WO2016199536A1 - 信号伝達回路及び電力変換装置 - Google Patents

信号伝達回路及び電力変換装置 Download PDF

Info

Publication number
WO2016199536A1
WO2016199536A1 PCT/JP2016/064160 JP2016064160W WO2016199536A1 WO 2016199536 A1 WO2016199536 A1 WO 2016199536A1 JP 2016064160 W JP2016064160 W JP 2016064160W WO 2016199536 A1 WO2016199536 A1 WO 2016199536A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
circuit
control
logic
output
Prior art date
Application number
PCT/JP2016/064160
Other languages
English (en)
French (fr)
Inventor
健一 諸熊
淳 冨澤
内田 哲也
昭一 折田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US15/579,790 priority Critical patent/US10171070B2/en
Priority to DE112016002572.6T priority patent/DE112016002572T5/de
Priority to CN201680033484.7A priority patent/CN107636969B/zh
Priority to JP2017523165A priority patent/JP6456496B2/ja
Publication of WO2016199536A1 publication Critical patent/WO2016199536A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/08104Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0812Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/689Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors with galvanic isolation between the control circuit and the output circuit
    • H03K17/691Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors with galvanic isolation between the control circuit and the output circuit using transformer coupling

Definitions

  • the present invention relates to a signal transmission circuit that transmits a signal via a transformer, and a power conversion device including the signal transmission circuit.
  • a conventional signal transmission circuit used in a drive circuit device for a power semiconductor switching element in the inverter is configured as follows.
  • a conventional signal transmission circuit transmits first and second input signals having different signal velocities while being electrically insulated, a pulse generation unit, first and second transmission units, a latch circuit, and an oscillation And a determination circuit.
  • the first and second transmission units are latch circuits while electrically insulating the first and second pulse signals generated by the pulse generation unit according to the logic states of the first and second input signals.
  • the latch circuit obtains a first restored output signal obtained by restoring the first input signal by the rising edges of the first and second pulse signals.
  • the oscillation determination circuit obtains a second restored output signal obtained by restoring the second input signal based on the oscillation states of the first and second pulse signals.
  • a signal transmission circuit having such a configuration is disclosed in Patent Document 1, for example.
  • the ON (active level) pulse width of the first input signal is shorter than the timing of the first and second pulse signals generated by the pulse generator. In such a case, there is a possibility that a time zone in which both the first and second pulse signals are in an ON state may occur.
  • the output signal of the latch circuit is any of the input signals (first and second pulse signals) to the latch circuit.
  • the contents of the first and second restored output signals change to an indeterminate state, causing a malfunction, or until one of the first and second pulse signals is turned off (inactive level). Delay time occurs.
  • the conventional signal transmission circuit cannot output the external output signals (first and second restored output signals) accurately reflecting the external input signals (first and second input signals). There was a point.
  • the present invention has been made to solve the above problems, and provides a signal transmission circuit that outputs an external output signal that accurately reflects an external input signal, and a power conversion device that includes the signal transmission circuit. Objective.
  • a signal transmission circuit receives a first circuit that outputs first and second transmission signals based on an external input signal, and the first and second transmission signals on a primary side.
  • First and second transformers for obtaining first and second transformer output signals from the secondary side, and a second circuit for generating an external output signal based on the first and second transformer output signals.
  • the external input signal has first and second logic levels, changes from the second logic level to the first logic level at the first transition, and changes from the first logic level to the first logic level at the second transition.
  • the first transmission signal is transmitted between the first and second logic levels within a first period when the external input signal is at the first logic level.
  • the second logic level when the external input signal is at the second logic level.
  • the second transmission signal is a second logic signal when the external input signal is at a second logic level. Varying between the first and second logic levels within a period, fixed at the second logic level when the external input signal is at the first logic level, and for a certain period during the second transition of the external input signal
  • the first and second transmission signals are output so as to have a first logic level
  • the second circuit is configured to output the first and second signals based on the first or second logic level of the external output signal.
  • First and second control protection units for invalidating the first and second mask periods, the first transformer output signal via the first control protection unit, and the first transformer output signal. Exceeds the period during which the transformer output signal indicates the active level.
  • a first signal shaping circuit for generating a first logic setting signal for instructing an active level in the first logic setting period, and the second transformer output signal via the second control protection unit,
  • a second signal shaping circuit for generating a second logic setting signal indicating an activation level in a second logic setting period exceeding a period during which the second transformer output signal indicates an activation level;
  • the logic setting signal control for invalidating the activation level indication by the first and second logic setting signals is received.
  • the first and second logic setting signals are received via the circuit and the logic setting signal control circuit, and the first logic setting signal indicates an activation level among the first and second logic levels.
  • One logical level And an output signal generation circuit for generating the external output signal which becomes the other logic level when the second logic setting signal indicates an active level.
  • the first and second control protection units invalidate the first and second transformer output signals in the first and second mask periods based on the first or second logic level of the external output signal. Therefore, it is necessary to set a period during which it is not necessary to detect that the external input signal has changed to the first logic level as the first mask period, and to detect that the external input signal has changed to the second logic level. By setting the period without the second mask period, the reliability of the external output signal generated by the output signal generation circuit can be improved.
  • first and second signal shaping circuits indicate the active level in the first and second logic setting periods exceeding the period in which the first and second transformer output signals indicate the active level.
  • an external output signal that reliably reflects the contents of the instructions of the first and second logic setting signals can be generated from the output signal generation circuit.
  • the logic setting signal control circuit outputs the external output by the output signal generation circuit by invalidating the first and second logic setting signals when both the first and second logic setting signals indicate the active level.
  • the signal is generated, it is possible to reliably avoid a situation where both the first and second logic setting signals are at the active level, so that the reliability of the external output signal can be improved.
  • the signal transmission circuit of the present invention according to claim 1 can perform signal transmission with high reliability as a result of outputting the external output signal that accurately reflects the external input signal.
  • FIG. 1 is a block diagram illustrating an overall configuration of a power conversion device including a signal transmission circuit according to a first embodiment.
  • 6 is an explanatory diagram illustrating operation waveforms in signal transmission processing by the signal transmission circuit according to the first embodiment;
  • FIG. 3 is a block diagram showing an internal configuration of a pulse conversion circuit constituting the first circuit of the signal transmission circuit according to the first embodiment.
  • FIG. 5 is a waveform diagram showing operation waveforms in a pulse conversion operation of the pulse conversion circuit shown in FIG. 4.
  • FIG. 5 is a circuit diagram showing an internal configuration of a rising edge detection circuit shown in FIG. 4.
  • FIG. 5 is a circuit diagram showing an internal configuration of a falling edge detection circuit shown in FIG. 4.
  • FIG. 9 is a waveform diagram showing operation waveforms of detection processing of the falling edge detection circuit shown in detail in FIG. 8.
  • FIG. 2 is a circuit diagram showing an internal configuration of a control circuit shown in FIG. 1.
  • FIG. 5 is a circuit diagram showing an internal configuration of the buffer circuit shown in FIG. 4.
  • FIG. 1 is a block diagram showing the overall configuration of a signal transmission circuit 6 according to Embodiment 1 of the present invention.
  • the signal transmission circuit 6 according to the first embodiment will be described with reference to FIG.
  • the same components are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the signal transmission circuit 6 includes a first circuit 100, a transformer 10 (first transformer), a transformer 20 (second transformer), and a second circuit 200.
  • the transformer 10 has a coil 110 which is a primary side coil and a coil 210 which is a secondary side coil
  • the transformer 20 has a coil 120 which is a primary side coil and a coil 220 which is a secondary side coil.
  • the first circuit 100 is electrically connected to the coil 110 of the transformer 10 and the coil 120 of the transformer 20, and the second circuit 200 is electrically connected to the coil 210 of the transformer 10 and the coil 220 of the transformer 20.
  • the first circuit 100 transmits an input signal XIN (external input signal) received from the outside via the input terminal 101 to the second circuit 200 via the transformer 10 and the transformer 20, and induced voltage signals from the transformers 10 and 20. Based on RX1 and RX2, an output signal XOUT (external output signal) is output from the output terminal 201 of the second circuit 200 to the outside.
  • XIN external input signal
  • XOUT external output signal
  • the signal transmission circuit 6 executes the signal transmission process for receiving the input signal XIN and outputting the output signal XOUT reflecting the signal content of the input signal XIN to the outside. That is, the output signal XOUT is a signal corresponding to the input signal XIN.
  • the connection relationship between the first circuit 100 and the second circuit 200 of the transformer 10 will be described.
  • the first end of the coil 110 is connected to the first output terminal (for the transmission signal VS) of the first circuit 100, and the second end of the coil 110 is set to the reference potential VSS 1 by the first circuit 100.
  • the first end of the coil 210 is connected to the first input terminal (for the induced voltage signal RX1) of the second circuit 200, and the second end of the coil 210 is set to the reference potential VSS2 by the second circuit 200.
  • the connection relationship between the first circuit 100 and the second circuit 200 of the transformer 20 will be described.
  • the first end of the coil 120 is connected to the second output terminal (for transmission signal VR) of the first circuit 100, and the second end of the coil 120 is set to the reference potential VSS1 of the first circuit 100.
  • the first end of the coil 220 is connected to the second input terminal (for the induced voltage signal RX2) of the second circuit 200, and the second end of the coil 220 is set to the reference potential VSS2 by the second circuit 200.
  • the first circuit 100 has a pulse conversion circuit 102 as a main component.
  • the pulse conversion circuit 102 converts the transmission signal VS (first transmission signal) and the transmission signal VR (second transmission signal) obtained based on the input signal XIN received through the input terminal 101 into the first and second transmission signals. Output to the first end of the coil 110 and the first end of the coil 120 connected to the output terminal.
  • the pulse conversion circuit 102 uses the first clock signal obtained as the logical product of the input signal XIN and the oscillation signal of the oscillator to detect the rising edge of the input signal XIN and the first clock signal. Is output as a transmission signal VS to the first end of the coil 110.
  • the pulse conversion circuit 102 uses the second clock signal obtained as a logical product of the signal obtained by inverting the input signal XIN and the oscillation signal of the oscillator, and the signal detected by the falling edge of the input signal XIN and the second clock.
  • a second pulse signal obtained as a logical sum with the signal is output as a transmission signal VR to the first end of the coil 120.
  • the transformer 10 receives the transmission signal VS (first transmission signal) from the first output terminal of the first circuit 100 on the primary side, and the induced voltage signal RX1 (from the secondary side to the first input terminal of the second circuit 200.
  • the first transformer output signal) is obtained.
  • the transformer 20 receives the transmission signal VR (second transmission signal) from the second output terminal of the first circuit 100 on the primary side, and the induced voltage signal RX2 from the secondary side to the second input terminal of the second circuit 200. (Second transformer output signal) is obtained.
  • the second circuit 200 includes control protection elements 23S and 23R, buffer circuits 24S and 24R, Schmitt circuits 25S and 25R, a control circuit 26, and a latch circuit 27, and a first input terminal of the coil 210 of the transformer 10 is the first.
  • the second input terminal is connected to the first end of the coil 220 of the transformer 20.
  • the control protection element 23S has an input part IN, an output part OUT, and a control input part SW.
  • the input part IN receives the induced voltage signal RX1 from the first input terminal of the second circuit 200, and the control input part SW is the latch circuit 27.
  • the control protection element 23S outputs the induced voltage signal RX1 as it is from the output part OUT except for the first mask period in which the control signal VSM indicates “H”. However, the control protection element 23S forcibly invalidates the induced voltage signal RX1 during the first mask period, and the output part OUT is fixed to “L”.
  • control protection element 23R includes an input unit IN, an output unit OUT, and a control input unit SW.
  • the input unit IN receives the induced voltage signal RX2 from the second input terminal of the second circuit 200, and receives the control input unit SW. Receives the inverted output signal bar XOUT from the latch circuit 27 as the control signal VRM.
  • the control protection element 23R outputs the induced voltage signal RX2 as it is from the output part OUT, except for the second mask period in which the control signal VRM indicates “H”. However, the control protection element 23R forcibly disables the induced voltage signal RX2 during the second mask period, and the output part OUT is fixed at “L”.
  • control protection elements 23S and 23R invalidate the induced voltage signals RX1 and RX2 (first and second transformer output signals) in the first and second mask periods.
  • the buffer circuit 24S inverts and amplifies the induced voltage signal RX1 obtained through the control protection element 23S to obtain the signal VS1.
  • the Schmitt circuit 25S performs a waveform shaping process on the signal VS1 to obtain a signal VS2.
  • the waveform shaping process when an inverted signal of the signal VS1 is obtained as the signal VS2, the signal VS1 is “H” (active level) in a period (first logic setting period) exceeding the period in which the signal VS1 indicates “L” (active level). Is a process for generating a signal VS2 (first logic setting signal).
  • the buffer circuit 24R inverts and amplifies the induced voltage signal RX2 obtained through the control protection element 23R to obtain the signal VR1.
  • the Schmitt circuit 25R performs a waveform shaping process on the signal VR1 to obtain a signal VR2.
  • the waveform shaping process when an inverted signal of the signal VR1 is obtained as the signal VR2, the signal VR1 is “H” (active level) in a period (second logic setting period) exceeding the period in which the signal VR1 indicates “L” (active level). ) To generate a signal VR2 (second logic setting signal).
  • the buffer circuit 24S and the Schmitt circuit 25S receive the induced voltage signal RX1 (first transformer output signal) via the control protection element 23S (first control protection unit), and the induced voltage signal RX1 is received by the control protection element 23S.
  • the signal VS2 first level instructing “H” (active level) It functions as a first signal shaping circuit that generates a logic setting signal.
  • the buffer circuit 24R and the Schmitt circuit 25R receive the induced voltage signal RX2 (second transformer output signal) via the control protection element 23R (second control protection unit), and the induced voltage signal RX2 is controlled and protected. If not invalidated by the element 23R, the signal VR2 (first level) instructing “H” (active level) in the second logic setting period exceeding the period in which the induced voltage signal RX2 indicates “H” (active level). 2 logic setting signal) to function as a second signal shaping circuit.
  • the control circuit 26 receives the signal VS2 and the signal VR2 (first and second logic setting signals), and when both the signal VS2 and the signal VR2 indicate “H” (active level), “ “H” is invalidated, and the signal VS3 and the signal VR3 of “L” are output.
  • the control circuit 26 outputs the signal VS2 and the signal VR2 as they are as the signal VS3 and the signal VR3 to the set input unit S and the reset input unit R of the latch circuit 27. To do.
  • the latch circuit 27 which is an output signal generation circuit, receives the signal VS3 and the signal VR3 via the control circuit 26 (logic setting signal control circuit). At this time, when the control circuit 26 has not performed the invalidation processing of the signal VS2 and the signal VR2, the signals VS3 and VR3 become the signals VS2 and VR2 (first and second logic setting signals).
  • the output signal XOUT is generated which becomes “L” (the other logic level among “H” and “L”).
  • the latch circuit 27 outputs an inverted output signal bar XOUT that is an inverted signal of the output signal XOUT together with the output signal XOUT from the inverted output unit QB.
  • FIG. 2 is a block diagram illustrating an overall configuration of the power conversion device 60 including the signal transmission circuit 6 according to the first embodiment. As shown in the figure, the signal transmission circuit 6 according to the first embodiment is applied to transmission of a control signal S4 for driving and controlling a power semiconductor switching element 2 (power semiconductor switching element) such as an IGBT in the power conversion device 60.
  • a control signal S4 for driving and controlling a power semiconductor switching element 2 (power semiconductor switching element) such as an IGBT in the power conversion device 60.
  • the power conversion device 60 provided for controlling the motor 1 used in a hybrid vehicle, an electric vehicle or the like includes a power semiconductor switching element 2, a driver unit 3 as a drive circuit for driving the power semiconductor switching element 2, A control unit 4 that generates a control signal S4 for the driver unit 3 in order to drive the power semiconductor switching element 2 by the driver unit 3, and receives the control signal S4 from the control unit 4 as an input signal XIN, and a driver as an output signal XOUT.
  • the signal transmission circuit 6 according to the first embodiment that transmits to the unit 3 is provided.
  • the signal transmission circuit 6 is provided between the control unit 4 and the driver unit 3 to insulate the control unit 4 from devices controlled by a high voltage such as the driver unit 3, the power semiconductor switching element 2, and the motor 1.
  • the control signal S4 from the control unit 4 can be input as the input signal XIN, and the output signal XOUT corresponding to the control signal S4 can be generated and output to the driver unit 3.
  • FIG. 3 is an explanatory diagram showing operation waveforms in the signal transmission processing by the signal transmission circuit 6 according to the first embodiment of the present invention.
  • the input signal XIN input to the signal transmission circuit 6, the oscillation signal CLK of the first circuit 100, and the first pulse signal transmitted from the first circuit 100 to the first end of the coil 110 are transmitted.
  • Operation waveforms of the signal VS and a transmission signal VR that is a second pulse signal transmitted from the first circuit 100 to the first end of the coil 120 are shown. These signals are signals related to the first circuit 100 having the pulse conversion circuit 102.
  • an induced voltage signal RX1 generated at the first end of the coil 210 and received by the second circuit 200 and an induced voltage signal RX2 generated at the first end of the coil 220 and received by the second circuit 200.
  • FIG. 4 is a block diagram showing an internal configuration of the pulse conversion circuit 102 constituting the first circuit 100 of the signal transmission circuit 6, and FIG. 5 is a waveform diagram showing an operation waveform in the pulse conversion operation of the pulse conversion circuit 102. . Note that the configuration of the pulse conversion circuit 102 illustrated in FIG. 4 is an example and is not limited.
  • the pulse conversion circuit 102 includes a rising edge detection circuit 31, a falling edge detection circuit 32, an oscillator 38, two AND gates 34 and 35, two OR gates 36 and 37, And an inverter 39.
  • the input signal XIN input to the pulse conversion circuit 102 is applied to one input of the rising edge detection circuit 31, the falling edge detection circuit 32, the AND gate 34, and the input part of the inverter 39.
  • the oscillation signal CLK of the oscillator 38 is applied to the other input of the AND gate 34 and one input of the AND gate 35.
  • the output signal of the inverter 39 is applied to the other input of the AND gate 35.
  • the output signal VA of the rising edge detection circuit 31 is applied to one input of the OR gate 36, and the output signal VC of the AND gate 34 is applied to the other input of the OR gate 36.
  • the output signal VB of the falling edge detection circuit 32 is applied to one input of the OR gate 37, and the output signal VD of the AND gate 35 is applied to the other input of the OR gate 37.
  • the pulse conversion circuit 102 when the logical value of the input signal XIN changes from “L” to “H” (during the first transition), the rising edge detection circuit 31 responds to a predetermined period.
  • the falling edge detection circuit 32 when the logical value indicated by the input signal XIN changes from “H” to “L” (during the second transition), the falling edge detection circuit 32 accordingly “H” having a predetermined period width.
  • a signal VB having a pulse is output.
  • the oscillator 38 outputs an oscillation signal CLK having a constant period.
  • the AND gate 34 outputs a signal VC that is a logical product of the input signal XIN and the oscillation signal CLK, and the AND gate 35 outputs a signal VD that is a logical product of the inverted signal of the input signal XIN and the oscillation signal CLK.
  • a signal VA and a signal VC are applied to the OR gate 36, and an output signal of the OR gate 36 becomes a transmission signal VS output from the pulse conversion circuit 102.
  • a signal VB and a signal VD are given to the OR gate 37, and an output signal of the OR gate 37 becomes a transmission signal VR output from the pulse conversion circuit 102.
  • the input signal XIN (external input signal) has “H” and “L” (first and second logic levels), and changes from “L” to “H” during the first transition, The signal changes from “H” to “L” during the second transition.
  • the transmission signal VS (first transmission signal) changes between “H” and “L” within the period (first period) of the oscillation signal CLK when the input signal XIN is “H”, and the input signal XIN Is fixed at “L” when “L”, and becomes “H” for a certain period at the time of the first transition of the input signal XIN.
  • And is fixed at “L” when the input signal XIN is “H”, and is “H” for a certain period at the time of the second transition of the input signal XIN.
  • FIG. 6 is a circuit diagram showing an internal configuration of the rising edge detection circuit 31 shown in FIG. 4, and FIG. 7 is a waveform diagram showing an operation waveform of detection processing of the rising edge detection circuit 31. As shown in FIG.
  • the configuration of the rising edge detection circuit 31 shown in FIG. 6 is an example and is not limited.
  • the rising edge detection circuit 31 includes a delay circuit 311, an inverter 312, and an AND gate 313.
  • the signal DIN1 input to the rising edge detection circuit 31 is applied to the input part of the delay circuit 311 and one input of the AND gate 313.
  • the signal DIN1 input to the delay circuit 311 is delayed by a predetermined period (in FIG. 7, this predetermined period is indicated by “ ⁇ ”) and applied to the other input of the AND gate 313 through the inverter 312.
  • the output signal of the AND gate 313 becomes the output signal DOUT1 of the rising edge detection circuit 31.
  • the rising edge detection circuit 31 outputs a signal DOUT1 having a predetermined period ⁇ and an “H” pulse width when the input signal DIN1 changes from “L” to “H”.
  • the rising edge detection circuit 31 shown in FIG. 4 outputs the signal VA having the width of the “H” pulse for a predetermined period ⁇ at the time of the first transition when the input signal XIN changes from “L” to “H”. can do.
  • FIG. 8 is a circuit diagram showing an internal configuration of the falling edge detection circuit 32 shown in FIG. 4, and FIG. 9 is a waveform diagram showing operation waveforms of detection processing of the falling edge detection circuit 32.
  • the configuration of the falling edge detection circuit 32 shown in FIG. 8 is an example and is not limited.
  • the falling edge detection circuit 32 includes a delay circuit 321, an inverter 322, and an AND gate 323.
  • the signal DIN2 applied to the falling edge detection circuit 32 is applied to the input unit of the delay circuit 321 and the input unit of the inverter 322.
  • An output signal of the inverter 322 is applied to one input of the AND gate 323.
  • the signal DIN2 input to the delay circuit 321 is delayed by a predetermined period ⁇ and applied to the other input of the AND gate 323.
  • the output signal of the AND gate 323 becomes the output signal DOUT2 of the falling edge detection circuit 32.
  • the falling edge detection circuit 32 outputs a signal DOUT2 having a predetermined period ⁇ and an “H” pulse width.
  • the falling edge detection circuit 32 shown in FIG. 4 outputs the signal VB having the width of the “H” pulse for the predetermined period ⁇ at the second transition when the input signal XIN changes from “H” to “L”. Can be output.
  • FIG. 10 is a circuit diagram showing an internal configuration of the control protection element 23 (23S, S3R).
  • the control protection element 23 has a circuit configuration common to the control protection elements 23S and 23R. Further, the configuration of the control protection element 23 shown in FIG. 10 is an example and is not limited.
  • the control protection element 23 includes two NMOS transistors 231 and 232 and a PMOS transistor 233.
  • the input part IN of the control protection element 23 is connected in common to the drain (terminal) of the NMOS transistor 231, the drain of the NMOS transistor 232, and the drain of the PMOS transistor, and the output part OUT of the control protection element 23 is connected to the input part IN Connected to.
  • the control input SW of the control protection element 23 is connected to the gate (terminal) of the NMOS transistor 231.
  • the source (terminal) of the NMOS transistor 231 is set to the reference potential VSS.
  • the gate and source of the NMOS transistor 232 are also set to the reference potential VSS.
  • the control protection element 23 is a surge protection element having a fixed gate potential, and is used by controlling a part of the surge protection element (in this case, the NMOS transistor 231).
  • control protection element 23 When the control signal (VSM, VRM) obtained from the control input unit SW indicates “H”, the control protection element 23 turns on the NMOS transistor 231 and fixes the output unit OUT to “L” and the input unit IN. When the obtained signal is invalidated and the control signal indicates “L”, the NMOS transistor 231 is turned off, and the signal obtained from the input unit IN can be output as it is from the output unit OUT.
  • the induced period is set as the second mask period, and the induced voltage signal RX2 can be invalidated.
  • control protection elements 23S and 23R output the induced voltage signals RX1 and RX2 as they are to the input parts of the buffer circuits 24R and 24R in the next stage.
  • FIG. 11 is a circuit diagram showing an internal configuration of the control circuit 26, and FIG. 12 is a waveform diagram showing operation waveforms of control contents of the control circuit 26.
  • the configuration of the control circuit 26 shown in FIG. 11 is an example and is not limited.
  • the control circuit 26 includes two AND gates 261 and 262 and a NAND gate 263.
  • the input signal I1 is applied to one input of the AND gate 261 and one input of the NAND gate 263.
  • the input signal I2 is applied to one input of the AND gate 262 and the other input of the NAND gate 263.
  • the other input of AND gate 261 and the other input of AND gate 262 receive the output signal of NAND gate 263.
  • the control circuit 26 suppresses the state in which the input signal I1 and the input signal I2 are simultaneously “H”, the output signal O1 corresponds to the input signal I1, and the output signal O2 is the input signal I2.
  • the signal corresponding to is output. That is, when at least one of the input signals I1 and I2 is “L”, the control circuit 26 outputs the input signals I1 and I2 as they are as the output signals O1 and O2, and the input signals I1 and I2 are both “H”. At this time, the output signals O1 and O2 are fixed to "L”.
  • control circuit 26 receives the signal VS2 and the signal VR2 (first and second logic setting signals) as the input signals I1 and I2, and both the signal VS2 and the signal VR2 indicate “H” (active level). In this case, the “H” instruction by the signal VS2 and the signal VR2 is invalidated, and the “L” signal VS3 and the signal VR3 are output.
  • the signal VS2 and the signal VR2 are output as they are as the signals VS3 and VR3.
  • FIG. 13 is a circuit diagram showing an internal configuration of the buffer circuit 24 (24S and 24R).
  • the buffer circuit 24 has a circuit configuration common to the buffer circuit 24S and the buffer circuit 24R.
  • the configuration of the buffer circuit 24 shown in FIG. 13 is an example and is not limited.
  • the buffer circuit 24 includes an NMOS transistor 241, a resistor 242, and a capacitor 243.
  • the input signal IN is applied to the gate of the NMOS transistor 241.
  • the NMOS transistor 241 has a drain connected to the second end of the resistor 242 and a source connected to the reference potential VSS.
  • the first end of the resistor 242 is set to the power supply potential VDD.
  • One electrode of the capacitor 243 is connected to the second end of the resistor 242 and the drain of the NMOS transistor 241, and the other electrode of the capacitor 243 is set to the reference potential VSS.
  • a signal obtained from one electrode of the capacitor 243 is an output signal OUT.
  • the buffer circuit 24 having such a configuration is an amplifier that inverts the input signal IN and outputs the output signal OUT, and the time for the output signal OUT to return to the power supply potential VDD is determined by constant setting of the resistor 242 and the capacitor 243.
  • the signal transmission circuit 6 includes the transformer 10 including the coil 110 and the coil 210, the transformer 20 including the coil 120 and the coil 220, the first circuit 100 connected to the coil 110 and the coil 120, and the coil 210. And a second circuit 200 connected to the coil 220. Then, the signal transmission circuit 6 transmits the input signal XIN given to the first circuit 100 to the second circuit 200 as the induced voltage signals RX1 and RX2 via the transformer 10 and the transformer 20, and outputs the output signal from the second circuit 200. XOUT is output.
  • Time t1 is a first transition time when the input signal XIN input to the pulse conversion circuit 102 of the first circuit 100 changes from “L” to “H”.
  • the pulse conversion circuit 102 outputs the “H” pulse transmission signal VS to the first end of the coil 110. Note that, during a period in which the input signal XIN from time t1 to time t2 is “H”, the transmission signal VS obtained by logically summing the signal that detects the rising edge of the input signal XIN and the oscillation signal CLK of the control circuit 26 is output.
  • the transmission signal VS changes from “L” to “H” starting from the time t 1
  • a current change occurs in the coil 110 and is induced by the current change, and the induced voltage signal RX 1 is output to the first end of the coil 210.
  • the induced voltage signal RX1 is applied to the control protection element 23S.
  • the induced voltage signal RX1 is in the same state. Is output to the buffer circuit 24S of the next stage.
  • the induced voltage signal RX1 input to the buffer circuit 24S via the control protection element 23S is output as a signal VS1 that is an amplified inverted signal.
  • the output signal VS1 of the buffer circuit 24S is input to the Schmitt circuit 25S, and the waveform-shaped signal VS2 changes from “L” to “H”.
  • the output signal VS2 of the Schmitt circuit 25S is input to the input terminal I1 of the control circuit 26.
  • the output signal VS3 of the output terminal O1 of the control circuit 26 is output in the same state as the input signal VS2.
  • the output signal VS3 of the control circuit 26 (the input signal to the set input unit S of the latch circuit 27) changes from “L” to “H”
  • the output signal from the (forward) output unit Q of the latch circuit 27 is It changes from “L” to “H” and is output as the output signal XOUT of the signal transmission circuit 6.
  • the output signal of the output part Q of the latch circuit 27 is given to the control input part SW as the control signal VSM of the control protection element 23S, and when the control signal VSM changes from “L” to “H”, the control protection element 23S.
  • the input terminal IN is connected to the reference potential VSS2, and the induced voltage signal RX1 becomes the same potential as the reference potential VSS2 and is invalidated.
  • the control signal VRM applied to the control input SW of the control protection element 23R is in the state of the inverted output signal bar XOUT that is the output signal of the inverted output QB of the latch circuit 27 is “H”. Therefore, the input terminal IN of the control protection element 23R is connected to the reference potential VSS2 until the output signal of the inverting output part QB of the latch circuit 27 switches from “L” to “H”, and the induced voltage signal RX2 is the reference potential. It becomes the same potential as VSS2 and is invalidated.
  • Time t2 is a second transition time when the input signal XIN input to the pulse conversion circuit 102 of the first circuit 100 changes from “H” to “L”.
  • the pulse conversion circuit 102 outputs a transmission signal VR of “H” pulse to the first end of the coil 120. Note that, during a period when the input signal XIN after the time t2 is “L”, the transmission signal VR obtained by logically summing the signal that detects the falling edge of the input signal XIN and the oscillation signal CLK of the oscillator 38 is output.
  • the transmission signal VR changes from “L” to “H”
  • a current change occurs in the coil 120 and is induced by the current change, and the induced voltage signal RX 2 is output to the first end of the coil 220.
  • the induced voltage signal RX2 is input to the control protection element 23R, and when the control signal VRM applied to the control input SW of the control protection element 23R is “L”, the induced voltage signal RX2 is in the same state and the next stage buffer circuit To 24R.
  • the induced voltage signal RX2 input to the buffer circuit 24R via the control protection element 23R is output as a signal VR1 that is an amplified inverted signal.
  • the output signal VR1 of the buffer circuit 24R is input to the Schmitt circuit 25R, and the waveform-shaped signal VR2 changes from “L” to “H”.
  • the output signal VR2 of the Schmitt circuit 25R is input to the input terminal I2 of the control circuit 26.
  • the output signal VR3 of the output terminal O2 of the control circuit 26 is output in the same state as the input signal VR2.
  • the first circuit 100 and the coil 120 are connected to the first end of the coil 110 in accordance with the change in the logical value of the input signal XIN in the first circuit 100 and the oscillation signal CLK of the oscillator. Since a plurality of pulse signals (transmission signals VS and VR) are output to the first end, even when the second circuit 200 malfunctions due to noise, it can be quickly restored and the signal can be transmitted with high reliability.
  • the first circuit 100 includes the first and second oscillation signals CLK within the period of the oscillation signal CLK (in the first and second periods) in the periods when the input signal XIN is “H” and “L” in addition to the first and second transitions of the input signal XIN. 2), the input signal XIN changes from “L” to “H” or from “H” to “L” by outputting transmission signals VS and VR that change between “H” and “L”. This can be surely detected by the second circuit 200 as the induced voltage signals RX1 and RX2 (first and second transformer output signals).
  • the signal RX1 is generated at the rise of the first pulse signal VS immediately after time t1 (eg, the rise time t1a by the signal CLK). Since there is an opportunity to rise again, the pulse width is slightly shortened, but a substantially normal output signal XOUT can be output. In this case, since the output signal XOUT (control signal VSM) is “L” until time t1a, the induced voltage signal RX1 generated immediately after time t1a is not invalidated by the control protection element 23S.
  • the induced voltage signals RX1 and RX2 during the first and second mask periods, which are unnecessary detection periods, are connected to the reference potential VSS. While being invalidated, it is transmitted to the buffer circuits 24S and 24R in the next stage.
  • the buffer circuit 24S and 24R and the Schmitt circuits 25S and 25R are used to amplify and shape the induced voltage signal RX1 of the coil 210 and the induced voltage signal RX2 of the coil 220, and the set input unit S and reset of the latch circuit 27
  • the pulse width of “H” (active level) of the signals VS2 and VR2 serving as input signals to the input unit R is made longer than the pulse width of “H” (active level) of the induced voltage signals RX1 and RX2. Therefore, the signal can be transmitted with high reliability.
  • the first signal shaping circuit composed of the buffer circuit 24S and the Schmitt circuit 25S and the second signal shaping circuit composed of the buffer circuit 24R and the Schmitt circuit 25R cause the induced voltage signals RX1 and RX2 (first and second transformer outputs).
  • control circuit 26 is used to suppress the simultaneous ON state (becomes “H” level) of the set input unit S and the reset input unit R of the latch circuit 27, thereby causing malfunctions and signal delays that occur in the simultaneous ON state. Can be suppressed.
  • the control circuit 26 that is a logic setting signal control circuit invalidates the signal VS2 and the signal VR2, thereby causing the latch circuit 27 to output the output signal.
  • XOUT is generated, a situation where both the signals VS2 and VR2 are “H” can be surely avoided, so that the reliability of the output signal XOUT can be improved.
  • the induced voltage signals RX1 and RX2 are invalidated by the control protection elements 23S and 23R (first and second control protection units) for the first and second mask periods. Yes. Therefore, in the control protection elements 23S and 23R, a period during which it is not necessary to detect that the input signal XIN has changed to “H” (first logic level) is set as the first mask period, and the input signal XIN The reliability of the output signal XOUT generated by the latch circuit 27 can be improved by setting the period during which the change to “L” (second logic level) need not be detected as the second mask period. Can be planned.
  • the period in which the output signal XOUT already indicates “H” is set as the first mask period to generate the latch circuit 27.
  • the reliability of the output signal XOUT “H” can be improved.
  • the period in which the output signal XOUT already indicates “L” (second logic level) is set as the second mask period, thereby generating the latch circuit 27.
  • the reliability of the output signal XOUT “L” can be improved.
  • the signal transmission circuit 6 can output a signal with high reliability as a result of outputting the output signal XOUT that accurately reflects the input signal XIN.
  • the power conversion device 60 includes the signal transmission circuit 6 according to the first embodiment, thereby improving noise resistance of signal transmission for transmitting the control signal S4 from the control unit 4 to the driver unit 3.
  • the power converter 60 can be used for a long time.
  • FIG. 14 is a block diagram showing a configuration in which the first mode in the power conversion apparatus according to Embodiment 2 of the present invention is applied to motor control.
  • FIG. 14 shows a configuration of a power conversion device 61 including the signal transmission circuit 6 according to the first embodiment.
  • the power conversion device 61 provided for controlling the motor 1 used in a hybrid vehicle, an electric vehicle or the like includes one or more power semiconductor switching elements 2 (in FIG. 14, one power semiconductor switching element). 2) and the driver unit 3 are integrated by resin sealing together, and a unit of power module 81, and a control signal for the driver unit 3 for driving the power semiconductor switching element 2 by the driver unit 3
  • generates S4 and the signal transmission circuit 6 which transmits control signal S4 from the control part 4 to the driver part 3 are provided.
  • the signal transmission circuit 6 is connected between the control unit 4 and the driver unit 3 and insulates the control unit 4 from a device controlled by a high voltage, such as the driver unit 3, the power semiconductor switching element 2, and the motor 1,
  • a control signal S4 from the control unit 4 is input as an input signal XIN and output as an output signal XOUT.
  • the power conversion device 61 includes a signal transmission circuit 6 that improves the accuracy of signal transmission and further promotes suppression of malfunctions and signal delays, and further includes a power semiconductor switching element 2 (power semiconductor switching element). Since one unit of the power module 81 composed of the driver unit 3 is provided, it is possible to promote improvement in signal transmission accuracy of the power conversion device 61 and suppression of malfunction and signal delay. As a result, the power converter 61 can be used for a long time.
  • FIG. 15 is a block diagram showing a configuration in which the second mode in the power conversion apparatus according to Embodiment 2 of the present invention is applied to motor control.
  • a power conversion device 62 including a unit of power module 82 configured by integrating the signal transmission circuit 6 by resin sealing is used. The same effect as the first aspect may be obtained.
  • FIG. 16 is a block diagram showing a configuration in which the third mode in the power conversion apparatus according to Embodiment 2 of the present invention is applied to motor control.
  • a unit of the power module 83 itself configured by integrating the control unit 4 by resin sealing is a power conversion device.
  • the structure which becomes 63 may be sufficient, and the effect similar to a 1st aspect is acquired.
  • FIG. 17 is a block diagram showing a configuration of a first aspect in which the power conversion device according to Embodiment 3 of the present invention is applied to motor control.
  • the power converter 71 provided with the signal transmission circuit 6 according to the first embodiment will be described.
  • the power conversion device 71 provided to control the motor 1 used in a hybrid vehicle, an electric vehicle, or the like includes one or more power semiconductor switching elements 2, a driver unit 3, an abnormality detection unit 5, and the like. And a control unit 4 for generating a control signal S4 for the driver unit 3 for driving the power semiconductor switching element 2 by the driver unit 3; A signal transmission circuit 6A (first signal transmission circuit) that transmits the control signal S4 from the control unit 4 to the driver unit 3, and a signal transmission circuit that transmits the abnormality detection signal S5 detected by the abnormality detection unit 5 to the control unit 4. 6B (second signal transmission circuit).
  • the abnormality detection unit 5 performs short circuit protection and heating protection of the power semiconductor switching element 2 and control power supply voltage drop protection of the driver unit 3, so that the power semiconductor switching element 2 is short-circuited, heated, or controlled by the driver unit 3.
  • this is an existing component that outputs an abnormality detection signal S5 instructing these abnormal states.
  • the signal transmission circuit 6A and the signal transmission circuit 6B are configured to have substantially the same function as the signal transmission circuit 6 according to the first embodiment.
  • the signal transmission circuit 6A is connected between the control unit 4 and the driver unit 3, and is controlled by a high voltage such as the driver unit 3, the power semiconductor switching element 2, the motor 1, and the abnormality detection unit 5 and the control unit. 4, the control signal S4 from the control unit 4 is input as the input signal XIN1, and is output as the output signal XOUT1.
  • the signal transmission circuit 6B is connected between the control unit 4 and the abnormality detection unit 5, and is controlled by a high voltage such as the driver unit 3, the power semiconductor switching element 2, the motor 1, the abnormality detection unit 5, and the control unit. 4 from the abnormality detection unit 5 that detects an abnormal operation such as a power supply voltage drop, an overcurrent, an overtemperature, or the like generated in a unit of the power module 84 that includes the driver unit 3 and the power semiconductor switching element 2.
  • the output abnormality detection signal S5 is input as an input signal XIN2 and output as an output signal XOUT2.
  • the power conversion device 71 includes signal transmission circuits 6A and 6B (first and second signal transmission circuits) that improve the accuracy of signal transmission and further promote the suppression of malfunctions and signal delays. Furthermore, since the power semiconductor switching element 2, the driver unit 3, and the abnormality detection unit 5 are provided with one unit of the power module 84, the signal transmission accuracy of the power conversion device 71 is improved, It is possible to promote suppression of signal delay. As a result, it is possible to use the power conversion device 71 having an abnormality detection function by the abnormality detection unit 5 for a long period of time.
  • FIG. 18 is a block diagram showing a configuration in which the second mode in the power conversion apparatus according to Embodiment 3 of the present invention is applied to motor control.
  • a unit of power module constituted by integrating a signal transmission circuit 6A and a signal transmission circuit 6B together by resin sealing
  • the power converter 72 provided with 85 may be used, and the same effect as the first aspect is obtained.
  • FIG. 19 is a block diagram showing a configuration in which the third mode in the power conversion apparatus according to Embodiment 3 of the present invention is applied to motor control.
  • the control unit 4 is integrally formed by resin sealing.
  • the power module 86 of one unit itself may be configured to be the power conversion device 73, and the same effect as in the first aspect can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)
  • Logic Circuits (AREA)
  • Dc Digital Transmission (AREA)
  • Electronic Switches (AREA)

Abstract

本発明は、外部入力信号を正確に反映した外部出力信号を出力する信号伝達回路を得ることを目的とする。そして、本発明に係る第1回路(100)は、入力信号(XIN)の"H","L"への遷移時に加え、発振信号(CLK)の周期内において"H"及び"L"間が変化する送信信号(VS及びVR)を出力する。制御保護素子(23S及び23R)は、送信信号(VS及びVR)に応答してトランス(10及び20)から得られる誘導電圧信号(RX1及びRX2)を第1及び第2のマスク期間無効化する。バッファ回路(24S及び24R)並びにシュミット回路(25S及び25R)は、誘導電圧信号(RX1及びRX2)の"H"に基づき、比較的長く"H"を指示する信号(VS2)及び信号(VR2)を生成する。制御回路26は、信号(VS2)及び(VR2)が共に"H"を指示する時、信号(VS2)及び信号(VR2)を無効化する。

Description

信号伝達回路及び電力変換装置
 この発明は、トランスを介して信号を伝達する信号伝達回路、及び上記信号伝達回路を備えた電力変換装置に関するものである。
 例えば、三相交流モータ等を駆動するインバータにおいて、インバータ内のパワー半導体スイッチング素子の駆動回路装置に用いられる従来の信号伝達回路は以下のように構成される。
 従来の信号伝達回路は、異なる信号速度を有する第1及び第2の入力信号を電気的に絶縁しながら伝達し、パルス生成部と、第1及び第2の伝達部と、ラッチ回路と、発振判定回路とを備えて構成される。第1及び第2の伝達部は、第1及び第2の入力信号の論理状態に応じてパルス生成部によって生成された第1及び第2のパルス信号を、電気的に絶縁しながら、ラッチ回路及び発振判定回路へ伝達する。ラッチ回路は、第1及び第2のパルス信号の立上りエッジにより第1の入力信号を復元した第1の復元出力信号を得る。発振判定回路は、第1及び第2のパルス信号の発振状態に基づいて、第2の入力信号を復元した第2の復元出力信号を得る。このような構成の信号伝達回路は例えば特許文献1に開示されている。
特開2014-7502号公報
 従来の信号伝達回路は以上のように構成されているため、第1の入力信号のON(活性レベル)のパルス幅がパルス生成部によって生成された第1及び第2のパルス信号のタイミングより短い場合、第1及び第2のパルス信号が共にONの状態となる時間帯が生じる恐れがある。上記時間帯が生じると、ラッチ回路への入力信号も共にONとなる状態が存在し、ラッチ回路の出力信号はラッチ回路への入力信号(第1及び第2のパルス信号)のいずれの信号が早く動作するかによって、第1及び第2の復元出力信号の内容が変わる不定状態となり、誤動作が生じる、もしくは第1及び第2のパルス信号のいずれかがOFF(非活性レベル)となるまでの間の遅延時間が生じる。
 このように、従来の信号伝達回路は外部入力信号(第1及び第2の入力信号)を正確に反映した外部出力信号(第1及び第2の復元出力信号)を出力することができないという問題点があった。
 この発明は上記問題点を解決するためになされたもので、外部入力信号を正確に反映した外部出力信号を出力する信号伝達回路、及び上記信号伝達回路を備えた電力変換装置を提供することを目的とする。
 この発明に係る請求項1記載の信号伝達回路は、外部入力信号に基づき、第1及び第2の送信信号を出力する第1回路と、一次側に前記第1及び第2の送信信号を受け、二次側より第1及び第2のトランス出力信号を得る第1及び第2のトランスと、前記第1及び第2のトランス出力信号に基づき、外部出力信号を生成する第2回路とを備え、前記外部入力信号は第1及び第2の論理レベルを有し、第1の遷移時に第2の論理レベルから第1の論理レベルに変化し、第2の遷移時に第1の論理レベルから第2の論理レベルに変化し、前記第1回路は、前記第1の送信信号は、前記外部入力信号が第1の論理レベルの時に第1の周期内において第1及び第2の論理レベル間で変化し、前記外部入力信号が第2の論理レベルの時に第2の論理レベルで固定し、前記外部入力信号の前記第1の遷移時に一定期間第1の論理レベルとなり、かつ、前記第2の送信信号は、前記外部入力信号が第2の論理レベルの時に第2の周期内において第1及び第2の論理レベル間で変化し、前記外部入力信号が第1の論理レベルの時に第2の論理レベルで固定し、前記外部入力信号の前記第2の遷移時に一定期間第1の論理レベルとなるように、前記第1及び第2の送信信号を出力し、前記第2回路は、前記外部出力信号の第1または第2の論理レベルに基づき前記第1及び第2のトランス出力信号を第1及び第2のマスク期間無効化する第1及び第2の制御保護部と、前記第1の制御保護部を介して前記第1のトランス出力信号を受け、前記第1のトランス出力信号が活性レベルを指示する期間を超える第1の論理設定期間において活性レベルを指示する第1の論理設定信号を生成する第1の信号整形回路と、前記第2の制御保護部を介して前記第2のトランス出力信号を受け、前記第2のトランス出力信号が活性レベルを指示する期間を超える第2の論理設定期間において活性レベルを指示する第2の論理設定信号を生成する第2の信号整形回路と、前記第1及び第2の論理設定信号を受け、前記第1及び第2の論理設定信号が共に活性レベルを指示する時、前記第1及び第2の論理設定信号による活性レベルの指示を無効化する論理設定信号制御回路と、前記論理設定信号制御回路を介して前記第1及び第2の論理設定信号を受け、第1及び第2の論理レベルのうち、前記第1の論理設定信号が活性レベルを指示する時に一方の論理レベルとなり、前記第2の論理設定信号が活性レベルを指示する時に他方の論理レベルとなる、前記外部出力信号を生成する出力信号生成回路とを含む。
 請求項1記載の本願発明の信号伝達回路において、第1回路は、外部入力信号の第1及び第2の遷移時に加え、外部入力信号が第1及び第2の論理レベルの時に、第1及び第2の周期内において第1及び第2の論理レベル間が変化する第1及び第2の送信信号を出力することにより、外部入力信号が第2及び第1の論理レベルから、第1及び第2の論理レベルに変化したことを、第1及び第2のトランス出力信号として確実に第2回路に検知させることができる。
 さらに、第1及び第2の制御保護部によって、外部出力信号の第1または第2の論理レベルに基づき第1及び第2のトランス出力信号を第1及び第2のマスク期間無効化している。このため、外部入力信号が第1の論理レベルに変化したことを検知する必要がない期間を第1のマスク期間に設定し、外部入力信号が第2の論理レベルに変化したことを検知する必要がない期間を第2のマスク期間に設定することにより、出力信号生成回路より生成される外部出力信号の信頼性の向上を図ることができる。
 加えて、第1及び第2の信号整形回路により、第1及び第2のトランス出力信号が活性レベルを指示する期間を超える第1及び第2の論理設定期間において活性レベルを指示する第1及び第2の論理設定信号を生成することにより、第1及び第2の論理設定信号の指示内容を確実に反映した外部出力信号を出力信号生成回路から生成させることができる。
 また、論理設定信号制御回路は、第1及び第2の論理設定信号が共に活性レベルを指示する時、第1及び第2の論理設定信号を無効化することにより、出力信号生成回路により外部出力信号を生成する際、第1及び第2の論理設定信号が共に活性レベルとなる状況を確実に回避することができるため、外部出力信号の信頼性の向上を図ることができる。
 したがって、請求項1記載の本願発明の信号伝達回路は、外部入力信号を正確に反映した外部出力信号を出力する結果、高い信頼性で信号伝達を行うことができる。
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
この発明の実施の形態1であるの信号伝達回路の構成を示すブロック図である。 実施の形態1の信号伝達回路を含む電力変換装置の全体構成を示すブロック図である。 実施の形態1の信号伝達回路による信号伝達処理における動作波形を示す説明図である。 実施の形態1の信号伝達回路の第1回路を構成するパルス変換回路の内部構成を示すブロック図である。 図4で示したパルス変換回路のパルス変換動作における動作波形を示す波形図である。 図4で示した立上りエッジ検出回路の内部構成を示す回路図である。 図6で詳細を示した立上りエッジ検出回路の検出処理の動作波形を示す波形図である。 図4で示した立下りエッジ検出回路の内部構成を示す回路図である。 図8で詳細を示した立下りエッジ検出回路の検出処理の動作波形を示す波形図である。 図1で示した制御保護素子の内部構成を示す回路図である。 図1で示した制御回路の内部構成を示す回路図である。 図11で詳細を示した制御回路の制御内容の動作波形を示す波形図である。 図4で示したバッファ回路の内部構成を示す回路図である。 この発明の実施の形態2である電力変換装置における第1の態様の構成を示すブロック図である。 この発明の実施の形態2である電力変換装置における第2の態様の構成を示すブロック図である。 この発明の実施の形態2である電力変換装置における第3の態様の構成を示すブロック図である。 この発明の実施の形態3である電力変換装置における第1の態様の構成を示すブロック図である。 この発明の実施の形態3である電力変換装置における第2の態様の構成を示すブロック図である。 この発明の実施の形態3である電力変換装置における第3の態様の構成を示すブロック図である。
 <実施の形態1>
 (信号伝達回路6の全体構成)
 図1はこの発明の実施の形態1であるの信号伝達回路6の全体構成を示すブロック図である。以下、図1を参照して、実施の形態1の信号伝達回路6を説明する。なお、以下の各実施の形態において、同様の構成要素については同一の符号を付して適宜説明を省略する。
 図1に示すように、信号伝達回路6は、第1回路100、トランス10(第1のトランス)、トランス20(第2のトランス)、及び第2回路200から構成される。
 トランス10は一次側コイルであるコイル110及び二次側コイルであるコイル210を有し、トランス20は一次側コイルであるコイル120及び二次側コイルであるコイル220を有している。
 第1回路100はトランス10のコイル110とトランス20のコイル120に電気的に接続され、第2回路200はトランス10のコイル210とトランス20のコイル220に電気的に接続される。
 第1回路100は、外部より入力端子101を介して受ける入力信号XIN(外部入力信号)を、トランス10及びトランス20を介して第2回路200に伝達し、トランス10及び20からの誘導電圧信号RX1及びRX2に基づき第2回路200の出力端子201から出力信号XOUT(外部出力信号)を外部に出力する。
 したがって、信号伝達回路6は、入力信号XINを受け、入力信号XINの信号内容を反映させた出力信号XOUTを外部に出力する信号伝達処理を実行する。すなわち、出力信号XOUTは入力信号XINに対応した信号となる。
 トランス10の第1回路100及び第2回路200との接続関係を説明する。コイル110の第1端は第1回路100の第1出力端子(送信信号VS用)に接続され、コイル110の第2端は第1回路100によって基準電位VSS1に設定される。コイル210の第1端は第2回路200の第1入力端子(誘導電圧信号RX1用)に接続され、コイル210の第2端は第2回路200によって基準電位VSS2に設定される。
 トランス20の第1回路100及び第2回路200との接続関係を説明する。コイル120の第1端は第1回路100の第2出力端子(送信信号VR用)に接続され、コイル120の第2端は、第1回路100の基準電位VSS1に設定される。コイル220の第1端は第2回路200の第2入力端子(誘導電圧信号RX2用)に接続され、コイル220の第2端は第2回路200によって基準電位VSS2に設定される。
 第1回路100はパルス変換回路102を主要構成部として有している。パルス変換回路102は、入力端子101を介して受信される入力信号XINに基づき得られる送信信号VS(第1の送信信号)及び送信信号VR(第2の送信信号)を第1及び第2の出力端子に接続されるコイル110の第1端及びコイル120の第1端に出力する。
 パルス変換回路102は、後に詳述するが、入力信号XINと発振器の発振信号との論理積として得られる第1クロック信号を用いて、入力信号XINの立上りエッジを検出した信号と第1クロック信号との論理和として得られる第1パルス信号をコイル110の第1端への送信信号VSとして出力する。
 さらに、パルス変換回路102は、入力信号XINを反転した信号と発振器の発振信号との論理積として得られる第2クロック信号を用いて、入力信号XINの立下りエッジを検出した信号と第2クロック信号との論理和として得られる第2パルス信号をコイル120の第1端への送信信号VRとして出力する。
 したがって、トランス10は一次側に第1回路100の第1出力端子より送信信号VS(第1の送信信号)を受け、二次側より第2回路200の第1入力端子に誘導電圧信号RX1(第1のトランス出力信号)を得ている。
 同様に、トランス20は一次側に第1回路100の第2出力端子より送信信号VR(第2の送信信号)を受け、二次側より第2回路200の第2入力端子に誘導電圧信号RX2(第2のトランス出力信号)を得ている。
 第2回路200は、制御保護素子23S及び23R、バッファ回路24S及び24R、シュミット回路25S及び25R、制御回路26、並びにラッチ回路27より構成され、第1入力端子がトランス10のコイル210の第1端に接続され、第2入力端子がトランス20のコイル220の第1端に接続される。
 制御保護素子23Sは入力部IN、出力部OUT及び制御入力部SWを有し、入力部INは第2回路200の第1入力端子より誘導電圧信号RX1を受け、制御入力部SWはラッチ回路27から出力信号XOUTを制御信号VSMとして受ける。制御保護素子23Sは制御信号VSMが“H”を指示する第1のマスク期間を除き、出力部OUTから誘導電圧信号RX1をそのまま出力する。ただし、制御保護素子23Sは、上記第1のマスク期間中において誘導電圧信号RX1は強制的に無効化し、出力部OUTは“L”固定される。
 同様にして、制御保護素子23Rは入力部IN、出力部OUT及び制御入力部SWを有し、入力部INは第2回路200の第2入力端子より誘導電圧信号RX2を受け、制御入力部SWはラッチ回路27から反転出力信号バーXOUTを制御信号VRMとして受ける。制御保護素子23Rは制御信号VRMが“H”を指示する第2のマスク期間を除き、出力部OUTから誘導電圧信号RX2をそのまま出力する。ただし、制御保護素子23Rは、上記第2のマスク期間中は誘導電圧信号RX2を強制的に無効化し、出力部OUTは“L”固定される。
 このように、制御保護素子23S及び23Rは、誘導電圧信号RX1及びRX2(第1及び第2のトランス出力信号)を第1及び第2のマスク期間無効化する。
 バッファ回路24Sは制御保護素子23Sを介して得られる誘導電圧信号RX1を反転増幅して信号VS1を得る。シュミット回路25Sは信号VS1を波形整形処理して信号VS2を得る。上記波形整形処理は、信号VS1の反転信号を信号VS2として得る際、信号VS1が“L”(活性レベル)を指示する期間を超える期間(第1の論理設定期間)において“H”(活性レベル)を指示する信号VS2(第1の論理設定信号)を生成する処理である。
 バッファ回路24Rは制御保護素子23Rを介して得られる誘導電圧信号RX2を反転増幅して信号VR1を得る。シュミット回路25Rは信号VR1を波形整形処理して信号VR2を得る。上記波形整形処理は、信号VR1の反転信号を信号VR2として得る際、信号VR1が“L”(活性レベル)を指示する期間を超える期間(第2の論理設定期間)において“H”(活性レベル)を指示する信号VR2(第2の論理設定信号)を生成する処理である。
 したがって、バッファ回路24S及びシュミット回路25Sは、制御保護素子23S(第1の制御保護部)を介して誘導電圧信号RX1(第1のトランス出力信号)を受け、誘導電圧信号RX1が制御保護素子23Sによって無効化されていない場合、誘導電圧信号RX1が“H”(活性レベル)を指示する期間を超える上記第1の論理設定期間において“H”(活性レベル)を指示する信号VS2(第1の論理設定信号)を生成する第1の信号整形回路として機能する。
 同様にして、バッファ回路24R及びシュミット回路25Rは、制御保護素子23R(第2の制御保護部)を介して誘導電圧信号RX2(第2のトランス出力信号)を受け、誘導電圧信号RX2が制御保護素子23Rによって無効化されていない場合、誘導電圧信号RX2が“H”(活性レベル)を指示する期間を超える上記第2の論理設定期間において“H”(活性レベル)を指示する信号VR2(第2の論理設定信号)を生成する第2の信号整形回路として機能する。
 制御回路26は、信号VS2及び信号VR2(第1及び第2の論理設定信号)を受け、信号VS2及び信号VR2が共に“H”(活性レベル)を指示する時、信号VS2及び信号VR2の“H”を無効化して“L”の信号VS3及び信号VR3を出力する。
 一方、制御回路26は、信号VS2及び信号VR2の少なくとも一方が“L”の場合、信号VS2及び信号VR2をそのまま信号VS3及び信号VR3としてラッチ回路27のセット入力部S及びリセット入力部Rに出力する。
 出力信号生成回路であるラッチ回路27は、制御回路26(論理設定信号制御回路)を介して信号VS3及び信号VR3を受ける。この際、制御回路26が信号VS2及び信号VR2の無効化処理を行っていない場合、信号VS3及びVR3は信号VS2及びVR2(第1及び第2の論理設定信号)となる。
 したがって、ラッチ回路27は信号VS3及びVR3を受け、信号VS3(=VS2)が“H”(活性レベル)を指示する時に“H”(“H”,“L”のうち一方の論理レベル)となり、信号VR3(=VR2)が“H”(活性レベル)を指示する時に“L”(“H”,“L”のうち他方の論理レベル)となる、出力信号XOUT(外部出力信号)を生成して出力部Qから出力する。さらに、ラッチ回路27は出力信号XOUTと共に出力信号XOUTの反転信号である反転出力信号バーXOUTを反転出力部QBから出力する。
 (信号伝達回路6を備える電力変換装置60)
 図2は実施の形態1の信号伝達回路6を含む電力変換装置60の全体構成を示すブロック図である。同図に示すように、実施の形態1の信号伝達回路6は、電力変換装置60内でIGBT等のパワー半導体スイッチング素子2(電力半導体スイッチング素子)を駆動制御する制御信号S4の伝達に適用される。
 すなわち、ハイブリッド自動車や電気自動車等で用いられるモータ1を制御するために設けられる電力変換装置60は、パワー半導体スイッチング素子2と、パワー半導体スイッチング素子2を駆動する駆動回路としてのドライバ部3と、ドライバ部3によってパワー半導体スイッチング素子2を駆動するためにドライバ部3用の制御信号S4を生成する制御部4と、制御部4からの制御信号S4を入力信号XINとして受け、出力信号XOUTとしてドライバ部3に伝達する、実施の形態1の信号伝達回路6とを備える。
 信号伝達回路6は、制御部4とドライバ部3との間に設けられることにより、ドライバ部3、パワー半導体スイッチング素子2及びモータ1等、高電圧で制御される装置と制御部4とを絶縁しつつ、制御部4からの制御信号S4を入力信号XINとして入力し、制御信号S4に対応する出力信号XOUTを生成してドライバ部3に出力することができる。
 (信号伝達回路6の信号伝達処理)
 図3は、この発明の実施の形態1の信号伝達回路6による信号伝達処理における動作波形を示す説明図である。
 図3には、信号伝達回路6に入力される入力信号XINと、第1回路100の発振信号CLKと、第1回路100からコイル110の第1端に送信される第1パルス信号である送信信号VSと、第1回路100からコイル120の第1端に送信される第2パルス信号である送信信号VRの動作波形が示されている。これらの信号がパルス変換回路102を有する第1回路100に関連した信号となる。
 さらに、図3において、コイル210の第1端に発生して第2回路200が受信する誘導電圧信号RX1と、コイル220の第1端に発生して第2回路200が受信する誘導電圧信号RX2と、バッファ回路24Sの出力信号である信号VS1と、バッファ回路24Rの出力信号である信号VR1と、シュミット回路25Sの出力信号である信号VS2と、シュミット回路25Rの出力信号である信号VR2の動作波形が示されている。
 さらに、図3において、ラッチ回路27のセット入力部Sへの入力信号である信号VS3と、ラッチ回路27のリセット入力部Rへの入力信号である信号VR3、ラッチ回路27の(正転)出力部Qの出力信号である信号伝達回路6の出力信号XOUT(=制御信号VSM)と、ラッチ回路27の反転出力部QBの出力信号である反転出力信号バーXOUT(=制御信号VRM)の動作波形を示している。
 以下、信号伝達回路6内の各部の詳細構成、及び動作について説明する。
 (信号伝達回路6の各部構成)
 図4は、信号伝達回路6の第1回路100を構成するパルス変換回路102の内部構成を示すブロック図であり、図5はパルス変換回路102のパルス変換動作における動作波形を示す波形図である。なお、図4に示すパルス変換回路102の構成は一例であって限定されるものではない。
 図4に示すように、パルス変換回路102は、立上りエッジ検出回路31と、立下りエッジ検出回路32と、発振器38と、2つのANDゲート34及び35と、2つのORゲート36及び37と、インバータ39とを備える。パルス変換回路102に入力される入力信号XINは、立上りエッジ検出回路31、立下りエッジ検出回路32、ANDゲート34の一方入力、及びインバータ39の入力部に付与される。
 発振器38の発振信号CLKは、ANDゲート34の他方入力と、ANDゲート35の一方入力に付与される。インバータ39の出力信号は、ANDゲート35の他方入力に付与される。立上りエッジ検出回路31の出力信号VAは、ORゲート36の一方入力に付与され、ANDゲート34の出力信号VCは、ORゲート36の他方入力に付与される。立下りエッジ検出回路32の出力信号VBは、ORゲート37の一方入力に付与され、ANDゲート35の出力信号VDは、ORゲート37の他方入力に付与される。
 図5に示すように、パルス変換回路102では、入力信号XINの論理値が“L”から“H”に変化すると(第1の遷移時)、これに応じて立上りエッジ検出回路31は所定期間の幅を持った“H”パルスを有する信号VAを出力する。また、入力信号XINの指示する論理値が“H”から“L”に変化すると(第2の遷移時)、これに応じて立下りエッジ検出回路32は所定期間の幅を持った“H”パルスを有する信号VBを出力する。
 発振器38は、一定周期の発振信号CLKを出力する。ANDゲート34は、入力信号XINと発振信号CLKとの論理積となる信号VCを出力し、ANDゲート35は、入力信号XINの反転信号と発振信号CLKとの論理積となる信号VDを出力する。ORゲート36には信号VA及び信号VCが付与され、ORゲート36の出力信号がパルス変換回路102から出力される送信信号VSとなる。ORゲート37には信号VB及び信号VDが付与され、ORゲート37の出力信号がパルス変換回路102から出力される送信信号VRとなる。
 したがって、入力信号XIN(外部入力信号)は、“H”及び“L”(第1及び第2の論理レベル)を有し、上記第1の遷移時に“L”から“H”に変化し、上記第2の遷移時に“H”から“L”に変化する信号となる。
 また、送信信号VS(第1の送信信号)は入力信号XINが“H”の時に発振信号CLKの周期(第1の周期)内において“H”,“L”間で変化し、入力信号XINが“L”の時に“L”で固定し、入力信号XINの上記第1の遷移時に一定期間“H”となる信号である。
 同様に、送信信号VR(第2の送信信号)は、入力信号XINが“L”の時に発振信号CLKの周期(第2の周期(=第1の周期))内において“H”,“L”間で変化し、入力信号XINが“H”の時に“L”で固定され、入力信号XINの上記第2の遷移時に一定期間“H”となる信号である。
 図6は、図4で示した立上りエッジ検出回路31の内部構成を示す回路図であり、図7は立上りエッジ検出回路31の検出処理の動作波形を示す波形図である。なお、図6に示す立上りエッジ検出回路31の構成は一例であって限定されるものではない。
 図6に示すように、立上りエッジ検出回路31は、遅延回路311、インバータ312、及びANDゲート313で構成される。立上りエッジ検出回路31に入力される信号DIN1は、遅延回路311の入力部とANDゲート313の一方入力とに付与される。遅延回路311に入力された信号DIN1は、所定期間(図7ではこの所定期間を「τ」で示す)だけ遅延されて、インバータ312を介してANDゲート313の他方入力に付与される。そして、ANDゲート313の出力信号が、立上りエッジ検出回路31の出力信号DOUT1となる。
 図7に示すように、立上りエッジ検出回路31では、入力される信号DIN1が“L”から“H”に変化する際に、所定期間τ、“H”パルス幅を持った信号DOUT1を出力する。
 したがって、図4で示す立上りエッジ検出回路31は入力信号XINが“L”から“H”に変化する上記第1の遷移時に、所定期間τの“H”パルスの幅を持った信号VAを出力することができる。
 図8は、図4で示した立下りエッジ検出回路32の内部構成を示す回路図であり、図9は立下りエッジ検出回路32の検出処理の動作波形を示す波形図である。なお、図8に示す立下りエッジ検出回路32の構成は一例であって限定されるものではない。
 図8に示すように、立下りエッジ検出回路32は、遅延回路321、インバータ322、及びANDゲート323で構成される。立下りエッジ検出回路32に付与される信号DIN2は、遅延回路321の入力部とインバータ322の入力部とに付与される。インバータ322の出力信号がANDゲート323の一方入力に付与される。
 遅延回路321に入力された信号DIN2は、所定期間τだけ遅延されてANDゲート323の他方入力に付与される。そして、ANDゲート323の出力信号が、立下りエッジ検出回路32の出力信号DOUT2となる。
 図9に示すように、立下りエッジ検出回路32では、入力される信号DIN2が“H”から“L”に変化すると、所定期間τ、“H”パルス幅を持った信号DOUT2を出力する。
 したがって、図4で示す立下りエッジ検出回路32は入力信号XINが“H”から“L”に変化する上記第2の遷移時に、所定期間τの“H”パルスの幅を持った信号VBを出力することができる。
 図10は、制御保護素子23(23S,S3R)の内部構成を示す回路図である。なお、制御保護素子23は制御保護素子23S及び23Rそれぞれに共通の回路構成である。また、図10に示す制御保護素子23の構成は一例であって限定されるものではない。
 図10に示すように、制御保護素子23は、2つのNMOSトランジスタ231及び232と、PMOSトランジスタ233とを備える。制御保護素子23の入力部INは、NMOSトランジスタ231のドレイン(端子)と、NMOSトランジスタ232のドレインと、PMOSトランジスタのドレインに共通に接続され、制御保護素子23の出力部OUTは、入力部INに接続される。制御保護素子23の制御入力部SWは、NMOSトランジスタ231のゲート(端子)に接続される。NMOSトランジスタ231のソース(端子)は基準電位VSSに設定される。NMOSトランジスタ232のゲート及びソースも基準電位VSSに設定される。一方、PMOSトランジスタ233のゲートとソースが電源電位VDDに設定される。なお、制御保護素子23は、ゲートの電位を固定したサージ保護素子であり、サージ保護素子の一部(この場合、NMOSトランジスタ231)を制御動作して用いる。
 制御保護素子23は、制御入力部SWより得られる制御信号(VSM,VRM)が“H”を指示する時、NMOSトランジスタ231がON状態となり、出力部OUTを“L”固定して入力部INより得られる信号を無効化し、上記制御信号が“L”を指示する時、NMOSトランジスタ231がOFF状態となり、入力部INより得られる信号をそのまま出力部OUTから出力することができる。
 したがって、制御保護素子23Sは、制御入力部SWより得られる制御信号VSM(=出力信号XOUT)が“H”(第1の論理レベル)を指示する期間を第1のマスク期間とし、誘導電圧信号RX1を無効化することができる。
 同様に、制御保護素子23Rは、制御入力部SWより得られる制御信号VRM(=反転出力信号バーXOUT)が“H”、すなわち、出力信号XOUTが“L”(第2の論理レベル)を指示する期間を第2のマスク期間とし、誘導電圧信号RX2を無効化することができる。
 なお、制御保護素子23S及び23Rは制御信号VSM及びVRMが“L”の時、誘導電圧信号RX1及びRX2をそのまま次段のバッファ回路24R及び24Rの入力部に出力する。
 図11は制御回路26内部の構成を示す回路図であり、図12は制御回路26の制御内容の動作波形を示す波形図である。なお、図11に示す制御回路26の構成は一例であって限定されるものではない。
 図11に示すように、制御回路26は、2つのANDゲート261及び262と、NANDゲート263とを備える。入力信号I1はANDゲート261の一方入力とNANDゲート263の一方入力に付与される。入力信号I2はANDゲート262の一方入力とNANDゲート263の他方入力に付与される。ANDゲート261の他方入力とANDゲート262の他方入力はNANDゲート263の出力信号を受ける。
 図12に示すように、制御回路26は、入力信号I1と入力信号I2とが同時に“H”となる状態を抑制し、出力信号O1は入力信号I1に対応し、出力信号O2は入力信号I2に対応した信号を出力する。すなわち、制御回路26は、入力信号I1及びI2のうち少なくとも一つが“L”の時、入力信号I1及びI2をそのまま出力信号O1及びO2として出力し、入力信号I1及びI2が共に“H”の時、出力信号O1及びO2を“L”固定している。
 このように、制御回路26は、入力信号I1及びI2として信号VS2及び信号VR2(第1及び第2の論理設定信号)を受け、信号VS2及び信号VR2が共に“H”(活性レベル)を指示する時、信号VS2及び信号VR2による“H”の指示を無効化し、“L”の信号VS3及び信号VR3を出力している。
 なお、信号VS2及び信号VR2のうち少なくとも一つが“L”の時、信号VS2及び信号VR2をそのまま信号VS3及びVR3として出力している。
 図13は、バッファ回路24(24S及び24R)の内部構成を示す回路図である。なお、バッファ回路24はバッファ回路24S及びバッファ回路24Rそれぞれに共通の回路構成である。また、図13に示すバッファ回路24の構成は一例であって限定されるものではない。
 図13に示すように、バッファ回路24は、NMOSトランジスタ241と、抵抗242と、容量243とを備える。入力信号INは、NMOSトランジスタ241のゲートに付与される。NMOSトランジスタ241は、ドレインが抵抗242の第2端に接続され、ソースが基準電位VSSに接続される。抵抗242の第1端は、電源電位VDDに設定される。容量243の一方電極は、抵抗242の第2端とNMOSトランジスタ241のドレインに接続され、容量243の他方電極は基準電位VSSに設定される。容量243の一方電極より得られる信号が出力信号OUTとなる。
 このような構成のバッファ回路24は、入力信号INを反転して出力信号OUTを出力する増幅器であり、抵抗242と容量243の定数設定で出力信号OUTが電源電位VDDまで戻る時間が決まる。
 (信号伝達回路6の動作)
 次に、図3を参照して信号伝達回路6の全体の動作について説明する。上述したように、信号伝達回路6は、コイル110及びコイル210を有するトランス10と、コイル120及びコイル220を有するトランス20と、コイル110とコイル120に接続される第1回路100と、コイル210とコイル220に接続される第2回路200とを備えている。そして、信号伝達回路6は、第1回路100に付与される入力信号XINをトランス10及びトランス20を介して誘導電圧信号RX1及びRX2として第2回路200に伝達し、第2回路200から出力信号XOUTを出力している。
 時刻t1は、第1回路100のパルス変換回路102に入力される入力信号XINが“L”から“H”になる第1の遷移時刻である。パルス変換回路102では、入力信号XINが“L”から“H”になると、“H”パルスの送信信号VSをコイル110の第1端へ出力する。なお、時刻t1から時刻t2の入力信号XINが“H”の期間では、入力信号XINの立上りエッジを検出した信号と制御回路26の発振信号CLKとを論理和した送信信号VSが出力される。
 時刻t1を起点として、送信信号VSが“L”から“H”になると、コイル110に電流変化が起こり、その電流変化に誘起され、コイル210の第1端に誘導電圧信号RX1が出力される。誘導電圧信号RX1は、制御保護素子23Sに付与され、制御保護素子23Sの制御入力部SWに付与される制御信号VSM(=出力信号XOUT)が“L”の場合、誘導電圧信号RX1が同じ状態で次段のバッファ回路24Sに出力される。
 制御保護素子23Sを介してバッファ回路24Sに入力され誘導電圧信号RX1は、増幅した反転信号である信号VS1として出力される。バッファ回路24Sの出力信号VS1は、シュミット回路25Sに入力され、波形整形した信号VS2は“L”から“H”になる。
 シュミット回路25Sの出力信号VS2は、制御回路26の入力端子I1に入力される。この時、制御回路26の入力端子I2への入力信号VR2が“L”のため、制御回路26の出力端子O1の出力信号VS3は、入力信号VS2と同じ状態で出力される。また、制御回路26の出力信号VS3(ラッチ回路27のセット入力部Sへの入力信号)が“L”から“H”になると、ラッチ回路27の(正転)出力部Qからの出力信号は“L”から“H”になり、信号伝達回路6の出力信号XOUTとして出力される。
 この際、ラッチ回路27の出力部Qの出力信号は、制御保護素子23Sの制御信号VSMとして制御入力部SWに付与され、制御信号VSMが“L”から“H”になると、制御保護素子23Sの入力端子INは基準電位VSS2に接続され、誘導電圧信号RX1は基準電位VSS2と同電位となり無効化される。
 なお、時刻t1までの期間において、制御保護素子23Rの制御入力部SWに付与される制御信号VRMは、ラッチ回路27の反転出力部QBの出力信号である反転出力信号バーXOUTの状態が“H”であるため、ラッチ回路27の反転出力部QBの出力信号が“L”から“H”に切り替わるまで制御保護素子23Rの入力端子INは基準電位VSS2に接続され、誘導電圧信号RX2は基準電位VSS2と同電位となり無効化されている。
 時刻t2は、第1回路100のパルス変換回路102に入力される入力信号XINが“H”から“L”になる第2の遷移時刻である。パルス変換回路102では、入力信号XINが“H”から“L”になると、“H”パルスの送信信号VRをコイル120の第1端へ出力する。なお、時刻t2以降の入力信号XINが“L”の期間では、入力信号XINの立下りエッジを検出した信号と発振器38の発振信号CLKとを論理和した送信信号VRが出力される。
 送信信号VRが“L”から“H”になると、コイル120に電流変化が起こり、その電流変化に誘起され、コイル220の第1端に誘導電圧信号RX2が出力される。誘導電圧信号RX2は、制御保護素子23Rに入力され、制御保護素子23Rの制御入力部SWに付与される制御信号VRMが“L”の場合、誘導電圧信号RX2が同じ状態で次段のバッファ回路24Rに出力される。
 制御保護素子23Rを介してバッファ回路24Rへ入力された誘導電圧信号RX2は、増幅した反転信号である信号VR1として出力される。バッファ回路24Rの出力信号VR1は、シュミット回路25Rに入力され、波形整形した信号VR2は“L”から“H”になる。シュミット回路25Rの出力信号VR2は、制御回路26の入力端子I2に入力される。この時、制御回路26の入力端子I1への入力信号VS2が“L”のため、制御回路26の出力端子O2の出力信号VR3は、入力信号VR2と同じ状態で出力される。
 また、制御回路26の出力信号VR3(ラッチ回路27のリセット入力部Rへの入力信号)が“L”から“H”になると、ラッチ回路27の出力部Qの出力信号は“H”から“L”になり、信号伝達回路6の出力信号XOUTとして出力される。この際、ラッチ回路27の反転出力部QBの出力信号である反転出力信号バーXOUTは、制御信号VRMとして制御保護素子23Rの制御入力部SWに付与され、制御信号VRMが“L”から“H”になると、制御保護素子23Rの入力端子INは基準電位VSS2に接続され、誘導電圧信号RX2は基準電位VSS2と同電位となり無効化される。
 このように、この実施の形態1による信号伝達回路6は、第1回路100で入力信号XINの論理値の変化と、発振器の発振信号CLKに応じて、コイル110の第1端とコイル120の第1端へ複数のパルス信号(送信信号VS及びVR)を出力するため、ノイズによって第2回路200が誤動作した場合でも、速やかに復帰することができ、高い信頼性で信号を伝達できる。
 すなわち、第1回路100は、入力信号XINの第1及び第2の遷移時に加え、入力信号XINが“H”及び“L”のそれぞれの期間に、発振信号CLKの周期内(第1及び第2の周期内)において“H”及び“L”間が変化する送信信号VS及びVRを出力することにより、入力信号XINが“L”から“H”、あるいは“H”から“L”に変化したことを、誘導電圧信号RX1及びRX2(第1及び第2のトランス出力信号)として確実に第2回路200に検知させることができる。
 具体的には、時刻t1における誘導電圧信号RX1の“H”立ち上がりを仮に検出し損ねても、時刻t1直後の第1パルス信号VSの立ち上がり時(信号CLKによる立ち上がり時刻t1a等)に信号RX1が再度、立ち上がる機会があるため、パルス幅は少し短くなるが、ほぼ正常な出力信号XOUTを出力することができる。この場合、時刻t1aまでは出力信号XOUT(制御信号VSM)が“L”のため、時刻t1a直後に発生する誘導電圧信号RX1は制御保護素子23Sによって無効化されることはない。
 また、第2回路200の制御保護素子23Sと制御保護素子23Rとを用いて、不要な検出期間となる第1及び第2のマスク期間中における誘導電圧信号RX1及びRX2を基準電位VSSに接続して無効化しつつ次段のバッファ回路24S及び24Rに伝達している。
 そして、バッファ回路24S及び24R、並びにシュミット回路25S及び25Rを用いてコイル210の誘導電圧信号RX1及びコイル220の誘導電圧信号RX2を増幅、及び波形整形し、ラッチ回路27のセット入力部S及びリセット入力部Rへの入力信号となる信号VS2及びVR2の“H”(活性レベル)のパルス幅を、誘導電圧信号RX1とRX2の“H”(活性レベル)のパルス幅と比較して長くすることで、高い信頼性で信号を伝達できる。
 すなわち、バッファ回路24S及びシュミット回路25Sからなる第1の信号整形回路並びにバッファ回路24R及びシュミット回路25Rからなる第2の信号整形回路により、誘導電圧信号RX1及びRX2(第1及び第2のトランス出力信号)が“H”(活性レベル)を指示する期間を超える第1及び第2の論理設定期間において“H”(活性レベル)を指示する信号VS2及び信号VR2(第1及び第2の論理設定信号)を生成している。このため、信号VS2(=VS3)及び信号VR2(=VR3)の指示内容を確実に反映した出力信号XOUTを出力信号生成回路であるラッチ回路27から生成させることができる。
 さらに、制御回路26を用いてラッチ回路27のセット入力部Sとリセット入力部Rとが同時ON状態(“H”レベルとなること)を抑制することで、同時ON状態で生じる誤動作や信号遅延を抑制することができる。
 すなわち、論理設定信号制御回路である制御回路26は、信号VS2及びVR2が共に“H”(活性レベル)を指示する時、信号VS2及び信号VR2を無効化することにより、ラッチ回路27により出力信号XOUTを生成する際、信号VS2及びVR2が共に“H”となる状況を確実に回避することができるため、出力信号XOUTの信頼性の向上を図ることができる。
 さらに、制御保護素子23S及び23R(第1及び第2の制御保護部)によって、誘導電圧信号RX1及びRX2(第1及び第2のトランス出力信号)を第1及び第2のマスク期間無効化している。したがって、制御保護素子23S及び23Rにおいて、入力信号XINが“H”(第1の論理レベル)に変化したことを検知する必要がない期間を上記第1のマスク期間に設定し、入力信号XINが“L”(第2の論理レベル)に変化したことを検知する必要がない期間を上記第2のマスク期間に設定することにより、ラッチ回路27より生成される出力信号XOUTの信頼性の向上を図ることができる。
 具体的には、制御保護素子23Sにおいて、出力信号XOUTが“H”(第1の論理レベル)をすでに指示している期間を上記第1のマスク期間とすることにより、ラッチ回路27より生成される出力信号XOUTの“H”の信頼性の向上を図ることができる。
 同様にして、制御保護素子23Rにおいて、出力信号XOUTが“L”(第2の論理レベル)をすでに指示している期間を上記第2のマスク期間とすることにより、ラッチ回路27より生成される出力信号XOUTの“L”の信頼性の向上を図ることができる。
 したがって、実施の形態1の信号伝達回路6は、入力信号XINを正確に反映した出力信号XOUTを出力する結果、高い信頼性で信号伝達を行うことができる。
 また、図2に示すように、電力変換装置60が実施の形態1の信号伝達回路6を備えることで、制御部4からの制御信号S4をドライバ部3に伝達する信号伝達のノイズ耐性を向上させ、信頼性を高めると共に、誤動作や信号遅延を抑制することができる。その結果、電力変換装置60の長期使用が可能となる。
 <実施の形態2>
 図14は、この発明の実施の形態2である電力変換装置における第1の態様をモータ制御に適用した構成を示すブロック図である。図14では、上記実施の形態1による信号伝達回路6を備えた電力変換装置61の構成について示している。
 図14に示すように、ハイブリッド自動車や電気自動車等で用いられるモータ1を制御するために設けられる電力変換装置61は、1または複数のパワー半導体スイッチング素子2(図14では1つのパワー半導体スイッチング素子2を示す)とドライバ部3とを共に樹脂封止により一体化して構成される一単位のパワーモジュール81と、ドライバ部3によってパワー半導体スイッチング素子2を駆動するためにドライバ部3用の制御信号S4を生成する制御部4と、制御部4からの制御信号S4をドライバ部3に伝達する信号伝達回路6とを備える。
 信号伝達回路6は、制御部4とドライバ部3との間に接続され、ドライバ部3、パワー半導体スイッチング素子2及びモータ1等、高電圧で制御される装置と制御部4とを絶縁し、制御部4からの制御信号S4を入力信号XINとして入力し、出力信号XOUTとして出力する。
 実施の形態2の電力変換装置61は、信号伝送の確度を向上し、さらに、誤動作や信号遅延の抑制を促進した信号伝達回路6を備え、さらにパワー半導体スイッチング素子2(電力半導体スイッチング素子)とドライバ部3とで構成される一単位のパワーモジュール81を備えているため、電力変換装置61の信号伝達の確度向上と、誤動作や信号遅延の抑制を促進できる。その結果、電力変換装置61の長期使用が可能となる。
 図15は、この発明の実施の形態2である電力変換装置における第2の態様をモータ制御に適用した構成を示すブロック図である。同図に示すように、パワー半導体スイッチング素子2及びドライバ部3に加え、信号伝達回路6を共に樹脂封止により一体化して構成される一単位のパワーモジュール82を備えた電力変換装置62を用いても良く、第1の態様と同様の効果が得られる。
 図16は、この発明の実施の形態2である電力変換装置における第3の態様をモータ制御に適用した構成を示すブロック図である。同図に示すように、パワー半導体スイッチング素子2、ドライバ部3及び信号伝達回路6に加え、制御部4を共に樹脂封止により一体化して構成される一単位のパワーモジュール83自体が電力変換装置63となる構成でも良く、第1の態様と同様の効果が得られる。
 <実施の形態3>
 図17は、この発明の実施の形態3による電力変換装置をモータ制御に適用した第1の態様の構成を示すブロック図である。ここでは、上記実施の形態1による信号伝達回路6を備えた電力変換装置71について示す。
 図17に示すように、ハイブリッド自動車や電気自動車等で用いられるモータ1を制御するために設けられる電力変換装置71は、1または複数のパワー半導体スイッチング素子2とドライバ部3と異常検出部5とを共に樹脂封止により一体化して構成される一単位のパワーモジュール84と、ドライバ部3によってパワー半導体スイッチング素子2を駆動するためのドライバ部3用の制御信号S4を生成する制御部4と、制御部4からの制御信号S4をドライバ部3に伝達する信号伝達回路6A(第1の信号伝達回路)と、異常検出部5で検出した異常検出信号S5を制御部4に伝達する信号伝達回路6B(第2の信号伝達回路)とを備える。
 異常検出部5はパワー半導体スイッチング素子2の短絡保護及び加熱保護、ドライバ部3の制御電源電圧低下保護を行うべく、パワー半導体スイッチング素子2の短絡状態、加熱状態、またはドライバ部3の制御電源電圧低下を検出すると、これらの異常状態を指示する異常検出信号S5を出力する既存の構成部である。
 信号伝達回路6Aと信号伝達回路6Bとは、上記実施の形態1による信号伝達回路6と実質的に等価の機能を備える構成を呈している。
 信号伝達回路6Aは、制御部4とドライバ部3との間に接続され、ドライバ部3、パワー半導体スイッチング素子2、モータ1、及び異常検出部5等、高電圧で制御される装置と制御部4とを絶縁し、制御部4からの制御信号S4を入力信号XIN1として入力し、出力信号XOUT1として出力する。
 信号伝達回路6Bは、制御部4と異常検出部5との間に接続され、ドライバ部3、パワー半導体スイッチング素子2、モータ1、異常検出部5等、高電圧で制御される装置と制御部4とを絶縁し、ドライバ部3、パワー半導体スイッチング素子2等で構成される一単位のパワーモジュール84で生じた電源電圧低下や過電流、過温度等の異常動作を検出する異常検出部5から出力される異常検出信号S5を入力信号XIN2として入力し、出力信号XOUT2として出力する。
 実施の形態3では、電力変換装置71が、信号伝送の確度を向上し、さらに、誤動作や信号遅延の抑制を促進した信号伝達回路6A及び6B(第1及び第2の信号伝達回路)を備え、さらにパワー半導体スイッチング素子2とドライバ部3と異常検出部5とを一体化して構成される一単位のパワーモジュール84を備えているため、電力変換装置71の信号伝達の確度向上と、誤動作や信号遅延の抑制を促進できる。その結果、異常検出部5による異常検出機能を備えた電力変換装置71の長期使用が可能となる。
 図18は、この発明の実施の形態3である電力変換装置における第2の態様をモータ制御に適用した構成を示すブロック図である。同図に示すように、パワー半導体スイッチング素子2、ドライバ部3及び異常検出部5に加え、信号伝達回路6A及び信号伝達回路6Bを共に樹脂封止により一体化して構成される一単位のパワーモジュール85を備えた電力変換装置72を用いても良く、第1の態様と同様の効果が得られる。
 図19は、この発明の実施の形態3である電力変換装置における第3の態様をモータ制御に適用した構成を示すブロック図である。同図に示すように、パワー半導体スイッチング素子2、ドライバ部3、異常検出部5、信号伝達回路6A、及び信号伝達回路6Bに加え、制御部4を共に樹脂封止により一体化して構成される一単位のパワーモジュール86自体が電力変換装置73となる構成でも良く、第1の態様と同様の効果が得られる。
 なお、この発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 1 モータ、2 パワー半導体スイッチング素子、3 ドライバ部、4 制御部、5 異常検出部、6,6A,6B 信号伝達回路、10,20 トランス、23S,23R 制御保護素子、24S,24R バッファ回路、25S,25R シュミット回路、26 制御回路、27 ラッチ回路、60~63,71~73 電力変換装置、81~86 パワーモジュール、100 第1回路、102 パルス変換回路、200 第2回路。

Claims (10)

  1.  外部入力信号(XIN)に基づき、第1及び第2の送信信号(VS,VR)を出力する第1回路(100)と、
     一次側に前記第1及び第2の送信信号を受け、二次側より第1及び第2のトランス出力信号(RX1,RX2)を得る第1及び第2のトランス(10,20)と、
     前記第1及び第2のトランス出力信号に基づき、外部出力信号(XOUT)を生成する第2回路(200)とを備え、
     前記外部入力信号は第1及び第2の論理レベルを有し、第1の遷移時に第2の論理レベルから第1の論理レベルに変化し、第2の遷移時に第1の論理レベルから第2の論理レベルに変化し、
     前記第1回路は、
     前記第1の送信信号は、前記外部入力信号が第1の論理レベルの時に第1の周期内において第1及び第2の論理レベル間で変化し、前記外部入力信号が第2の論理レベルの時に第2の論理レベルで固定し、前記外部入力信号の前記第1の遷移時に一定期間第1の論理レベルとなり、かつ、
     前記第2の送信信号は、前記外部入力信号が第2の論理レベルの時に第2の周期内において第1及び第2の論理レベル間で変化し、前記外部入力信号が第1の論理レベルの時に第2の論理レベルで固定し、前記外部入力信号の前記第2の遷移時に一定期間第1の論理レベルとなるように、前記第1及び第2の送信信号を出力し、
     前記第2回路は、
     前記外部出力信号の第1または第2の論理レベルに基づき前記第1及び第2のトランス出力信号を第1及び第2のマスク期間無効化する第1及び第2の制御保護部(23S,23R)と、
     前記第1の制御保護部を介して前記第1のトランス出力信号を受け、前記第1のトランス出力信号が活性レベルを指示する期間を超える第1の論理設定期間において活性レベルを指示する第1の論理設定信号(VS2)を生成する第1の信号整形回路(24S、25S)と、
     前記第2の制御保護部を介して前記第2のトランス出力信号を受け、前記第2のトランス出力信号が活性レベルを指示する期間を超える第2の論理設定期間において活性レベルを指示する第2の論理設定信号(VR2)を生成する第2の信号整形回路(24R,25R)と、
     前記第1及び第2の論理設定信号を受け、前記第1及び第2の論理設定信号が共に活性レベルを指示する時、前記第1及び第2の論理設定信号による活性レベルの指示を無効化する論理設定信号制御回路(26)と、
     前記論理設定信号制御回路を介して前記第1及び第2の論理設定信号を受け、第1及び第2の論理レベルのうち、前記第1の論理設定信号が活性レベルを指示する時に一方の論理レベルとなり、前記第2の論理設定信号が活性レベルを指示する時に他方の論理レベルとなる、前記外部出力信号を生成する出力信号生成回路(27)とを含む、
    信号伝達回路。
  2.  請求項1記載の信号伝達回路であって、
     前記第1の制御保護部は、前記外部出力信号が第1の論理レベルを指示する期間を前記第1のマスク期間とし、
     前記第2の制御保護部は、前記外部出力信号が第2の論理レベルを指示する期間を前記第2のマスク期間とする、
    信号伝達回路。
  3.  電力半導体スイッチング素子(2)と、
     前記電力半導体スイッチング素子を駆動する駆動回路(3)と、
     前記駆動回路によって前記電力半導体スイッチング素子を駆動するための制御信号(S4)を生成する制御部(4)と、
     請求項1または請求項2記載の信号伝達回路(6)とを備え、
     前記信号伝達回路は、前記制御部と前記駆動回路との間に設けられ、前記制御部と前記駆動回路とを絶縁し、前記制御部からの前記制御信号を前記外部入力信号として入力し、前記外部出力信号を前記駆動回路に出力することを特徴とする、
    電力変換装置。
  4.  請求項3記載の電力変換装置であって、
     前記駆動回路及び前記電力半導体スイッチング素子は一単位のパワーモジュール(81~83)として一体的に形成されることを特徴とする、
    電力変換装置。
  5.  請求項4記載の電力変換装置であって、
     前記信号伝達回路がさらに前記パワーモジュール(82,83)として一体的に形成されることを特徴とする、
    電力変換装置。
  6.  請求項5記載の電力変換装置であって、
     前記制御部がさらに前記パワーモジュール(83)として一体的に形成されることを特徴とする、
    電力変換装置。
  7.  電力半導体スイッチング素子(2)と、
     前記電力半導体スイッチング素子を駆動する駆動回路(3)と、
     前記駆動回路によって前記電力半導体スイッチング素子を駆動するための制御信号(S4)を生成する制御部(4)と、
     前記電力半導体スイッチング素子または前記駆動回路で生じた異常状態を検出して異常検出信号(S5)を出力する異常検出部(5)と、
     第1及び第2の信号伝達回路(6A,6B)とを備え、前記第1及び第2の信号伝達回路はそれぞれ請求項1または請求項2記載の信号伝達回路を含み、
     前記第1の信号伝達回路は、前記制御部と前記駆動回路との間に設けられ、前記制御部と前記駆動回路とを絶縁し、前記制御部からの前記制御信号を前記外部入力信号(XIN1)として入力し、前記外部出力信号(XOUT1)を前記駆動回路に出力し、
     前記第2の信号伝達回路は、前記制御部と前記異常検出部との間に設けられ、前記制御部と前記異常検出部とを絶縁し、前記異常検出部からの前記異常検出信号を前記外部入力信号(XIN2)として入力し、前記外部出力信号(XOUT2)を前記制御部に出力することを特徴とする、
    電力変換装置。
  8.  請求項7記載の電力変換装置であって、
     前記駆動回路、前記電力半導体スイッチング素子及び前記異常検出部は一単位のパワーモジュール(84~86)として一体的に形成されることを特徴とする、
    電力変換装置。
  9.  請求項8記載の電力変換装置であって、
     前記第1及び第2の信号伝達回路がさらに前記パワーモジュール(85,86)として一体的に形成されることを特徴とする、
    電力変換装置。
  10.  請求項9記載の電力変換装置であって、
     前記制御部がさらに前記パワーモジュール(86)として一体的に形成されることを特徴とする、
    電力変換装置。
PCT/JP2016/064160 2015-06-08 2016-05-12 信号伝達回路及び電力変換装置 WO2016199536A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/579,790 US10171070B2 (en) 2015-06-08 2016-05-12 Signal transmission circuit and power conversion device
DE112016002572.6T DE112016002572T5 (de) 2015-06-08 2016-05-12 Signalübertragungsschaltung und energiewandlereinrichtung
CN201680033484.7A CN107636969B (zh) 2015-06-08 2016-05-12 信号传输电路以及电力变换装置
JP2017523165A JP6456496B2 (ja) 2015-06-08 2016-05-12 信号伝達回路及び電力変換装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015115465 2015-06-08
JP2015-115465 2015-06-08

Publications (1)

Publication Number Publication Date
WO2016199536A1 true WO2016199536A1 (ja) 2016-12-15

Family

ID=57504597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064160 WO2016199536A1 (ja) 2015-06-08 2016-05-12 信号伝達回路及び電力変換装置

Country Status (5)

Country Link
US (1) US10171070B2 (ja)
JP (1) JP6456496B2 (ja)
CN (1) CN107636969B (ja)
DE (1) DE112016002572T5 (ja)
WO (1) WO2016199536A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020014339A (ja) * 2018-07-19 2020-01-23 株式会社デンソー Dc−dcコンバータ用半導体モジュール及び電圧変換器
CN111835326A (zh) * 2020-07-29 2020-10-27 成都通用整流电器研究所 一种基于igbt驱动的模块安全控制保护及指示电路
JP2022015529A (ja) * 2020-07-09 2022-01-21 株式会社東芝 通信装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6079861B1 (ja) * 2015-12-16 2017-02-15 株式会社明電舎 共振負荷用電力変換装置および共振負荷用電力変換装置の時分割運転方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090243683A1 (en) * 2008-04-01 2009-10-01 Asic Advantage, Inc. Pulse transformer driver
JP2012125100A (ja) * 2010-12-10 2012-06-28 Toyota Motor Corp ゲート駆動回路
JP2013051547A (ja) * 2011-08-31 2013-03-14 Renesas Electronics Corp 半導体集積回路及びそれを備えた駆動装置
JP2014007502A (ja) * 2012-06-22 2014-01-16 Rohm Co Ltd 信号伝達回路、集積回路およびそれを含む電気機器
WO2014087481A1 (ja) * 2012-12-04 2014-06-12 三菱電機株式会社 信号伝達回路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10229860A1 (de) * 2002-07-03 2004-01-29 Infineon Technologies Ag Verfahren und Sendevorrichtung zum Übertragen eines zweiwertigen Signals
EP2498460A1 (en) * 2009-11-05 2012-09-12 Rohm Co., Ltd. Signal transmission circuit device, semiconductor device, method and apparatus for inspecting semiconductor device, signal transmission device, and motor drive apparatus using signal transmission device
CN102970004B (zh) * 2012-11-07 2015-01-07 中国船舶重工集团公司第七二三研究所 一种脉冲信号传输方法
JP6368111B2 (ja) * 2013-06-07 2018-08-01 ローム株式会社 信号伝達装置
CN103560778B (zh) * 2013-10-16 2016-04-20 广州金升阳科技有限公司 一种两线制信号隔离传输电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090243683A1 (en) * 2008-04-01 2009-10-01 Asic Advantage, Inc. Pulse transformer driver
JP2012125100A (ja) * 2010-12-10 2012-06-28 Toyota Motor Corp ゲート駆動回路
JP2013051547A (ja) * 2011-08-31 2013-03-14 Renesas Electronics Corp 半導体集積回路及びそれを備えた駆動装置
JP2014007502A (ja) * 2012-06-22 2014-01-16 Rohm Co Ltd 信号伝達回路、集積回路およびそれを含む電気機器
WO2014087481A1 (ja) * 2012-12-04 2014-06-12 三菱電機株式会社 信号伝達回路

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020014339A (ja) * 2018-07-19 2020-01-23 株式会社デンソー Dc−dcコンバータ用半導体モジュール及び電圧変換器
JP7095448B2 (ja) 2018-07-19 2022-07-05 株式会社デンソー Dc-dcコンバータ用半導体モジュール及び電圧変換器
JP2022015529A (ja) * 2020-07-09 2022-01-21 株式会社東芝 通信装置
JP7366849B2 (ja) 2020-07-09 2023-10-23 株式会社東芝 通信装置
CN111835326A (zh) * 2020-07-29 2020-10-27 成都通用整流电器研究所 一种基于igbt驱动的模块安全控制保护及指示电路
CN111835326B (zh) * 2020-07-29 2023-08-18 成都通用整流电器研究所 一种基于igbt驱动的模块安全控制保护及指示电路

Also Published As

Publication number Publication date
JPWO2016199536A1 (ja) 2018-02-01
CN107636969A (zh) 2018-01-26
DE112016002572T5 (de) 2018-03-01
CN107636969B (zh) 2020-11-03
US20180175847A1 (en) 2018-06-21
JP6456496B2 (ja) 2019-01-23
US10171070B2 (en) 2019-01-01

Similar Documents

Publication Publication Date Title
JP6456496B2 (ja) 信号伝達回路及び電力変換装置
US10109995B2 (en) Switch drive circuit
JP6383607B2 (ja) 受信装置、通信装置、及び通信方法
US20160036441A1 (en) Output Signal Generation Circuitry for Converting an Input Signal From a Source Voltage Domain Into an Output Signal for a Destination Voltage Domain
US9831876B2 (en) Receiver circuitry and method for converting an input signal from a source voltage domain into an output signal for a destination voltage domain
JP5767018B2 (ja) 絶縁ゲート型スイッチング素子のゲートの電位を制御する回路
EP3070896A1 (en) Transmitter circuit, semiconductor apparatus and data transmission method
JP6387888B2 (ja) 誘導性負荷駆動装置
US10333499B2 (en) Signal transmission circuit and vehicle
JP2017073872A (ja) チャージポンプ回路
JP6248649B2 (ja) 絶縁通信装置
JP2001044813A (ja) パワーオンリセット回路
US9231508B2 (en) Motor driver apparatus and method of controlling the same
US20140306738A1 (en) Input/output line driver circuit
JP6772810B2 (ja) 電力変換装置の制御システム
JP6557562B2 (ja) 送信回路及び半導体装置
US9490808B2 (en) Sensing circuit
US9507361B2 (en) Initialization signal generation circuits and semiconductor devices including the same
JP3863337B2 (ja) ゲートドライバ及び電力変換装置
JP2012130136A (ja) 集積回路
JP2012147173A (ja) 双方向レベルシフト回路
US20140132322A1 (en) Input circuit
JP5936577B2 (ja) レベルシフト回路
JP4417769B2 (ja) インバータ装置
JP6036272B2 (ja) レベルシフト回路、パワーオンリセット回路及び半導体集積回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807243

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017523165

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15579790

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016002572

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807243

Country of ref document: EP

Kind code of ref document: A1