WO2016203538A1 - 空調制御システム - Google Patents

空調制御システム Download PDF

Info

Publication number
WO2016203538A1
WO2016203538A1 PCT/JP2015/067276 JP2015067276W WO2016203538A1 WO 2016203538 A1 WO2016203538 A1 WO 2016203538A1 JP 2015067276 W JP2015067276 W JP 2015067276W WO 2016203538 A1 WO2016203538 A1 WO 2016203538A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
temperature
conditioned
space
conditioning
Prior art date
Application number
PCT/JP2015/067276
Other languages
English (en)
French (fr)
Inventor
恵大 太田
洋介 金子
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016507308A priority Critical patent/JP6052466B1/ja
Priority to PCT/JP2015/067276 priority patent/WO2016203538A1/ja
Priority to US15/572,238 priority patent/US20180135879A1/en
Priority to GB1717037.4A priority patent/GB2554235B/en
Priority to CN201580080338.5A priority patent/CN107636395B/zh
Publication of WO2016203538A1 publication Critical patent/WO2016203538A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/38Personalised air distribution

Definitions

  • the present invention relates to an air conditioning control system for performing air conditioning in a space such as an office where a plurality of users exist, and by controlling a plurality of air conditioning indoor units, the air conditioning is comfortable for a plurality of target users.
  • the present invention relates to an air conditioning control system that realizes a space.
  • Patent Document 1 discloses an invention in which the direction of the blowing panels of a plurality of indoor units is turned in a predetermined turning direction to turn the airflow in the entire room to eliminate temperature unevenness.
  • Patent Document 2 discloses that the space is divided into a “attended area” where the user is present, a “absent area” where the user is not present, and a “boundary area” between them. Thus, it is described that the air curtain is generated to prevent the conditioned air in the “seated area” from flowing into the “absent area”.
  • Patent Document 3 when a plurality of users are present adjacent to each other, personal comfort evaluation values (PMV: Predicted Mean Vote) of the air conditioning requester and the neighbor are calculated, and the PMV of the neighbor deteriorates. It is described that a local airflow is generated for a requester in a range where no request is made, and an air-conditioned space is generated in an area where the requester is present.
  • PMV Predicted Mean Vote
  • the target area is limited to the number of indoor units, and it is not considered to control the area between indoor units. Moreover, since the local airflow with respect to a requester reaches an adjacent person, if it is an airflow of the range which does not impair the comfort of an adjacent person, the individual comfort which a requester requires may not be achieved.
  • the present invention solves the above-described problems, and is capable of generating a desired air-conditioned space in a target area without being restricted by the number of indoor units and reducing the influence on neighbors as much as possible.
  • An object is to provide an air conditioning control system.
  • the air conditioning system is 1st temperature setting which sets the preset temperature of the space for air-conditioning in which the setting temperature change request
  • a first outlet that blows out conditioned air to set the temperature set by the first temperature setting unit is set from the plurality of outlets of the plurality of indoor units, and the first A first conditioned air control unit that controls the temperature and air volume of the conditioned air blown from the outlet and controls the direction of the conditioned air blowing;
  • a second air outlet that blows out conditioned air to achieve the set temperature set by the second temperature setting unit is set from a plurality of air outlets of the plurality of indoor units, and the second A second conditioned air control unit that controls the temperature and air volume of the conditioned air blown from the outlet and controls the direction of the conditioned air blowing; It is characterized
  • the influence on the adjacent area adjacent to the target area can be reduced as much as possible, and a desired air-conditioned space can be generated in the target area, thereby achieving the individual comfort of the user in the adjacent area and the target area. There is an effect that can.
  • Embodiment 1 of this invention It is a block block diagram of the air-conditioning control system by Embodiment 1 of this invention. It is a top view showing the positional relationship of the air-conditioning indoor unit in a space, a user, and a sensor. It is a functional block diagram of the air-conditioning control system by Embodiment 1 of this invention. It is the figure which looked at the user and the indoor unit from the side. It is a flowchart showing operation
  • FIG. 1 is a block diagram of an air conditioning system according to Embodiment 1 of the present invention.
  • FIG. 2 is a plan view showing the positional relationship between the air conditioning indoor unit, the user, and the sensor in the space.
  • the air conditioning control system 10 is a system that improves the comfort of both the target person and its neighbors in a space that is air-conditioned by a plurality of air conditioning indoor units 41 to 44.
  • the air conditioning control system 10 controls the indoor units 41 to 44 using the space and user settings and sensor information.
  • the air conditioning control system 10 includes a CPU (Central Processing Unit) 31, a ROM (Read Only Memory) 32, a RAM (Random Access Memory) 33, a storage drive 34, and a mouse provided as an input device.
  • a general-purpose hardware configuration including an input / output controller 38 for connecting the keyboard 36 and a display 37 provided as a display device, a network controller 39 provided as a communication means, and a bus 20 for connecting them. Can be realized.
  • the air conditioning control system the vanes 41a to 44d of the air conditioning indoor units 41 to 44, the fans 41e to 44e, the compressors 45a to 48a of the air conditioning outdoor units 45 to 48, the temperature sensors 51a to i, and the air conditioning controllers 52a to 52i
  • the network 21 is connected. At least a part of the air conditioning control network 21 may perform wireless communication, for example.
  • the air conditioning control system 10 first inputs the air conditioning characteristics such as the position of the air conditioning indoor units 41 to 44 and the capacity of the air conditioner, the positions of the sensors 51a to 51i, and the position of the user with the mouse 35 or the keyboard 36, for example. Then, it is stored in the storage drive 34.
  • air conditioning indoor units 41 to 44 are installed in a lattice pattern.
  • Each indoor unit has a plurality of air outlets and vanes 41a to 44d that change the air outlet direction installed in each air outlet.
  • the space is divided into an area under the indoor unit and an area between the indoor units.
  • a user is seated in a seat arranged in a lattice, and temperature sensors 51a to 51i and air conditioning controllers 52a to 52i are installed in the vicinity of each user.
  • One sensor and one air-conditioning controller are installed for each user.
  • the number of sensors and air-conditioning controllers may be reduced to the number of users who want to receive air-conditioning control, such as general-purpose personal computers (PCs) and smartphones. It may be replaced with a user terminal such as Further, there may be a plurality of seats for one area and a plurality of users.
  • FIG. 3 shows a functional block diagram of the air-conditioning control system 10 of the first embodiment.
  • 11 is a first temperature setting unit
  • 12 is a second temperature setting unit
  • 13 is a first conditioned air control unit
  • 14 is a second conditioned air control unit.
  • the functions of the first temperature setting unit 11, the second temperature setting unit 12, the first conditioned air control unit 13, and the second conditioned air control unit 14 in FIG. This is realized by using a combination of the CPU 31, ROM 32, and RAM 33 shown in FIG.
  • the first temperature setting unit 11 sets the set temperature of the air-conditioning target space for which the user has requested to change the set temperature.
  • the 2nd temperature setting part 12 sets the preset temperature of the adjacent air conditioned space adjacent to the air conditioned space.
  • the first conditioned air control unit 13 blows conditioned air to achieve the set temperature set by the first temperature setting unit 11 from the plurality of outlets of the plurality of indoor units.
  • the outlet is set, the temperature and the air volume of the conditioned air blown from the first outlet are controlled, and the direction of the conditioned air is controlled.
  • the second conditioned air control unit 14 blows out conditioned air to achieve the set temperature set by the second temperature setting unit 12 from the plurality of outlets of the plurality of indoor units.
  • the outlet is set, the temperature and the air volume of the conditioned air blown from the second outlet are controlled, and the direction of the conditioned air is controlled.
  • the second temperature setting unit 12 may set the set temperature of the adjacent conditioned space so that the actual temperature change in the adjacent conditioned space does not exceed a predetermined range.
  • FIG. 4 is a side view of the users 51a to 51c and the indoor units 41 and 42 for explaining the case. An operation flowchart is shown in FIG.
  • the first temperature setting unit 11 of the air conditioning control system When a seated user designates a set temperature, first, the first temperature setting unit 11 of the air conditioning control system first sets the space where the user who has designated the set temperature is the target area, and the space adjacent to the target space is the adjacent area. And a set temperature that is actually set as the target temperature of the target area is set based on the temperature requested by the user.
  • the air conditioning control system collects the temperature of each user's seat from the temperature sensor, and if the determined temperature of the target area is different from the set temperature, it works to set the temperature. Further, in an adjacent area where there is a user who does not specify the set temperature, it is determined that there is a user setting that the current temperature is not changed implicitly, and the current temperature is set as the set temperature, so that the set temperature is set.
  • the air conditioning control system shows the area where the user 51b is seated as the target area (target space) and the area where the adjacent users 51a and 51c are seated. It is determined as an adjacent area (adjacent space).
  • the first air-conditioning air control unit 13 of the air-conditioning control system sets the temperature of the target area to the set temperature, and the air direction of the nearest first outlet among the outlets facing the target area, and the first outlet
  • the change value of the blowing temperature and air volume of the indoor unit with a mouth is determined.
  • the air outlet 42 a is determined as the closest first air outlet, and the air direction of the first air outlet and the changed values of the temperature and the air volume of the indoor unit 42 are determined.
  • the procedure for determining the change value of the first outlet will be described with reference to FIG.
  • the air blown from the vanes 41a to 44d installed at the air outlets is movable in the range of 0 ° to 90 ° in the direction perpendicular to the floor, and from ⁇ 90 ° to the floor in the horizontal direction. It can move in the range of 90 °.
  • the vertical wind direction ⁇ z and the horizontal wind direction ⁇ x in which the wind hits the seat are determined from the position of the first outlet and the position of the seat in the target area, and the angle is set to the angle.
  • the angle of the vane 41 shown in FIG. 7 is changed.
  • the conditioned air blown from the first outlet from the distance D between the position of the first outlet and the position of the seat in the target area is, for example, 0.
  • the blowout speed that can be reached within 3 m / s is calculated from the relationship between the distance from the blowout opening and the airflow wind speed, and the blowout air volume Va that satisfies the blowout speed is calculated.
  • the relationship between the air volume Va of the air outlet Va and the airflow velocity Vs of the air outlet, and the relationship between the distance from the air outlet and the airflow velocity are derived, for example, from the results of actual measurement values obtained through experiments in advance.
  • the set temperature of the indoor unit is Ts ⁇ T ° C., which is the temperature obtained by subtracting the difference temperature from the set temperature when the seat position is reached. Is calculated.
  • the relationship between the reach distance D of the air blown from the blowout port and the temperature change of the blown air is derived, for example, from the results of actual measurement values obtained through experiments in advance.
  • FIG. 8 shows the setting change value of the first outlet of the indoor unit 42 in the case of FIG. 4 determined as described above.
  • the air conditioning control system calculates the influence of temperature on the adjacent area when the air conditioning setting is changed. If the area under the indoor unit is the target area, the influence on the surroundings can be reduced. However, when the target area is a little away from the first air outlet, such as between the indoor units, the blown conditioned air is seen from the adjacent area near the first air outlet or the target area as shown in FIG. Diffuses into the adjacent area on the opposite side of the first outlet.
  • the second temperature setting unit 12 of the air conditioning control system sets a set temperature that is actually set as the target temperature of the adjacent area based on the calculation result.
  • the second conditioned air control unit 14 is adjacent to the target area so as to reduce the influence on the adjacent area and reach the set temperature in the adjacent area calculated when the temperature change in the adjacent area exceeds a predetermined temperature limit value.
  • the air direction of the second air outlet nearest to the first air outlet, excluding the first air outlet, and the change value of the air temperature and air volume of the indoor unit having the second air outlet are determined.
  • the adjacent area where the user 51 a is seated is an adjacent area that is determined to be affected, and the air outlet 41 c is determined as the second air outlet, and the air direction of the air outlet 41 c and the air temperature of the indoor unit 41 Determine the airflow change value.
  • the procedure for determining the change value of the second outlet will be described with reference to FIG.
  • the vertical position in which the wind hits the target position from the position of the second outlet at the intermediate position between the horizontal position of the target area and the adjacent area as the target position.
  • the wind direction ⁇ z and the horizontal wind direction ⁇ x are determined.
  • the wind speed Vb at the target position is calculated from the relationship between the air speed blown from the first air outlet, the distance from the air outlet and the air velocity, and the same wind speed at the target position.
  • the temperature difference ⁇ Tb from the current temperature which is calculated to affect the adjacent area, and the air blown out with the air volume Va in the space of the current air temperature Tn.
  • the set temperature of the indoor unit is calculated such that Tsb + ⁇ Tb, which is the temperature obtained by adding the temperature difference to the set temperature Tsb of the adjacent area when the target position is reached.
  • the setting change values of the outlets other than the first outlet and the second outlet are set to the setting values before the user performs temperature setting here. This value is also shown as other outlets in FIG.
  • the air conditioning control system changes the settings of the air conditioner according to the set values of the first and second outlets determined as described above.
  • the angles of the vanes 41a to 44d are controlled.
  • the rotation speed of the fans 41e to 44e of the air conditioning indoor unit is controlled.
  • the operations of the compressor and the outdoor unit are controlled so as to control the temperature and flow rate of the refrigerant in order to lower the blowing temperature.
  • the relationship between the distance from the outlet and the temperature and wind speed was derived from the experimental results to determine the wind direction and speed of the outlet and the temperature of the indoor unit.
  • a method such as airflow simulation or CFD (Computational Fluid Dynamics) analysis may be used.
  • FIG. FIG. 10 shows a block diagram of an air conditioning system according to Embodiment 2 of the present invention.
  • the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
  • position sensors 53 a to 53 i are connected to the air conditioning control network 21.
  • the positions of the user and the temperature sensors 51a to 51i are stored in the storage drive in advance and are referred to.
  • the position sensors 53a to 53i are used as shown in FIG.
  • the positions of the user and the sensors 51a to 51i may be periodically measured, and the air conditioning setting may be calculated based on the position information.
  • FIG. 11 is a block diagram of an air conditioning system according to Embodiment 3 of the present invention.
  • the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
  • comfort index sensors 54 a to 54 i are connected to the air conditioning control network 21.
  • the user designates the set temperature.
  • sensors 54a to 54i that measure a comfort index such as PMV (Predicted Mean Vote).
  • PMV Predicted Mean Vote
  • the set temperature can be set based on the user's thermal sensation and comfort, and an appropriate value corresponding to the user's comfort index can be set The effect which can perform air-conditioning control is acquired.
  • the user designates the set temperature.
  • each user's gender, age, preference (hot and cold), height, weight, Enter individual characteristics such as metabolic rate, body fat mass, and clothing the air conditioning control system arbitrarily determines the set temperature that is judged to be comfortable from the individual characteristics, and uses it as the target set temperature You may make it do.
  • an air conditioning indoor unit having air outlets in four directions and an air inlet in the center is used as the air conditioning indoor unit.
  • the present invention is not limited to this, and a plurality of freely shaped air outlets and air inlets are provided. You may use the air-conditioning indoor unit which has.
  • the air conditioning control system according to the present invention can be applied to an air conditioning control system for performing air conditioning in a space such as an office where a plurality of users exist.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

隣接するエリアへの影響を減らし、対象エリアに適切な空調空気を送出して所望の空調空間を生成することが可能な空調制御システムを得るため、 複数の吹き出し口をそれぞれ有する複数の室内機の互いに隣接する2つの室内機の下もしくは間の空間のうちユーザから設定温度変更要求があった空調対象空間の設定温度を設定する第1の温度設定部と、空調対象空間に隣接する隣接空調空間の設定温度を設定する第2の温度設定部と、複数の吹き出し口の中から、第1の温度設定部により設定された設定温度を実現するための第1吹き出し口を設定し、第1吹き出し口から送風される空調空気の温度および風量、吹き出し風向を制御する第1の空調空気制御部と、第2の温度設定部により設定された設定温度を実現するための第2吹き出し口を設定し、第2吹き出し口から送風される空調空気の温度および風量、吹き出し風向を制御する第2の空調空気制御部と、を備えた。

Description

空調制御システム
 本発明は、複数のユーザが存在するオフィス等の空間において空調を行うための空調制御システムに関するものであり、複数の空調室内機を制御することにより、対象となる複数ユーザに対して快適な空調空間を実現する空調制御システムに関する。
 一般的な空調システムは、空間の室温を均一化させるように空調機を動作させる。例えば特許文献1には、複数の室内機の吹き出しパネルの方向を所定の旋回方向に向け、部屋全体の気流を旋回させ、温度ムラを解消する発明が開示されている。
 これに対し、空間のうち任意のエリアのみ、空調制御を行うことで、省エネを達成しつつ利用者の快適性を向上する空気調和システムが用いられている。例えば特許文献2には、空間を利用者が在席する「在席エリア」と利用者が在席しない「不在エリア」およびその間の「境界エリア」に分け、境界エリアでは室内機の風向を下向きにしてエアカーテンを生成し、「在席エリア」の空調空気が「不在エリア」に流出するのを防ぐことが記載されている。また、特許文献3には、複数のユーザが隣接して存在する場合に、空調の要求者と隣接者の個人快適性評価値(PMV:Predicted Mean Vote)を算出し、隣接者のPMVが悪化しない範囲で要求者に対して局所気流を発生し、要求者のいるエリアに空調空間を生成することが記載されている。
特許第4952722号公報 特許第4165604号公報 WO2008/87959国際公開公報
 従来技術では、対象のエリアが室内機の数に限定されており、室内機の間のエリアを制御することについて検討されていない。また、要求者に対する局所気流が隣接者に及ぶため、隣接者の快適性を損なわない範囲の気流だと要求者の要求する個人快適性を達成することができない場合がある。
 本発明は、上述の課題を解決するものであり、室内機の数に制約されることなく、また隣接者への影響を極力減らし、対象のエリアに所望の空調空間を生成することが可能な空調制御システムを提供することを目的とする。
 この発明に係る空調システムは、
 複数の吹き出し口をそれぞれ有する複数の室内機の互いに隣接する2つの室内機の下もしくは間の空間のうちユーザから設定温度変更要求があった空調対象空間の設定温度を設定する第1の温度設定部と、
 前記空調対象空間に隣接する隣接空調空間の設定温度を設定する第2の温度設定部と、
 前記複数の室内機の複数の吹き出し口の中から、前記第1の温度設定部により設定された前記設定温度を実現するために空調空気の吹き出しを行う第1吹き出し口を設定し、前記第1吹き出し口から送風される空調空気の温度および風量を制御し、空調空気の吹き出し風向を制御する第1の空調空気制御部と、
 前記複数の室内機の複数の吹き出し口の中から、前記第2の温度設定部により設定された前記設定温度を実現するために空調空気の吹き出しを行う第2吹き出し口を設定し、前記第2吹き出し口から送風される空調空気の温度および風量を制御し、空調空気の吹き出し風向を制御する第2の空調空気制御部と、
 を備えたことを特徴とするものである。
 この発明によれば、対象エリアに隣接する隣接エリアへの影響を極力減らして、対象エリアに所望の空調空間を生成することができ、隣接エリアおよび対象エリアの利用者の個人快適性を達成することができる効果がある。
本発明の実施の形態1による空調制御システムのブロック構成図である。 空間における空調室内機とユーザおよびセンサの位置関係を表す平面図である。 本発明の実施の形態1による空調制御システムの機能ブロック図である。 ユーザと室内機を横から見た図である。 空調制御システムの動作を表すフローチャートである。 第1吹き出し口の変更値の決定手順を説明する図である。 吹き出し口のベーンの角度と向きを表す図である。 吹き出し口の角度・温度・風量とその時の対象エリア・隣接エリアの温度を示す図である。 第2吹き出し口の変更値の決定手順を説明する図である。 本発明の実施の形態2による空調制御システムのブロック構成図である。 本発明の実施の形態3による空調制御システムのブロック構成図である。
実施の形態1.
 図1は、本発明の実施の形態1による空調システムのブロック図を表す。また、図2は空間における空調室内機とユーザおよびセンサの位置関係を表す平面図である。空調制御システム10は、複数の空調室内機41~44によって空調されている空間に在室する対象者およびその隣接者双方の快適性を向上するシステムである。
 空調制御システム10は空間やユーザの設定とセンサ情報を使って室内機41~44の制御を行う。空調制御システム10は、図1に示したように、CPU(Central Processing Unit)31、ROM(Read Only Memory)32、RAM(Random Access Memory)33、ストレージドライブ34と、入力装置として設けられたマウス35、キーボード36と表示装置として設けられたディスプレイ37のそれぞれを接続する入出力コントローラ38、通信手段として設けられたネットワークコントローラ39およびそれらを接続するバス20を備えるような、汎用的なハードウエア構成で実現できる。また、空調制御システムと空調室内機41~44のベーン41a~44d、ファン41e~44e、空調室外機45~48の圧縮機45a~48a、温度センサ51a~iおよび空調コントローラ52a~iは空調制御ネットワーク21を介して接続されている。空調制御ネットワーク21の少なくとも一部は、例えば無線で通信を行うものであっても良い。
 空調制御システム10には、最初に空調室内機41~44の位置や空調機の能力などの空調の特性と、センサ51a~iの位置、利用者の位置を、例えばマウス35やキーボード36で入力し、ストレージドライブ34にそれを格納しておく。
 空間は、図2に示すとおり、周囲が壁に囲まれている。空間内には、空調室内機41~44が格子状に設置されている。各室内機は、複数の吹き出し口と、各吹き出し口に設置された吹き出し方向を変更するベーン41a~44dを持つ。
 空間は、図2に示すとおり、室内機の下のエリアと室内機の間のエリアに区分されている。各エリアに対してユーザが1人格子状に配置された座席に着席しており、各ユーザの付近には温度センサ51a~iおよび空調コントローラ52a~iが設置されている。センサおよび空調コントローラは利用者1人に1台ずつ設置しているが、空調の制御を受けたい利用者のみの数に減らしても構わないし、汎用的なパーソナルコンピュータ(PC:Personal Computer)やスマートフォンなどの利用者端末で代替しても構わない。また、1つのエリアに対して座席が複数ありユーザが複数人いても構わない。
 図3は、本実施の形態1の空調制御システム10の機能ブロック図を示したものである。図3において11は第1の温度設定部、12は第2の温度設定部、13は第1の空調空気制御部、14は第2の空調空気制御部である。
 図3の第1の温度設定部11、第2の温度設定部12、第1の空調空気制御部13、第2の空調空気制御部14のそれぞれの機能は、ハードウエアとしては、それぞれが図1に示すCPU31、ROM32、RAM33を組み合わせて用いることにより実現される。
 図3において、第1の温度設定部11はユーザから設定温度変更要求があった空調対象空間の設定温度を設定する。第2の温度設定部12は空調対象空間に隣接する隣接空調空間の設定温度を設定する。第1の空調空気制御部13は、複数の室内機の複数の吹き出し口の中から、第1の温度設定部11により設定された設定温度を実現するために空調空気の吹き出しを行う第1吹き出し口を設定し、この第1吹き出し口から送風される空調空気の温度および風量を制御し、空調空気の吹き出し風向を制御する。第2の空調空気制御部14は、複数の室内機の複数の吹き出し口の中から、第2の温度設定部12により設定された設定温度を実現するために空調空気の吹き出しを行う第2吹き出し口を設定し、この第2吹き出し口から送風される空調空気の温度および風量を制御し、空調空気の吹き出し風向を制御する。
 また、第2の温度設定部12は、隣接空調空間における実際の温度変化が所定の範囲を超えないように隣接空調空間の設定温度を設定するようにしても良い。
 次に本実施の形態における空調制御システムの動作について冷房の事例を交えつつ説明する。図4は、事例を説明するためにユーザ51a~cと室内機41、42を横から見た図である。また、動作フローチャートを図5に示す。
 着席しているユーザが設定温度を指定した場合、まず空調制御システムの第1の温度設定部11は、設定温度を指定したユーザのいる空間を対象エリア、その対象空間に隣接した空間を隣接エリアと判定し、ユーザの要求した温度に基づいて実際に対象エリアの目標温度とする設定温度を設定する。
 その後、空調制御システムは各ユーザの座席の温度を温度センサから収集し、判定した対象エリアの温度が設定温度と異なれば、設定温度にするように働く。また、設定温度を指定しないユーザのいる隣接エリアでは暗に現在の温度を変更しないというユーザの設定があると判断し、現在の温度を設定温度として、その設定温度にするように働く。
 図4では、例としてユーザ51bが設定温度を指定した場合を示しており、空調制御システムは、ユーザ51bが着席するエリアを対象エリア(対象空間)、隣接したユーザ51a、51cの着席するエリアを隣接エリア(隣接空間)と判定する。
 次に空調制御システムの第1の空調空気制御部13は、対象エリアの温度を設定温度にするため、対象エリアに向いた吹き出し口のうち最も近い第1吹き出し口の風向、およびその第1吹き出し口を持つ室内機の吹き出し温度・風量の変更値を決定する。図4では、吹き出し口42aが最も近い第1吹き出し口として判定され、その第1吹き出し口の風向および室内機42の温度・風量の変更値を決定する。以下では第1吹き出し口の変更値の決定手順を図6を用いて説明する。
 図7に示すとおり、各吹き出し口に設置されているベーン41a~44dからの吹き出し空気は床と垂直方向に、0°~90°の範囲で可動し、また床に水平方向に-90°~90°の範囲で可動する。
 第1吹き出し口の風向の設定では、第1吹き出し口の位置と対象エリアの座席の位置から座席に風が当たる縦方向の風向θzと、横方向の風向θxを決定し、その角度になる様に図7に示すベーン41の角度を変更する。
 第1吹き出し口を持つ室内機の風量の設定では、まず第1吹き出し口の位置と対象エリアの座席の位置の距離Dから第1吹き出し口から吹出した空調空気が対象エリアの座席に例えば0.3m/s以内で到達するような吹き出し速度を、吹き出し口からの距離と気流風速との関係から算出し、その吹き出し速度を満たす吹き出し風量Vaを算出する。
 吹き出し口風量Vaと吹き出し口の気流速度Vsの関係、および吹き出し口からの距離と気流速度の関係は、例えば事前に実験による実測値の結果から導出する。
 第1吹き出し口を持つ室内機の温度の設定では、現在の空気温度Tnの空間において、Vaの風量で吹き出した空気の到達距離Dと吹き出し空気の温度変化との関係から、対象エリアの座席の位置で現在温度Tnと設定温度Tsとの差分温度ΔTを用いて、座席位置に到達した際に設定温度から差分温度を差し引いた温度であるTs-ΔT℃になるような、室内機の設定温度を算出する。
 吹出し口より吹出した空気の到達距離Dと吹き出し空気の温度変化との関係は、例えば事前に実験による実測値の結果から導出する。
 以上のようにして決定された図4の場合の室内機42の第1吹き出し口の設定変更値を図8に示す。
 次に空調制御システムは、上記空調設定を変更した場合に隣接エリアに与える温度の影響を算出する。室内機の下のエリアが対象エリアであれば周囲への影響は少なく済む。しかし、室内機と室内機の間など対象エリアが第1吹き出し口から少し離れている場合、吹き出した空調空気は、図4に示す様に第1吹き出し口に近い隣接エリアや、対象エリアから見て第1吹き出し口とは反対側の隣接エリアへと拡散する。
 空調制御システムの第2の温度設定部12は、算出結果に基づいて実際に隣接エリアの目標温度とする設定温度を設定する。
 第2の空調空気制御部14は、隣接エリアの温度変化が所定の温度制限値を超えると算出された隣接エリアに、隣接エリアへの影響を減らし、設定温度になるように、対象エリアと隣接エリアとの中間地点を向いた吹き出し口のうち、先の第1吹き出し口を除いて最も近い第2吹き出し口の風向とその第2吹き出し口を持つ室内機の吹き出し温度・風量の変更値を決定する。
 図4では、ユーザ51aの着席する隣接エリアが、影響があると判断された隣接エリアであり、吹き出し口41cが第2吹き出し口として判定され、吹き出し口41cの風向および室内機41の吹き出し温度・風量の変更値を決定する。以下では第2吹き出し口の変更値の決定手順を図9を用いて説明する。
 第2吹き出し口の風向設定では、対象エリアと隣接エリアの水平位置の中間地点で、座席と同じ高さの位置を目標位置とし、第2吹き出し口の位置から目標位置に風が当たる縦方向の風向θzと横方向の風向θxを決定する。
 第2吹き出し口を持つ室内機の風量設定では、第1吹き出し口から吹き出す風速と、吹き出し口からの距離と気流速度の関係から、目標位置での風速Vbを算出し、目標位置でそれと同じ風速になる様な風量を算出する。
 第2吹き出し口を持つ室内機の温度の設定では、隣接エリアに影響が出ると算出された、現在温度との温度差ΔTbと、現在の空気温度Tnの空間にVaの風量で吹き出した空気が距離Dbに到達した時に変化する温度差の関係から、目標位置に到達した際に隣接エリアの設定温度Tsbに温度差を加算した温度であるTsb+ΔTbとなるような、室内機の設定温度を算出する。
 以上のようにして決定された図4の場合の室内機41の第2吹き出し口の設定変更値を図8に合わせて示す。
 なお、第1吹き出し口と第2吹き出し口以外の吹き出し口の設定変更値は、ここではユーザが温度設定を行なう前の設定値のままとしている。この値も図8にその他の吹き出し口として示している。
 空調制御システムは、上記のようにして決定した第1、第2吹き出し口の設定値に沿って空調機の設定を変更する。風向を操作する場合、ベーン41a~44dの角度を制御する。風量を制御する場合、空調室内機のファン41e~44eの回転数を制御する。室内機の温度を変更する場合、吹き出し温度を下げるために冷媒の温度および流量をコントロールするよう圧縮機および室外機の動作を制御する。
 上記の様に制御を行うことで、室内機の下のエリアだけでなく、室内機の間のエリアも制御を行うことができ、所望の空調空間を生成することができる。
 また、上記のように制御を行うことで、対象エリアに対する局所気流が隣接エリアに及ぶことを防ぎ、対象エリアに所望の空調空間を生成しつつ、隣接者の快適性を損なわない空調制御が可能となる。
 上記に、本発明の実施の形態1について説明したが、実施の具体的な構成は本形態に限られるものではない。
 上記では空調が冷房を行う場合について説明したが、空調が暖房の動作を行う場合にも同様に適用できる。
 吹き出し口の風向・風速および室内機の温度の決定の為、吹き出し口からの距離と温度・風速の関係性を実験結果より導出して用いたが、より詳しく吹き出した空調空気の対象エリアへの効果や拡散と周囲への影響を算出するために、気流シミュレーションやCFD(Computational Fluid Dynamics:数値流体力学)解析などの手法を用いても良い。
実施の形態2.
 図10は、本発明の実施の形態2による空調システムのブロック図を表す。図において、図1と同じ符号は同一又は相当部分を示す。図10では空調制御ネットワーク21に位置センサ53a~53iを接続している。
 実施の形態1の空調制御システムでは、ユーザおよび温度センサ51a~51iの位置は予めストレージドライブに格納されており、それを参照していたが、図10の様に位置センサ53a~53iを用いてユーザおよびセンサ51a~51iの位置を定期的に計測し、その位置情報に基づき空調設定を算出するようにしても良い。 
 図10の構成により、空調空間内にいるユーザが移動しても、ユーザの移動に応じて適切な空調制御を行うことができる効果が得られる。
実施の形態3.
 図11は、本発明の実施の形態3による空調システムのブロック図を表す。図において、図1と同じ符号は同一又は相当部分を示す。図11では空調制御ネットワーク21に快適性指標センサ54a~54iを接続している。
 上記の空調制御システムでは、設定温度をユーザが指定するものであったが、例えば図11の様にPMV(Predicted Mean Vote:予測平均温冷感)等の快適性指標を計測するセンサ54a~54iを用いて、ユーザは目標とする温冷感や快適感を入力するようにしてもよい。
 図11の構成により、空調空間内にいるユーザが設定温度を指定しなくても、ユーザの温冷感や快適感から設定温度を設定することができ、ユーザの快適性指標に応じた適切な空調制御を行うことができる効果が得られる。
 実施の形態1から実施の形態3に示した上記の空調制御システムでは、設定温度をユーザが指定するものであったが、各ユーザの性別・年齢・嗜好(暑がり寒がり)・身長・体重・代謝量・体脂肪量・服装などの個人の特性を入力しておき、個人の特性から快適と判断される設定温度を空調制御システムが任意に決定して、それを目標とする設定温度として使用するようにしても良い。
 上記の空調制御システムでは、空調室内機として4方向に吹き出し口を持ち、中心に吸込み口を持つ空調室内機を用いたが、これに限らず、複数の自由な形状の吹き出し口および吸い込み口を持つ空調室内機を用いても良い。
 以上のように、本発明にかかる空調制御システムは、複数のユーザが存在するオフィス等の空間において空調を行うための空調制御システムなどに適用できる。
 10 空調制御システム、11 第1の温度設定部、12 第2の温度設定部、13 第1の空調空気制御部、14 第2の空調空気制御部、20 バス、21 空調制御ネットワーク、31 CPU、32 ROM、33 RAM、34 ストレージドライブ、35 マウス、36 キーボード、37 ディスプレイ、38 入出力コントローラ、39 ネットワークコントローラ、41~44 空調室内機、41a~44d 吹き出し口、45 圧縮機、46 ファン、51 ユーザ、温度センサ、52 空調コントローラ、53 位置センサ、54 PMVセンサ

Claims (6)

  1.  複数の吹き出し口をそれぞれ有する複数の室内機の互いに隣接する2つの室内機の下もしくは間の空間のうちユーザから設定温度変更要求があった空調対象空間の設定温度を設定する第1の温度設定部と、
     前記空調対象空間に隣接する隣接空調空間の設定温度を設定する第2の温度設定部と、
     前記複数の室内機の複数の吹き出し口の中から、前記第1の温度設定部により設定された前記設定温度を実現するために空調空気の吹き出しを行う第1吹き出し口を設定し、前記第1吹き出し口から送風される空調空気の温度および風量を制御し、空調空気の吹き出し風向を制御する第1の空調空気制御部と、
     前記複数の室内機の複数の吹き出し口の中から、前記第2の温度設定部により設定された前記設定温度を実現するために空調空気の吹き出しを行う第2吹き出し口を設定し、前記第2吹き出し口から送風される空調空気の温度および風量を制御し、空調空気の吹き出し風向を制御する第2の空調空気制御部と、
     を備えたことを特徴とする空調制御システム。
  2.  前記第2の温度設定部は、前記隣接空調空間における実際の温度変化が所定の範囲を超えないように前記隣接空調空間の設定温度を設定する
     ことを特徴とする請求項1に記載の空調制御システム。
  3.  前記第1の空調空気制御部は、前記第1吹き出し口が前記空調対象空間に向けて空調空気の吹き出しを行うように制御し、
     前記第2の空調空気制御部は、前記第2吹き出し口が前記空調対象空間と前記隣接空調空間の中間に向けて空調空気の吹き出しを行うように制御する
     ことを特徴とする請求項1または請求項2に記載の空調制御システム。
  4.  前記空調対象空間および前記隣接空調空間における温度を取得する温度センサ
     を備えたことを特徴とする請求項1から請求項3のいずれか一項に記載の空調制御システム。
  5.  前記第1の温度設定部により設定された前期設定温度を要求したユーザの位置情報を取得する位置センサを備え、
     前記第1の空調空気制御部および前記第2の空調空気制御部は、前記空調対象空間に送風される空調空気の吹き出し風向を前記位置情報に基づいて制御する
     ことを特徴とする請求項1から請求項4のいずれか一項に記載の空調制御システム。
  6.   前記第1の温度設定部により設定された前期設定温度を要求したユーザの快適性指標を取得する快適性指標センサを備え、
     前記第1の温度設定部および前記第2の温度設定部は、各々が設定する設定温度を前記快適性指標に基づいて設定する
     ことを特徴とする請求項1から請求項5のいずれか一項に記載の空調制御システム。
PCT/JP2015/067276 2015-06-16 2015-06-16 空調制御システム WO2016203538A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016507308A JP6052466B1 (ja) 2015-06-16 2015-06-16 空調制御システム
PCT/JP2015/067276 WO2016203538A1 (ja) 2015-06-16 2015-06-16 空調制御システム
US15/572,238 US20180135879A1 (en) 2015-06-16 2015-06-16 Air-conditioning control system
GB1717037.4A GB2554235B (en) 2015-06-16 2015-06-16 Air-conditioning control system
CN201580080338.5A CN107636395B (zh) 2015-06-16 2015-06-16 空调控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/067276 WO2016203538A1 (ja) 2015-06-16 2015-06-16 空調制御システム

Publications (1)

Publication Number Publication Date
WO2016203538A1 true WO2016203538A1 (ja) 2016-12-22

Family

ID=57545155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067276 WO2016203538A1 (ja) 2015-06-16 2015-06-16 空調制御システム

Country Status (5)

Country Link
US (1) US20180135879A1 (ja)
JP (1) JP6052466B1 (ja)
CN (1) CN107636395B (ja)
GB (1) GB2554235B (ja)
WO (1) WO2016203538A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019113303A (ja) * 2017-12-22 2019-07-11 ミツビシ・エレクトリック・アールアンドディー・センター・ヨーロッパ・ビーヴィMitsubishi Electric R&D Centre Europe B.V. Hvac装置を制御する方法および制御ユニット
EP3604945A4 (en) * 2017-03-31 2020-04-01 Mitsubishi Electric Corporation CONTROL DEVICE AND AIR CONDITIONING SYSTEM
WO2020135834A1 (zh) * 2018-12-29 2020-07-02 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
US20210048199A1 (en) * 2018-03-06 2021-02-18 Mitsubishi Electric Corporation Air-conditioning system
JP2022540964A (ja) * 2019-10-04 2022-09-20 三菱電機株式会社 個別化された熱的快適性制御のためのシステムおよび方法
US11662104B2 (en) 2021-03-26 2023-05-30 First Co. Independent temperature control for rooms

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9301460B2 (en) * 2011-02-25 2016-04-05 The Toro Company Irrigation controller with weather station
CN108361938A (zh) * 2018-02-05 2018-08-03 广东美的暖通设备有限公司 室内机的控制方法、空调器、空调系统及存储介质
CN108344117A (zh) * 2018-02-05 2018-07-31 广东美的暖通设备有限公司 室内机的控制方法、服务器、空调系统及存储介质
JP7042707B2 (ja) * 2018-06-27 2022-03-28 三菱電機ビルテクノサービス株式会社 空調システム
JP7304602B2 (ja) * 2020-03-27 2023-07-07 パナソニックIpマネジメント株式会社 制御システム、及び、制御方法
CN111674226A (zh) * 2020-05-12 2020-09-18 浙江吉利汽车研究院有限公司 基于热舒适性的风向智能控制方法及系统
TWI778474B (zh) * 2020-12-21 2022-09-21 研能科技股份有限公司 室內氣體汙染過濾方法
CN112696727A (zh) * 2020-12-28 2021-04-23 欧普照明电器(中山)有限公司 控制方法、控制系统及电子设备
CN116437649B (zh) * 2023-06-13 2023-09-22 浙江德塔森特数据技术有限公司 基于区块链的机房安全运维方法、装置和可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006200818A (ja) * 2005-01-20 2006-08-03 Daikin Ind Ltd 厨房換気空調システム、厨房換気空調方法および厨房換気空調制御装置
JP2008057951A (ja) * 2006-07-31 2008-03-13 Daikin Ind Ltd 空調制御装置および空調制御方法
JP2008196842A (ja) * 2007-01-17 2008-08-28 Daikin Ind Ltd 空調制御システム
JP2014212095A (ja) * 2013-04-22 2014-11-13 株式会社東芝 機器制御システムおよび機器制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1603704A (zh) * 2004-11-05 2005-04-06 鲁舜 一种分区温控和智能分级换气的空调
JPWO2008087959A1 (ja) * 2007-01-17 2010-05-06 ダイキン工業株式会社 空調制御システム
TW201320891A (zh) * 2011-11-16 2013-06-01 Ind Tech Res Inst 具溫度調節系統的建築物及其溫度調節方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006200818A (ja) * 2005-01-20 2006-08-03 Daikin Ind Ltd 厨房換気空調システム、厨房換気空調方法および厨房換気空調制御装置
JP2008057951A (ja) * 2006-07-31 2008-03-13 Daikin Ind Ltd 空調制御装置および空調制御方法
JP2008196842A (ja) * 2007-01-17 2008-08-28 Daikin Ind Ltd 空調制御システム
JP2014212095A (ja) * 2013-04-22 2014-11-13 株式会社東芝 機器制御システムおよび機器制御方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3604945A4 (en) * 2017-03-31 2020-04-01 Mitsubishi Electric Corporation CONTROL DEVICE AND AIR CONDITIONING SYSTEM
US10995967B2 (en) 2017-03-31 2021-05-04 Mitsubishi Electric Corporation Control apparatus and air conditioning system
JP2019113303A (ja) * 2017-12-22 2019-07-11 ミツビシ・エレクトリック・アールアンドディー・センター・ヨーロッパ・ビーヴィMitsubishi Electric R&D Centre Europe B.V. Hvac装置を制御する方法および制御ユニット
JP7224173B2 (ja) 2017-12-22 2023-02-17 ミツビシ・エレクトリック・アールアンドディー・センター・ヨーロッパ・ビーヴィ Hvac装置を制御する方法および制御ユニット
US20210048199A1 (en) * 2018-03-06 2021-02-18 Mitsubishi Electric Corporation Air-conditioning system
WO2020135834A1 (zh) * 2018-12-29 2020-07-02 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
JP2022540964A (ja) * 2019-10-04 2022-09-20 三菱電機株式会社 個別化された熱的快適性制御のためのシステムおよび方法
JP7337271B2 (ja) 2019-10-04 2023-09-01 三菱電機株式会社 個別化された熱的快適性制御のためのシステムおよび方法
US11662104B2 (en) 2021-03-26 2023-05-30 First Co. Independent temperature control for rooms

Also Published As

Publication number Publication date
CN107636395B (zh) 2019-05-07
JPWO2016203538A1 (ja) 2017-06-29
GB201717037D0 (en) 2017-11-29
GB2554235A (en) 2018-03-28
US20180135879A1 (en) 2018-05-17
JP6052466B1 (ja) 2016-12-27
GB2554235B (en) 2018-09-19
CN107636395A (zh) 2018-01-26

Similar Documents

Publication Publication Date Title
JP6052466B1 (ja) 空調制御システム
JP5175643B2 (ja) 空調制御システムおよび空調制御装置
JP7055218B2 (ja) 空気調和機、空気調和機制御方法及びプログラム
CN107525237B (zh) 一种智能空调器控制方法及智能空调器
US20120118986A1 (en) Controlling device and method
EP3450868B1 (en) Indoor unit for air conditioner
WO2019235109A1 (ja) 空調制御装置、空調制御方法、及び空調制御システム
JP4864019B2 (ja) 空調システムで所在環境の快適性を制御する方法
JP6808999B2 (ja) 空気調和機
WO2019024819A1 (zh) 空调装置的控制方法
WO2021019761A1 (ja) 空気調和システムおよびシステム制御装置
WO2019229878A1 (ja) 空気調和システムおよび空気調和システムの設置方法
JP2012154596A (ja) 空調制御装置および方法
JP6280456B2 (ja) 空調システムおよび空調制御方法
JP2013092281A (ja) 空調制御装置および空調制御方法
JP5781274B2 (ja) 空調の制御システム
JPWO2019171461A1 (ja) 空気調和システム
JP6219107B2 (ja) 空調方法及び当該空調方法において使用する空調システム
JPH08303849A (ja) 空気調和機
EP3208550B1 (en) Air conditioning apparatus
JP5140705B2 (ja) 床吹出し空調設備の制御システム及びその制御方法並びに制御プログラム
JP2019049387A (ja) 空調システム
JPH05164394A (ja) アンダーフロアー空調システム
JP7329332B2 (ja) 空気調和システム及び空気調和システムの制御方法
JP4498041B2 (ja) 空調システムの制御方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016507308

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895559

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201717037

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20150616

WWE Wipo information: entry into national phase

Ref document number: 15572238

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15895559

Country of ref document: EP

Kind code of ref document: A1