けられている。被膜層516は、フィン513の近傍の被膜層516Aと媒体注入管511の被膜層516Bとでは、被膜の厚みが異なり、伝熱性を高めるため被膜層516Bは薄くされており、被膜層516Aは強度と表面積を向上させるため厚く形成されている。被膜層516Bは、約0.1mmとし、被膜層516Aは、約0.5mmとしている。
 フィン513は、断面形状を円形で説明したが、三角形状、四角形状、多角形、楕円形状等であってもよく、表面積が増加する形状であれば良い。媒体注入管511は、地表Fに近い温度の低い領域では、循環サービスタンク505から加圧されて注入される温水の熱が奪われないように断熱材や空気層を設けた断熱構造がとられている。
 図28乃至図30を参照して接続管512を説明する。接続管512は、媒体注入管511同士を接続するための管であり、媒体注入管511の両端に設けられた図示しないネジ溝と螺合するように内側に螺合溝514が形成されている。媒体注入管511は、約10mの長さで形成されており、約10m間隔で接続管512を使用して連結されている。
 次に、媒体取出管521及び整流部540を、図29及び図32乃至図35を参照して説明する。媒体取出管521は、媒体注入管511の内側であって同軸上に円筒状に形成されている。媒体取出管521は、図34に示すように断面が外側部524と中側部との間に空気層523を形成する2重構造となっている。この2重構造により、断熱効果だけでなく、体積が増し密度を小さくし水に近づけることで、設置する際に媒体としての水を媒体注入管511に注入した後、この2重構造を取った媒体取出管521を水の中に沈めていくことで浮力が発生し、媒体取出管521を吊る装置への荷重を軽減することが可能となる。
 また、図34に示すように媒体注入管511と同様に、接続管530は媒体取出管521同士を接続するための管であり、媒体取出管521の両端に設けられたネジ溝525と螺合するように内側に螺合溝531が形成されている。媒体取出管521は、約10mの長さで形成されており、約10m間隔で接続管530を使用して連結されている。
 整流部540は、図29、図32、図33及び図35に示すように、媒体取出管521の同軸上に胴体部としての円形の環状のリング部542を上下に設けている。リング部542の間は、空間となっており、リング部542は、整流片541の上端を上方のリング部542と溶接し、整流片541の下端を下方のリング部542と溶接することで固定されている。リング部542は、内径が媒体取出管521よりも大きく、接続管530の外径よりも小さく形成されている。
 リング部542は、このような内径の寸法とすることで、媒体取出管521の上方から挿入可能であり接続部530の上端で止まる構造となる。このような構造とすることで、整流部540は、媒体取出管521の上方から挿入して落下させるのみの動作で、接続管530が接続部530に留まり施工が容易となる。整流部540は、約10mの間隔で接続管530の上方に位置している。リング部542は、平面からみて円形に形成したが、特に限定することなく四角形、三角形、多角形又は楕円形等であっても良い。
 整流片541は、ステンレス等の金属製の平板を、側端を媒体取出管521の外周及び媒体注入管511の内周に沿って切り出し、上下端は、リング部542との上端と水平になるように切り出して形成されている。整流片541は、平面から見てリング部542の中心軸Yを中心として、略90度の角度毎に配列し媒体注入管511に向って4枚設けられている。
 また、図33に示すように、整流片541が傾斜して溶接されている角度αは、媒体取出管521又はリング部542の中心軸Yの垂線となす角度として、略45度から75度が最適であり、60度が最も良い角度である。
 この整流片541は、特に地熱帯Sに設けられ、加圧された温水を矢印に(逆時計回りに)沿って導くことによって、加圧された温水を螺旋状に旋回しながら下降させ、圧力損失が生じないように最下部まで温水を導いている。また、整流片541は、地熱帯Sで熱せられた熱水の逆流を複数の整流片541により防いでいる。さらに、整流片541は、媒体取出管521の軸中心を偏らせない機能として振れ止めとなる機能を備えている。以下の実施例においても整流片541は同様な作用効果を奏している。
 整流部540は、媒体取出管521の外周に沿って断面円形の線状の棒が螺旋状に旋回された螺旋棒543が設けられている。図33に示すように、螺旋棒543が旋回されている螺旋の角度αは、媒体取出管521又はリング部542の中心軸Yの垂線となす角度として、略45度から75度が最適であり、60度が最も良い角度である。螺旋棒543を支持するために、媒体取出管521の外周に沿って断面円形の線状の支持棒544が、リング部542から斜めに直線状に延設されており、螺旋棒543は、支持棒544と1カ所で溶接されている。螺旋棒543は、螺旋の状態で媒体取出管521の全長の約1/2の全長5mで形成されている。
 また、螺旋棒543又は支持棒544は、リング部542又は整流片541の外周と溶接され整流部540として一体構造となっている。螺旋棒543は、媒体取出管521の外周を螺旋状に旋回されているため、加圧された温水を矢印に(逆時計回りに)沿って導くことによって、加圧された温水を螺旋状に旋回しながら下降させ、圧力損失が生じないように最下部まで温水を導いている。また、螺旋棒543は、地熱帯Sで熱せられた熱水の逆流を複数箇所で防いでいる。さらに、重量を軽量化しながらも媒体の流下させる方向を制御することができる。螺旋棒543又は支持棒544は、断面形状を円形で説明したが、三角形状、四角形状、多角形又は楕円形状等であってもよく、内部は軽量化できるように空洞であってもよく媒体の流下させる方向を制御できる形状であれば良い。また、螺旋棒543は、コイルスプリングを延ばして形成することも可能であり簡単に製造が可能である。
(第17実施形態)
 第17実施形態にかかる媒体移送管610が図36乃至図39及び図48に示されている。図36は、第17実施形態にかかる本発明の媒体移送管610の媒体取出管621の接続部分を中心に拡大した斜視図である。図37は、第17実施形態にかかる本発明の媒体移送管610の軸上の断面図である。図38は、第17実施形態にかかる本発明の媒体移送管610の媒体取出管621の接続部分を中心に拡大した正面図である。図39は、第17実施形態にかかる本発明の媒体移送管610の整流部550の斜視図である。図48は、第17実施形態にかかる本発明の図38の整流部550の整流片551のZ-Z断面図である。第16実施形態と同様の構成を示す箇所は、第16実施形態と同様の符号を付して表してあり、構成は第16実施形態と同様な個所の説明は省略する。
 また、図36に示すように媒体注入管511と同様に、接続管630は媒体取出管621同士を接続するための管である。接続管630は、媒体取出管621の両端に設けられた図示しないネジ溝525と螺合するように内側に図示しない螺合溝531が形成されている。媒体取出管621は、約10mの長さで形成されており、約10m間隔で接続管630を使用して連結されている。
 整流部550は、図36乃至図39に示すように、媒体取出管621と同軸上に胴体部として環状のリング部552を設けている。リング部552は、リング部552の外周に沿って整流片551の側面を溶接して固定されている。リング部552は、内径が媒体取出管621よりも大きく、また接続管630の外径よりも小さく形成されている。リング部552は、このような内径の寸法とすることで、媒体取出管621の上方から挿入可能であり接続部630の上端で止まる構造となる。このような構造とすることで、整流部550は、媒体取出管621の上方から挿入して落下させることにより接続管630で留まり施工が容易となる。整流部550は、約10m間隔で接続管630の上方に位置している。
 整流片551は、ステンレス等の金属製の平板を、上下端は、側端をリング部552の外周及び媒体注入管511の内周に沿って切り出し、上下端は、リング部552の上端と水平になるように切り出して形成されている。整流片551は、平面から見てリング部552の中心軸Yを中心として、略60度の角度毎に配列し媒体注入管511に向って6枚設けられている。整流部550は、平面から見ると整流片551が隙間なく流路を閉塞した位置に配置されているので、地熱帯Sで熱せられた熱水の逆流を複数箇所で防ぎ、より逆流防止効果がある。
 また、図38に示すように、整流片551が傾斜して溶接されている角度αは、媒体取出管621又はリング部552の中心軸Yの垂線となす角度として、略45度から75度が最適であり、60度が最も良い角度である。この整流片551は、特に地熱帯Sに設けられ、加圧された温水を矢印に(逆時計回りに)沿って導くことによって、加圧された温水を螺旋状に旋回しながら下降させ、圧力損失が生じないように最下部まで温水を導いている。
 図48に示すように、図48(A)は、整流片551の別例としての図38に示す整流片551のZ-Zの断面図である。整流片551の整流先端553は、流下する温水も抵抗を緩和して下流に導くため傾斜が設けられている。この整流先端553は、渦流や乱流を低減している。
 図48(B)は、整流片551の別例としての図38に示す整流片551のZ-Zの断面図である。整流片551の整流先端554は、流下する温水の抵抗を緩和して下流に導くため飛行機の羽根のように先端が膨らみ下流が絞られている。この整流先端553は、渦流や乱流を低減している。また直線上に絞られているが、片側に湾曲して飛行機の翼のように構成しても良い。図48の構造は、以下の実施形態に適用することができる。
(第18実施形態)
 第18実施形態にかかる整流部750が図40及び図41に示されている。図40は、第18実施形態にかかる本発明の媒体移送管710の整流部750の斜視図である。図41は、第18実施形態にかかる本発明の媒体移送管710の整流部250の一部分の拡大図であり、図40に示されるCの点を拡大した側面図である。
 第16実施形態及び第17実施形態と同様の構成を示す箇所は、第16実施形態及び第17実施形態と同様の符号を付して表してあり、構成は第16実施形態と同様な個所の説明は省略する。
 図示しない媒体取出管と同軸上に胴体部として環状の接続管730を設けている。接続管730は、内周に図示しない媒体取出管のネジ溝525と螺合する螺合溝731が形成されている。接続管730は上下に媒体取出管621が接続される。また、接続管730は、外周に整流片751を溶接等によって固定され、取り付けられる角度及び枚数は第16実施形態と同様である。
 そして、これら整流片751は、特に地熱帯Sに設けられ、加圧された温水を整流片751に沿って導くことによって、加圧された温水を螺旋状に旋回しながら下降させ、圧力損失が生じないように最下部まで温水を導いている。また、整流片751は、地熱帯Sで熱せられた熱水の逆流を複数箇所で防いでいる。
 図41に示すように接続管730の上方には、所定の角度45度から60度の傾斜となった導入部733が設けられている。導入部733は、加圧された温水を螺旋状に旋回しながら下降する際に、整流片751に乱流や渦流が形成されないように温水を導入している。このように導入部733によって温水を圧力損失が生じず下降させることができる。
(第19実施形態)
 第19実施形態にかかる媒体移送管810が図42乃至図45に示されている。図42は、第19実施形態にかかる本発明の媒体移送管810の軸上の断面図である。図43は、第19実施形態にかかる本発明の媒体移送管810の媒体注入管811を斜め上方から見た斜視図である。図44は、第19実施形態にかかる本発明の媒体移送管810の媒体取出管821の斜視図である。図45は、第19実施形態にかかる本発明の媒体移送管810の媒体注入管811を垂直方向に切断し、媒体取出管321を表した斜視図である。
 第16実施形態乃至第18実施形態と同様の構成を示す箇所は、第16実施形態乃至第18実施形態と同様の符号を付して表してあり、構成は第16実施形態と同様な個所の説明は省略する。
 媒体移送管810は、媒体取出管821と媒体注入管811とで構成されている。媒体注入管811の内周には所定の幅と深さを持った螺旋溝845が螺旋状に先端から終端まで設けられている。
 この螺旋の角度は第16実施形態と同様に正面から見て、媒体注入管811の中心軸との垂線となす角度は、略45度から75度が最適で、60度が最も良い角度である。
 螺旋溝845の個数や形状は、特に限定されず、軸上の周囲全体に渡って凹凸となるように設けても良い。
 そして、これら螺旋溝845は、特に地熱帯Sに設けられ、加圧された温水を螺旋溝845に沿って導くことによって、加圧された温水を螺旋状に旋回しながら下降させ、圧力損失が生じないように最下部まで温水を導いている。また、螺旋溝845は、地熱帯Sで熱せられた熱水の逆流を複数箇所で防いでいる。
 媒体移送管810は、媒体取出管821の外周に沿って断面円形の線状の棒を螺旋状に旋回した螺旋棒843を先端から終端まで設けている。第16実施形態と同様に螺旋棒843が旋回されている螺旋の角度は、媒体取出管821の中心軸の垂線となす角度として、略45度から75度が最適であり、60度が最も良い角度である。
 そして、これら螺旋棒843は、特に地熱帯Sに設けられ、加圧された温水を螺旋棒843に沿って導くことによって、加圧された温水を螺旋状に旋回しながら下降させ、圧力損失が生じないように最下部まで温水を導いている。
 また、螺旋溝845と螺旋棒843とは、対面して配置され先端から終端まで螺旋状に旋回されている。螺旋溝845と螺旋棒843とは、各々で効果が認められるが、螺旋溝845と螺旋棒843とで、さらに螺旋状に旋回させながらスムーズに下降させるという効果を奏している。螺旋溝845と螺旋棒843は、一対で複数設けられているが、特に限定されることなく1組であっても良い。
(第20実施形態)
 第20実施形態にかかる媒体移送管910が図46及び図47に示されている。図46は、第20実施形態にかかる本発明の媒体移送管910の媒体注入管911を垂直方向に切断し、接続環946を表した斜視図である。図47は、第20実施形態にかかる本発明の整流部940を表した斜視図である。
 第16実施形態乃至第19実施形態と同様の構成を示す箇所は、第16実施形態乃至第19実施形態と同様の符号を付して表してあり、構成は第16実施形態と同様な個所の説明は省略する。
 整流部940は、上端に環状の接続リング946が設けられており、接続リング946の下方には、媒体注入管910の内周に沿って断面円形の線状の棒を螺旋状に旋回された螺旋棒943が先端から終端まで設けられている。第1実施例と同様に螺旋棒943が旋回されている螺旋の角度は、媒体注入管910の中心軸の垂線となす角度として、略45度から75度が最適であり、60度が最も良い角度である。
 媒体注入管910と同軸上に環状の接続管912を設けている。接続管912は、内周に媒体注入管911のネジ溝925と螺合する螺合溝914が形成されている。接続管912は、上下に媒体注入管911を連結している。
 接続リング946は、媒体注入管911同士の隙間に固定されている。このように固定することで強固に固定できると共に、媒体取出管821が容易に挿入可能である。また、螺旋棒943は、特に地熱帯Sに設けられ、加圧された温水を螺旋棒943に沿って導くことによって、加圧された温水を螺旋状に旋回しながら下降させ、圧力損失が生じないように最下部まで温水を導いている。
(上記装置を利用して発電する発電方法)
 図27を参照して発電方法を説明すると、200℃前後の熱を地中で得るためにボーリングにより開けられた穴の深度は、地中700mから1500m程度まで達している。
 この地中には、媒体移送管510が埋設されており、媒体移送管510は、地中と接する外側に媒体注入管511が連結されて地中深くまで達している。また、媒体注入管511は、媒体注入管511の内側に媒体取出管521が連結されて媒体注入管511の底部まで達している。これら媒体移送管510を地熱帯Sから得られる熱を吸収する熱交換器として利用し、媒体を蒸発させて蒸気タービンを介して発電を行っている。以下に発電する方法について詳述する。
 循環サービスタンク505の温水は、加圧給水ポンプ5066により1.65Mpaに加圧され媒体移送管510の媒体注入管511に流量35.8t/hで送られ、地中深くの地熱帯Sまで移送される。例えば、230℃の地熱帯Sまで移送された温水は、地熱帯Sからの熱を熱伝導性の良い媒体注入管511から伝わり、最終的に200℃の熱水となる。そして、媒体取出管521から取り出された温度は190℃の熱水は、加圧給水ポンプ506により媒体取出管521を介して1.25Mpaに加圧され蒸気発生器560に移送される。
 蒸気発生器560は、温度162℃の熱水を、圧力0.65Mpaに減圧膨張させて蒸気流量の2.14t/hの蒸気を発生させる。汽水分離器570は、蒸気を蒸気タービン580に送り、蒸気タービン580の回転により発電される。この蒸気量により発電される発電量は102KWの出力が得られる。
 また、汽水分離器570は、蒸気にならずに残った水が温度157℃の還元水として、圧力0.57Mpaで循環サービスタンク505に移送され貯留される。また、蒸気タービン580からの103℃蒸気は、復水器590で冷却水591によって再び温度80℃の温水へ凝縮される。この温水は、低圧循環ポンプ507によって圧力0.47Mpaで循環サービスタンク505へ移送される。
 そして、循環サービスタンク505に貯留された温水は、再び媒体移送管510に加圧給水ポンプ506で送られる。これらシステムでは水を循環利用し、経路が閉塞型のシステムである。そのため、温泉水を汲み上げることなく発電が行われる環境に良いシステムである。
 尚、この深度は地熱帯Sの熱源の温度に左右され、特に限定されるものではない。また、発電量も移送する熱水の量を調整することで、1MW等やそれ以上の出力を得ることも可能である。
(上記第16実施形態~第20実施形態から考えられるその他の技術的特徴)
 尚、媒体取出管821の外周に、媒体注入管811の螺旋溝845と同様な螺旋状の螺旋溝を形成しても良い。その際、螺旋溝同士が対面するように設けると良い。そうすることによって、螺旋に沿って温水が導入されやすくなり加圧された温水を螺旋状に旋回しながら下降させ、圧力損失が生じないように最下部まで温水を導くことができる。
 尚、ここで媒体とは、熱水、温水、蒸気、不活性ガス又はバイナリー発電で利用される水より沸点が低い媒体(水とアンモニアの混合物等)が考えられる。
 尚、本実施例では、整流部の機能として媒体注入管の媒体を流下させる構造で説明したが、整流部は媒体取出管から媒体を取り出す際の上昇流を制御することにも使用することが可能である。特に螺旋棒や螺旋溝を媒体取出管の内周に設けることも考えられる。
 整流部は、媒体取出管の近傍に設置することで、圧力損失することなく媒体取出管への導入を容易にすることが可能となる。螺旋回転しながら媒体取出管への導入を補助することができる。
 (第21実施形態)
 第21実施形態にかかる媒体移送管1010が図23に示されている。本第21実施形態にかかる媒体移送管1010は、前述した第1実施形態から第20実施形態に適用可能なものである。図23は、第21実施形態にかかる本発明の媒体移送管1010の構成を示す概要図である。
 次に、図23及び図24を参照して媒体移送管1010を説明する。上述したように媒体移送管1010は、地表から地中深部にある熱源となる地熱帯までが埋設される。媒体移送管1010は、外側に円筒状の媒体注入管1011が埋設され、その媒体注入管1011の周囲は地表から地熱帯付近までは地熱セメントによって固められている。媒体注入管1011の内側には地熱帯で熱せられた水を移送する円筒状の媒体取出管1012が設けられている。
 第21実施形態にかかる媒体移送管1010は、図23に示すように、媒体移送管1010の最下端に媒体移送管1010より細い管からなる伝熱管1013を備えている。伝熱管1013は、スチールやステンレス等の素材で形成されている。伝熱管1013は、両方の端部が媒体移送管1010内に配置されており、媒体移送管1010内を流れて来た媒体が伝熱管1013内を通過することによって、地熱をより高い効率で媒体に伝熱する機能を有する。伝熱管1013は、一方端部の開口が前記媒体取出管1012と媒体注入管1011の間に配置され、他方端部の開口が媒体取出管1012の下方側に配置されることが好ましい。かかる位置関係に配置されることによって、一方端部近傍は、媒体が下方方向に流れているので正圧がかかり、伝熱管1013内に媒体が流れやすくなり、他方端部近傍は、媒体が上昇しているので、開口付近が負圧となり媒体が取り出される方向に力がかかるため、効率よく媒体を伝熱管1013内に流すことができる。より好ましくは、図23の点線で示したように、他方端部の伝熱管1013をさらに媒体取出管の内側まで上方に延設して設けてもよい。伝熱管1013の本数は、特に限定するものではない。例えば、図24に示すように、放射状に伝熱管1013を複数本設けるとよい。伝熱管1013の形態は、特に限定するものではなく、図23に示すようにU字状に設けても良いし、図25に示すように、媒体注入管1011の外周より外側に配置されるように設けても良い。また、伝熱性をさらに向上させるために、螺旋状等に形成しても構わない。さらに、伝熱管1013を保護するために、伝熱管1013を取り囲むように保護壁を設けても良い。
 (第22実施形態)
 第22実施形態にかかる媒体移送管1110の設置方法が図に示されている。本第22実施形態にかかる媒体移送管1110は、前述した第1実施形態から第20実施形態に適用可能なものである。
 第22実施形態にかかる媒体移送管1110に使用される媒体移送管は特に限定するものではなく、地熱帯Sの熱によって熱せられた媒体を蒸気化することによって発電する地熱発電装置に使用され、前記媒体を移送する媒体移送管であれば、どのような形態の媒体移送管であっても構わない。
 第22実施形態にかかる媒体移送管1110の設置方法は、少なくとも一部が前記乾燥破砕帯F又は液体で充填していない前記破砕帯Fに水又は泥水等の液体を流入し、媒体移送管1110の周囲に貯水槽の機能を有する貯水領域を積極的に形成する方法である。かかる方法により媒体移送管1110を設置することによって、図52に示すように、地熱セメントCの下方側の全部又は一部において、媒体移送管1110は液体に接することになるため、熱効率を高める。また、水又は泥水等の液体を破砕帯Fに流入することで破砕帯Fの地耐圧を向上させる効果を有する。
 破砕帯Fに水又は泥水を流入させる方法としては、坑井掘削終了後に水又は泥水等の液体を流入してもよいし、図53に示すように、水掘削又は泥水掘削を行いビットから流出した水又は泥水をそのまま利用して破砕帯Fに流入させてもよい。最初はエアドリリングで掘削し、破砕帯Fに近づいてから水掘削又は泥水掘削に切り替えても良い。水掘削又は泥水掘削の場合は、削り屑がそのまま坑井の底部において破砕帯と同様の機能を有するので破砕帯F近傍においては削り屑を地上に回収しなくても構わない。泥水掘削に使用する泥水は、破砕帯Fに浸透させやすくすることと、削り屑は泥水中を沈降させても構わないため、低粘度の泥水を使用するとよい。
 このように破砕帯Fに水又は泥水等の液体を流入し、媒体移送管1110の周囲に貯水領域を設けることによって、媒体移送管1110に対し熱せられた液体が媒体移送管1110に接するため、より効率よく媒体移送管1110に熱を伝熱することができる。また、貯水領域を設けることによって、貯水領域において液体の対流が起こりやすくなるため、媒体移送管1110の貯水領域を設けない場合と比較して、より遠くの熱源から熱を回収することができる。対流を起こし易くするために、温度勾配のある破砕帯領域で貯水領域を形成することが好ましい。また、破砕帯Fに水又は泥水等の液体を流入することで破砕帯Vの隙間が液体で満たされるため、地耐圧の向上を図ることもできる。
  (第23実施形態)
 第23実施形態にかかる媒体移送管1110の設置方法が図に示されている。本第22実施形態にかかる媒体移送管1110は、前述した第1実施形態から第20実施形態に適用可能なものである。
 第23実施形態にかかる媒体移送管1110の設置方法は、第22実施形態にかかる媒体移送管1110の設置方法は、前記乾燥破砕帯又は液体で充填していない前記破砕帯に媒体移送管1110を設置する方法であったのに対し、第23実施形態にかかる媒体移送管1110の設置方法は、媒体移送管1110を設置する場所をダイナマイト等の爆発物、水圧破砕その他の方法によって人工的に破砕して地熱帯の坑井に人工破砕帯を形成するものである。人工的に破砕帯を形成した後に水又は泥水等の液体を流入することで媒体移送管1110の周囲に貯水領域を作製することができる。その他の点は第22実施形態と同様であるので、説明を省略する。
 第21実施形態及び第22実施形態にかかる媒体移送管1110の設置方法によって設置された媒体移送管1110は、第1実施形態から第20実施形態と組み合わせて使用することができ、前述した発電装置又は発電方向に適用することによって効率的に熱を地熱から回収することができる。
 本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
 上述した実施の形態で示すように、地熱発電用の熱交換器として利用することができる。また、海中での火山地帯等にも利用することができる。さらに、バイナリー発電や火力発電及び熱交換器等にも利用することができる。
10…第1地熱発電設備、20…媒体移送管、21…媒体取出管、22…媒体注入管、30…高圧循環ポンプ、40…媒体用発電設備、41…蒸気発生器、42…フラッシャー、43…高圧循環ポンプ用タンク、44…タービン、44a…第1タービン、44b…第2タービン、45…発電機、46…復水器、47…貯水タンク、48…低圧循環ポンプ、50…第2地熱発電設備、61…生産井、62…還元井、64…発電機、70…地熱水用発電設備、71…気水分離器、72…第2フラッシャー、73…タービン、74…発電機、75…復水器、76…熱交換器、77…第1熱交換装置、78…第2熱交換装置、100…地熱発電システム。
1000・1100・1200…地熱発電装置、103…加圧給水ポンプ、104…貯留タンク、105…低圧循環ポンプ、106…復水器、107・157…冷却水、110…媒体移送管、111…媒体注入管、112…媒体取出管、130…加熱部、131…加熱制御装置、121・122・123・124・125…温度分布、126…蒸発曲線、127…対流熱伝達係数、132・136…電熱ヒータ、150…熱交換部、151…熱交換器、155…循環ポンプ、156…冷却器、161…加熱部用電源ライン、165…加圧給水ポンプ用電源ライン、166…低圧循環ポンプ用電源ライン、167…循環ポンプ用電源ライン、A…加圧水発電装置、B…バイナリー発電装置、F・F1・F2…フラッシャー(蒸気発生器)、G・G1・G2・G3…発電機、H・H1・H2・H3…送電設備、T・T1・T2・T3…蒸気タービン、K…地表、V…過熱蒸気、S…地熱帯。
1600・1700・1800・1900…地熱発電装置、213…微小気泡、214…気液界面、215…負の電荷、216…正の電荷、420・430・440・450…微小気泡生成装置、221a・221b…微小気泡生成ノズル、222a・222b…気体注入管、223a・223b…圧力注入管、224…動力部、225a・225b…ノズル、226…空気室、227…球状体、228…気泡カッター、229…小穴、230…循環サービスタンク、231…液体搬送管、241・341…加圧給水ポンプ、242…低圧循環ポンプ、250・350…熱交換器、251…加圧水注入管、252…液体取出管、261・271…配管、260・360…蒸気発生器、270…フラッシャー、280…蒸気タービン、281…発電モータ、282…受電設備、290…復水器、291…冷却水、F…表面、S…地熱帯。
2000…地熱発電装置、505…循環サービスタンク、506…加圧給水ポンプ、507…低圧循環ポンプ、510・610・710・810・910…媒体移送管、511・611・811・911…媒体注入管、512・530・612・630・730・912…接続管、513・613…フィン、514・531・731・914…螺合溝、515…溶接塊、516A・516B…被膜層、521・621・821・921…媒体取出管、525・925…ネジ溝、540・550・750・940…整流部、541・551・751…整流片、542・552…胴体部としてのリング部、553・554…整流先端、543・843・943…整流部としての螺旋棒、544…支持棒、560…蒸気発生器、570…汽水分離器、580…蒸気タービン、581…発電モータ、582…送電設備、590…復水器、591…冷却水、733…導入部、845…整流部としての螺旋溝、946…接続リング

 

Claims (59)

  1.  媒体を下降させる下降領域及び上昇させる上昇領域を有し、地熱帯に開口を有さない二重管を有する媒体移送管と、前記媒体移送管に前記媒体を送出する高圧循環ポンプと、地熱の熱によって加熱された前記媒体から蒸気を取り出す蒸気発生器と、
     前記媒体移送管の周囲に形成されている地熱水を受領する生産井と、少なくとも1つの気水分離器を含んでなり、前記地熱水から蒸気を取り出す気水分離器と、
     前記蒸気によって発電する発電機と、
     を備えていることを特徴とする地熱発電システム。
  2.  媒体を下降させる下降領域及び上昇させる上昇領域を有し、地熱帯に開口を有さない二重管を有する媒体移送管と、前記媒体移送管に前記媒体を送出する高圧循環ポンプと、地熱の熱によって加熱された前記媒体から蒸気を取り出す蒸気発生器と、
     地熱水を受領する生産井と、少なくとも1つの気水分離器を含んでなり、前記地熱水から蒸気を取り出す気水分離器と、
     前記蒸気によって発電する発電機と、
     を備え、
     前記媒体の少なくとも一部は、前記気水分離器で分離された地熱水によって熱交換され加熱された状態で前記高圧循環ポンプによって前記媒体移送管に送出されることを特徴とする地熱発電システム。
  3.  媒体を下降させる下降領域及び上昇させる上昇領域を有し、地熱帯に開口を有さない二重管を有する媒体移送管と、前記媒体移送管に前記媒体を送出する高圧循環ポンプと、地熱の熱によって加熱された前記媒体から蒸気を取り出して発電する媒体用発電設備と、を有する第1地熱発電設備と、
     地熱水を受領する生産井と、少なくとも1つの気水分離器を含んでなり、前記地熱水から蒸気を取り出して発電する地熱水用発電設備と、を有する第2地熱発電設備と、
     を備え、
     前記媒体の少なくとも一部は、前記気水分離器で分離された地熱水によって熱交換され加熱された状態で前記高圧循環ポンプによって前記媒体移送管に送出されることを特徴とする地熱発電システム。
  4.  前記生産井は、前記媒体移送管の周囲に形成されていることを特徴とする請求項1又は2に記載の地熱発電システム。
  5.  前記気水分離器内には、前記気水分離器によって分離された地熱水の熱を前記媒体に交換するための熱交換器を備えていることを特徴とする請求項1又は2に記載の地熱発電システム。
  6.  前記地熱水用発電設備はフラッシャーを備えており、前記フラッシャー内には、前記媒体に熱を交換するための熱交換器を備えていることを特徴とする請求項3に記載の地熱発電システム。
  7.  前記媒体用発電設備は復水器を有し、
    前記復水器で冷却された媒体を前記第2地熱発電設備に送出することを特徴とする請求項3に記載の地熱発電システム。
  8.  媒体を下降させる下降領域及び上昇させる上昇領域を有し、地熱帯に開口を有さない二重管を有する媒体移送管と、前記媒体移送管に前記媒体を送出する高圧循環ポンプと、地熱の熱によって加熱された前記媒体から蒸気を取り出す蒸気発生器と、
     前記媒体移送管の周囲に形成されている地熱水を受領する生産井と、熱交換の完了した前記地熱水の少なくとも一部を還元する還元井と、少なくとも1つの気水分離器を含んでなり、前記地熱水から蒸気を取り出す気水分離器と、
     前記蒸気によって発電する発電機と、
     を備えており、
     媒体移送管の周囲に設けられた生産井の地熱水から取水して、前記地熱水から蒸気を取り出し、
     媒体移送管から媒体を取水して、前記媒体から蒸気を取り出し、
     地熱水の蒸気及び媒体の蒸気によりタービンで発電することを特徴とする地熱発電方法。
  9.  媒体を下降させる下降領域及び上昇させる上昇領域を有し、地熱帯に開口を有さない二重管を有する媒体移送管と、前記媒体移送管に前記媒体を送出する高圧循環ポンプと、地熱の熱によって加熱された前記媒体から蒸気を取り出す蒸気発生器と、
     地熱水を受領する生産井と、熱交換の完了した前記地熱水の少なくとも一部を還元する還元井と、少なくとも1つの気水分離器を含んでなり、前記地熱水から蒸気を取り出す気水分離器と、
     前記蒸気によって発電する発電機と、
     を備えており、
     前記媒体の少なくとも一部は、前記気水分離器で分離された地熱水によって熱交換され加熱された状態で前記高圧循環ポンプによって前記媒体移送管に送出されることを特徴とする地熱発電方法。
  10.  媒体を下降させる下降領域及び上昇させる上昇領域を有し、地熱帯に開口を有さない二重管を有する媒体移送管と、前記媒体移送管に前記媒体を送出する高圧循環ポンプと、地熱の熱によって加熱された前記媒体から蒸気を取り出して発電する媒体用発電設備と、を有する第1地熱発電設備と、
     地熱水を受領する生産井と、熱交換の完了した前記地熱水の少なくとも一部を還元する還元井と、少なくとも1つの気水分離器を含んでなり、前記地熱水から蒸気を取り出して発電する地熱水用発電設備と、を有する第2地熱発電設備と、
     を備えており、
     前記媒体の少なくとも一部は、前記気水分離器で分離された地熱水によって熱交換され加熱された状態で前記高圧循環ポンプによって前記媒体移送管に送出されることを特徴とする地熱発電方法。
  11.  (1)媒体を下降させる下降領域及び上昇させる上昇領域を有し、地熱帯に開口を有さない二重管を有する媒体移送管から加熱された媒体を取水する工程、
     (2)取水した前記媒体から媒体の蒸気と媒体の液体に分離する工程、
     (3)分離された蒸気を使用して発電する工程、
     (4)生産井から地熱水を取水する工程、
     (5)取水した地熱水を地熱水の蒸気と地熱水の液体に分離する工程、
     (6)媒体の液体を地熱水の液体によって加熱する工程、
     (7)加熱された媒体の液体を前記媒体移送管に送出する工程、
     とを含むことを特徴とする地熱発電方法。
  12.  地熱帯の熱によって熱せられた熱水を熱源として発電する地熱発電装置であって、
     外側に前記地熱帯へ前記熱水を移送する媒体注入管と、前記媒体注入管の内側に前記地熱帯の熱によって熱せられた前記熱水を取り出す媒体取出管とを備えた媒体移送管と、
     低温である前記地熱帯の領域では熱伝導率の低い断熱構造を設けた前記媒体取出管と、高温である前記地熱帯の領域では熱伝導率の高い吸熱構造を設けた前記媒体注入管と、を設け、
    前記地熱帯により熱を吸収した高温の前記熱水を、蒸発曲線よりも高い圧力を加えて、蒸気を発生しないように液体の状態で地上にある蒸気発生器まで移送し、前記蒸気発生器にて減圧し沸騰させることで蒸気を発生させ、その蒸気によって発電を行う加圧水発電装置と、
    地上へ移送された前記熱水のうち蒸気とならなかった前記熱水を熱源として使用し、前記熱水よりも沸点の低い作動媒体を蒸気化して発電を行うバイナリー発電装置と、
    前記加圧水発電装置に設けられる蒸気タービンへ送られる蒸気を加熱して過熱蒸気を生成し、前記バイナリー発電装置によって得られた電力によって駆動する加熱部と、
    を備えたことを特徴とする地熱発電装置。
  13.  地熱帯の熱によって熱せられた熱水を熱源として発電する地熱発電装置であって、
     外側に前記地熱帯へ前記熱水を移送する媒体注入管と、前記媒体注入管の内側に前記地熱帯の熱によって熱せられた前記熱水を取り出す媒体取出管とを備えた媒体移送管と、
     低温である前記地熱帯の領域では熱伝導率の低い断熱構造を設けた前記媒体取出管と、高温である前記地熱帯の領域では熱伝導率の高い吸熱構造を設けた前記媒体注入管と、を設け、
     前記地熱帯により熱を吸収した高温の前記熱水を蒸発曲線よりも高い圧力を加えて、蒸気を発生しないように液体の状態で地上にある第1蒸気発生器まで移送し、前記第1蒸気発生器にて減圧し沸騰させることで高圧の第1蒸気を発生させ、その第1蒸気によって発電を行うと共に、前記熱水のうち蒸気とならなかった前記熱水を再度、第2蒸気発生器にて減圧し沸騰させることで低圧の第2蒸気を発生させ、その第2蒸気によって発電を行う加圧水発電装置と、
     地上へ移送された前記熱水のうち第2蒸気発生器で蒸気とならなかった前記熱水を熱源として使用し、前記熱水よりも沸点の低い作動媒体を蒸気化して発電を行うバイナリー発電装置と、
     前記加圧水発電装置に設けられる蒸気タービンへ送られる蒸気を加熱して過熱蒸気を生成し、前記バイナリー発電装置によって得られた電力によって駆動する加熱部と、
    を備えたことを特徴とする地熱発電装置。
  14. 前記蒸気発生器は、減圧し沸騰させると共に微小気泡を含んだ蒸気を発生させる蒸気発生ノズルを備えたことを特徴とする請求項13に記載の地熱発電装置。
  15. 前記第1蒸気発生器又前記第2蒸気発生器は、減圧し沸騰させると共に微小気泡を含んだ蒸気を発生させる蒸気発生ノズルを備えたことを特徴とする請求項14に記載の地熱発電装置。
  16.  請求項12から請求項15のいずれか1項に記載の発電装置によって発電することを特徴とする地熱発電方法。
  17.  地熱帯の熱によって熱せられた熱水を熱源として発電する地熱発電装置であって、
     外側に前記地熱帯へ前記熱水を移送する媒体注入管と、前記媒体注入管の内側に前記地熱帯の熱によって熱せられた前記熱水を取り出す媒体取出管とを備えた媒体移送管と、
     低温である前記地熱帯の領域では熱伝導率の低い断熱構造を設けた前記媒体取出管と、
    高温である前記地熱帯の領域では熱伝導率の高い吸熱構造を設けた前記媒体注入管と、を設け、
     前記地熱帯により熱を吸収した高温の前記熱水を、蒸発曲線よりも高い圧力を加えて、蒸気を発生しないように液体の状態で地上にある蒸気発生器まで移送し、前記蒸気発生器にて減圧し沸騰させることで蒸気を発生させ、前記蒸気によって発電を行う加圧水発電装置と、
     地上へ移送された前記熱水のうち蒸気とならなかった前記熱水を熱源として使用し、前記熱水よりも沸点の低い作動媒体を蒸気化して発電を行うバイナリー発電装置と、
    を備えたことを特徴とする地熱発電装置。
  18.  地熱帯の熱によって熱せられた熱水を熱源として発電する地熱発電装置であって、
     外側に前記地熱帯へ前記熱水を移送する媒体注入管と、前記媒体注入管の内側に前記地熱帯の熱によって熱せられた前記熱水を取り出す媒体取出管とを備えた媒体移送管と、
     低温である前記地熱帯の領域では熱伝導率の低い断熱構造を設けた前記媒体取出管と、
    高温である前記地熱帯の領域では熱伝導率の高い吸熱構造を設けた前記媒体注入管と、を設け、
     前記地熱帯により熱を吸収した高温の前記熱水を蒸発曲線よりも高い圧力を加えて、蒸気を発生しないように液体の状態で地上にある第1蒸気発生器まで移送し、前記第1蒸気発生器にて減圧し沸騰させることで高圧の第1蒸気を発生させ、その第1蒸気によって発電を行うと共に、前記熱水のうち蒸気とならなかった前記熱水を再度、第2蒸気発生器にて減圧し沸騰させることで低圧の第2蒸気を発生させ、その第2蒸気によって発電を行う加圧水発電装置と、
     地上へ移送された前記熱水のうち第2蒸気発生器で蒸気とならなかった熱水を熱源として使用し、前記熱水よりも沸点の低い作動媒体を蒸気化して発電を行うバイナリー発電装置と、
    を備えたことを特徴とする地熱発電装置。
  19.  前記蒸気発生器は、減圧し沸騰させると共に微小気泡を含んだ蒸気を発生させる蒸気発生ノズルを備えたことを特徴とする請求項17に記載の地熱発電装置。
  20.  前記第1蒸気発生器又前記第2蒸気発生器は、減圧し沸騰させると共に微小気泡を含んだ蒸気を発生させる蒸気発生ノズルを備えたことを特徴とする請求項18に記載の地熱発電装置。
  21.  請求項17乃至請求項20のいずれか1項に記載の発電装置によって発電すること、を特徴とする地熱発電方法。
  22.  加圧ポンプによって液体を地熱帯から蒸気発生器まで移送する経路を備え、
    前記地熱帯まで移送し前記地熱帯の熱によって熱せられた前記液体を蒸気化することによって発電する地熱発電装置であって、
     前記地熱発電装置は、蒸気化するまでの間に微小気泡を生成する微小気泡生成装置を備え、前記微小気泡を溶存させた前記液体を蒸気化して発電することを特徴とする地熱発電装置。
  23.  前記加圧ポンプの圧力によって前記微小気泡を生成する前記微小気泡生成装置を備えたことを特徴とする請求項22記載の地熱発電装置。
  24.  蒸気化した後に残った液体又は使用された蒸気を再び液体に戻した後の液体を貯留する貯留タンクを備え、前記貯留タンクに前記微小気泡生成装置を備えたことを特徴とする請求項22記載の地熱発電装置。
  25.  熱せられた前記液体を減圧沸騰させることで蒸気化する前記蒸気発生器は、前記微小気泡生成装置を備えたことを特徴とする請求項22記載の地熱発電装置。
  26.  前記蒸気発生器は、蒸気を発生するノズルに前記微小気泡生成装置を備えたことを特徴とする請求項25記載の地熱発電装置。
  27.  前記地熱帯に前記液体を移送する前記加圧ポンプは、前記微小気泡生成装置を備えたことを特徴とする請求項22記載の地熱発電装置。
  28.  使用された蒸気を再び液体に戻した後の前記液体を、循環ポンプの圧力によって前記微小気泡を生成する前記微小気泡生成装置を備えたことを特徴とする請求項22記載の地熱発電装置。
  29.  前記微小気泡生成装置は、前記液体を前記地熱帯へ移送する経路の前に設けられていることを特徴とする請求項22記載の地熱発電装置。
  30.  前記微小気泡生成装置は、前記液体を前記地熱帯へ移送する加圧水注入管の上部に設けられ、前記加圧水注入管の内周に沿って設けられていることを特徴とする請求項22記載の地熱発電装置。
  31.  加圧ポンプによって液体を地熱帯まで移送し、前記地熱帯の熱によって熱せられた前記液体を蒸気発生器まで移送し、蒸気化するまでの間に微小気泡を生成し、前記微小気泡を溶存させた前記液体を前記蒸気発生器で蒸気化して発電することを特徴とする地熱発電方法。
  32.  地熱帯の熱によって熱せられた媒体を蒸気化することによって発電する地熱発電装置に使用され、前記媒体を移送する媒体移送管であって、
     前記媒体移送管は、外側に地熱帯へ前記媒体を移送する媒体注入管と、その媒体注入管の内側に前記地熱帯の熱によって熱せられた前記媒体を取り出す媒体取出管とを備え、
     前記媒体移送管は、前記媒体取出管の外周に前記媒体の流れる方向を制御する整流部を設け、
     前記整流部は、環状に形成された胴体部に前記媒体の流れる方向を制御する複数の板状の整流片を設けたことを特徴とする媒体移送管。
  33.  前記整流部は、前記媒体取出管の中心軸との垂線に対して45度から75度の間の傾斜を形成した前記整流片を備えたことを特徴とする請求項32記載の媒体移送管。
  34.  前記整流部は、前記媒体取出管の中心軸との垂線に対して60度の傾斜を形成した前記整流片を備えたことを特徴とする請求項33記載の媒体移送管。
  35.  環状のリング部を上下に配置し、そのリング部同士の間は空間を設け、前記リング部同士を前記整流片で接続固定した前記胴体部を備えたことを特徴とする請求項32記載の媒体
    移送管。
  36.  前記媒体取出管の外周に沿って棒を螺旋状に巻き付け形成した前記整流部を備えたことを特徴とする請求項32記載の媒体移送管。
  37.  前記媒体取出管の外径よりも大きな内径を設け、上方から前記媒体注入管に挿入可能に形成した前記胴体部を設けたことを特徴とする請求項32記載の媒体移送管。
  38.  前記媒体取出管同士を繋ぐ接続管を設け、前記胴体部は、前記接続管の外径よりも小さく形成した前記内径を備えたことを特徴とする請求項37記載の媒体移送管。
  39. 前記胴体部は、前記媒体取出管同士を接続する螺合溝を備えたことを特徴とする請求項32記載の媒体移送管。
  40.  地熱帯の熱によって熱せられた媒体を蒸気化することによって発電する地熱発電装置に使用され、前記媒体を移送する媒体移送管であって、
     前記媒体移送管は、外側に前記地熱帯へ前記媒体を移送する媒体注入管と、その媒体注入管の内側に前記地熱帯の熱によって熱せられた前記媒体を取り出す媒体取出管とを備え、
     前記媒体移送管は、前記媒体取出管の外周に棒を螺旋状に巻き付け形成し前記媒体が流れる方向を制御する整流部を備えたことを特徴とする媒体移送管。
  41. 地熱帯の熱によって熱せられた媒体を蒸気化することによって発電する地熱発電装置に使用され、前記媒体を移送する媒体移送管であって、
     前記媒体移送管は、外側に前記地熱帯へ前記媒体を移送する媒体注入管と、その媒体注入管の内側に前記地熱帯の熱によって熱せられた前記媒体を取り出す媒体取出管とを備え、
     前記媒体移送管は、前記媒体注入管の内周に溝を螺旋状に形成し前記媒体の流れる方向を制御する整流部を備えたことを特徴とする媒体移送管。
  42.  前記媒体注入管の外周に沿って棒を螺旋状に巻き付け形成し前記媒体の流れる方向を制御する整流部を備えたことを特徴とする請求項41記載の媒体移送管。
  43.  前記溝と前記棒とは対面して螺旋状を形成することを特徴とする請求項42記載の媒体移送管。
  44.  地熱帯の熱によって熱せられた媒体を蒸気化することによって発電する地熱発電装置に使用され、前記媒体を移送する媒体移送管であって、
     前記媒体移送管は、外側に前記地熱帯へ前記媒体を移送する媒体注入管と、その媒体注入管の内側に前記地熱帯の熱によって熱せられた前記媒体を取り出す媒体取出管とを備え、
     前記媒体移送管は、前記媒体注入管の内周に棒を螺旋状に巻き付け形成し前記媒体の流れる方向を制御する整流部を備えたことを特徴とする媒体移送管。
  45.  前記棒は、先端に接続された環状の接続リングが前記媒体注入管同士の接続管に固定されることを特徴とする請求項44記載の媒体移送管。
  46.  請求項32から請求項45のいずれか1項に記載の前記媒体移送管を利用して前記媒体を蒸気化して発電することを特徴とする地熱発電装置。
  47.  請求項32から請求項45のいずれか1項に記載の前記媒体移送管を利用して前記媒体を蒸気化して発電することを特徴とする地熱発電方法。
  48.  地熱帯の熱によって熱せられた媒体を蒸気化することによって発電する地熱発電装置に使用され、前記媒体を移送する媒体移送管であって、
     前記媒体移送管は、外側に地熱帯へ前記媒体を移送する媒体注入管と、その媒体注入管の内側に前記地熱帯の熱によって熱せられた前記媒体を取り出す媒体取出管とを備え、
     前記媒体注入管の下端部に、両側端部開口が媒体注入管内に配置された前記媒体移送管より細い管からなる伝熱管が設けられていることを特徴とする媒体移送管。
  49.  前記伝熱管は、一方端部が前記媒体取出管と媒体注入管の間に配置され、他方端部が前記媒体取出管の下方側に配置されていることを特徴とする請求項48に記載の媒体移送管。
  50.  前記伝熱管の他方端部は、前記媒体取出管の中まで延設されていることを特徴とする請求項48又は49に記載の媒体移送管。
  51.  前記伝熱管の一部は、前記媒体注入管の外周より外側に配置されていることを特徴とする請求項48に記載の媒体移送管。
  52.  前記伝熱管の外周側に伝熱管を保護する保護壁を備えていることを特徴とする請求項48に記載の媒体移送管。
  53.  地熱帯の熱によって熱せられた媒体を蒸気化することによって発電する地熱発電装置に使用され、前記媒体を移送する媒体移送管を少なくとも地熱帯に存在する乾燥破砕帯又は液体で充填していない破砕帯に設置する媒体移送管設置方法において、
     前記乾燥破砕帯又は液体で充填していない前記破砕帯に水又は泥水等の液体を流入し、前記媒体移送管の設置領域周辺に破砕帯の岩石を含む貯水領域を形成し、
     前記貯水領域に前記媒体移送管を設置してなることを特徴とする媒体移送管設置方法。
  54.  前記破砕帯に到達又は破砕帯に到達する手前から水掘削又は泥水掘削による掘削を行なうことによって、掘削とともに破砕帯に貯水領域を形成することを特徴とする請求項53に記載の媒体移送管設置方法。
  55.  ダイナマイト等の爆発物、水圧破砕その他の人工的破砕によって地熱帯の坑井に人工破砕帯を形成し、
     前記人工破砕帯に水又は泥水等の液体を流入し、前記媒体移送管の注入領域周辺に破砕帯の岩石を含む貯水領域を形成してなることを特徴とする請求項53に記載の媒体移送管設置方法。
  56.  前記乾燥破砕帯、液体で充填していない前記破砕帯又は人工破砕帯は、温度勾配のある地熱帯に形成されることを特徴とする請求項53又は55に記載の媒体移送管設置方法。
  57.  請求項53から請求項55のいずれか1項に記載の媒体移送管設置方法によって設置された媒体移送管。
  58.  請求項53から請求項55のいずれか1項に記載の媒体移送管設置方法によって設置された媒体移送管を利用して前記媒体を蒸気化して発電することを特徴とする地熱発電装置。
  59.  請求項53から請求項55のいずれか1項に記載の媒体移送管設置方法によって設置された媒体移送管を利用して前記媒体を蒸気化して発電することを特徴とする地熱発電方法。

     
PCT/JP2016/068163 2015-06-19 2016-06-17 地熱発電システム、地熱発電装置、地熱発電方法又は媒体移送管、その媒体移送管を利用した地熱発電装置及び地熱発電方法並びに破砕帯に媒体移送管を設置する方法 WO2016204287A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017524871A JP6596494B2 (ja) 2015-06-19 2016-06-17 地熱発電システム、地熱発電装置、地熱発電方法又は媒体移送管、その媒体移送管を利用した地熱発電装置及び地熱発電方法並びに破砕帯に媒体移送管を設置する方法
PH12017502365A PH12017502365A1 (en) 2015-06-19 2017-12-19 Geothermal power generation system, geothermal power generation facility, geothermal power generation method, medium transport pipe, geothermal power generation facility and methods by means of the medium transport pipe, and method of installing the medium transport pipe in fracture zone

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015124127 2015-06-19
JP2015-124127 2015-06-19
JP2015-124126 2015-06-19
JP2015124126 2015-06-19

Publications (1)

Publication Number Publication Date
WO2016204287A1 true WO2016204287A1 (ja) 2016-12-22

Family

ID=57546300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068163 WO2016204287A1 (ja) 2015-06-19 2016-06-17 地熱発電システム、地熱発電装置、地熱発電方法又は媒体移送管、その媒体移送管を利用した地熱発電装置及び地熱発電方法並びに破砕帯に媒体移送管を設置する方法

Country Status (3)

Country Link
JP (2) JP6596494B2 (ja)
PH (1) PH12017502365A1 (ja)
WO (1) WO2016204287A1 (ja)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107990294A (zh) * 2018-01-10 2018-05-04 宋晓轩 一组深入干热岩层的蒸汽生产装置
JP2018200161A (ja) * 2017-05-26 2018-12-20 ジャパン・ニュー・エナジー株式会社 熱媒体移送管、熱媒体移送管の施工方法、その熱媒体移送管を使用した地熱発電システム及び地熱発電方法
CN109915334A (zh) * 2019-04-09 2019-06-21 李福军 地热井下循环高效热动电三联供装置及工艺方法
JP2020176591A (ja) * 2019-04-22 2020-10-29 三菱日立パワーシステムズ株式会社 地熱発電プラントの坑井制御システム及びその坑井制御方法並びに坑井制御プログラム、地熱発電プラント
CN112413914A (zh) * 2020-11-25 2021-02-26 河北绿源地热能开发有限公司 一种无负压地热回灌系统及回灌方法
CN112413912A (zh) * 2020-11-11 2021-02-26 山东省地质矿产勘查开发局第六地质大队 一种中深层闭式地热能供热系统及其设计方法
CN112960824A (zh) * 2021-01-29 2021-06-15 安徽理工大学 一种污水回用处理及地热利用方式
US11187212B1 (en) 2021-04-02 2021-11-30 Ice Thermal Harvesting, Llc Methods for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on working fluid temperature
US11293414B1 (en) 2021-04-02 2022-04-05 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic rankine cycle operation
US11326550B1 (en) 2021-04-02 2022-05-10 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11421663B1 (en) 2021-04-02 2022-08-23 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11480074B1 (en) 2021-04-02 2022-10-25 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11486370B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11493029B2 (en) 2021-04-02 2022-11-08 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
CN115371761A (zh) * 2022-08-26 2022-11-22 山东省地质矿产勘查开发局第二水文地质工程地质大队(山东省鲁北地质工程勘察院) 一种高温地热井管外全井段温度及水位实时监测装置
US11592009B2 (en) 2021-04-02 2023-02-28 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
CN116006425A (zh) * 2023-01-06 2023-04-25 山东地矿新能源有限公司 一种光伏-地热-蓄能的能量联合开发系统及其方法
US11644015B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US20230304705A1 (en) * 2022-02-28 2023-09-28 EnhancedGEO Holdings, LLC Geothermal power from superhot geothermal fluid and magma reservoirs
US11841172B2 (en) 2022-02-28 2023-12-12 EnhancedGEO Holdings, LLC Geothermal power from superhot geothermal fluid and magma reservoirs
US11897828B1 (en) 2023-03-03 2024-02-13 EnhancedGEO, Holdings, LLC Thermochemical reactions using geothermal energy
US11905797B2 (en) 2022-05-01 2024-02-20 EnhancedGEO Holdings, LLC Wellbore for extracting heat from magma bodies
US11905814B1 (en) 2023-09-27 2024-02-20 EnhancedGEO Holdings, LLC Detecting entry into and drilling through a magma/rock transition zone
US11912573B1 (en) 2023-03-03 2024-02-27 EnhancedGEO Holdings, LLC Molten-salt mediated thermochemical reactions using geothermal energy
US11912572B1 (en) 2023-03-03 2024-02-27 EnhancedGEO Holdings, LLC Thermochemical reactions using geothermal energy
US11913679B1 (en) 2023-03-02 2024-02-27 EnhancedGEO Holdings, LLC Geothermal systems and methods with an underground magma chamber
US11918967B1 (en) 2022-09-09 2024-03-05 EnhancedGEO Holdings, LLC System and method for magma-driven thermochemical processes

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114939789A (zh) * 2020-11-05 2022-08-26 山东爱勒夫自控系统有限公司 用于生产分集水器的制造组件及工艺
AU2022219148A1 (en) * 2021-02-10 2023-09-21 Good Water Energy Ltd A geothermal desalination and pumping system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052621A (ja) * 2009-09-03 2011-03-17 Kyushu Power Service:Kk 地熱発電装置
JP2013164062A (ja) * 2012-01-10 2013-08-22 Kyushu Power Service:Kk 地熱交換器および地熱発電装置
JP2014084857A (ja) * 2012-10-28 2014-05-12 Yasuharu Kawabata バイナリー発電システム
JP2014156843A (ja) * 2013-02-18 2014-08-28 Ohbayashi Corp 地熱発電システム
JP2014202149A (ja) * 2013-04-07 2014-10-27 廣明 松島 地熱発電システム
JP5731051B1 (ja) * 2014-06-05 2015-06-10 俊一 田原 沸騰水型地熱交換器および沸騰水型地熱発電装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081279A (ja) * 1983-10-11 1985-05-09 Daicel Chem Ind Ltd 泥水掘削工法
US5685362A (en) * 1996-01-22 1997-11-11 The Regents Of The University Of California Storage capacity in hot dry rock reservoirs
JP2003120513A (ja) * 2001-10-05 2003-04-23 Mitsubishi Heavy Ind Ltd 地熱発電装置
EP1966489A2 (en) * 2004-06-23 2008-09-10 TerraWatt Holdings Corporation Method of developingand producing deep geothermal reservoirs
JP4972752B2 (ja) * 2007-03-30 2012-07-11 一般財団法人電力中央研究所 地熱発電方法並びにシステム
JP5010754B2 (ja) * 2009-02-23 2012-08-29 三菱重工業株式会社 高温岩体発電システム
US9840429B2 (en) * 2011-04-19 2017-12-12 Fuji Electric Co., Ltd Scale inhibition method and geothermal power generating device
JP6132225B2 (ja) * 2012-09-10 2017-05-24 国立大学法人弘前大学 発電方法及び発電システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052621A (ja) * 2009-09-03 2011-03-17 Kyushu Power Service:Kk 地熱発電装置
JP2013164062A (ja) * 2012-01-10 2013-08-22 Kyushu Power Service:Kk 地熱交換器および地熱発電装置
JP2014084857A (ja) * 2012-10-28 2014-05-12 Yasuharu Kawabata バイナリー発電システム
JP2014156843A (ja) * 2013-02-18 2014-08-28 Ohbayashi Corp 地熱発電システム
JP2014202149A (ja) * 2013-04-07 2014-10-27 廣明 松島 地熱発電システム
JP5731051B1 (ja) * 2014-06-05 2015-06-10 俊一 田原 沸騰水型地熱交換器および沸騰水型地熱発電装置

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022001764A (ja) * 2017-05-26 2022-01-06 ジャパン・ニュー・エナジー株式会社 地熱発電システム
JP2018200161A (ja) * 2017-05-26 2018-12-20 ジャパン・ニュー・エナジー株式会社 熱媒体移送管、熱媒体移送管の施工方法、その熱媒体移送管を使用した地熱発電システム及び地熱発電方法
JP7116981B2 (ja) 2017-05-26 2022-08-12 ジャパン・ニュー・エナジー株式会社 地熱発電装置
JP7269674B2 (ja) 2017-05-26 2023-05-09 ジャパン・ニュー・エナジー株式会社 地熱発電システム
CN107990294A (zh) * 2018-01-10 2018-05-04 宋晓轩 一组深入干热岩层的蒸汽生产装置
CN107990294B (zh) * 2018-01-10 2024-01-12 宋晓轩 一组深入干热岩层的蒸汽生产装置
CN109915334A (zh) * 2019-04-09 2019-06-21 李福军 地热井下循环高效热动电三联供装置及工艺方法
CN109915334B (zh) * 2019-04-09 2023-12-19 陕西国诚恒业能源技术有限公司 地热井下循环高效热动电三联供装置及工艺方法
JP2020176591A (ja) * 2019-04-22 2020-10-29 三菱日立パワーシステムズ株式会社 地熱発電プラントの坑井制御システム及びその坑井制御方法並びに坑井制御プログラム、地熱発電プラント
JP7282580B2 (ja) 2019-04-22 2023-05-29 三菱重工業株式会社 地熱発電プラントの坑井制御システム及びその坑井制御方法並びに坑井制御プログラム、地熱発電プラント
CN112413912B (zh) * 2020-11-11 2021-12-10 山东省地质矿产勘查开发局第六地质大队 一种中深层闭式地热能供热系统及其设计方法
CN112413912A (zh) * 2020-11-11 2021-02-26 山东省地质矿产勘查开发局第六地质大队 一种中深层闭式地热能供热系统及其设计方法
CN112413914A (zh) * 2020-11-25 2021-02-26 河北绿源地热能开发有限公司 一种无负压地热回灌系统及回灌方法
CN112960824A (zh) * 2021-01-29 2021-06-15 安徽理工大学 一种污水回用处理及地热利用方式
US11359612B1 (en) 2021-04-02 2022-06-14 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic rankine cycle operation
US11680541B2 (en) 2021-04-02 2023-06-20 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11293414B1 (en) 2021-04-02 2022-04-05 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic rankine cycle operation
US11359576B1 (en) 2021-04-02 2022-06-14 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11280322B1 (en) 2021-04-02 2022-03-22 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11421625B1 (en) 2021-04-02 2022-08-23 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11421663B1 (en) 2021-04-02 2022-08-23 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11480074B1 (en) 2021-04-02 2022-10-25 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11486330B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11486370B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11493029B2 (en) 2021-04-02 2022-11-08 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11971019B2 (en) 2021-04-02 2024-04-30 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11542888B2 (en) 2021-04-02 2023-01-03 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11549402B2 (en) 2021-04-02 2023-01-10 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11572849B1 (en) 2021-04-02 2023-02-07 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11578706B2 (en) 2021-04-02 2023-02-14 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11592009B2 (en) 2021-04-02 2023-02-28 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11598320B2 (en) 2021-04-02 2023-03-07 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11624355B2 (en) 2021-04-02 2023-04-11 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11959466B2 (en) 2021-04-02 2024-04-16 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11644015B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11274663B1 (en) 2021-04-02 2022-03-15 Ice Thermal Harvesting, Llc Controller for controlling generation of geothermal power in an organic rankine cycle operation during hydrocarbon production
US11644014B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11255315B1 (en) 2021-04-02 2022-02-22 Ice Thermal Harvesting, Llc Controller for controlling generation of geothermal power in an organic Rankine cycle operation during hydrocarbon production
US11668209B2 (en) 2021-04-02 2023-06-06 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11326550B1 (en) 2021-04-02 2022-05-10 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11732697B2 (en) 2021-04-02 2023-08-22 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11761433B2 (en) 2021-04-02 2023-09-19 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11761353B2 (en) 2021-04-02 2023-09-19 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11946459B2 (en) 2021-04-02 2024-04-02 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11773805B2 (en) 2021-04-02 2023-10-03 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11933279B2 (en) 2021-04-02 2024-03-19 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11933280B2 (en) 2021-04-02 2024-03-19 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11236735B1 (en) 2021-04-02 2022-02-01 Ice Thermal Harvesting, Llc Methods for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11905934B2 (en) 2021-04-02 2024-02-20 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11187212B1 (en) 2021-04-02 2021-11-30 Ice Thermal Harvesting, Llc Methods for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on working fluid temperature
US11879409B2 (en) 2021-04-02 2024-01-23 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11841172B2 (en) 2022-02-28 2023-12-12 EnhancedGEO Holdings, LLC Geothermal power from superhot geothermal fluid and magma reservoirs
US11852383B2 (en) 2022-02-28 2023-12-26 EnhancedGEO Holdings, LLC Geothermal power from superhot geothermal fluid and magma reservoirs
US20230304705A1 (en) * 2022-02-28 2023-09-28 EnhancedGEO Holdings, LLC Geothermal power from superhot geothermal fluid and magma reservoirs
US11905797B2 (en) 2022-05-01 2024-02-20 EnhancedGEO Holdings, LLC Wellbore for extracting heat from magma bodies
CN115371761A (zh) * 2022-08-26 2022-11-22 山东省地质矿产勘查开发局第二水文地质工程地质大队(山东省鲁北地质工程勘察院) 一种高温地热井管外全井段温度及水位实时监测装置
US11918967B1 (en) 2022-09-09 2024-03-05 EnhancedGEO Holdings, LLC System and method for magma-driven thermochemical processes
CN116006425A (zh) * 2023-01-06 2023-04-25 山东地矿新能源有限公司 一种光伏-地热-蓄能的能量联合开发系统及其方法
CN116006425B (zh) * 2023-01-06 2023-10-17 山东地矿新能源有限公司 一种光伏-地热-蓄能的能量联合开发系统及其方法
US11913679B1 (en) 2023-03-02 2024-02-27 EnhancedGEO Holdings, LLC Geothermal systems and methods with an underground magma chamber
US11897828B1 (en) 2023-03-03 2024-02-13 EnhancedGEO, Holdings, LLC Thermochemical reactions using geothermal energy
US11912572B1 (en) 2023-03-03 2024-02-27 EnhancedGEO Holdings, LLC Thermochemical reactions using geothermal energy
US11912573B1 (en) 2023-03-03 2024-02-27 EnhancedGEO Holdings, LLC Molten-salt mediated thermochemical reactions using geothermal energy
US11905814B1 (en) 2023-09-27 2024-02-20 EnhancedGEO Holdings, LLC Detecting entry into and drilling through a magma/rock transition zone

Also Published As

Publication number Publication date
JP6596494B2 (ja) 2019-10-23
JPWO2016204287A1 (ja) 2018-04-05
PH12017502365A1 (en) 2018-06-25
JP2020012469A (ja) 2020-01-23

Similar Documents

Publication Publication Date Title
JP6596494B2 (ja) 地熱発電システム、地熱発電装置、地熱発電方法又は媒体移送管、その媒体移送管を利用した地熱発電装置及び地熱発電方法並びに破砕帯に媒体移送管を設置する方法
US11255576B2 (en) Closed loop energy production from producing geothermal wells
JP2021107712A (ja) 地熱を発生させるプロセスおよび方法
WO2013105468A1 (ja) 地熱交換器および地熱発電装置
EP2394015B1 (en) Equipment for realisation of deep boreholes and method of realisation of deep boreholes
US8381523B2 (en) Geothermal electricity production methods and geothermal energy collection systems
US8020382B1 (en) Closed loop, hot dry rock heat recovery process
JP6085645B2 (ja) 地熱交換器および地熱発電装置
US20150330670A1 (en) System and method for utilizing oil and gas wells for geothermal power generation
JP2011052621A (ja) 地熱発電装置
US11841172B2 (en) Geothermal power from superhot geothermal fluid and magma reservoirs
CN107152241A (zh) 刮刀钻头装置
JP2016164395A (ja) 地熱発電システム及び地熱発電方法
JP7175024B2 (ja) 地熱発電装置
JP6552222B2 (ja) 媒体移送管、その媒体移送管を利用した地熱発電装置及び地熱発電方法
JP2016205303A (ja) 温度低下補償型地熱交換器および温度低下補償型地熱発電装置
JP6526422B2 (ja) 地熱発電装置及び地熱発電方法
US9403694B2 (en) System for processing brines
JP6809698B2 (ja) 気水分離装置、地熱発電装置及び地熱発電方法
JP6796854B2 (ja) 気水分離装置、地熱発電装置及び地熱発電方法
JP2018080664A (ja) 気水分離発電装置、地熱発電装置及び地熱発電方法
US20130186809A1 (en) Clarifier and launder systems
US9145873B1 (en) Geothermal energy generator system
KR20090016613A (ko) 해수 온도차 발전 시설에서 심층 해수와 표면 해수를 펌프를 사용하지 않고 중력으로 열 교환소로 모으는 방법과장치
US20230296086A1 (en) Geothermal power from superhot geothermal fluid and magma reservoirs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811761

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524871

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12017502365

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811761

Country of ref document: EP

Kind code of ref document: A1