WO2016204066A1 - 液晶表示素子及びその製造方法 - Google Patents

液晶表示素子及びその製造方法 Download PDF

Info

Publication number
WO2016204066A1
WO2016204066A1 PCT/JP2016/067217 JP2016067217W WO2016204066A1 WO 2016204066 A1 WO2016204066 A1 WO 2016204066A1 JP 2016067217 W JP2016067217 W JP 2016067217W WO 2016204066 A1 WO2016204066 A1 WO 2016204066A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
carbon atoms
independently
substrate
Prior art date
Application number
PCT/JP2016/067217
Other languages
English (en)
French (fr)
Inventor
和樹 栗沢
林 正直
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN201680032505.3A priority Critical patent/CN107615149B/zh
Priority to KR1020177034482A priority patent/KR20180019534A/ko
Priority to US15/579,437 priority patent/US20180142155A1/en
Priority to JP2016555852A priority patent/JP6132123B1/ja
Priority to EP16811541.8A priority patent/EP3312667B1/en
Publication of WO2016204066A1 publication Critical patent/WO2016204066A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/123Ph-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3004Cy-Cy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3009Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/301Cy-Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3016Cy-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3027Compounds comprising 1,4-cyclohexylene and 2,3-difluoro-1,4-phenylene
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13775Polymer-stabilized liquid crystal layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/122Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode having a particular pattern
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel

Definitions

  • the present invention relates to a liquid crystal display element useful as a constituent member for a liquid crystal TV or the like and a method for manufacturing the same.
  • Liquid crystal display elements are used in various measuring instruments, automobile panels, word processors, electronic notebooks, printers, computers, televisions, watches, advertisement display boards, etc., including clocks and calculators.
  • Typical liquid crystal display methods include TN (twisted nematic) type, STN (super twisted nematic) type, vertical alignment type (vertical alignment; VA) using TFT (thin film transistor), and IPS. (In-plane switching) type.
  • the liquid crystal composition used in these liquid crystal display elements is stable against external factors such as moisture, air, heat, and light, and exhibits a liquid crystal phase in the widest possible temperature range centering on room temperature. It is required to be viscous and have a low driving voltage.
  • the liquid crystal composition is composed of several to several tens of kinds of compounds in order to optimize dielectric anisotropy ( ⁇ ), refractive index anisotropy ( ⁇ n), etc. for each liquid crystal display element. It is composed of
  • a liquid crystal composition having a negative ⁇ is used, which is widely used for liquid crystal TVs and the like.
  • low voltage driving, high-speed response, and a wide operating temperature range are required. That is, the absolute value of ⁇ is large, the viscosity ( ⁇ ) is small, and a high nematic phase-isotropic liquid phase transition temperature (T NI ) is required.
  • T NI nematic phase-isotropic liquid phase transition temperature
  • T NI nematic phase-isotropic liquid phase transition temperature
  • ⁇ n ⁇ d which is the product of ⁇ n and the cell gap (d)
  • it is necessary to adjust ⁇ n of the liquid crystal composition to an appropriate range according to the cell gap when applying a liquid crystal display element to a television or the like, since high-speed response is important, a liquid crystal composition having a low rotational viscosity ( ⁇ 1 ) is required.
  • an MVA (multi-domain vertical alignment) type that divides the alignment direction of liquid crystal molecules in a pixel into a plurality of parts by providing a protrusion structure on the substrate.
  • Liquid crystal display elements have been widely used.
  • the MVA type liquid crystal display element is excellent in view angle characteristics, the response speed of liquid crystal molecules is different between the vicinity of the protrusion structure on the substrate and the part away from the protrusion structure, and the liquid crystal having a slow response speed away from the protrusion structure. Due to the influence of the molecules, there is a problem that the overall response speed is insufficient, and there is a problem of a decrease in transmittance due to the protruding structure.
  • PSA is a method for providing a uniform pretilt angle in a divided pixel without providing a non-transparent protrusion structure in a cell, unlike a normal MVA liquid crystal display element.
  • Liquid crystal display elements including polymer sustained alignment: polymer sustaining alignment and PS liquid crystal display elements (polymer stabilized)
  • a PSA liquid crystal display element is obtained by adding a small amount of a polymerizable compound to a liquid crystal composition, introducing the liquid crystal composition into a liquid crystal cell, and then applying active energy rays while applying a voltage between the electrodes. It is produced by polymerizing the polymerizable compound. Therefore, an appropriate pretilt angle can be given in the divided pixels, and as a result, it is possible to achieve an improvement in contrast by improving the transmittance and a high-speed response by giving a uniform pretilt angle (for example, Patent Documents). 1).
  • a vertical alignment film is formed on two substrates. By omitting such a vertical alignment film formation process, the manufacturing process is simplified, the yield is improved, and the result is low.
  • a liquid crystal display element that can be reduced in cost has also been proposed. (For example, refer to Patent Document 2).
  • this type of liquid crystal display element can improve the transmittance since it can improve the transmittance, like the PSA liquid crystal display element, and can also be expected to have high-speed response.
  • the manufactured element generates display unevenness due to the manufacturing process, and a method using a specific liquid crystal material is disclosed as an improvement method (see Patent Document 3).
  • a polymerizable compound in the liquid crystal composition is polymerized, and the polymer does not form a vertical alignment film. Since it is formed directly on the electrode substrate as an alignment control layer, it is required that the alignment control layer itself is stable and does not change for a long time from the viewpoint of alignment uniformity and alignment stability of liquid crystal molecules in the liquid crystal element. It was.
  • the present invention has been made in view of the above circumstances, simplifying the process of forming a vertical alignment film on an electrode substrate, polymerizing a polymerizable compound in a liquid crystal composition, and aligning the alignment control layer on the electrode substrate
  • a liquid crystal display device manufactured by forming a liquid crystal display device the alignment control layer formed on the electrode substrate is improved in adhesion to the electrode substrate, and the alignment stability of the liquid crystal molecules is increased by suppressing the change in the alignment control layer over time.
  • the present inventors have studied various liquid crystal compositions and polymerizable compounds in the liquid crystal composition.
  • the liquid crystal composition contains the polymerizable compound, and the liquid crystal composition is contained in the liquid crystal cell.
  • the polymerizable compound in the liquid crystal composition is polymerized by irradiation with active energy rays while applying a voltage between the electrodes while applying a voltage between the electrodes, on one or both substrates on the substrate constituting the liquid crystal cell. It has been found that the above-mentioned problems can be solved by combining a specific compound as a liquid crystal compound and a polymerizable compound without providing a vertical alignment film, and the present invention has been completed.
  • the present invention provides a liquid crystal layer containing a liquid crystal composition between a first substrate having a common electrode and a second substrate having a plurality of pixels and a pixel electrode for each of the pixels.
  • a sandwiched liquid crystal display element having no alignment film on one or both of the first substrate and the second substrate, and one or more trifunctional or higher functional (meth) acrylate compounds; Having an orientation control layer formed from one or more bifunctional or monofunctional (meth) acrylate compounds;
  • the liquid crystal composition has the following general formula (I)
  • R 1 ⁇ and R 2 ⁇ are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or 2 to 2 carbon atoms
  • 8 represents an alkenyloxy group
  • Q 1 represents a 1,4-phenylene group or a trans-1,4-cyclohexylene group
  • l 1 represents 1 or 2
  • Q 1 may be the same or different.
  • R 3 ⁇ represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 2 to 8 carbon atoms
  • R 4 ⁇ represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 4 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 3 to 8 carbon atoms
  • Q 2 And Q 3 each independently represents a 1,4-phenylene group or a trans-1,4-cyclohexylene group
  • G 1 and G 2 present are each independently a single bond, —CH 2 CH 2 — , —CH 2 O—, —OCH 2 —, —CF 2 O— or —OCF 2 —, where l 2 represents 0, 1 or 2, but when l 2 is 2, two Q 2 and G 2 is represented by may be the same or different.
  • the present invention also provides a liquid crystal composition between a first substrate having a common electrode and a color filter layer and a second substrate having a plurality of pixels and a pixel electrode for each of the pixels.
  • R 1 ⁇ and R 2 ⁇ are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or 2 to 2 carbon atoms
  • 8 represents an alkenyloxy group
  • Q 1 represents a 1,4-phenylene group or a trans-1,4-cyclohexylene group
  • l 1 represents 1 or 2
  • Q 1 may be the same or different.
  • R 3 ⁇ represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 2 to 8 carbon atoms
  • R 4 ⁇ represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 4 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 3 to 8 carbon atoms
  • Q 2 And Q 3 each independently represents a 1,4-phenylene group or a trans-1,4-cyclohexylene group
  • G 1 and G 2 present are each independently a single bond, —CH 2 CH 2 — , —CH 2 O—, —OCH 2 —, —CF 2 O— or —OCF 2 —, where l 2 represents 0, 1 or 2, but when l 2 is 2, two Q 2 and G 2 is represented by may be the same or different.
  • a liquid crystal display element having good alignment stability over time and a method for manufacturing the same are provided by an alignment control layer that has good adhesion to the substrate and that is substantially prevented from changing over time.
  • the liquid crystal display element of the present invention is a liquid crystal display element in which a liquid crystal layer containing a liquid crystal composition is sandwiched between a pair of substrates, and a voltage is applied to the liquid crystal layer to displace the liquid crystal molecules in the liquid crystal layer. This is based on the principle of acting as an optical switch by transferring, and a well-known and conventional technique can be used in this respect.
  • FIG. 1 is a schematic perspective view showing an embodiment of the liquid crystal display element of the present invention.
  • the liquid crystal display element 10 of the present embodiment includes a first substrate 11, a second substrate 12, and a liquid crystal layer that is sandwiched between the first substrate 11 and the second substrate 12 and contains a liquid crystal composition. 13, a common electrode 14 provided on the surface of the first substrate 11 facing the liquid crystal layer 13, a pixel electrode 15 provided on the surface of the second substrate 12 facing the liquid crystal layer 13, A color filter 18 provided between one substrate 11 and the common electrode 14 is schematically configured.
  • the first substrate 11 and the second substrate 12 for example, a glass substrate or a plastic substrate is used.
  • a substrate made of a resin such as acrylic resin, methacrylic resin, polyethylene terephthalate, polycarbonate, or cyclic olefin resin is used as the plastic substrate.
  • the common electrode 14 and the pixel electrode 15 are usually made of a transparent material such as indium-added tin oxide (ITO).
  • ITO indium-added tin oxide
  • the pixel electrodes 15 are arranged in a matrix on the second substrate 12.
  • the pixel electrode 15 is controlled by a drain electrode of an active element typified by a TFT switching element (not shown).
  • the TFT switching element has a gate line as an address signal line and a source line as a data line in a matrix. is doing.
  • the pixel electrode 15 has two or more regions having different pretilt directions of liquid crystal molecules in the pixel. In this way, by defining the pretilt direction of the liquid crystal molecules and dividing the direction in which the liquid crystal molecules fall within the pixel into several regions, the viewing angle characteristics are improved.
  • a pixel electrode having a slit (a portion where no electrode is formed) having a stripe-like or V-shaped pattern may be provided in each pixel.
  • FIG. 2 is a schematic plan view showing a typical form of a slit electrode (comb electrode) when the inside of a pixel is divided into four regions.
  • the slit electrode has comb-like slits in four directions from the center of the pixel, so that the liquid crystal molecules in each pixel that are substantially perpendicularly aligned with respect to the substrate when no voltage is applied are applied with voltage application.
  • the liquid crystal molecules are directed in four different directions, approaching horizontal alignment. As a result, the alignment direction of the liquid crystal molecules in the pixel can be divided into a plurality of parts, so that the viewing angle characteristic is extremely wide.
  • the pixel electrode 15 has a slit (is a slit electrode).
  • a method of providing a structure such as a linear protrusion in the pixel, a method of providing an electrode other than the pixel electrode and the common electrode, and the like are applied (not shown). And a method of providing the structure is preferable.
  • the said structure should just have at least one of the 1st board
  • a configuration using a slit electrode is preferable from the viewpoint of transmittance and ease of manufacture. Since the slit electrode does not have a driving force for the liquid crystal molecules when no voltage is applied, the slit electrode cannot give a pretilt angle to the liquid crystal molecules. However, in the present invention, a pretilt angle can be imparted by providing an alignment control layer described later, and a wide viewing angle by pixel division can be achieved by combining with a slit electrode obtained by pixel division.
  • having a pretilt angle means that in a state where no voltage is applied, the direction perpendicular to the substrate surface (the surface adjacent to the liquid crystal layer 13 in the first substrate 11 and the second substrate 12) and the liquid crystal molecules This means that the direction of the director is slightly different.
  • the liquid crystal display element of the present invention is a vertical alignment (VA) type liquid crystal display element
  • the director of the liquid crystal molecules is aligned substantially perpendicular to the substrate surface when no voltage is applied.
  • VA vertical alignment
  • polyimide, polyamide, polysiloxane, or the like is provided between the first substrate and the liquid crystal layer and between the second substrate and the liquid crystal layer, respectively.
  • a vertical alignment film is disposed, in the liquid crystal display element of the present invention, at least one substrate does not have such a vertical alignment film.
  • a vertical alignment film is provided on one substrate, for example, a transparent organic material such as polyimide, polyamide, BCB (Penzocyclobutene Polymer), or polyvinyl alcohol can be used.
  • a voltage is applied between the electrodes and the liquid crystal molecules are slightly tilted and irradiated with active energy rays such as ultraviolet rays.
  • An appropriate pretilt angle is imparted by polymerizing the polymerizable compound in the liquid crystal composition.
  • the polymerizable compound specifically, a polymerizable compound described later is polymerized to form the alignment control layer.
  • the liquid crystal molecules are substantially vertically aligned means a state in which the director of the vertically aligned liquid crystal molecules is slightly tilted from the vertical direction to give a pretilt angle.
  • the angle formed by the direction completely parallel to the substrate surface and the direction of the director of the liquid crystal molecules is 90 °, and the liquid crystal molecules are completely homogeneously aligned (
  • the angle is preferably 89 to 85 °, more preferably 89 to 87 °. It is.
  • the polymerizable compound at least as the first polymerizable compound, one or more trifunctional or more (meth) acrylate compounds, and the second As the polymerizable compound, one or more difunctional or monofunctional (meth) acrylate compounds are used together.
  • the trifunctional or higher functional (meth) acrylate compound used as the first polymerizable compound means a polymerizable compound having three or more (meth) acryloyloxy groups, for example, the general formula (X0a)
  • Z is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a halogenated alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or a halogen having 1 to 8 carbon atoms.
  • l and n each independently represents an integer of 0, 1, 2, or 3, and l + n represents 3 or more
  • Z represents the formula (R-1) to the formula (R -15) and when n represents 0, R 1 represents any one of the formulas (R-1) to (R-15)
  • m represents an integer of 0 to 4, and when a plurality of R 1 , R 2 , Z, S 1 and S 2 are present, they may be the same or different, and a plurality of L 1 and M 2 are present. In this case, they may be the same or different, but at least one of L 1 represents a single bond.
  • (meth) acrylate means both acrylate and methacrylate
  • (meth) acryloyl group means acryloyl group (H 2 C ⁇ CH—CO Both-) and methacryloyl groups (H 2 C ⁇ C (CH 3 ) —CO—) are meant.
  • —COO— means “—C ( ⁇ O) —O—” and “—OCO—” means “—O—C ( ⁇ O) —”.
  • Z represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a halogenated alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or the number of carbon atoms.
  • halogenated alkoxy group 1 to 8 halogenated alkoxy group, halogen, cyano group, nitro group or R 2 , but hydrogen atom, alkyl group having 1 to 3 carbon atoms, halogenated alkyl group having 1 to 3 carbon atoms, carbon atom It is preferably an alkoxy group having 1 to 3 carbon atoms, a halogenated alkoxy group having 1 to 3 carbon atoms, a halogen, a cyano group or R 2 , and each of S 1 and S 2 independently represents 1 to 12 carbon atoms.
  • alkylene group having 1 to 3 carbon atoms, one or adjacent have not more than one -CH 2 in the alkylene group - is 1-3 carbon atoms replaced with -O- 10 carbon alkylene group Or preferably a single bond, more preferably a single bond, and R 1 and R 2 each independently represents a hydrogen atom or any one of formulas (R-1) to (R-15).
  • a single bond, —O—, —CH 2 —, —OCH 2 —, —CH 2 O—, —C 2 H 4 —, —COO—, —OCO—, —CH ⁇ CH—COO— , —CH ⁇ CH—OCO—, —COO—CH ⁇ CH—, —OCO—CH ⁇ CH—, —COO—CH ⁇ CH—COO—, —COO—CH ⁇ CH—OCO—, —OCO—CH ⁇ CH-COO -, - OCO- CH CH-OCO -, - COOC 2 H 4 -, - OCOC 2 H 4 -, - preferably C 2 H 4 OCO- or -C ⁇ C-, M 1 And M 3 each independently represents an aromatic ring or an aliphatic ring, preferably an aromatic ring, and M 2 represents 1,4-phenylene group, 1,4-cyclohexylene group, pyridine-2,5-diyl Group, pyrimidine
  • L and n each independently represents an integer of 0, 1, 2 or 3, and l + n represents 3 or more, and when l represents 0, Z is represented by formulas (R-1) to ( R-15) represents any one group, and when n represents 0, R 1 represents any one group of formula (R-1) to formula (R-15), and l and n are Preferably it is not zero.
  • Preferable trifunctional or higher functional (meth) acrylate compounds include compounds represented by the following formulas (X2a-101) to (X2a-150).
  • the bifunctional or monofunctional (meth) acrylate compound used as the second polymerizable compound is used together.
  • the above-mentioned bifunctional or monofunctional (meth) acrylate compound means a polymerizable compound having two (meth) acryloyloxy groups or one (meth) acryloyloxy group, for example, the general formula (X1a)
  • a 1 represents a hydrogen atom or a methyl group
  • a 2 represents a single bond or an alkylene group having 1 to 15 carbon atoms (one or two or more methylene groups in the alkylene group are each independently an oxygen atom, assuming that oxygen atoms are not directly bonded to each other, -CO-, -COO- or -OCO- may be substituted, and one or more hydrogen atoms in the alkylene group are each independently substituted with a fluorine atom, a methyl group or an ethyl group.
  • a 3 and A 6 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 18 carbon atoms (one or two or more methylene groups in the alkyl group are such that oxygen atoms are not directly bonded to each other) And each independently may be substituted with an oxygen atom, —CO—, —COO— or —OCO—, and one or more hydrogen atoms in the alkyl group are each independently a halogen atom. Which may be substituted with an atom or an alkyl group having 1 to 17 carbon atoms).
  • a 4 and A 7 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms (one or two or more methylene groups in the alkyl group are such that oxygen atoms are not directly bonded to each other) And each independently may be substituted with an oxygen atom, —CO—, —COO— or —OCO—, and one or more hydrogen atoms in the alkyl group are each independently a halogen atom. Which may be substituted with an atom or an alkyl group having 1 to 9 carbon atoms).
  • B 1 , B 2 and B 3 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms (one or two or more methylene groups in the alkyl group are
  • each may be independently substituted with an oxygen atom, —CO—, —COO— or —OCO—, and one or more of the alkyl groups may be substituted.
  • Each hydrogen atom may be independently substituted with a halogen atom or a trialkoxysilyl group having 3 to 6 carbon atoms), or the following general formula (Ib)
  • a 9 represents a hydrogen atom or a methyl group
  • a 8 represents a single bond or an alkylene group having 1 to 15 carbon atoms (one or two or more methylene groups in the alkylene group are each independently an oxygen atom, assuming that oxygen atoms are not directly bonded to each other, -CO-, -COO- or -OCO- may be substituted, and one or more hydrogen atoms in the alkylene group are each independently substituted with a fluorine atom, a methyl group or an ethyl group.
  • a group represented by formula (1) However, among the total of 2 k + 1 B 1 , B 2 and B 3 , the number of the group represented by the general formula (Ib) is 0 or 1.
  • R 7 represents a hydrogen atom or a methyl group
  • 6-membered rings T 1 , T 2 and T 3 are each independently
  • R 70 represents a hydrogen atom or a methyl group
  • R 71 represents a hydrocarbon group having a condensed ring
  • the “alkylene group” is a divalent group obtained by removing one hydrogen atom from each terminal carbon atom of an aliphatic linear or branched hydrocarbon. If there is a substitution from a hydrogen atom to a halogen atom or an alkyl group or a substitution from a methylene group to an oxygen atom, -CO-, -COO- or -OCO-, to that effect Shall be specifically refused.
  • the “alkylene chain length” means, for example, n in the general formula “— (CH 2 ) n — (where n represents an integer of 1 or more)” in the case of a linear alkylene group. It shall be.
  • the alkyl group having 1 to 18 carbon atoms in A 3 and A 6 may be linear, branched or cyclic, but may be linear or branched.
  • examples of the halogen atom in A 3 and A 6 include a fluorine atom, a chlorine atom, and a bromine atom, and a fluorine atom is preferable.
  • the alkyl group having 1 to 17 carbon atoms in which the hydrogen atom of the alkyl group in A 3 and A 6 is substituted is the same as the alkyl group in A 3 and A 6 except that the number of carbon atoms is different. Is mentioned.
  • examples of the halogen atom of the hydrogen atoms of the alkyl group in A 3 and A 6 are substituted, include those similar to the aforementioned halogen atom in A 3 and A 6.
  • the alkylene group having 1 to 15 carbon atoms in A 2 is a divalent group obtained by removing one hydrogen atom from the alkyl group having 1 to 15 carbon atoms in A 3 and A 6 .
  • the group of is mentioned.
  • examples of the alkyl group having 1 to 10 carbon atoms in A 4 and A 7 include the same groups as the alkyl groups in A 3 and A 6 except that the number of carbon atoms is different.
  • the alkyl group having 1 to 9 carbon atoms in which the hydrogen atom of the alkyl group in A 4 and A 7 is substituted is different from the alkyl group in A 3 and A 6 except that the number of carbon atoms is different. The same can be mentioned.
  • examples of the halogen atom of the hydrogen atoms of the alkyl group in A 4 and A 7 are substituted, include those similar to the aforementioned halogen atom in A 3 and A 6.
  • a linear or branched alkyl group having 1 to 10 carbon atoms in B 1 , B 2 and B 3 is a straight chain having 1 to 10 carbon atoms in A 3 and A 6 .
  • the same thing as a chain-like or branched alkyl group is mentioned.
  • the trialkoxysilyl group having 3 to 6 carbon atoms in which the hydrogen atom of the alkyl group in B 1 , B 2 and B 3 is substituted includes any one of a methoxy group and an ethoxy group as the alkoxy group. 3 may be bonded to the same silicon atom, and the three alkoxy groups bonded to the same silicon atom may all be the same or only two may be the same. Specifically, a trimethoxysilyl group, a triethoxysilyl group, an ethoxydimethoxysilyl group, a diethoxymethoxysilyl group, and the like can be given.
  • examples of the halogen atom in which the hydrogen atom of the alkyl group in B 1 , B 2, and B 3 is substituted include the same halogen atoms as those in A 3 and A 6 .
  • B 1 , B 2 and B 3 are present in total 2k + 1, of which the number of the groups represented by the general formula (Ib) is 0 or 1.
  • the group represented by the general formula (Ib) may be any of B 1 , B 2 and B 3 , but is preferably B 1 .
  • B 1 , B 2 or B 3 is a group represented by the above general formula (Ib), and preferred examples thereof include the following general formula (X1a -1)
  • a 11 and A 19 each independently represent a hydrogen atom or a methyl group;
  • a 12 and A 18 are each independently a single bond or an alkylene group having 1 to 15 carbon atoms (one or two or more methylene groups in the alkylene group are such that oxygen atoms are not directly bonded to each other).
  • Each independently substituted with an oxygen atom, —CO—, —COO— or —OCO—, and one or more hydrogen atoms in the alkylene group are each independently a fluorine atom, Which may be substituted with a methyl group or an ethyl group)
  • a 13 and A 16 each independently represents a linear alkyl group having 2 to 20 carbon atoms (one or two or more methylene groups in the linear alkyl group have an oxygen atom Each of which may be independently substituted with an oxygen atom, —CO—, —COO— or —OCO— as a non-direct bond.
  • a 14 and A 17 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms (one or two or more methylene groups in the alkyl group are such that oxygen atoms are not directly bonded to each other).
  • Each independently substituted with an oxygen atom, —CO—, —COO— or —OCO—, and one or more hydrogen atoms in the alkyl group are each independently a halogen atom or Which may be substituted with an alkyl group of 1 to 9 carbon atoms)
  • a 15 represents an alkylene group having 9 to 16 carbon atoms (in at least 1 to 5 methylene groups in the alkylene group, one hydrogen atom in the methylene group independently represents 1 to 10 carbon atoms).
  • one or two or more methylene groups may be independently selected as those in which oxygen atoms are not directly bonded to each other. And may be substituted with an oxygen atom, —CO—, —COO— or —OCO—.
  • X1a-2 A compound represented by The following general formula (X1a-2)
  • a 31 and A 32 each independently represent a hydrogen atom or a methyl group, b, c and d each independently represents an integer of 1 to 10, and e represents an integer of 0 to 6).
  • a 41 and A 42 each independently represents a hydrogen atom or a methyl group, and m, n, p and q each independently represents an integer of 1 to 10). Examples include compounds selected from the group.
  • the linear alkyl group having 2 to 20 carbon atoms in A 13 and A 16 is the same as the linear alkyl group in A 3 and A 6 ; Nonadecyl group, icosyl group, etc. are mentioned.
  • examples of the alkyl group having 1 to 10 carbon atoms in A 14 and A 17 include the same alkyl groups as those in A 3 and A 6 except that the number of carbon atoms is different. It is done.
  • examples of the alkylene group having 1 to 15 carbon atoms for A 12 and A 18 include the same alkylene groups as those described above for A 2 .
  • the alkylene group having 9 to 16 carbon atoms in A 15 is obtained by removing one hydrogen atom from the alkyl group having 9 to 16 carbon atoms in A 3 and A 6 A divalent group is mentioned.
  • Examples of the chain or branched alkyl group include the same alkyl groups as those described above for A 3 and A 6 except that the number of carbon atoms is different.
  • examples of the halogen atom of the hydrogen atoms of the alkyl group in A 14 and A 17 are substituted, include those similar to the aforementioned halogen atom in A 3 and A 6.
  • the compound represented by the general formula (X1a-1) is such that A 11 and A 19 are both hydrogen atoms in that the polymerization rate is faster than that in which both A 11 and A 19 are methyl groups. Those are preferred.
  • a 12 and A 18 are each independently a single bond or an alkylene group having 1 to 3 carbon atoms.
  • the distance between two polymerizable groups can be adjusted by changing the length of carbon number independently for A 12 and A 18 and A 15 .
  • the feature of the compound represented by the general formula (X1a-1) is that the distance between the polymerizable groups (distance between the crosslinking points) is long, but if this distance is too long, the polymerization rate becomes extremely slow. There is an upper limit on the distance between the polymerizable groups because it adversely affects the phase separation. On the other hand, the distance between the two side chains of A 13 and A 16 also affects the mobility of the main chain.
  • the lengths of these side chains are preferably as follows.
  • a 13 and A 14 are bonded to the same carbon atom in the main chain, but when their lengths are different, the longer side chain is referred to as A 13 ( If the length and the length of a 14 of a 13 are equal, one to one and a 13). Similarly, when the length of the length and A 17 of A 16 are different, if the length and the length of A 17 in the longer side chain of is referred to as A 16 (A 16 are equal, either the one and a 16).
  • such A 13 and A 16 are each independently a linear alkyl group having 2 to 20 carbon atoms (one or two or more present in the linear alkyl group). These methylene groups are each independently substituted with an oxygen atom, —CO—, —COO— or —OCO—, assuming that oxygen atoms are not directly bonded to each other.
  • An alkyl group (the linear alkyl One or more methylene groups present in the group may be independently substituted with an oxygen atom, —CO—, —COO— or —OCO—, assuming that the oxygen atoms are not directly bonded to each other. Good.)
  • the side chain Since the side chain has higher mobility than the main chain, its presence contributes to improvement of the mobility of the polymer chain at low temperature, but as mentioned above, spatial interference occurs between the two side chains. On the contrary, motility decreases. In order to prevent such spatial interference between side chains, it is effective to increase the distance between the side chains and to shorten the side chain length within a necessary range.
  • a 14 and A 17 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms (one or two or more methylene groups present in the alkyl group are oxygen atoms). Are each independently substituted with an oxygen atom, —CO—, —COO— or —OCO— so that they are not directly bonded to each other, and one or more hydrogen atoms present in the alkyl group Are each independently substituted with a halogen atom or an alkyl group having 1 to 9 carbon atoms.), But preferably each independently an hydrogen atom or an alkyl having 1 to 7 carbon atoms.
  • a group (one or two or more methylene groups present in the alkyl group are each independently an oxygen atom, —CO—, —COO— or —OCO—, as oxygen atoms are not directly bonded to each other); More preferably each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms (one or two or more methylene groups present in the alkyl group are Oxygen atoms may be independently substituted with oxygen atoms, —CO—, —COO—, or —OCO— as those in which oxygen atoms are not directly bonded to each other, and more preferably each independently a hydrogen atom. Or an alkyl group having 1 to 3 carbon atoms (one or two or more methylene groups present in the alkyl group are each independently an oxygen atom, —CO—, It may be substituted with —COO— or —OCO—.
  • a 14 and A 17 the it is too long length it is not preferred to induce spatial interference between side chains.
  • a 14 and A 17 is an alkyl chain of short length, high to motility can become a side chain having, and is considered to have a function of inhibiting the approach of adjacent main chain between
  • the action of preventing the interference between the polymer main chains is considered to increase the mobility of the main chains, and it is possible to suppress the anchoring energy from increasing at low temperatures, and the polymer stabilized liquid crystal This is effective in improving the display characteristics of the display element in a low temperature range.
  • a 15 located between the two side chains is preferably longer in terms of changing the distance between the side chains and also in increasing the distance between the crosslinking points to lower the glass transition point.
  • a 15 is too long, the general formula becomes too large molecular weight of the compound represented by (X1a-1), the compatibility with the liquid crystal composition is lowered, and the polymerization rate decreases
  • There is an upper limit on the length of the length for example, because the phase separation is adversely affected.
  • a 15 represents an alkylene group having 9 to 16 carbon atoms (in at least 1 to 5 methylene groups in the alkylene group, each hydrogen atom in the methylene group independently represents 1 carbon atom). May be substituted with 10 to 10 linear or branched alkyl groups, and one or two or more methylene groups in the alkylene group are each independently an oxygen atom, assuming that oxygen atoms are not directly bonded to each other. And may be substituted with an atom, —CO—, —COO— or —OCO—.
  • the alkylene chain length of A 15 is preferably 9 to 16 carbon atoms.
  • the number of substitution of the alkyl group is preferably 1 to 5, more preferably 1 to 3, and more preferably 2 or 3 More preferably.
  • the number of carbon atoms in the substituted alkyl group is preferably 1 to 5, more preferably 1 to 3.
  • the compounds represented by the general formula (X1a-1) are “Tetrahedron Letters, Vol. 30, pp 4985”, “Tetrahedron Letters, Vol. , Vol. 34, pp 217-225 "and the like.
  • a compound in which A 14 and A 17 are hydrogen includes a compound having a plurality of epoxy groups and a polymer such as acrylic acid or methacrylic acid having active hydrogen capable of reacting with the epoxy group. It can be obtained by reacting with a functional compound to synthesize a polymerizable compound having a hydroxyl group and then reacting with a saturated fatty acid.
  • radical polymerizable compound is, for example, A 14 and A 17 in the general formula (X1a-1) are alkyl groups and A 12 and A 18 are methylene groups having 1 carbon atom, an oxetane group
  • a method of reacting a fatty acid chloride or a fatty acid capable of reacting with an oxetane group with a polymerizable compound having active hydrogen such as acrylic acid, or a compound having one oxetane group It can be obtained by a method of reacting a polyvalent fatty acid chloride or a fatty acid capable of reacting with an oxetane group and further reacting a polymerizable compound having active hydrogen such as acrylic acid.
  • a 12 and A 18 in the general formula (X1a-1) are an alkylene group having 3 carbon atoms (propylene group, —CH 2 CH 2 CH 2 —), a furan group is used instead of the oxetane group. It can be obtained by using a compound having a plurality of. Further, when A 12 and A 18 in the general formula (X1a-1) are an alkylene group having 4 carbon atoms (butylene group, —CH 2 CH 2 CH 2 CH 2 —), instead of the oxetane group It can be obtained by using a compound having a plurality of pyran groups.
  • a 11 and A 19 each independently represent a hydrogen atom or a methyl group;
  • a 12 ′ and A 18 ′ each represent a methylene group;
  • a 13 and A 16 are each independently a linear alkyl group having 2 to 20 carbon atoms (one or two or more methylene groups present in the linear alkyl group are such that oxygen atoms are not directly bonded to each other) Each independently may be substituted with an oxygen atom, -CO-, -COO- or -OCO-)
  • a 14 ′ and A 17 ′ each independently represents an alkyl group having 1 to 10 carbon atoms,
  • a 15 represents an alkylene group having 9 to 16 carbon atoms (in the alkylene group, at least 1 to 5 methylene groups, each hydrogen atom in the methylene group independently represents one having 1 to 10 carbon atoms).
  • Examples of the alkyl group for A 14 ′ and A 17 ′ include the same alkyl groups as those for A 14 and A 17 .
  • the total number of —COO— and —OCO— in A 15 is 2 or less, and —COO— and —OCO in A 13 and A 16 Particularly preferred are those in which each of-is 1 or less, and specific examples include compounds represented by the following formulas (X1a-101) to (X1a-109).
  • the hydrocarbon group having 1 to 18 carbon atoms in R 8 may be either an aliphatic hydrocarbon group or an aromatic hydrocarbon group, and the aliphatic hydrocarbon group is linear These may be branched or cyclic, and may be any of a saturated aliphatic hydrocarbon group and an unsaturated aliphatic hydrocarbon group.
  • the cyclic hydrocarbon group may be either monocyclic or polycyclic.
  • the hydrocarbon group having 1 to 18 carbon atoms in R 8 is preferably an aliphatic hydrocarbon group, more preferably a saturated aliphatic hydrocarbon group, and carbon atoms in A 3 and A 6 Examples thereof include the same alkyl groups having 1 to 18 atoms, and a linear or branched saturated aliphatic hydrocarbon group is particularly preferable.
  • Preferred examples of the compound represented by the general formula (X1b) include those in which the 6-membered rings T 1 , T 2 and T 3 are all hydrocarbon rings.
  • the hydrocarbon group of R 71 may be any one having a condensed ring, may be composed only of a condensed ring, or may be a condensed ring and other hydrocarbon groups. You may have.
  • the condensed ring may be either an aliphatic ring or an aromatic ring.
  • the aliphatic ring may be either a saturated aliphatic ring or an unsaturated aliphatic ring, and may have both a saturated aliphatic ring and an unsaturated aliphatic ring.
  • the number of rings constituting the condensed ring may be two or more, but preferably 2 to 7.
  • the hydrocarbon group other than the condensed ring may be linear, branched or cyclic, and may have both a linear (linear and / or branched) structure and a cyclic structure.
  • the chain structure and cyclic structure hydrocarbon group may be either a saturated hydrocarbon group or an unsaturated hydrocarbon group, and the cyclic structure hydrocarbon group may be an aliphatic ring hydrocarbon group or an aromatic hydrocarbon group. Either is acceptable.
  • R 71 include a monovalent group obtained by removing one hydrogen atom from a steroid, and a monovalent group obtained by removing a hydroxyl group from cholesterol is preferred.
  • the polymerizable compound used for forming the orientation control layer is a bifunctional or monofunctional (meth) acrylate as the first polymerizable compound and at least one trifunctional or higher functional (meth) acrylate compound and the second polymerizable compound.
  • One or more acrylate compounds may be used, but it is excellent in the effect that it is difficult to generate dripping marks at the time of manufacturing the liquid crystal display element without deteriorating various characteristics as the liquid crystal display element and the image sticking characteristics of the liquid crystal display element. Therefore, a total of 2 to 5 types is preferable.
  • the ratio of at least one trifunctional or higher functional (meth) acrylate compound and bifunctional or monofunctional (meth) acrylate compound used for forming the orientation control layer is appropriately adjusted depending on how many polymerizable compounds are used.
  • the ratio of the tri- or higher functional (meth) acrylate compound to the liquid crystal composition is preferably 0 to 5% by mass, and more preferably 1.0 to 4.0% by mass.
  • the ratio of the bifunctional or monofunctional (meth) acrylate compound is preferably 0 to 5% by mass, and more preferably 1.0 to 4.0% by mass.
  • the liquid crystal composition used in the present invention has the general formula (I)
  • R 1 ⁇ and R 2 ⁇ are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or 2 to 2 carbon atoms
  • 8 represents an alkenyloxy group
  • Q 1 represents a 1,4-phenylene group or a trans-1,4-cyclohexylene group
  • l 1 represents 1 or 2
  • Q 1 may be the same or different.
  • R 3 ⁇ represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 2 to 8 carbon atoms
  • R 4 ⁇ represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 4 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 3 to 8 carbon atoms
  • Q 2 And Q 3 each independently represents a 1,4-phenylene group or a trans-1,4-cyclohexylene group
  • G 1 and G 2 present are each independently a single bond, —CH 2 CH 2 — , —CH 2 O—, —OCH 2 —, —CF 2 O— or —OCF 2 —, where l 2 represents 0, 1 or 2, but when l 2 is 2, two Q 2 and G 2 is represented by may be the same or different.
  • the alkyl group having 1 to 8 carbon atoms in R 1 ⁇ and R 2 ⁇ may be linear, branched or cyclic, but may be linear or branched.
  • the alkyl group in R 1 ⁇ and R 2 ⁇ preferably has 1 to 6 carbon atoms.
  • examples of the alkenyl group having 2 to 8 carbon atoms in R 1 ⁇ and R 2 ⁇ include ethenyl group (vinyl group), 2-propenyl group (allyl group), etc., and carbon atoms in R 1 ⁇ and R 2 ⁇
  • Examples of the alkyl group represented by Formulas 2 to 8 include monovalent groups in which one single bond (C—C) between carbon atoms is substituted with a double bond (C ⁇ C).
  • the alkenyl group in R 1 ⁇ and R 2 ⁇ preferably has 2 to 6 carbon atoms, and more preferably has the following structure.
  • the alkoxy group having 1 to 8 carbon atoms in R 1 ⁇ and R 2 ⁇ is a methoxy group, an ethoxy group, or the like, and the alkyl group having 1 to 8 carbon atoms in R 1 ⁇ and R 2 ⁇ is oxygen.
  • a monovalent group formed by bonding to an atom is exemplified.
  • the alkoxy group in R 1 ⁇ and R 2 ⁇ preferably has 1 to 6 carbon atoms, more preferably 1 to 5 carbon atoms, and particularly preferably 1 to 3 carbon atoms.
  • the alkenyloxy group R l [alpha] and R 2.alpha having 2 to 8 carbon atoms in, ethenyloxy group, 2-propenyloxy group, wherein the R l [alpha] and 2 to 8 carbon atoms in R 2.alpha
  • examples thereof include a monovalent group in which an alkenyl group is bonded to an oxygen atom.
  • the alkenyloxy group in R 1 ⁇ and R 2 ⁇ preferably has 2 to 6 carbon atoms.
  • Preferred compounds represented by the general formula (I) include those in which the combination of R 1 ⁇ and R 2 ⁇ is the alkyl group, the alkyl group and the alkoxy group, the alkyl group and the alkenyl group. Some are listed.
  • preferred examples of the compound represented by the general formula (I) include those represented by the following general formulas (I-1) to (I-4).
  • the content of the compound represented by the general formula (I) in the liquid crystal composition is preferably 30 to 65% by mass, and more preferably 35 to 55% by mass.
  • R 3 ⁇ is the same as R 1 ⁇ and R 2 ⁇ .
  • examples of the alkyl group and alkoxy group having 1 to 8 carbon atoms in R 4 ⁇ include the same as the alkyl group and alkoxy group having 1 to 8 carbon atoms in R 1 ⁇ and R 2 ⁇ . .
  • the alkenyl group having 4 to 8 carbon atoms and the alkenyloxy group having 3 to 8 carbon atoms in R 4 ⁇ are the same as those in R 1 ⁇ and R 2 ⁇ except that the number of carbon atoms is different. The same thing as an alkenyl group and an alkenyloxy group is mentioned.
  • the alkyl groups in R 3 ⁇ and R 4 ⁇ preferably each independently have 1 to 6 carbon atoms, and more preferably 1 to 5 carbon atoms.
  • the alkoxy groups in R 3 ⁇ and R 4 ⁇ preferably each independently have 1 to 6 carbon atoms, and more preferably 1 to 5 carbon atoms.
  • Preferred compounds represented by the general formula (II) are those in which R 3 ⁇ is the alkyl group, R 4 ⁇ is the alkoxy group, l 2 is 0 or 1, and G 1 is simple. And a bond, —CH 2 CH 2 — or —CH 2 O—, and G 2 is a single bond or —CH 2 CH 2 —.
  • preferred examples of the compound represented by the general formula (II) include those represented by the following general formulas (II-1) to (II-8).
  • the content of the compound represented by the general formula (II) in the liquid crystal composition is preferably 30 to 65% by mass, and more preferably 35 to 55% by mass.
  • [content of compound represented by general formula (II)] / [content of compound represented by general formula (I)] (mass ratio) is 8/2 to 2/8. Is preferable, 7/3 to 3/7 is more preferable, and 6/4 to 4/6 is particularly preferable.
  • liquid crystal composition includes the following general formula (III)
  • R 5 ⁇ and R 6 ⁇ are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or 2 to 8 alkenyloxy groups (one or two or more methylene groups in the alkyl group, alkenyl group, alkoxy group or alkenyloxy group independently represent oxygen atoms or -CO- may be substituted with one or two or more hydrogen atoms in the alkylene group represents may be substituted by a fluorine atom.
  • Q 3 is 1,4-phenylene group or Represents a tetrahydropyran-2,5-diyl group, l 3 represents 0 or 1
  • G 2 represents a single bond, —CH 2 O—, —OCH 2 —, —CF 2 O— or —OCF 2 —.
  • L 1 ⁇ L 6 is, Represents a respectively independently a hydrogen atom or a fluorine atom, at least two L 1 ⁇ L 6 represents a fluorine atom, if and G 2 l 3 represents 0 represents a single bond, L 5 and L 6 may not contain a fluorine atom.) May be contained.
  • R 5 ⁇ and R 6 ⁇ are alkyl groups having 1 to 8 carbon atoms, alkenyl groups having 2 to 8 carbon atoms, alkoxy groups having 1 to 8 carbon atoms, and 2 to 8 carbon atoms.
  • the alkenyloxy group is the same as in R 1 ⁇ and R 2 ⁇ .
  • Preferred examples of the compound represented by the general formula (III) include, for example, the following general formula (III-1)
  • liquid crystal composition includes the following general formula (IV) which does not correspond to the compounds other than the compounds represented by the general formulas (I) and (II).
  • R 7 ⁇ and R 8 ⁇ each independently represents an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms). It may contain the compound.
  • the alkyl group having 1 to 10 carbon atoms in R 7 ⁇ and R 8 ⁇ may be linear, branched or cyclic, but may be linear or branched.
  • the alkyl group in R 1 ⁇ and R 2 ⁇ preferably has 1 to 6 carbon atoms.
  • the alkenyl group in R 7 ⁇ and R 8 ⁇ preferably has 2 to 6 carbon atoms, and examples thereof include the same as those in R 1 ⁇ and R 2 ⁇ .
  • the alkoxy group having 1 to 10 carbon atoms in R 7 ⁇ and R 8 ⁇ is a methoxy group, an ethoxy group, or the like, and the alkyl group having 1 to 10 carbon atoms in R 7 ⁇ and R 8 ⁇ is oxygen.
  • a monovalent group formed by bonding to an atom is exemplified.
  • R 9 ⁇ and R 10 ⁇ are each independently an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, or 2 to 18 represents an alkenyloxy group, Q 4 represents a 1,4-phenylene group or a trans-1,4-cyclohexylene group, and l 4 represents 0 or 1. Good.
  • the alkyl group having 1 to 18 carbon atoms in R 9 ⁇ and R 10 ⁇ may be linear, branched or cyclic, but may be linear or branched.
  • the alkyl group in R 9 ⁇ and R 10 ⁇ preferably has 1 to 10 carbon atoms, and more preferably 1 to 6 carbon atoms.
  • Examples thereof include a monovalent group in which a single bond (C—C) is substituted with a double bond (C ⁇ C).
  • the alkenyl group in R 9 ⁇ and R 10 ⁇ preferably has 2 to 6 carbon atoms, and examples thereof include the same ones as in R 1 ⁇ and R 2 ⁇ .
  • the alkoxy group having 1 to 18 carbon atoms in R 9 ⁇ and R 10 ⁇ is a methoxy group, an ethoxy group, or the like, and the alkyl group having 1 to 18 carbon atoms in R 9 ⁇ and R 10 ⁇ is oxygen.
  • a monovalent group formed by bonding to an atom is exemplified.
  • the alkoxy group in R 9 ⁇ and R 10 ⁇ preferably has 1 to 10 carbon atoms, and more preferably 1 to 6 carbon atoms.
  • examples of the alkenyloxy group having 2 to 18 carbon atoms in R 9 ⁇ and R 10 ⁇ include an ethenyloxy group, a 2-propenyloxy group, etc., and those having 2 to 18 carbon atoms in R 9 ⁇ and R 10 ⁇ Examples thereof include a monovalent group in which an alkenyl group is bonded to an oxygen atom.
  • Preferred examples of the compound represented by the general formula (V) include, for example, the following general formula (V-1)
  • the content of the components other than the compounds represented by the general formulas (I) and (II) such as the compounds represented by the general formulas (III), (IV), and (V) in the liquid crystal composition is 25.
  • the content is preferably at most mass%, more preferably at most 20 mass%.
  • the liquid crystal display element 10 may further include a passivation film between at least one of the first substrate 11 and the liquid crystal layer 13 and between the second substrate 12 and the liquid crystal layer 13 ( (Not shown). As described above, the surface of the first substrate 11 or the second substrate 12 in the vicinity is protected by having the passivation film.
  • the liquid crystal display element 10 may further include a planarization film between at least one of the first substrate 11 and the liquid crystal layer 13 and between the second substrate 12 and the liquid crystal layer 13. (Not shown). When the flatness of the surface of this film is high, such a passivation film may be handled as a flattening film.
  • passivation film and the planarizing film known ones can be used as appropriate.
  • the liquid crystal display element of the present invention includes a liquid crystal composition using a specific compound represented by general formulas (I) and (II) as liquid crystal molecules, an alignment control layer formed from two or more polymerizable compounds, and By using in combination, unlike a conventional liquid crystal display element, an alignment film may not be provided between the first substrate and the liquid crystal layer and between the second substrate and the liquid crystal layer. When no voltage is applied, the liquid crystal molecules are aligned substantially perpendicular to the substrate surface. Further, image sticking and generation of dripping marks during production are suppressed without deteriorating various properties such as dielectric anisotropy, viscosity, nematic phase upper limit temperature, rotational viscosity ( ⁇ 1 ) and the like.
  • ⁇ Method for manufacturing liquid crystal display element The liquid crystal display element 10 shown in FIG. 1 can be manufactured by the following method, for example.
  • the liquid crystal-containing polymerization composition is It contains the compound represented by the general formula (I), the compound represented by the general formula (II), and two or more kinds of the polymerizable compounds as essential components.
  • spacer protrusions for securing a cell gap are sprayed on the facing surfaces of either the first substrate 11 or the second substrate 12.
  • the seal portion is printed (formed) by screen printing using an epoxy adhesive or the like.
  • the surface of the first substrate 11 facing the second substrate 12 is the surface having the common electrode 14 and the color filter 18, and the surface of the second substrate 12 facing the first substrate 11 is The surface having the pixel electrode 15.
  • the first substrate 11 and the second substrate 12 are made to face each other, and these are bonded together via the spacer protrusion and the seal portion, and then the liquid crystal-containing polymerization composition is injected into the formed space. To do. Then, the liquid crystal-containing polymerization composition is sandwiched between the first substrate 11 and the second substrate 12 by curing the seal portion by heating or the like.
  • a voltage is applied between the common electrode 14 and the pixel electrode 15 using voltage applying means.
  • the voltage at this time is 5 to 30 V, for example.
  • substrate 12 surface which opposes the composition for liquid crystal containing polymerization
  • An electric field having a predetermined angle is generated with respect to the liquid crystal-containing polymerization composition, and the liquid crystal molecules in the liquid crystal-containing polymerization composition (compound represented by general formula (I), general formula The compound (II) (19) is oriented in a predetermined direction with respect to the normal direction of the first substrate 11 and the second substrate 12, and as shown in FIG. Is granted.
  • the magnitude of the pretilt angle ⁇ can be controlled by appropriately adjusting the magnitude of the voltage.
  • the two or more polymerizable compounds are polymerized by irradiating an active energy ray such as ultraviolet rays from the outside of the first substrate 11 to the liquid crystal-containing polymerization composition while the voltage is applied.
  • an active energy ray such as ultraviolet rays from the outside of the first substrate 11 to the liquid crystal-containing polymerization composition while the voltage is applied.
  • the active energy ray may be irradiated from the outside of the second substrate 12 or may be irradiated from both the outside of the first substrate 11 and the outside of the second substrate 12.
  • liquid crystal-containing polymerization composition By irradiation with active energy rays, two or more kinds of the polymerizable compounds in the liquid crystal-containing polymerization composition react, and the liquid crystal-containing polymerization composition becomes a liquid crystal composition having a desired composition to form the liquid crystal layer 13. At the same time, an alignment control layer is formed between the first substrate 11 and the liquid crystal layer 13 and between the second substrate 12 and the liquid crystal layer 13.
  • the formed alignment control layer imparts a pretilt angle ⁇ to the liquid crystal molecules 19 located in the vicinity of the first substrate 11 and in the vicinity of the second substrate 12 in the liquid crystal layer 13 in a non-driven state.
  • the irradiation intensity of the active energy ray may or may not be constant, and when changing the irradiation intensity, the irradiation time at each irradiation intensity can be arbitrarily set, but two or more stages
  • the irradiation intensity of the irradiation process after the second stage is preferably weaker than the irradiation intensity of the irradiation process of the first stage, and the total irradiation time of the irradiation process after the second stage is It is preferable that the irradiation time is longer than the first stage irradiation time and the total irradiation energy amount is large.
  • the average irradiation light intensity in the first half of the entire irradiation process time is preferably stronger than the average irradiation intensity in the second half, and the intensity immediately after the start of irradiation is the strongest. More preferably, the irradiation intensity always decreases to a certain value as the irradiation time elapses.
  • the irradiation intensity of the active energy ray in this case is preferably 2 to 100 mW / cm 2 , but it is the highest in all irradiation processes in the first stage in the case of multistage irradiation or when the irradiation intensity is changed discontinuously.
  • the irradiation intensity is 10 to 100 mW / cm 2
  • the minimum irradiation intensity is 2 to 50 mW / cm 2 after the second stage in the case of multistage irradiation or when the irradiation intensity is changed discontinuously. It is more preferable.
  • the total irradiation energy amount is preferably 10 to 300 J, more preferably 50 to 250 J, and further preferably 100 to 250 J.
  • the applied voltage may be alternating current or direct current.
  • the irradiated active energy rays preferably have a plurality of spectra, and ultraviolet rays having a plurality of spectra are preferable.
  • active energy rays having a plurality of spectra two or more kinds of the polymerizable compounds can be polymerized by active energy rays having a spectrum (wavelength) suitable for each type, and in this case, the orientation control layer Is formed more efficiently.
  • the alignment control layer is composed of a polymer of the polymerizable compound.
  • the first substrate 11 and the liquid crystal layer 13 are not clearly separated and formed between them.
  • the first substrate 11 may be formed so as to enter the liquid crystal layer 13 from a surface adjacent to the liquid crystal layer 13 (a surface facing the liquid crystal layer 13).
  • the alignment control layer is not necessarily formed between the second substrate 12 and the liquid crystal layer 13 by clearly dividing the second substrate 12.
  • the second substrate 12 may be formed so as to enter the liquid crystal layer 13 from a surface adjacent to the liquid crystal layer 13 (a surface facing the liquid crystal layer 13).
  • the two or more kinds of polymerizable compounds are preferentially polymerized with each other having similar structures to align liquid crystal molecules in the vicinity region of the substrate, and the direction of the pretilt. It is presumed that the orientation is controlled by defining the value in a predetermined direction.
  • Tni, ⁇ n, ⁇ , ⁇ , ⁇ 1 respectively are defined as follows.
  • T ni Nematic phase-isotropic liquid phase transition temperature (° C.)
  • ⁇ n refractive index anisotropy at 25 ° C.
  • dielectric anisotropy at 25 ° C.
  • viscosity at 20 ° C. (mPa ⁇ s)
  • ⁇ 1 rotational viscosity at 25 ° C. (mPa ⁇ s)
  • image sticking, dripping marks and pretilt stability of liquid crystal display elements were evaluated by the following methods.
  • the burn-in evaluation of the liquid crystal display element is based on the following four-level evaluation of the afterimage level of the fixed pattern when the predetermined fixed pattern is displayed in the display area for 1000 hours and then the entire screen is uniformly displayed. went. ⁇ : No afterimage ⁇ : Level of afterimage is slightly acceptable but acceptable ⁇ : Level of afterimage is unacceptable ⁇ : Image retention is quite poor (drop mark) Evaluation of the drop marks of the liquid crystal display device was performed by the following four-stage evaluation of the drop marks that appeared white when the entire surface was displayed in black.
  • pretilt stability The pretilt stability of the liquid crystal display device was evaluated by measuring the amount of pretilt shift before and after voltage application after applying a predetermined voltage in the display area.
  • the sealing material was cured to form a liquid crystal composition layer.
  • a spacer having a thickness of 3.2 ⁇ m was used, and the thickness of the liquid crystal composition layer was set to 3.2 ⁇ m.
  • the obtained liquid crystal display was irradiated with ultraviolet rays while a voltage was applied to cure the polymerizable compound having the reactive group.
  • USH-250BY manufactured by USHIO INC. was used, and the liquid crystal display element was irradiated with ultraviolet rays at 100 mW for 10 minutes, whereby the liquid crystal display element of Example 1 was obtained.
  • an alignment control film including a polymer of a polymerizable compound having a reactive group is formed, and a pretilt angle is imparted to the liquid crystal molecules in the liquid crystal composition layer.
  • the pretilt angle is defined as follows. In the case of complete vertical alignment, the pretilt angle ( ⁇ ) is 90 °, and when the pretilt angle is given, the pretilt angle ( ⁇ ) is smaller than 90 °.
  • the liquid crystal display element of Example 1 had a pretilt angle in different directions in the four sections according to the slits of the pixel electrode, and the pretilt angle was maintained even when the AC electric field was turned off after the polymerizable compound was cured. .
  • the pretilt angle maintained was 88.3 °.
  • the liquid crystal display element of Example 1 obtained in this way shows excellent contrast and response speed, hardly causes drop marks, and is also excellent in terms of image sticking. became.
  • Example 2 In the same experiment as in Example 1, the polymerizable compound shown below with respect to 98.5 wt% of the liquid crystal composition LC-1
  • the sealing material was cured to form a liquid crystal composition layer.
  • a spacer having a thickness of 3.2 ⁇ m was used, and the thickness of the liquid crystal composition layer was set to 3.2 ⁇ m.
  • the obtained liquid crystal display was irradiated with ultraviolet rays while a voltage was applied to cure the polymerizable compound having the reactive group.
  • USH-250BY manufactured by Ushio Electric Co., Ltd. was used, and the liquid crystal display element was irradiated with ultraviolet rays at 100 mW for 10 minutes to obtain a liquid crystal display element of Example 2.
  • the liquid crystal display element of Example 2 had pretilt angles in different directions in the four sections according to the slits of the pixel electrode, and the pretilt angle was maintained even when the AC electric field was turned off after the polymerizable compound was cured. .
  • the pretilt angle maintained was 88.7 °.
  • the liquid crystal display element of Example 2 obtained in this way shows excellent contrast and response speed, hardly causes drop marks, and is also excellent in terms of image sticking. became.
  • a transparent electrode layer comprising a transparent common electrode, a color filter layer, and a first substrate (common electrode substrate) having a protrusion for controlling the orientation direction of the liquid crystal material, and a transparent pixel electrode driven by an active element
  • a second substrate (pixel electrode substrate) provided with protrusions for controlling the orientation direction of the pixel electrode layer and the liquid crystal material was manufactured.
  • a vertical alignment film material was applied to each of the common electrode substrate and the pixel electrode substrate by a spin coating method, and the applied film was heated at 200 ° C., thereby forming a vertical alignment film of 100 nm on the surface of each substrate.
  • the liquid crystal composition LC-1 was sandwiched between the common electrode substrate and the pixel electrode substrate on which the vertical alignment film was formed, and then the sealing material was cured to form a liquid crystal composition layer. At this time, a spacer having a thickness of 3.2 ⁇ m was used, and the thickness of the liquid crystal composition layer was set to 3.2 ⁇ m.
  • the liquid crystal display element of Comparative Example 1 thus obtained was found to be inferior in contrast to Example 1 in terms of contrast, response speed, drop marks and image sticking, as shown in the following table. .
  • Example 3 In the same experiment as in Example 1, the liquid crystal composition used was changed to a liquid crystal composition LC-2 containing a compound selected from general formula (I) and a compound selected from general formula (II).
  • the constituent compounds and the ratios contained are as follows.
  • the sealing material was cured to form a liquid crystal composition layer.
  • the thickness of the liquid crystal composition layer was set to 3.5 ⁇ m using a spacer having a thickness of 3.5 ⁇ m.
  • the obtained liquid crystal display was irradiated with ultraviolet rays while a voltage was applied to cure the polymerizable compound having the reactive group.
  • USH-250BY manufactured by USHIO INC. was used, and the liquid crystal display element was irradiated with ultraviolet rays at 100 mW for 10 minutes, whereby the liquid crystal display element of Example 3 was obtained.
  • the liquid crystal display element of Example 3 had pretilt angles in different directions in the four sections according to the slits of the pixel electrode, and the pretilt angle was maintained even when the AC electric field was turned off after the polymerizable compound was cured. .
  • the pretilt angle maintained was 88.5 °.
  • the liquid crystal display element of Example 3 obtained in this way shows excellent contrast and response speed, hardly causes drop marks, and is also excellent in terms of image sticking. became.
  • Example 4 In the same experiment as in Example 1, the polymerizable compound shown below with respect to 98.38 wt% of the liquid crystal composition LC-2
  • the sealing material was cured to form a liquid crystal composition layer.
  • the thickness of the liquid crystal composition layer was set to 3.5 ⁇ m using a spacer having a thickness of 3.5 ⁇ m.
  • the obtained liquid crystal display was irradiated with ultraviolet rays while a voltage was applied to cure the polymerizable compound having the reactive group.
  • USH-250BY manufactured by USHIO INC. was used, and the liquid crystal display element was irradiated with ultraviolet rays at 100 mW for 10 minutes, whereby a liquid crystal display element of Example 4 was obtained.
  • the liquid crystal display element of Example 4 had pretilt angles in different directions in the four sections according to the slits of the pixel electrodes, and the pretilt angle was maintained even when the AC electric field was turned off after the polymerizable compound was cured. .
  • the pretilt angle maintained was 88.6 °.
  • the liquid crystal display element of Example 4 obtained in this way shows excellent contrast and response speed, hardly causes drop marks, and is also excellent in terms of image sticking. became.
  • Comparative Example 2 In the same experiment as in Comparative Example 1, a liquid crystal composition layer was formed using the liquid crystal composition LC-2. At this time, the thickness of the liquid crystal composition layer was set to 3.8 ⁇ m using a spacer having a thickness of 3.8 ⁇ m.
  • the liquid crystal display element of Comparative Example 2 obtained in this way was found to be inferior in contrast, contrast speed, response speed, drop marks, and image sticking. .
  • Example 5 In the same experiment as in Example 1, the liquid crystal composition used was changed to a liquid crystal composition LC-3 containing a compound selected from general formula (I) and a compound selected from general formula (II).
  • the constituent compounds and the ratios contained are as follows.
  • the sealing material was cured to form a liquid crystal composition layer.
  • the thickness of the liquid crystal composition layer was set to 3.5 ⁇ m using a spacer having a thickness of 3.5 ⁇ m.
  • the obtained liquid crystal display was irradiated with ultraviolet rays while a voltage was applied to cure the polymerizable compound having the reactive group.
  • USH-250BY manufactured by Ushio Electric Co., Ltd. was used, and the liquid crystal display element was irradiated with ultraviolet rays at 100 mW for 10 minutes to obtain a liquid crystal display element of Example 5.
  • the liquid crystal display element of Example 5 had pretilt angles in different directions in the four sections according to the slits of the pixel electrode, and the pretilt angle was maintained even when the AC electric field was turned off after the polymerizable compound was cured. .
  • the pretilt angle maintained was 88.7 °.
  • the liquid crystal display element of Example 5 obtained in this way shows an excellent contrast and response speed, hardly causes dripping marks, and is also excellent in terms of image sticking. became.
  • Example 6 In the same experiment as in Example 1, the polymerizable compound shown below with respect to 98.0 wt% of the liquid crystal composition LC-3
  • a photopolymerization initiator Igacure 651 was added and dissolved uniformly to prepare a polymerizable liquid crystal composition CLC-3a.
  • the sealing material was cured to form a liquid crystal composition layer.
  • the thickness of the liquid crystal composition layer was set to 3.5 ⁇ m using a spacer having a thickness of 3.5 ⁇ m.
  • the obtained liquid crystal display was irradiated with ultraviolet rays while a voltage was applied to cure the polymerizable compound having the reactive group.
  • USH-250BY manufactured by USHIO INC. was used, and the liquid crystal display element was irradiated with ultraviolet rays at 100 mW for 10 minutes, whereby a liquid crystal display element of Example 6 was obtained.
  • the liquid crystal display element of Example 6 had pretilt angles in different directions in the four sections according to the slits of the pixel electrodes, and the pretilt angle was maintained even when the AC electric field was turned off after the polymerizable compound was cured. .
  • the pretilt angle maintained was 88.4 °.
  • the liquid crystal display element of Example 6 obtained in this way shows excellent contrast and response speed, hardly causes drop marks, and is also excellent in terms of image sticking. became.
  • Comparative Example 3 In the same experiment as in Comparative Example 1, a liquid crystal composition layer was formed using the liquid crystal composition LC-3. At this time, the thickness of the liquid crystal composition layer was set to 3.5 ⁇ m using a spacer having a thickness of 3.5 ⁇ m.
  • the liquid crystal display element of Comparative Example 2 thus obtained was found to be inferior in contrast, response speed, drop marks and image sticking as compared to Example 3, as shown in the following table. .
  • Example 7 In the same experiment as in Example 1, the liquid crystal composition used was changed to a liquid crystal composition LC-4 containing a compound selected from general formula (I) and a compound selected from general formula (II).
  • the constituent compounds and the ratios contained are as follows.
  • the sealing material was cured to form a liquid crystal composition layer.
  • the thickness of the liquid crystal composition layer was set to 3.5 ⁇ m using a spacer having a thickness of 3.5 ⁇ m.
  • the obtained liquid crystal display was irradiated with ultraviolet rays while a voltage was applied to cure the polymerizable compound having the reactive group.
  • USH-250BY manufactured by USHIO INC. was used, and the liquid crystal display element was irradiated with ultraviolet rays at 100 mW for 10 minutes to obtain a liquid crystal display element of Example 7.
  • the liquid crystal display element of Example 7 had pretilt angles in different directions in the four sections according to the slits of the pixel electrode, and the pretilt angle was maintained even when the AC electric field was turned off after the polymerizable compound was cured. .
  • the pretilt angle maintained was 88.8 °.
  • the liquid crystal display element of Example 7 obtained in this way shows excellent contrast and response speed, hardly causes dripping marks, and is also excellent in terms of image sticking. became.
  • Example 8 In the same experiment as in Example 1, the polymerizable compound shown below with respect to 98.05 wt% of the liquid crystal composition LC-4
  • the sealing material was cured to form a liquid crystal composition layer.
  • the thickness of the liquid crystal composition layer was set to 3.5 ⁇ m using a spacer having a thickness of 3.5 ⁇ m.
  • the obtained liquid crystal display was irradiated with ultraviolet rays while a voltage was applied to cure the polymerizable compound having the reactive group.
  • the liquid crystal display element of Example 8 was obtained by irradiating the liquid crystal display element with ultraviolet rays at 100 mW for 10 minutes using USH-250BY manufactured by USHIO ELECTRIC CO., LTD.
  • the liquid crystal display element of Example 8 had pretilt angles in different directions in the four sections according to the slits of the pixel electrode, and the pretilt angle was maintained even when the AC electric field was turned off after the polymerizable compound was cured. .
  • the pretilt angle maintained was 88.3 °.
  • the liquid crystal display element of Example 8 obtained in this way shows excellent contrast and response speed, hardly causes drop marks, and is also excellent in terms of image sticking. became.
  • Comparative Example 4 In the same experiment as in Comparative Example 1, a liquid crystal composition layer was formed using the liquid crystal composition LC-4. At this time, the thickness of the liquid crystal composition layer was set to 3.5 ⁇ m using a spacer having a thickness of 3.5 ⁇ m.
  • the liquid crystal display element of Comparative Example 4 thus obtained was found to be inferior in contrast, response speed, drop marks and image sticking as compared to Example 4. .
  • Example 9 In the same experiment as in Example 1, the liquid crystal composition used was changed to a liquid crystal composition LC-5 containing a compound selected from general formula (I) and a compound selected from general formula (II).
  • the constituent compounds and the ratios contained are as follows.
  • the sealing material was cured to form a liquid crystal composition layer.
  • the thickness of the liquid crystal composition layer was set to 3.5 ⁇ m using a spacer having a thickness of 3.5 ⁇ m.
  • the obtained liquid crystal display was irradiated with ultraviolet rays while a voltage was applied to cure the polymerizable compound having the reactive group.
  • USH-250BY manufactured by USHIO INC. was used, and the liquid crystal display element was irradiated with ultraviolet rays at 100 mW for 10 minutes, whereby a liquid crystal display element of Example 9 was obtained.
  • the liquid crystal display element of Example 9 had pretilt angles in different directions in the four sections according to the slits of the pixel electrodes, and the pretilt angle was maintained even when the AC electric field was turned off after the polymerizable compound was cured. .
  • the pretilt angle maintained was 88.9 °.
  • the liquid crystal display element of Example 9 obtained in this way shows excellent contrast and response speed, hardly causes drop marks, and is also excellent in terms of image sticking. became.
  • Comparative Example 5 In the same experiment as in Comparative Example 1, a liquid crystal composition layer was formed using the liquid crystal composition LC-5. At this time, the thickness of the liquid crystal composition layer was set to 3.5 ⁇ m using a spacer having a thickness of 3.5 ⁇ m.
  • the liquid crystal display element of Comparative Example 5 obtained in this way was found to be inferior in contrast, response speed, drop marks and image sticking as compared to Example 9, as shown in the following table. .
  • Example 10 In the same experiment as in Example 1, the liquid crystal composition used was changed to a liquid crystal composition LC-6 containing a compound selected from general formula (I) and a compound selected from general formula (II).
  • the constituent compounds and the ratios contained are as follows.
  • the sealing material was cured to form a liquid crystal composition layer.
  • the thickness of the liquid crystal composition layer was set to 3.5 ⁇ m using a spacer having a thickness of 3.5 ⁇ m.
  • the obtained liquid crystal display was irradiated with ultraviolet rays while a voltage was applied to cure the polymerizable compound having the reactive group.
  • USH-250BY manufactured by USHIO INC. Was used, and the liquid crystal display element was irradiated with ultraviolet rays at 100 mW for 10 minutes, whereby the liquid crystal display element of Example 10 was obtained.
  • the liquid crystal display element of Example 10 had pretilt angles in different directions in the four sections according to the slits of the pixel electrodes, and the pretilt angle was maintained even when the AC electric field was turned off after the polymerizable compound was cured. .
  • the pretilt angle maintained was 89.0 °.
  • the liquid crystal display element of Example 10 obtained in this way shows excellent contrast and response speed, hardly causes dripping marks, and is also excellent in terms of image sticking. became.
  • Comparative Example 6 In the same experiment as Comparative Example 1, a liquid crystal composition layer was formed using the liquid crystal composition LC-6. At this time, the thickness of the liquid crystal composition layer was set to 3.5 ⁇ m using a spacer having a thickness of 3.5 ⁇ m.
  • the liquid crystal display element of Comparative Example 6 thus obtained was found to be inferior to Example 10 in terms of contrast, response speed, drop marks and image sticking, as shown in the following table. .
  • Example 11 Comparative Examples 7 to 10.
  • the polymerizable compound shown below with respect to the liquid crystal composition LC-1 (98.3 mass%) prepared in Example 1
  • a liquid crystal display element CLCD-1b was obtained in the same manner as in Example 1 except that this liquid crystal-containing polymerization composition CLC-1b was used.
  • a liquid crystal display element CLCD-3b was obtained in the same manner as in Example 1 except that this liquid crystal-containing polymerization composition CLC-3b was used.
  • a liquid crystal display element CLCD-5b was obtained in the same manner as in Example 1 except that this liquid crystal-containing polymerization composition CLC-5b was used.
  • a liquid crystal display element CLCD-10b was obtained in the same manner as in Example 1 except that this liquid crystal-containing polymerization composition CLC-6b was used.
  • Liquid crystal display element CLCD-1b (Comparative Example 7), CLCD-3b (Comparative Example 8), CLCD-5b (Comparative Example 9), CLCD-10b (Comparative Example 10), and Liquid Crystal Display Element CLCD of Example 1 1 (Example 11), the liquid crystal display element CLCD-3 (Example 12) of Example 5, the liquid crystal display element CLCD-5 (Example 13) of Example 9, and the liquid crystal display element CLCD-10 of Example 10 (
  • the pretilt stability evaluation performed using the liquid crystal display element of Example 14) revealed that the pretilt shift amount was small and the stability was excellent as shown in the following table. In other words, it is clear that a liquid crystal display element having good alignment stability over time can be obtained by the alignment control layer in which changes over time are greatly suppressed.

Abstract

誘電率異方性、粘度、ネマチック相上限温度、回転粘度(γ)等の諸特性を悪化させることなく、焼き付きと製造時の滴下痕の発生とが抑制された液晶表示素子及びその製造方法を提供する。共通電極及びカラーフィルタを有する基板と、複数の画素を有し、各前記画素毎に画素電極を有する基板との間に、液晶組成物を含有する液晶層が挟持され、一方又は両方の基板上に配向膜を有さず、1種以上の3官能以上の(メタ)アクリレート化合物と、1種以上の2官能あるいは単官能(メタ)アクリレート化合物から形成された配向制御層を有することを特徴とする。液晶TV等の液晶表示素子として適用される。

Description

液晶表示素子及びその製造方法
 本発明は、液晶TV等の構成部材として有用な液晶表示素子及びその製造方法に関する。
 液晶表示素子は、時計、電卓をはじめとして、各種測定機器、自動車用パネル、ワードプロセッサー、電子手帳、プリンター、コンピューター、テレビ、時計、広告表示板等に用いられるようになっている。液晶表示方式としては、その代表的なものとして、TN(ツイステッド・ネマチック)型、STN(スーパー・ツイステッド・ネマチック)型、TFT(薄膜トランジスタ)を用いた垂直配向型(バーチカル・アライメント;VA)やIPS(イン・プレーン・スイッチング)型等が挙げられる。これらの液晶表示素子に用いられる液晶組成物は、水分、空気、熱、光などの外的要因に対して安定であること、また、室温を中心としてできるだけ広い温度範囲で液晶相を示し、低粘性であり、かつ駆動電圧が低いことが求められる。さらに、液晶組成物は、個々の液晶表示素子に対して、誘電率異方性(Δε)や屈折率異方性(Δn)等を最適な値とするために、数種類から数十種類の化合物から構成されている。
 VA型ディスプレイでは、Δεが負の液晶組成物が用いられており、液晶TV等に広く用いられている。一方、全ての駆動方式において、低電圧駆動、高速応答、広い動作温度範囲が求められている。すなわち、Δεの絶対値が大きく、粘度(η)が小さく、高いネマチック相-等方性液体相転移温度(TNI)が要求されている。また、Δnとセルギャップ(d)との積であるΔn×dの設定から、液晶組成物のΔnをセルギャップに合わせて適当な範囲に調節する必要がある。加えて、液晶表示素子をテレビ等へ応用する場合、高速応答性が重視されるため、回転粘度(γ)の小さい液晶組成物が要求される。
 一方、VA型ディスプレイの視野角特性を改善するために、基板上に突起構造物を設けることにより、画素中の液晶分子の配向方向を複数に分割するMVA(マルチドメイン・バーチカル・アライメント)型の液晶表示素子が広く用いられるに至った。MVA型液晶表示素子は、視野角特性の点では優れるものの、基板上の突起構造物の近傍と離れた部位とでは、液晶分子の応答速度が異なり、突起構造物から離れた応答速度の遅い液晶分子の影響から、全体としての応答速度が不十分であるという問題があり、突起構造物に起因する透過率の低下の問題があった。この問題を解決するために、通常のMVA型液晶表示素子とは異なり、セル中に非透過性の突起構造物を設けることなく、分割した画素内で均一なプレチルト角を付与する方法として、PSA液晶表示素子(polymer sustained alignment:ポリマー維持配向、PS液晶表示素子(polymer stabilised:ポリマー安定化)を含む。)が開発されている。PSA液晶表示素子は、少量の重合性化合物を液晶組成物に添加し、その液晶組成物を液晶セルに導入後、電極間に電圧を印加しながら、活性エネルギー線の照射により、液晶組成物中の重合性化合物を重合させることで製造されるものである。そのため、分割画素中において適切なプレチルト角を付与することができ、結果として、透過率向上によるコントラストの向上及び均一なプレチルト角の付与による高速応答性を達成できるというものである(例えば、特許文献1参照)。
 PSA液晶表示素子は、2枚の基板上に垂直配向膜を形成させているが、このような垂直配向膜の形成工程を省くことで、製造プロセスを簡便化し、歩留まりを向上させ、結果として低コスト化が可能となる液晶表示素子も提案されている。(例えば、特許文献2参照)。
 この方式の液晶表示素子は、PSA液晶表示素子と同様に、透過率向上させることができることからコントラストが向上し、また高速応答性も期待できることが記載されている。しかしながら、作製した素子が製造プロセスに起因する表示ムラを発生することがあり、これを改善方法としては、特定の液晶材料を使用する方法が開示されている(特許文献3参照)。
 このような垂直配向膜の形成工程を簡素化し低コスト化が可能となる液晶表示素子においては、液晶組成物中の重合性化合物を重合させ、その重合物が垂直配向膜を形成していない透明電極基板上に直接、配向制御層として形成するため、液晶素子中の液晶分子の配向均一性や配向安定性の観点から、配向制御層自体が安定して長期間変化が起こらないことが求められていた。
特開2002-357830号公報 特開2004-302061号公報 WO2014/123056A1号公報
 本願発明は、上記事情に鑑みてなされたものであり、電極基板上に垂直配向膜を形成する工程を簡素化して、液晶組成物中の重合性化合物を重合させ、電極基板上に配向制御層を形成させて作製する液晶表示素子において、電極基板に形成させる配向制御層の電極基板への密着性を向上させ、共に配向制御層の経時変化を抑制することで液晶分子の配向安定性を高め、結果として、表示品位及びその信頼性が高められた液晶表示素子及びその製造方法を提供することを課題とする。
 本発明者らは、上記課題を解決するため、種々の液晶組成物と液晶組成物中の重合性化合物を検討した結果、液晶組成物中に重合性化合物を含有させ、液晶組成物を液晶セルに導入後、電極間に電圧を印加しながら、活性エネルギー線の照射により、液晶組成物中の前記重合性化合物を重合させる方式において、液晶セルを構成する基板上の一方又は両方の基板上に垂直配向膜を設けず、液晶化合物及び重合性化合物として特定の化合物を組み合わせることにより、前記課題を解決できることを見出し、本願発明を完成するに至った。
 すなわち、本願発明は、共通電極を有する第一の基板と、複数の画素を有しかつ各前記画素毎に画素電極を有する第二の基板との間に、液晶組成物を含有する液晶層が挟持された液晶表示素子であって、前記第一の基板及び第二の基板の、一方又は両方の基板上に配向膜を有さず、1種以上の3官能以上の(メタ)アクリレート化合物と、1種以上の2官能あるいは単官能(メタ)アクリレート化合物から形成された配向制御層を有し、
 前記液晶組成物が、下記一般式(I)
Figure JPOXMLDOC01-appb-C000012
(式中、R1α及びR2αはそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Qは1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、lは1又は2を表すが、lが2の場合、2個のQは同一であっても異なっていてもよい。)で表される化合物、及び下記一般式(II)
Figure JPOXMLDOC01-appb-C000013
(式中、R3αは炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、R4αは炭素原子数1~8のアルキル基、炭素原子数4~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数3~8のアルケニルオキシ基を表し、存在するQ及びQはそれぞれ独立して、1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、G及び存在するGはそれぞれ独立して、単結合、-CHCH-、-CHO-、-OCH-、-CFO-又は-OCF-を表し、lは0、1又は2を表すが、lが2の場合、2個のQ及びGは同一であっても異なっていてもよい。)で表される化合物を含有することを特徴とする液晶表示素子を提供する。
 また、本願発明は、共通電極及びカラーフィルタ層を有する第一の基板と、複数の画素を有し、かつ各前記画素毎に画素電極を有する第二の基板との間に、液晶組成物を含有する液晶層が挟持され、前記画素中にプレチルトの方向が異なる2以上の領域を有する液晶表示素子の製造方法であって、前記第一の基板と前記第二の基板の、一方又は両方の基板上に配向膜を設けず、下記一般式(I)
Figure JPOXMLDOC01-appb-C000014
(式中、R1α及びR2αはそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Qは1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、lは1又は2を表すが、lが2の場合、2個のQは同一であっても異なっていてもよい。)で表される化合物、及び下記一般式(II)
Figure JPOXMLDOC01-appb-C000015
(式中、R3αは炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、R4αは炭素原子数1~8のアルキル基、炭素原子数4~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数3~8のアルケニルオキシ基を表し、存在するQ及びQはそれぞれ独立して、1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、G及び存在するGはそれぞれ独立して、単結合、-CHCH-、-CHO-、-OCH-、-CFO-又は-OCF-を表し、lは0、1又は2を表すが、lが2の場合、2個のQ及びGは同一であっても異なっていてもよい。)で表される化合物、1種以上の3官能以上を有する(メタ)アクリレート化合物及び、1種以上の2官能あるいは単官能(メタ)アクリレート化合物を含有する液晶含有重合用組成物を挟持し、
 前記画素電極と前記共通電極との間に、前記液晶含有重合用組成物中の液晶分子にプレチルト角を付与するための電圧を印可した状態で活性エネルギー線を照射することにより、前記2種以上の重合性化合物を重合させると共に、前記液晶含有重合用組成物を前記液晶組成物として、前記第一の基板及び第二の基板と前記液晶層との間に、配向制御層を形成することを特徴とする液晶表示素子の製造方法を提供する。
 本願発明によれば、誘電率異方性、粘度、ネマチック相上限温度、回転粘度(γ)等の諸特性を悪化させることなく、焼き付きと製造時の滴下痕の発生とが抑制され、更に、基板との密着性を良好で、経時的な変化が大幅に抑制された配向制御層により配向の経時安定性が良好な液晶表示素子及びその製造方法が提供される。
本願発明の液晶表示素子の一実施形態を示す概略斜視図である。 本願発明の液晶表示素子に用いられるスリット電極(櫛形電極)の一例を示す概略平面図である。 本願発明の液晶表示素子におけるプレチルト角の定義を示す図である。
 以下、本願発明の液晶表示素子及びその製造方法の実施の形態について説明する。
 なお、本実施の形態は、発明の趣旨をよりよく理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
<液晶表示素子>
 本願発明の液晶表示素子は、一対の基板の間に、液晶組成物を含有する液晶層が挟持された液晶表示素子であって、液晶層に電圧を印加し、液晶層中の液晶分子をフレデリクス転移させることにより、光学的なスイッチとして働かせる原理に基づくものであり、この点では周知慣用技術を用いることができる。
 2枚の基板が液晶分子をフレデリクス転移させるための電極を有する、通常の垂直配向液晶表示素子では、一般的に、これら基板間に垂直に電荷を印加する方式が採用される。この場合、一方の電極は共通電極となり、もう一方の電極は画素電極となる。以下、この方式の最も典型的な実施形態を示す。
 図1は、本発明の液晶表示素子の一実施形態を示す概略斜視図である。
 本実施形態の液晶表示素子10は、第一の基板11と、第二の基板12と、第一の基板11と第二の基板12との間に挟持され、液晶組成物を含有する液晶層13と、第一の基板11における液晶層13と対向する面上に設けられた共通電極14と、第二の基板12における液晶層13と対向する面上に設けられた画素電極15と、第一の基板11と共通電極14との間に設けられたカラーフィルタ18と、から概略構成されている。
 第一の基板11及び第二の基板12としては、例えば、ガラス基板又はプラスチック基板が用いられる。
 前記プラスチック基板としては、アクリル樹脂、メタクリル樹脂、ポリエチレンテレフタレート、ポリカーボネート、環状オレフィン樹脂等の樹脂からなる基板が用いられる。
 共通電極14及び画素電極15は、通常、インジウム添加酸化スズ(ITO)等の透明性を有する材料から構成される。
 画素電極15は、第二の基板12にマトリクス状に配設されている。画素電極15は、TFTスイッチング素子(図示略)に代表されるアクティブ素子のドレイン電極により制御され、そのTFTスイッチング素子は、アドレス信号線であるゲート線及びデータ線であるソース線をマトリクス状に有している。
 画素電極15は、その画素中に液晶分子のプレチルトの方向が異なる2以上の領域を有する。このように、液晶分子のプレチルトの方向を規定して、画素内の液晶分子の倒れる方向をいくつかの領域に分割する画素分割を行うことで、視野角特性が向上する。
 画素分割を行う場合、例えば、各画素内において、ストライプ状やV字状等のパターンを有するスリット(電極の形成されない部分)を有する画素電極を設ければよい。
 図2は、画素内を4つの領域に分割する場合のスリット電極(櫛形電極)の典型的な形態を示す概略平面図である。このスリット電極は、画素の中央から4方向に櫛歯状にスリットを有することにより、電圧無印加時に基板に対して略垂直配向している各画素内の液晶分子は、電圧の印加に伴って4つの異なった方向に液晶分子のダイレクターを向けて、水平配向に近づいていく。その結果、画素内の液晶分子の配向方向を複数に分割できるので、極めて広い視野角特性を有する。
 液晶表示素子10としては、画素電極15がスリットを有する(スリット電極である)ものが好ましい。
 画素分割を行う方法としては、前記スリット電極を設ける方法の他に、画素内に線状突起等の構造物を設ける方法、画素電極や共通電極以外の電極を設ける方法等が適用され(図示略)、前記構造物を設ける方法が好ましい。前記構造物は、第一の基板11及び第二の基板12の少なくとも一方が有していればよく、両方が有していてもよい。
 ただし、透過率、製造の容易さの点からは、スリット電極を用いる構成が好ましい。スリット電極は、電圧無印加時には液晶分子に対して駆動力を有しないことから、液晶分子にプレチルト角を付与することはできない。しかし、本願発明においては、後述する配向制御層を設けることにより、プレチルト角を付与することができるとともに、画素分割したスリット電極と組み合わせることにより、画素分割による広視野角を達成できる。
 本願発明において、プレチルト角を有するとは、電圧無印加状態において、基板面(第一の基板11及び第二の基板12における液晶層13と隣接する面)に対して垂直な方向と、液晶分子のダイレクターの方向とが、僅かに異なっている状態をいう。
 本願発明の液晶表示素子は、垂直配向(VA)型液晶表示素子なので、電圧無印加時に液晶分子のダイレクターは基板面に対して略垂直配向しているものである。通常、VA型液晶表示素子において液晶分子を垂直配向させるためには、第一の基板と液晶層との間、第二の基板と液晶層との間に、それぞれポリイミド、ポリアミド、ポリシロキサン等の垂直配向膜が配置されるが、本発明の液晶表示素子は、少なくともひとつの基板はこのような垂直配向膜を有しない。しかしながら、もし、一方の基板に垂直配向膜を有する場合は、例えば、ポリイミド、ポリアミド、BCB(ペンゾシクロブテンポリマー)、ポリビニルアルコールなどの透明性有機材料を用いることができる。 本願発明の液晶表示素子においては、上述のPSA方式の液晶表示素子と同様に、電極間に電圧を印加し、液晶分子を僅かにチルトさせた状態で、紫外線等の活性エネルギー線を照射して、液晶組成物中の重合性化合物を重合させることにより、適切なプレチルト角を付与するものである。ただし、本願発明の液晶表示素子においては、重合性化合物として、具体的には後述の重合性化合物を重合させて配向制御層を形成する。
 なお、本発明において、「液晶分子が略垂直配向している」とは、垂直配向している液晶分子のダイレクターが垂直方向からやや倒れてプレチルト角が付与されている状態を意味する。液晶分子が完全に垂直配向している場合、基板面に対して完全に平行な方向と、液晶分子のダイレクターの方向と、のなす角度は90°であり、液晶分子が完全にホモジニアス配向(基板面に対して水平に配向)している場合、前記角度は0°であり、液晶分子が略垂直配向している場合、前記角度は好ましくは89~85°、より好ましくは89~87°である。
 本願発明の液晶表示素子の配向制御層を形成するため、前記の重合性化合物として、少なくとも、第一の重合性化合物として、1種以上の3官能以上の(メタ)アクリレート化合物と、第二の重合性化合物として、1種以上の2官能あるいは単官能(メタ)アクリレート化合物と、をそれぞれいっしょに使用する。
 第一の重合性化合物として使用する前記の3官能以上の(メタ)アクリレート化合物は、3つ以上の(メタ)アクリロイルオキシ基を有する重合性化合物を意味し、例えば、一般式(X0a)
Figure JPOXMLDOC01-appb-C000016
で表される化合物が挙げられる。
(式中、Zは、水素原子、炭素原子数1~8のアルキル基、炭素原子数1~8のハロゲン化アルキル基、炭素原子数1~8のアルコキシ基、炭素原子数1~8のハロゲン化アルコキシ基、ハロゲン、シアノ基、ニトロ基又はRを表し、S及びSはそれぞれ独立して、炭素原子数1~12個のアルキレン基又は単結合を表し、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-は、-O-、-COO-、-OCO-又は-OCOO-に置き換えられても良く、
 R及びRはそれぞれ独立して、水素原子又は式(R-1)から式(R-15)
Figure JPOXMLDOC01-appb-C000017
のいずれかを表し、
 LはおよびLはそれぞれ独立して、単結合、-O-、-S-、-CH-、-OCH-、-CHO-、-CO-、-C-、-COO-、-OCO-、-OCOOCH-、-CHOCOO-、-OCHCHO-、-CO-NR-、-NR-CO-、-SCH-、-CHS-、-CH=CR-COO-、-CH=CR-OCO-、-COO-CR=CH-、-OCO-CR=CH-、-COO-CR=CH-COO-、-COO-CR=CH-OCO-、-OCO-CR=CH-COO-、-OCO-CR=CH-OCO-、-COOC-、-OCOC-、-COCO-、-(CH-C(=O)-O-、-(CH-O-(C=O)-、-O-(C=O)-(CH-、-(C=O)-O-(CH-、-CHOCO-、-COOCH-、-OCOCH-、-CH=CH-、-CF=CF-、-CF=CH-、-CH=CF-、-CF-、-CFO-、-OCF-、-CFCH-、-CHCF-、-CFCF-又は-C≡C-(式中、Rはそれぞれ独立して水素原子又は炭素原子数1~4のアルキル基を表し、jは1~4の整数を表す。)を表し、
 MおよびMはお互い独立して、芳香環、脂肪族環を表わし、
 Mは、1,4-フェニレン基、1,4-シクロヘキシレン基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ナフタレン-2,6-ジイル基、ナフタレン-1,4-ジイル基、テトラヒドロナフタレン-2,6-ジイル基又は1,3-ジオキサン-2,5-ジイル基を表し、
 M、M及びMはそれぞれ独立して、無置換であっても、炭素原子数1~8のアルキル基、炭素原子数1~8のハロゲン化アルキル基、炭素原子数1~8のアルコキシ基、ハロゲン、シアノ基、又はニトロ基で置換されていても良く、
 lおよびnはそれぞれ独立して、0、1、2又は3の整数を表し、かつ、l+nが3以上を表すが、lが0を表す場合、Zは式(R-1)~式(R-15)のいずれか一つの基を表し、nが0を表す場合、Rは式(R-1)~式(R-15)のいずれか一つの基を表し、
 mは、0から4の整数を表し、R、R、Z、S及びSが複数存在する場合は、同一であっても異なっていても良く、L及びMが複数存在する場合は、同一であっても異なっていても良いが、Lの少なくとも一つは単結合を表す。)
 なお、本明細書において、「(メタ)アクリレート」とは、アクリレート及びメタクリレートの両方を意味するものとし、同様に、「(メタ)アクリロイル基」とは、アクリロイル基(HC=CH-CO-)及びメタクリロイル基(HC=C(CH)-CO-)の両方を意味するものとする。
 また、特に断りのない限り、「-COO-」は「-C(=O)-O-」を、「-OCO-」は「-O-C(=O)-」を、それぞれ意味するものとする。
 一般式(X0a)の式中、Zは、水素原子、炭素原子数1~8のアルキル基、炭素原子数1~8のハロゲン化アルキル基、炭素原子数1~8のアルコキシ基、炭素原子数1~8のハロゲン化アルコキシ基、ハロゲン、シアノ基、ニトロ基又はRを表すが、水素原子、炭素原子数1~3のアルキル基、炭素原子数1~3のハロゲン化アルキル基、炭素原子数1~3のアルコキシ基、炭素原子数1~3のハロゲン化アルコキシ基、ハロゲン、シアノ基又はRであることが好ましく、S及びSはそれぞれ独立して、炭素原子数1~12個のアルキレン基又は単結合を表し、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-は、-O-、-COO-、-OCO-又は-OCOO-に置き換えられても良いが、炭素原子数1~3個のアルキレン基、アルキレン基中の1個又は隣接していない2個以上の-CH-が、-O-に置き換えられた炭素原子数3~10個のアルキレン基又は単結合であることが好ましく、単結合であることがより好ましく、R及びRはそれぞれ独立して、水素原子又は式(R-1)から式(R-15)のいずれかを表すが、式(R-1)又は式(R-2)であることが好ましく、LはおよびLはそれぞれ独立して、単結合、-O-、-S-、-CH-、-OCH-、-CHO-、-CO-、-C-、-COO-、-OCO-、-OCOOCH-、-CHOCOO-、-OCHCHO-、-CO-NR-、-NR-CO-、-SCH-、-CHS-、-CH=CR-COO-、-CH=CR-OCO-、-COO-CR=CH-、-OCO-CR=CH-、-COO-CR=CH-COO-、-COO-CR=CH-OCO-、-OCO-CR=CH-COO-、-OCO-CR=CH-OCO-、-COOC-、-OCOC-、-COCO-、-(CH-C(=O)-O-、-(CH-O-(C=O)-、-O-(C=O)-(CH-、-(C=O)-O-(CH-、-CHOCO-、-COOCH-、-OCOCH-、-CH=CH-、-CF=CF-、-CF=CH-、-CH=CF-、-CF-、-CFO-、-OCF-、-CFCH-、-CHCF-、-CFCF-又は-C≡C-(式中、Rはそれぞれ独立して水素原子又は炭素原子数1~4のアルキル基を表し、jは1~4の整数を表す。)を表すが、単結合、-O-、-CH-、-OCH-、-CHO-、-C-、-COO-、-OCO-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CH=CH-COO-、-COO-CH=CH-OCO-、-OCO-CH=CH-COO-、-OCO-CH=CH-OCO-、-COOC-、-OCOC-、-COCO-又は-C≡C-であることが好ましく、MおよびMはお互い独立して、芳香環、脂肪族環を表すが、芳香環が好ましく、Mは、1,4-フェニレン基、1,4-シクロヘキシレン基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ナフタレン-2,6-ジイル基、ナフタレン-1,4-ジイル基、テトラヒドロナフタレン-2,6-ジイル基又は1,3-ジオキサン-2,5-ジイル基を表すが、1,4-フェニレン基、ナフタレン-2,6-ジイル基、ナフタレン-1,4-ジイル基であることが好ましく、M、M及びMはそれぞれ独立して、無置換又は炭素原子数1~2のアルキル基又はハロゲンで置換されていても好ましく、lおよびnはそれぞれ独立して、0、1、2又は3の整数を表し、かつ、l+nが3以上を表すが、lが0を表す場合、Zは式(R-1)~式(R-15)のいずれか一つの基を表し、nが0を表す場合、Rは式(R-1)~式(R-15)のいずれか一つの基を表すが、lおよびnは0ではないことが好ましい。
 一般式(X0a)で表される化合物として、例えば、
 3官能以上の(メタ)アクリレート化合物で好ましいものとしては、下記式(X2a-101)~(X2a-150)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
等で表される化合物が挙げられる。
 第二の重合性化合物として使用する2官能あるいは単官能(メタ)アクリレート化合物と、をそれぞれいっしょに使用する。
 前記の2官能あるいは単官能(メタ)アクリレート化合物は、2つの(メタ)アクリロイルオキシ基又は1つの(メタ)アクリロイルオキシ基を有する重合性化合物を意味し、例えば、一般式(X1a)
Figure JPOXMLDOC01-appb-C000025
(式中、Aは水素原子又はメチル基を表し、
は単結合又は炭素原子数1~15のアルキレン基(該アルキレン基中の1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立して酸素原子、-CO-、-COO-又は-OCO-で置換されていてもよく、該アルキレン基中の1個又は2個以上の水素原子はそれぞれ独立してフッ素原子、メチル基又はエチル基で置換されていてもよい。)を表し、
及びAはそれぞれ独立して水素原子、ハロゲン原子又は炭素原子数1~18のアルキル基(該アルキル基中の1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立して酸素原子、-CO-、-COO-又は-OCO-で置換されていてもよく、該アルキル基中の1個又は2個以上の水素原子は、それぞれ独立してハロゲン原子又は炭素原子数1~17のアルキル基で置換されていてもよい。)を表し、
及びAはそれぞれ独立して水素原子、ハロゲン原子又は炭素原子数1~10のアルキル基(該アルキル基中の1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立して酸素原子、-CO-、-COO-又は-OCO-で置換されていてもよく、該アルキル基中の1個又は2個以上の水素原子は、それぞれ独立してハロゲン原子又は炭素原子数1~9のアルキル基で置換されていてもよい。)を表し、
kは1~40を表し、
、B及びBは、それぞれ独立して水素原子、炭素原子数1~10の直鎖状若しくは分岐鎖状のアルキル基(該アルキル基中の1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立して酸素原子、-CO-、-COO-又は-OCO-で置換されていてもよく、該アルキル基中の1個又は2個以上の水素原子は、それぞれ独立してハロゲン原子又は炭素原子数3~6のトリアルコキシシリル基で置換されていてもよい。)、又は下記一般式(I-b)
Figure JPOXMLDOC01-appb-C000026
(式中、Aは水素原子又はメチル基を表し、
は単結合又は炭素原子数1~15のアルキレン基(該アルキレン基中の1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立して酸素原子、-CO-、-COO-又は-OCO-で置換されていてもよく、該アルキレン基中の1個又は2個以上の水素原子は、それぞれ独立してフッ素原子、メチル基又はエチル基で置換されていてもよい。)で表される基を表す。ただし、合計で2k+1個あるB、B及びBのうち、前記一般式(I-b)で表される基となるものの個数は0又は1個である。)で表される化合物、
一般式(X1b)
Figure JPOXMLDOC01-appb-C000027
(式中、Rは水素原子又はメチル基を表し、
6員環T、T及びTはそれぞれ独立して
Figure JPOXMLDOC01-appb-C000028
のいずれか(ただしmは1から4の整数を表す。)を表し、
は0又は1を表し、
及びYはそれぞれ独立して単結合、-CHCH-、-CHO-、-OCH-、-COO-、-OCO-、-C≡C-、-CH=CH-、-CF=CF-、-(CH-、-CHCHCHO-、-OCHCHCH-、-CH=CHCHCH-又は-CHCHCH=CH-を表し、
は単結合、-COO-又は-OCO-を表し、
は炭素原子数1~18の炭化水素基を表す。)で表される化合物、
及び一般式(X1c)
Figure JPOXMLDOC01-appb-C000029
(式中、R70は水素原子又はメチル基を表し、R71は縮合環を有する炭化水素基を表す。)で表される化合物
からなる群より選ばれる化合物であることが好ましい。
 なお、本明細書において、「アルキレン基」とは、特に断りのない限り、脂肪族直鎖状又は分岐鎖状炭化水素の末端の炭素原子から水素原子各1個を除いてなる二価の基を意味するものとし、その中の水素原子からハロゲン原子若しくはアルキル基への置換、又はメチレン基から酸素原子、-CO-、-COO-もしくは-OCO-への置換がある場合には、その旨を特に断るものとする。また、「アルキレン鎖長」とは、例えば、直鎖状のアルキレン基の場合、その一般式「-(CH-(式中、nは1以上の整数を表す)」におけるnを意味するものとする。
 一般式(X1a)中、A及びAにおける炭素原子数1~18のアルキル基は、直鎖状、分岐鎖状及び環状のいずれでもよいが、直鎖状又は分岐鎖状であることが好ましく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、n-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、n-ヘプチル基、2-メチルヘキシル基、3-メチルヘキシル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、3-エチルペンチル基、2,2,3-トリメチルブチル基、n-オクチル基、イソオクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基が挙げられる。
 一般式(X1a)中、A及びAにおける前記ハロゲン原子としては、例えば、フッ素原子、塩素原子及び臭素原子が挙げられ、フッ素原子であることが好ましい。
 A及びAにおける前記アルキル基の水素原子が置換される、炭素原子数1~17のアルキル基としては、炭素原子数が異なる点以外は、A及びAにおける前記アルキル基と同じものが挙げられる。
 また、A及びAにおける前記アルキル基の水素原子が置換される前記ハロゲン原子としては、A及びAにおける前記ハロゲン原子と同じものが挙げられる。
 一般式(X1a)中、Aにおける炭素原子数1~15のアルキレン基としては、A及びAにおける炭素原子数1~15の前記アルキル基から1個の水素原子を除いてなる二価の基が挙げられる。
 一般式(X1a)中、A及びAにおける炭素原子数1~10のアルキル基としては、炭素原子数が異なる点以外は、A及びAにおける前記アルキル基と同じものが挙げられる。
 また、A及びAにおける前記アルキル基の水素原子が置換される、炭素原子数1~9のアルキル基としては、炭素原子数が異なる点以外は、A及びAにおける前記アルキル基と同じものが挙げられる。
 また、A及びAにおける前記アルキル基の水素原子が置換される前記ハロゲン原子としては、A及びAにおける前記ハロゲン原子と同じものが挙げられる。
 一般式(X1a)中、B、B及びBにおける炭素原子数1~10の直鎖状若しくは分岐鎖状のアルキル基としては、A及びAにおける炭素原子数1~10の直鎖状若しくは分岐鎖状のアルキル基と同じものが挙げられる。
 また、B、B及びBにおける前記アルキル基の水素原子が置換される、炭素原子数3~6のトリアルコキシシリル基としては、アルコキシ基としてメトキシ基及びエトキシ基のいずれかが合計で3個、同一のケイ素原子に結合したものが挙げられ、同一のケイ素原子に結合している3個の前記アルコキシ基は、すべて同じでもよいし、2個のみが同じであってもよく、具体的には、トリメトキシシリル基、トリエトキシシリル基、エトキシジメトキシシリル基、ジエトキシメトキシシリル基等が挙げられる。
 また、B、B及びBにおける前記アルキル基の水素原子が置換される前記ハロゲン原子としては、A及びAにおける前記ハロゲン原子と同じものが挙げられる。
 一般式(X1a)において、B、B及びBは合計で2k+1個存在するが、そのうち、一般式(I-b)で表される基となるものの個数は0又は1個であり、一般式(I-b)で表される基であるのは、B、B及びBのいずれであってもよいが、Bであることが好ましい。
 一般式(X1a)で表される化合物のうち、B、B又はBが前記一般式(I-b)で表される基であるもので、好ましいものとしては、下記一般式(X1a-1)
Figure JPOXMLDOC01-appb-C000030
(式中、A11及びA19はそれぞれ独立して水素原子又はメチル基を表し、
12及びA18は、それぞれ独立して単結合又は炭素原子数1~15のアルキレン基(該アルキレン基中の1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立して酸素原子、-CO-、-COO-又は-OCO-で置換されていてもよく、該アルキレン基中の1個又は2個以上の水素原子は、それぞれ独立してフッ素原子、メチル基又はエチル基で置換されていてもよい。)を表し、
13及びA16は、それぞれ独立して炭素原子数2~20の直鎖状のアルキル基(該直鎖状のアルキル基中の1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立して酸素原子、-CO-、-COO-又は-OCO-で置換されていてもよい。)を表し、
14及びA17は、それぞれ独立して水素原子又は炭素原子数1~10のアルキル基(該アルキル基中の1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立して酸素原子、-CO-、-COO-又は-OCO-で置換されていてもよく、該アルキル基中の1個又は2個以上の水素原子は、それぞれ独立してハロゲン原子又は炭素原子数1~9のアルキル基で置換されていてもよい。)を表し、
15は炭素原子数9~16のアルキレン基(該アルキレン基中の少なくとも1~5個のメチレン基において、該メチレン基中の1個の水素原子は、それぞれ独立して炭素原子数1~10の直鎖状又は分岐鎖状のアルキル基で置換されていてもよく、該アルキレン基中の1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立して酸素原子、-CO-、-COO-又は-OCO-で置換されていてもよい。)を表す。)で表される化合物、
下記一般式(X1a-2)
Figure JPOXMLDOC01-appb-C000031
(式中、A21及びA22はそれぞれ独立して水素原子又はメチル基を表し、aは6~22の整数を表す。)で表される化合物、
下記一般式(X1a-3)
Figure JPOXMLDOC01-appb-C000032
(式中、A31及びA32はそれぞれ独立して水素原子又はメチル基を表し、b、c及びdはそれぞれ独立して1~10の整数を表し、eは0~6の整数を表す。)で表される化合物、
及び下記一般式(X1a-4)
(式中、A41及びA42はそれぞれ独立して水素原子又はメチル基を表し、m、n、p及びqはそれぞれ独立して1~10の整数を表す。)で表される化合物からなる群から選ばれる化合物が挙げられる。
 一般式(X1a-1)中、A13及びA16における炭素原子数2~20の直鎖状のアルキル基としては、A及びAにおける直鎖状の前記アルキル基と同じものと、さらにノナデシル基及びイコシル基等が挙げられる。
 一般式(X1a-1)中、A14及びA17における炭素原子数1~10のアルキル基としては、炭素原子数が異なる点以外は、A及びAにおける前記アルキル基と同じものが挙げられる。
 一般式(X1a-1)中、A12及びA18における炭素原子数1~15のアルキレン基としては、Aにおける前記アルキレン基と同じものが挙げられる。
 一般式(X1a-1)中、A15における炭素原子数9~16のアルキレン基としては、A及びAにおける炭素原子数9~16の前記アルキル基から1個の水素原子を除いてなる二価の基が挙げられる。
 A14及びA17における前記アルキル基の水素原子が置換される、炭素原子数1~9のアルキル基と、A15における前記アルキレン基の水素原子が置換される、炭素原子数1~10の直鎖状又は分岐鎖状のアルキル基としては、炭素原子数が異なる点以外は、A及びAにおける前記アルキル基と同じものが挙げられる。
 また、A14及びA17における前記アルキル基の水素原子が置換される前記ハロゲン原子としては、A及びAにおける前記ハロゲン原子と同じものが挙げられる。
 一般式(X1a-1)で表される化合物は、A11及びA19がいずれもメチル基であるものよりも、重合速度がより速い点で、A11及びA19がいずれも水素原子であるものが好ましい。
 また、一般式(X1a-1)で表される化合物は、A12及びA18はそれぞれ独立して単結合又は炭素原子数1~3のアルキレン基であるものが好ましい。2個の重合性基間の距離は、A12及びA18とA15とで独立的にそれぞれ炭素数の長さを変えることで調整できる。一般式(X1a-1)で表される化合物の特徴は、重合性基間の距離(架橋点間の距離)が長いことであるが、この距離があまりに長いと重合速度が極端に遅くなって相分離に悪い影響が出てくるため、重合性基間の距離には上限がある。一方、A13及びA16の2個の側鎖間の距離も主鎖の運動性に影響がある。すなわち、A13及びA16間の距離が短いと側鎖A13及びA16が互いに干渉するようになり、運動性の低下をきたす。従って、一般式(X1a-1)で表される化合物において重合性基間の距離はA12、A18、及びA15の和で決まるが、このうちA12とA18を長くするよりもA15を長くする方が好ましい。
 一方、側鎖であるA13、A14、A16、A17においては、これらの側鎖の長さが次のような態様であることが好ましい。
 一般式(X1a-1)において、A13及びA14は主鎖が同じ炭素原子に結合しているが、これらの長さが異なるとき、長い方の側鎖をA13と呼ぶものとする(A13の長さとA14の長さが等しい場合は、いずれが一方をA13とする)。同様に、A16の長さとA17の長さが異なるとき、長いほうの側鎖をA16と呼ぶものとする(A16の長さとA17の長さが等しい場合は、いずれが一方をA16とする)。
 このようなA13及びA16は、本発明においては、それぞれ独立して炭素原子数2~20の直鎖状のアルキル基(該直鎖状のアルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、-CO-、-COO-又は-OCO-で置換されていてもよい。)とされているが、好ましくは、それぞれ独立して炭素原子数2~18の直鎖状のアルキル基(該直鎖状のアルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、-CO-、-COO-又は-OCO-で置換されていてもよい。)であり、より好ましくは、それぞれ独立して炭素原子数3~15の直鎖状のアルキル基(該直鎖状のアルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、-CO-、-COO-又は-OCO-で置換されていてもよい。)である。
 側鎖は主鎖に比べて運動性が高いので、これが存在することは低温での高分子鎖の運動性向上に寄与するが、前述したように二つの側鎖間で空間的な干渉が起こる状況では逆に運動性が低下する。このような側鎖間での空間的な干渉を防ぐためには側鎖間距離を長くすること、及び、側鎖長を必要な範囲内で短くすることが有効である。
 さらにA14及びA17は、本発明においては、それぞれ独立して水素原子又は炭素原子数1~10のアルキル基(該アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとしてそれぞれ独立して酸素原子、-CO-、-COO-又は-OCO-で置換されていてもよく、該アルキル基中に存在する1個又は2個以上の水素原子はそれぞれ独立してハロゲン原子又は炭素原子数1~9のアルキル基で置換されていてもよい。)とされているが、好ましくは、それぞれ独立して水素原子又は炭素原子数1~7のアルキル基(該アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとしてそれぞれ独立して酸素原子、-CO-、-COO-又は-OCO-で置換されていてもよい。)であり、より好ましくは、それぞれ独立して水素原子又は炭素原子数1~5のアルキル基(該アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとしてそれぞれ独立して酸素原子、-CO-、-COO-又は-OCO-で置換されていてもよい。)であり、さらに好ましくは、それぞれ独立して水素原子又は炭素原子数1~3のアルキル基(該アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとしてそれぞれ独立して酸素原子、-CO-、-COO-又は-OCO-で置換されていてもよい。)である。
 A14及びA17についても、その長さが長すぎることは側鎖間の空間的な干渉を誘起するため好ましくない。一方で、A14及びA17が短い長さのアルキル鎖である場合、高い運動性を持った側鎖になり得ること、及び隣接する主鎖同士の接近を阻害する働きを有することが考えられ、高分子主鎖間の干渉を防ぐ作用が、主鎖の運動性を高めているものと考えられ、アンカリングエネルギーが低温で増加して行くことを抑制することができ、高分子安定化液晶表示素子の低温域における表示特性を改善する上で有効である。
 二つの側鎖間に位置するA15は、側鎖間距離を変える意味からも、架橋点間距離を広げてガラス転移点を下げる意味からも、長い方が好ましい。しかし、A15が長過ぎる場合には、一般式(X1a-1)で表される化合物の分子量が大きくなり過ぎ、液晶組成物との相溶性が低下してくること、及び重合速度が遅くなり過ぎて相分離に悪影響が出ること等の理由から、自ずとその長さには上限が存在する。
 よって、A15は、炭素原子数9から16のアルキレン基(該アルキレン基中の少なくとも1~5個のメチレン基において、該メチレン基中の1個の水素原子はそれぞれ独立して炭素原子数1~10の直鎖又は分岐のアルキル基で置換されていてもよく、該アルキレン基中の1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立して酸素原子、-CO-、-COO-又は-OCO-で置換されていてもよい。)であることが好ましい。
 すなわち、A15のアルキレン鎖長は、炭素原子数9~16であることが好ましい。A15のアルキレン基中の水素原子が炭素原子数1~10のアルキル基で置換されている場合、アルキル基の置換数は1~5個が好ましく、1~3個がより好ましく、2又は3個がさらに好ましい。そして、置換するアルキル基の炭素原子数は1~5個が好ましく、1~3個がより好ましい。
 一般式(X1a-1)で表される化合物は、「Tetrahedron Letters,Vol.30,pp4985」、「Tetrahedron Letters,Vol.23,No6,pp681-684」及び「Journal of Polymer Science:PartA:Polymer Chemistry,Vol.34,pp217-225」等に記載の公知の方法で製造できる。
 例えば、一般式(X1a-1)において、A14及びA17が水素である化合物は、エポキシ基を複数個有する化合物と、エポキシ基と反応し得る活性水素を有するアクリル酸やメタクリル酸等の重合性化合物とを反応させ、水酸基を有する重合性化合物を合成し、次に、飽和脂肪酸と反応させることにより得られる。
 さらに、複数個のエポキシ基を有する化合物と飽和脂肪酸とを反応させ、水酸基を有する化合物を合成し、次に水酸基と反応し得る基を有するアクリル酸塩化物等の重合性化合物を反応させることにより得られる。
 またラジカル重合性化合物が、例えば、一般式(X1a-1)のA14及びA17がアルキル基であり、A12及びA18が炭素原子数1であるメチレン基である場合には、オキセタン基を複数個有する化合物と、オキセタン基と反応し得る脂肪酸塩化物や脂肪酸とを反応させ、さらに、アクリル酸等の活性水素を有する重合性化合物を反応させる方法や、オキセタン基を1個有する化合物と、オキセタン基と反応し得る多価の脂肪酸塩化物や脂肪酸とを反応させ、さらに、アクリル酸等の活性水素を有する重合性化合物を反応させる方法等により得られる。
 また、一般式(X1a-1)のA12及びA18が、炭素原子数3のアルキレン基(プロピレン基、-CHCHCH-)である場合には、オキセタン基の代わりにフラン基を複数個有する化合物を用いることにより得られる。さらに、一般式(X1a-1)のA12及びA18が、炭素原子数4のアルキレン基(ブチレン基、-CHCHCHCH-)である場合には、オキセタン基の代わりにピラン基を複数個有する化合物を用いることにより得られる。
 このようにして得られた一般式(X1a-1)の化合物のうち、特に下記一般式(X1a-1-1)
Figure JPOXMLDOC01-appb-C000034
(式中、A11及びA19はそれぞれ独立して水素原子又はメチル基を表し、
12’及びA18’はそれぞれメチレン基を表し、
13及びA16はそれぞれ独立して炭素原子数2から20の直鎖アルキル基(該直鎖アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立して酸素原子、-CO-、-COO-又は-OCO-で置換されていてもよい。)を表し、
14’及びA17’はそれぞれ独立して炭素原子数1から10のアルキル基を表し、
15は炭素原子数9から16のアルキレン基(該アルキレン基中の少なくとも1~5個のメチレン基において、該メチレン基中の1個の水素原子はそれぞれ独立して炭素原子数1から10の直鎖又は分岐のアルキル基で置換されていてもよく、該アルキレン基中の1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立して酸素原子、-CO-、-COO-又は-OCO-で置換されていてもよい。)を表す。)で表される化合物が好ましい。
 A14’及びA17’における前記アルキル基としては、A14及びA17における前記アルキル基と同じものが挙げられる。
 一般式(X1a-1-1)で表される化合物は、A15中の-COO-及び-OCO-の総数が2個以下で、かつ、A13及びA16中の-COO-及び-OCO-の数がそれぞれ1個以下であるものが特に好ましく、具体的には、下記式(X1a-101)~(X1a-109)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
 一般式(X1b)中、Rにおける炭素原子数1~18の前記炭化水素基は、脂肪族炭化水素基及び芳香族炭化水素基のいずれでもよく、前記脂肪族炭化水素基は、直鎖状、分岐鎖状及び環状のいずれでもよく、飽和脂肪族炭化水素基及び不飽和脂肪族炭化水素基のいずれでもよい。また、環状の炭化水素基は、単環状及び多環状のいずれでもよい。
 なかでも、Rにおける炭素原子数1~18の前記炭化水素基は、脂肪族炭化水素基であることが好ましく、飽和脂肪族炭化水素基であることがより好ましく、A及びAにおける炭素原子数1~18の前記アルキル基と同じものが挙げられ、直鎖状又は分岐鎖状の飽和脂肪族炭化水素基であることが特に好ましい。
 一般式(X1b)で表される化合物で好ましいものとしては、6員環T、T及びTが、すべて炭化水素環であるものが挙げられる。
 一般式(X1c)で表される化合物において、R71の炭化水素基は、縮合環を有するものであればよく、縮合環のみからなるものでもよいし、縮合環とそれ以外の炭化水素基を有するものでもよい。
 前記縮合環は、脂肪族環及び芳香族環のいずれでもよい。そして、前記脂肪族環は、飽和脂肪族環及び不飽和脂肪族環のいずれでもよく、飽和脂肪族環及び不飽和脂肪族環をともに有するものであってもよい。また、縮合環を構成する環の数は2個以上であればよいが、2~7個であることが好ましい。
 縮合環以外の炭化水素基は、直鎖状、分岐鎖状及び環状のいずれでもよく、鎖状(直鎖状及び/又は分岐鎖状)構造及び環状構造をともに有するものであってもよい。そして、鎖状構造及び環状構造の炭化水素基は、飽和炭化水素基及び不飽和炭化水素基のいずれでもよく、環状構造の炭化水素基は、脂肪族環炭化水素基及び芳香族炭化水素基のいずれでもよい。
 R71で好ましいものとしては、ステロイドから1個の水素原子を除いてなる一価の基が挙げられ、コレステロールから水酸基を除いてなる一価の基が好ましい。
 配向制御層の形成に用いる重合性化合物は、第一の重合性化合物として、3官能以上の(メタ)アクリレート化合物を1種以上と、第二の重合性化合物として、2官能あるいは単官能(メタ)アクリレート化合物を1種以上であればよいが、液晶表示素子としての諸特性及び液晶表示素子の焼き付き特性を悪化させることなく、液晶表示素子製造時の滴下痕が発生し難いという効果により優れる点から、合計で2~5種であることが好ましい。
 配向制御層の形成に用いる3官能以上の(メタ)アクリレート化合物を1種以上と、2官能あるいは単官能(メタ)アクリレート化合物のそれぞれの比率は、重合性化合物を何種用いるかによって、適宜調節すればよいが、液晶組成物に対して3官能以上の(メタ)アクリレート化合物の比率は0~5質量%であることが好ましく、1.0~4.0質量%であることがより好ましい。2官能あるいは単官能(メタ)アクリレート化合物の比率は0~5質量%であることが好ましく、1.0~4.0質量%であることがより好ましい。
 本願発明に用いる液晶組成物は、一般式(I)
Figure JPOXMLDOC01-appb-C000037
(式中、R1α及びR2αはそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Qは1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、lは1又は2を表すが、lが2の場合、2個のQは同一であっても異なっていてもよい。)で表される化合物、
及び一般式(II)
Figure JPOXMLDOC01-appb-C000038
(式中、R3αは炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、R4αは炭素原子数1~8のアルキル基、炭素原子数4~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数3~8のアルケニルオキシ基を表し、存在するQ及びQはそれぞれ独立して、1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、G及び存在するGはそれぞれ独立して、単結合、-CHCH-、-CHO-、-OCH-、-CFO-又は-OCF-を表し、lは0、1又は2を表すが、lが2の場合、2個のQ及びGは同一であっても異なっていてもよい。)で表される化合物で表される化合物を含有する。
 一般式(I)中、R1α及びR2αにおける炭素原子数1~8のアルキル基は、直鎖状、分岐鎖状及び環状のいずれでもよいが、直鎖状又は分岐鎖状であることが好ましく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、n-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、n-ヘプチル基、2-メチルヘキシル基、3-メチルヘキシル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、3-エチルペンチル基、2,2,3-トリメチルブチル基、n-オクチル基、イソオクチル基が挙げられる。
 R1α及びR2αにおける前記アルキル基は、炭素原子数1~6であることが好ましい。
 一般式(I)中、R1α及びR2αにおける炭素原子数2~8のアルケニル基としては、エテニル基(ビニル基)、2-プロペニル基(アリル基)等、R1α及びR2αにおける炭素原子数2~8の前記アルキル基において、炭素原子間の1個の単結合(C-C)が二重結合(C=C)に置換されてなる一価の基が挙げられる。
 R1α及びR2αにおける前記アルケニル基は、炭素原子数2~6であることが好ましく、以下の構造のものがより好ましい。
Figure JPOXMLDOC01-appb-C000039
(式中、アルケニル基は、その右端の炭素原子が環構造へ結合するものとする。)
 一般式(I)中、R1α及びR2αにおける炭素原子数1~8のアルコキシ基としては、メトキシ基、エトキシ基等、R1α及びR2αにおける炭素原子数1~8の前記アルキル基が酸素原子に結合してなる一価の基が挙げられる。
 R1α及びR2αにおける前記アルコキシ基は、炭素原子数1~6であることが好ましく、炭素原子数1~5であることがより好ましく、炭素原子数1~3であることが特に好ましい。
 一般式(I)中、R1α及びR2αにおける炭素原子数2~8のアルケニルオキシ基としては、エテニルオキシ基、2-プロペニルオキシ基等、R1α及びR2αにおける炭素原子数2~8の前記アルケニル基が酸素原子に結合してなる一価の基が挙げられる。
 R1α及びR2αにおける前記アルケニルオキシ基は、炭素原子数2~6であることが好ましい。
 一般式(I)で表される化合物で好ましいものとしては、R1α及びR2αの組み合わせが、前記アルキル基同士であるもの、前記アルキル基及びアルコキシ基であるもの、前記アルキル基及びアルケニル基であるものが挙げられる。
 また、一般式(I)で表される化合物で好ましいものとしては、例えば、下記一般式(I-1)~(I-4)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000040
(式中、R1α及びR2αは、前記と同じである。)
 前記液晶組成物の一般式(I)で表される化合物の含有量は、30~65質量%であることが好ましく、35~55質量%であることがより好ましい。
 一般式(II)中、R3αは、R1α及びR2αと同じものである。
 一般式(II)中、R4αにおける炭素原子数1~8のアルキル基及びアルコキシ基としては、R1α及びR2αにおける炭素原子数1~8の前記アルキル基及びアルコキシ基と同じものが挙げられる。
 一般式(II)中、R4αにおける炭素原子数4~8のアルケニル基、及び炭素原子数3~8のアルケニルオキシ基としては、炭素原子数が異なる点以外は、R1α及びR2αにおける前記アルケニル基及びアルケニルオキシ基と同じものが挙げられる。
 R3α及びR4αにおける前記アルキル基は、それぞれ独立して炭素原子数1~6であることが好ましく、炭素原子数1~5であることがより好ましい。
 R3α及びR4αにおける前記アルコキシ基は、それぞれ独立して炭素原子数1~6であることが好ましく、炭素原子数1~5であることがより好ましい。
 一般式(II)で表される化合物で好ましいものとしては、R3αが前記アルキル基であるもの、R4αが前記アルコキシ基であるもの、lが0又は1であるもの、Gが単結合、-CHCH-又は-CHO-であるもの、Gが単結合又は-CHCH-であるものが挙げられる。
 また、一般式(II)で表される化合物で好ましいものとしては、例えば、下記一般式(II-1)~(II-8)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
(式中、R3α及びR4αは、前記と同じである。)
 前記液晶組成物の一般式(II)で表される化合物の含有量は、30~65質量%であることが好ましく、35~55質量%であることがより好ましい。
 前記液晶組成物において、[一般式(II)で表される化合物の含有量]/[一般式(I)で表される化合物の含有量](質量比)は、8/2~2/8であることが好ましく、7/3~3/7であることがより好ましく、6/4~4/6であることが特に好ましい。
 前記液晶組成物は、前記一般式(I)及び(II)で表される化合物以外に、これらに該当しない下記一般式(III)
Figure JPOXMLDOC01-appb-C000044
(式中、R5α及びR6αはそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基(該アルキル基、アルケニル基、アルコキシ基又はアルケニルオキシ基中の1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立して酸素原子又は-CO-で置換されていてもよく、該アルキレン基中の1個又は2個以上の水素原子はフッ素原子で置換されていてもよい。)を表し、Qは1,4-フェニレン基又はテトラヒドロピラン-2,5-ジイル基を表し、lは0又は1を表し、Gは単結合、-CHO-、-OCH-、-CFO-又は-OCF-を表し、L~Lは、それぞれ独立して水素原子又はフッ素原子を表すが、L~Lの少なくとも2個はフッ素原子を表し、lが0を表しかつGが単結合を表す場合、L及びLが共にフッ素原子を表すことはない。)で表される化合物を含有してもよい。
 一般式(III)中、R5α及びR6αにおける炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基及び炭素原子数2~8のアルケニルオキシ基は、R1α及びR2αにおけるものと同じである。
 一般式(III)で表される化合物で好ましいものとしては、例えば、下記一般式(III-1)
Figure JPOXMLDOC01-appb-C000045
(式中、R5α及びR6αは、前記と同じである。)で表される化合物が挙げられる。
 また、前記液晶組成物は、前記一般式(I)及び(II)で表される化合物以外に、これらに該当しない下記一般式(IV)
Figure JPOXMLDOC01-appb-C000046
(式中、R7α及びR8αはそれぞれ独立して、炭素原子数1~10のアルキル基、炭素原子数2~10のアルケニル基又は炭素原子数1~10のアルコキシ基を表す。)で表される化合物を含有してもよい。
 一般式(IV)中、R7α及びR8αにおける炭素原子数1~10のアルキル基は、直鎖状、分岐鎖状及び環状のいずれでもよいが、直鎖状又は分岐鎖状であることが好ましく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、n-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、n-ヘプチル基、2-メチルヘキシル基、3-メチルヘキシル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、3-エチルペンチル基、2,2,3-トリメチルブチル基、n-オクチル基、イソオクチル基、ノニル基、デシル基が挙げられる。
 R1α及びR2αにおける前記アルキル基は、炭素原子数1~6であることが好ましい。
 一般式(IV)中、R7α及びR8αにおける炭素原子数2~10のアルケニル基としては、R7α及びR8αにおける炭素原子数2~10の前記アルキル基において、炭素原子間の1個の単結合(C-C)が二重結合(C=C)に置換されてなる一価の基が挙げられる。
 R7α及びR8αにおける前記アルケニル基は、炭素原子数2~6であることが好ましく、このようなものとして、R1α及びR2αの場合と同じものが挙げられる。
 一般式(IV)中、R7α及びR8αにおける炭素原子数1~10のアルコキシ基としては、メトキシ基、エトキシ基等、R7α及びR8αにおける炭素原子数1~10の前記アルキル基が酸素原子に結合してなる一価の基が挙げられる。
 前記一般式(II)で表される化合物として、下記一般式(V)
Figure JPOXMLDOC01-appb-C000047
(式中、R9α及びR10αはそれぞれ独立して、炭素原子数1~18のアルキル基、炭素原子数2~18のアルケニル基、炭素原子数1~18のアルコキシ基又は炭素原子数2~18のアルケニルオキシ基を表し、Qは1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、lは0又は1を表す。)で表される化合物を含有してもよい。
 一般式(V)中、R9α及びR10αにおける炭素原子数1~18のアルキル基は、直鎖状、分岐鎖状及び環状のいずれでもよいが、直鎖状又は分岐鎖状であることが好ましく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、n-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、n-ヘプチル基、2-メチルヘキシル基、3-メチルヘキシル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、3-エチルペンチル基、2,2,3-トリメチルブチル基、n-オクチル基、イソオクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基が挙げられる。
 R9α及びR10αにおける前記アルキル基は、炭素原子数1~10であることが好ましく、炭素原子数1~6であることがより好ましい。
 一般式(V)中、R9α及びR10αにおける炭素原子数2~18のアルケニル基としては、R9α及びR10αにおける炭素原子数2~18の前記アルキル基において、炭素原子間の1個の単結合(C-C)が二重結合(C=C)に置換されてなる一価の基が挙げられる。
 R9α及びR10αにおける前記アルケニル基は、炭素原子数2~6であることが好ましく、このようなものとして、R1α及びR2αの場合と同じものが挙げられる。
 一般式(V)中、R9α及びR10αにおける炭素原子数1~18のアルコキシ基としては、メトキシ基、エトキシ基等、R9α及びR10αにおける炭素原子数1~18の前記アルキル基が酸素原子に結合してなる一価の基が挙げられる。
 R9α及びR10αにおける前記アルコキシ基は、炭素原子数1~10であることが好ましく、炭素原子数1~6であることがより好ましい。
 一般式(V)中、R9α及びR10αにおける炭素原子数2~18のアルケニルオキシ基としては、エテニルオキシ基、2-プロペニルオキシ基等、R9α及びR10αにおける炭素原子数2~18の前記アルケニル基が酸素原子に結合してなる一価の基が挙げられる。
 一般式(V)で表される化合物で好ましいものとしては、例えば、下記一般式(V-1)
Figure JPOXMLDOC01-appb-C000048
(式中、R9α及びR10αは、前記と同じである。)で表される化合物が挙げられる。
 前記一般式(III)、(IV)及び(V)で表される化合物など、前記一般式(I)及び(II)で表される化合物以外の成分の前記液晶組成物における含有量は、25質量%以下であることが好ましく、20質量%以下であることがより好ましい。 液晶表示素子10は、さらに、第一の基板11と液晶層13との間、及び第二の基板12と液晶層13との間、の少なくとも一方に、パッシベーション膜を有していてもよい(図示略)。このように、パッシベーション膜を有することで、近傍の第一の基板11又は第二の基板12の表面が保護される。
 液晶表示素子10は、さらに、第一の基板11と液晶層13との間、及び第二の基板12と液晶層13との間、の少なくとも一方に、平坦化膜を有していてもよい(図示略)。こ膜の表面の平坦性が高い場合には、かかるパッシベーション膜を平坦化膜としても取り扱ってよい。
 前記パッシベーション膜及び平坦化膜としては、いずれも公知のものが適宜使用できる。
 本発明の液晶表示素子は、液晶分子として一般式(I)及び(II)で表される特定の化合物を併用した液晶組成物と、2種以上の重合性化合物から形成された配向制御層とを組み合わせて用いることにより、従来の液晶表示素子とは異なり、第一の基板と液晶層との間、及び第二の基板と液晶層との間に、それぞれ配向膜を有していなくても、電圧無印加時に液晶分子は基板面に対して略垂直配向する。そして、誘電率異方性、粘度、ネマチック相上限温度、回転粘度(γ)等の諸特性を悪化させることなく、焼き付きと製造時の滴下痕の発生とが抑制される。
<液晶表示素子の製造方法>
 図1に示す液晶表示素子10は、例えば、以下の方法で製造できる。
 まず、第一の基板11と第二の基板12とを重ね合わせ、これらの間に、後述する工程で液晶層13及び配向制御層を形成するための液晶含有重合用組成物を挟持する。前記液晶含有重合用組成物は、
前記一般式(I)で表される化合物、前記一般式(II)で表される化合物、及び2種以上の前記重合性化合物を必須成分として含有するものである。
 より具体的には、第一の基板11及び第二の基板12のいずれか一方における、これらの対向面に対して、セルギャップを確保するためのスペーサ突起物、例えば、プラスチックビーズ等を散布すると共に、例えば、エポキシ接着剤等を用いてスクリーン印刷法により、シール部を印刷(形成)する。なお、第一の基板11の第二の基板12に対向する面とは、共通電極14及びカラーフィルタ18を有する面であり、第二の基板12の第一の基板11に対向する面とは、画素電極15を有する面である。
 次いで、第一の基板11と第二の基板12とを対向させ、これらを、前記スペーサ突起物及びシール部を介して貼り合わせた後、形成されたスペースに前記液晶含有重合用組成物を注入する。そして、加熱等により、前記シール部を硬化させることにより、第一の基板11と第二の基板12との間に液晶含有重合用組成物を挟持する。
 次いで、共通電極14と画素電極15との間に、電圧印加手段を用いて、電圧を印加する。このときの電圧は、例えば、5~30Vとする。これにより、第一の基板11の液晶含有重合用組成物との隣接面(液晶含有重合用組成物と対向する面)、及び第二の基板12の液晶含有重合用組成物との隣接面(液晶含有重合用組成物と対向する面)に対して、所定の角度をなす方向の電場が生じ、液晶含有重合用組成物中の液晶分子(一般式(I)で表される化合物、一般式(II)で表される化合物)19が、第一の基板11と第二の基板12の法線方向から所定方向に傾いて配向し、図3に示すように、液晶分子19にプレチルト角θが付与される。プレチルト角θの大きさは、電圧の大きさを適宜調節することにより制御できる。
 次いで、電圧を印加した状態のまま、紫外線等の活性エネルギー線を、例えば、第一の基板11の外側から液晶含有重合用組成物に照射することにより、前記2種以上の重合性化合物を重合させる。なお、活性エネルギー線は、第二の基板12の外側から照射してもよいし、第一の基板11の外側及び第二の基板12の外側の双方から照射してもよい。
 活性エネルギー線の照射により、液晶含有重合用組成物中の2種以上の前記重合性化合物が反応して、液晶含有重合用組成物は所望の組成を有する液晶組成物となって液晶層13を構成し、同時に第一の基板11と液晶層13との間、及び第二の基板12と液晶層13との間に、配向制御層が形成される。
 形成された配向制御層は、非駆動状態において、液晶層13中の、第一の基板11の近傍及び第二の基板12の近傍に位置する液晶分子19にプレチルト角θを付与する。
 活性エネルギー線の照射強度は、一定であってもよいし、一定でなくてもよく、照射強度を変化させる場合には、各々の照射強度での照射時間を任意に設定できるが、2段階以上の照射工程を採用する場合には、2段階目以降の照射工程の照射強度は、1段階目の照射工程の照射強度よりも弱いことが好ましく、2段階目以降の照射工程の総照射時間は1段階目の照射時間よりも長くかつ照射総エネルギー量が大きいことが好ましい。また、照射強度を不連続に変化させる場合には、全照射工程時間の前半部分の平均照射光強度が後半部分の平均照射強度よりも強いことが好ましく、照射開始直後の強度が最も強いことがより好ましく、照射時間の経過と共にある一定値まで常に照射強度が減少し続けることがさらに好ましい。この場合の活性エネルギー線の照射強度は、2~100mW/cmであることが好ましいが、多段階照射の場合の1段階目、または不連続に照射強度変化させる場合の全照射工程中の最高照射強度は、10~100mW/cmであること、かつ多段階照射の場合の2段階目以降、又は不連続に照射強度を変化させる場合の最低照射強度は、2~50mW/cmであることがより好ましい。また、照射総エネルギー量は、10~300Jであることが好ましく、50~250Jであることがより好ましく、100~250Jであることがさらに好ましい。
 印加電圧は交流であってもよいし、直流であってもよい。
 照射する前記活性エネルギー線は、複数のスペクトルを有するものが好ましく、複数のスペクトルを有する紫外線が好ましい。複数のスペクトルを有する活性エネルギー線の照射によって、2種以上の前記重合性化合物は、その種類ごとに適したスペクトル(波長)の活性エネルギー線によって重合することが可能となり、この場合、配向制御層がより効率的に形成される。
 配向制御層は、前記重合性化合物の重合物により構成されるが、例えば、第一の基板11と液晶層13とを明確に区切ってこれらの間に形成されるとは限らず、第一の基板11の近傍においては、第一の基板11の液晶層13との隣接面(液晶層13と対向する面)から、液晶層13の内部に入り込むようにして形成されることもあると推測される。第二の基板12の近傍においても同様であり、配向制御層は、第二の基板12と液晶層13とを明確に区切ってこれらの間に形成されるとは限らず、第二の基板12の近傍においては、第二の基板12の液晶層13との隣接面(液晶層13と対向する面)から、液晶層13の内部に入り込むようにして形成されることもあると推測される。
 ただし、配向制御層の構造を正確に示すことは困難である。
 また、活性エネルギー線の照射により、前記2種以上の重合性化合物は、互いに類似の構造を有するもの同士が優先的に重合して、液晶分子を基板の近傍領域に配列させると共に、プレチルトの方向を所定の方向に規定して、配向を制御していると推測される。
 以下、例を挙げて本願発明を更に詳述するが、本願発明はこれらによって限定されるものではない。
 以下の実施例及び比較例において、Tni、Δn、Δε、η、γをそれぞれ下記の通り定義する。
ni      :ネマチック相-等方性液体相転移温度(℃)
Δn      :25℃における屈折率異方性
Δε      :25℃における誘電率異方性
η      :20℃における粘度(mPa・s)
γ1      :25℃における回転粘度(mPa・s)
 以下の実施例及び比較例における液晶表示素子の焼き付き、滴下痕及びプレチルト安定性について下記の方法により評価した。
(焼き付き)
液晶表示素子の焼き付き評価は、表示エリア内に所定の固定パターンを1000時間表示させた後に、全画面均一な表示を行ったときの固定パターンの残像のレベルを目視にて以下の4段階評価で行った。
◎:残像無し
○:残像ごく僅かに有るも許容できるレベル
△:残像有り許容できないレベル
×:残像有りかなり劣悪
(滴下痕)
 液晶表示装置の滴下痕の評価は、全面黒表示した場合における白く浮かび上がる滴下痕を目視にて以下の4段階評価で行った。
◎:滴下痕無し
○:滴下痕ごく僅かに有るも許容できるレベル
△:滴下痕有り許容できないレベル
×:滴下痕有りかなり劣悪
(プレチルト安定性)
 液晶表示装置のプレチルト安定性の評価は、表示エリア内に所定の電圧を印加下後に、電圧印加前後でのプレチルトシフト量を測定した。
(実施例1)
透明な共通電極からなる透明電極層及びカラーフィルター層を具備した第一の基板(共通電極基板)と、アクティブ素子により駆動される透明画素電極を有する画素電極層を具備した第二の基板(画素電極基板)とを作製した。
一般式(I)から選ばれる化合物、及び一般式(II)から選ばれる化合物を含有した液晶組成物LC-1を調製した。構成する化合物及び含有する比率は下記の通りである。
Figure JPOXMLDOC01-appb-C000049
 液晶組成物LC-1 98.08wt%に対して、以下に示される重合性化合物
Figure JPOXMLDOC01-appb-C000050
を1.5wt%添加し、以下に示される重合性化合物
Figure JPOXMLDOC01-appb-C000051
を0.32wt%添加し、光重合開始剤Igacure651を0.1wt%添加し、均一に溶解することにより重合性液晶組成物CLC-1を調製した。
 配向膜層を有しない共通電極基板及び画素電極基板に、重合性液晶組成物CLC-1を狭持した後、シール材を硬化させて、液晶組成物層を形成した。この際、厚さ3.2μmのスペーサを用いて、液晶組成物層の厚さを3.2μmとした。得られた液晶表示に、電圧を印加した状態で紫外線を照射し、前記反応性基を有する重合性化合物を硬化させた。照射装置としては、ウシオ電機社製USH-250BYを用いて、100mWで10分間、液晶表示素子に紫外線を照射し、実施例1の液晶表示素子を得た。この工程により、反応性基を有する重合性化合物の重合体を含む配向制御膜が形成され、液晶組成物層中の液晶分子にプレチルト角が付与される。
 ここで、プレチルト角は下記のように定義される。完全な垂直配向をしている場合、プレチルト角(θ)は90°となり、プレチルト角が付与された場合、プレチルト角(θ)は90°より小さくなる。
実施例1の液晶表示素子は、画素電極のスリットに従って、4つの区画において異なった方向にプレチルト角を有し、前記重合性化合物の硬化後、交流電場を切った状態でもプレチルト角が維持された。維持されたプレチルト角は88.3°であった。
 このように得られた実施例1の液晶表示素子は、以下の表に示すように、優れたコントラスト及び応答速度を示し、滴下痕が発生し難く、焼き付きの点でも優れていることが明らかとなった。
Figure JPOXMLDOC01-appb-T000052
(実施例2)
実施例1と同様の実験において、液晶組成物LC-1 98.5wt%に対して、以下に示される重合性化合物
Figure JPOXMLDOC01-appb-C000053
を1.0wt%添加し、以下に示される重合性化合物
Figure JPOXMLDOC01-appb-C000054
を0.4wt%添加し、光重合開始剤Igacure651を0.1wt%添加し、均一に溶解することにより重合性液晶組成物CLC-1aを調製した。
 配向膜層を有しない共通電極基板及び画素電極基板に、重合性液晶組成物CLC-1aを狭持した後、シール材を硬化させて、液晶組成物層を形成した。この際、厚さ3.2μmのスペーサを用いて、液晶組成物層の厚さを3.2μmとした。得られた液晶表示に、電圧を印加した状態で紫外線を照射し、前記反応性基を有する重合性化合物を硬化させた。照射装置としては、ウシオ電機社製USH-250BYを用いて、100mWで10分間、液晶表示素子に紫外線を照射し、実施例2の液晶表示素子を得た。
実施例2の液晶表示素子は、画素電極のスリットに従って、4つの区画において異なった方向にプレチルト角を有し、前記重合性化合物の硬化後、交流電場を切った状態でもプレチルト角が維持された。維持されたプレチルト角は88.7°であった。
 このように得られた実施例2の液晶表示素子は、以下の表に示すように、優れたコントラスト及び応答速度を示し、滴下痕が発生し難く、焼き付きの点でも優れていることが明らかとなった。
Figure JPOXMLDOC01-appb-T000055
(比較例1)
透明な共通電極からなる透明電極層及びカラーフィルター層及び液晶材料の配向方向を制御するための突起を具備した第一の基板(共通電極基板)と、アクティブ素子により駆動される透明画素電極を有する画素電極層及び液晶材料の配向方向を制御するための突起を具備した第二の基板(画素電極基板)とを作製した。
 共通電極基板及び画素電極基板のそれぞれに、垂直配向膜材料をスピンコート法により塗布し、その塗布膜を200℃で加熱することにより、各基板の表面に100nmの垂直配向膜を形成した。
 垂直配向膜を形成した共通電極基板及び画素電極基板に、液晶組成物LC-1を狭持した後、シール材を硬化させて、液晶組成物層を形成した。この際、厚さ3.2μmのスペーサを用いて、液晶組成物層の厚さを3.2μmとした。
 このようにして得られた比較例1の液晶表示素子は、以下の表に示すように、実施例1に比べコントラスト、応答速度、滴下痕及び焼き付きの点で劣っていることが明らかとなった。
Figure JPOXMLDOC01-appb-T000056
(実施例3)
実施例1と同様の実験において、使用する液晶組成物を一般式(I)から選ばれる化合物、及び一般式(II)から選ばれる化合物を含有した液晶組成物LC-2に変更した。構成する化合物及び含有する比率は下記の通りである。
Figure JPOXMLDOC01-appb-C000057
 液晶組成物LC-2 97.7wt%に対して、以下に示される重合性化合物
Figure JPOXMLDOC01-appb-C000058
を1.8wt%添加し、以下に示される重合性化合物
Figure JPOXMLDOC01-appb-C000059
を0.4wt%添加し、光重合開始剤Igacure651を0.1wt%添加し、均一に溶解することにより重合性液晶組成物CLC-2を調製した。
 配向膜層を有しない共通電極基板及び画素電極基板に、重合性液晶組成物CLC-2を狭持した後、シール材を硬化させて、液晶組成物層を形成した。この際、厚さ3.5μmのスペーサを用いて、液晶組成物層の厚さを3.5μmとした。得られた液晶表示に、電圧を印加した状態で紫外線を照射し、前記反応性基を有する重合性化合物を硬化させた。照射装置としては、ウシオ電機社製USH-250BYを用いて、100mWで10分間、液晶表示素子に紫外線を照射し、実施例3の液晶表示素子を得た。実施例3の液晶表示素子は、画素電極のスリットに従って、4つの区画において異なった方向にプレチルト角を有し、前記重合性化合物の硬化後、交流電場を切った状態でもプレチルト角が維持された。維持されたプレチルト角は88.5°であった。
 このように得られた実施例3の液晶表示素子は、以下の表に示すように、優れたコントラスト及び応答速度を示し、滴下痕が発生し難く、焼き付きの点でも優れていることが明らかとなった。
Figure JPOXMLDOC01-appb-T000060
(実施例4)
実施例1と同様の実験において、液晶組成物LC-2 98.38wt%に対して、以下に示される重合性化合物
Figure JPOXMLDOC01-appb-C000061
を1.2wt%添加し、以下に示される重合性化合物
Figure JPOXMLDOC01-appb-C000062
を0.32wt%添加し、光重合開始剤Igacure651を0.1wt%添加し、均一に溶解することにより重合性液晶組成物CLC-2aを調製した。
 配向膜層を有しない共通電極基板及び画素電極基板に、重合性液晶組成物CLC-2aを狭持した後、シール材を硬化させて、液晶組成物層を形成した。この際、厚さ3.5μmのスペーサを用いて、液晶組成物層の厚さを3.5μmとした。得られた液晶表示に、電圧を印加した状態で紫外線を照射し、前記反応性基を有する重合性化合物を硬化させた。照射装置としては、ウシオ電機社製USH-250BYを用いて、100mWで10分間、液晶表示素子に紫外線を照射し、実施例4の液晶表示素子を得た。実施例4の液晶表示素子は、画素電極のスリットに従って、4つの区画において異なった方向にプレチルト角を有し、前記重合性化合物の硬化後、交流電場を切った状態でもプレチルト角が維持された。維持されたプレチルト角は88.6°であった。
 このように得られた実施例4の液晶表示素子は、以下の表に示すように、優れたコントラスト及び応答速度を示し、滴下痕が発生し難く、焼き付きの点でも優れていることが明らかとなった。
(比較例2)
 比較例1と同様の実験において、液晶組成物LC-2を使用して液晶組成物層を形成した。この際、厚さ3.8μmのスペーサを用いて、液晶組成物層の厚さを3.8μmとした。
 このようにして得られた比較例2の液晶表示素子は、以下の表に示すように、実施例2に比べコントラスト、応答速度、滴下痕及び焼き付きの点で劣っていることが明らかとなった。
Figure JPOXMLDOC01-appb-T000064
(実施例5)
実施例1と同様の実験において、使用する液晶組成物を一般式(I)から選ばれる化合物、及び一般式(II)から選ばれる化合物を含有した液晶組成物LC-3に変更した。構成する化合物及び含有する比率は下記の通りである。
Figure JPOXMLDOC01-appb-C000065
 液晶組成物LC-3 98.08wt%に対して、以下に示される重合性化合物
Figure JPOXMLDOC01-appb-C000066
を1.5wt%添加し、以下に示される重合性化合物
Figure JPOXMLDOC01-appb-C000067
を0.32wt%添加し、光重合開始剤Igacure651を0.1wt%添加し、均一に溶解することにより重合性液晶組成物CLC-3を調製した。
 配向膜層を有しない共通電極基板及び画素電極基板に、重合性液晶組成物CLC-3を狭持した後、シール材を硬化させて、液晶組成物層を形成した。この際、厚さ3.5μmのスペーサを用いて、液晶組成物層の厚さを3.5μmとした。得られた液晶表示に、電圧を印加した状態で紫外線を照射し、前記反応性基を有する重合性化合物を硬化させた。照射装置としては、ウシオ電機社製USH-250BYを用いて、100mWで10分間、液晶表示素子に紫外線を照射し、実施例5の液晶表示素子を得た。実施例5の液晶表示素子は、画素電極のスリットに従って、4つの区画において異なった方向にプレチルト角を有し、前記重合性化合物の硬化後、交流電場を切った状態でもプレチルト角が維持された。維持されたプレチルト角は88.7°であった。
 このように得られた実施例5の液晶表示素子は、以下の表に示すように、優れたコントラスト及び応答速度を示し、滴下痕が発生し難く、焼き付きの点でも優れていることが明らかとなった。
Figure JPOXMLDOC01-appb-T000068
(実施例6)
実施例1と同様の実験において、液晶組成物LC-3 98.0wt%に対して、以下に示される重合性化合物
Figure JPOXMLDOC01-appb-C000069
を1.5wt%添加し、以下に示される重合性化合物
Figure JPOXMLDOC01-appb-C000070
を0.4wt%添加し、光重合開始剤Igacure651を0.1wt%添加し、均一に溶解することにより重合性液晶組成物CLC-3aを調製した。
 配向膜層を有しない共通電極基板及び画素電極基板に、重合性液晶組成物CLC-2aを狭持した後、シール材を硬化させて、液晶組成物層を形成した。この際、厚さ3.5μmのスペーサを用いて、液晶組成物層の厚さを3.5μmとした。得られた液晶表示に、電圧を印加した状態で紫外線を照射し、前記反応性基を有する重合性化合物を硬化させた。照射装置としては、ウシオ電機社製USH-250BYを用いて、100mWで10分間、液晶表示素子に紫外線を照射し、実施例6の液晶表示素子を得た。実施例6の液晶表示素子は、画素電極のスリットに従って、4つの区画において異なった方向にプレチルト角を有し、前記重合性化合物の硬化後、交流電場を切った状態でもプレチルト角が維持された。維持されたプレチルト角は88.4°であった。
 このように得られた実施例6の液晶表示素子は、以下の表に示すように、優れたコントラスト及び応答速度を示し、滴下痕が発生し難く、焼き付きの点でも優れていることが明らかとなった。
Figure JPOXMLDOC01-appb-T000071
(比較例3)
 比較例1と同様の実験において、液晶組成物LC-3を使用して液晶組成物層を形成した。この際、厚さ3.5μmのスペーサを用いて、液晶組成物層の厚さを3.5μmとした。
 このようにして得られた比較例2の液晶表示素子は、以下の表に示すように、実施例3に比べコントラスト、応答速度、滴下痕及び焼き付きの点で劣っていることが明らかとなった。
Figure JPOXMLDOC01-appb-T000072
(実施例7)
実施例1と同様の実験において、使用する液晶組成物を一般式(I)から選ばれる化合物、及び一般式(II)から選ばれる化合物を含有した液晶組成物LC-4に変更した。構成する化合物及び含有する比率は下記の通りである。
Figure JPOXMLDOC01-appb-C000073
 液晶組成物LC-4 97.75wt%に対して、以下に示される重合性化合物
Figure JPOXMLDOC01-appb-C000074
を1.8wt%添加し、以下に示される重合性化合物
を0.35wt%添加し、光重合開始剤Igacure651を0.1wt%添加し、均一に溶解することにより重合性液晶組成物CLC-4を調製した。
 配向膜層を有しない共通電極基板及び画素電極基板に、重合性液晶組成物CLC-4を狭持した後、シール材を硬化させて、液晶組成物層を形成した。この際、厚さ3.5μmのスペーサを用いて、液晶組成物層の厚さを3.5μmとした。得られた液晶表示に、電圧を印加した状態で紫外線を照射し、前記反応性基を有する重合性化合物を硬化させた。照射装置としては、ウシオ電機社製USH-250BYを用いて、100mWで10分間、液晶表示素子に紫外線を照射し、実施例7の液晶表示素子を得た。実施例7の液晶表示素子は、画素電極のスリットに従って、4つの区画において異なった方向にプレチルト角を有し、前記重合性化合物の硬化後、交流電場を切った状態でもプレチルト角が維持された。維持されたプレチルト角は88.8°であった。
 このように得られた実施例7の液晶表示素子は、以下の表に示すように、優れたコントラスト及び応答速度を示し、滴下痕が発生し難く、焼き付きの点でも優れていることが明らかとなった。
Figure JPOXMLDOC01-appb-T000076
(実施例8)
実施例1と同様の実験において、液晶組成物LC-4 98.05wt%に対して、以下に示される重合性化合物
Figure JPOXMLDOC01-appb-C000077
を1.5wt%添加し、以下に示される重合性化合物
Figure JPOXMLDOC01-appb-C000078
を0.35wt%添加し、光重合開始剤Igacure651を0.1wt%添加し、均一に溶解することにより重合性液晶組成物CLC-4aを調製した。
 配向膜層を有しない共通電極基板及び画素電極基板に、重合性液晶組成物CLC-2aを狭持した後、シール材を硬化させて、液晶組成物層を形成した。この際、厚さ3.5μmのスペーサを用いて、液晶組成物層の厚さを3.5μmとした。得られた液晶表示に、電圧を印加した状態で紫外線を照射し、前記反応性基を有する重合性化合物を硬化させた。照射装置としては、ウシオ電機社製USH-250BYを用いて、100mWで10分間、液晶表示素子に紫外線を照射し、実施例8の液晶表示素子を得た。実施例8の液晶表示素子は、画素電極のスリットに従って、4つの区画において異なった方向にプレチルト角を有し、前記重合性化合物の硬化後、交流電場を切った状態でもプレチルト角が維持された。維持されたプレチルト角は88.3°であった。
 このように得られた実施例8の液晶表示素子は、以下の表に示すように、優れたコントラスト及び応答速度を示し、滴下痕が発生し難く、焼き付きの点でも優れていることが明らかとなった。
Figure JPOXMLDOC01-appb-T000079
(比較例4)
 比較例1と同様の実験において、液晶組成物LC-4を使用して液晶組成物層を形成した。この際、厚さ3.5μmのスペーサを用いて、液晶組成物層の厚さを3.5μmとした。
 このようにして得られた比較例4の液晶表示素子は、以下の表に示すように、実施例4に比べコントラスト、応答速度、滴下痕及び焼き付きの点で劣っていることが明らかとなった。
Figure JPOXMLDOC01-appb-T000080
(実施例9)
実施例1と同様の実験において、使用する液晶組成物を一般式(I)から選ばれる化合物、及び一般式(II)から選ばれる化合物を含有した液晶組成物LC-5に変更した。構成する化合物及び含有する比率は下記の通りである。
Figure JPOXMLDOC01-appb-C000081
液晶組成物LC-5 97.75wt%に対して、以下に示される重合性化合物
Figure JPOXMLDOC01-appb-C000082
を1.8wt%添加し、以下に示される重合性化合物
Figure JPOXMLDOC01-appb-C000083
を0.35wt%添加し、光重合開始剤Igacure651を0.1wt%添加し、均一に溶解することにより重合性液晶組成物CLC-5を調製した。
 配向膜層を有しない共通電極基板及び画素電極基板に、重合性液晶組成物CLC-5を狭持した後、シール材を硬化させて、液晶組成物層を形成した。この際、厚さ3.5μmのスペーサを用いて、液晶組成物層の厚さを3.5μmとした。得られた液晶表示に、電圧を印加した状態で紫外線を照射し、前記反応性基を有する重合性化合物を硬化させた。照射装置としては、ウシオ電機社製USH-250BYを用いて、100mWで10分間、液晶表示素子に紫外線を照射し、実施例9の液晶表示素子を得た。実施例9の液晶表示素子は、画素電極のスリットに従って、4つの区画において異なった方向にプレチルト角を有し、前記重合性化合物の硬化後、交流電場を切った状態でもプレチルト角が維持された。維持されたプレチルト角は88.9°であった。
 このように得られた実施例9の液晶表示素子は、以下の表に示すように、優れたコントラスト及び応答速度を示し、滴下痕が発生し難く、焼き付きの点でも優れていることが明らかとなった。
Figure JPOXMLDOC01-appb-T000084
(比較例5)
 比較例1と同様の実験において、液晶組成物LC-5を使用して液晶組成物層を形成した。この際、厚さ3.5μmのスペーサを用いて、液晶組成物層の厚さを3.5μmとした。
 このようにして得られた比較例5の液晶表示素子は、以下の表に示すように、実施例9に比べコントラスト、応答速度、滴下痕及び焼き付きの点で劣っていることが明らかとなった。
Figure JPOXMLDOC01-appb-T000085
(実施例10)
実施例1と同様の実験において、使用する液晶組成物を一般式(I)から選ばれる化合物、及び一般式(II)から選ばれる化合物を含有した液晶組成物LC-6に変更した。構成する化合物及び含有する比率は下記の通りである。
Figure JPOXMLDOC01-appb-C000086
液晶組成物LC-6 98.05wt%に対して、以下に示される重合性化合物
Figure JPOXMLDOC01-appb-C000087
を1.5wt%添加し、以下に示される重合性化合物
Figure JPOXMLDOC01-appb-C000088
を0.35wt%添加し、光重合開始剤Igacure651を0.1wt%添加し、均一に溶解することにより重合性液晶組成物CLC-6を調製した。
 配向膜層を有しない共通電極基板及び画素電極基板に、重合性液晶組成物CLC-6を狭持した後、シール材を硬化させて、液晶組成物層を形成した。この際、厚さ3.5μmのスペーサを用いて、液晶組成物層の厚さを3.5μmとした。得られた液晶表示に、電圧を印加した状態で紫外線を照射し、前記反応性基を有する重合性化合物を硬化させた。照射装置としては、ウシオ電機社製USH-250BYを用いて、100mWで10分間、液晶表示素子に紫外線を照射し、実施例10の液晶表示素子を得た。実施例10の液晶表示素子は、画素電極のスリットに従って、4つの区画において異なった方向にプレチルト角を有し、前記重合性化合物の硬化後、交流電場を切った状態でもプレチルト角が維持された。維持されたプレチルト角は89.0°であった。
 このように得られた実施例10の液晶表示素子は、以下の表に示すように、優れたコントラスト及び応答速度を示し、滴下痕が発生し難く、焼き付きの点でも優れていることが明らかとなった。
Figure JPOXMLDOC01-appb-T000089
(比較例6)
 比較例1と同様の実験において、液晶組成物LC-6を使用して液晶組成物層を形成した。この際、厚さ3.5μmのスペーサを用いて、液晶組成物層の厚さを3.5μmとした。
 このようにして得られた比較例6の液晶表示素子は、以下の表に示すように、実施例10に比べコントラスト、応答速度、滴下痕及び焼き付きの点で劣っていることが明らかとなった。
Figure JPOXMLDOC01-appb-T000090
(実施例11~14、比較例7~10)
 実施例1で調製した液晶組成物LC-1(98.3質量%)に対して、以下に示される重合性化合物
Figure JPOXMLDOC01-appb-C000091
(1.2質量%)と、以下に示される重合性化合物
Figure JPOXMLDOC01-appb-C000092
(0.4質量%)を添加し、さらに光重合開始剤「Igacure651」(0.1質量%)を添加して、均一に溶解させることにより、液晶含有重合用組成物CLC-1bを調製し、この液晶含有重合用組成物CLC-1bを用いたこと以外は、実施例1と同じ方法で、液晶表示素子CLCD-1bを得た。
 実施例3で調製した液晶組成物LC-3(98.1質量%)に対して、以下に示される重合性化合物
Figure JPOXMLDOC01-appb-C000093
(1.5質量%)と、以下に示される重合性化合物
Figure JPOXMLDOC01-appb-C000094
(0.3質量%)を添加し、さらに光重合開始剤「Igacure651」(0.1質量%)を添加して、均一に溶解させることにより、液晶含有重合用組成物CLC-3bを調製し、この液晶含有重合用組成物CLC-3bを用いたこと以外は、実施例1と同じ方法で、液晶表示素子CLCD-3bを得た。
 実施例5で調製した液晶組成物LC-5(98.0質量%)に対して、以下に示される重合性化合物
Figure JPOXMLDOC01-appb-C000095
(1.5質量%)と、以下に示される重合性化合物
Figure JPOXMLDOC01-appb-C000096
(0.4質量%)を添加し、さらに光重合開始剤「Igacure651」(0.1質量%)を添加して、均一に溶解させることにより、液晶含有重合用組成物CLC-5bを調製し、この液晶含有重合用組成物CLC-5bを用いたこと以外は、実施例1と同じ方法で、液晶表示素子CLCD-5bを得た。
 実施例10で調製した液晶組成物LC-6(98.0質量%)に対して、以下に示される重合性化合物
Figure JPOXMLDOC01-appb-C000097
(1.5質量%)と、以下に示される重合性化合物
Figure JPOXMLDOC01-appb-C000098
(0.4質量%)を添加し、さらに光重合開始剤「Igacure651」(0.1質量%)を添加して、均一に溶解させることにより、液晶含有重合用組成物CLC-6bを調製し、この液晶含有重合用組成物CLC-6bを用いたこと以外は、実施例1と同じ方法で、液晶表示素子CLCD-10bを得た。
上記、液晶表示素子CLCD-1b(比較例7)、CLCD-3b(比較例8)、CLCD-5b(比較例9)及びCLCD-10b(比較例10)と実施例1の液晶表示素子CLCD-1(実施例11)、実施例5の液晶表示素子CLCD-3(実施例12)、実施例9の液晶表示素子CLCD-5(実施例13)及び実施例10の液晶表示素子CLCD-10(実施例14)の液晶表示素子を用いて行った、プレチルト安定性評価は、以下の表に示すように、プレチルトシフト量が小さく、安定性が優れていることが明らかとなった。つまり、経時的な変化が大幅に抑制された配向制御層により配向の経時安定性が良好な液晶表示素子を得られることが明らかである。
Figure JPOXMLDOC01-appb-T000099
 10・・・液晶表示素子、11・・・第一の基板、12・・・第二の基板、13・・・液晶層、14・・・共通電極、15・・・画素電極、18・・・カラーフィルタ、19・・・液晶分子

Claims (9)

  1.  共通電極を有する第一の基板と、複数の画素を有しかつ各前記画素毎に画素電極を有する第二の基板との間に、液晶組成物を含有する液晶層が挟持された液晶表示素子であって、
     前記第一の基板及び第二の基板の、一方又は両方の基板上に配向膜を有さず、
    1種以上の3官能以上の(メタ)アクリレート化合物と、1種以上の2官能あるいは単官能(メタ)アクリレート化合物から形成された配向制御層を有し、
     前記液晶組成物が、下記一般式(I)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1α及びR2αはそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Qは1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、lは1又は2を表すが、lが2の場合、2個のQは同一であっても異なっていてもよい。)で表される化合物、及び下記一般式(II)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R3αは炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、R4αは炭素原子数1~8のアルキル基、炭素原子数4~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数3~8のアルケニルオキシ基を表し、存在するQ及びQはそれぞれ独立して、1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、G及び存在するGはそれぞれ独立して、単結合、-CHCH-、-CHO-、-OCH-、-CFO-又は-OCF-を表し、lは0、1又は2を表すが、lが2の場合、2個のQ及びGは同一であっても異なっていてもよい。)で表される化合物を含有することを特徴とする液晶表示素子。
  2.  前記の3官能以上の(メタ)アクリレート化合物が、一般式(X0a)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Zは、水素原子、炭素原子数1~8のアルキル基、炭素原子数1~8のハロゲン化アルキル基、炭素原子数1~8のアルコキシ基、炭素原子数1~8のハロゲン化アルコキシ基、ハロゲン、シアノ基、ニトロ基又はRを表し、S及びSはそれぞれ独立して、炭素原子数1~12個のアルキレン基又は単結合を表し、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-は、-O-、-COO-、-OCO-又は-OCOO-に置き換えられても良く、
     R及びRはそれぞれ独立して、水素原子又は式(R-1)から式(R-15)
    Figure JPOXMLDOC01-appb-C000004
    のいずれかを表し、
     LはおよびLはそれぞれ独立して、単結合、-O-、-S-、-CH-、-OCH-、-CHO-、-CO-、-C-、-COO-、-OCO-、-OCOOCH-、-CHOCOO-、-OCHCHO-、-CO-NR-、-NR-CO-、-SCH-、-CHS-、-CH=CR-COO-、-CH=CR-OCO-、-COO-CR=CH-、-OCO-CR=CH-、-COO-CR=CH-COO-、-COO-CR=CH-OCO-、-OCO-CR=CH-COO-、-OCO-CR=CH-OCO-、-COOC-、-OCOC-、-COCO-、-(CH-C(=O)-O-、-(CH-O-(C=O)-、-O-(C=O)-(CH-、-(C=O)-O-(CH-、-CHOCO-、-COOCH-、-OCOCH-、-CH=CH-、-CF=CF-、-CF=CH-、-CH=CF-、-CF-、-CFO-、-OCF-、-CFCH-、-CHCF-、-CFCF-又は-C≡C-(式中、Rはそれぞれ独立して水素原子又は炭素原子数1~4のアルキル基を表し、jは1~4の整数を表す。)を表し、
     MおよびMはお互い独立して、芳香環、脂肪族環を表わし、
     Mは、1,4-フェニレン基、1,4-シクロヘキシレン基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ナフタレン-2,6-ジイル基、ナフタレン-1,4-ジイル基、テトラヒドロナフタレン-2,6-ジイル基又は1,3-ジオキサン-2,5-ジイル基を表し、
     M、M及びMはそれぞれ独立して、無置換であっても、炭素原子数1~8のアルキル基、炭素原子数1~8のハロゲン化アルキル基、炭素原子数1~8のアルコキシ基、ハロゲン、シアノ基、又はニトロ基で置換されていても良く、
     lおよびnはそれぞれ独立して、0、1、2又は3の整数を表し、かつ、l+nが3以上を表すが、lが0を表す場合、Zは式(R-1)~式(R-15)のいずれか一つの基を表し、nが0を表す場合、Rは式(R-1)~式(R-15)のいずれか一つの基を表し、
     mは、0から4の整数を表し、R、R、Z、S及びSが複数存在する場合は、同一であっても異なっていても良く、L及びMが複数存在する場合は、同一であっても異なっていても良いが、Lの少なくとも一つは単結合を表す。)
    で表される化合物であり、
    前記の2官能あるいは単官能(メタ)アクリレート化合物が、
    一般式(X1a)
    Figure JPOXMLDOC01-appb-C000005
    (式中、Aは水素原子又はメチル基を表し、
    は単結合又は炭素原子数1~15のアルキレン基(該アルキレン基中の1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立して酸素原子、-CO-、-COO-又は-OCO-で置換されていてもよく、該アルキレン基中の1個又は2個以上の水素原子はそれぞれ独立してフッ素原子、メチル基又はエチル基で置換されていてもよい。)を表し、
    及びAはそれぞれ独立して水素原子、ハロゲン原子又は炭素原子数1~18のアルキル基(該アルキル基中の1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立して酸素原子、-CO-、-COO-又は-OCO-で置換されていてもよく、該アルキル基中の1個又は2個以上の水素原子は、それぞれ独立してハロゲン原子又は炭素原子数1~17のアルキル基で置換されていてもよい。)を表し、
    及びAはそれぞれ独立して水素原子、ハロゲン原子又は炭素原子数1~10のアルキル基(該アルキル基中の1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立して酸素原子、-CO-、-COO-又は-OCO-で置換されていてもよく、該アルキル基中の1個又は2個以上の水素原子は、それぞれ独立してハロゲン原子又は炭素原子数1~9のアルキル基で置換されていてもよい。)を表し、
    kは1~40を表し、
    、B及びBは、それぞれ独立して水素原子、炭素原子数1~10の直鎖状若しくは分岐鎖状のアルキル基(該アルキル基中の1個若しくは2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立して酸素原子、-CO-、-COO-又は-OCO-で置換されていてもよく、該アルキル基中の1個又は2個以上の水素原子は、それぞれ独立してハロゲン原子又は炭素原子数3~6のトリアルコキシシリル基で置換されていてもよい。)、又は下記一般式(I-b)
    Figure JPOXMLDOC01-appb-C000006
    (式中、Aは水素原子又はメチル基を表し、
    は単結合又は炭素原子数1~15のアルキレン基(該アルキレン基中の1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立して酸素原子、-CO-、-COO-又は-OCO-で置換されていてもよく、該アルキレン基中の1個又は2個以上の水素原子は、それぞれ独立してフッ素原子、メチル基又はエチル基で置換されていてもよい。)で表される基を表す。ただし、合計で2k+1個あるB、B及びBのうち、前記一般式(I-b)で表される基となるものの個数は0又は1個である。)で表される化合物、
    一般式(X1b)
    Figure JPOXMLDOC01-appb-C000007
    (式中、Rは水素原子又はメチル基を表し、
    6員環T、T及びTはそれぞれ独立して
    Figure JPOXMLDOC01-appb-C000008
    のいずれか(ただしmは1から4の整数を表す。)を表し、
    は0又は1を表し、
    及びYはそれぞれ独立して単結合、-CHCH-、-CHO-、-OCH-、-COO-、-OCO-、-C≡C-、-CH=CH-、-CF=CF-、-(CH-、-CHCHCHO-、-OCHCHCH-、-CH=CHCHCH-又は-CHCHCH=CH-を表し、
    は単結合、-COO-又は-OCO-を表し、
    は炭素原子数1~18の炭化水素基を表す。)で表される化合物、
    及び下記一般式(X1c)
    Figure JPOXMLDOC01-appb-C000009
    (式中、R70は水素原子又はメチル基を表し、
    71は縮合環を有する炭化水素基を表す。)で表される化合物
    からなる群より選ばれる化合物である請求項1に記載の液晶表示素子。
  3.  前記画素電極がスリットを有する請求項1又は2に記載の液晶表示素子。
  4.  前記第一の基板及び第二の基板の少なくとも一方が、プレチルトの方向を規定する構造物を有する請求項1又は2に記載の液晶表示素子。
  5.  前記第一の基板と前記液晶層との間、及び前記第二の基板と前記液晶層との間、の少なくとも一方に、パッシベーション膜を有する請求項1~4のいずれか一項に記載の液晶表示素子。
  6.  前記第一の基板と前記液晶層との間、及び前記第二の基板と前記液晶層との間、の少なくとも一方に、平坦化膜を有する請求項1~5のいずれか一項に記載の液晶表示素子。
  7.  共通電極及びカラーフィルタ層を有する第一の基板と、複数の画素を有し、かつ各前記画素毎に画素電極を有する第二の基板との間に、液晶組成物を含有する液晶層が挟持され、前記画素中にプレチルトの方向が異なる2以上の領域を有する液晶表示素子の製造方法であって、
     前記第一の基板と前記第二の基板の、一方又は両方の基板上に配向膜を設けず、下記一般式(I)
    Figure JPOXMLDOC01-appb-C000010
    (式中、R1α及びR2αはそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Qは1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、lは1又は2を表すが、lが2の場合、2個のQは同一であっても異なっていてもよい。)で表される化合物及び
    Figure JPOXMLDOC01-appb-C000011
    (式中、R3αは炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、R4αは炭素原子数1~8のアルキル基、炭素原子数4~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数3~8のアルケニルオキシ基を表し、存在するQ及びQはそれぞれ独立して、1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、G及び存在するGはそれぞれ独立して、単結合、-CHCH-、-CHO-、-OCH-、-CFO-又は-OCF-を表し、lは0、1又は2を表すが、lが2の場合、2個のQ及びGは同一であっても異なっていてもよい。)で表される化合物、1種以上の3官能以上を有する(メタ)アクリレート化合物及び、1種以上の2官能あるいは単官能(メタ)アクリレート化合物を含有する液晶含有重合用組成物を挟持し、
     前記画素電極と前記共通電極との間に、前記液晶含有重合用組成物中の液晶分子にプレチルト角を付与するための電圧を印可した状態で活性エネルギー線を照射することにより、前記2種以上の重合性化合物を重合させると共に、前記液晶含有重合用組成物を前記液晶組成物として、前記第一の基板及び第二の基板と前記液晶層との間に、配向制御層を形成することを特徴とする液晶表示素子の製造方法。
  8.  前記活性エネルギー線が複数のスペクトルを有する紫外線である請求項7に記載の液晶表示素子の製造方法。
  9.  前記画素電極がスリットを有するか、又は前記第一の基板及び第二の基板の少なくとも一方が、プレチルトの方向を規定する構造物を有する請求項7又は8に記載の液晶表示素子の製造方法。
PCT/JP2016/067217 2015-06-19 2016-06-09 液晶表示素子及びその製造方法 WO2016204066A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680032505.3A CN107615149B (zh) 2015-06-19 2016-06-09 液晶显示元件及其制造方法
KR1020177034482A KR20180019534A (ko) 2015-06-19 2016-06-09 액정 표시 소자 및 그 제조 방법
US15/579,437 US20180142155A1 (en) 2015-06-19 2016-06-09 Liquid crystal display device and method for manufacturing same
JP2016555852A JP6132123B1 (ja) 2015-06-19 2016-06-09 液晶表示素子及びその製造方法
EP16811541.8A EP3312667B1 (en) 2015-06-19 2016-06-09 Liquid crystal display device and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-123850 2015-06-19
JP2015123850 2015-06-19

Publications (1)

Publication Number Publication Date
WO2016204066A1 true WO2016204066A1 (ja) 2016-12-22

Family

ID=57545605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067217 WO2016204066A1 (ja) 2015-06-19 2016-06-09 液晶表示素子及びその製造方法

Country Status (7)

Country Link
US (1) US20180142155A1 (ja)
EP (1) EP3312667B1 (ja)
JP (1) JP6132123B1 (ja)
KR (1) KR20180019534A (ja)
CN (1) CN107615149B (ja)
TW (1) TWI697548B (ja)
WO (1) WO2016204066A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069911A1 (ja) * 2017-10-02 2019-04-11 富士フイルム株式会社 液晶組成物、反射層、反射層の製造方法、及び共重合体
JPWO2020121639A1 (ja) * 2018-12-12 2021-02-15 Dic株式会社 重合性化合物含有液晶組成物及び液晶表示素子ならびに重合性化合物

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI606113B (zh) * 2013-02-06 2017-11-21 Dainippon Ink & Chemicals Liquid crystal display element and its manufacturing method
JP7173130B2 (ja) * 2018-03-30 2022-11-16 Jsr株式会社 表示装置及びその作製方法、並びに液晶配向剤及び硬化性組成物
TWI794515B (zh) * 2018-07-03 2023-03-01 日商Dic股份有限公司 液晶顯示元件及液晶顯示元件之製造方法
WO2020065713A1 (ja) * 2018-09-25 2020-04-02 堺ディスプレイプロダクト株式会社 液晶表示装置
US10861209B1 (en) * 2018-11-08 2020-12-08 Michael Bruce Unmanned aerial monitoring vehicle
CN111748356B (zh) * 2020-07-24 2023-03-14 京东方科技集团股份有限公司 液晶组合材料及显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120169980A1 (en) * 2010-12-31 2012-07-05 Au Optronics Corporation Method for fabricating polymer stabilized alignment liquid crystal display panel
US20130287970A1 (en) * 2012-04-28 2013-10-31 Shenzhen China Star Optoelectronics Technology Co., Ltd Liquid Crystal Medium Composition and Liquid Crystal Display Using Same
WO2013161669A1 (ja) * 2012-04-24 2013-10-31 Dic株式会社 重合性化合物を含有する液晶組成物及びそれを使用した液晶表示素子
WO2014024648A1 (ja) * 2012-08-08 2014-02-13 Jnc株式会社 液晶組成物および液晶表示素子
US20140085591A1 (en) * 2012-09-21 2014-03-27 Shenzhen China Star Optoelectronics Technology Co., Ltd. Mixture for Liquid Crystal Medium and Liquid Crystal Display Using the Same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6690441B2 (en) * 2000-09-22 2004-02-10 Dai Nippon Printing Co., Ltd. Multi-domain vertical alignment mode liquid crystal display having spacers formed over zigzag like alignment-controlling projection
JP5437993B2 (ja) * 2008-04-01 2014-03-12 株式会社Adeka 三官能(メタ)アクリレート化合物及び該化合物を含有する重合性組成物
CN102220140A (zh) * 2010-04-16 2011-10-19 统炀企业有限公司 液晶配向组合物及制造液晶显示装置的方法
US9120970B2 (en) * 2010-07-15 2015-09-01 Merck Patent Gmbh Liquid crystalline media and liquid crystal displays with a polymer-stabilized homeotropic orientation
EP2670818B1 (de) * 2011-02-05 2016-10-05 Merck Patent GmbH Flüssigkristallanzeigen mit homöotroper ausrichtung
KR101380192B1 (ko) * 2012-03-30 2014-04-02 디아이씨 가부시끼가이샤 액정 표시 소자 및 그 제조 방법
US20130299741A1 (en) * 2012-05-09 2013-11-14 Shenzhen China Star Optoelectronics Technology Co. Ltd. Liquid crystal medium composition
TWI606113B (zh) * 2013-02-06 2017-11-21 Dainippon Ink & Chemicals Liquid crystal display element and its manufacturing method
CN103484131B (zh) * 2013-08-29 2016-08-10 深圳市华星光电技术有限公司 液晶介质组合物
CN104597661B (zh) * 2014-11-21 2017-06-27 深圳市华星光电技术有限公司 垂直配向液晶显示器及其制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120169980A1 (en) * 2010-12-31 2012-07-05 Au Optronics Corporation Method for fabricating polymer stabilized alignment liquid crystal display panel
WO2013161669A1 (ja) * 2012-04-24 2013-10-31 Dic株式会社 重合性化合物を含有する液晶組成物及びそれを使用した液晶表示素子
US20130287970A1 (en) * 2012-04-28 2013-10-31 Shenzhen China Star Optoelectronics Technology Co., Ltd Liquid Crystal Medium Composition and Liquid Crystal Display Using Same
WO2014024648A1 (ja) * 2012-08-08 2014-02-13 Jnc株式会社 液晶組成物および液晶表示素子
US20140085591A1 (en) * 2012-09-21 2014-03-27 Shenzhen China Star Optoelectronics Technology Co., Ltd. Mixture for Liquid Crystal Medium and Liquid Crystal Display Using the Same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3312667A4 *
SU , CHUN-WEI ET AL.: "Analysis and Implementation of PI Less Technology Applied in TFT LCD Displays", IDW'10 - PROCEEDINGS OF THE 17TH INTERNATIONAL DISPLAY WORKSHOPS, vol. 1, 2010, pages 17 - 20, XP009507892 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069911A1 (ja) * 2017-10-02 2019-04-11 富士フイルム株式会社 液晶組成物、反射層、反射層の製造方法、及び共重合体
US11634638B2 (en) 2017-10-02 2023-04-25 Fujifilm Corporation Liquid crystal composition, reflective layer, method for producing reflective layer, and copolymer
JPWO2020121639A1 (ja) * 2018-12-12 2021-02-15 Dic株式会社 重合性化合物含有液晶組成物及び液晶表示素子ならびに重合性化合物

Also Published As

Publication number Publication date
KR20180019534A (ko) 2018-02-26
US20180142155A1 (en) 2018-05-24
JP6132123B1 (ja) 2017-05-24
EP3312667B1 (en) 2019-08-21
JPWO2016204066A1 (ja) 2017-06-29
CN107615149B (zh) 2020-10-27
EP3312667A4 (en) 2019-01-23
TWI697548B (zh) 2020-07-01
TW201716552A (zh) 2017-05-16
EP3312667A1 (en) 2018-04-25
CN107615149A (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
JP5741777B2 (ja) 液晶表示素子及びその製造方法
JP6132123B1 (ja) 液晶表示素子及びその製造方法
JP5299595B1 (ja) 液晶表示素子及びその製造方法
JP6414720B2 (ja) 液晶表示素子及びその製造方法
JP5822097B2 (ja) 液晶表示素子及びその製造方法
WO2013145370A1 (ja) 液晶表示素子及びその製造方法
WO2019216233A1 (ja) 液晶表示素子
JP6355009B1 (ja) 液晶表示素子及びその製造方法
JP5930134B2 (ja) 液晶表示素子及びその製造方法
JP6395007B2 (ja) 液晶表示素子及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016555852

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811541

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177034482

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15579437

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016811541

Country of ref document: EP