WO2020135834A1 - 空调的控制方法、装置、存储介质及计算机设备 - Google Patents

空调的控制方法、装置、存储介质及计算机设备 Download PDF

Info

Publication number
WO2020135834A1
WO2020135834A1 PCT/CN2019/129681 CN2019129681W WO2020135834A1 WO 2020135834 A1 WO2020135834 A1 WO 2020135834A1 CN 2019129681 W CN2019129681 W CN 2019129681W WO 2020135834 A1 WO2020135834 A1 WO 2020135834A1
Authority
WO
WIPO (PCT)
Prior art keywords
air outlet
air
temperature
outlet
speed
Prior art date
Application number
PCT/CN2019/129681
Other languages
English (en)
French (fr)
Inventor
于洋
张桂芳
程永甫
贾丽霞
曹壬艳
徐贝贝
Original Assignee
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2020135834A1 publication Critical patent/WO2020135834A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/76Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by means responsive to temperature, e.g. bimetal springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/12Position of occupants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to the technical field of air conditioners, in particular to a control method, device, storage medium and computer equipment for air conditioners.
  • the traditional air conditioner has only one air outlet. At the same time, it can only send air in one direction.
  • the air conditioner cannot Supply air for multiple users at the same time.
  • an air conditioner with multiple air outlets has been proposed.
  • the air volume of each air outlet can be individually controlled to meet the different needs of different users.
  • the control of air conditioners with multiple outlets most of them implement the function of preventing direct blowing.
  • the indoor wind speed of the comfort air conditioner should not be greater than 0.3m/s in summer and 0.2m/s in winter. It can be seen that if the air conditioner is not directly blown to the user, comfortable air supply cannot be achieved.
  • the embodiment of the present invention provides a control method of an air conditioner, which realizes comfortable air supply.
  • control method of the air conditioner includes:
  • the first air outlet of the first air outlet is determined according to the first distance, the first air outlet temperature of the first air outlet, the length of the first short side of the first air outlet and the set comfortable wind speed speed;
  • the air conditioner is controlled according to the first wind direction and the first wind speed.
  • the determination is based on the first distance, the first air outlet temperature of the first air outlet, the first short side length of the first air outlet, and the set comfortable wind speed
  • the first wind speed out of the first air outlet includes:
  • the first air outlet speed of the first air outlet is determined according to the first temperature difference, the first distance, the first short side length, and the set comfortable air speed.
  • the first temperature difference of the first air outlet is determined according to the first temperature difference, the first distance, the first short side length and the set comfortable wind speed A wind speed, including:
  • the first wind speed is determined according to the first temperature difference and the first initial wind speed.
  • the first temperature difference is obtained by subtracting the ambient temperature from the first outlet temperature, the first temperature difference and the first outlet speed Positive correlation.
  • an air conditioner control device is provided.
  • control device of the air conditioner includes:
  • a seventh obtaining module configured to obtain a first distance and a first direction of the user relative to the air conditioner
  • a second determining module configured to determine the first air outlet among the two or more air outlets of the air conditioner according to the first direction
  • the second-one determination module is used to determine the first wind direction according to the first direction
  • the second and second determining module is configured to determine the first distance according to the first distance, the first air outlet temperature of the first air outlet, the first short side length of the first air outlet and the set comfortable wind speed The first wind speed of an air outlet;
  • the first three control modules are used to control the air conditioner according to the first wind direction and the first wind speed.
  • the second and second determination modules are specifically used to:
  • the first air outlet speed of the first air outlet is determined according to the first temperature difference, the first distance, the first short side length, and the set comfortable air speed.
  • the second and second determination modules are specifically used to:
  • the first wind speed is determined according to the first temperature difference and the first initial wind speed.
  • the first temperature difference is obtained by subtracting the ambient temperature from the first outlet temperature, the first temperature difference and the first outlet speed Positive correlation.
  • a computer device is provided.
  • the computer device includes a memory, a processor, and a program stored on the memory and executable by the processor.
  • the processor implements the program to implement the aforementioned control method.
  • a storage medium is provided.
  • the storage medium stores a computer program, and when the computer program is executed by the processor, the foregoing control method is implemented.
  • the beneficial effects of the embodiments of the present invention are: controlling the wind speed in the area where the user is located, which can realize comfortable air supply.
  • Fig. 1 is a schematic structural diagram of an air conditioner with multiple air outlets according to an exemplary embodiment
  • Fig. 2 is a schematic flowchart of a method for controlling an air conditioner according to an exemplary embodiment
  • Fig. 3 is a schematic flowchart of a method for controlling an air conditioner according to an exemplary embodiment
  • Fig. 4 is a schematic flowchart of a method for controlling an air conditioner according to an exemplary embodiment
  • Fig. 5 is a schematic flowchart of a method for controlling an air conditioner according to an exemplary embodiment
  • Fig. 6 is a schematic flowchart of a method for controlling an air conditioner according to an exemplary embodiment
  • Fig. 7 is a schematic flowchart of a method for controlling an air conditioner according to an exemplary embodiment
  • Fig. 8 is a schematic flowchart of a method for controlling an air conditioner according to an exemplary embodiment
  • Fig. 9 is a schematic flowchart of a method for controlling an air conditioner according to an exemplary embodiment
  • Fig. 10 is a schematic flowchart of a method for controlling an air conditioner according to an exemplary embodiment
  • Fig. 11 is a schematic flowchart of a method for controlling an air conditioner according to an exemplary embodiment
  • Fig. 12 is a schematic flowchart of a method for controlling an air conditioner according to an exemplary embodiment
  • Fig. 13 is a schematic flowchart of a method for controlling an air conditioner according to an exemplary embodiment
  • Fig. 14 is a schematic flowchart of a method for controlling an air conditioner according to an exemplary embodiment
  • Fig. 15 is a schematic flowchart of a method for controlling an air conditioner according to an exemplary embodiment
  • Fig. 16 is a schematic structural diagram of a control device for an air conditioner according to an exemplary embodiment
  • Fig. 17 is a schematic structural diagram of a control device for an air conditioner according to an exemplary embodiment
  • Fig. 18 is a schematic structural diagram of a control device for an air conditioner according to an exemplary embodiment
  • Fig. 19 is a schematic structural diagram of a control device for an air conditioner according to an exemplary embodiment
  • Fig. 20 is a schematic structural diagram of a control device for an air conditioner according to an exemplary embodiment
  • Fig. 21 is a schematic structural diagram of a control device for an air conditioner according to an exemplary embodiment
  • Fig. 22 is a schematic structural diagram of a control device for an air conditioner according to an exemplary embodiment
  • Fig. 23 is a schematic structural diagram of a control device for an air conditioner according to an exemplary embodiment
  • Fig. 24 is a schematic structural diagram of a control device for an air conditioner according to an exemplary embodiment
  • Fig. 25 is a schematic structural diagram of a control device for an air conditioner according to an exemplary embodiment
  • Fig. 26 is a schematic structural diagram of a control device for an air conditioner according to an exemplary embodiment
  • Fig. 27 is a schematic structural diagram of a control device for an air conditioner according to an exemplary embodiment
  • Fig. 28 is a schematic structural diagram of a control device for an air conditioner according to an exemplary embodiment
  • Fig. 29 is a schematic structural diagram of a control device for an air conditioner according to an exemplary embodiment.
  • an air conditioner control method is provided.
  • the control method is applicable to air conditioners with multiple air outlets.
  • the air conditioners with multiple air outlets include: an air conditioner with two air outlets, an air conditioner with three air outlets, and an air conditioner with four or more air outlets.
  • multiple air outlets 10 of the air conditioner are provided on the same surface of the air conditioner.
  • control method of the air conditioner includes:
  • S203 Determine the first air outlet speed of the first air outlet according to the set comfortable air speed, the first distance, and the length of the first short side of the first air outlet;
  • the set comfort wind speed may be the wind speed specified in the specification: indoor wind speed in summer should not be greater than 0.3m/s, and indoor wind speed in winter should not be greater than 0.2m/s; It can be customized according to different users.
  • user identity information and set comfort wind speed are stored in the data in a one-to-one correspondence. When comfort air supply is required, the correspondence can be obtained by retrieving identity information in the database.
  • the set comfortable wind speed can meet the comfort needs of users with different sensitivity and bearing capacity to wind.
  • the first air outlet among the plurality of air outlets is used to supply air to the user, and so on.
  • the air outlets other than the first air outlet among the two or more air outlets of the air conditioner are controlled to supply air to other users.
  • the steps obtaining the first distance and first direction of the user relative to the air conditioner, including obtaining the first distance and first direction of the user relative to the air conditioner through a time-of-flight sensor, or obtaining the user's relative distance between the air conditioner and the laser ranging sensor array
  • the first distance and the first direction, or, the first direction of the user relative to the air conditioner is obtained through a common infrared sensor, and the first distance of the user relative to the air conditioner is obtained through the distance measuring device.
  • the recording method of the first distance and the first direction includes: taking the air conditioner as the reference origin and recording the first distance and the first direction in plane coordinates; or, using the air conditioner as the reference origin and polar coordinates Way to record the first distance and the first direction.
  • the air outlet direction of the air outlet is generally represented by the opening angle of the air deflector, which is the angle of the current position of the air deflector relative to its closed position.
  • the step determining the first air outlet direction of the first air outlet among the two or more air outlets of the air conditioner according to the first direction, wherein the first angle difference between the first air outlet direction and the first direction is less than It is equal to the first set angle difference to ensure that the first air outlet sends the wind to the correct wind direction, that is, when the first air outlet sends air, the wind speed around the user can be adjusted.
  • the first set angle difference is related to the structural parameters of the first air outlet.
  • the air supply model of the first air outlet is similar to the free jet model, which is sent out at the first air outlet After the gas, it will affect a flow velocity approximate to the air flow in the cone space.
  • the apex angle of the axial section of the cone space is related to the air outlet structure of the first air outlet.
  • the first set angle difference is less than or equal to half of the vertex angle of the vertebral body space axis section, which can ensure that the wind sent by the first air outlet can adjust the wind speed around the user.
  • the greater the length of the first short side the greater the wind speed that the first outlet can provide for the area around the user.
  • the length of the first short side The smaller, the smaller the wind speed that the first air outlet can provide for the area around the user. Based on the above, optionally, the first wind speed is inversely related to the first short side length.
  • the first air outlet speed needs to be increased to ensure that the first air outlet provides a wind speed not lower than the comfortable air supply speed for the area around the user ; If the length of the first short side is too long, you need to reduce the first air outlet speed to ensure that the first air outlet provides a wind speed no higher than the comfortable air supply for the area around the user.
  • control the air conditioner according to the first air outlet direction and the first air outlet speed control the air conditioner according to the first air outlet direction and the first air outlet speed.
  • adjusting the direction of the wind deflector at the first air outlet can change the first air outlet direction, so this step includes: The first air outlet direction controls the direction of the air deflector at the first air outlet; adjust the fan speed of the first air outlet, or adjust the valve opening between the first air outlet and the aerodynamic component to control the first air outlet
  • the air outlet speed of an air outlet the step includes: controlling the direction of the wind deflector at the first air outlet according to the first air outlet speed, or controlling the valve opening between the first air outlet and the air conditioner power component.
  • the air sent by the air conditioner mainly exchanges heat with the indoor air to increase or decrease the temperature of the indoor air.
  • the air conditioner plays the role of temperature regulation, the temperature of the air sent by the air outlet of the air conditioner is different from the indoor temperature, the temperature of the air conditioner outlet is different from the indoor temperature, and the density of the air conditioner outlet is different from the density of the indoor air.
  • the air supply direction of the air outlet may be shifted, which may easily cause the air sent by the air outlet to not be accurately delivered to the user.
  • determining the first air outlet direction of the first air outlet among the two or more air outlets of the air conditioner according to the first direction can be adjusted as:
  • the first air outlet among the two or more air outlets of the air conditioner is determined according to the first position
  • the first air outlet direction is determined according to the first air outlet temperature and the first position of the first air outlet.
  • the influence of the air outlet temperature of the air outlet on the air supply path is taken into consideration, which can ensure that the first air outlet of the air conditioner accurately supplies air to the user.
  • control method of the air conditioner includes:
  • S304 Determine the first air outlet speed of the first air outlet according to the first distance, the first short side length of the first air outlet, and the set comfortable air speed;
  • the influence of the temperature of the air outlet on the air supply path of the first air outlet is taken into account to ensure that the first air outlet of the air conditioner accurately delivers air to the user, further improving the controllability of the wind speed around the user .
  • the first air outlet among the two or more air outlets of the air conditioner is determined according to the first direction, wherein the first air outlet is the air outlet closest to the user.
  • the air outlet on the air conditioner that is close to the first direction is closest to the user, that is, the air outlet close to the first direction is used as The first outlet.
  • each air outlet and its corresponding air supply angle range are stored in the database, and the first air supply angle range corresponding to the first direction is determined to correspond to the first air supply angle range in the database
  • the air outlet is the first air outlet.
  • the first air outlet direction is determined according to the first air outlet temperature and the first direction of the first air outlet.
  • this step includes:
  • the first wind direction is determined according to the first temperature difference and the first direction.
  • the direction of the first air outlet can be accurately adjusted, so that the wind sent from the first air outlet can accurately blow to the area where the user is located.
  • the wind sent by the air outlet will be affected by the force away from or toward the center of the earth during the flow process, so that the air supply path is affected.
  • the essential reason for the air supply path to be affected is There is a density difference between the density of the wind and the density of the ambient air.
  • the direct cause of the above density difference is the difference between the outgoing temperature and the ambient temperature.
  • the greater the temperature difference the greater the density difference between the air outlet density of the air outlet and the density of the ambient air, and the greater the influence of the movement path of the wind sent by the air outlet. Therefore, when determining the first wind direction, considering the first temperature difference, a more accurate first wind direction can be determined.
  • determining the first wind direction according to the first temperature difference and the first direction in an optional embodiment, comprising:
  • the first wind direction is determined according to the first temperature difference and the first initial wind direction.
  • a first initial wind direction is determined according to the first direction, and then correction is made on the basis of the first initial wind direction to obtain an accurate first wind direction.
  • Step: Determine the first initial wind direction according to the first direction which can be implemented as: Determine the azimuth angle of the first wind direction according to the first direction, correspondingly,
  • the direction determines the first wind direction, which can be implemented as: according to the first temperature difference and the first distance to determine the pitch angle of the first wind direction, when the azimuth angle and pitch angle of the first wind direction are determined, That is, the first wind direction is determined.
  • the first outlet temperature when the first temperature difference is obtained by subtracting the ambient temperature from the first outlet temperature, the first temperature difference is positively correlated with the elevation angle of the first outlet direction,
  • the first outlet temperature includes positive and negative temperatures.
  • the first outlet temperature is a positive temperature, the larger the first temperature difference, the greater the elevation angle of the first outlet direction; when the first outlet direction is a negative temperature
  • the greater the first temperature difference the greater the depression angle in the first wind direction. If the depression angle is represented by a negative elevation angle, the greater the depression angle in the first wind direction, the smaller the elevation angle in the first wind direction.
  • the air When the air is blown out in the air conditioner, it first passes through the heat exchanger provided at the air outlet, and the air exchanges heat with the heat exchanger, thereby changing the temperature of the air, that is, changing the temperature of the air.
  • the first temperature of the air conditioner is related. During the operation of the air conditioner, the first temperature of the first heat exchanger is fluctuating most of the time. Therefore, the temperature of the first outlet air is also fluctuating. In an air conditioner with multiple air outlets, in order to ensure that the air outlet temperature of each air outlet is adjustable, the temperature of each air outlet needs to be controlled.
  • the air conditioner includes two or more air outlets, two or more compressors, or a semiconductor temperature regulator, and a corresponding air conditioner is provided at each air outlet Heater, each heat exchanger communicates with a corresponding compressor or a corresponding semiconductor temperature regulator in a heat conduction manner, the control method includes:
  • S402. Determine the first air outlet among the two or more air outlets of the air conditioner according to the first direction
  • S405. Determine the first air outlet speed of the first air outlet according to the set comfortable air speed, the first distance, and the length of the first short side of the first air outlet;
  • connection method of the heat exchanger at the air outlet is mentioned.
  • connection method of the heat exchanger at the air outlet there are other embodiments, as follows:
  • the air conditioner includes two or more air outlets, a compressor or a semiconductor temperature regulator, a corresponding heat exchanger is provided at each air outlet, and each heat exchanger is Way to the compressor or semiconductor temperature regulator, as shown in Figure 5, the control method includes:
  • S505. Determine the first air outlet speed of the first air outlet according to the set comfortable air speed, the first distance, and the length of the first short side of the first air outlet;
  • the temperature of the heat exchanger of the air outlet can be adjusted, and then the accurate air outlet direction of the air outlet can be determined according to this, and comfortable air supply can be realized.
  • the air conditioner includes two or more air outlets, a compressor or a semiconductor temperature regulator, and a corresponding heat exchanger is provided at each air outlet, each heat exchanger is Way to the compressor or semiconductor temperature regulator, as shown in Figure 6, the control method includes:
  • S602. Determine the first air outlet among the two or more air outlets of the air conditioner according to the first direction
  • S604 Determine the first air outlet direction according to the first air outlet temperature and the first direction corresponding to the first temperature of the first heat exchanger;
  • S605. Determine the first air outlet speed of the first air outlet according to the set comfortable air speed, the first distance, and the length of the first short side of the first air outlet;
  • the temperature of the heat exchanger of the air outlet can be adjusted, and then the accurate air outlet direction of the air outlet can be determined according to this, and comfortable air supply can be realized.
  • the air conditioner includes two or more air outlets, two or more compressors, and a corresponding heat exchanger is provided at each air outlet, and each heat exchanger is simultaneously connected to two Or multiple compressors, as shown in Figure 7, the control method includes:
  • S702. Determine the first air outlet among the two or more air outlets of the air conditioner according to the first direction;
  • the flow rate between the two will increase the heat exchange effect of the first heat exchanger: during cooling, the lower the first temperature of the first heat exchanger, the higher the first temperature of the first heat exchanger during heating ;
  • the flow rate between Rigo’s first heat exchanger and the second compressor reduces the heat exchange effect of the first heat exchanger: During the cooling process, the higher the first temperature of the first heat exchanger, the greater the heating During the process, the lower the first temperature of the first heat exchanger;
  • S704 Determine the first air outlet direction according to the first air outlet temperature and the first direction corresponding to the first temperature of the first heat exchanger;
  • S705. Determine the first air outlet speed of the first air outlet according to the set comfortable air speed, the first distance, and the length of the first short side of the first air outlet;
  • the temperature of the heat exchanger of the air outlet can be adjusted, and then the accurate air outlet direction of the air outlet can be determined according to this, and comfortable air supply can be realized.
  • the air conditioner includes two or more air outlets, and each air outlet can be shut-off connected to the fresh air device.
  • the control method includes:
  • S803 Determine the first air outlet direction according to the first air outlet temperature and the first direction corresponding to the first temperature of the first heat exchanger;
  • S804 Determine the first air outlet speed of the first air outlet according to the set comfortable air speed, the first distance, and the length of the first short side of the first air outlet;
  • the age of the air is used to indicate the time elapsed after the air enters the room, and is used to reflect the freshness of the air. Using the above technical solution, the freshness of the air is adjusted. When the indoor air is not fresh, the air conditioner can blow the fresh air to Users, to achieve a comfortable air supply.
  • the temperature of the air outlet of the air conditioner will affect its air supply path. Because the temperature of the air sent by the air outlet is different from the temperature of the indoor air, the density of the air sent by the air outlet is different from the density of the indoor air, so the air supply of the air outlet The trajectory will shift. Similarly, because the density of the wind sent by the air outlet is different from the density of the indoor air, then the mass flow of the wind with different outlet temperatures sent at the same outlet speed is different, when the outlet speed is constant The higher the outlet temperature, the greater the mass flow, and the lower the outlet temperature, the smaller the mass flow.
  • the air outlet speed of the air outlet affects the transmission efficiency of the wind speed. Therefore, when the wind speed of the air conditioner does not change, the wind temperature affects the wind speed in the area where the user is located.
  • the foregoing first air outlet speed for determining the first air outlet is implemented as: according to the first distance, the first air outlet The first temperature, the first short side length of the first air outlet and the set comfortable air speed determine the first air outlet speed of the first air outlet.
  • control method of the air conditioner includes:
  • S904. Determine the first air outlet speed of the first air outlet according to the first distance, the first air outlet temperature of the first air outlet, the first short side length of the first air outlet, and the set comfortable air speed;
  • controlling the wind speed around the user within the set comfortable wind speed can enable the user to obtain a better blowing experience.
  • the influence of the outlet temperature on the transmission efficiency of the wind speed is fully considered. It can more accurately control the wind speed in the area where the user is located, so that it is within the range of the set comfortable wind speed.
  • this step includes:
  • the first air outlet speed of the first air outlet is determined according to the first temperature difference, the first short side length and the set comfortable air speed.
  • the step of determining the first air outlet speed of the first air outlet based on the first distance, the first temperature difference, the first short side length and the set comfortable air speed includes:
  • the first initial wind speed is determined according to the length of the first short side and the set comfortable wind speed
  • the first wind speed is determined according to the first temperature difference and the first initial wind speed.
  • the first temperature difference is obtained by subtracting the ambient temperature from the first outlet temperature
  • the first temperature difference is positively correlated with the first outlet speed
  • control method includes:
  • S1003 Determine the first outlet temperature of the first outlet according to the obtained user identity information
  • S1004 Determine the first wind direction according to the first wind temperature and the first direction
  • S1005. Determine the first air outlet speed of the first air outlet according to the set comfortable air speed, the first distance, and the length of the first short side of the first air outlet;
  • Each user identity information corresponds to a first outlet temperature, for example, the user identity information and the first outlet temperature can be stored in the database in a related form.
  • control method includes:
  • S1102. Determine the first air outlet among the two or more air outlets of the air conditioner according to the first direction
  • S1103 Determine the first outlet temperature of the first outlet according to the acquired user motion information
  • S1104 Determine the first wind direction according to the first wind temperature and the first direction
  • S1105. Determine the first air outlet speed of the first air outlet according to the set comfortable air speed, the first distance, and the length of the first short side of the first air outlet;
  • Each user's motion information corresponds to a first outlet temperature
  • the user's motion information and the first outlet temperature can be stored in the database in a related form.
  • control method of the air conditioner includes:
  • S1202 Determine the first air outlet among the two or more air outlets of the air conditioner according to the first direction;
  • S1203 Determine the first air outlet temperature of the first air outlet according to the acquired user physiological information
  • S1204 Determine the first wind direction according to the first wind temperature and the first direction
  • S1025 Determine the first air outlet speed of the first air outlet according to the set comfortable air speed, the first distance, and the length of the first short side of the first air outlet;
  • Each user's physiological information corresponds to a first outlet temperature
  • the user's physiological information and the first outlet temperature can be stored in a database in a related form.
  • users can get a comfortable blowing experience with both temperature and wind speed.
  • the user's physiological information is acquired through the millimeter wave sensor.
  • control method of the air conditioner includes:
  • S1302. Determine a first pitch angle of the first air outlet direction of the first air outlet according to the first distance, the first height of the first air outlet, and the first air outlet angle of the first air outlet.
  • the first air supply area can cover the user's feet;
  • each air outlet corresponds to an air supply area
  • the air supply area is the area that the air sent by the air outlet can reach.
  • the first air outlet corresponds to the first air supply area
  • the second air outlet corresponds to the second air supply area.
  • the speed of the wind is messy and there is no uniform direction speed
  • the mixed area covers users, and users can experience a sense of no wind.
  • the air sent by the air conditioner and the ambient air are fully heat exchanged to ensure that the user's whole body can be blown by the isothermal wind, and the user's comfort is high.
  • control method of the air conditioner includes:
  • the first distance of the first air outlet is determined according to the first distance and the second distance between the first air outlet and the second air outlet of the air conditioner The first pitch angle of the first air outlet direction and the second pitch angle of the second air outlet direction of the second air outlet, the boundary of the first air supply area of the first air outlet and the second air supply area of the second air outlet. The third distance between the intersection of the boundary and the user is greater than or equal to the second set distance, where the first height of the first air outlet is greater than the second height of the second air outlet;
  • S1402 Control the air conditioner according to the first wind direction and the second wind direction.
  • the first distance is less than or equal to the first set distance, which means that the distance between the user and the air conditioner is too close.
  • the first air supply area of the first air outlet and the second air supply area of the second air outlet cannot fully cover the user.
  • the three distances can represent the size of the first mixing area.
  • control method of the air conditioner includes:
  • S1502 Determine a first intersection point height of the first intersection point of the first air outlet direction and the person according to the first air outlet direction, the first distance of the first air outlet, and the first height of the first air outlet;
  • S1503 Determine a second intersection point height of the second intersection point of the second outlet direction and the person according to the second outlet direction of the second outlet, the first distance, and the second height of the second outlet;
  • S1504 Correct the first air outlet speed of the first air outlet and the second air outlet speed of the second air outlet according to the height of the first intersection point and the height of the second intersection point;
  • the temperature of the human body is greater than the temperature of the ambient air, and there is often an upward airflow around the human body.
  • the air sent by the air outlet of the air conditioner it has speeds in two directions: axial speed and radial speed.
  • the axial speed is close to the vertical user.
  • the radial speed can be used to offset the human body temperature caused by the human body temperature.
  • the upward wind speed achieves accurate control of the wind speed in the area where the user is located and achieves comfortable air supply.
  • a straight line represents the air supply direction
  • a rectangle represents the area where the user is located. When the straight line intersects the rectangle, the height of the intersection point and the ground is the height of the intersection point.
  • modifying the first air outlet speed of the first air outlet and the second air outlet speed of the second air outlet according to the height of the first intersection and the height of the second intersection includes:
  • the second wind speed is increased, or the second wind speed is reduced, or the second wind speed is increased and the first wind speed is reduced.
  • the method further includes:
  • the second wind direction is determined according to the second pitch angle and the second azimuth angle.
  • the method further includes:
  • the first air outlet speed of the first air outlet is determined according to the set comfortable air speed, the first distance and the length of the first short side of the first air outlet;
  • the second air outlet speed of the second air outlet is determined according to the set comfortable air speed, the first distance and the length of the second short side of the second air outlet;
  • the air conditioner is controlled according to the first air outlet speed and the second air outlet speed.
  • the method further includes:
  • the first distance, the first air outlet temperature of the first air outlet and the first short side length of the first air outlet, the first air outlet speed before correction is determined
  • the second air outlet speed before correction is determined according to the set comfortable air speed, the first distance, the second air outlet temperature of the second air outlet, and the length of the second short side of the second air outlet.
  • the foregoing air conditioner control method may be implemented in a network-side server, or in a mobile terminal, or in a dedicated control device.
  • an air conditioner control device is provided.
  • control device of the air conditioner includes:
  • the first obtaining module 1601 is used to obtain the first distance and the first direction of the user relative to the air conditioner;
  • the first determining module 1602 is configured to determine the first air outlet direction of the first air outlet among the two or more air outlets of the air conditioner according to the first direction;
  • the second determining module 1603 is configured to determine the first air outlet speed of the first air outlet according to the set comfortable air speed, the first distance, and the first short side length of the first air outlet;
  • the first control module 1604 is used to control the air conditioner according to the first air outlet direction and the first air outlet speed.
  • the first angle difference between the first wind direction and the first direction is less than or equal to the first set angle difference.
  • the first wind speed is inversely related to the first short side length.
  • the first acquisition module is specifically used to:
  • the first distance and the first direction of the user relative to the air conditioner are acquired through the laser ranging sensor array.
  • the air conditioner control device includes:
  • the second obtaining module 1701 is used to obtain the first distance and the first direction of the user relative to the air conditioner;
  • the third determining module 1702 is configured to determine the first air outlet among the two or more air outlets of the air conditioner according to the first direction;
  • the fourth determining module 1703 is used to determine the first wind direction according to the first wind temperature and the first direction of the first air outlet;
  • the fifth determining module 1704 is configured to determine the first air outlet speed of the first air outlet according to the set comfortable air speed, the first distance, and the first short side length of the first air outlet;
  • the second control module 1705 is used to control the air conditioner according to the first wind direction and the first wind speed.
  • the second acquisition module is specifically used to:
  • the first wind direction is determined according to the first temperature difference and the first direction.
  • the fourth determination module is specifically configured to:
  • the first wind direction is determined according to the first temperature difference and the first initial wind direction.
  • the first temperature difference when the first temperature difference is obtained by subtracting the ambient temperature from the first outlet temperature, the first temperature difference is positively correlated with the elevation angle of the first outlet direction.
  • the air conditioner includes two or more air outlets, two or more compressors, or a semiconductor temperature regulator, and a corresponding heat exchanger is provided at each air outlet.
  • the heater is connected to a corresponding compressor or a corresponding semiconductor temperature regulator in a heat conduction manner.
  • the control device includes:
  • the third obtaining module 1801 is used to obtain the first distance and the first direction of the user relative to the air conditioner;
  • the sixth determining module 1802 is configured to determine the first air outlet among the two or more air outlets of the air conditioner according to the first direction;
  • the third control module 1803 is used to adjust the first valve between the first heat exchanger corresponding to the first air outlet and the first compressor/first semiconductor temperature regulator according to the first set temperature;
  • the seventh determining module 1804 is configured to determine the first air outlet direction according to the first air outlet temperature and the first direction corresponding to the first temperature of the first heat exchanger;
  • the eighth determining module 1805 is used to determine the first air outlet speed of the first air outlet according to the set comfortable air speed, the first distance and the first short side length of the first air outlet;
  • the fourth control module 1806 is used to control the air conditioner according to the first wind direction and the first wind speed.
  • the third obtaining module is specifically used to:
  • the first wind direction is determined according to the first temperature difference and the first direction.
  • the seventh determining module is specifically used to:
  • the first wind direction is determined according to the first temperature difference and the first initial wind direction.
  • the first temperature difference when the first temperature difference is obtained by subtracting the ambient temperature from the first outlet temperature, the first temperature difference is positively correlated with the elevation angle of the first outlet direction.
  • the air conditioner includes two or more air outlets, a compressor or a semiconductor temperature regulator, and a corresponding heat exchanger is provided at each air outlet, each heat exchanger is Way to the compressor or semiconductor temperature regulator, as shown in Figure 19, the control device includes:
  • the fourth obtaining module 1901 is used to obtain the first distance and the first direction of the user relative to the air conditioner;
  • the ninth determination module 1902 is used to determine the first air outlet among the two or more air outlets of the air conditioner according to the first direction;
  • the fifth control module 1903 is used to control the opening and closing time of the second valve between the first heat exchanger corresponding to the first air outlet and the compressor/semiconductor temperature regulator according to the first set temperature;
  • the first zero determination module 1904 is configured to determine the first air outlet direction according to the first air outlet temperature and the first direction corresponding to the first temperature of the first heat exchanger;
  • the first one determination module 1905 is used to determine the first air outlet speed of the first air outlet according to the set comfortable air speed, the first distance and the first short side length of the first air outlet;
  • the sixth control module 1906 is used to control the air conditioner according to the first air outlet direction and the first air outlet speed.
  • the fourth obtaining module is specifically used to:
  • the first wind direction is determined according to the first temperature difference and the first direction.
  • the first zero determination module is specifically used to:
  • the first wind direction is determined according to the first temperature difference and the first initial wind direction.
  • the first temperature difference when the first temperature difference is obtained by subtracting the ambient temperature from the first outlet temperature, the first temperature difference is positively correlated with the elevation angle of the first outlet direction.
  • the air conditioner includes two or more air outlets, a compressor or a semiconductor temperature regulator, and a corresponding heat exchanger is provided at each air outlet, each heat exchanger is Way to the compressor or semiconductor temperature regulator, as shown in Figure 20, the control device includes:
  • the fifth obtaining module 2001 is used to obtain the first distance and the first direction of the user relative to the air conditioner;
  • the first and second determination module 2002 is used to determine the first air outlet among the two or more air outlets of the air conditioner according to the first direction;
  • the seventh control module 2003 is used to control the opening degree of the third valve between the first heat exchanger corresponding to the first air outlet and the compressor/semiconductor temperature regulator according to the first set temperature;
  • the first and third determining modules 2004 are used to determine the first air outlet direction according to the first air outlet temperature and the first direction corresponding to the first temperature of the first heat exchanger;
  • the first to fourth determining module 2005 is used to determine the first air outlet speed of the first air outlet according to the set comfortable air speed, the first distance and the first short side length of the first air outlet;
  • the eighth control module 2006 is used to control the air conditioner according to the first wind direction and the first wind speed.
  • the fifth acquisition module is specifically used to:
  • the first wind direction is determined according to the first temperature difference and the first direction.
  • the first and third determination modules are specifically used to:
  • the first wind direction is determined according to the first temperature difference and the first initial wind direction.
  • the first temperature difference when the first temperature difference is obtained by subtracting the ambient temperature from the first outlet temperature, the first temperature difference is positively correlated with the elevation angle of the first outlet direction.
  • the air conditioner includes two or more air outlets, two or more compressors, and a corresponding heat exchanger is provided at each air outlet, and each heat exchanger is simultaneously connected to two Or multiple compressors, as shown in Figure 21, the control device includes:
  • the sixth obtaining module 2101 is used to obtain the first distance and the first direction of the user relative to the air conditioner;
  • the first five determination module 2102 is used to determine the first air outlet among the two or more air outlets of the air conditioner according to the first direction;
  • the ninth control module 2103 is used to control the first flow rate of the medium flowing between the first heat exchanger corresponding to the first air outlet and each compressor according to the first set temperature;
  • the first six determination module 2104 is configured to determine the first air outlet direction according to the first air outlet temperature and the first direction corresponding to the first temperature of the first heat exchanger;
  • the first seven determination module 2105 is configured to determine the first air outlet speed of the first air outlet according to the set comfortable air speed, the first distance, and the first short side length of the first air outlet;
  • the tenth control module 2106 is used to control the air conditioner according to the first wind direction and the first wind speed.
  • the fifth acquisition module is specifically used to:
  • the first wind direction is determined according to the first temperature difference and the first direction.
  • the first to sixth determination modules are specifically used to:
  • the first wind direction is determined according to the first temperature difference and the first initial wind direction.
  • the first temperature difference when the first temperature difference is obtained by subtracting the ambient temperature from the first outlet temperature, the first temperature difference is positively correlated with the elevation angle of the first outlet direction.
  • the air conditioner includes two or more air outlets, and each air outlet can be shut-off connected to the fresh air device.
  • the control device includes:
  • the first one control module 2201 is used to connect each air outlet and the fresh air device when the indoor air age is greater than or equal to the set air age;
  • the sixth obtaining module 2202 is used to obtain the first distance and the first direction of the user relative to the air conditioner;
  • the first eighth determination module 2203 is configured to determine the first air outlet direction according to the first air outlet temperature and the first direction corresponding to the first temperature of the first heat exchanger;
  • the first nine determination module 2204 is configured to determine the first air outlet speed of the first air outlet according to the set comfortable air speed, the first distance, and the first short side length of the first air outlet;
  • the first and second control modules 2205 are used to control the air conditioner according to the first wind direction and the first wind speed.
  • the sixth obtaining module is specifically used to:
  • the first wind direction is determined according to the first temperature difference and the first direction.
  • the first eighth determination module is specifically used to:
  • the first wind direction is determined according to the first temperature difference and the first initial wind direction.
  • the first temperature difference when the first temperature difference is obtained by subtracting the ambient temperature from the first outlet temperature, the first temperature difference is positively correlated with the elevation angle of the first outlet direction.
  • control device of the air conditioner includes:
  • the seventh obtaining module 2301 is used to obtain the first distance and the first direction of the user relative to the air conditioner;
  • the second determining module 2302 is used to determine the first air outlet among the two or more air outlets of the air conditioner according to the first direction;
  • the second one determination module 2303 is used to determine the first wind direction according to the first direction
  • the second and second determination module 2304 is used to determine the first outlet of the first outlet according to the first distance, the first outlet temperature of the first outlet, the first short side length of the first outlet and the set comfortable wind speed Wind speed
  • the first and third control modules 2305 are used to control the air conditioner according to the first wind direction and the first wind speed.
  • the second and second determination modules are specifically used to:
  • the first air outlet speed of the first air outlet is determined according to the first temperature difference, the first distance, the first short side length, and the set comfortable air speed.
  • the second and second determination modules are specifically used to:
  • the first initial wind speed is determined according to the first distance, the first short side length and the set comfortable wind speed
  • the first wind speed is determined according to the first temperature difference and the first initial wind speed.
  • the first temperature difference when the first temperature difference is obtained by subtracting the ambient temperature from the first outlet temperature, the first temperature difference and the first outlet speed are positively correlated.
  • control device of the air conditioner includes:
  • the eighth obtaining module 2401 is used to obtain the first distance and the first direction of the user relative to the air conditioner;
  • the second and third determination modules 2402 are configured to determine the first air outlet among the two or more air outlets of the air conditioner according to the first direction;
  • the second to fourth determination module 2403 is used to determine the first outlet temperature of the first outlet according to the acquired user identity information
  • the second fifth determination module 2404 is used to determine the first wind direction according to the first wind temperature and the first direction;
  • the second to sixth determination module 2405 is configured to determine the first air outlet speed of the first air outlet according to the set comfortable air speed, the first distance, and the length of the first short side of the first air outlet;
  • the first to fourth determination module 2406 is used to control the air conditioner according to the first wind direction and the first wind speed.
  • the eighth obtaining device is specifically used to:
  • the first wind direction is determined according to the first temperature difference and the first direction.
  • the second object determination module is specifically used for:
  • the first wind direction is determined according to the first temperature difference and the first initial wind direction.
  • the first temperature difference when the first temperature difference is obtained by subtracting the ambient temperature from the first outlet temperature, the first temperature difference is positively correlated with the elevation angle of the first outlet direction.
  • control device of the air conditioner includes:
  • the ninth acquisition module 2501 is used to acquire the first distance and the first direction of the user relative to the air conditioner;
  • the second seven determination module 2502 is configured to determine the first air outlet among the two or more air outlets of the air conditioner according to the first direction;
  • the second eighth determination module 2503 is configured to determine the first outlet temperature of the first outlet according to the acquired user motion information
  • the second nine determination module 2504 is configured to determine the first wind direction according to the first wind temperature and the first direction;
  • the third zero determination module 2505 is configured to determine the first air outlet speed of the first air outlet according to the set comfortable air speed, the first distance, and the length of the first short side of the first air outlet;
  • the first fifth control module 2506 is used to control the air conditioner according to the first wind direction and the first wind speed.
  • the ninth acquisition module is specifically used to:
  • the first wind direction is determined according to the first temperature difference and the first direction.
  • the twenty-ninth determination module is specifically used for:
  • the first wind direction is determined according to the first temperature difference and the first initial wind direction.
  • the first temperature difference when the first temperature difference is obtained by subtracting the ambient temperature from the first outlet temperature, the first temperature difference is positively correlated with the elevation angle of the first outlet direction.
  • control device of the air conditioner includes:
  • the tenth obtaining device 2601 is used to obtain the first distance and the first direction of the user relative to the air conditioner;
  • the third one determining device 2602 is used to determine the first air outlet among the two or more air outlets of the air conditioner according to the first direction;
  • the third and second determining device 2603 is configured to determine the first air outlet temperature of the first air outlet according to the acquired user physiological information
  • the third and third determining device 2604 is configured to determine the first wind direction according to the first wind temperature and the first direction;
  • the third and fourth determining device 2604 is used to determine the first air outlet speed of the first air outlet according to the set comfortable air speed, the first distance, and the length of the first short side of the first air outlet;
  • the first six control device 2605 is used to control the air conditioner according to the first air outlet direction and the first air outlet speed.
  • the tenth acquisition device is specifically used to:
  • the first wind direction is determined according to the first temperature difference and the first direction.
  • the third and third determining devices are specifically used to:
  • the first wind direction is determined according to the first temperature difference and the first initial wind direction.
  • the first temperature difference when the first temperature difference is obtained by subtracting the ambient temperature from the first outlet temperature, the first temperature difference is positively correlated with the elevation angle of the first outlet direction.
  • control device of the air conditioner includes:
  • An eleventh obtaining device 2701 configured to obtain the first distance of the user relative to the air conditioner
  • the third and fifth determining device 2702 is used to determine the first pitch of the first air outlet direction of the first air outlet according to the first distance, the first height of the first air outlet and the first air outlet angle of the first air outlet Corner, the first air supply area of the first air outlet can cover the user's feet;
  • the third flow determining device 2703 is used to determine the second air outlet of the second air outlet according to the first distance, the second height of the second air outlet, the set user height and the second air outlet angle of the second air outlet
  • the second pitch angle of the direction, the second air supply area of the second air outlet can cover the user's head, where the second height is less than the first height
  • the first seven control device 2704 is used to control the air conditioner according to the first air outlet direction and the second air outlet direction.
  • the method further includes:
  • the first and second acquisition devices are used to acquire the first direction of the user relative to the air conditioner
  • the 37th determining device is used to determine the first azimuth angle of the first wind direction according to the first direction;
  • the third eighth determining device is used to determine the second azimuth angle of the second wind direction according to the second direction;
  • the 39th determining device is used to determine the first wind direction according to the first pitch angle and the first azimuth angle;
  • the fourth zero determining device is used to determine the second wind direction according to the second pitch angle and the second azimuth angle.
  • the method further includes:
  • the fourth one determining device is used to determine the first air outlet speed of the first air outlet according to the set comfortable air speed, the first distance and the first short side length of the first air outlet;
  • the second and second determining device is used to determine the second air outlet speed of the second air outlet according to the set comfortable air speed, the first distance and the second short side length of the second air outlet;
  • the first eighth control device is used to control the air conditioner according to the first air outlet speed and the second air outlet speed.
  • control device according to claim 5 or 6, further comprising:
  • the fourth and third determining devices are used to determine the first wind speed before correction according to the set comfortable wind speed, the first distance, the first air temperature of the first air outlet and the first short side length of the first air outlet;
  • the fourth and fourth determining devices are used to determine the second air outlet speed before correction according to the set comfortable air speed, the first distance, the second air outlet temperature of the second air outlet and the second short side length of the second air outlet.
  • control device of the air conditioner includes:
  • the fourth to fifth determining device 2801 is used to determine according to the first distance and the second distance between the first air outlet and the second air outlet of the air conditioner when the first distance of the user to the air conditioner is less than or equal to the first set distance
  • the third distance between the intersection of the boundary of the second air supply area and the user is greater than or equal to the second set distance, where the first height of the first air outlet is greater than the second height of the second air outlet;
  • the first eighth control module 2802 is used to control the air conditioner according to the first air outlet direction and the second air outlet direction.
  • the method further includes:
  • the first and third acquisition modules are used to acquire the first direction of the user relative to the air conditioner
  • Forty-sixth determination module used to determine the first azimuth angle of the first wind direction according to the first direction
  • the forty-seventh determination module is used to determine the second azimuth angle of the second wind direction according to the second direction;
  • the forty-eighth determination module is used to determine the first wind direction according to the first pitch angle and the first azimuth angle;
  • the forty-ninth determination module is used for determining the second wind direction according to the second pitch angle and the second azimuth angle.
  • the method further includes:
  • the fifth zero determination module is used to determine the first air outlet speed of the first air outlet according to the set comfortable air speed, the first distance and the first short side length of the first air outlet;
  • the fifth one determination module is used to determine the second air outlet speed of the second air outlet according to the set comfortable air speed, the first distance and the length of the second short side of the second air outlet;
  • the first nineth control module is used to control the air conditioner according to the first air outlet speed and the second air outlet speed.
  • the method further includes:
  • the fifth and second determination module is used to determine the first wind speed before correction according to the set comfortable wind speed, the first distance, the first wind temperature of the first wind outlet and the first short side length of the first wind outlet;
  • the fifth and third determining modules are used to determine the second wind speed before correction according to the set comfortable wind speed, the first distance, the second wind temperature of the second wind outlet, and the length of the second short side of the second wind outlet.
  • control device of the air conditioner includes:
  • the first to fourth acquiring device 2901 is configured to acquire the user’s relative to the air conditioner when there is a user in the first mixing area of the first air supply area of the first air outlet of the air conditioner and the second air supply area of the second air outlet A distance
  • the fifth and fourth determination module 2902 is used to determine the first intersection point of the first intersection point of the first outlet direction and the person according to the first outlet direction, the first distance of the first outlet, and the first height of the first outlet height;
  • the fifth-fifth determination module 2903 is used to determine a second intersection point of the second intersection point of the second outlet direction and the person according to the second outlet direction of the second outlet, the first distance and the second height of the second outlet height;
  • the fifth and sixth determination module 2904 is configured to correct the first air outlet speed of the first air outlet and the second air outlet speed of the second air outlet according to the height of the first intersection point and the height of the second intersection point;
  • the second control module 2905 is used to control the air conditioner according to the trimmed first air outlet speed and the corrected second air outlet speed.
  • the fifth and sixth determination modules are specifically used to:
  • the second wind speed is increased, or the second wind speed is reduced, or the second wind speed is increased and the first wind speed is reduced.
  • the method further includes:
  • the fifty-seventh determination module is used to determine the first wind speed before correction according to the set comfortable wind speed, the first distance and the length of the first short side of the first air outlet;
  • the fifty-eighth determination module is used to determine the second wind speed before correction according to the set comfortable wind speed, the first distance, and the length of the second short side of the second air outlet.
  • the method further includes:
  • the fifty-ninth determination module is used to determine the first wind speed before correction according to the set comfortable wind speed, the first distance, the first wind temperature of the first wind outlet and the first short side length of the first wind outlet;
  • the sixth zero determination module is used to determine the second wind speed before correction according to the set comfortable wind speed, the first distance, the second wind temperature of the second wind outlet, and the length of the second short side of the second wind outlet.
  • a computer device is provided.
  • the computer device includes a memory, a processor, and a program stored on the memory and executable by the processor.
  • the processor executes the program, the foregoing control method is implemented.
  • non-transitory computer-readable storage medium including instructions, such as a memory including instructions, which can be executed by a processor to complete the aforementioned method.
  • the non-transitory computer-readable storage medium may be a read-only memory ROM (Read Only Memory), a random access memory RAM (Random Access Memory), a magnetic tape, and an optical storage device.
  • the disclosed methods and products may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • each block in the flowchart or block diagram may represent a module, program segment, or part of code that contains one or more of the Executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two consecutive blocks can actually be executed substantially in parallel, and sometimes they can also be executed in reverse order, depending on the functions involved.
  • each block in the block diagrams and/or flowcharts, and combinations of blocks in the block diagrams and/or flowcharts can be implemented with a dedicated hardware-based system that performs specified functions or actions Or, it can be realized by a combination of dedicated hardware and computer instructions.
  • the present invention is not limited to the processes and structures already described above and shown in the drawings, and various modifications and changes can be made without departing from the scope thereof. The scope of the invention is only limited by the appended claims.

Abstract

一种空调的控制方法、装置、存储介质及计算机设备,属于空调技术领域。控制方法包括:获取用户相对于空调的第一距离和第一方向,根据第一方向确定出空调的两个或多个出风口之中的第一出风口,根据第一方向确定出第一出风方向,根据第一距离、第一出风口的第一出风温度、第一出风口的第一短边长度和设定舒适风速确定出第一出风口的第一出风速度,根据第一出风方向和第一出风速度控制空调。采用本实施例中提供的技术方案可实现舒适送风。

Description

空调的控制方法、装置、存储介质及计算机设备 技术领域
本发明涉及空调技术领域,特别涉及一种空调的控制方法、装置、存储介质及计算机设备。
背景技术
传统的空调只有一个出风口,在同一时刻,仅能往一个方向送风,当多个用户同时使用一台空调时,且多个用户与空调之间的相对位置均不同,那么,空调便无法为多个用户同时送风。为了解决这个技术问题,提出了一种多出风口的空调,在现有技术中,已经可对于每个出风口的出风风量进行单独控制,以应对不同用户的不同需求。但是在对多出风口空调的控制的现有技术中,多是实现防直吹功能。然而,在规范中,舒适性空调夏季室内风速不应大于0.3m/s,冬季不应大于0.2m/s,可见,若仅仅保证空调不直吹用户,并不能实现舒适送风。
发明内容
本发明实施例提供了一种空调的控制方法,实现了舒适送风。
为了对披露的实施例的一些方面有一个基本的理解,下面给出了简单的概括。该概括部分不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围。其唯一目的是用简单的形式呈现一些概念,以此作为后面的详细说明的序言。
根据本发明实施例的第一方面,提供了一种空调的控制方法。
在一种可选的实施例中,所述空调的控制方法,包括:
获取用户相对于所述空调的第一距离和第一方向;
根据所述第一方向确定出所述空调的两个或多个出风口之中的第一出风口;
根据所述第一方向确定出第一出风方向;
根据所述第一距离、所述第一出风口的第一出风温度、所述第一出风口的第一短边长度和设定舒适风速确定出所述第一出风口的第一出风速度;
根据所述第一出风方向和所述第一出风速度控制所述空调。
在一种可选的实施方式中,所述根据所述第一距离、所述第一出风口的第一出风温度、所述第一出风口的第一短边长度和设定舒适风速确定出所述第一出风口的第一出风速度,包括:
获取所述第一出风温度与环境温度之间的第一温度差;
根据所述第一温度差、所述第一距离、所述第一短边长度和所述设定舒适风速确定出所述第一出风口的第一出风速度。
在一种可选的实施方式中,所述根据所述第一温度差、所述第一距离、所述第一短边长度和所述设定舒适风速确定出所述第一出风口的第一出风速度,包括:
根据所述第一距离、所述第一短边长度和所述设定舒适风速确定出第一初始出风速度;
根据所述第一温度差和所述第一初始出风速度确定出第一出风速度。
在一种可选的实施方式中,当所述第一温度差为由所述第一出风温度减去所述环境温度而获取时,所述第一温度差和所述第一出风速度正相关。
根据本发明实施例的第二方面,提供一种空调的控制装置。
在一种可选的实施例中,所述空调的控制装置包括:
第七获取模块,用于获取用户相对于所述空调的第一距离和第一方向;
第二零确定模块,用于根据所述第一方向确定出所述空调的两个或多个出风口之中的第一出风口;
第二一确定模块,用于根据所述第一方向确定出第一出风方向;
第二二确定模块,用于根据所述第一距离、所述第一出风口的第一出风温度、所述第一出风口的第一短边长度和设定舒适风速确定出所述第一出风口的第一出风速度;
第一三控制模块,用于根据所述第一出风方向和所述第一出风速度控制所述空调。
在一种可选的实施方式中,所述第二二确定模块具体用于:
获取所述第一出风温度与环境温度之间的第一温度差;
根据所述第一温度差、所述第一距离、所述第一短边长度和所述设定舒适风速确定出所述第一出风口的第一出风速度。
在一种可选的实施方式中,所述第二二确定模块具体用于:
根据所述第一距离、所述第一短边长度和所述设定舒适风速确定出第一初始出风速度;
根据所述第一温度差和所述第一初始出风速度确定出第一出风速度。
在一种可选的实施方式中,当所述第一温度差为由所述第一出风温度减去所述环境温度而获取时,所述第一温度差和所述第一出风速度正相关。
根据本发明实施例的第三方面,提供一种计算机设备。
在一种可选的实施例中,所述计算机设备包括存储器、处理器及存储在所述存储器上并可被所述处理器运行的程序,所述处理器执行所述程序时实现前述的控制方法。
根据本发明实施例的第四方面,提供一种存储介质。
在一种可选的实施例中,所述存储介质存储有计算机程序,当所述计算机程序被处理器执行时实现前述的控制方法。
本发明实施例的有益效果是:对用户所在区域的风速进行控制,可实现舒适送风。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种多出风口的空调的结构示意图;
图2是根据一示例性实施例示出的一种空调的控制方法的流程示意图;
图3是根据一示例性实施例示出的一种空调的控制方法的流程示意图;
图4是根据一示例性实施例示出的一种空调的控制方法的流程示意图;
图5是根据一示例性实施例示出的一种空调的控制方法的流程示意图;
图6是根据一示例性实施例示出的一种空调的控制方法的流程示意图;
图7是根据一示例性实施例示出的一种空调的控制方法的流程示意图;
图8是根据一示例性实施例示出的一种空调的控制方法的流程示意图;
图9是根据一示例性实施例示出的一种空调的控制方法的流程示意图;
图10是根据一示例性实施例示出的一种空调的控制方法的流程示意图;
图11是根据一示例性实施例示出的一种空调的控制方法的流程示意图;
图12是根据一示例性实施例示出的一种空调的控制方法的流程示意图;
图13是根据一示例性实施例示出的一种空调的控制方法的流程示意图;
图14是根据一示例性实施例示出的一种空调的控制方法的流程示意图;
图15是根据一示例性实施例示出的一种空调的控制方法的流程示意图;
图16是根据一示例性实施例示出的一种空调的控制装置的结构示意图;
图17是根据一示例性实施例示出的一种空调的控制装置的结构示意图;
图18是根据一示例性实施例示出的一种空调的控制装置的结构示意图;
图19是根据一示例性实施例示出的一种空调的控制装置的结构示意图;
图20是根据一示例性实施例示出的一种空调的控制装置的结构示意图;
图21是根据一示例性实施例示出的一种空调的控制装置的结构示意图;
图22是根据一示例性实施例示出的一种空调的控制装置的结构示意图;
图23是根据一示例性实施例示出的一种空调的控制装置的结构示意图;
图24是根据一示例性实施例示出的一种空调的控制装置的结构示意图;
图25是根据一示例性实施例示出的一种空调的控制装置的结构示意图;
图26是根据一示例性实施例示出的一种空调的控制装置的结构示意图;
图27是根据一示例性实施例示出的一种空调的控制装置的结构示意图;
图28是根据一示例性实施例示出的一种空调的控制装置的结构示意图;
图29是根据一示例性实施例示出的一种空调的控制装置的结构示意图。
具体实施方式
以下描述和附图充分地示出本发明的具体实施方案,以使本领域的技术人员能够实践它们。其他实施方案可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本发明的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。在本文中,各实施方案可以被单独地或总地用术语“发明”来表示,这仅仅是为了方便,并且如果事实上公开了超过一个的发明,不是要自动地限制该应用的范围为任何单个发明或发明构思。本文中,诸如第一和第二等之类的关系术语仅仅用于将一个实体或者操作与另一个实体或操作区分开来,而不要求或者暗示这些实体或操作之间存在任何实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的方法、产品等而言,由于其与实施例公开的方法部分相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
根据本发明实施例的第一方面,提供一种空调的控制方法。
本控制方法适用于多出风口的空调,多出风口的空调包括:设置两个出风口的空调、设置三个出风口的空调、设置四个及多个出风口的空调。可选地,如图1所示,空调的多个出风口10设置在空调的同一个表面上。
如图2所示,在一种可选的实施例中,空调的控制方法包括:
S201、获取用户相对于空调的第一距离和第一方向;
S202、根据第一方向确定出空调的两个或多个出风口之中的第一出风口的第一出风方向;
S203、根据设定舒适风速、第一距离和第一出风口的第一短边长度确定出第一出风口的第一出风 速度;
S204、根据第一出风方向和第一出风速度控制空调。
采用上述步骤,将用户身边的风速控制在设定舒适风速内,可使得用户获得较佳的吹风体验。关于上述步骤中的设定舒适风速,该设定舒适风速可以为规范中所规定的风速:夏季室内风速不应大于0.3m/s,冬季室内风速不应大于0.2m/s;该舒适风速还可以是根据不同用户的个性化定制,例如,用户身份信息和设定舒适风速以一一对应的方式存储在数据中,在需要进行舒适性送风时,通过在数据库检索身份信息即可获取对应的设定舒适风速,可满足对风有不同敏感度与承受能力的用户的舒适需求。
另外,在上述步骤中,利用多个出风口之中的第一出风口对用户送风,以此类推,当在多个位置均检测到用户时,可根据每个用户相对与空调的距离和方向,控制空调的两个或多个出风口中的除上述第一出风口之外的其他出风口为其他用户送风。从而保证了为多个用户同时送风,多个用户均可获取较佳的吹风体验。
关于步骤:获取用户相对于空调的第一距离和第一方向,包括通过飞行时间传感器获取用户相对于空调的第一距离和第一方向,或,通过激光测距传感器阵列获取用户相对于空调的第一距离和第一方向,或,通过普通红外传感器获取用户相对于空调的第一方向,在通过测距装置获取用户相对于空调的第一距离。在上述步骤中,关于第一距离和第一方向的记录方式,包括:以空调为参考原点,以平面坐标的方式记录第一距离和第一方向;或,以空调为参考原点,以极坐标的方式记录第一距离和第一方向。通过获取用户相对于空调的第一距离和第一方向,便于确定出空调的每个出风口的出风方向以及出风速度。关于每个出风口的出风方向,在空调中,出风口的出风方向一般用导风板的开启角度来表示,该开启角度为导风板的当前位置相对与其关闭位置的角度。此时需要将导风板处于关闭位置时的参照系变换到获取用户相对于空调的第一距离和第一方向的参照系,以保证可准确地控制每个出风口的出风方向。
关于步骤:根据第一方向确定出空调的两个或多个出风口之中的第一出风口的第一出风方向,其中,第一出风方向和第一方向之间第一角度差小于等于第一设定角度差,确保第一出风口将风送到正确的风向上,即,当第一出风口送风时,可调节用户身边的风速。第一设定角度差与第一出风口的结构上的参数相关,当第一出风口往外送风时,该第一出风口的送风模型近似于自由射流模型,在第一出风口所送出的气体后,将影响一个近似于锥体空间内气流的流速,该锥体空间轴截面的顶角与第一出风口的出风结构相关。可选地,第一设定角度差小于等于上述椎体空间轴截面的顶角的一半,即可确保第一出风口所送出的风,可调节用户身边的风速。
关于步骤:根据设定舒适风速和第一出风口的第一短边长度确定出第一出风口的第一出风速度,其中,当第一出风口的第一出风速度和第一距离确定以后,第一短边长度影响第一出风口可为用户身边区域提供的风速,第一短边长度越大,第一出风口为用户身边区域所能提供的风速越大,第一短边长度越小,第一出风口为用户身边区域所能提供的风速越小。基于上述内容,可选地,第一出风速度和第一短边长度反相关。当第一距离和设定舒适风速确定以后,若第一短边长度过短,则需要增加第一出风速度,以确保第一出风口为用户身边区域提供不低于舒适送风速度的风速;若第一短边长度过长,则需要降低第一出风速度,以确保第一出风口为用户身边区域提供不高于舒适送风的风速。
关于步骤:根据第一出风方向和第一出风速度控制空调,在空调中,调节第一出风口处的导风板的方向即可改变第一出风方向,故,该步骤包括:根据第一出风方向控制第一出风口处的导风板的方向;调节第一出风口出的风机转速,或,调节第一出风口与空气动力部件之间的阀门开度,即可控制第一出风口的出风速度,该步骤包括:根据第一出风速度控制第一出风口处的导风板方向,或,控制第一出风口与空调动力部件之间的阀门开度。
空调在调温过程中,主要靠空调送出的风与室内空气进行热交换,以提高或降低室内空气的温度。显然,若空调发挥调温的作用,则空调的出风口所送出的风的温度与室内温度不同,空调出风的温度与室内温度不同,空调出风的密度与室内空气的密度不同。
风在空调的出风口流向用户的身边的区域的过程中,由于其密度与周围空气的温度不同,在送风过程中,空调的出风口流出的风会受到远离地心或接近地心的力,故出风口的送风方向会发生偏移,容易导致出风口的送出的风不能准确地送至用户身边。
对于该问题,前述步骤:根据第一方向确定出空调的两个或多个出风口之中的第一出风口的第一出风方向,可调整为:
根据第一位置确定出空调的两个或多个出风口之中的第一出风口;
根据第一出风口的第一出风温度和第一位置确定出第一出风方向。
上述步骤中顾及了出风口的出风温度对于送风路径的影响,可保证空调的第一出风口准确地向用户身边送风。
进一步地,在一种可选的实施方式中,如图3所示,空调的控制方法包括:
S301、获取用户相对于空调的第一距离和第一方向;
S302、根据第一方向确定出空调的两个或多个出风口之中的第一出风口;
S303、根据第一出风口的第一出风温度和第一方向确定出第一出风方向;
S304、根据第一距离、第一出风口的第一短边长度和设定舒适风速确定出第一出风口的第一出风速度;
S305、根据第一出风方向和第一出风速度控制空调。
采用上述步骤,可实现舒适送风。将用户身边的风速控制在设定舒适风速内,使得用户获得较佳的吹风体验。
在环境温度不出现大幅度的波动时,出风口的出风温度越高,送风路径的仰角越容易增大,或,送风路径的俯角越容易减小。在上述步骤中,顾及了出风口的出风温度对第一出风口的送风路径的影响,保证空调的第一出风口准确地向用户送风,进一步提高了用户身边的风速的可控性。
关于步骤:根据第一方向确定出空调的两个或多个出风口之中的第一出风口,其中,第一出风口为与用户的距离最近的出风口。对于设置在空调上的高度相同的出风口,当获取用户的第一方向后,空调上接近于第一方向的出风口与用户之间的距离最近,即,以接近第一方向的出风口作为第一出风口。可选地,将每个出风口及其对应的送风角度范围存储在数据库中,确定出第一方向对应的第一送风角度范围,以在数据库中与该第一送风角度范围相对应的出风口为第一出风口。
关于步骤:根据第一出风口的第一出风温度和第一方向确定出第一出风方向,在一种可选的实施方式中,该步骤包括:
获取第一出风温度与环境温度之间的第一温度差;
根据第一温度差和第一方向确定出第一出风方向。
通过上述步骤可对第一出风方向进行准确的调整,以使第一出风口所送出的风可精确地吹到用户所在区域。在前文中,描述了出风口所送出的风在流动过程中,会受到远离地心或指向地心的力的影响,使得送风路径受到影响,可见,送风路径受到影响的本质原因是出风的密度和环境空气的密度之间存在密度差,对于空调送风的应用场景,影响上述密度差的直接原因是出风温度和环境温度之间的差值。温差越大,出风口的出风密度与环境空气的密度之间的密度差越大,则出风口所送出的风的移动路径受到的影响越大。故,在确定第一出风方向时,考虑到第一温度差,可确定出更加准确的第一出风方向。
关于步骤:根据第一温度差和第一方向确定出第一出风方向,在一种可选的实施方式中,包括:
根据第一方向确定出第一初始出风方向;
根据第一温度差和第一初始出风方向确定出第一出风方向。
即,先根据第一方向确定出一个第一初始出风方向,再在第一初始出风方向的基础进行修正,以获取准确的第一出风方向。步骤:根据第一方向确定出第一初始出风方向,可实施为:根据第一方向确定出第一出风方向的方位角,对应地,步骤:根据第一温度差和第一初始出风方向确定出第一出风方向,可实施为:根据第一出温度差和第一距离确定出第一出风方向的俯仰角,当确定出第一出风方向的方位角和俯仰角后,即确定出了第一出风方向。
关于前述的第一出风温度和第一出风方向,当第一温度差为由第一出风温度减去环境温度而获取时,第一温度差和第一出风方向的仰角正相关,其中,第一出风温度包括正负温度,当第一出风温度为正温度时,第一温度差越大,第一出风方向的仰角越大;当第一出风方向为负温度时,第一温度差越大,第一出风方向的俯角越大,若用负数的仰角表示俯角,第一出风方向的俯角越大,则第一出风方向的仰角越小。
当空气在空调中吹出时,其先经过设置在出风口处的换热器,空气与换热器进行热交换,从而改变了空气的温度,即改变了出风温度。
在步骤:根据第一出风口的第一出风温度和第一方向确定出第一出风方向中,第一出风口的第一出风温度与设置在第一出风口处的第一换热器的第一温度相关,空调在运行中,第一换热器的第一温度大多时间处于波动状态,故,第一出风温度也处于波动状态。在多出风口的空调中,为了保证每个出风口的出风温度可调,需要对每个出风口的温度进行控制。
下文提供对于温度进行控制的技术方案,为了便于说明,首先说明一下技术术语“以热传导的方式连通”,若A装置与B装置以热传导的方式连通,则表示A装置和B装置可进行热交换,包括:A装置和B装置之间以媒介相变(例如空调中的冷媒)的方式换热,A装置和B装置之间以媒介热传导(例如大型机械设备的冷却系统中的冷水)的方式换热。
如图4所示,在一种可选的实施方式中,空调包括两个或多个出风口,两个或多个压缩机,或,半导体温度调节器,每个出风口处设置对应的换热器,每个换热器以热传导的方式连通至对应的一个压缩机或对应的一个半导体温度调节器,控制方法包括:
S401、获取用户相对于空调的第一距离和第一方向;
S402、根据第一方向确定出空调的两个或多个出风口之中的第一出风口;
S403、根据第一设定温度调节与第一出风口对应的第一换热器和第一压缩机/第一半导体温度调节器之间的第一阀门;例如,第一换热器和第一压缩机/第一半导体温度调节器之间的第一阀门开启的角度越大,在制热过程中,则第一换热器的温度越高,在制冷过程中,则第一换热器的温度越低;第一换热器和第一压缩机/第一半导体温度调节器之间的第一阀门开启的时间越长,在制热过程中,则第一换热器的温度越高,在制冷过程中,则第一换热器的温度越低,据此实现根据第一设定温度对第一温度的调节作用;
S404、根据与第一换热器的第一温度对应的第一出风温度和第一方向确定出第一出风方向;
S405、根据设定舒适风速、第一距离和第一出风口的第一短边长度确定出第一出风口的第一出风速度;
S406、根据第一出风方向和第一出风速度控制空调。
采用上述方案,实现了对出风口的出风温度的调节,再根据出风口的出风温度可确定出准确的出风方向,实现了舒适送风的效果。在上述方案中,提到了一种出风口处换热器的连接方式,对于出风口处的换热器的连接方式,还有其他的实施方式,如下:
在一种可选的实施方式中,空调包括两个或多个出风口,一个压缩机或一个半导体温度调节器, 每个出风口处设置对应的换热器,每个换热器以热传导的方式连通至压缩机或半导体温度调节器,如图5所示,控制方法包括:
S501、获取用户相对于空调的第一距离和第一方向;
S502、根据第一方向确定出空调的两个或多个出风口之中的第一出风口;
S503、根据第一设定温度控制与第一出风口对应的第一换热器和压缩机/半导体温度调节器之间的第二阀门的开关时间;例如,在设定时间段内,第二阀门的开启时间在设定时间段中占的比例高,则对第一换热器的第一温度的调节效果越好:在制冷过程中,第一温度越低,在制热过程中,第一温度越高;不同的换热器的阀门的开关时间不同,则不同的换热器的温度也不同;
S504、根据与第一换热器的第一温度对应的第一出风温度和第一方向确定出第一出风方向;
S505、根据设定舒适风速、第一距离和第一出风口的第一短边长度确定出第一出风口的第一出风速度;
S506、根据第一出风方向和第一出风速度控制空调。
可实现对出风口的换热器的温度的调节,再据此确定出准确的出风口的出风方向,实现了舒适送风。
在一种可选的实施方式中,空调包括两个或多个出风口,一个压缩机或一个半导体温度调节器,每个出风口处设置对应的换热器,每个换热器以热传导的方式连通至压缩机或半导体温度调节器,如图6所示,控制方法包括:
S601、获取用户相对于空调的第一距离和第一方向;
S602、根据第一方向确定出空调的两个或多个出风口之中的第一出风口;
S603、根据第一设定温度控制与第一出风口对应的第一换热器和压缩机/半导体温度调节器之间的第三阀门的开度;例如,第三阀门的开度越大,则对第一换热器的第一温度的调节效果越好:在制冷过程中,第一温度越低,在制热过程中,第一温度越高;不同的换热器的阀门的开关时间不同,则不同的换热器的温度也不同;
S604、根据与第一换热器的第一温度对应的第一出风温度和第一方向确定出第一出风方向;
S605、根据设定舒适风速、第一距离和第一出风口的第一短边长度确定出第一出风口的第一出风速度;
S606、根据第一出风方向和第一出风速度控制空调。
可实现对出风口的换热器的温度的调节,再据此确定出准确的出风口的出风方向,实现了舒适送风。
在一种可选的实施方式中,空调包括两个或多个出风口,两个或多个压缩机,每个出风口处设置对应的换热器,每个换热器同时连通至两个或多个压缩机,如图7所示,控制方法包括:
S701、获取用户相对于空调的第一距离和第一方向;
S702、根据第一方向确定出空调的两个或多个出风口之中的第一出风口;
S703、根据第一设定温度控制对应于第一出风口的第一换热器与每个压缩机之间流通媒介的第一流量;不同的压缩机以不同的功率工作,不同的压缩机所能提供的调温效果不同,以两个压缩机为例,其中第一压缩机调温效果好,第二压缩机调温效果稍差,则,提高第一换热器与第一压缩机之间的流量,则提高了第一换热器的换热效果:在制冷过程中,第一换热器第一温度越低,在制热过程中,第一换热器的第一温度越高;日高第一换热器与第二压缩机之间的流量,在降低了第一换热器的换热效果:在制冷过程中,第一换热器第一温度越高,在制热过程中,第一换热器的第一温度越低;
S704、根据与第一换热器的第一温度对应的第一出风温度和第一方向确定出第一出风方向;
S705、根据设定舒适风速、第一距离和第一出风口的第一短边长度确定出第一出风口的第一出风 速度;
S706、根据第一出风方向和第一出风速度控制空调。
可实现对出风口的换热器的温度的调节,再据此确定出准确的出风口的出风方向,实现了舒适送风。
在一种可选的实施方式中,空调包括两个或多个出风口,每个出风口可关断地连通至新风装置,如图8所示,控制方法包括:
S801、当室内空气龄大于等于设定空气龄时,连通每个出风口和新风装置;
S802、获取用户相对于空调的第一距离和第一方向;
S803、根据与第一换热器的第一温度对应的第一出风温度和第一方向确定出第一出风方向;
S804、根据设定舒适风速、第一距离和第一出风口的第一短边长度确定出第一出风口的第一出风速度;
S805、根据第一出风方向和第一出风速度控制空调。
空气龄用于表示空气进入室内后所经历的时间,用于反应空气的新鲜度,采用上述技术方案,实现了对空气新鲜度的调节,当室内空气不新鲜时,空调可将新鲜空气吹送至用户,实现舒适送风。
空调的出风口的出风温度会影响其送风路径,因为出风口送出的风的温度与室内空气的温度不同,出风口送出的风的密度与室内空气的密度不同,所以出风口的送风轨迹会发生偏移。同样地,因为出风口送出的风的密度与室内空气的密度不同,那么,出风口以相同出风速度送出的不同出风温度的风,其质量流量是不同的,在出风速度不变时,出风温度越高,质量流量越大,出风温度越低,质量流量越小。在出风口的出风速度不变的情况下,质量流量越大,出风口所送出的风的动量越大,质量流量越小,出风口所送出的风的动量越小。故,在出风速度不变的情况下,出风口的出风温度越高,其送出风的动量越小;出风口的出风温度越低,其送出的风的动量越低,进一步地,出风口送出的风的动量影响用户所在区域的风速。即:在用户与空调之间的距离不变,出风口的出风速度不变的情况下,出风口送出的风的动量越大,用户身边区域的风速越大,出风口送出的风的动量越小,用户所在区域的风速越小,也就是说,在用户与空调之间的距离不变、出风口的出风速度不变的情况下,出风口的出风速度影响风速的传递效率。故,当空调出风速度不变时,出风温度影响用户所在区域的风速。
据此,为了对用户所在区域的温度进行精确控制,在一种可选的实施方式中,前述确定出第一出风口的第一出风速度实施为:根据第一距离、第一出风口的第一温度、第一出风口的第一短边长度和设定舒适风速确定出第一出风口的第一出风速度。
进一步地,如图9所示,在一种可选的实施方式中,空调的控制方法包括:
S901、获取用户相对于空调的第一距离和第一方向;
S902、根据第一方向确定出空调的两个或多个出风口之中的第一出风口;
S903、根据第一方向确定出第一出风方向;
S904、根据第一距离、第一出风口的第一出风温度、第一出风口的第一短边长度和设定舒适风速确定出第一出风口的第一出风速度;
S905、根据第一出风方向和第一出风速度控制空调。
采用上述步骤,将用户身边的风速控制在设定舒适风速内,可使得用户获得较佳的吹风体验。
另外,在上述步骤中,充分考虑了出风温度对风速的传递效率的影响。可更加准确地对用户所在区域的风速进行控制,使之处于设定舒适风速的范围内。
关于步骤:根据第一距离、第一出风口的第一出风温度、第一出风口的第一短边长度和设定舒适风速确定出第一出风口的第一出风速度,在一种可选的实施方式中,该步骤包括:
获取第一出风温度与环境温度之间的第一温度差;
根据第一温度差、第一短边长度和设定舒适风速确定出第一出风口的第一出风速度。
在一种可选的实施方式中,步骤:根据第一距离、第一温度差、第一短边长度和设定舒适风速确定出第一出风口的第一出风速度,包括:
根据第一短边长度和设定舒适风速确定出第一初始出风速度;
根据第一温度差和第一初始出风速度确定出第一出风速度。
当第一温度差为由第一出风温度减去环境温度而获取时,第一温度差和第一出风速度正相关。
在一种可选的实施方式中,如图10所示,控制方法包括:
S1001、获取用户相对于空调的第一距离和第一方向;
S1002、根据第一方向确定出空调的两个或多个出风口之中的第一出风口;
S1003、根据已获取的用户身份信息确定出第一出风口的第一出风温度;
S1004、根据第一出风温度和第一方向确定出第一出风方向;
S1005、根据设定舒适风速、第一距离、第一出风口的第一短边长度确定出第一出风口的第一出风速度;
S1006、根据第一出风方向和第一出风速度控制空调。
在调节温度的过程中,也可实现舒适送风。其中,每个用户身份信息均对应着一个第一出风温度,例如用户身份信息和第一出风温度可以相关联的形式存储在数据库中。采用上述技术方案,用户可获得温度、风速均舒适的吹风体验。
在一种可选的实施方式中,如图11所示,控制方法包括:
S1101、获取用户相对于空调的第一距离和第一方向;
S1102、根据第一方向确定出空调的两个或多个出风口之中的第一出风口;
S1103、根据已获取的用户运动信息确定出第一出风口的第一出风温度;
S1104、根据第一出风温度和第一方向确定出第一出风方向;
S1105、根据设定舒适风速、第一距离、第一出风口的第一短边长度确定出第一出风口的第一出风速度;
S1106、根据第一出风方向和第一出风速度控制空调。
其中,每个用户运动信息均对应着一个第一出风温度,例如用户运动信息和第一出风温度可以相关联的形式存储在数据库中。采用上述技术方案,用户可获得温度、风速均舒适的吹风体验。
在一种可选的实施方式中,如图12所示,空调的控制方法包括:
S1201、获取用户相对于空调的第一距离和第一方向;
S1202、根据第一方向确定出空调的两个或多个出风口之中的第一出风口;
S1203、根据已获取的用户生理信息确定出第一出风口的第一出风温度;
S1204、根据第一出风温度和第一方向确定出第一出风方向;
S1025、根据设定舒适风速、第一距离、第一出风口的第一短边长度确定出第一出风口的第一出风速度;
S1206、根据第一出风方向和第一出风速度控制空调。
其中,每个用户生理信息均对应着一个第一出风温度,例如用户生理信息和第一出风温度可以相关联的形式存储在数据库中。采用上述技术方案,用户可获得温度、风速均舒适的吹风体验。可选地,通过毫米波传感器获取用户生理信息。
在一种可选的实施方式中,如图13所示,空调的控制方法,包括:
S1301、获取用户相对于空调的第一距离;
S1302、根据第一距离、第一出风口的第一高度和第一出风口的第一出风角度确定出第一出风机 口的第一出风方向的第一俯仰角,第一出风口的第一送风区域可覆盖用户的脚部;
S1303、根据第一距离、第二出风口的第二高度、设定用户高度和第二出风口的第二出风角度确定出第二出风机口的第二出风方向的第二俯仰角,第二出风口的第二送风区域可覆盖用户的头部,其中第二高度小于第一高度;
S1304、根据第一出风方向、第二出风方向控制空调。
采用上述步骤,保证用户全身获取类似的风速,用户舒适度高。在空调送风的过程中,每个出风口均对应着一个送风区域,该送风区域即为该出风口送出的风,所能到达的区域。第一出风口对应着第一送风区域,第二出风口对应着第二送风区域,当第一送风区域和第二送风区域交叉时,产生混合区域,该混合区域中中容易产生湍流,在混合区域中,第一出风口和第二出风口吹向用户的风指向用户的动量,转化为湍流的动量,在该混合区域中,风的速度是杂乱的,没有统一方向的速度,当风没有统一方向的速度时,在整体来看,便没有风速。采用上述方案,使得混合区域覆盖用户,用户可体验到无风感。另外,在混合区域中,由于湍流的存在,还提高了空调所送出的风与环境空气进行充分的热交换,保证用户全身均可被等温的风吹到,用户舒适度高。
在一种可选的实施方式中,如图14所示,空调的控制方法包括:
S1401、当用户相对于空调的第一距离小于等于第一设定距离时,根据第一距离和空调的第一出风口和第二出风口之间的第二距离确定出第一出风口的第一出风方向的第一俯仰角和第二出风口的第二出风方向的第二俯仰角,第一出风口的第一送风区域的边界和第二出风口的第二送风区域的边界的交点与用户的第三距离大于等于第二设定距离,其中,第一出风口的第一高度大于第二出风口的第二高度;
S1402、根据第一出风方向和第二出风方向控制空调。
在混合区域中,若混合区域过小,则空调送风的动量,无法充分地转换为湍流的动量,混合区域中的温度也无法充分的均匀,用户无法体验到无风感以及等温送风的效果。第一距离小于等于第一设定距离,代表用户与空调之间的距离过近,第一出风口的第一送风区域和第二出风口的第二送风区域以无法完全覆盖用户,第三距离可表征第一混合区域的大小,当第一距离小于等于第一设定距离时,通过使得第三距离大于第二设定距离,可保证在第一混合区域中,风速基本均匀,温度基本均匀,实现了舒适送风。
在一种可选的实施方式中,如图15所示,空调的控制方法,包括:
S1501、当空调的第一出风口的第一送风区域和第二出风口的第二送风区域的第一混合区域中存在用户时,获取用户相对于空调的第一距离;
S1502、根据第一出风口的第一出风方向、第一距离和第一出风口的第一高度确定出第一出风方向与人员的第一交点的第一交点高度;
S1503、根据第二出风口的第二出风方向、第一距离和第二出风口的第二高度确定出第二出风方向与人员的第二交点的第二交点高度;
S1504、根据第一交点高度和第二交点高度修正第一出风口的第一出风速度和第二出风口的第二出风速度;
S1505、根据修整后的第一出风速度和修正后的第二出风速度控制空调。
人体的温度大于环境空气的温度,在人体周围,往往存在向上运动的气流。对于空调的出风口所送出的风,其具有两个方向的速度:轴向速度和径向速度,其轴向速度接近于垂直用户,可通过其径向速度,抵消人体区域内由于人体温度造成的向上的风速,实现对用户所在区域的风速的准确控制,实现舒适送风。在上述步骤中,以一条直线代表送风方向,以一个长方形表征用户所在的区域,当该直线与该长方形相交时,交点与地面的高度,即为交点高度。
在一种可选的实施方式中,根据第一交点高度和第二交点高度修正第一出风口的第一出风速度和第二出风口的第二出风速度,包括:
当第一交点高度大于第二交点高度时,提高第一出风速度,或,降低第二出风速度,或,提高第一出风速度和降低第二出风速度;
当第二交点高度大于第一交点高度时,提高第二出风速度,或,降低第二出风速度,或,提高第二出风速度和降低第一出风速度。
在一种可选的实施方式中,还包括:
获取用户相对于空调的第一方向;
根据第一方向确定出第一出风方向的第一方位角;
根据第二方向确定出第二出风方向的第二方位角;
根据第一俯仰角和第一方位角确定出第一出风方向;
根据第二俯仰角和第二方位角确定出第二出风方向。
在一种可选的实施方式中,还包括:
根据设定舒适风速、第一距离和第一出风口的第一短边长度确定出第一出风口的第一出风速度;
根据设定舒适风速、第一距离和第二出风口的第二短边长度确定出第二出风口的第二出风速度;
根据第一出风速度和第二出风速度控制空调。
在一种可选的实施方式中,还包括:
根据设定舒适风速、第一距离、第一出风口的第一出风温度和第一出风口的第一短边长度确定出修正前的第一出风速度;
根据设定舒适风速、第一距离、第二出风口的第二出风温度和第二出风口的第二短边长度确定出修正前的第二出风速度。
可选地,前文的空调的控制方法可以在网络侧服务器中实现,或者,在移动终端中实现,或者,在专用的控制设备中实现。
根据本发明实施例的第二方面,提供一种空调的控制装置。
如图16所示,在一种可选的实施例中,空调的控制装置包括:
第一获取模块1601,用于获取用户相对于空调的第一距离和第一方向;
第一确定模块1602,用于根据第一方向确定出空调的两个或多个出风口之中的第一出风口的第一出风方向;
第二确定模块1603,用于根据设定舒适风速、第一距离和第一出风口的第一短边长度确定出第一出风口的第一出风速度;
第一控制模块1604,用于根据第一出风方向和第一出风速度控制空调。
在一种可选的实施方式中,第一出风方向和第一方向之间第一角度差小于等于第一设定角度差。
在一种可选的实施方式中,第一出风速度和第一短边长度反相关。
在一种可选的实施方式中,第一获取模块具体用于:
通过激光测距传感器阵列获取用户相对于空调的第一距离和第一方向。
如图17所示,在一种可选的实施方式中,空调的控装置包括:
第二获取模块1701,用于获取用户相对于空调的第一距离和第一方向;
第三确定模块1702,用于根据第一方向确定出空调的两个或多个出风口之中的第一出风口;
第四确定模块1703,用于根据第一出风口的第一出风温度和第一方向确定出第一出风方向;
第五确定模块1704,用于根据设定舒适风速、第一距离和第一出风口的第一短边长度确定出第一出风口的第一出风速度;
第二控制模块1705,用于根据第一出风方向和第一出风速度控制空调。
在一种可选的实施方式中,第二获取模块具体用于:
获取第一出风温度与环境温度之间的第一温度差;
根据第一温度差和第一方向确定出第一出风方向。
在一种可选的实施方式中,第四确定模块具体用于:
根据第一方向确定出第一初始出风方向;
根据第一温度差和第一初始出风方向确定出第一出风方向。
在一种可选的实施方式中,当第一温度差为由第一出风温度减去环境温度而获取时,第一温度差和第一出风方向的仰角正相关。
在一种可选的实施方式中,空调包括两个或多个出风口,两个或多个压缩机,或,半导体温度调节器,每个出风口处设置对应的换热器,每个换热器以热传导的方式连通至对应的一个压缩机或对应的一个半导体温度调节器,如图18所示,控制装置包括:
第三获取模块1801,用于获取用户相对于空调的第一距离和第一方向;
第六确定模块1802,用于根据第一方向确定出空调的两个或多个出风口之中的第一出风口;
第三控制模块1803,用于根据第一设定温度调节与第一出风口对应的第一换热器和第一压缩机/第一半导体温度调节器之间的第一阀门;
第七确定模块1804,用于根据与第一换热器的第一温度对应的第一出风温度和第一方向确定出第一出风方向;
第八确定模块1805,用于根据设定舒适风速、第一距离和第一出风口的第一短边长度确定出第一出风口的第一出风速度;
第四控制模块1806,用于根据第一出风方向和第一出风速度控制空调。
在一种可选的实施方式中,根据第三获取模块具体用于:
获取第一出风温度与环境温度之间的第一温度差;
根据第一温度差和第一方向确定出第一出风方向。
在一种可选的实施方式中,第七确定模块具体用于:
根据第一方向确定出第一初始出风方向;
根据第一温度差和第一初始出风方向确定出第一出风方向。
在一种可选的实施方式中,当第一温度差为由第一出风温度减去环境温度而获取时,第一温度差和第一出风方向的仰角正相关。
在一种可选的实施方式中,空调包括两个或多个出风口,一个压缩机或一个半导体温度调节器,每个出风口处设置对应的换热器,每个换热器以热传导的方式连通至压缩机或半导体温度调节器,如图19所示,控制装置包括:
第四获取模块1901,用于获取用户相对于空调的第一距离和第一方向;
第九确定模块1902,用于根据第一方向确定出空调的两个或多个出风口之中的第一出风口;
第五控制模块1903,用于根据第一设定温度控制与第一出风口对应的第一换热器和压缩机/半导体温度调节器之间的第二阀门的开关时间;
第一零确定模块1904,用于根据与第一换热器的第一温度对应的第一出风温度和第一方向确定出第一出风方向;
第一一确定模块1905,用于根据设定舒适风速、第一距离和第一出风口的第一短边长度确定出第一出风口的第一出风速度;
第六控制模块1906,用于根据第一出风方向和第一出风速度控制空调。
在一种可选的实施方式中,根据第四获取模块具体用于:
获取第一出风温度与环境温度之间的第一温度差;
根据第一温度差和第一方向确定出第一出风方向。
在一种可选的实施方式中,第一零确定模块具体用于:
根据第一方向确定出第一初始出风方向;
根据第一温度差和第一初始出风方向确定出第一出风方向。
在一种可选的实施方式中,当第一温度差为由第一出风温度减去环境温度而获取时,第一温度差和第一出风方向的仰角正相关。
在一种可选的实施方式中,空调包括两个或多个出风口,一个压缩机或一个半导体温度调节器,每个出风口处设置对应的换热器,每个换热器以热传导的方式连通至压缩机或半导体温度调节器,如图20所示,控制装置包括:
第五获取模块2001,用于获取用户相对于空调的第一距离和第一方向;
第一二确定模块2002,用于根据第一方向确定出空调的两个或多个出风口之中的第一出风口;
第七控制模块2003,用于根据第一设定温度控制与第一出风口对应的第一换热器和压缩机/半导体温度调节器之间的第三阀门的开度;
第一三确定模块2004,用于根据与第一换热器的第一温度对应的第一出风温度和第一方向确定出第一出风方向;
第一四确定模块2005,用于根据设定舒适风速、第一距离和第一出风口的第一短边长度确定出第一出风口的第一出风速度;
第八控制模块2006,用于根据第一出风方向和第一出风速度控制空调。
在一种可选的实施方式中,第五获取模块具体用于:
获取第一出风温度与环境温度之间的第一温度差;
根据第一温度差和第一方向确定出第一出风方向。
在一种可选的实施方式中,第一三确定模块具体用于:
根据第一方向确定出第一初始出风方向;
根据第一温度差和第一初始出风方向确定出第一出风方向。
在一种可选的实施方式中,当第一温度差为由第一出风温度减去环境温度而获取时,第一温度差和第一出风方向的仰角正相关。
在一种可选的实施方式中,空调包括两个或多个出风口,两个或多个压缩机,每个出风口处设置对应的换热器,每个换热器同时连通至两个或多个压缩机,如图21所示,控制装置包括:
第六获取模块2101,用于获取用户相对于空调的第一距离和第一方向;
第一五确定模块2102,用于根据第一方向确定出空调的两个或多个出风口之中的第一出风口;
第九控制模块2103,用于根据第一设定温度控制对应于第一出风口的第一换热器与每个压缩机之间流通媒介的第一流量;
第一六确定模块2104,用于根据与第一换热器的第一温度对应的第一出风温度和第一方向确定出第一出风方向;
第一七确定模块2105,用于根据设定舒适风速、第一距离和第一出风口的第一短边长度确定出第一出风口的第一出风速度;
第十控制模块2106,用于根据第一出风方向和第一出风速度控制空调。
在一种可选的实施方式中,第五获取模块具体用于:
获取第一出风温度与环境温度之间的第一温度差;
根据第一温度差和第一方向确定出第一出风方向。
在一种可选的实施方式中,第一六确定模块具体用于:
根据第一方向确定出第一初始出风方向;
根据第一温度差和第一初始出风方向确定出第一出风方向。
在一种可选的实施方式中,当第一温度差为由第一出风温度减去环境温度而获取时,第一温度差和第一出风方向的仰角正相关。
在一种可选的实施方式中,空调包括两个或多个出风口,每个出风口可关断地连通至新风装置,如图22所示,控制装置包括:
第一一控制模块2201,用于当室内空气龄大于等于设定空气龄时,连通每个出风口和新风装置;
第六获取模块2202,用于获取用户相对于空调的第一距离和第一方向;
第一八确定模块2203,用于根据与第一换热器的第一温度对应的第一出风温度和第一方向确定出第一出风方向;
第一九确定模块2204,用于根据设定舒适风速、第一距离和第一出风口的第一短边长度确定出第一出风口的第一出风速度;
第一二控制模块2205,用于根据第一出风方向和第一出风速度控制空调。
在一种可选的实施方式中第六获取模块具体用于:
获取第一出风温度与环境温度之间的第一温度差;
根据第一温度差和第一方向确定出第一出风方向。
在一种可选的实施方式中第一八确定模块具体用于:
根据第一方向确定出第一初始出风方向;
根据第一温度差和第一初始出风方向确定出第一出风方向。
在一种可选的实施方式中当第一温度差为由第一出风温度减去环境温度而获取时,第一温度差和第一出风方向的仰角正相关。
如图23所示,在一种可选的实施方式中,空调的控制装置包括:
第七获取模块2301,用于获取用户相对于空调的第一距离和第一方向;
第二零确定模块2302,用于根据第一方向确定出空调的两个或多个出风口之中的第一出风口;
第二一确定模块2303,用于根据第一方向确定出第一出风方向;
第二二确定模块2304,用于根据第一距离、第一出风口的第一出风温度、第一出风口的第一短边长度和设定舒适风速确定出第一出风口的第一出风速度;
第一三控制模块2305,用于根据第一出风方向和第一出风速度控制空调。
在一种可选的实施方式中,第二二确定模块具体用于:
获取第一出风温度与环境温度之间的第一温度差;
根据第一温度差、第一距离、第一短边长度和设定舒适风速确定出第一出风口的第一出风速度。
在一种可选的实施方式中,第二二确定模块具体用于:
根据第一距离、第一短边长度和设定舒适风速确定出第一初始出风速度;
根据第一温度差和第一初始出风速度确定出第一出风速度。
在一种可选的实施方式中,当第一温度差为由第一出风温度减去环境温度而获取时,第一温度差和第一出风速度正相关。
如图24所示,在一种可选的实施方式中,空调的控制装置包括:
第八获取模块2401,用于获取用户相对于空调的第一距离和第一方向;
第二三确定模块2402,用于根据第一方向确定出空调的两个或多个出风口之中的第一出风口;
第二四确定模块2403,用于根据已获取的用户身份信息确定出第一出风口的第一出风温度;
第二五确定模块2404,用于根据第一出风温度和第一方向确定出第一出风方向;
第二六确定模块2405,用于根据设定舒适风速、第一距离、第一出风口的第一短边长度确定出第一出风口的第一出风速度;
第一四确定模块2406,用于根据第一出风方向和第一出风速度控制空调。
在一种可选的实施方式中,第八获取装置具体用于:
获取第一出风温度与环境温度之间的第一温度差;
根据第一温度差和第一方向确定出第一出风方向。
在一种可选的实施方式中,第二物确定模块具体用于:
根据第一方向确定出第一初始出风方向;
根据第一温度差和第一初始出风方向确定出第一出风方向。
在一种可选的实施方式中,当第一温度差为由第一出风温度减去环境温度而获取时,第一温度差和第一出风方向的仰角正相关。
如图25所示在一种可选的实施方式中,空调的控制装置包括:
第九获取模块2501,用于获取用户相对于空调的第一距离和第一方向;
第二七确定模块2502,用于根据第一方向确定出空调的两个或多个出风口之中的第一出风口;
第二八确定模块2503,用于根据已获取的用户运动信息确定出第一出风口的第一出风温度;
第二九确定模块2504,用于根据第一出风温度和第一方向确定出第一出风方向;
第三零确定模块2505,用于根据设定舒适风速、第一距离、第一出风口的第一短边长度确定出第一出风口的第一出风速度;
第一五控制模块2506,用于根据第一出风方向和第一出风速度控制空调。
在一种可选的实施方式中,第九获取模块具体用于:
获取第一出风温度与环境温度之间的第一温度差;
根据第一温度差和第一方向确定出第一出风方向。
在一种可选的实施方式中,第二九确定模块具体用于:
根据第一方向确定出第一初始出风方向;
根据第一温度差和第一初始出风方向确定出第一出风方向。
在一种可选的实施方式中,当第一温度差为由第一出风温度减去环境温度而获取时,第一温度差和第一出风方向的仰角正相关。
如图26所示,在一种可选的实施方式中,空调的控制装置包括:
第十获取装置2601,用于获取用户相对于空调的第一距离和第一方向;
第三一确定装置2602,用于根据第一方向确定出空调的两个或多个出风口之中的第一出风口;
第三二确定装置2603,用于根据已获取的用户生理信息确定出第一出风口的第一出风温度;
第三三确定装置2604,用于根据第一出风温度和第一方向确定出第一出风方向;
第三四确定装置2604,用于根据设定舒适风速、第一距离、第一出风口的第一短边长度确定出第一出风口的第一出风速度;
第一六控制装置2605,用于根据第一出风方向和第一出风速度控制空调。
在一种可选的实施方式中,第十获取装置具体用于:
获取第一出风温度与环境温度之间的第一温度差;
根据第一温度差和第一方向确定出第一出风方向。
在一种可选的实施方式中,第三三确定装置具体用于:
根据第一方向确定出第一初始出风方向;
根据第一温度差和第一初始出风方向确定出第一出风方向。
在一种可选的实施方式中,当第一温度差为由第一出风温度减去环境温度而获取时,第一温度差和第一出风方向的仰角正相关。
如上图27所示,在一种可选的实施方式中,空调的控制装置包括:
第十一获取装置2701,用于获取用户相对于空调的第一距离;
第三五确定装置2702,用于根据第一距离、第一出风口的第一高度和第一出风口的第一出风角度确定出第一出风机口的第一出风方向的第一俯仰角,第一出风口的第一送风区域可覆盖用户的脚部;
第三流确定装置2703,用于根据第一距离、第二出风口的第二高度、设定用户高度和第二出风口的第二出风角度确定出第二出风机口的第二出风方向的第二俯仰角,第二出风口的第二送风区域可覆盖用户的头部,其中第二高度小于第一高度;
第一七控制装置2704,用于根据第一出风方向、第二出风方向控制空调。
在一种可选的实施方式中,还包括:
第一二获取装置,用于获取用户相对于空调的第一方向;
第三七确定装置,用于根据第一方向确定出第一出风方向的第一方位角;
第三八确定装置,用于根据第二方向确定出第二出风方向的第二方位角;
第三九确定装置,用于根据第一俯仰角和第一方位角确定出第一出风方向;
第四零确定装置,用于根据第二俯仰角和第二方位角确定出第二出风方向。
在一种可选的实施方式中,还包括:
第四一确定装置,用于根据设定舒适风速、第一距离和第一出风口的第一短边长度确定出第一出风口的第一出风速度;
第四二确定装置,用于根据设定舒适风速、第一距离和第二出风口的第二短边长度确定出第二出风口的第二出风速度;
第一八控制装置,用于根据第一出风速度和第二出风速度控制空调。
8、根据权利要求5或6的控制装置,其特征在于,还包括:
第四三确定装置,用于根据设定舒适风速、第一距离、第一出风口的第一出风温度和第一出风口的第一短边长度确定出修正前的第一出风速度;
第四四确定装置,用于根据设定舒适风速、第一距离、第二出风口的第二出风温度和第二出风口的第二短边长度确定出修正前的第二出风速度。
如图28所示,在一种可选的实施方式中,空调的控制装置,包括:
第四五确定装置2801,用于当用户相对于空调的第一距离小于等于第一设定距离时,根据第一距离和空调的第一出风口和第二出风口之间的第二距离确定出第一出风口的第一出风方向的第一俯仰角和第二出风口的第二出风方向的第二俯仰角,第一出风口的第一送风区域的边界和第二出风口的第二送风区域的边界的交点与用户的第三距离大于等于第二设定距离,其中,第一出风口的第一高度大于第二出风口的第二高度;
第一八控制模块2802,用于根据第一出风方向和第二出风方向控制空调。
在一种可选的实施方式中,还包括:
第一三获取模块,用于获取用户相对于空调的第一方向;
第四六确定模块,用于根据第一方向确定出第一出风方向的第一方位角;
第四七确定模块,用于根据第二方向确定出第二出风方向的第二方位角;
第四八确定模块,用于根据第一俯仰角和第一方位角确定出第一出风方向;
第四九确定模块,用于根据第二俯仰角和第二方位角确定出第二出风方向。
在一种可选的实施方式中,还包括:
第五零确定模块,用于根据设定舒适风速、第一距离和第一出风口的第一短边长度确定出第一出风口的第一出风速度;
第五一确定模块,用于根据设定舒适风速、第一距离和第二出风口的第二短边长度确定出第二出风口的第二出风速度;
第一九控制模块,用于根据第一出风速度和第二出风速度控制空调。
在一种可选的实施方式中,还包括:
第五二确定模块,用于根据设定舒适风速、第一距离、第一出风口的第一出风温度和第一出风口的第一短边长度确定出修正前的第一出风速度;
第五三确定模块,用于根据设定舒适风速、第一距离、第二出风口的第二出风温度和第二出风口的第二短边长度确定出修正前的第二出风速度。
如图29所示,在一种可选的实施方式中,空调的控制装置包括:
第一四获取装置2901,用于当空调的第一出风口的第一送风区域和第二出风口的第二送风区域的第一混合区域中存在用户时,获取用户相对于空调的第一距离;
第五四确定模块2902,用于根据第一出风口的第一出风方向、第一距离和第一出风口的第一高度确定出第一出风方向与人员的第一交点的第一交点高度;
第五五确定模块2903,用于根据第二出风口的第二出风方向、第一距离和第二出风口的第二高度确定出第二出风方向与人员的第二交点的第二交点高度;
第五六确定模块2904,用于根据第一交点高度和第二交点高度修正第一出风口的第一出风速度和第二出风口的第二出风速度;
第二零控制模块2905,用于根据修整后的第一出风速度和修正后的第二出风速度控制空调。
在一种可选的实施方式中,第五六确定模块具体用于:
当第一交点高度大于第二交点高度时,提高第一出风速度,或,降低第二出风速度,或,提高第一出风速度和降低第二出风速度;
当第二交点高度大于第一交点高度时,提高第二出风速度,或,降低第二出风速度,或,提高第二出风速度和降低第一出风速度。
在一种可选的实施方式中,还包括:
第五七确定模块,用于根据设定舒适风速、第一距离和第一出风口的第一短边长度确定出修正前的第一出风速度;
第五八确定模块,用于根据设定舒适风速、第一距离和第二出风口的第二短边长度确定出修正前的第二出风速度。
在一种可选的实施方式中,还包括:
第五九确定模块,用于根据设定舒适风速、第一距离、第一出风口的第一出风温度和第一出风口的第一短边长度确定出修正前的第一出风速度;
第六零确定模块,用于根据设定舒适风速、第一距离、第二出风口的第二出风温度和第二出风口的第二短边长度确定出修正前的第二出风速度。
根据本发明实施例的第三方面,提供一种计算机设备。
在一种可选的实施例中,计算机设备包括存储器、处理器及存储在所述存储器上并可被所述处理器运行的程序,所述处理器执行所述程序时实现前述的控制方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存 储器,上述指令可由处理器执行以完成前文所述的方法。上述非临时性计算机可读存储介质可以是只读存储器ROM(Read Only Memory)、随机存取存储器RAM(Random Access Memory)、磁带和光存储设备等。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。所属技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,应该理解到,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
应当理解的是,附图中的流程图和框图显示了根据本发明的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。本发明并不局限于上面已经描述并在附图中示出的流程及结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种空调的控制方法,包括:
    获取用户相对于所述空调的第一距离和第一方向;
    根据所述第一方向确定出所述空调的两个或多个出风口之中的第一出风口;
    根据所述第一方向确定出第一出风方向;
    根据所述第一距离、所述第一出风口的第一出风温度、所述第一出风口的第一短边长度和设定舒适风速确定出所述第一出风口的第一出风速度;
    根据所述第一出风方向和所述第一出风速度控制所述空调。
  2. 根据权利要求1所述的控制方法,其中,所述根据所述第一距离、所述第一出风口的第一出风温度、所述第一出风口的第一短边长度和设定舒适风速确定出所述第一出风口的第一出风速度,包括:
    获取所述第一出风温度与环境温度之间的第一温度差;
    根据所述第一温度差、所述第一距离、所述第一短边长度和所述设定舒适风速确定出所述第一出风口的第一出风速度。
  3. 根据权利要求2所述的控制方法,其中,所述根据所述第一温度差、所述第一距离、所述第一短边长度和所述设定舒适风速确定出所述第一出风口的第一出风速度,包括:
    根据所述第一距离、所述第一短边长度和所述设定舒适风速确定出第一初始出风速度;
    根据所述第一温度差和所述第一初始出风速度确定出第一出风速度。
  4. 根据权利要求2或3所述的控制方法,其中,当所述第一温度差为由所述第一出风温度减去所述环境温度而获取时,所述第一温度差和所述第一出风速度正相关。
  5. 一种空调的控制装置,包括:
    第七获取模块,用于获取用户相对于所述空调的第一距离和第一方向;
    第二零确定模块,用于根据所述第一方向确定出所述空调的两个或多个出风口之中的第一出风口;
    第二一确定模块,用于根据所述第一方向确定出第一出风方向;
    第二二确定模块,用于根据所述第一距离、所述第一出风口的第一出风温度、所述第一出风口的第一短边长度和设定舒适风速确定出所述第一出风口的第一出风速度;
    第一三控制模块,用于根据所述第一出风方向和所述第一出风速度控制所述空调。
  6. 根据权利要求5所述的控制装置,其中,所述第二二确定模块具体用于:
    获取所述第一出风温度与环境温度之间的第一温度差;
    根据所述第一温度差、所述第一距离、所述第一短边长度和所述设定舒适风速确定出所述第一出风口的第一出风速度。
  7. 根据权利要求6所述的控制装置,其中,所述第二二确定模块具体用于:
    根据所述第一距离、所述第一短边长度和所述设定舒适风速确定出第一初始出风速度;
    根据所述第一温度差和所述第一初始出风速度确定出第一出风速度。
  8. 根据权利要求6或7所述的控制装置,其中,当所述第一温度差为由所述第一出风温度减去所述环境温度而获取时,所述第一温度差和所述第一出风速度正相关。
  9. 一种计算机设备,包括存储器、处理器及存储在所述存储器上并可被所述处理器运行的程序,其中,所述处理器执行所述程序时实现如权利要求1至4任一所述的控制方法。
  10. 一种存储介质,其上存储有计算机程序,其中,当所述计算机程序被处理器执行时实现如权利要求1至4任意一项所述的控制方法。
PCT/CN2019/129681 2018-12-29 2019-12-29 空调的控制方法、装置、存储介质及计算机设备 WO2020135834A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811639552.1A CN109631272A (zh) 2018-12-29 2018-12-29 空调的控制方法、装置、存储介质及计算机设备
CN201811639552.1 2018-12-29

Publications (1)

Publication Number Publication Date
WO2020135834A1 true WO2020135834A1 (zh) 2020-07-02

Family

ID=66055168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129681 WO2020135834A1 (zh) 2018-12-29 2019-12-29 空调的控制方法、装置、存储介质及计算机设备

Country Status (2)

Country Link
CN (1) CN109631272A (zh)
WO (1) WO2020135834A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109631275A (zh) * 2018-12-29 2019-04-16 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109631274B (zh) * 2018-12-29 2021-09-21 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109631276A (zh) * 2018-12-29 2019-04-16 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109631268B (zh) * 2018-12-29 2021-01-29 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109631277B (zh) * 2018-12-29 2021-01-29 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109631269B (zh) * 2018-12-29 2021-08-24 重庆海尔空调器有限公司 空调的控制方法、装置、存储介质及计算机设备
CN109631278B (zh) * 2018-12-29 2021-04-20 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109631272A (zh) * 2018-12-29 2019-04-16 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109631273B (zh) * 2018-12-29 2021-09-21 重庆海尔空调器有限公司 空调的控制方法、装置、存储介质及计算机设备
CN109631271B (zh) * 2018-12-29 2021-03-16 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109539505B (zh) * 2018-12-29 2021-04-20 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
US20230151995A1 (en) * 2020-06-02 2023-05-18 Mitsubishi Electric Corporation Environmental control system
CN112240634B (zh) * 2020-12-17 2021-04-06 浙江大学 一种平衡出风阻力的变距离空调送风末端及其调节方法

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010074430A2 (en) * 2008-12-23 2010-07-01 Lg Electronics, Inc. Air conditioner and method for controlling the same
WO2016203538A1 (ja) * 2015-06-16 2016-12-22 三菱電機株式会社 空調制御システム
CN106322638A (zh) * 2015-06-30 2017-01-11 青岛海尔空调器有限总公司 一种空调器及其送风控制方法和系统
CN107741082A (zh) * 2016-08-12 2018-02-27 青岛海尔智能技术研发有限公司 一种用于空调的控制方法、装置及空调
CN108105959A (zh) * 2017-12-14 2018-06-01 广东美的制冷设备有限公司 空调器控制方法和空调器
CN109539505A (zh) * 2018-12-29 2019-03-29 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109631269A (zh) * 2018-12-29 2019-04-16 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109631273A (zh) * 2018-12-29 2019-04-16 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109631272A (zh) * 2018-12-29 2019-04-16 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109631277A (zh) * 2018-12-29 2019-04-16 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109631274A (zh) * 2018-12-29 2019-04-16 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109631275A (zh) * 2018-12-29 2019-04-16 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109631276A (zh) * 2018-12-29 2019-04-16 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109631268A (zh) * 2018-12-29 2019-04-16 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109631270A (zh) * 2018-12-29 2019-04-16 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109631278A (zh) * 2018-12-29 2019-04-16 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109631271A (zh) * 2018-12-29 2019-04-16 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109737567A (zh) * 2018-12-29 2019-05-10 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109737555A (zh) * 2018-12-29 2019-05-10 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104142003A (zh) * 2014-07-22 2014-11-12 深圳市赛亿科技开发有限公司 一种空调风向智能调控方法
JP6274996B2 (ja) * 2014-07-25 2018-02-07 三菱電機株式会社 空気調和機の室内機
CN105509287A (zh) * 2016-02-19 2016-04-20 珠海格力电器股份有限公司 空调设备出风结构及空调设备
JP6808999B2 (ja) * 2016-06-27 2021-01-06 株式会社富士通ゼネラル 空気調和機
CN107327932A (zh) * 2017-08-01 2017-11-07 青岛海尔空调器有限总公司 壁挂式空调室内机及其控制方法
CN107860096A (zh) * 2017-09-20 2018-03-30 珠海格力电器股份有限公司 一种送风速度确定方法、装置、存储介质及空调

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010074430A2 (en) * 2008-12-23 2010-07-01 Lg Electronics, Inc. Air conditioner and method for controlling the same
WO2016203538A1 (ja) * 2015-06-16 2016-12-22 三菱電機株式会社 空調制御システム
CN106322638A (zh) * 2015-06-30 2017-01-11 青岛海尔空调器有限总公司 一种空调器及其送风控制方法和系统
CN107741082A (zh) * 2016-08-12 2018-02-27 青岛海尔智能技术研发有限公司 一种用于空调的控制方法、装置及空调
CN108105959A (zh) * 2017-12-14 2018-06-01 广东美的制冷设备有限公司 空调器控制方法和空调器
CN109539505A (zh) * 2018-12-29 2019-03-29 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109631269A (zh) * 2018-12-29 2019-04-16 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109631273A (zh) * 2018-12-29 2019-04-16 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109631272A (zh) * 2018-12-29 2019-04-16 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109631277A (zh) * 2018-12-29 2019-04-16 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109631274A (zh) * 2018-12-29 2019-04-16 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109631275A (zh) * 2018-12-29 2019-04-16 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109631276A (zh) * 2018-12-29 2019-04-16 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109631268A (zh) * 2018-12-29 2019-04-16 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109631270A (zh) * 2018-12-29 2019-04-16 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109631278A (zh) * 2018-12-29 2019-04-16 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109631271A (zh) * 2018-12-29 2019-04-16 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109737567A (zh) * 2018-12-29 2019-05-10 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109737555A (zh) * 2018-12-29 2019-05-10 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备

Also Published As

Publication number Publication date
CN109631272A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
WO2020135833A1 (zh) 空调的控制方法、装置、存储介质及计算机设备
WO2020135845A1 (zh) 空调的控制方法、装置、存储介质及计算机设备
WO2020135834A1 (zh) 空调的控制方法、装置、存储介质及计算机设备
WO2020135843A1 (zh) 空调的控制方法、装置、存储介质及计算机设备
WO2020135821A1 (zh) 空调的控制方法、装置、存储介质及计算机设备
WO2020135835A1 (zh) 空调的控制方法、装置、存储介质及计算机设备
WO2020135820A1 (zh) 空调的控制方法、装置、存储介质及计算机设备
WO2020135832A1 (zh) 空调的控制方法、装置、存储介质及计算机设备
WO2020135819A1 (zh) 空调的控制方法、装置、存储介质及计算机设备
WO2020135844A1 (zh) 空调的控制方法、装置、存储介质及计算机设备
WO2020135837A1 (zh) 空调的控制方法、装置、存储介质及计算机设备
WO2020135841A1 (zh) 空调的控制方法、装置、存储介质及计算机设备
WO2020135818A1 (zh) 空调的控制方法、装置、存储介质及计算机设备
WO2020135836A1 (zh) 空调的控制方法、装置、存储介质及计算机设备
CN103994544B (zh) 空调器的控制方法、智能终端和空调器控制系统
CN108458454A (zh) 空调器及其的控制方法和计算机可读存储介质
JP2018109494A (ja) 空調制御装置、空調制御方法及びコンピュータプログラム
WO2019024819A1 (zh) 空调装置的控制方法
CN108644888A (zh) 供暖温度调节装置、供暖系统及供暖温度调节方法
JP2016056973A (ja) 空調制御装置、空調制御方法および空調制御プログラム
CN109140727A (zh) 空调器的控制方法、空调器及计算机可读存储介质
WO2021070227A1 (ja) 空気調和機の制御装置、空気調和機、空気調和機の制御方法及び、プログラム
CN107990407B (zh) 空调器的控制方法
CN117029231A (zh) 空调器的控制方法和空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902845

Country of ref document: EP

Kind code of ref document: A1