WO2016202107A1 - 极低温环境大口径反射式望远镜防霜膜系及其制备方法 - Google Patents

极低温环境大口径反射式望远镜防霜膜系及其制备方法 Download PDF

Info

Publication number
WO2016202107A1
WO2016202107A1 PCT/CN2016/080743 CN2016080743W WO2016202107A1 WO 2016202107 A1 WO2016202107 A1 WO 2016202107A1 CN 2016080743 W CN2016080743 W CN 2016080743W WO 2016202107 A1 WO2016202107 A1 WO 2016202107A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
frost
reflective
plating
Prior art date
Application number
PCT/CN2016/080743
Other languages
English (en)
French (fr)
Inventor
王晋峰
王烨儒
田杰
李新南
Original Assignee
中国科学院国家天文台南京天文光学技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院国家天文台南京天文光学技术研究所 filed Critical 中国科学院国家天文台南京天文光学技术研究所
Priority to US15/572,320 priority Critical patent/US10359621B2/en
Publication of WO2016202107A1 publication Critical patent/WO2016202107A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • G02B23/2492Arrangements for use in a hostile environment, e.g. a very hot, cold or radioactive environment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/02Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors
    • G02B23/06Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors having a focussing action, e.g. parabolic mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/085Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal
    • G02B5/0858Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal the reflecting layers comprising a single metallic layer with one or more dielectric layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/008Mountings, adjusting means, or light-tight connections, for optical elements with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/183Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors specially adapted for very large mirrors, e.g. for astronomy, or solar concentrators

Definitions

  • the invention relates to the technical field of optical coating processing, in particular to a mirror anti-frost film system of a large-caliber open-reflection optical infrared telescope in an extremely low temperature environment (Antarctic region) and a preparation method thereof.
  • Reflective optical telescopes are widely used in astronomical telescopes. Since the reflective optical system has no special requirements on the optical properties of the glass material, the light does not need to pass through the material itself, the primary mirror can be lightly processed to reduce weight and no color difference, and the large-diameter lens optical material is rare and expensive. Therefore, large-diameter telescopes are mostly designed with a reflective structure.
  • the optical path of a large-diameter reflective telescope is generally an open structure. When used in an extremely low temperature environment, mirror frosting may occur and the observation may not be performed normally.
  • Transparent conductive film layer is widely used in liquid crystal displays, touch screens, and solar elements.
  • the transparent conductive film is a heavily doped, highly degenerate n-type semiconductor material with a low resistivity of about 10 -4 . ⁇ cm, the forbidden band width is between 3.5 and 4.5 eV, so the absorption in the visible light region is small, and the average transmittance after coating can reach 85% or more. It combines the transparency and conductivity of a substance with a high transmittance close to the conductivity of the metal and the visible range.
  • the transparent conductive film is widely used in solar cells, displays, gas sensors, antistatic coatings, modern fighters and cruises due to its proximity to metal conductivity, high transmittance in the visible range, high infrared reflectance, and its semiconductor properties. Missile window, infrared radiation mirror coating, glass defrosting for aircraft trains, building curtain wall glass, etc.
  • the optical mirror is divided into a metal mirror and an all-media mirror.
  • the most commonly used metal materials for the metal mirror reflection film are aluminum (AL), silver (Ag), gold (Au), etc.
  • the upper layer is a single layer or a multilayer dielectric film, which serves to protect the metal film and increase the reflection of a specific band.
  • the all-media mirror is a combination of dielectric film stack materials with alternating high and low refractive indices.
  • the Antarctic astronomical telescope is designed with a small-diameter transmissive sealing structure.
  • the front surface of the telescope is sealed with a transparent conductive film to realize the anti-frost function of the telescope.
  • the transparent conductive film has a light-transmitting region in the visible light and the near-infrared region, and has strong absorption in the infrared region, so the structural design is not suitable for Large aperture reflective optical infrared telescope, as shown in Figure 3.
  • the problem to be solved by the present invention is to provide an optical reflection film with anti-frost function and a preparation method thereof for the phenomenon of mirror frosting of a large-diameter reflective open-structure optical infrared telescope in an extremely low temperature environment or an Antarctic region.
  • the technical solution adopted by the present invention is: a frostproof film system for a large-caliber reflex telescope in a very low temperature environment and a preparation method thereof, and a transparent conductive film integrated in a reflective film system of a reflective optical telescope, the characteristics thereof
  • the structure of the transparent conductive film is as follows: starting from the surface of the mirror, the transparent conductive film layer, the intermediate insulating layer, the reflective film layer, and the outermost dielectric film reinforcing layer or protective layer; in the transparent conductive film layer On both sides, integrated with conductive electrodes.
  • the transparent conductive film layer is made of indium tin oxide, and the film layer has a thickness of 180 nm;
  • the intermediate insulating layer is made of silicon dioxide, and the film layer has a thickness of 200 nm;
  • the material of the reflective film layer is aluminum or silver, and the thickness of the film layer is 100 nm;
  • the outermost dielectric film protective layer is made of dielectric oxide material such as silicon dioxide or tantalum pentoxide.
  • the film layer structure is a single layer oxide material or a combination of high and low refractive index alternating dielectric oxide materials to protect the metal film. With the effect of increasing the reflection of a specific band.
  • the material of the conductive electrode is copper, and the thickness of the electrode layer is 300 nm.
  • the technical solution for accomplishing the second invention task of the present application is the method for preparing the above-mentioned extremely low temperature resistant large-diameter reflective optical infrared telescope anti-frost film system, characterized in that the steps are as follows:
  • Conductive film plating step After the optical component is baked and heated, the conductive film material is evaporated.
  • the process conditions are as follows: the conductive film material is indium tin oxide, and the film is monitored by oxygen ion assisted deposition. 180 nm;
  • Intermediate insulating layer plating step the intermediate insulating layer is made of silicon dioxide, and the film layer is monitored to have a thickness of 200 nm;
  • Reflective film plating step the reflective film plating material is aluminum or silver, and the film layer is monitored to have a thickness of 100 nm;
  • the plating step of the outermost dielectric protective layer is made of silicon dioxide or silicon dioxide and tantalum pentoxide, and the film layer structure is a single layer oxide material or high or low.
  • the combination of dielectric oxide materials with alternating refractive indices serves to protect the metal film and increase reflection in specific bands.
  • the reflective film plating material is an aluminum film
  • the outermost dielectric protective layer plating material is silicon dioxide
  • the reflective film plating material is a silver film
  • the outermost dielectric protective layer plating material is silicon dioxide.
  • bismuth pentoxide is bismuth pentoxide.
  • Conductive electrode plating step The conductive electrode plating material is copper, and the electron beam evaporation method is adopted, and the film layer is monitored to have a thickness of 300 nm.
  • Adding relevant film materials means adding indium tin oxide, silicon dioxide, tantalum pentoxide, aluminum or silver, and copper film materials respectively in the crucible;
  • Step (1)-4 Vacuuming the vacuum chamber, the degree of vacuum should be better than 6 ⁇ 10 -4 Pa;
  • Conductive film plating step after the optical element is kept at a baking temperature of 180 ° C for 3 hours, evaporation of the conductive film material is performed, and the process conditions are as follows: the conductive film material is indium tin oxide (mass ratio is 90%) In 2 O 3 , 10%SnO 2 ), the vacuum is better than 6 ⁇ 10 -4 Pa, the Hall ion source is charged with 40 SCCM oxygen, the ion source anode voltage is 180 volts, and the anode current is 6 amps;
  • the intermediate insulating layer is made of silicon dioxide, the vacuum is better than 6 ⁇ 10 -4 Pa, the Hall ion source is charged with 40 SCCM oxygen, the ion source anode voltage is 180 volts, and the anode current is 6 amps;
  • Reflective film plating step the reflective film plating material is aluminum or silver, the degree of vacuum is better than 6 ⁇ 10 -4 Pa, and the evaporation rate is greater than 10 nm/second;
  • the outermost dielectric protective layer is made of an oxide film such as silicon dioxide or tantalum pentoxide, and the degree of vacuum is better than 6 ⁇ 10 -4 Pa, Hall
  • the ion source is charged with 40 SCCM oxygen, the ion source anode voltage is 180 volts, and the anode current is 6 amps;
  • Conductive electrode plating step the conductive electrode plating material is copper, and the degree of vacuum is better than 6 ⁇ 10 -4 Pa.
  • the anti-frost reflective film process of the present invention includes a preparation step of cleaning all relevant components in the vacuum chamber and adding the relevant film and placing the optical reflection lens to be plated; and a vacuuming step of evacuating the vacuum chamber
  • the step of coating the gasification of the relevant film onto the surface of the optical reflective lens after the vacuum is reached.
  • the coating step has the following sub-steps: a conductive film plating step; an insulating layer and a reflection Film plating step; conductive electrode plating step.
  • the present invention has the following beneficial effects as compared with the prior art:
  • the anti-frost mirror prepared by the invention can be used in an extremely low temperature environment and an Antarctic region, and the mirror temperature rise control can avoid mirror frosting.
  • the structure of the anti-frost reflective film system is rationally designed to ensure the spectral reflectance of the mirror in the visible and infrared bands while providing anti-frost function.
  • the spectral reflectance average of the anti-frost reflective film is better than 89% in the range of 400 nm to 2000 nm; and the spectral reflectance of the reflective aluminum mirror which is not integrated with the ITO film layer is equivalent;
  • the ordinary mirror of the ITO film layer is located at the outermost layer and has a spectral reflection efficiency of only 60%.
  • Figure 1-a is a schematic view showing the structure of the frost-resistant reflective film of the first embodiment
  • FIG. 1-b is a schematic structural view of a frost-resistant reflective film system of Embodiment 2; FIG.
  • Figure 2-a is a spectral reflection curve of a frost-proof aluminum mirror
  • Figure 2-b is a spectral reflectance curve of the frost-resistant Ag reflective film system
  • Fig. 4 is a comparison of the spectral reflection curve of the present frost-resistant reflective film and the surface of the ordinary aluminum mirror using the conductive film.
  • the invention provides a transparent conductive film integrated in a reflective film system of a reflective optical telescope.
  • the structure of the transparent conductive film is as follows: starting from the surface of the mirror, in order: transparent conductive film layer, intermediate insulating layer, reflective film layer And an outermost dielectric film reinforcing layer or a protective layer; on both sides of the transparent conductive film layer, a conductive electrode is integrated.
  • the structure of the anti-frost reflective film system is rationally designed to ensure the film system while having the anti-frost function. Spectral reflection performance.
  • the anti-frost reflective film coating process is divided into: conductive film plating, insulating layer and reflective film plating, and electrode plating to provide an optical reflective film system with anti-frost function.
  • the structure can be referred to Figure 1: Medium, optical reflective lens 1, conductive film 2, intermediate insulating layer 3, aluminum film 4, outermost medium protection Layer 5, conductive electrode 6.
  • the preparation method of the anti-frost function optical reflection film system (ie, anti-frost reflection film system) is as follows:
  • Preparation steps clean the vacuum chamber, baffle and fixture, etc., add indium tin oxide, silicon dioxide, aluminum, copper film, respectively, in the crucible, wipe the optics with a mixture of degreasing cloth, absolute ethanol and ether. Reflect the lens, wipe it clean and put it into the vacuum chamber.
  • Vacuuming and optical reflection lens heating step starting the vacuum pump to vacuum and gradually heating to 180 degrees Celsius, the temperature increasing step and the constant temperature time are determined according to the size and shape of the optical lens.
  • the coating step includes the following sub-steps:
  • Conductive film plating step after being kept at a baking temperature of 180 degrees Celsius for 3 hours, evaporation of the conductive film material is performed.
  • the process condition is that the conductive film material is indium tin oxide (the mass ratio is 90% In 2 O 3 , 10%SnO 2 ), the vacuum is better than 6 ⁇ 10 -4 Pa, the film thickness is 180 nm, the Hall ion source is charged with 40 SCCM oxygen, the ion source anode voltage is 180 volts, and the anode current is 6 amps.
  • the insulating layer plating material is silicon dioxide, the vacuum degree is better than 6 ⁇ 10 -4 Pa, the film layer monitoring thickness is 200 nm, the Hall ion source is charged with 40 SCCM oxygen, and the ion source anode
  • the voltage is 180 volts, the anode current is 6 amps;
  • the reflective film is made of aluminum, the vacuum is better than 6 ⁇ 10 -4 Pa, the film thickness is 100 nanometers, the silicon film is coated with silicon dioxide, and the vacuum is excellent.
  • the film thickness is 180 nm
  • the Hall ion source is charged with 40 SCCM oxygen
  • the ion source anode voltage is 180 volts
  • the anode current is 6 amps;
  • Conductive electrode plating step the conductive electrode plating material is copper, the vacuum degree is better than 6 ⁇ 10 -4 Pa, and the film layer monitoring thickness is 300 nm.
  • the mirror element is completely cooled and then inflated into the vacuum chamber, and the vacuum chamber door is opened to take out the plated optical reflection lens.
  • Figure 2-a shows the spectral reflectance curve of the prepared frost-proof aluminum mirror; the spectral reflection efficiency information can be seen from the figure, that is, the average spectral reflectance of the aluminum frost-proof mirror is better than 89% in the range of 400nm-2000nm. .
  • the spherical experimental mirror has a diameter of ⁇ 520mm, and the surface shape accuracy measured by a 4D interferometer is: PV (peak-to-valley), 0.11724 ⁇ RMS (root mean square value), 0.0155 ⁇ , and ⁇ is the detection wavelength, 632.8 nm.
  • the heating power is 20 watts. After 3 hours, the spherical mirror shape is measured by a 4D interferometer. The results show that:
  • the anti-frost power of the ⁇ 520mm spherical experimental mirror is about 20 watts; the spherical experimental mirror can still maintain good surface accuracy when the heating power is 30 watts.
  • Fig. 4 is a comparison of the spectral reflection curves of the frost-resistant reflective film and the surface of the ordinary aluminum mirror using the conductive film.
  • the optical frost-proof mirror obtained in this embodiment should have no or little influence on the shape accuracy under the premise of having an anti-frost function.
  • the structure of the proposed optical frost-proof mirror is as in Embodiment 1, except that the reflective coating material is Ag, which has higher reflection efficiency in the visible light and infrared bands, and also the anti-frost reflective film.
  • the structure of the system has been rationally designed to ensure the spectral reflectance of the Ag film system while having the anti-frost function.
  • the anti-frost reflective film coating process is divided into: conductive film plating, insulating layer and Ag reflective film plating, electrode plating, and its structure can be referred to Figure 1-b: In the figure, optical reflective lens 1, conductive film 2 The intermediate insulating layer 3, the connection layer 4, the Ag film system 5, and the conductive electrode 6.
  • the preparation method of the anti-frosting Ag reflective film system is as follows:
  • Preparation steps clean the vacuum chamber, baffle and fixture, etc., add indium tin oxide, silicon dioxide, Ag, aluminum oxide, pentoxide pentoxide film in the crucible, and use degreased cloth. Wipe the optical reflective lens with a mixture of water ethanol and diethyl ether, wipe it clean, and put it into the vacuum chamber.
  • Vacuuming and optical reflection lens heating step starting the vacuum pump to vacuum and gradually heating to 180 degrees Celsius, the temperature increasing step and the constant temperature time are determined according to the size and shape of the optical lens.
  • the coating step includes the following sub-steps:
  • Conductive film plating step after being kept at a baking temperature of 180 degrees Celsius for 3 hours, evaporation of the conductive film material is performed.
  • the process condition is that the conductive film material is indium tin oxide (the mass ratio is 90% In 2 O 3 , 10%SnO 2 ), the vacuum is better than 6 ⁇ 10 -4 Pa, the film monitoring thickness is 180 nm, the Hall ion source is charged with 40 SCCM oxygen, the ion source anode voltage is 180 volts, and the anode current is 6 amps.
  • the insulating layer plating material is silicon dioxide, the vacuum degree is better than 6 ⁇ 10 -4 Pa, the film layer monitoring thickness is 200 nm, the Hall ion source is charged with 40 SCCM oxygen, and the ion source anode voltage is 180 volts. , anode current 6 amps;
  • the connecting layer material is aluminum oxide
  • the vacuum is better than 6 ⁇ 10 -4 Pa
  • the thickness of the connecting layer is 10 nm
  • the Ag film is plated
  • the vacuum is better than 6 ⁇ 10 -4 Pa
  • evaporation rate higher than 10nm / sec after completion, plating a protective layer composed of silicon dioxide and antimony pentoxide
  • the vacuum is better than 6 ⁇ 10 -4 Pa
  • the film thickness is controlled by the film system. It is decided that the Hall ion source is charged with 40 SCCM oxygen, the ion source anode voltage is 180 volts, and the anode current is 6 amps;
  • Conductive electrode plating step the conductive electrode plating material is copper, the vacuum degree is better than 6 ⁇ 10 -4 Pa, and the film layer monitoring thickness is 300 nm.
  • the Ag mirror element is completely cooled and then inflated into the vacuum chamber, and the vacuum chamber door is opened to take out the plated optical reflection lens.
  • Figure 2-b shows the spectral reflectance curve of the anti-frost Ag reflective film prepared in this example.
  • the spectral reflectance of the Ag-resistant frost mirror is excellent in the range of 400nm-2000nm. At 98%.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

一种用于极低温环境的大口径反射光学红外望远镜防霜膜系及其制备方法,防霜膜系的结构如下,自主镜表面开始依次为:透明导电膜层(2)、中间绝缘层(3)、反射膜层(4)及最外介质保护层(5);在所述透明导电膜层(2)的两边,设有导电电极(6)。步骤如下:(1)准备工作;(2).导电膜(2)镀制步骤;(3).中间绝缘层(3)镀制步骤;(4).反射膜(4)镀制步骤;(5).最外介质保护层(5)的镀制步骤;(6).导电电极(6)镀制步骤。可用于极端低温环境下,结合镜面温升控制避免镜面结霜;对防霜反射膜系的结构进行了合理设计,在具有防霜功能的同时保证了膜系的光谱反射性能。

Description

极低温环境大口径反射式望远镜防霜膜系及其制备方法 技术领域
本发明涉及光学镀膜加工技术领域,尤其是一种极端低温环境下(南极地区)大口径开放式反射光学红外望远镜镜面防霜膜系及其制备方法。
背景技术
反射式光学望远镜在天文望远镜中应用十分广泛。由于这种反射光学系统对玻璃材料在光学性能上没有特殊要求,光线不需透过材料本身,主镜可以进行轻量化加工减轻重量和无色差,且大口径透镜光学材料不可多得,价格昂贵,因此大口径的望远镜大都采用反射式结构设计。大口径反射式望远镜光路一般为开放式结构,在极端低温环境下使用时,会出现镜面结霜的现象导致无法正常观测。
透明导电膜层(ITO)在液晶显示器、触摸屏、太阳能元件中大量使用,透明导电膜是一种重掺杂、高简并的n型半导体材料,具有较低的电阻率,约为10-4Ω·cm,禁带宽度介于3.5~4.5eV之间,因而在可见光区吸收很少,且镀膜后的平均透过率可以达到85%以上。它以接近金属的导电率、可见光范围的高透过率很好地把物质的透明性和导电性统一起来。
透明导电膜以其接近金属的导电率、可见光范围内的高透射比、红外高反射比以及其半导体特性,广泛地应用于太阳能电池、显示器、气敏元件、抗静电涂层、现代战机和巡航导弹的窗口、红外辐射反射镜涂层、飞机火车用玻璃除霜、建筑物幕墙玻璃等方面。
现有光学镀膜技术中光学反射镜分为金属反射镜与全介质反射镜,金属反射镜反射膜最常用的金属材料有铝(AL)、银(Ag)、金(Au)等,反射膜之上为单层或多层介质膜,起到保护金属膜与增加特定波段反射的作用。全介质反射镜采用高、低折射率交替的介质膜堆材料组合而成。大口径反射式开放结构的光学望远镜镜面若采用普通金属反射镜或全介质反射镜时,在极端低温的南极环境下,会出现镜面结霜导致无法观测的难题。
目前,南极天文望远镜均为小口径透射式密封结构设计,在望远镜的前表面采用镀有透明导电膜的封窗玻璃实现望远镜的防霜功能。透明导电膜的透光区在可见光与近红外波段,在红外波段则存在强烈的吸收,因而该结构设计不适合于 大口径反射式光学红外望远镜,如图3所示。
发明内容
本发明需要解决的问题是针对极端低温环境下或南极地区使用大口径反射式开放结构光学红外望远镜镜面结霜现象,提供一种具有防霜功能的光学反射膜及其制备方法。
为了解决上述问题,本发明采用的技术方案是:一种极低温环境大口径反射式望远镜防霜膜系及其制备方法,在反射式光学望远镜的反射膜系中集成有透明导电膜,其特征在于,所述透明导电膜的结构如下,自反射镜表面开始,依次为:透明导电膜层、中间绝缘层、反射膜层及最外介质膜增强层或保护层;在所述透明导电膜层的两边,集成有导电电极。
其中,透明导电膜层采用氧化铟锡,膜层厚度为180纳米;
中间绝缘层采用二氧化硅,膜层厚度为200纳米;
反射膜层材料采用铝或银,膜层厚度为100纳米;
最外介质膜保护层采用二氧化硅、五氧化二钽等介质氧化物材料,膜层结构为单层氧化物材料或采用高、低折射率交替的介质氧化物材料组合,起到保护金属膜与增加特定波段反射的作用。
导电电极的材料为铜,电极的膜层厚度为300纳米。
完成本申请第二个发明任务的技术方案是,上述耐极低温的大口径反射式光学红外望远镜防霜膜系的制备方法,其特征在于,步骤如下:
(1).准备工作:
(1)-1.清洁真空室内所有相关部件;
(1)-2.加入相关膜料;
(1)-3.放入待镀光学反射镜片;
(1)-4.对真空室抽真空;
(2).导电膜镀制步骤:光学元件烘烤加温后,进行导电膜材料的蒸镀,工艺条件:导电膜材料为氧化铟锡,采用氧离子辅助的方式蒸镀,膜层监控厚度180纳米;
(3).中间绝缘层镀制步骤:中间绝缘层镀制材料为二氧化硅,膜层监控厚度200纳米;
(4).反射膜镀制步骤:反射膜镀制材料为铝或银,膜层监控厚度100纳米;
(5).最外介质保护层的镀制步骤:最外介质保护层镀制材料为二氧化硅或二氧化硅和五氧化二钽,膜层结构为单层氧化物材料或采用高、低折射率交替的介质氧化物材料组合,起到保护金属膜与增加特定波段反射的作用。优选地,当反射膜镀制材料为铝膜时,最外介质保护层镀制材料为二氧化硅;当反射膜镀制材料为银膜时,最外介质保护层镀制材料为二氧化硅和五氧化二钽。
(6).导电电极镀制步骤:导电电极镀制材料为铜,采用电子束蒸镀方式,膜层监控厚度300纳米。
更具体和更优化地说,各步骤操作方法如下:
准备工作中的步骤(1)-2.加入相关膜料,是指:在坩埚中分别加入氧化铟锡、二氧化硅、五氧化二钽、铝或银、铜膜料;
步骤(1)-4.对真空室抽真空,真空度应优于6×10-4Pa;
其他各步骤的工艺条件分别是:
(2).导电膜镀制步骤:在180摄氏度的烘烤温度下对光学元件恒温3小时后,进行导电膜材料的蒸镀,工艺条件:导电膜材料为氧化铟锡(质量比为90%In2O3,10%SnO2),真空度优于6×10-4Pa,霍尔离子源充40SCCM氧气,离子源阳极电压180伏,阳极电流6安培;
(3).中间绝缘层镀制步骤:中间绝缘层镀制材料为二氧化硅,真空度优于6×10-4Pa,霍尔离子源充40SCCM氧气,离子源阳极电压180伏,阳极电流6安培;
(4).反射膜镀制步骤:反射膜镀制材料为铝或银,真空度好于6×10-4Pa,蒸发速率大于10纳米/秒;
(5).最外介质保护层的镀制步骤:最外介质保护层镀制材料为二氧化硅、五氧化二钽等氧化物膜料,真空度优于6×10-4Pa,霍尔离子源充40SCCM氧气,离子源阳极电压180伏,阳极电流6安培;
(6).导电电极镀制步骤:导电电极镀制材料为铜,真空度优于6×10-4Pa。
换言之,本发明的防霜反射膜工艺方法,包括有清洁真空室内所有相关部件并加入相关膜料和放入待镀光学反射镜片的准备工作步骤;对所述真空室进行抽真空的抽真空步骤;真空度达到要求后将相关膜料气化沉积到所述光学反射镜片表面的镀膜步骤。所述镀膜步骤有如下分步骤:导电膜镀制步骤;绝缘层与反射 膜镀制步骤;导电电极镀制步骤。
由于采用了上述方案,本发明与现有技术相比具有如下有益效果:
1、本发明制备的防霜反射镜可用于极端低温环境下与南极地区,结合镜面温升控制可避免镜面结霜。
2、对防霜反射膜系的结构进行了合理设计,在具备防霜功能的同时保证了反射镜在可见与红外波段的光谱反射性能。
在膜层反射材料同样使用铝膜时,在400nm-2000nm波段范围,本防霜反射膜系光谱反射率平均值优于89%;与未集成ITO膜层的反射铝镜光谱反射性能相当;而ITO膜层位于最外层的普通反射镜光谱反射效率仅为60%。
附图说明
图1-a是实施例1的防霜反射膜系结构示意图;
图1-b是实施例2的防霜反射膜系结构示意图;
图2-a是防霜铝反射镜光谱反射曲线;
图2-b是防霜Ag反射膜系光谱反射曲线;
图3是透明导电膜透射光谱曲线;
图4是本防霜反射膜系与使用导电膜于普通铝镜之外表面的光谱反射曲线对比。
具体实施方式
本发明提供了一种在反射式光学望远镜的反射膜系中集成有透明导电膜,透明导电膜的结构如下,自反射镜表面开始,依次为:透明导电膜层、中间绝缘层、反射膜层及最外介质膜增强层或保护层;在透明导电膜层的两边,集成有导电电极。
下面通过具体的实施例详细说明本发明。
实施例1
在本实施例中,依据透明导电膜(ITO)的光谱特性结合南极2.5米望远镜工作波段,对防霜反射膜系的结构进行了合理设计,使其在具有防霜功能的同时保证了膜系的光谱反射性能。防霜反射膜系镀制过程分为:导电膜镀制、绝缘层与反射膜系镀制、电极镀制提供了一种具有防霜功能的光学反射膜系,其结构可参照图1:图中,光学反射镜片1,导电膜2,中间绝缘层3,铝膜4,最外介质保护 层5,导电电极6。
该具有防霜功能的光学反射膜系(即防霜反射膜系)制备工艺方法具体如下:
(1).准备工作步骤:清洁真空室、挡板及夹具等,在坩埚中分别加入氧化铟锡、二氧化硅、铝、铜膜料,用脱脂布蘸无水乙醇和乙醚混合溶剂擦拭光学反射镜片,擦拭干净后装入夹具放入真空室。
(2).抽真空与光学反射镜片升温步骤:启动真空泵抽真空并逐渐升温至180摄氏度,升温步骤与恒温时间根据光学镜片的尺寸及形状决定。
(3).真空镀膜步骤:镀膜步骤包括有如下分步骤:
A、导电膜镀制步骤:在180摄氏度的烘烤温度下恒定3小时后,进行导电膜材料的蒸镀,工艺条件:导电膜材料为氧化铟锡(质量比为90%In2O3,10%SnO2),真空度为优于6×10-4Pa,膜层监控厚度180纳米,霍尔离子源充40SCCM氧气,离子源阳极电压180伏,阳极电流6安培。
B、绝缘层与反射膜镀制步骤:绝缘层镀制材料为二氧化硅,真空度优于6×10-4Pa,膜层监控厚度200纳米,霍尔离子源充40SCCM氧气,离子源阳极电压180伏,阳极电流6安培;反射膜镀制材料为铝,真空度好于6×10-4Pa,膜层监控厚度100纳米,铝膜完成后镀制二氧化硅保护层,真空度优于6×10-4Pa,膜层监控厚度180纳米,霍尔离子源充40SCCM氧气,离子源阳极电压180伏,阳极电流6安培;
C、导电电极镀制步骤:导电电极镀制材料为铜,真空度好于6×10-4Pa,膜层监控厚度300纳米。
镀制完成后,需待反射镜元件完全冷却后充气入真空室,打开真空室门取出镀好的光学反射镜片。
图2-a为制备的防霜铝反射镜光谱反射曲线;从图中可以看出其光谱反射效率信息,即在400nm-2000nm波段范围,铝防霜反射镜光谱反射率平均值优于89%。
对镀制了防霜反射膜系的球面实验镜进行效果测试:
球面实验镜口径为Φ520mm,采用4D干涉仪测量表面面形精度为:PV(峰谷值),0.11724λ RMS(均方根值),0.0155λ,λ为检测波长,632.8纳米。
分别对防霜反射镜实施不同的加热功率:20瓦与30瓦,并采用4D干涉仪 测量了不同加热功率条件下面形改变情况,结果如下:
(1)加热功率20瓦,保持3小时后,采用4D干涉仪测量了球面镜面形,结果表明:
精度为PV(峰谷值):0.18132λ RMS(均方根值):0.0222λ。
(2)加热功率30瓦,保持3小时后,采用4D干涉仪测量了球面镜面形,结果表明:
精度为PV(峰谷值):0.24878λ RMS(均方根值):0.0289λ。
根据结霜条件以及镜面温升情况可知:Φ520mm球面实验镜所需防霜功率为20瓦左右;在加热功率为30瓦时球面实验镜仍然可以保持较好的面形精度。
图4为本防霜反射膜系与使用导电膜于普通铝镜之外表面的光谱反射曲线对比。
综上所述,本实施例得到的光学防霜反射镜应在具有防霜功能的前提下面形精度不受或极少受影响。
实施例2
在本实施例中,提出的光学防霜反射镜的结构如实施例1,不同的是,反射涂层材料采用Ag,其在可见光与红外波段具有更高的反射效率,同样对防霜反射膜系的结构进行了合理设计,使其在具有防霜功能的同时保证了Ag膜系的光谱反射性能。防霜反射膜系镀制过程分为:导电膜镀制、绝缘层与Ag反射膜系镀制、电极镀制,其结构可参照图1-b:图中,光学反射镜片1,导电膜2,中间绝缘层3,连接层4,Ag膜系5,导电电极6。
该具有防霜功能的Ag反射膜系制备工艺方法具体如下:
(1).准备工作步骤:清洁真空室、挡板及夹具等,在坩埚中分别加入氧化铟锡、二氧化硅、Ag、三氧化二铝、五氧化二钽膜料,用脱脂布蘸无水乙醇和乙醚混合溶剂擦拭光学反射镜片,擦拭干净后装入夹具放入真空室。
(2).抽真空与光学反射镜片升温步骤:启动真空泵抽真空并逐渐升温至180摄氏度,升温步骤与恒温时间根据光学镜片的尺寸及形状决定。
(3).真空镀膜步骤:镀膜步骤包括有如下分步骤:
A、导电膜镀制步骤:在180摄氏度的烘烤温度下恒定3小时后,进行导电膜材料的蒸镀,工艺条件:导电膜材料为氧化铟锡(质量比为90%In2O3,10%SnO2), 真空度为优于6×10-4Pa,膜层监控厚度180纳米,霍尔离子源充40SCCM氧气,离子源阳极电压180伏,阳极电流6安培。
B、绝缘层镀制步骤:绝缘层镀制材料为二氧化硅,真空度优于6×10-4Pa,膜层监控厚度200纳米,霍尔离子源充40SCCM氧气,离子源阳极电压180伏,阳极电流6安培;
C、Ag反射膜镀制步骤:连接层材料为三氧化二铝,真空度好于6×10-4Pa,连接层厚度10纳米,之后进行Ag膜的镀制,真空度好于6×10-4Pa,蒸发速率高于10nm/秒,完成后镀制由二氧化硅与五氧化二钽所组成的保护层,真空度优于6×10-4Pa,膜层监控厚度由膜系设计决定,霍尔离子源充40SCCM氧气,离子源阳极电压180伏,阳极电流6安培;
C、导电电极镀制步骤:导电电极镀制材料为铜,真空度好于6×10-4Pa,膜层监控厚度300纳米。
镀制完成后,需待Ag反射镜元件完全冷却后充气入真空室,打开真空室门取出镀好的光学反射镜片。
图2-b为本实施例制备的防霜Ag反射膜系光谱反射曲线,从图中可以看出其光谱反射效率,即在400nm-2000nm波段范围,Ag防霜反射镜光谱反射率平均值优于98%。

Claims (6)

  1. 一种用于极低温环境下的大口径反射式光学红外望远镜防霜膜系,在反射式光学望远镜的反射镜表面集成有透明导电膜,其特征在于,所述透明导电膜的结构如下,自主镜表面开始,依次为:透明导电膜层、中间绝缘层、反射膜层及最外介质保护层;在所述透明导电膜层的两边,设有导电电极。
  2. 根据权利要求1所述的用于极低温的大口径反射式光学红外望远镜防霜膜系,其特征在于,所述透明导电膜层采用氧化铟锡;所述中间绝缘层采用二氧化硅;所述反射膜层采用铝或银;所述最外介质保护层采用二氧化硅、五氧化二钽等介质氧化物;导电电极的材料为铜。
  3. 根据权利要求1或2所述的用于极低温的大口径反射式光学红外望远镜防霜膜系,其特征在于,所述透明导电膜层的膜层厚度为180纳米;所述中间绝缘层的膜层厚度为200纳米;所述反射膜层的膜层厚度为100纳米;所述最外介质保护层的膜层为单层或高低折射率膜层搭配结构;所述导电电极的膜层厚度为300纳米。
  4. 权利要求1所述的用于极低温的大口径反射式光学红外望远镜防霜膜系的制备方法,其特征在于,步骤如下:
    (1)准备工作:
    (1)-1.清洁真空室内所有相关部件;
    (1)-2.加入相关膜料;
    (1)-3.放入待镀光学反射镜片;
    (1)-4.对真空室抽真空;
    (2).导电膜镀制步骤:烘烤后,进行导电膜材料的蒸镀,工艺条件:导电膜材料为氧化铟锡,膜层监控厚度180纳米;
    (3).中间绝缘层镀制步骤:中间绝缘层镀制材料为二氧化硅,膜层监控厚度200纳米;
    (4).反射膜镀制步骤:反射膜镀制材料为铝或银,膜层监控厚度100纳米;
    (5).最外介质保护层的镀制步骤:最外介质保护层镀制材料为二氧化硅或二氧化硅和五氧化二钽,为单层或高低折射率膜层搭配而成;
    (6).导电电极镀制步骤:导电电极镀制材料为铜,膜层监控厚度300纳米。
  5. 根据权利要求4所述的用于极低温的大口径反射式光学红外望远镜防霜膜系 的制备方法,其特征在于,所述准备工作中的步骤(1)-2加入相关膜料是指:在无氧铜坩埚中分别加入氧化铟锡、二氧化硅、铝、铜膜料;步骤(1)-4对真空室抽真空,真空度优于6×10-4Pa。
  6. 根据权利要求4或5所述的用于极低温的大口径反射式光学望远镜防霜膜系的制备方法,其特征在于,所述各步骤(2)-(6)的工艺条件分别是:
    (2).导电膜镀制步骤:在180摄氏度的烘烤温度下恒定3小时后,进行导电膜材料的蒸镀,工艺条件:导电膜材料为氧化铟锡,其中,所述氧化铟锡按质量百分比包含90%的In2O3,10%SnO2,真空度优于6×10-4Pa,霍尔离子源充40SCCM氧气,离子源阳极电压180伏,阳极电流6安培;
    (3).中间绝缘层镀制步骤:中间绝缘层镀制材料为二氧化硅,真空度优于6×10-4Pa,霍尔离子源充40SCCM氧气,离子源阳极电压180伏,阳极电流6安培;
    (4).反射膜镀制步骤:反射膜镀制材料为铝或银,真空度好于6×10-4Pa;
    (5).最外介质保护层的镀制步骤:最外介质保护层镀制材料为二氧化硅或二氧化硅和五氧化二钽,真空度优于6×10-4Pa,霍尔离子源充40SCCM氧气,离子源阳极电压180伏,阳极电流6安培;
    (6).导电电极镀制步骤:导电电极镀制材料为铜,真空度优于6×10-4Pa。
PCT/CN2016/080743 2015-06-18 2016-04-29 极低温环境大口径反射式望远镜防霜膜系及其制备方法 WO2016202107A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/572,320 US10359621B2 (en) 2015-06-18 2016-04-29 Frost-prevention film system of large-aperture reflecting optic infrared telescope used in extremely low temperature environment and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510340393.5A CN104991294B (zh) 2015-06-18 2015-06-18 极低温环境大口径反射式望远镜防霜膜系及其制备方法
CN201510340393.5 2015-06-18

Publications (1)

Publication Number Publication Date
WO2016202107A1 true WO2016202107A1 (zh) 2016-12-22

Family

ID=54303130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080743 WO2016202107A1 (zh) 2015-06-18 2016-04-29 极低温环境大口径反射式望远镜防霜膜系及其制备方法

Country Status (3)

Country Link
US (1) US10359621B2 (zh)
CN (1) CN104991294B (zh)
WO (1) WO2016202107A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104991294B (zh) 2015-06-18 2017-04-12 中国科学院国家天文台南京天文光学技术研究所 极低温环境大口径反射式望远镜防霜膜系及其制备方法
CN106291908B (zh) * 2016-10-18 2021-05-11 中国科学院国家天文台南京天文光学技术研究所 用于大型天文望远镜主镜的金增强型反射膜系及制备方法
CN108132142B (zh) * 2018-01-31 2024-04-05 中国科学院西安光学精密机械研究所 大口径反射光学系统检测装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4131795A (en) * 1976-03-13 1978-12-26 Fuji Xerox Co., Ltd. Instant radiation image display element
CN1119742A (zh) * 1994-05-07 1996-04-03 电子科技大学 密封式防雾镜及其制作方法
JPH1096846A (ja) * 1996-09-24 1998-04-14 Jiomatetsuku Kk デフロスター
CN102808153A (zh) * 2012-08-27 2012-12-05 中国科学院光电技术研究所 一种大型望远镜铝反射主镜介质保护膜层的制备方法
CN204044388U (zh) * 2014-08-25 2014-12-24 南京施密特光学仪器有限公司 一种具有防雾防霜功能的光学滤光片
CN104570166A (zh) * 2014-12-16 2015-04-29 中国科学院国家天文台南京天文光学技术研究所 能够防霜除霜的南极红外望远镜封窗及其制备方法
CN104991294A (zh) * 2015-06-18 2015-10-21 中国科学院国家天文台南京天文光学技术研究所 极低温环境大口径反射式望远镜防霜膜系及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3686473A (en) * 1971-03-25 1972-08-22 Sprague Electric Co Heated rear-view mirror
US4710426A (en) * 1983-11-28 1987-12-01 Polaroid Corporation, Patent Dept. Solar radiation-control articles with protective overlayer
JPH0255342A (ja) * 1988-08-22 1990-02-23 Canon Inc エレクトロクロミック素子
JPH0811631A (ja) * 1994-06-29 1996-01-16 Murakami Kaimeidou:Kk 車両用ミラー
CN1369572A (zh) * 2001-04-03 2002-09-18 中国科学院长春光学精密机械与物理研究所 氧化物透明导电薄膜材料
US6994444B2 (en) * 2002-06-14 2006-02-07 Asml Holding N.V. Method and apparatus for managing actinic intensity transients in a lithography mirror
CN101697289A (zh) * 2009-10-15 2010-04-21 浙江大学 一种透明导电膜及其制备方法
JP5445395B2 (ja) * 2010-08-25 2014-03-19 住友金属鉱山株式会社 透明導電膜の製造方法、及び薄膜太陽電池の製造方法
CN102269865B (zh) * 2011-07-19 2013-01-09 中国科学技术大学 一种直接接触大气的防尘防霜光学望远镜系统
CN103247605A (zh) * 2012-02-01 2013-08-14 江西沃格光电科技有限公司 薄膜晶体管基板及其制备方法
CN103364932B (zh) * 2013-08-02 2015-05-27 福建福光数码科技有限公司 中波红外制冷型长焦距、大口径镜头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4131795A (en) * 1976-03-13 1978-12-26 Fuji Xerox Co., Ltd. Instant radiation image display element
CN1119742A (zh) * 1994-05-07 1996-04-03 电子科技大学 密封式防雾镜及其制作方法
JPH1096846A (ja) * 1996-09-24 1998-04-14 Jiomatetsuku Kk デフロスター
CN102808153A (zh) * 2012-08-27 2012-12-05 中国科学院光电技术研究所 一种大型望远镜铝反射主镜介质保护膜层的制备方法
CN204044388U (zh) * 2014-08-25 2014-12-24 南京施密特光学仪器有限公司 一种具有防雾防霜功能的光学滤光片
CN104570166A (zh) * 2014-12-16 2015-04-29 中国科学院国家天文台南京天文光学技术研究所 能够防霜除霜的南极红外望远镜封窗及其制备方法
CN104991294A (zh) * 2015-06-18 2015-10-21 中国科学院国家天文台南京天文光学技术研究所 极低温环境大口径反射式望远镜防霜膜系及其制备方法

Also Published As

Publication number Publication date
CN104991294A (zh) 2015-10-21
US10359621B2 (en) 2019-07-23
CN104991294B (zh) 2017-04-12
US20180149856A1 (en) 2018-05-31

Similar Documents

Publication Publication Date Title
CN108627889B (zh) 一种锗基底宽光谱红外增透光学窗口
Kaminski et al. Multilayer broadband antireflective coatings for more efficient thin film CdTe solar cells
TWI589448B (zh) 溫度及腐蝕穩定的表面反射器
US10281617B1 (en) Highly durable hydrophobic antireflection structures and method of manufacturing the same
JP2000356706A (ja) 光吸収性反射防止体とその製造方法
JP2000509511A (ja) 吸収性広帯域低輝度反射防止膜の構成方法及び装置
AU2012203184A1 (en) Refractive index matching of thin film layers for photovoltaic devices and methods of their manufacture
Al-Shukri Thin film coated energy-efficient glass windows for warm climates
CN206741013U (zh) 一种以锗为基底的中长波红外增透膜
WO2016202107A1 (zh) 极低温环境大口径反射式望远镜防霜膜系及其制备方法
US11774637B1 (en) Thin film coatings on transparent substrates and methods of making and using thereof
CN109683214A (zh) 应用于可见光和近红外光波段的双面镀膜玻璃及生产工艺
Hu et al. Multilayered metal-dielectric film structure for highly efficient solar selective absorption
CN110146943B (zh) 一种硅基底中波红外增透膜及其制备方法
JP2019525242A (ja) 固体サーモクロミックデバイス及びそのデバイスの製造方法
CN103884122A (zh) 一种太阳能光热转换集热器透明热镜及其制备方法
Au et al. Tungsten oxide (WO3) films prepared by sol-gel spin-coating technique
JP3190240B2 (ja) 光吸収性反射防止体とその製造方法
Bou et al. Numerical and experimental investigation of transparent and conductive TiOx/Ag/TiOx electrode
Welser et al. Broadband nanostructured antireflection coating on glass for photovoltaic applications
Patel et al. Preparation and characterization of SnO2 thin film coating using rf-plasma enhanced reactive thermal evaporation
CN101752028A (zh) 透明导电膜及其制备方法
Kim et al. ZnSnO/Ag/indium tin oxide multilayer films as a flexible and transparent electrode for photonic devices
US20150075603A1 (en) Novel hydrophobic coatings and methods and compositions relating thereto
Bell et al. Glazing materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16810848

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15572320

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16810848

Country of ref document: EP

Kind code of ref document: A1