WO2016203869A1 - 硬質部材 - Google Patents

硬質部材 Download PDF

Info

Publication number
WO2016203869A1
WO2016203869A1 PCT/JP2016/063805 JP2016063805W WO2016203869A1 WO 2016203869 A1 WO2016203869 A1 WO 2016203869A1 JP 2016063805 W JP2016063805 W JP 2016063805W WO 2016203869 A1 WO2016203869 A1 WO 2016203869A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
hard
substrate
adhesion
thickness
Prior art date
Application number
PCT/JP2016/063805
Other languages
English (en)
French (fr)
Inventor
利之 梶岡
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2017524721A priority Critical patent/JP6737271B2/ja
Publication of WO2016203869A1 publication Critical patent/WO2016203869A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides

Definitions

  • the present invention relates to a hard member used as a cover glass for a touch panel or the like.
  • the outermost layer of the cover glass is often provided with an antifouling layer to prevent adhesion of dirt.
  • Patent Documents 1 to 5 disclose that an antifouling layer is provided in order to prevent adhesion of dirt.
  • the present inventor Since the cover glass disclosed in the above-mentioned patent document is not sufficiently high in scratch resistance, the present inventor has a hard layer made of zirconium oxide, aluminum oxynitride or the like for the purpose of improving the scratch resistance of the cover glass. Then, it was examined to provide on a glass substrate. As a result, it has been found that when a hard layer is provided on a glass substrate, even if an antifouling layer is formed on the glass substrate, the adhesion is low and it is easy to peel off. Further, even when a hard substrate such as sapphire is used as a cover member, the present inventors have found a problem that even if an antifouling layer is formed thereon, the adhesion is low and the film is easily peeled off.
  • An object of the present invention is to provide a hard member having good scratch resistance and excellent adhesion of an antifouling layer.
  • the hard member of the present invention is a substrate, a hard layer provided on the substrate, having a thickness of 150 nm or more, and an adhesive comprising a silicon-containing inorganic material provided on the hard layer and having a thickness of 60 nm or less. And an antifouling layer containing an organosilicon compound provided on the adhesion layer.
  • the thickness of the adhesion layer is preferably 1 nm or more.
  • the hardness of the hard layer is preferably 7 GPa or more.
  • the hard layer is composed of zirconium oxide, aluminum oxide, aluminum nitride, aluminum oxynitride, titanium oxide, tantalum oxide, niobium oxide, hafnium oxide, tin oxide, zinc oxide, indium oxide, DLC (Diamond Like Carbon), diamond, boron nitride, It is preferable to include at least one selected from carbon nitride.
  • the adhesion layer preferably contains at least one selected from silicon oxide, silicon nitride, and silicon oxynitride.
  • the antifouling layer preferably contains a fluorine-containing organosilicon compound.
  • the substrate is preferably a glass substrate.
  • the hard member according to another aspect of the present invention includes a hard substrate having a hardness of 8 GPa or more, an adhesive layer provided on the hard substrate, made of an inorganic material containing silicon, and having a thickness of 60 nm or less, And an antifouling layer containing an organosilicon compound provided on the layer.
  • the hard substrate is preferably a sapphire substrate.
  • FIG. 1 is a schematic cross-sectional view showing a hard member according to the first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a hard member according to the second embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing a hard member according to the first embodiment of the present invention.
  • the hard member 1 of the present embodiment includes a substrate 2, a hard layer 3 provided on the substrate 2, an adhesion layer 4 provided on the hard layer 3, and an adhesion layer 4. And an antifouling layer 5 provided thereon.
  • the hard member 1 preferably has translucency.
  • the hard member 1 preferably has a transmittance of more than 0% in at least part of the wavelength range of visible light (360 to 830 nm).
  • the hard member 1 preferably has a transmittance of more than 0% in the wavelength region of 450 to 650 nm, more preferably has a transmittance of more than 0% in the wavelength region of 400 to 700 nm, and has a wavelength of 360 to 830 nm. Most preferably, it has a transmittance of greater than 0% in the region. In addition, the average transmittance in the wavelength region of 360 to 830 nm is preferably 30% or more, more preferably 50% or more, and most preferably 80% or more.
  • the substrate 2 is not particularly limited, and examples thereof include a glass substrate and a resin substrate.
  • the substrate 2 is a glass substrate made of soda-lime glass, aluminosilicate glass, non-alkali glass, crystallized glass, or the like having translucency, or these glasses.
  • a tempered glass substrate obtained by physically strengthening or chemically strengthening the substrate is preferable.
  • a tempered glass substrate obtained by chemically strengthening an aluminosilicate glass substrate is preferable. Since the aluminosilicate glass substrate has high mechanical strength, the thickness can be reduced.
  • the thickness of the substrate 2 is preferably 0.1 to 1.5 mm, more preferably 0.3 to 1.2 mm, and more preferably 0.5 to 1.0 mm from the viewpoint of mechanical strength and weight reduction. More preferably.
  • the hard layer 3 is provided to improve the scratch resistance of the hard member 1. Therefore, it is preferable that the hard layer 3 is formed from a hard material.
  • the hardness of the hard layer 3 is preferably harder than that of the substrate 2.
  • the hardness measured by the nanoindentation method using a Berkovich diamond indenter is preferably 7 GPa or more, more preferably 8 GPa or more, more preferably 9 GPa or more, and more preferably 10 GPa or more. More preferably, it is more preferably 11 GPa or more, and particularly preferably 13 GPa or more.
  • the upper limit value of the hardness is not particularly set, but is generally 350 GPa, for example.
  • the hard layer 3 preferably has a large thickness from the viewpoint of improving the scratch resistance.
  • the thickness of the hard layer 3 is 150 nm or more, preferably 200 nm or more, more preferably 300 nm or more, and further preferably 500 nm or more.
  • the thickness of the hard layer 3 is less than 150 nm, good scratch resistance cannot be obtained. If the thickness of the hard layer 3 is too large, the substrate 2 may warp due to the stress of the hard layer 3. From such a viewpoint, the thickness of the hard layer 3 is preferably 10,000 nm or less, more preferably 5000 nm or less, and still more preferably 3000 nm or less.
  • the hard layer 3 When used as a cover glass for a touch panel or the like, the hard layer 3 preferably has translucency.
  • Materials for the hard layer 3 include zirconium oxide, aluminum oxide, aluminum nitride, aluminum oxynitride, titanium oxide, tantalum oxide, niobium oxide, hafnium oxide, tin oxide, zinc oxide, indium oxide, DLC (Diamond Like Carbon), diamond , Boron nitride, carbon nitride and the like.
  • zirconium oxide, aluminum oxide, aluminum oxynitride, and DLC are particularly preferable.
  • the hard layer 3 is preferably formed by a RAS (Radial Assisted Sputtering) method because it is likely to become hard.
  • RAS Random Assisted Sputtering
  • a substrate is alternately passed through a zone in which a thin metal film is formed by sputtering and a zone in which the thin metal film is oxidized, nitrided, oxynitrided, or carbonized by a radical gun or the like.
  • an oxide film, a metal nitride film, a metal oxynitride film, or a metal carbide film is formed.
  • the adhesion layer 4 is provided to improve the adhesion between the hard layer 3 and the antifouling layer 5.
  • the material of the adhesion layer 4 include inorganic materials containing silicon such as silicon oxide, silicon nitride, and silicon oxynitride.
  • Specific composition formulas of the adhesion layer 4 include, for example, SiO 2 , Si 3 N 4 , SiO x N y (0 ⁇ x, 0 ⁇ y) and the like.
  • the thickness of the adhesion layer 4 is 60 nm or less.
  • the thickness of the adhesion layer 4 is preferably 1 nm or more. By making the thickness of the adhesion layer 4 1 nm or more, better adhesion can be obtained.
  • the thickness of the adhesion layer 2 is preferably in the range of 1 to 60 nm, more preferably in the range of 2 to 50 nm, more preferably in the range of 5 to 30 nm, and in the range of 10 to 20 nm. More preferably it is.
  • adherence layer 4 is not specifically limited, Like the hard layer 3, it can form by a RAS system.
  • the antifouling layer 5 preferably contains an organosilicon compound.
  • the adhesion to the adhesion layer 4 can be enhanced. Thereby, even if it uses for a long period of time, it becomes difficult for the antifouling layer 5 to peel, and antifouling property and slipperiness become difficult to fall.
  • organosilicon compound examples include one or more compounds selected from a silane coupling agent, silicone oil, silicone resin, silicone rubber, hydrophobic silica, and fluorine-containing organosilicon compound. Among these, a fluorine-containing organosilicon compound is preferable.
  • Examples of the fluorine-containing organosilicon compound include polymers having —O—Si—O— units in the main chain and water-repellent functional groups containing fluorine in the side chain.
  • the fluorine-containing organosilicon compound can be synthesized, for example, by dehydrating condensation of silanol.
  • Examples of the fluorine-containing organosilicon compound include KY130 (manufactured by Shin-Etsu Chemical Co., Ltd.), Optur DSX (manufactured by Daikin Industries, Ltd.), TSL8257, TSL8233, TSL831 (manufactured by Momentive Performance Materials Japan GK).
  • KBM7803 manufactured by Shin-Etsu Chemical Co., Ltd.
  • AY43-158E manufactured by Dow Corning Toray
  • KP801M manufactured by Shin-Etsu Chemical Co., Ltd.
  • the thickness of the antifouling layer 5 is not particularly limited, but is preferably 1 nm or more, more preferably 1.5 nm or more, and particularly preferably 2 nm or more. If the thickness of the antifouling layer 5 is less than 1 nm, the antifouling effect may not be sufficiently obtained. If the antifouling layer 5 is too thick, after the antifouling layer is peeled off, the non-peeled portion is different in reflectance and color, and unevenness may be conspicuous. From such a viewpoint, the thickness of the antifouling layer 5 is preferably 30 nm or less, more preferably 25 nm or less, and further preferably 20 nm or less.
  • the raw material for the antifouling layer 5 is generally in a solution state. Therefore, the antifouling layer 5 can be formed by applying a solution for forming the antifouling layer 5 on the adhesion layer 4 and then drying it.
  • the antifouling layer 5 can also be formed by a vacuum vapor deposition method in which a porous ceramic, a metal fiber, a fine wire or the like is impregnated with a solution, the solution is heated and evaporated in a vacuum, and deposited on the adhesion layer 4. .
  • the hardness of the surface of the hard member 1 on which the antifouling layer 5 is formed is measured by the nanoindentation method described above, the hardness is preferably 7 GPa or more.
  • the adhesion layer 4 having a predetermined thickness is provided between the hard layer 3 having a predetermined thickness and the antifouling layer 5, the scratch resistance is good and the adhesion of the antifouling layer. It is possible to make a hard member having excellent resistance.
  • the hard member 1 is preferably a combination of hard layer 3: zirconium oxide or aluminum oxynitride, adhesion layer 4: silicon oxide, silicon nitride or silicon oxynitride, and antifouling layer 5: fluorine-containing organosilicon compound.
  • the hard layer 3 is formed directly on the substrate 2, but a functional layer that imparts various functions to the hard member 1 may be provided between the substrate 2 and the hard layer 3. Good.
  • a functional layer that imparts various functions to the hard member 1 may be provided between the substrate 2 and the hard layer 3.
  • an optical filter layer that selectively transmits or reflects light of a specific wavelength by light interference
  • a light absorption layer that absorbs light of a specific wavelength
  • a conductive layer having conductivity and the hard member 1 are colored
  • a decorative layer for giving a pattern or a pattern, an antiglare film having irregularities, and the like can be used.
  • FIG. 2 is a schematic cross-sectional view showing a hard member according to the second embodiment of the present invention.
  • the hard member 11 of the present embodiment includes a hard substrate 12, an adhesion layer 14 provided on the hard substrate 12, and an antifouling layer 15 provided on the adhesion layer 14. Yes.
  • substrate 12 will not be specifically limited if hardness is 8 GPa or more.
  • a sapphire substrate is used as the hard substrate 12.
  • the hard substrate 12 preferably has translucency.
  • the sapphire substrate is manufactured by artificially growing high-purity alumina into a single crystal.
  • the hardness of the hard substrate 12 can be measured by a nanoindentation method using a Berkovich diamond indenter, as in the first embodiment.
  • the hardness of the hard substrate 12 is preferably 10 GPa or more, more preferably 15 GPa or more, further preferably 20 GPa or more, and particularly preferably 25 GPa or more.
  • the upper limit value of the hardness is not particularly set, but is generally 350 GPa, for example.
  • the adhesion layer 14 in the present embodiment can be formed by the same material, the same thickness, and the same method as those of the adhesion layer 4 in the first embodiment.
  • the antifouling layer 15 in the present embodiment can be formed by the same material, the same thickness, and the same method as the antifouling layer 5 in the first embodiment.
  • the adhesion layer 14 having a predetermined thickness is provided between the hard substrate 12 and the antifouling layer 15, the hard material having good scratch resistance and excellent adhesion of the antifouling layer. It can be a member.
  • the hard member 11 is preferably a combination of the adhesion layer 14: silicon oxide, silicon nitride or silicon oxynitride, and the antifouling layer 15: fluorine-containing organosilicon compound.
  • Example 1 [Formation of hard layer 3] A non-alkali glass substrate OA-10G manufactured by Nippon Electric Glass Co., Ltd. was used as the substrate 2, and a ZrO 2 film as the hard layer 3 was formed on the substrate 2 by the RAS method.
  • the deposition conditions for the Zr film were a deposition pressure of 0.12 Pa, a flow rate of Ar gas as a carrier gas: 100 sccm, and a Zr target applied power: 5.5 kW.
  • the flow rate of oxygen gas as a carrier gas was 40 sccm, and the power applied to the radical gun was 4.5 kW.
  • the ZrO 2 film was formed to a thickness of 500 nm.
  • the hardness of the substrate on which the ZrO 2 film was formed was measured by a nanoindentation method (maximum load: 1.225 mN) using a Berkovich type diamond indenter and found to be 11.1 GPa.
  • the substrate (OA-10G) had a hardness of 6.5 GPa. “ZrO 2 ” does not represent the actual composition ratio.
  • an SiO 2 film as the adhesion layer 4 was formed by the RAS method.
  • the deposition conditions for the Si film were a deposition pressure of 0.12 Pa, a flow rate of Ar gas as a carrier gas: 100 sccm, and an Si target applied power of 5.0 kW.
  • As the oxidation conditions for the Si film an oxygen gas flow rate as a carrier gas: 40 sccm, a radical gun applied power: 4.5 kW, and a SiO 2 film having a thickness of 2 nm were formed. “SiO 2 ” does not represent the actual composition ratio.
  • the antifouling layer 5 was formed as follows. The surface of the adhesion layer 4 was washed with a washing machine, and the surface was treated with an atmospheric pressure plasma apparatus. Thereafter, using a spray device, a fluorine-containing organosilicon compound solution (UF503 manufactured by Daikin Industries, Ltd .: 0.1 mass%, Novec 7200: 99.9 mass% manufactured by 3M) was applied. The coating conditions were as follows: substrate 2 transport speed 3 mm / second, coating amount 10 ml / min, air flow rate 40 l / min, spray nozzle reciprocating speed 800 mm / sec, and spray nozzle-substrate distance 20 mm.
  • a fluorine-containing organosilicon compound solution UFS3 manufactured by Daikin Industries, Ltd .: 0.1 mass%, Novec 7200: 99.9 mass% manufactured by 3M
  • the antifouling layer 5 is formed on the adhesion layer 4 by heating at 150 ° C. for 60 minutes using a clean oven and wiping the coated surface with a wiper dipped in alcohol. did.
  • the film thickness of the antifouling layer 5 was 5 nm.
  • the hard member 1 of Example 1 was produced as described above.
  • Example 2 A hard member 1 was produced in the same manner as in Example 1 except that the thickness of the adhesion layer 4 was 15 nm.
  • Example 3 A hard member 1 was produced in the same manner as in Example 1 except that the thickness of the adhesion layer 4 was 20 nm.
  • Example 4 A hard member 1 was produced in the same manner as in Example 1 except that the thickness of the adhesion layer 4 was 30 nm.
  • Example 5 A hard member 1 was produced in the same manner as in Example 1 except that the thickness of the adhesion layer 4 was 40 nm.
  • Example 6 A hard member 1 was produced in the same manner as in Example 1 except that the thickness of the adhesion layer 4 was 50 nm.
  • Example 1 A hard member 1 was produced in the same manner as in Example 1 except that the antifouling layer 5 was directly formed on the hard layer 3 without forming the adhesion layer 4.
  • Example 2 A hard member 1 was produced in the same manner as in Example 1 except that the thickness of the adhesion layer 4 was 80 nm.
  • Evaluation of scratch resistance was performed by a rocking abrasion test.
  • the rocking rubbing test was performed using Taber Oscillating Ablation Tester 6160 manufactured by Taber Industries.
  • sand Cold Silica Sand (Sieve Sizes 6/9) manufactured by PREMIER Silica) was put together with the sample.
  • the sample was fixed to the bottom of the container with tape and placed so that the sand covered it.
  • the sample was positioned about 1.5 cm below the surface of the sand. In this state, the entire container is swung, and the sand in the container moves to rub the surface of the sample.
  • the test was performed under conditions of a swing stroke of 100 mm, a swing speed of 200 reciprocations / minute, and a swing number of 1000 reciprocations.
  • the transmission haze was measured with a haze meter (NDH-5000, manufactured by Nippon Denshoku Industries Co., Ltd.), and the haze value difference ( ⁇ H (%)) before and after the rocking friction test was evaluated.
  • the difference in haze value ( ⁇ H (%)) was evaluated by distinguishing between ⁇ , ⁇ , and ⁇ based on the following criteria. The evaluation results are shown in Table 1.
  • the adhesion of the antifouling layer was evaluated by a steel wool rubbing test.
  • Steel wool rubbing test was made by Nippon Steel Wool, Inc., 10 mm long by 10 mm wide, and bonster commercial grade # 0000 was pressed against the surface of the antifouling layer (load 1000 gf), rubbing stroke 40 mm, rubbing speed 60 reciprocations / min, number of rubbing The test was performed under 1000 round trips. After the test, the contact angle with water on the surface of the antifouling layer was measured. The case where the contact angle was 90 ° or more was evaluated as ⁇ , and the case where the contact angle was less than 90 ° was evaluated as ⁇ . The evaluation results are shown in Table 1.
  • Examples 7 to 8 and Comparative Example 3 The film thickness of the hard layer 3 of Example 2 was changed, and the influence of the film thickness of the hard layer 3 was examined.
  • Example 7 A hard member 1 was produced in the same manner as in Example 2 except that the thickness of the hard layer 3 was set to 300 nm.
  • Example 8 A hard member 1 was produced in the same manner as in Example 2 except that the thickness of the hard layer 3 was 200 nm.
  • Example 3 A hard member 1 was produced in the same manner as in Example 2 except that the thickness of the hard layer 3 was set to 100 nm.
  • Example 9 A hard member 1 was produced in the same manner as in Example 2 except that a silicon nitride (SiN) film was formed as the adhesion layer 4 instead of the silicon oxide (SiO 2 ) film.
  • the deposition conditions for the Si film were a deposition pressure of 0.12 Pa, a flow rate of Ar gas as a carrier gas: 100 sccm, and an Si target applied power of 5.0 kW.
  • a silicon nitride (SiN) film was formed to a thickness of 15 nm with a nitrogen gas flow rate as a carrier gas of 40 sccm and a radical gun applied power of 4.5 kW.
  • Example 10 A translucent member was produced in the same manner as in Example 2, except that a silicon oxynitride (SiON) film was formed as the adhesion layer 4 instead of the silicon oxide (SiO 2 ) film.
  • the deposition conditions for the Si film were a deposition pressure of 0.17 Pa, a flow rate of Ar gas as a carrier gas: 150 sccm, and an Si target applied power of 5.0 kW.
  • an oxygen gas flow rate as a carrier gas 10 sccm and a nitrogen gas flow rate: 30 sccm
  • a radical gun applied power 4.5 kW
  • a silicon oxynitride (SiON) film having a film thickness of 15 nm. Filmed.
  • Example 4 A hard member 1 was produced in the same manner as in Example 2 except that the antifouling layer 5 was directly formed on the substrate 2 without forming the hard layer 3 and the adhesion layer 4.
  • Example 11 and Comparative Example 5> A hard member 11 shown in FIG. 2 was prepared and evaluated using a hard substrate.
  • Example 11 A sapphire substrate having a thickness of 0.5 mm was used as the hard substrate 12. The hardness of the sapphire substrate was measured by a nanoindentation method (maximum load: 1.225 mN) using a Berkovich diamond indenter and found to be 30.2 GPa. An adhesion layer 14 and an antifouling layer 15 were formed on the hard substrate 12 to produce a hard member 11. The adhesion layer 14 and the antifouling layer 15 were formed in the same manner as the adhesion layer 4 and the antifouling layer 5 in Example 2.
  • Example 5 A hard member 11 was produced in the same manner as in Example 11 except that the antifouling layer 15 was directly formed on the hard substrate 12 without forming the adhesion layer 14.
  • Example 12 [Formation of hard layer 3]
  • the substrate 2 an aluminosilicate tempered glass substrate T2X-1 manufactured by Nippon Electric Glass Co., Ltd. was used, and an AlON film as a hard layer 3 was formed on the substrate 2 by the RAS method.
  • the deposition conditions for the Al film were a deposition pressure of 0.12 Pa, a flow rate of Ar gas as a carrier gas: 100 sccm, and an Al target applied power of 5.0 kW.
  • As the oxynitriding conditions of the Al film an AlON film was formed to a thickness of 500 nm under conditions of oxygen gas flow rate as carrier gas: 2 sccm, nitrogen gas flow rate: 38 sccm, radical gun applied power: 4.5 kW.
  • the hardness of the substrate on which the AlON film was formed was measured by a nanoindentation method (maximum load: 1.225 mN) using a Berkovich diamond indenter. As a result, it was 18.0 GPa.
  • the substrate (T2X-1) had a hardness of 7.3 GPa. “AlON” does not represent an actual composition ratio.
  • the formation method of the adhesion layer 4 and the formation method of the antifouling layer 5 are the same as those in Example 1.
  • Example 13 A hard member 1 was produced in the same manner as in Example 12 except that the thickness of the adhesion layer 4 was 15 nm.
  • Example 14 A hard member 1 was produced in the same manner as in Example 12 except that the thickness of the adhesion layer 4 was 20 nm.
  • Example 15 A hard member 1 was produced in the same manner as in Example 12 except that the thickness of the adhesion layer 4 was 30 nm.
  • Example 16 A hard member 1 was produced in the same manner as in Example 12 except that the thickness of the adhesion layer 4 was 40 nm.
  • Example 17 A hard member 1 was produced in the same manner as in Example 12 except that the thickness of the adhesion layer 4 was 50 nm.
  • Example 6 A hard member 1 was produced in the same manner as in Example 12 except that the antifouling layer 5 was directly formed on the hard layer 3 without forming the adhesion layer 4.
  • Example 7 A hard member 1 was produced in the same manner as in Example 12 except that the thickness of the adhesion layer 4 was 80 nm.
  • Examples 18 to 19 and Comparative Example 8> The film thickness of the hard layer 3 was changed, and the influence of the film thickness of the hard layer 3 was examined.
  • Example 18 A hard member 1 was produced in the same manner as in Example 13 except that the thickness of the hard layer 3 was 300 nm.
  • Example 19 A hard member 1 was produced in the same manner as in Example 13 except that the thickness of the hard layer 3 was 200 nm.
  • Example 8 A hard member 1 was produced in the same manner as in Example 13 except that the thickness of the hard layer 3 was set to 100 nm.
  • Example 20 to 21 As the adhesion layer 4, a silicon nitride (SiN) film and a silicon oxynitride (SiON) film were examined in place of the silicon oxide (SiO 2 ) film. “SiN” and “SiON” do not indicate actual composition ratios.
  • Example 20 The hard member 1 was produced in the same manner as in Example 13 except that a silicon nitride (SiN) film was formed as the adhesion layer 4 instead of the silicon oxide (SiO 2 ) film.
  • the deposition conditions for the Si film were a deposition pressure of 0.12 Pa, a flow rate of Ar gas as a carrier gas: 100 sccm, and an Si target applied power of 5.0 kW.
  • a silicon nitride (SiN) film was formed to a thickness of 15 nm with a nitrogen gas flow rate as a carrier gas of 40 sccm and a radical gun applied power of 4.5 kW.
  • Example 21 A translucent member was produced in the same manner as in Example 13 except that a silicon oxynitride (SiON) film was formed as the adhesion layer 4 instead of the silicon oxide (SiO 2 ) film.
  • the deposition conditions for the Si film were a deposition pressure of 0.17 Pa, a flow rate of Ar gas as a carrier gas: 150 sccm, and an Si target applied power of 5.0 kW.
  • an oxygen gas flow rate as a carrier gas 10 sccm and a nitrogen gas flow rate: 30 sccm
  • a radical gun applied power 4.5 kW
  • a silicon oxynitride (SiON) film having a film thickness of 15 nm. Filmed.
  • Example 9 A hard member 1 was produced in the same manner as in Example 13 except that the antifouling layer 5 was formed directly on the substrate 2 without forming the hard layer 3 and the adhesion layer 4.
  • Examples 2, 7 to 8 and Comparative Example 3 and Examples 13, 18 to 19 and Comparative Example 8 Examples 2, 7 to 8 having a hard layer having a thickness of 200 nm or more were provided. In Examples 13 and 18 to 19, good scratch resistance was obtained as compared with Comparative Example 3 and Comparative Example 8 in which a hard layer having a thickness of 100 nm was provided.
  • the adhesion layer 4 is replaced by a silicon nitride (SiN) film or a silicon oxynitride (SiON) instead of the silicon oxide (SiO 2 ) film. It can be seen that even when a film is used, the effect of the present invention is obtained that the scratch resistance is good and the adhesion of the antifouling layer is excellent.
  • the hard member of the present invention can be used not only as a cover glass or a cover member for various devices, but also as a window material, a top plate of a cooking device, or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

耐擦傷性が良好で、かつ防汚層の密着性に優れた硬質部材を提供する。 基板2と、基板2上に設けられ、厚みが150nm以上である硬質層3と、硬質層3の上に設けられ、ケイ素を含有する無機材料からなり、厚みが60nm以下である密着層4と、密着層4の上に設けられ、有機ケイ素化合物を含有する防汚層5とを備えることを特徴としている。

Description

硬質部材
 本発明は、タッチパネル等のカバーガラスなどとして使用される硬質部材に関するものである。
 近年、携帯電話、デジタルカメラ、PDA(携帯情報端末)、ノートPC等のデバイスにおいては、タッチパネルが搭載されたものが普及している。これらのデバイスには、タッチパネルを保護するため、ガラス基板からなるカバーガラス(硬質部材)が用いられる場合が多い。
 また、カバーガラスの最外層には、汚れの付着を防止するため、防汚層が設けられる場合が多い。特許文献1~5には、汚れの付着を防止するため、防汚層を設けることが開示されている。
特開2010-37115号公報 特開2004-170962号公報 特開平6-135745号公報 特開平8-294755号公報 特開平2-91603号公報
 上記特許文献に開示されたカバーガラスは、耐擦傷性が十分に高くないため、本発明者は、カバーガラスの耐擦傷性を改善する目的で、酸化ジルコニウムや酸窒化アルミニウムなどからなる硬質層を、ガラス基板の上に設けることを検討した。その結果、ガラス基板の上に硬質層を設けると、その上に防汚層を形成しても密着性が低く、剥がれやすいという課題を見出した。また、サファイヤ等の硬質基板をカバー部材として用いた場合にも、その上に防汚層を形成しても密着性が低く、剥がれやすいという課題を見出した。
 本発明の目的は、耐擦傷性が良好で、かつ防汚層の密着性に優れた硬質部材を提供することにある。
 本発明の硬質部材は、基板と、基板上に設けられ、厚みが150nm以上である硬質層と、硬質層の上に設けられ、ケイ素を含有する無機材料からなり、厚みが60nm以下である密着層と、密着層の上に設けられ、有機ケイ素化合物を含有する防汚層とを備えることを特徴としている。
 本発明において、密着層の厚みは、1nm以上であることが好ましい。
 硬質層の硬さは、7GPa以上であることが好ましい。
 硬質層は、酸化ジルコニウム、酸化アルミニウム、窒化アルミニウム、酸窒化アルミニウム、酸化チタン、酸化タンタル、酸化ニオブ、酸化ハフニウム、酸化錫、酸化亜鉛、酸化インジウム、DLC(Diamond Like Carbon)、ダイヤモンド、窒化硼素、窒化炭素から選ばれる少なくとも1種を含むことが好ましい。
 密着層は、酸化ケイ素、窒化ケイ素、及び酸窒化ケイ素から選ばれる少なくとも1種を含むことが好ましい。
 防汚層は、フッ素含有有機ケイ素化合物を含むことが好ましい。
 基板は、ガラス基板であることが好ましい。
 本発明の他の局面における硬質部材は、硬さが8GPa以上である硬質基板と、硬質基板の上に設けられ、ケイ素を含有する無機材料からなり、厚みが60nm以下である密着層と、密着層の上に設けられ、有機ケイ素化合物を含有する防汚層とを備えることを特徴としている。
 硬質基板は、サファイヤ基板であることが好ましい。
 本発明によれば、耐擦傷性が良好で、かつ防汚層の密着性に優れた硬質部材を提供することができる。
図1は、本発明の第1の実施形態の硬質部材を示す模式的断面図である。 図2は、本発明の第2の実施形態の硬質部材を示す模式的断面図である。
 以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。
 (第1の実施形態)
 図1は、本発明の第1の実施形態の硬質部材を示す模式的断面図である。図1に示すように、本実施形態の硬質部材1は、基板2と、基板2の上に設けられた硬質層3と、硬質層3の上に設けられた密着層4と、密着層4の上に設けられた防汚層5とを備えている。硬質部材1がタッチパネル等のカバーガラスとして使用される場合、硬質部材1は、透光性を有することが好ましい。例えば、硬質部材1は、可視光(360~830nm)の少なくとも一部の波長域で0%超の透過率を有することが好ましい。硬質部材1は、450~650nmの波長域で0%超の透過率を有することがより好ましく、400~700nmの波長域で0%超の透過率を有することが更に好ましく、360~830nmの波長域で0%超の透過率を有することが最も好ましい。これに加え、360~830nmの波長域での平均透過率は、30%以上であることが好ましく、50%以上であることがより好ましく、80%以上であることが最も好ましい。基板2は、特に限定されるものではなく、例えば、ガラス基板及び樹脂基板などが挙げられる。硬質部材1がタッチパネル等のカバーガラスとして使用される場合、基板2は、透光性を有する、ソーダライムガラス、アルミノシリケートガラス、無アルカリガラス、結晶化ガラス等からなるガラス基板や、これらのガラス基板を物理強化または化学強化して得られた強化ガラス基板であることが好ましい。機械的強度の観点から、アルミノシリケートガラス基板を化学強化して得られた強化ガラス基板が好ましい。アルミノシリケートガラス基板は、機械的強度が高いため、厚みを小さくすることができる。
 基板2の厚みは、機械的強度と軽量化の観点から、0.1~1.5mmであることが好ましく、0.3~1.2mmであることがより好ましく、0.5~1.0mmであることが更に好ましい。
 硬質層3は、硬質部材1の耐擦傷性を改善するために設けられている。したがって、硬質層3は、硬い材料から形成されていることが好ましい。硬質層3の硬さは、基板2よりも硬いことが好ましい。硬さの評価方法としては、例えばナノインデンテーション法がある。例えば、Berkovich型ダイヤモンド圧子を用いたナノインデンテーション法で測定した硬さが、7GPa以上であることが好ましく、8GPa以上であることがより好ましく、9GPa以上であることがより好ましく、10GPa以上であることがさらに好ましく、11GPa以上であることがさらに好ましく、13GPa以上であることが特に好ましい。硬さの上限値は、特に設定されるものではないが、例えば、一般には350GPaである。
 硬質層3は、耐擦傷性を向上させる観点から、厚みが大きいことが好ましい。具体的には、硬質層3の厚みは、150nm以上であり、200nm以上であることが好ましく、300nm以上であることがより好ましく、500nm以上であることがさらに好ましい。硬質層3の厚みが150nm未満になると、良好な耐擦傷性が得られない。硬質層3の厚みが大きすぎると、硬質層3の応力により基板2が反る場合がある。このような観点から、硬質層3の厚みは、10000nm以下であることが好ましく、5000nm以下であることがより好ましく、3000nm以下であることがさらに好ましい。
 タッチパネル等のカバーガラスとして使用される場合、硬質層3は、透光性を有することが好ましい。
 硬質層3の材料としては、酸化ジルコニウム、酸化アルミニウム、窒化アルミニウム、酸窒化アルミニウム、酸化チタン、酸化タンタル、酸化ニオブ、酸化ハフニウム、酸化錫、酸化亜鉛、酸化インジウム、DLC(Diamond Like Carbon)、ダイヤモンド、窒化硼素、窒化炭素などが挙げられる。これらの中でも、特に、酸化ジルコニウム、酸化アルミニウム、酸窒化アルミニウム、DLCが好ましい。
 硬質層3は、RAS(Radical Assisted Sputtering)方式により形成すると、硬質になりやすいため好ましい。RAS方式とは、スパッタリングにより薄い金属膜を成膜するゾーンと、薄い金属膜をラジカルガンなどにより酸化、窒化、酸窒化、または炭化するゾーンを基板が交互に通過することにより、基板上に金属酸化物膜、金属窒化物膜、金属酸窒化物膜、または金属炭化物膜を形成させる方法である。
 密着層4は、硬質層3と防汚層5の密着性を高めるために設けられている。密着層4の材料としては、酸化ケイ素、窒化ケイ素、酸窒化ケイ素等のケイ素を含む無機材料が挙げられる。密着層4の具体的な組成式としては、例えば、SiO、Si、SiO(0≦x、0≦y)などが挙げられる。
 本発明において、密着層4の厚みは、60nm以下である。密着層4の厚みが60nmを超えると、密着層4の硬度特性が硬質部材1の耐擦傷性に及ぼす影響が大きくなり、その一方で、その下層の硬質層3の硬度特性が硬質部材1の耐擦傷性に及ぼす影響が小さくなり、良好な耐擦傷性が得られない場合がある。密着層4の厚みは、1nm以上であることが好ましい。密着層4の厚みを1nm以上にすることにより、より良好な密着性を得ることができる。したがって、密着層2の厚みは、1~60nmの範囲であることが好ましく、2~50nmの範囲であることがより好ましく、5~30nmの範囲であることがより好ましく、10~20nmの範囲であることがさらに好ましい。
 密着層4の形成方法は、特に限定されるものではないが、硬質層3と同様に、RAS方式で形成することができる。
 防汚層5は、有機ケイ素化合物を含むことが好ましい。有機ケイ素化合物を含むことにより、密着層4との密着性を高めることができる。これにより、長期間の使用によっても、防汚層5が剥離しにくくなり、防汚性や滑り性が低下しにくくなる。
 有機ケイ素化合物としては、例えば、シランカップリング剤、シリコーンオイル、シリコーンレジン、シリコーンゴム、疎水性シリカ、及びフッ素含有有機ケイ素化合物から選択される1つ以上の化合物を挙げることができる。これらの中でも、フッ素含有有機ケイ素化合物が好ましい。
 フッ素含有有機ケイ素化合物としては、例えば、主鎖中に、-O-Si-O-ユニットを有し、かつ、フッ素を含む撥水性の官能基を側鎖に有する重合体が挙げられる。フッ素含有有機ケイ素化合物は、例えばシラノールを脱水縮合することにより合成することができる。フッ素含有有機ケイ素化合物としては、例えば、KY130(信越化学工業社製)、オプツ-ルDSX(ダイキン工業社製)、TSL8257、TSL8233、TSL831(以上、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)、KBM7803(信越化学工業社製)、AY43-158E(東レ・ダウコーニング社製)、KP801M(信越化学工業社製)が挙げられる。
 防汚層5の厚みは、特に限定されるものではないが、1nm以上であることが好ましく、1.5nm以上であることがより好ましく、2nm以上であることが特に好ましい。防汚層5の厚みが1nm未満になると、防汚効果が十分得られない場合がある。防汚層5の厚みが厚すぎると、防汚層が剥がれた後、剥がれていない部分と反射率や色が異なってしまい、ムラが目立ってしまう場合がある。このような観点からは、防汚層5の厚みは、30nm以下であることが好ましく、25nm以下であることがより好ましく、20nm以下であることがさらに好ましい。
 防汚層5の原料は、一般に溶液状態である。したがって、防汚層5を形成するための溶液を密着層4上に塗布した後、乾燥することにより防汚層5を形成することができる。また、防汚層5は、多孔質セラミック、金属からなる繊維、細線等に溶液を含浸させ、溶液を真空中で加熱して蒸発させ、密着層4上に堆積させる真空蒸着法によっても形成できる。
 なお、上述のナノインデンテーション法により硬質部材1の防汚層5が形成された面の硬さを測定した場合、その硬さが7GPa以上であることが好ましい。
 本実施形態においては、所定の厚みの硬質層3と防汚層5の間に、所定の厚みの密着層4が設けられているので、耐擦傷性が良好で、かつ防汚層の密着性に優れた硬質部材にすることができる。
 なお、硬質部材1としては、硬質層3:酸化ジルコニウムまたは酸窒化アルミニウム、密着層4:酸化ケイ素、窒化ケイ素または酸窒化ケイ素、防汚層5:フッ素含有有機ケイ素化合物の組み合わせが好ましい。
 また、本実施形態では、基板2の上に直接硬質層3が形成されているが、基板2と硬質層3の間に、硬質部材1に様々な機能を付与する機能層を有してもよい。機能層としては、光の干渉で特定の波長の光を選択的に透過または反射させる光学フィルター層、特定の波長の光を吸収する光吸収層、導電性を有する導電層、硬質部材1を着色したり模様を付与する装飾層、凹凸を有する防眩膜などが使用できる。
 (第2の実施形態)
 図2は、本発明の第2の実施形態の硬質部材を示す模式的断面図である。図2に示すように、本実施形態の硬質部材11は、硬質基板12と、硬質基板12の上に設けられる密着層14と、密着層14の上に設けられる防汚層15とを備えている。硬質基板12は、硬さが8GPa以上であれば特に限定されるものではない。本実施形態では、硬質基板12として、サファイヤ基板が用いられる。タッチパネル等のカバーガラスとして使用される場合、硬質基板12は、透光性を有することが好ましい。なお、サファイヤ基板は、高純度のアルミナを人工的に単結晶へ成長させることによって製造される。
 硬質基板12の硬さは、第1の実施形態と同様に、Berkovich型ダイヤモンド圧子を用いたナノインデンテーション法で測定することができる。硬質基板12の硬さは10GPa以上であることが好ましく、15GPa以上であることがより好ましく、20GPa以上であることがさらに好ましく、25GPa以上であることが特に好ましい。硬さの上限値は、特に設定されるものではないが、例えば、一般には350GPaである。
 本実施形態における密着層14は、第1の実施形態における密着層4と同様の材料、同様の厚み、及び同様の方法で形成することができる。本実施形態における防汚層15は、第1の実施形態における防汚層5と同様の材料、同様の厚み、及び同様の方法で形成することができる。
 本実施形態においては、硬質基板12と防汚層15の間に、所定の厚みの密着層14が設けられているので、耐擦傷性が良好で、かつ防汚層の密着性に優れた硬質部材にすることができる。
 なお、硬質部材11としては、密着層14:酸化ケイ素、窒化ケイ素または酸窒化ケイ素、防汚層15:フッ素含有有機ケイ素化合物の組み合わせが好ましい。
 以下、本発明を具体的な実施例により説明する。但し、以下の実施例は単なる例示であり、本発明は以下の実施例に限定されるものではない。
 <実施例1~6及び比較例1~2>
 図1に示す、硬質部材1の密着層4の膜厚を変化させ、密着層4の膜厚の影響を検討した。
 (実施例1)
 [硬質層3の形成]
 基板2として、日本電気硝子株式会社製無アルカリガラス基板OA-10Gを用い、RAS方式で基板2の上に硬質層3としてのZrO膜を形成した。Zr膜の成膜条件として、成膜圧力:0.12Pa、キャリアガスとしてのArガスの流量:100sccm、Zrターゲット印加電力:5.5kWとした。Zr膜の酸化条件として、キャリアガスとしての酸素ガス流量:40sccm、ラジカルガン印加電力:4.5kWとして、ZrO膜を膜厚500nmとなるように成膜した。ZrO膜を形成した基板の硬さを、Berkovich型ダイヤモンド圧子を用いたナノインデンテーション法(最大荷重:1.225mN)により測定した結果、11.1GPaであった。なお、基板(OA-10G)の硬さは、6.5GPaであった。なお、「ZrO」は実際の組成比を表すものではない。
 [密着層4の形成]
 硬質層3の上に、RAS方式で密着層4としてのSiO膜を形成した。Si膜の成膜条件として、成膜圧力:0.12Pa、キャリアガスとしてのArガスの流量:100sccm、Siターゲット印加電力:5.0kWとした。Si膜の酸化条件として、キャリアガスとしての酸素ガス流量:40sccm、ラジカルガン印加電力:4.5kWとして、SiO膜を膜厚2nmとなるように成膜した。なお、「SiO」は実際の組成比を表すものではない。
 [防汚層5の形成]
 密着層4の上に、以下のようにして防汚層5を形成した。密着層4の表面を洗浄機で洗浄し、大気圧プラズマ装置で表面を処理した。その後、スプレー装置を使用して、フッ素含有有機ケイ素化合物溶液(ダイキン工業社製 UF503:0.1質量%、3M社製Novec7200:99.9質量%)を塗布した。塗布条件は、基板2の搬送速度3mm/秒、塗布量10ml/分、エアー流量40l/分、スプレーノズル往復速度800mm/秒、スプレーノズル-基板間距離20mmの条件とした。フッ素含有有機ケイ素化合物溶液を塗布した後、クリーンオーブンを使用して150℃で60分間加熱し、塗布面をアルコールを浸したワイパーで拭き取ることで、密着層4の上に防汚層5を形成した。防汚層5の膜厚は、5nmであった。
 以上のようにして、実施例1の硬質部材1を作製した。
 (実施例2)
 密着層4の膜厚を15nmとする以外は、実施例1と同様にして硬質部材1を作製した。
 (実施例3)
 密着層4の膜厚を20nmとする以外は、実施例1と同様にして硬質部材1を作製した。
 (実施例4)
 密着層4の膜厚を30nmとする以外は、実施例1と同様にして硬質部材1を作製した。
 (実施例5)
 密着層4の膜厚を40nmとする以外は、実施例1と同様にして硬質部材1を作製した。
 (実施例6)
 密着層4の膜厚を50nmとする以外は、実施例1と同様にして硬質部材1を作製した。
 (比較例1)
 密着層4を形成せずに、硬質層3の上に防汚層5を直接形成する以外は、実施例1と同様にして硬質部材1を作製した。
 (比較例2)
 密着層4の膜厚を80nmとする以外は、実施例1と同様にして硬質部材1を作製した。
 [耐擦傷性の評価]
 実施例1~6及び比較例1~2で作製した硬質部材1について、以下のようにして耐擦傷性を評価した。
 耐擦傷性の評価は、揺動擦り試験により行った。揺動擦り試験は、テーバーインダストリーズ社製 Taber Oscillating Abrasion Tester 6160を用いて行なった。装置の容器内に、試料とともに砂(PREMIER Silica社製 Colorado Silica Sand(Sieve Sizes 6/9))1300gを投入した。試料は、容器の底部にテープで固定し、その上を砂が覆うように配置した。なお、試料は砂の表面から約1.5cm下に位置する状態となった。この状態で、容器ごと揺動させ、容器内の砂が動くことにより試料の表面を砂が擦る。揺動ストローク100mm、揺動速度200往復/分、揺動回数1000往復の条件で行った。透過ヘイズをヘイズメーター(日本電色工業社製 NDH-5000)で測り、揺動擦り試験前後でのヘイズ値の差(ΔH(%))で評価した。なお、以下の基準で、ヘイズ値の差(ΔH(%))を、◎、○、及び×に区別して評価した。評価結果を表1に示す。
 ◎:0.07以下
 ○:0.08~0.14
 ×:0.15以上
 [密着性の評価]
 実施例1~6及び比較例1~2で作製した硬質部材1について、以下のようにして防汚層の密着性を評価した。
 防汚層の密着性評価は、スチールウール擦り試験により行った。スチールウール擦り試験は、縦10mm×横10mmの日本スチールウール社製 ボンスター業務用等級#0000を防汚層の表面に押し当て(荷重1000gf)、擦りストローク40mm、擦り速度60往復/分、擦り回数1000往復の条件で行った。試験後、防汚層の表面における水との接触角を測定した。接触角が90°以上の場合を○、 90°未満の場合を×として、評価した。評価結果を表1に示す。
 <実施例7~8及び比較例3>
 実施例2の硬質層3の膜厚を変化させ、硬質層3の膜厚の影響を検討した。
 (実施例7)
 硬質層3の膜厚を300nmとする以外は、実施例2と同様にして硬質部材1を作製した。
 (実施例8)
 硬質層3の膜厚を200nmとする以外は、実施例2と同様にして硬質部材1を作製した。
 (比較例3)
 硬質層3の膜厚を100nmとする以外は、実施例2と同様にして硬質部材1を作製した。
 [耐擦傷性及び密着性の評価]
 実施例7~8及び比較例3で作製した硬質部材1について、上記と同様にして、耐擦傷性及び密着性を評価した。評価結果を表1に示す。
 <実施例9~10>
 密着層4として、酸化ケイ素(SiO)膜に代えて、窒化ケイ素(SiN)膜及び酸窒化ケイ素(SiON)膜を用いて検討した。なお、「SiN」及び「SiON」は、実際の組成比を示すものではない。
 (実施例9)
 密着層4として、酸化ケイ素(SiO)膜に代えて、窒化ケイ素(SiN)膜を形成した以外は、実施例2と同様にして硬質部材1を作製した。Si膜の成膜条件として、成膜圧力:0.12Pa、キャリアガスとしてのArガスの流量:100sccm、Siターゲット印加電力:5.0kWとした。Si膜の窒化条件として、キャリアガスとしての窒素ガス流量:40sccm、ラジカルガン印加電力:4.5kWとして、窒化ケイ素(SiN)膜を膜厚15nmとなるように成膜した。
 (実施例10)
 密着層4として、酸化ケイ素(SiO)膜に代えて、酸窒化ケイ素(SiON)膜を形成した以外は、実施例2と同様にして透光性部材を作製した。Si膜の成膜条件として、成膜圧力:0.17Pa、キャリアガスとしてのArガスの流量:150sccm、Siターゲット印加電力:5.0kWとした。Si膜の酸窒化条件として、キャリアガスとしての酸素ガス流量:10sccm及び窒素ガス流量:30sccm、ラジカルガン印加電力:4.5kWとして、酸窒化ケイ素(SiON)膜を膜厚15nmとなるように成膜した。
 [耐擦傷性及び密着性の評価]
 実施例9~10で作製した硬質部材1について、上記と同様にして、耐擦傷性及び密着性を評価した。評価結果を表1に示す。
 <比較例4>
 硬質層3及び密着層4を形成しない場合の耐擦傷性及び密着性を評価した。
 (比較例4)
 硬質層3及び密着層4を形成せずに、基板2の上に防汚層5を直接形成する以外は、実施例2と同様にして硬質部材1を作製した。
 [耐擦傷性及び密着性の評価]
 比較例4で作製した硬質部材1について、上記と同様にして、耐擦傷性及び密着性を評価した。評価結果を表1に示す。
 <実施例11及び比較例5>
 硬質基板を用い、図2に示す硬質部材11を作製して評価した。
 (実施例11)
 硬質基板12として、厚みが0.5mmのサファイヤ基板を用いた。サファイヤ基板の硬さを、Berkovich型ダイヤモンド圧子を用いたナノインデンテーション法(最大荷重:1.225mN)で測定したところ、30.2GPaであった。硬質基板12の上に、密着層14及び防汚層15を形成し、硬質部材11を作製した。密着層14及び防汚層15は、実施例2における密着層4及び防汚層5と同様にして形成した。
 (比較例5)
 密着層14を形成せずに、硬質基板12の上に防汚層15を直接形成する以外は、実施例11と同様にして硬質部材11を作製した。
 [耐擦傷性及び密着性の評価]
 実施例11及び比較例5で作製した硬質部材11について、上記と同様にして、耐擦傷性及び密着性を評価した。評価結果を表1に示す。
 <実施例12~17及び比較例6~7>
 図1に示す硬質部材1の硬質層3をAlONに変更し、かつ密着層4の膜厚を変化させて、密着層4の膜厚の影響を検討した。
 (実施例12)
 [硬質層3の形成]
 基板2として、日本電気硝子株式会社製アルミノシリケート強化ガラス基板T2X-1を用い、RAS方式で基板2の上に硬質層3としてのAlON膜を形成した。Al膜の成膜条件として、成膜圧力:0.12Pa、キャリアガスとしてのArガスの流量:100sccm、Alターゲット印加電力:5.0kWとした。Al膜の酸窒化条件として、キャリアガスとしての酸素ガス流量:2sccm、窒素ガス流量:38sccm、ラジカルガン印加電力:4.5kWとして、AlON膜を膜厚500nmとなるように成膜した。AlON膜を形成した基板の硬さを、Berkovich型ダイヤモンド圧子を用いたナノインデンテーション法(最大荷重:1.225mN)により測定した結果、18.0GPaであった。なお、基板(T2X-1)の硬さは、7.3GPaであった。なお、「AlON」は実際の組成比を表わすものではない。
 なお、密着層4の形成方法、及び防汚層5の形成方法は、実施例1と同様である。
 (実施例13)
 密着層4の膜厚を15nmとする以外は、実施例12と同様にして硬質部材1を作製した。
 (実施例14)
 密着層4の膜厚を20nmとする以外は、実施例12と同様にして硬質部材1を作製した。
 (実施例15)
 密着層4の膜厚を30nmとする以外は、実施例12と同様にして硬質部材1を作製した。
 (実施例16)
 密着層4の膜厚を40nmとする以外は、実施例12と同様にして硬質部材1を作製した。
 (実施例17)
 密着層4の膜厚を50nmとする以外は、実施例12と同様にして硬質部材1を作製した。
 (比較例6)
 密着層4を形成せずに、硬質層3の上に防汚層5を直接形成する以外は、実施例12と同様にして硬質部材1を作製した。
 (比較例7)
 密着層4の膜厚を80nmとする以外は、実施例12と同様にして硬質部材1を作製した。
 [耐擦傷性及び密着性の評価]
 実施例12~17及び比較例6~7で作製した硬質部材1について、上記と同様にして、耐擦傷性及び密着性を評価した。評価結果を表1に示す。
 <実施例18~19及び比較例8>
 硬質層3の膜厚を変化させ、硬質層3の膜厚の影響を検討した。
 (実施例18)
 硬質層3の膜厚を300nmとする以外は、実施例13と同様にして硬質部材1を作製した。
 (実施例19)
 硬質層3の膜厚を200nmとする以外は、実施例13と同様にして硬質部材1を作製した。
 (比較例8)
 硬質層3の膜厚を100nmとする以外は、実施例13と同様にして硬質部材1を作製した。
 [耐擦傷性及び密着性の評価]
 実施例18~19及び比較例8で作製した硬質部材1について、上記と同様にして、耐擦傷性及び密着性を評価した。評価結果を表1に示す。
 <実施例20~21>
 密着層4として、酸化ケイ素(SiO)膜に代えて、窒化ケイ素(SiN)膜及び酸窒化ケイ素(SiON)膜を用いて検討した。なお、「SiN」及び「SiON」は、実際の組成比を示すものではない。
 (実施例20)
 密着層4として、酸化ケイ素(SiO)膜に代えて、窒化ケイ素(SiN)膜を形成した以外は、実施例13と同様にして硬質部材1を作製した。Si膜の成膜条件として、成膜圧力:0.12Pa、キャリアガスとしてのArガスの流量:100sccm、Siターゲット印加電力:5.0kWとした。Si膜の窒化条件として、キャリアガスとしての窒素ガス流量:40sccm、ラジカルガン印加電力:4.5kWとして、窒化ケイ素(SiN)膜を膜厚15nmとなるように成膜した。
 (実施例21)
 密着層4として、酸化ケイ素(SiO)膜に代えて、酸窒化ケイ素(SiON)膜を形成した以外は、実施例13と同様にして透光性部材を作製した。Si膜の成膜条件として、成膜圧力:0.17Pa、キャリアガスとしてのArガスの流量:150sccm、Siターゲット印加電力:5.0kWとした。Si膜の酸窒化条件として、キャリアガスとしての酸素ガス流量:10sccm及び窒素ガス流量:30sccm、ラジカルガン印加電力:4.5kWとして、酸窒化ケイ素(SiON)膜を膜厚15nmとなるように成膜した。
 [耐擦傷性及び密着性の評価]
 実施例20~21で作製した硬質部材1について、上記と同様にして、耐擦傷性及び密着性を評価した。評価結果を表1に示す。
 <比較例9>
 硬質層3及び密着層4を形成しない場合の耐擦傷性及び密着性を評価した。
 (比較例9)
 硬質層3及び密着層4を形成せずに、基板2の上に防汚層5を直接形成する以外は、実施例13と同様にして硬質部材1を作製した。
 [耐擦傷性及び密着性の評価]
 比較例9で作製した硬質部材1について、上記と同様にして、耐擦傷性及び密着性を評価した。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~6及び比較例1~2、並びに実施例12~17及び比較例6~7の結果から明らかなように、厚みが50nm以下の酸化ケイ素(SiO)膜からなる密着層を設けた実施例1~6及び実施例12~17は、密着層を設けていない比較例1及び比較例6に比べ、良好な密着性が得られた。また、実施例1~6及び実施例12~17は、厚みが80nmの密着層を設けた比較例2及び比較例7に比べ、良好な耐擦傷性が得られた。したがって、本発明に従う実施例1~6及び実施例12~17は、耐擦傷性が良好で、かつ防汚層の密着性に優れていることが分かる。
 実施例2、7~8及び比較例3、並びに実施例13、18~19及び比較例8の結果から明らかように、厚みが200nm以上である硬質層を設けた実施例2、7~8及び実施例13、18~19は、厚みが100nmの硬質層を設けた比較例3及び比較例8に比べ、良好な耐擦傷性が得られた。
 実施例2、9~10及び実施例13、20~21の結果から明らかように、密着層4として、酸化ケイ素(SiO)膜に代えて、窒化ケイ素(SiN)膜または酸窒化ケイ素(SiON)膜を用いた場合にも、耐擦傷性が良好で、かつ防汚層の密着性に優れるという本発明の効果が得られることがわかる。
 比較例4及び比較例9の結果から、硬質層3及び密着層4を形成しない場合、耐擦傷性が低いことがわかる。
 本発明の硬質部材は、各種デバイスのカバーガラスやカバー部材として利用できることは勿論、窓材、調理器のトッププレート等に利用できる。
1…硬質部材
2…基板
3…硬質層
4…密着層
5…防汚層
11…硬質部材
12…硬質基板
14…密着層
15…防汚層

Claims (9)

  1.  基板と、
     前記基板上に設けられ、厚みが150nm以上である硬質層と、
     前記硬質層の上に設けられ、ケイ素を含有する無機材料からなり、厚みが60nm以下である密着層と、
     前記密着層の上に設けられ、有機ケイ素化合物を含有する防汚層とを備える、硬質部材。
  2.  前記密着層の厚みが、1nm以上である、請求項1に記載の硬質部材。
  3.  前記硬質層の硬さが、7GPa以上である、請求項1または2に記載の硬質部材。
  4.  前記硬質層が、酸化ジルコニウム、酸化アルミニウム、窒化アルミニウム、酸窒化アルミニウム、酸化チタン、酸化タンタル、酸化ニオブ、酸化ハフニウム、酸化錫、酸化亜鉛、酸化インジウム、DLC(Diamond Like Carbon)、ダイヤモンド、窒化硼素、窒化炭素から選ばれる少なくとも1種を含む、請求項1~3のいずれか一項に記載の硬質部材。
  5.  前記密着層が、酸化ケイ素、窒化ケイ素、及び酸窒化ケイ素から選ばれる少なくとも1種を含む、請求項1~4のいずれか一項に記載の硬質部材。
  6.  前記防汚層が、フッ素含有有機ケイ素化合物を含む、請求項1~5のいずれか一項に記載の硬質部材。
  7.  前記基板が、ガラス基板である、請求項1~6のいずれか一項に記載の硬質部材。
  8.  硬さが8GPa以上である硬質基板と、
     前記硬質基板の上に設けられ、ケイ素を含有する無機材料からなり、厚みが60nm以下である密着層と、
     前記密着層の上に設けられ、有機ケイ素化合物を含有する防汚層とを備える、硬質部材。
  9.  前記硬質基板が、サファイヤ基板である、請求項8に記載の硬質部材。
PCT/JP2016/063805 2015-06-16 2016-05-10 硬質部材 WO2016203869A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017524721A JP6737271B2 (ja) 2015-06-16 2016-05-10 硬質部材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-120747 2015-06-16
JP2015120747 2015-06-16

Publications (1)

Publication Number Publication Date
WO2016203869A1 true WO2016203869A1 (ja) 2016-12-22

Family

ID=57545197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063805 WO2016203869A1 (ja) 2015-06-16 2016-05-10 硬質部材

Country Status (2)

Country Link
JP (1) JP6737271B2 (ja)
WO (1) WO2016203869A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130285A1 (en) * 2017-12-31 2019-07-04 Agp America S.A. Laminate with high resistance to abrasion and weathering
US20190256720A1 (en) * 2018-02-22 2019-08-22 Ppg Industries Ohio, Inc. Anti-fouling, multi-layer coated sapphire articles
JP2020132498A (ja) * 2019-02-22 2020-08-31 Agc株式会社 防汚層付きガラス基体および防汚層付きガラス基体の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004170962A (ja) * 2002-11-06 2004-06-17 Pentax Corp 反射防止眼鏡レンズ及びその製造方法
JP2013029870A (ja) * 2007-01-09 2013-02-07 Konica Minolta Business Technologies Inc 画像形成装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2777041B2 (ja) * 1993-02-12 1998-07-16 京セラ株式会社 時計用カバーガラス
JP2009186185A (ja) * 2008-02-01 2009-08-20 Seiko Epson Corp 透光性部材、時計、および透光性部材の製造方法
US10052848B2 (en) * 2012-03-06 2018-08-21 Apple Inc. Sapphire laminates
JP6153235B2 (ja) * 2012-09-21 2017-06-28 アップル インコーポレイテッド サファイア上での撥油性コーティング
JP6519940B2 (ja) * 2014-12-24 2019-05-29 日本電気硝子株式会社 透光性部材及びタッチパネル用カバー部材

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004170962A (ja) * 2002-11-06 2004-06-17 Pentax Corp 反射防止眼鏡レンズ及びその製造方法
JP2013029870A (ja) * 2007-01-09 2013-02-07 Konica Minolta Business Technologies Inc 画像形成装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130285A1 (en) * 2017-12-31 2019-07-04 Agp America S.A. Laminate with high resistance to abrasion and weathering
US20190256720A1 (en) * 2018-02-22 2019-08-22 Ppg Industries Ohio, Inc. Anti-fouling, multi-layer coated sapphire articles
WO2019162847A1 (en) * 2018-02-22 2019-08-29 Ppg Industries Ohio, Inc. Anti-fouling, multi-layer coated sapphire articles
JP2020132498A (ja) * 2019-02-22 2020-08-31 Agc株式会社 防汚層付きガラス基体および防汚層付きガラス基体の製造方法

Also Published As

Publication number Publication date
JP6737271B2 (ja) 2020-08-05
JPWO2016203869A1 (ja) 2018-04-05

Similar Documents

Publication Publication Date Title
JP6674499B2 (ja) 中程度の付着力および残留強度を有する積層物品
JP6919735B2 (ja) 防汚層付きガラス板
AU776987B2 (en) Transparent substrate provided with a silicon derivative layer
JP6075435B2 (ja) 防汚膜付き透明基体
JP6280642B2 (ja) 中程度の付着力および残留強度を有する膜を備えたガラス物品
US5328768A (en) Durable water repellant glass surface
JP6311068B2 (ja) 耐引っかき性/耐摩耗性と撥油性とが改良されたガラス用コーティング
KR102493361B1 (ko) 유지된 제품 강도 및 내스크래치성을 위한 크랙 완화 단일- 및 다중-층 필름을 갖는 유리-계 제품
WO2019078313A1 (ja) 透明基板積層体およびその製造方法
JP2016526003A (ja) 制御された破断強度を有するガラス−被膜積層体
CN1620408A (zh) 用于光学涂层的保护层
WO2016203869A1 (ja) 硬質部材
WO2016176383A1 (en) Glass articles having films with moderate adhesion, retained strength and optical transmittance
WO1999028534A1 (fr) Procede de production d'articles recouvertes d'enrobages a base de silice
JPH10194784A (ja) 撥水性ガラス
JPH11269657A (ja) シリカ系膜被覆物品を製造する方法
JP2020148787A (ja) 透明部材
US20210371330A1 (en) Antifouling layer-attached glass substrate and method for manufacturing antifouling layer-attached glass substrate
EP3283446B1 (en) Coated glazing
JP2000336334A (ja) シリカ系膜被覆物品および機能性膜被覆物品を製造する方法
JP3982426B2 (ja) シリカ系膜被覆物品
JP6519940B2 (ja) 透光性部材及びタッチパネル用カバー部材
WO2021171309A1 (en) A heat treatable reflective coating and a coated article thereof
WO2022066433A1 (en) Glass, glass-ceramic, and ceramic articles with an easy-to-clean coating and methods of making the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811344

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524721

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811344

Country of ref document: EP

Kind code of ref document: A1