WO2016202169A2 - 一种高能量密度锂离子电池 - Google Patents

一种高能量密度锂离子电池 Download PDF

Info

Publication number
WO2016202169A2
WO2016202169A2 PCT/CN2016/083964 CN2016083964W WO2016202169A2 WO 2016202169 A2 WO2016202169 A2 WO 2016202169A2 CN 2016083964 W CN2016083964 W CN 2016083964W WO 2016202169 A2 WO2016202169 A2 WO 2016202169A2
Authority
WO
WIPO (PCT)
Prior art keywords
energy density
negative electrode
positive electrode
density
lithium ion
Prior art date
Application number
PCT/CN2016/083964
Other languages
English (en)
French (fr)
Other versions
WO2016202169A3 (zh
Inventor
田东
Original Assignee
田东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田东 filed Critical 田东
Publication of WO2016202169A2 publication Critical patent/WO2016202169A2/zh
Publication of WO2016202169A3 publication Critical patent/WO2016202169A3/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a high energy density lithium ion battery, belonging to the field of lithium ion batteries.
  • lithium-ion batteries have developed rapidly.
  • the negative electrode material of the lithium ion battery includes a carbon material, an intermetallic compound, a tin-based compound, and the like.
  • the commercial lithium ion battery anode material is made of graphite-based carbon material, has low lithium insertion/deintercalation potential, suitable reversible capacity, rich resources, and low price, and is an ideal anode material for lithium ion batteries.
  • the graphite material has a low discharge and discharge platform, and has a high lithium insertion capacity.
  • the lithium intercalation capacity of the lithium intercalation compound LiC6 is 372 mAh/g, and the first charge and discharge efficiency is high. It has been found through research that graphite forms a SEI film during the first cycle by reacting with the electrolyte.
  • This film allows lithium ions to pass freely and prevents solvated lithium ions from entering, thus forming this layer of SEI film on the graphite surface. It is possible to prevent the graphite electrode from being further corroded by the electrolyte and maintaining good cycle performance.
  • the positive electrode material of a lithium ion battery is generally an excessive metal oxide such as LiCoO 2 , LiNiO 2 , LiMnO 2 , and LiNi x Co y Mn (1-xy) O 2 , and the like, and a phosphate of an excessive metal.
  • the LiCoO 2 electrode with layered structure has good performance, and is a cathode material widely used in commercial lithium ion batteries on the market, but it also has disadvantages such as high price and large pollution; LiMn 2 O 4 with spinel structure is cheap and pollution-free. It has been regarded as the material of choice for replacing LiCoO 2 and has been extensively studied. However, due to its low capacity and severe capacity degradation at high temperatures, its application range is still limited.
  • LiNiO 2 Compared with LiCoO 2 with similar structure, LiNiO 2 It has the advantages of high capacity, high power and moderate price, but it also has difficulties in synthesis and poor thermal stability, and its practical process has been slow. However, as the performance of doped multi-element oxides (such as LiNi x Co y Mn (1-xy) O 2 , etc.) is improved and improved, the application of lithium ion batteries is extended to electric vehicles (EV, HEV), Industrial large battery fields such as energy storage power stations and military applications are becoming research hotspots.
  • EV electric vehicles
  • HEV electric vehicles
  • conductive agents are indispensable as a lithium battery.
  • the purpose of the component is to form an effective conductive network in the active material.
  • the composite of the active material and the conductive agent hereinafter referred to as "composite electrode"
  • the amount of the conductive agent must be added to and exceeds a certain amount. When the amount exceeds this amount, the conductive agent particles can be filled with full activity.
  • the gap between the particles of the material, and the effective contact between the conductive agents, the conductivity of the composite electrode is fundamentally improved.
  • the former lithium-ion battery conductive agent is mainly Super-P and KS series. Both of these products are imported from abroad.
  • the former is a nano-scale carbon black product, which has a small particle size and a large specific surface area. It also has good electrical conductivity, but because of its small particle size and large specific surface area, it is difficult to disperse, and then it is micron-sized conductive graphite, which is easy to disperse, but its conductivity is worse than Super-P. Therefore, in the actual use process, both are added at the same time, and the complement is insufficient.
  • the graphite thin structure is unique, with good electrical conductivity, thermal conductivity, stability and a large specific surface area. As a conductive agent for lithium ion batteries, it can greatly improve the energy density of the battery, and at the same time increase the rate of charge and discharge of the material to meet the requirements of the power battery.
  • the improvement of the performance of lithium-ion batteries is mainly due to the improvement of the performance of each material and the cooperation of various components. Therefore, by selecting a suitable material system, lithium-ion batteries with different performance characteristics can be prepared for different needs.
  • a high energy density lithium battery designed by the present invention uses a high pressure solid lithium cobalt oxide as a positive electrode, a high pressure solid and high capacity natural modified graphite as a negative electrode, and graphene as a conductive additive. .
  • the lithium cobaltate cathode material has a specific capacity of 155 to 162 mAh/g, a first efficiency of 96.5 to 99.5%, a double-sided surface density of 30 to 50 mg/cm 2 , and a positive electrode compaction density of 2.0 to 2.5 g/cm 3 .
  • the graphite anode material has a gram specific capacity of 350-360 mAh/g, a first efficiency of 94 to 96.5%, a negative electrode compaction density of 1.5 to 1.8 g/cm 3 , and a negative electrode sheet surface density of the corresponding positive electrode active material excess ratio of 3 % ⁇ 10%.
  • the positive electrode tab is prepared by first preparing 2 to 5 wt% of a binder-polyvinylidene fluoride (PVDF) and 80 to 120 wt% of a solvent-methylpyrrolidone (NMP), and then adding 1 to 3 wt%.
  • PVDF binder-polyvinylidene fluoride
  • NMP solvent-methylpyrrolidone
  • the graphene conductive agent is well dispersed, and finally 80 to 95.5 wt% of active material lithium cobaltate is added, mixed into a slurry, the viscosity is adjusted, and a pole piece is coated on an aluminum foil of 0.010 to 0.016 mm, and a positive electrode piece is obtained by rolling and slitting.
  • the double-sided density of the positive electrode is 40 to 50 mg/cm 2 , and the compaction density is 2.2 to 2.4 g/cm 3 .
  • the negative electrode tab is prepared by disposing 1 to 2 wt% thickener sodium carboxymethylcellulose (CMC) and deionized water into a glue solution, and dispersing 0.5 to 2 wt% of graphene conductive agent, and then dispersing. Add 93.8-98wt% active material natural modified graphite, and finally add 2 ⁇ 4.4wt% binder-styrene-butadiene rubber (SBR), mix into slurry, adjust viscosity, and coat on copper foil of 0.08-0.010mm
  • the pole piece has a compacted density of 1.6 to 1.8 g/cm 3 .
  • the separator is separated between the positive electrode and the negative electrode, and the separator is 0.012 to 0.025 mm.
  • a solid electrolyte membrane (SEI film) is formed on the surface during the first charge and discharge process.
  • the solid electrolyte membrane is formed by reacting an electrolyte, a negative electrode material and lithium ions, and irreversibly consuming lithium ions, which is a major factor in forming irreversible capacity.
  • the electrolyte is easily co-incorporated with it.
  • the electrolyte is reduced, and the generated gas product causes the graphite sheet to peel off.
  • the graphite sheet peeling off will form a new interface, resulting in further SEI formation, thereby causing a decrease in battery cycle performance.
  • a high energy density lithium ion battery designed by the present invention can be placed, formed, aged, and divided after the battery is assembled.
  • the beneficial effects and progress of the present invention are as follows:
  • Adopt high-ratio specific capacity and high-pressure real and negative material system to increase the amount of active material per unit volume and increase the volumetric energy density of the battery
  • the specific capacity is 159 mAh/g, the first efficiency is 98.2%; the natural modified graphite is used as the negative electrode material, the specific capacity is 360 mAh/g, and the first efficiency is 94%.
  • the positive electrode tab is prepared by first disposing the binder PVDF (3wt%) and the solvent NMP (80wt%) into a glue solution, dispersing 2wt% of the added graphene, and finally adding the active material lithium cobaltate 95wt%, mixing The slurry was slurried, and the viscosity was adjusted. Then, a pole piece was coated on an aluminum foil of 0.016 mm, and the double-sided surface density was 45 mg/cm 2 , and the positive electrode piece was obtained by rolling and cutting, and the compacted density was 2.3 g/cm 3 ;
  • the negative pole piece was prepared by disposing CMC 1.2wt% and deionized water into a glue solution, adding graphene 0.5% by weight to disperse, then adding active material natural modified graphite 96.3wt%, and finally adding binder 2.0wt%. The mixture is mixed into a slurry to adjust the viscosity.
  • the pole piece is coated on a copper foil of 0.010 mm, and the density of the negative electrode surface is calculated according to the excess ratio of the positive electrode active material to 5%, and the compact density of the negative electrode piece is 1.7 g.
  • the volume energy density of the battery prepared by the invention reaches 192Wh/kg, which is much higher than that of the ordinary lithium ion battery (140-155Wh/kg), and the capacity is maintained after 500 cycles test.
  • the rate was 93.4%, showing excellent cycle performance.
  • An energy density lithium ion battery described in this embodiment uses lithium cobaltate as a positive electrode active material, a lithium cobaltate has a specific capacity of 155 mAh/g, a first efficiency of 97.5%, and a natural modified graphite as a negative electrode material.
  • the specific capacity is 358 mAh/g, and the first efficiency is 94.2%.
  • the positive electrode tab is prepared by first disposing the binder PVDF (2.5 wt%) and the solvent NMP (80 wt%) into a glue solution, dispersing 1.5 wt% of the added graphene, and finally adding the active material lithium cobaltate 96 wt%. , mixing into a slurry, adjusting the viscosity, and then coating a pole piece on a 0.016 mm aluminum foil, double-sided surface density of 48 mg / cm 2 , and rolling and slitting to obtain a positive electrode piece, compaction density of 2.3 g / cm 3 ;
  • the negative pole piece was prepared by disposing CMC 1.5wt% and deionized water into a glue, adding graphene 0.5wt% to disperse, then adding active material natural modified graphite to 96.7wt%, and finally adding binder 1.8wt%. The mixture was mixed into a slurry to adjust the viscosity.
  • the pole piece was coated on a copper foil of 0.010 mm, and the density of the negative electrode surface was calculated to correspond to the excess capacity ratio of the positive electrode active material ratio of 6%, and the compact density of the negative electrode piece was 1.75 g.
  • the volume energy density of the battery prepared by the invention reaches 198Wh/kg, which is much higher than that of the ordinary lithium ion battery (140-155Wh/kg), and the capacity is maintained after 500 cycles test.
  • the rate was 92.1%, showing excellent cycle performance.
  • An energy density lithium ion battery described in this embodiment uses lithium cobaltate as a positive electrode active material, a lithium cobaltate has a specific capacity of 162 mAh/g, a first efficiency of 98.5%, and a natural modified graphite as a negative electrode material.
  • the specific capacity is 365mAh/g, and the first efficiency is 95.1%.
  • the positive electrode tab was prepared by first disposing the binder PVDF (2.0 wt%) and the solvent NMP (80 wt%) into a glue solution, dispersing 1.0 wt% of the added graphene, and finally adding the active material lithium cobaltate 97 wt%. , mixing into a slurry, adjusting the viscosity, and then coating a pole piece on a 0.016 mm aluminum foil, the double-sided surface density of 50 mg / cm 2 , and rolling and slitting to obtain a positive electrode piece, compaction density of 2.4 g / cm 3 ;
  • the negative pole piece is prepared by disposing 1.5% by weight of CMC and deionized water into a glue solution, dispersing 0.5% by weight of graphene, adding 97% by weight of natural modified graphite of active material, and finally adding 1.5% by weight of binder. The mixture was mixed into a slurry to adjust the viscosity.
  • the pole piece was coated on a copper foil of 0.010 mm, and the density of the negative electrode surface was calculated to correspond to the excess of the positive electrode active material capacity ratio of 6%, and the compact density of the negative electrode piece was 1.80 g/ Cm 3 ;
  • the volume energy density of the battery prepared by the invention reaches 203Wh/kg, which is much higher than that of the ordinary lithium ion battery (140-155Wh/kg), and the capacity is maintained after 500 cycles test.
  • the rate was 91.8%, showing excellent cycle performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

一种高能量密度锂离子电池,材料体系以高压实钴酸锂为正极,以高压实、高容量天然改性石墨为负极、以石墨烯为导电添加剂。本发明采用高克比容量、高压实的正、负极材料体系,提升单位体积活性材料的量,提高电池体积能量密度。采用高导电性能的石墨烯作为导电剂添加剂,避免采用常规导电剂而需大量添加从而降低正、负极活性材料比例的弊端,进一步提高电池体积能量密度。采用不含PC溶剂的电解液,避免PC对天然石墨的侵蚀,保证电池的循环稳定性。本发明工艺简单,制作的锂电池性能优异,具有高于普通锂电池30~50%的体积能量密度。

Description

一种高能量密度锂离子电池 技术领域
本发明涉及一种高能量密度锂离子电池,属于锂离子电池领域。
背景技术
自从1990年日本索尼公司率先研制成功锂离子电池并将其商品化以来,锂离子电池得到了迅猛发展。如今锂离子电池已经广泛地应用于民用及军用的各个领域。随着科技的不断进步,人们对电池的性能提出了更多更高的要求:电子设备的小型化和个性化发展,需要电池具有更小的体积和更高的比能量输出;航空航天能源要求电池具有循环寿命,更好的低温充放电性能和更高的安全性能;电动汽车需要大容量、低成本、高稳定性和安全性能的电池。
锂离子电池的负极材料有碳材料、金属间化合物、锡基化合物等。目前商业化锂离子电池负极材料采用的是石墨类碳材料,具有较低的锂嵌入/脱嵌电位、合适的可逆容量且资源丰富、价格低廉等优点,是比较理想的锂离子电池负极材料。石墨类材料具有较低的冲放电平台,嵌锂容量高,其嵌锂化合物LiC6的理论嵌锂容量为372mAh/g,并且首次充放电效率较高。人们通过研究发现,石墨在首次循环过程中,由于与电解液发生反应形成SEI膜,这层薄膜允许锂离子自由穿过,防止溶剂化锂离子进入,这样在石墨表面上形成的这层SEI膜就可以防止石墨电极不被电解液进一步的腐蚀,维持良好的循环性能。
锂离子电池的正极材料一般为过度金属氧化物,如:LiCoO2、LiNiO2、LiMnO2、和LiNixCoyMn(1-x-y)O2等,以及过度金属的磷酸盐。其中层状结构的LiCoO2电极性能良好,是当前市场上商品锂离子电池广泛采用的正极材料,但也存在价格高,污染大等缺点;尖晶石结构的LiMn2O4价格便宜,无污染,被视为取代LiCoO2的首选材料,获得广泛深入的研究,但由于容量偏低,高温下容量衰减严重等问题,其应用范围仍受到一定的限制;与结构相似的LiCoO2相比,LiNiO2具有容量高,功率大,价格适中等优点,但也存在合成困难,热稳定性差等问题,其实用化进程一直较缓慢。然而,随着掺杂型多元氧化物(如LiNixCoyMn(1-x-y)O2等)性能的改善和提高,况且,将锂离子电池的应用扩展到电动汽车(EV,HEV),蓄能电站,军事应用等工业大电池领域正成为研究热点。
不管是正极的还是负极的活性材料,导电剂作为锂电池不可缺少的重要 组成部分,其目的是要在活性材料中形成有效导电网络。对于活性材料和导电剂的复合物(以下简称“复合电极”)而言,要形成导电网络,导电剂的添加量就必须达到和超过一定量,超过这个量时,导电剂颗粒可填充满活性材料颗粒间的空隙,并且导电剂之间有了有效的接触,复合电极的导电性得到根本改善。前市场上锂离子电池导电剂主要为Super-P与KS系列,此两类产品皆为国外进口,前者为纳米级的炭黑类产品,既有较小的粒径和较大的比表面积,又具有较好的导电性能,但是由于粒径较小及比表面积较大,不易分散,而后则为微米级的导电石墨,易于分散,但是导电性能较Super-P差。所以实际使用过程中,两者都是同时添加使用,互补不足。而石墨稀结构独特,具有良好的导电性、导热性、稳定性和巨大的比表面积。其作为锂离子电池的导电剂,可以极大提高电池的能量密度,同时增加材料的倍率充放电性能,满足动力电池的要求。
锂离子电池性能的提升,主要得益于各材料性能的提升,以及各组分的配合,因此选择合适的材料体系,可以针对不同需要制备出性能侧重点不一的锂离子电池。
发明内容
针对现有的锂离子电池在体积能量密度偏低方面所存在的不足,本发明的目的在于提供一种具有一种高能量密度的锂离子电池及其制备方法。
为了达到上述目的,本发明所设计的一种高能量密度锂电池,材料体系以高压实钴酸锂为正极,以高压实、高容量天然改性石墨为负极,以石墨烯为导电添加剂。
钴酸锂正极材料的克比容量为155~162mAh/g,首次效率为96.5~99.5%,双面面密度为30~50mg/cm2,正极压实密度2.0~2.5g/cm3
石墨负极材料的克比容量为350~360mAh/g,首次效率为94~96.5%,负极压实密度为1.5~1.8g/cm3,且负极极片面密度以对应的正极活性物质过量比为3%~10%。
作为优选,正极极片的制作是先将2~5wt%粘接剂-聚偏氟乙烯(PVDF)与80~120wt%溶剂-甲基吡咯烷酮(NMP)制成胶液,再加入1~3wt%石墨烯导电剂分散好,最后加入80~95.5wt%活性材料钴酸锂,混合成浆料,调节粘度,在0.010~0.016mm的铝箔上涂布出极片,辊压分切得到正极极片;且正极双面 密度为40~50mg/㎝2,压实密度2.2~2.4g/cm3
作为优选,负极极片的制作是先将1~2wt%增稠剂-羟甲基纤维素钠(CMC)与去离子水配置成胶液,加入0.5~2wt%石墨烯导电剂分散好,再加入93.8~98wt%活性材料天然改性石墨,最后加2~4.4wt%粘接剂-丁苯橡胶(SBR),混合成浆料,调节粘度,在0.08~0.010mm的铜箔上涂布出极片,负极压实密度1.6~1.8g/cm3
作为优选,正极与负极之间采用隔膜分开,且隔膜为0.012~0.025mm。
作为优选,电解液采用1mol/L的LiPF6/EC+DMC+EMC(v/v=1:1:1),不含对天然石墨结构起破坏作用的PC溶剂。
石墨作为负极材料时,在首次充放电过程中在其表面形成一层固体电解质膜(SEI膜)。固体电解质膜是电解液、负极材料和锂离子等相互反应形成,不可逆地消耗锂离子,是形成不可逆容量的一个主要的因素;其次在锂离子嵌入的过程中,电解质容易与其共嵌在迁出的过程中,电解液被还原,生成的气体产物导致石墨片层剥落,尤其在含有PC的电解液中,石墨片层脱落将形成新界面,导致进一步SEI形成,由此导致电池循环性能降低,限制了石墨类材料在动力电池材料方面的应用。
根据以上所述,本发明所设计的一种高能量密度锂离子电池,电池组装完成后,经过搁置、化成、老化、分容即可。本发明的有益效果和进步在于:
1、采用高克比容量、高压实的正、负极材料体系,提升单位体积活性材料的量,提高电池体积能量密度;
2、采用高导电性能的石墨烯作为导电剂添加剂,避免采用常规导电剂而需大量添加从而降低正、负极活性材料比例的弊端,进一步提高电池体积能量密度;
3、采用不含PC溶剂的电解液,避免PC对天然石墨的侵蚀,保证电池的循环稳定性。
具体实施方式
为便于理解本发明,本发明列举实施例如下。本领域技术人员应该明了,所述实施例仅仅用于帮助理解本发明,不应视为对本发明的具体限制。
实施例1
本实施例描述的一种能量密度锂离子电池,以钴酸锂为正极活性材料,钴酸锂的 克比容量为159mAh/g,首次效率为98.2%;以天然改性石墨为负极材料,克比容量360mAh/g,首次效率94%。
其中,正极极片的制作是先将粘结剂PVDF(3wt%)与溶剂NMP(80wt%)配置成胶液,在加入石墨烯2wt%分散好,最后加入活性材料钴酸锂95wt%,混合成浆料,调节粘度,然后在0.016mm的铝箔上涂布出极片,双面面密度45mg/cm2,并辊压分切得到正极极片,压实密度2.3g/cm3
负极极片的制作是先将CMC 1.2wt%与去离子水配置成胶液,加入石墨烯0.5wt%分散好,再加入活性材料天然改性石墨96.3wt%,最后加粘结剂2.0wt%,混合成浆料,调节粘度达,在0.010mm的铜箔上涂布出极片,负极面密度以对应正极活性物质容量过量比5%计算所得面密度,且负极极片压实密度1.7g/cm3;正极与负极之间采用隔膜分开,且隔膜为0.02mm的三层PP隔膜,电解液采用1mol/L的LiPF6/EC+DMC+EMC(v/v=1:1:1)。
通过对电池进行0.5C充放电性能检测,本发明制备的电池其体积能量密度达到192Wh/kg,远高于普通锂离子电池(140~155Wh/kg)水平,同时经过500周循环测试,容量保持率为93.4%,表现出优异的循环性能。
实施例2
本实施例描述的一种能量密度锂离子电池,以钴酸锂为正极活性材料,钴酸锂的克比容量为155mAh/g,首次效率为97.5%;以天然改性石墨为负极材料,克比容量358mAh/g,首次效率94.2%。
其中,正极极片的制作是先将粘结剂PVDF(2.5wt%)与溶剂NMP(80wt%)配置成胶液,在加入石墨烯1.5wt%分散好,最后加入活性材料钴酸锂96wt%,混合成浆料,调节粘度,然后在0.016mm的铝箔上涂布出极片,双面面密度48mg/cm2,并辊压分切得到正极极片,压实密度2.3g/cm3
负极极片的制作是先将CMC 1.5wt%与去离子水配置成胶液,加入石墨烯0.5wt%分散好,再加入活性材料天然改性石墨96.7wt%,最后加粘结剂1.8wt%,混合成浆料,调节粘度达,在0.010mm的铜箔上涂布出极片,负极面密度以对应正极活性物质容量过量比6%计算所得面密度,且负极极片压实密度1.75g/cm3;正极与负极之间采用隔膜分开,且隔膜为0.02mm的三层PP隔膜,电解液采用1mol/L的LiPF6/EC+DMC+EMC(v/v=1:1:1)。
通过对电池进行0.5C充放电性能检测,本发明制备的电池其体积能量密度达到198Wh/kg,远高于普通锂离子电池(140~155Wh/kg)水平,同时经过500周循环测试,容量保持率为92.1%,表现出优异的循环性能。
实施例3
本实施例描述的一种能量密度锂离子电池,以钴酸锂为正极活性材料,钴酸锂的克比容量为162mAh/g,首次效率为98.5%;以天然改性石墨为负极材料,克比容量365mAh/g,首次效率95.1%。
其中,正极极片的制作是先将粘结剂PVDF(2.0wt%)与溶剂NMP(80wt%)配置成胶液,在加入石墨烯1.0wt%分散好,最后加入活性材料钴酸锂97wt%,混合成浆料,调节粘度,然后在0.016mm的铝箔上涂布出极片,双面面密度50mg/cm2,并辊压分切得到正极极片,压实密度2.4g/cm3
负极极片的制作是先将CMC 1.5wt%与去离子水配置成胶液,加入石墨烯0.5wt%分散好,再加入活性材料天然改性石墨97wt%,最后加粘结剂1.5wt%,混合成浆料,调节粘度达,在0.010mm的铜箔上涂布出极片,负极面密度以对应正极活性物质容量过量比6%计算所得面密度,且负极极片压实密度1.80g/cm3;正极与负极之间采用隔膜分开,且隔膜为0.02mm的三层PP隔膜,电解液采用1mol/L的LiPF6/EC+DMC+EMC(v/v=1:1:1)。
通过对电池进行0.5C充放电性能检测,本发明制备的电池其体积能量密度达到203Wh/kg,远高于普通锂离子电池(140~155Wh/kg)水平,同时经过500周循环测试,容量保持率为91.8%,表现出优异的循环性能。
申请人声明,本发明通过上述实施例来说明本发明的详细工艺参数和流程,但本发明并不局限于上述详细工艺参数和流程,即不意味着本发明必须依赖上述详细工艺参数和流程才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (5)

  1. 一种高能量密度锂离子电池,其特征在于:材料体系以高压实钴酸锂为正极,以高压实、高容量天然改性石墨为负极,以石墨烯为导电添加剂;钴酸锂正极材料的克比容量为155~162mAh/g,首次效率为96.5~99.5%,双面面密度为30~50mg/cm2,正极压实密度2.0~2.5g/cm3;石墨负极材料的克比容量为350~360mAh/g,首次效率为94~96.5%,负极压实密度为1.5~1.8g/cm3,且负极极片面密度以对应的正极活性物质过量比为3%~10%。
  2. 根据权利要求1所述的一种高能量密度锂离子电池,其特征在于:正极极片的制作是先将2~5wt%粘接剂-聚偏氟乙烯(PVDF)与80~120wt%溶剂-甲基吡咯烷酮(NMP)制成胶液,再加入1~3wt%石墨烯导电剂分散好,最后加入80~95.5wt%活性材料钴酸锂,混合成浆料,调节粘度,在0.010~0.016mm的铝箔上涂布出极片,辊压分切得到正极极片;且正极双面密度为40~50mg/㎝2,压实密度2.2~2.4g/cm3
  3. 根据权利要求1所述的一种高能量密度锂离子电池,其特征在于:负极极片的制作是先将1~2wt%增稠剂-羟甲基纤维素钠(CMC)与去离子水配置成胶液,加入0.5~2wt%石墨烯导电剂分散好,再加入93.8~98wt%活性材料天然改性石墨,最后加2~4.4wt%粘接剂-丁苯橡胶(SBR),混合成浆料,调节粘度,在0.08~0.010mm的铜箔上涂布出极片,负极压实密度1.6~1.8g/cm3
  4. 根据权利要求1所述的一种高能量密度锂离子电池,其特征在于:正极与负极之间采用隔膜分开,且隔膜为0.012~0.025mm。
  5. 根据权利要求1所述的一种高能量密度锂离子电池,其特征在于:电解液采用1mol/L的LiPF6/EC+DMC+EMC(v/v=1:1:1),不含对天然石墨结构起破坏作用的PC溶剂。
PCT/CN2016/083964 2015-06-13 2016-05-30 一种高能量密度锂离子电池 WO2016202169A2 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510323308.4 2015-06-13
CN201510323308.4A CN105047903A (zh) 2015-06-13 2015-06-13 一种高能量密度锂离子电池

Publications (2)

Publication Number Publication Date
WO2016202169A2 true WO2016202169A2 (zh) 2016-12-22
WO2016202169A3 WO2016202169A3 (zh) 2017-02-09

Family

ID=54454280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083964 WO2016202169A2 (zh) 2015-06-13 2016-05-30 一种高能量密度锂离子电池

Country Status (2)

Country Link
CN (1) CN105047903A (zh)
WO (1) WO2016202169A2 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109768337A (zh) * 2018-12-28 2019-05-17 东莞市美尼电池有限公司 一种可充电纽扣式软包锂离子电池及加工方法
CN110797536A (zh) * 2019-10-24 2020-02-14 桑顿新能源科技(长沙)有限公司 一种锂离子电池正极浆料及其制备方法与锂离子电池
CN110867581A (zh) * 2019-10-30 2020-03-06 郑州比克电池有限公司 一种高电压、高能量密度快充软包装锂离子电池
CN111900490A (zh) * 2020-07-01 2020-11-06 江苏天鹏电源有限公司 一种极片、圆柱电池的制备方法
CN113410520A (zh) * 2020-03-15 2021-09-17 深圳格林德能源集团有限公司 一种改善软包装锂离子电池热滥用安全性能的方法
CN114141996A (zh) * 2021-06-23 2022-03-04 宁夏汉尧石墨烯储能材料科技有限公司 包覆方式增强的类单晶正极材料的制备方法
CN114388725A (zh) * 2020-10-21 2022-04-22 深圳格林德能源集团有限公司 一种锂离子电池正极极片及其制备方法
CN114583101A (zh) * 2022-02-16 2022-06-03 桂林电子科技大学 一种锂化物复合型固体电极及其制作的锂离子电池
CN116162423A (zh) * 2023-03-01 2023-05-26 上海我赛电池科技有限公司 一种固态三元锂导热电池高性能负极专用导电胶
CN116445099A (zh) * 2023-03-25 2023-07-18 上海我赛电池科技有限公司 一种固态三元锂导热电池高传导专用导电胶
CN116477618A (zh) * 2023-03-10 2023-07-25 内蒙古欣源石墨烯科技股份有限公司 一种锂离子电池用高能量密度快充负极材料及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105047903A (zh) * 2015-06-13 2015-11-11 田东 一种高能量密度锂离子电池
CN105552377A (zh) * 2016-01-22 2016-05-04 浙江极力动力新能源有限公司 石墨烯作为导电剂锂离子电池负极浆料及其制备方法
CN106058154A (zh) * 2016-08-01 2016-10-26 东莞新能源科技有限公司 一种负极极片,其制备方法及使用该负极的锂离子电池
CN109560251A (zh) * 2018-11-09 2019-04-02 上海力信能源科技有限责任公司 一种锂离子电池负极极片及其制备方法、锂离子电池
CN112018376A (zh) * 2020-09-05 2020-12-01 珠海新视扬能源科技有限公司 一种正极材料及其制备方法
CN112018380A (zh) * 2020-09-05 2020-12-01 珠海新视扬能源科技有限公司 一种高性能倍率型锂离子电池及其制备方法
CN114447270A (zh) * 2021-12-28 2022-05-06 华为数字能源技术有限公司 一种负极极片、电池和电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263265A (zh) * 2010-10-09 2011-11-30 深圳市贝特瑞新能源材料股份有限公司 锂离子电池导电添加剂及其制备方法
CN104577194A (zh) * 2015-01-21 2015-04-29 桐乡市众胜能源科技有限公司 高能量磷酸铁锂电池
CN105047903A (zh) * 2015-06-13 2015-11-11 田东 一种高能量密度锂离子电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263265A (zh) * 2010-10-09 2011-11-30 深圳市贝特瑞新能源材料股份有限公司 锂离子电池导电添加剂及其制备方法
CN104577194A (zh) * 2015-01-21 2015-04-29 桐乡市众胜能源科技有限公司 高能量磷酸铁锂电池
CN105047903A (zh) * 2015-06-13 2015-11-11 田东 一种高能量密度锂离子电池

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109768337A (zh) * 2018-12-28 2019-05-17 东莞市美尼电池有限公司 一种可充电纽扣式软包锂离子电池及加工方法
CN110797536A (zh) * 2019-10-24 2020-02-14 桑顿新能源科技(长沙)有限公司 一种锂离子电池正极浆料及其制备方法与锂离子电池
CN110867581A (zh) * 2019-10-30 2020-03-06 郑州比克电池有限公司 一种高电压、高能量密度快充软包装锂离子电池
CN113410520A (zh) * 2020-03-15 2021-09-17 深圳格林德能源集团有限公司 一种改善软包装锂离子电池热滥用安全性能的方法
CN113410520B (zh) * 2020-03-15 2022-10-28 深圳格林德能源集团有限公司 一种改善软包装锂离子电池热滥用安全性能的方法
CN111900490A (zh) * 2020-07-01 2020-11-06 江苏天鹏电源有限公司 一种极片、圆柱电池的制备方法
CN114388725A (zh) * 2020-10-21 2022-04-22 深圳格林德能源集团有限公司 一种锂离子电池正极极片及其制备方法
CN114141996A (zh) * 2021-06-23 2022-03-04 宁夏汉尧石墨烯储能材料科技有限公司 包覆方式增强的类单晶正极材料的制备方法
CN114583101A (zh) * 2022-02-16 2022-06-03 桂林电子科技大学 一种锂化物复合型固体电极及其制作的锂离子电池
CN116162423A (zh) * 2023-03-01 2023-05-26 上海我赛电池科技有限公司 一种固态三元锂导热电池高性能负极专用导电胶
CN116477618A (zh) * 2023-03-10 2023-07-25 内蒙古欣源石墨烯科技股份有限公司 一种锂离子电池用高能量密度快充负极材料及其制备方法
CN116445099A (zh) * 2023-03-25 2023-07-18 上海我赛电池科技有限公司 一种固态三元锂导热电池高传导专用导电胶

Also Published As

Publication number Publication date
WO2016202169A3 (zh) 2017-02-09
CN105047903A (zh) 2015-11-11

Similar Documents

Publication Publication Date Title
WO2016202169A2 (zh) 一种高能量密度锂离子电池
WO2016201942A1 (zh) 一种具有高倍率充放电性能的锂离子电池
CN110690436B (zh) 一种负极材料、其制备方法及制得的负极极片和锂离子电池
CN101436654B (zh) 磷酸铁锂型安全高功率锂离子电池
JP5924552B2 (ja) 非水電解液二次電池とその製造方法
WO2016201941A1 (zh) 一种具有长循环性能的锂离子电池
CN105810899A (zh) 一种锂离子电池
CN101901932A (zh) 可快充高安全高倍率电池及其制作方法
CN102696138A (zh) 非水电解液型锂离子二次电池
JP6211595B2 (ja) 非水電解質二次電池
WO2019216275A1 (ja) リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
CN112018428A (zh) 一种锂离子电池及其制备方法和用途
CN102290577A (zh) 一种锂离子电池的负极
JP2012146590A (ja) 非水電解質二次電池用正極、その正極の製造方法、及び非水電解質二次電池
CN110970598A (zh) 锂电池复合负极、其制备方法及包含该负极的锂电池
JP2011192561A (ja) 非水電解液二次電池の製造方法
CN103594735A (zh) 一种钛酸锂锂离子电池的制备方法
WO2011070748A1 (ja) 非水電解質二次電池及びその充電方法
CN103367707A (zh) 电池正极、其制备方法、电池负极、其制备方法及电容电池
JP5279567B2 (ja) 非水電解質二次電池
JP4830434B2 (ja) 非水電解液二次電池用電極板、及び非水電解液二次電池
WO2012147647A1 (ja) リチウムイオン二次電池
JP6819533B2 (ja) 全固体リチウムイオン二次電池用の負極合材
JP6988169B2 (ja) 非水電解質二次電池用負極の製造方法、および非水電解質二次電池の製造方法
CN103779566A (zh) 一种多元素掺杂磷酸锰锂-碳复合正极材料的制备方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16810910

Country of ref document: EP

Kind code of ref document: A2