WO2016199427A1 - 溶接システムおよび溶接方法 - Google Patents

溶接システムおよび溶接方法 Download PDF

Info

Publication number
WO2016199427A1
WO2016199427A1 PCT/JP2016/002804 JP2016002804W WO2016199427A1 WO 2016199427 A1 WO2016199427 A1 WO 2016199427A1 JP 2016002804 W JP2016002804 W JP 2016002804W WO 2016199427 A1 WO2016199427 A1 WO 2016199427A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
robot
weaving
torch
general
Prior art date
Application number
PCT/JP2016/002804
Other languages
English (en)
French (fr)
Inventor
池田 達也
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016199427A1 publication Critical patent/WO2016199427A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine

Definitions

  • the present disclosure relates to a welding robot that performs weaving welding, and more particularly, to a welding system and a welding method that change welding conditions in synchronization with a weaving phase.
  • weaving welding is used in which the welding torch moves in the direction of the welding line and reciprocates with a constant amplitude in the direction perpendicular to the welding line in order to increase the amount of metal deposition. .
  • the welding conditions are constant regardless of the swing position of the weaving operation, in other words, regardless of the phase of the weaving operation.
  • TIG Tungsten Inert Gas
  • the change of the welding condition performed in synchronization with the conventional weaving operation is to change the welding current and the welding voltage according to the weaving phase in consideration of the thickness of the plate.
  • the control parameters differ greatly depending on the welding method. Specifically, welding current and welding voltage are fundamental in MAG welding, but in pulse welding in TIG welding, pulse peak current, base current, peak filler feed rate, and base filler feed rate are important. It becomes a parameter.
  • the present disclosure provides a welding system and a welding method in which an optimum welding condition is changed according to the phase of the weaving in consideration of the welding method.
  • the welding system of the present disclosure includes a robot, a welding machine, and a control device.
  • the robot has a welding torch attached to the tip and changes the position of the welding torch.
  • the welder is connected to the welding torch and controls the welding conditions.
  • the control device is connected to the robot and the welding machine, and controls the robot and the welding machine.
  • the control device includes a welder control unit, a robot control unit, and a calculation unit.
  • the welding machine control unit controls welding conditions
  • the robot control unit controls the operation of the robot.
  • the calculation unit sets the robot operation and welding conditions.
  • the welding conditions are determined based on the phase of the weaving operation in which the welding torch is swung in a direction perpendicular to the welding line, and the welding environment including the welding method.
  • the welding method of the present disclosure uses a robot system having a robot, a welding machine, and a control device.
  • the robot has a welding torch attached to the tip and changes the position of the welding torch.
  • the welder is connected to the welding torch and controls the welding conditions.
  • the control device is connected to the robot and the welding machine, and controls the robot and the welding machine.
  • the control device includes a welder control unit, a robot control unit, and a calculation unit.
  • the welding machine control unit controls welding conditions
  • the robot control unit controls the operation of the robot.
  • the calculation unit sets the robot operation and welding conditions.
  • the welding conditions include steps determined based on the phase of the weaving operation in which the welding torch is swung in a direction perpendicular to the welding line, and the welding environment including the welding method.
  • FIG. 1 is a schematic diagram illustrating a concept of a welding system 101 according to the first embodiment.
  • FIG. 2 is a schematic diagram showing the configuration of the welding system 101 according to the first and second embodiments.
  • FIG. 3 is a perspective view for explaining teaching work before performing the weaving welding of the first and second embodiments.
  • FIG. 4 is a diagram illustrating an example of the robot operation program 110 and the parallel execution program 120 according to the first and second embodiments.
  • FIG. 5 is a diagram showing weaving phase information 111 (see FIG. 1) indicating the position of the welding torch that periodically changes with time when the weaving operations of the first and second embodiments are performed.
  • FIG. 6 is a diagram illustrating an example of the parallel execution program 130 according to the first embodiment.
  • FIG. 7 is a schematic diagram showing a concept of welding system 300 according to the second embodiment.
  • FIG. 1 is a schematic diagram showing a concept of a welding system 101 according to the present embodiment.
  • FIG. 2 is a schematic diagram showing the configuration of the welding system 101 of the present embodiment.
  • the welding system 101 includes a robot 102, a welding machine 103, and a control device 104.
  • the robot 102 has a welding torch (not shown) attached to the tip and moves the welding torch.
  • the welder 103 is connected to a welding torch and controls welding conditions by the welding torch.
  • the control device 104 is connected to the robot 102 and the welding machine 103 and controls each of them. Specifically, the control device 104 controls the movement of the welding torch by controlling the operation of the robot 102. Further, the control device 104 controls welding conditions that the welding machine 103 outputs to the welding torch.
  • control device 104 has a robot operation program 110 for operating the robot 102, and the robot operation program 110 includes weaving phase information 111 regarding the weaving operation. Then, the control device 104 converts the weaving phase information 111 into a general-purpose variable 112. Moreover, the control apparatus 104 has the parallel execution program 120 in which the welding conditions for controlling a welding machine were set. Then, the control device 104 determines the welding condition command 121 based on the general-purpose variable 112 converted from the weaving phase information 111 and the parallel execution program 120 and outputs the welding condition command 121 to the welding machine 103. At this time, a plurality of parallel execution programs 120 exist for each welding method, and the control device 104 determines the welding condition command 121 based on the parallel execution program 120 corresponding to the currently performed welding method.
  • control device 104 of the welding system of the present embodiment will be specifically described with reference to FIG.
  • the welding system 101 includes a robot 102, a welding machine 103, a control device 104, and a teaching device 105.
  • the control device 104 includes a calculation unit 201, a ROM (Read Only Memory) 202, a RAM (Random Access Memory) 203, a robot control unit 204, a welder control unit 205, and an output terminal 206.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the robot 102 is a 6-axis articulated robot, and is connected to the robot control unit 204 of the control device 104. Specifically, the robot 102 controls the driving of the six-axis motors by the control device 104 and feeds back the state of the six-axis motors to the control device 104.
  • the welding machine 103 is connected to the welding machine control unit 205 of the control device 104.
  • the welding machine 103 instructs welding conditions to the welding torch attached to the tip of the robot 102, detects the welding conditions actually output, and feeds back the welding conditions to the control device 104 as welding output.
  • the teaching device 105 is connected to the calculation unit 201 of the control device 104, and is a device for inputting a welding environment such as a welding method, a joint shape, and a plate thickness by an operator.
  • the teaching device 105 includes a display and an input button, and an operator inputs a welding environment while viewing the display.
  • the teaching device 105 can check, modify, or add information recorded in the ROM 202 or information recorded in the RAM 203.
  • the calculation unit 201 of the control device 104 is a robot that operates the robot 102 from the welding environment input from the teaching device 105 and the standard welding conditions and standard programs recorded in the ROM 202 before starting welding. While creating the operation program 110, the parallel execution program 120 which controls the welding machine 103 is created. The created robot operation program 110 and parallel execution program 120 are stored in the RAM 203. Further, the calculation unit 201 is configured to execute a robot operation program 110 or a parallel execution program stored in the RAM 203 based on the state of the robot 102 fed back to the robot control unit 204 and the welding output fed back to the welding machine control unit 205. 120 is corrected and the robot 102 and the welding machine 103 are controlled.
  • the control device 104 has a plurality of general-purpose variables 112 (see FIG. 1) that can be freely used by the worker, and data of the general-purpose variables 112 is stored in the RAM 203. Then, the operation unit 201 creates the robot operation program 110 and the parallel execution program 120 from the standard welding conditions and standard welding programs stored in the general-purpose variable 112 and the ROM 202 and stores them in the RAM 203. Alternatively, the arithmetic unit 201 modifies the robot operation program 110 and the parallel execution program 120 stored in the RAM 203 from the general-purpose variables 112 and the standard welding conditions and standard welding programs stored in the ROM 202.
  • FIG. 3 is a perspective view for explaining the teaching work before performing the weaving welding of the present embodiment.
  • FIG. 4 is a diagram illustrating an example of the robot operation program 110 and the parallel execution program 120 according to the present embodiment.
  • FIG. 3 shows teaching points of the welding program including the weaving welding section of the present embodiment
  • Position 01 to Position 07 in FIG. 3 show teaching points in the space.
  • Position 01, Position 02, Position 06, and Position 07 are idle running points where welding is not performed
  • Position 03 is a welding start point
  • Position 04 is a welding intermediate point
  • Position 05 is a welding end point. There may be more idle running points and welding intermediate points.
  • weaving welding is performed in the welding section from Position 03 to Position 05.
  • FIG. 4 shows a robot operation program 110 for performing the weaving welding of the present embodiment.
  • the name of the program is “WELD.prog”.
  • the positional relationship between the teaching points is matched with the position name (Position number) in FIG.
  • FIG. 4 shows “PARA-MAG.prog” which is a parallel execution program 120 when the weaving welding of the present embodiment is MAG welding.
  • STEP 1 is a step for calling a parallel execution program 120 described later.
  • a parallel execution program 120 called “PARA-MAG.prog” for performing MAG welding is called.
  • STEP2 is a step in which the welding torch is moved to Position 01, which is a free running point, and MOVEL indicates a linear operation.
  • STEP 3 is a step in which the welding torch is moved to Position 02, which is a free running point, and MOVEL indicates a linear operation.
  • STEP 4 is a step of moving the welding torch to Position 03 as a welding start point, and MOVEL indicates a linear operation.
  • an ARC-ON command that is a welding start command is registered, and the welding machine 103 is instructed to start welding. That is, from here, the welding machine 103 controls the welding torch using the welding condition by the parallel execution program 120 and starts welding.
  • STEP 6 is a step in which the welding torch is moved to Position 04, which is a welding intermediate point, and MOVEW indicates a linear motion with a weaving motion.
  • STEP 7 is a step in which the welding torch is moved to Position 05, which is the welding end point, and MOVEW indicates a linear motion with a weaving motion.
  • an ARC-OFF command that is a welding end command is registered, and the welding machine 103 is instructed to end welding. This completes the welding.
  • the parameter 1 Hz accompanying the MOVELW command for performing the weaving operation indicates the weaving frequency
  • the parameter 5 mm indicates the amplitude.
  • STEP 9 is a step of moving the welding torch to Position 06, which is a free running point, and MOVE indicates a linear operation.
  • STEP 10 is a step in which the welding torch is moved to Position 07 of the free running point, and MOVEL indicates a linear operation.
  • STEP 11 is a step of closing “PARA-MAG.prog” that is the parallel execution program 120 that has been called.
  • the robot operation program 110 is terminated and the called “PARA-MAG.prog” is also closed.
  • FIG. 5 is a diagram showing weaving phase information 111 (see FIG. 1) indicating the position of the welding torch that periodically changes with time when the weaving operation of the first embodiment is performed.
  • a general-purpose variable 112 that stores a variable indicating the weaving phase information 111 is set to B001.
  • the weaving phase information 111 for example, a zigzag weaving operation is divided into four phases ("0", “1", “2”, “3") in one cycle, and the welding torch at which phase It shows whether there is a position.
  • the START position of the weaving phase is equivalent to Position 03 in FIG.
  • B001 indicates the byte-type variable 001.
  • the byte type variable means that the variable is composed of 1 byte type and can store a value of 0 to 255.
  • the parallel execution program 120 will be described with reference to FIG.
  • the name of the parallel execution program 120 is “PARA-MAG.prog”.
  • the parallel execution program 120 is executed in parallel with the robot operation program 110 for performing weaving welding by MAG welding, and is stored in the RAM 203.
  • the parallel execution is started by the PARALLALL-START instruction in STEP1 of the robot operation program 110.
  • the PARACALL-START instruction is a call instruction for performing parallel execution.
  • the parameter associated with the PARACALL-START instruction is the name of a program to be executed in parallel. In the case of STEP1, PARA-MAG. prog.
  • the PARA-MAG. prog is the WELD. executed in parallel with prog.
  • the arithmetic unit 201 reads the parallel execution program 120 from the RAM 203 and starts executing it.
  • STEP 1 of the parallel execution program 120 an IF instruction that branches processing depending on a condition is registered.
  • an ARC-SET command for instructing the welding conditions to the welding machine 103 is registered, and a current command of 200 amperes and a voltage command of 20.0 volts are commanded to the welding machine 103. Is shown.
  • This current command 200 ampere and voltage command 20.0 volts are defined as A condition 403.
  • an ARC-SET command for instructing the welding conditions to the welding machine 103 is registered, and a current command of 100 amperes and a voltage command of 16.0 volts are commanded to the welding machine 103. Is shown. This current command 100 ampere and voltage command 16.0 volts are defined as B condition 404.
  • STEP5 of the parallel execution program 120 indicates that the JUMP instruction is registered and the process returns to STEP1.
  • the general-purpose variable 112 is stored in the RAM 203 in FIG.
  • the parallel execution program 120 in FIG. 4 is repeatedly executed from STEP 1 to STEP 5 by the JUMP instruction of STEP 5.
  • data 1 is set in B001 which is the general-purpose variable 112
  • the determination result of the STEP1 IF instruction of the parallel execution program 120 is true
  • the STEP2 ARC-SET instruction is executed
  • the welding condition command 121 is 200 amperes. 20.0 volts command.
  • This 200 amp, 20.0 volt command becomes the A condition 403 of the welding condition command in FIG.
  • the parallel execution program 120 in FIG. 1 reads the weaving phase information 111 from the RAM 203 shown in FIG. 2 and issues a welding condition command 121 to the welding machine 103.
  • the determination result of the IF instruction of STEP 1 of the parallel execution program 120 becomes true
  • STEP 2 is executed, and the welding condition command 121 becomes 200 amps, 20.0 volts command (see FIG. 4).
  • This 200 amp, 20.0 volt command becomes the A condition 403 of the welding condition command 121 in FIG.
  • the determination result of the IF instruction of STEP 3 of the parallel execution program 120 becomes true
  • STEP 4 is executed, and the welding condition command 121 becomes a 100 ampere, 16.0 volt command.
  • This 100 amp, 16.0 volt command becomes the B condition 404 of the welding condition command 121 in FIG.
  • the determination result of the IF instruction of STEP 3 of the parallel execution program 120 becomes true
  • STEP 4 is executed
  • the welding condition command 121 becomes a 100 ampere, 16.0 volt command.
  • This 100 amp, 16.0 volt command becomes the B condition 404 of the welding condition command 121 in FIG.
  • the determination result of the IF instruction of STEP 1 of the parallel execution program 120 becomes true
  • STEP 2 is executed
  • the welding condition command 121 becomes 200 amps and 20.0 volts command.
  • This 200 amp, 20.0 volt command becomes the A condition 403 of the welding condition command 121 in FIG.
  • the weaving phase information 111 is written in the general-purpose variable 112, and the parallel execution program 120 repeatedly reads out the weaving phase information 111 from the general-purpose variable 112 and issues a welding condition command 121 to the welding machine 103.
  • the welding condition command 121 repeats the cycle of the condition of A condition 403 ⁇ B condition 404 ⁇ A condition 403 ⁇ B condition 404.
  • the operator creates a parallel execution program 120 that is optimal for MAG welding, so that welding optimal for MAG welding is performed in synchronization with the weaving operation of the robot. be able to.
  • the pulse peak current, base current, filler feed peak speed, and filler feed base speed may be set in the welding condition command 121.
  • FIG. 6 shows an example of the parallel execution program 130 (PARA-TIG.prog) at the time of TIG welding.
  • an ARC-SET_TIG command for instructing the TIG welding condition to the welding machine 103 is registered, and a peak current command 200 amp, a base current command 100 amp, a filler feed peak speed 5.0 m. Command / min, filler feed base speed of 2.0 m / min.
  • an ARC-SET_TIG command for instructing the TIG welding condition to the welding machine 103 is registered.
  • the peak current command is 150 amperes
  • the base current command is 50 amperes
  • the filler feed peak speed is 3.0 m / min
  • the filler feed is Command a feed base speed of 1.0 m / min.
  • weaving welding optimum for TIG welding can be performed in synchronization with the weaving operation of the robot.
  • a welding method such as MIG welding
  • FIG. 7 is a schematic diagram showing the concept of the welding system 300 of the present embodiment.
  • the welding machine 103 is connected to the control device 104, and the control device 104 issues a welding command to the welding machine 103.
  • the welding machine 103 is not connected to the control device 104 a, and the general-purpose PLC 301 issues a welding command to the welding machine 103.
  • the weaving phase information 111 is output to the output terminal 206 by the control device 104a.
  • the output method will be described with reference to FIG.
  • FIG. 5 is a diagram showing weaving phase information 111 indicating the position of the welding torch that periodically changes with time when the weaving operation is performed.
  • START is the same position as Position 03 in FIG.
  • the calculation unit 201 outputs to the output terminal 206.
  • the general-purpose output 1 When the welding torch is operating in the section from START to A1 in the weaving phase by the weaving operation, the general-purpose output 1 is ON and the general-purpose output 2 is OFF.
  • the calculation unit 201 When the welding torch is positioned at A1 in the weaving phase by the weaving operation, the calculation unit 201 outputs to the output terminal 206.
  • the calculation unit 201 When the welding torch is positioned at A2 in the weaving phase by the weaving operation, the calculation unit 201 outputs to the output terminal 206.
  • the calculation unit 201 When the welding torch is positioned at A3 in the weaving phase by the weaving operation, the calculation unit 201 outputs to the output terminal 206.
  • the calculation unit 201 When the welding torch is positioned at A4 in the weaving phase by the weaving operation, the calculation unit 201 outputs to the output terminal 206.
  • the output state of the general-purpose output 1 and the general-purpose output 2 at the output terminal 206 is changed by the weaving operation (the general-purpose output 1 is ON and the general-purpose output 2 is OFF) ⁇ (the general-purpose output 1 is ON and the general-purpose output 2 is ON) ⁇ (General output 1 is OFF, General output 2 is ON) ⁇ (General output 1 is OFF, General output 2 is OFF) ⁇ (General output 1 is ON, General output 2 is OFF)
  • the output of the weaving phase information 111 to the general-purpose outputs 1 and 2 is a 2-bit parallel output.
  • the control device 104a outputs the weaving phase information 111 to the general-purpose PLC 301 via the output terminal 206.
  • the ladder program 605 incorporated in the external general-purpose PLC 301 analyzes the output state as the weaving phase information 111 and issues a welding condition command 121 to the welding machine 103.
  • the robot creates a desired ladder program in the general-purpose PLC 301 as a parallel program different from the robot operation program 110 of the control device 104a.
  • flexible welding can be performed in which the welding condition command 121 is performed.
  • the pulse peak current and base current, filler feed peak speed and filler feed base speed are obtained.
  • the processing of this general-purpose PLC 301 is prepared as a general-purpose device separately from the control device 104a, and the connection to the welding machine 103 is a general-purpose device.
  • various control parameters that differ depending on the welding method can be freely controlled in the weaving welding, and a very flexible welding can be realized, which is industrially useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Geometry (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

本開示の溶接システムは、ロボットと、溶接機と、制御装置を有する。ロボットは、先端に溶接トーチが取り付けられ、溶接トーチの位置を変化させる。溶接機は、溶接トーチに接続され、溶接条件を制御する。制御装置は、ロボットおよび溶接機に接続され、ロボットおよび溶接機を制御する。制御装置は、溶接機制御部と、ロボット制御部と、演算部とを有する。溶接機制御部は、溶接条件を制御し、ロボット制御部は、ロボットの動作を制御する。演算部は、ロボットの動作および溶接条件を設定する。さらに、溶接条件は、溶接トーチを溶接線に対して垂直な方向に振るウィービング動作の位相、および、溶接法を含む溶接環境に基づいて決定される。

Description

溶接システムおよび溶接方法
 本開示は、ウィービング溶接を行う溶接ロボットに関し、特に、ウィービング位相に同期して溶接条件を変更する溶接システムおよび溶接方法に関する。
 中板溶接や厚板溶接においては、金属溶着量を多くするために、溶接トーチが、溶接線方向に移動するとともに、溶接線に垂直な方向に一定の振幅で往復する、ウィービング溶接が用いられる。中板や厚板に施すウィービング溶接では、ウィービング動作の振り位置に関係なく、言い換えれば、ウィービング動作の位相に関係なく、溶接条件は一定である。
 一方、薄板溶接であって、板厚が互いに異なる部材の継手溶接では、ウィービングの位相に同期して溶接条件を変更することが必要となる。例えば、消耗電極式溶接、いわゆる、MAG(Metal Active Gas)溶接におけるウィービング溶接では、溶接トーチ先端のワイヤ部、すなわち、アーク発生部が継手よりも厚い板側に位置する場合は、溶接条件である溶接電流や溶接電圧は比較的高い。そして、アーク発生部が、継手よりも薄い板側に位置する場合は、溶接電流や溶接電圧は比較的低い。これは板厚に応じて、入熱や金属溶着量を変化させないと、比較的薄い板における溶け落ちや、比較的厚い板における金属溶着不足となるからである。
 同様に、非消耗電極式溶接、いわゆる、TIG(Tungsten Inert Gas)溶接におけるウィービング溶接でも、アーク発生部の位置における板厚に応じて、溶接電流やフィラー送給速度などの溶接条件の変更が必要となる。
 これに対し、溶接トーチのウィービング動作に同期するように、溶接条件を変更するアーク溶接が知られている(例えば、特許文献1参照)。
特開2008-279476号公報
 従来のウィービング動作に同期して行う溶接条件の変更は、板の厚さを考慮した上で、ウィービングの位相に応じて溶接電流や溶接電圧を変更するものであった。しかし、実際の溶接では、板の厚さだけでなく、溶接法よっても制御パラメータが大きく異なる。具体的には、MAG溶接においては溶接電流と溶接電圧が基本となるが、TIG溶接におけるパルス溶接においては、パルスのピーク電流やベース電流およびピークフィラー送給速度やベースフィラー送給速度が重要なパラメータとなる。
 このように、一口にウィービング位相に同期して溶接条件の制御を行うといっても、溶接法によって制御すべきパラメータは様々である。
 そこで本開示は、溶接法も考慮して最適な溶接条件をウィービングの位相に応じて変更する溶接システムおよび溶接方法を提供する。
 上記課題を解決するために、本開示の溶接システムは、ロボットと、溶接機と、制御装置を有する。ロボットは、先端に溶接トーチが取り付けられ、溶接トーチの位置を変化させる。溶接機は、溶接トーチに接続され、溶接条件を制御する。制御装置は、ロボットおよび溶接機に接続され、ロボットおよび溶接機を制御する。制御装置は、溶接機制御部と、ロボット制御部と、演算部とを有する。溶接機制御部は、溶接条件を制御し、ロボット制御部は、ロボットの動作を制御する。演算部は、ロボットの動作および溶接条件を設定する。さらに、溶接条件は、溶接トーチを溶接線に対して垂直な方向に振るウィービング動作の位相、および、溶接法を含む溶接環境に基づいて決定される。
 また、本開示の溶接方法は、ロボットと、溶接機と、制御装置を有するロボットシステムを用いる。ロボットは、先端に溶接トーチが取り付けられ、溶接トーチの位置を変化させる。溶接機は、溶接トーチに接続され、溶接条件を制御する。制御装置は、ロボットおよび溶接機に接続され、ロボットおよび溶接機を制御する。制御装置は、溶接機制御部と、ロボット制御部と、演算部とを有する。溶接機制御部は、溶接条件を制御し、ロボット制御部は、ロボットの動作を制御する。演算部は、ロボットの動作および溶接条件を設定する。さらに、溶接条件は、溶接トーチを溶接線に対して垂直な方向に振るウィービング動作の位相、および、溶接法を含む溶接環境に基づいて決定される工程を有する。
 以上のように、本開示によれば、ウィービング溶接において、溶接法によって異なる様々制御パラメータを自由に制御することができ、非常に柔軟性のある溶接を実現できる。
図1は、実施の形態1の溶接システム101の概念を示す概略図である。 図2は、実施の形態1および2の溶接システム101の構成を示す概略図である。 図3は、実施の形態1および2のウィービング溶接を行う前の教示作業を説明するための斜視図である。 図4は、実施の形態1および2のロボット動作プログラム110と並行実行プログラム120との例を示す図である。 図5は、実施の形態1および2のウィービング動作を行う場合の、時間とともに周期的に変化する溶接トーチの位置を示すウィービング位相情報111(図1参照)を示した図である。 図6は、実施の形態1の並行実行プログラム130の例を示す図である。 図7は、実施の形態2の溶接システム300の概念を示す概略図である。
 以下、本発明を実施するための形態について、図1から図7を用いて説明する。
 (実施の形態1)
 本実施の形態について、図1から図6を用いて説明する。まず、図1、2を用いて本実施の形態の溶接システムの構成について説明する。図1は、本実施の形態の溶接システム101の概念を示す概略図である。図2は、本実施の形態の溶接システム101の構成を示す概略図である。
 図1に示すように、溶接システム101は、ロボット102と、溶接機103と、制御装置104とを有する。ロボット102は、先端に溶接トーチ(図示せず)が取り付けられ、溶接トーチを移動させる。また、溶接機103は、溶接トーチに接続され、溶接トーチによる溶接条件を制御する。
 制御装置104は、ロボット102および溶接機103と接続され、それぞれを制御する。具体的には、制御装置104は、ロボット102の動作を制御することで、溶接トーチの動きを制御する。また、制御装置104は、溶接機103が溶接トーチに出力する溶接条件を制御する。
 さらに、制御装置104は、ロボット102を動作させるためのロボット動作プログラム110を有しており、ロボット動作プログラム110には、ウィービング動作に関するウィービング位相情報111が含まれている。そして、制御装置104は、ウィービング位相情報111を汎用変数112に変換する。また、制御装置104は、溶接機を制御するための、溶接条件が設定された並行実行プログラム120を有している。そして、制御装置104は、ウィービング位相情報111から変換された汎用変数112と、並行実行プログラム120とに基づいて、溶接条件指令121を決定し、溶接機103に出力する。このとき、並行実行プログラム120は、溶接法ごとに複数存在しており、制御装置104は、現在行われている溶接法に応じた並行実行プログラム120に基づいて、溶接条件指令121を決定する。
 次に、図2を用いて、本実施の形態の溶接システムの制御装置104の構成を具体的に説明する。
 図2に示すように、溶接システム101は、ロボット102と溶接機103と制御装置104と教示装置105とを有する。
 制御装置104は、演算部201とROM(Read Only Memory)202とRAM(Random Access Memory)203と、ロボット制御部204と、溶接機制御部205と、出力端子206とを有する。
 ロボット102は、6軸多関節ロボットであり、制御装置104のロボット制御部204に接続される。具体的には、ロボット102は、6軸それぞれのモータの駆動が制御装置104によって制御されるとともに、6軸それぞれのモータの状態を制御装置104にフィードバックする。
 溶接機103は、制御装置104の溶接機制御部205に接続される。溶接機103は、ロボット102の先端に取り付けられた溶接トーチに対して溶接条件を指令するとともに、実際に出力された溶接条件を検出し、溶接出力として制御装置104にフィードバックする。
 教示装置105は、制御装置104の演算部201と接続され、作業者によって、溶接法や継手形状や板厚などの溶接環境を入力する装置である。教示装置105はディスプレイと入力ボタンなどで構成されており、作業者が表示を見ながら溶接環境などを入力する。また、教示装置105によって、ROM202に記録された情報や、RAM203の記録された情報を確認や修正や追加などをすることも可能である。
 制御装置104の演算部201は、溶接開始前には、教示装置105から入力された溶接環境と、ROM202に記録された標準的な溶接条件や標準的なプログラムとから、ロボット102を動作させるロボット動作プログラム110を作成するとともに、溶接機103を制御する並行実行プログラム120を作成する。作成されたロボット動作プログラム110や並行実行プログラム120はRAM203に記憶される。さらに、演算部201は、ロボット制御部204にフィードバックされたロボット102の状態と、溶接機制御部205にフィードバックされた溶接出力とに基づいて、RAM203に記憶されたロボット動作プログラム110や並行実行プログラム120を修正して、ロボット102や溶接機103を制御する。
 制御装置104は、作業者が自由に使用できる汎用変数112(図1参照)を複数持ち、汎用変数112のデータはRAM203に記憶される。そして、演算部201によって、汎用変数112とROM202に記憶された標準的な溶接条件や標準的な溶接プログラムから、ロボット動作プログラム110や並行実行プログラム120を作成してRAM203に記憶する。もしくは、演算部201は、汎用変数112、ROM202に記憶された標準的な溶接条件や標準的な溶接プログラムなどから、RAM203に記憶されたロボット動作プログラム110や並行実行プログラム120を修正する。
 次に、図3,4を用いて、本実施の形態の溶接システムを用いたウィービング溶接を説明する。ウィービング溶接とは、溶接進行方向に対して横方向(例えば溶接方向に対して垂直な方向)に溶接ワイヤ(溶接トーチ)を振りながら溶接を行う方法である。図3は、本実施の形態のウィービング溶接を行う前の教示作業を説明するための斜視図である。図4は、本実施の形態のロボット動作プログラム110と並行実行プログラム120との例を示す図である。
 図3には、本実施の形態のウィービング溶接区間を含む溶接プログラムの教示点をが示され、図3のPosition01からPosition07は空間内の教示点を示している。Position01、Position02、Position06、Position07は溶接をしない空走点であり、Position03は溶接開始点、Position04は溶接中間点、Position05は溶接終了点である。空走点、溶接中間点はさらに多く存在していても良い。そして、Position03からPosition05までの溶接区間ではウィービング溶接を行う。
 図4には、本実施の形態のウィービング溶接を行うためのロボット動作プログラム110が示されている。ここで、プログラムの名称は「WELD.prog」としている。また、教示点の位置関係は図3の位置名(Position番号)と一致させている。また、図4には、本実施の形態のウィービング溶接がMAG溶接である場合の並行実行プログラム120となる「PARA-MAG.prog」が示されている。
 次に、ロボット動作プログラム110の各ステップについて説明する。STEP1は、のちに説明する並行実行プログラム120を呼び出すステップである。ここでは、MAG溶接を行うための「PARA-MAG.prog」という並行実行プログラム120を呼び出す。STEP2は、空走点であるPosition01へ溶接トーチを移動するステップであり、MOVELは直線動作を示す。STEP3は、空走点であるPosition02へ溶接トーチを移動するステップであり、MOVELは直線動作を示す。STEP4は、溶接開始点であるPosition03へ溶接トーチを移動するステップであり、MOVELは直線動作を示す。STEP5は、溶接開始命令であるARC-ON命令が登録されており、溶接機103に対して溶接開始を指示する。すなわち、ここから、溶接機103は並行実行プログラム120による溶接条件を用いて、溶接トーチを制御し、溶接を開始する。
 引き続き、溶接中のロボット動作プログラム110の各ステップについて説明する。STEP6は、溶接中間点であるPosition04へ溶接トーチを移動するステップであり、MOVELWはウィービング動作を伴う直線動作を示す。STEP7は、溶接終了点であるPosition05へ溶接トーチを移動するステップであり、MOVELWはウィービング動作を伴う直線動作を示す。STEP8は、溶接終了命令であるARC-OFF命令が登録されており、溶接機103に対して溶接終了を指示する。以上で、溶接は終了する。ここで、ウィービング動作を行うMOVELW命令に付随するパラメータ1Hzはウィービング周波数を示し、パラメータ5mmは振幅を示す。
 引き続き、溶接後のロボット動作プログラム110の各ステップについて説明する。STEP9は、空走点であるPosition06へ溶接トーチを移動するステップであり、MOVELは直線動作を示す。STEP10は、空走点のPosition07へ溶接トーチを移動するステップであり、MOVELは直線動作を示す。STEP11は、呼び出していた並行実行プログラム120である「PARA-MAG.prog」を閉じるステップである。以上により、ロボット動作プログラム110は終了するとともに、呼び出されていた「PARA-MAG.prog」も閉じられる。これにより、本実施の形態で行われたウィービング動作を伴うMAG溶接について、最適な溶接条件でウィービングの位相に同期した溶接を行うことが可能となる。
 次に、図5を用いて、ウィービング動作の説明をする。図5は、本実施の形態1のウィービング動作を行う場合の、時間とともに周期的に変化する溶接トーチの位置を示すウィービング位相情報111(図1参照)を示した図である。ここで、ウィービング位相情報111を示す変数を格納する汎用変数112をB001とする。また、ウィービング位相情報111として、例えば、ジグザグ状のウィービング動作を1周期の中で4つの位相(「0」、「1」、「2」、「3」)に分割し、どの位相に溶接トーチの位置があるかを表している。
 ウィービング位相のSTARTの位置は、図3におけるPosition03と同等である。ウィービング動作により溶接トーチが、ウィービング位相におけるSTARTに位置したとき、演算部201は汎用変数112であるB001にデータ=1をセットとする。ここでB001という記号はバイト型変数の001番を示す。バイト型変数とは変数が1byte型で構成され0~255の値を格納できるという意味である。ウィービング動作により、溶接トーチが、ウィービング位相におけるSTARTからA1の区間を動作中は汎用変数112のB001のデータは、データ=1がセットされていることになる。
 ウィービング動作により溶接トーチが、ウィービング位相におけるA1に位置したとき、演算部201は汎用変数112であるB001にデータ=3をセットする。ウィービング動作により溶接トーチが、ウィービング位相におけるA2に位置したとき、演算部201は汎用変数112であるB001にデータ=2をセットする。ウィービング動作により溶接トーチが、ウィービング位相におけるA3に位置したとき、演算部201は汎用変数112であるB001にデータ=0をセットする。ウィービング動作により溶接トーチが、ウィービング位相におけるA4に位置したとき、演算部201は汎用変数112であるB001にデータ=1をセットする。以降、同様に、ウィービング動作によって汎用変数112であるB001にセットされるデータは1→3→2→0→1→3→2→0と繰り返される。
 次に、図4を用いて、並行実行プログラム120について説明をする。図4において、並行実行プログラム120の名称は「PARA-MAG.prog」である。並行実行プログラム120は、MAG溶接でウィービング溶接を行うためのロボット動作プログラム110と並行して実行され、RAM203に記憶されている。並行実行プログラム120の実行の方法は、ロボット動作プログラム110のSTEP1におけるPARACALL-START命令において並行実行が起動される。PARACALL-START命令は並行実行を行うための呼び出し命令であり、PARACALL-START命令に付随するパラメータは並行実行するプログラム名であり、STEP1の場合はPARA-MAG.progである。
 STEP1のPARACALL-START命令が実行されると、並行実行プログラム120のPARA-MAG.progが、ロボット動作プログラム110のWELD.progで並行して実行される。STEP1のPARACALL-START命令が実行されると、演算部201はRAM203より並行実行プログラム120を読み出し実行開始する。
 並行実行プログラム120のSTEP1は、条件によって処理を分岐するIF命令が登録されている。IF命令の条件部は、「B001=1 or B001=3」となっており、これは「汎用変数112であるB001の値が1または3のとき」という条件である。IF命令の条件部は、「THEN STEP2 ELSE STEP3」となっており、条件「B001=1 or B001=3」の判定結果が真のとき、STEP2にジャンプし、条件「B001=1 or B001=3」の判定結果が偽のとき、STEP3にジャンプすることを示す。
 並行実行プログラム120のSTEP2は、溶接条件を溶接機103に対して指令するARC-SET命令が登録されており、電流指令200アンペア、電圧指令20.0ボルトを溶接機103に対して指令することを示している。この電流指令200アンペア、電圧指令20.0ボルトをA条件403とする。
 並行実行プログラム120のSTEP3は、条件によって処理を分岐するIF命令が登録されている。IF命令の条件部は、「B001=2 or B001=0」となっており、これは「汎用変数112であるB001の値が2または0のとき」という条件である。IF命令の条件部は、「THEN STEP4 ELSE STEP1」となっており、条件「B001=2 or B001=0」の判定結果が真のとき、STEP4にジャンプし、条件「B001=1 or B001=3」の判定結果が偽のとき、STEP1にジャンプすることを示す。
 並行実行プログラム120のSTEP4は、溶接条件を溶接機103に対して指令するARC-SET命令が登録されており、電流指令100アンペア、電圧指令16.0ボルトを溶接機103に対して指令することを示している。この電流指令100アンペア、電圧指令16.0ボルトをB条件404とする。
 並行実行プログラム120のSTEP5は、JUMP命令が登録されており、STEP1へ戻ることを示す。
 次に、図1、2、4、5を用いて、ウィービング位相情報111を格納したメモリを参照して溶接条件指令121を変更する方法を説明する。
 図5において、ウィービング動作により溶接トーチが、ウィービング位相におけるSTARTに位置したとき、演算部201は汎用変数112であるB001にデータ=1をセットする。これを模式的に表すと、図1において、ウィービング位相情報111が汎用変数112に書き込まれる。汎用変数112は図2におけるRAM203に格納されている。
 図4の並行実行プログラム120は、STEP5のJUMP命令により、STEP1からSTEP5までが繰り返し実行されている。汎用変数112であるB001にデータ=1がセットされているとき、並行実行プログラム120のSTEP1のIF命令の判定結果が真となり、STEP2のARC-SET命令が実行され、溶接条件指令121は200アンペア、20.0ボルト指令になる。この200アンペア、20.0ボルト指令は、図5における溶接条件指令のA条件403となる。これを模式的に表すと、図1における並行実行プログラム120は、図2に示されるRAM203からウィービング位相情報111を読み出し、溶接機103に対する溶接条件指令121を行う。
 同様に、図5において、ウィービング動作により溶接トーチが、ウィービング位相におけるA1に位置したとき、演算部201は汎用変数112であるB001にデータ=3をセットする。このとき、並行実行プログラム120のSTEP1のIF命令の判定結果が真となり、STEP2が実行され、溶接条件指令121は200アンペア、20.0ボルト指令になる(図4参照)。この200アンペア、20.0ボルト指令は、図5における溶接条件指令121のA条件403となる。
 同様に、図5において、ウィービング動作により溶接トーチが、ウィービング位相におけるA2に位置したとき、演算部201は汎用変数112であるB001にデータ=2をセットする。このとき、並行実行プログラム120のSTEP3のIF命令の判定結果が真となり、STEP4が実行され、溶接条件指令121は100アンペア、16.0ボルト指令になる。この100アンペア、16.0ボルト指令は、図5における溶接条件指令121のB条件404なる。
 同様に、図5において、ウィービング動作により溶接トーチが、ウィービング位相におけるA3に位置したとき、演算部201は汎用変数112であるB001にデータ=0をセットとする。このとき、並行実行プログラム120のSTEP3のIF命令の判定結果が真となり、STEP4が実行され、溶接条件指令121は100アンペア、16.0ボルト指令になる。この100アンペア、16.0ボルト指令は、図5における溶接条件指令121のB条件404となる。
 同様に、図5において、ウィービング動作により溶接トーチが、ウィービング位相におけるA4に位置したとき、演算部201は汎用変数112であるB001にデータ=1をセットする。このとき、並行実行プログラム120のSTEP1のIF命令の判定結果が真となり、STEP2が実行され、溶接条件指令121は200アンペア、20.0ボルト指令になる。この200アンペア、20.0ボルト指令は、図5における溶接条件指令121のA条件403となる。
 同様に、図1において、ウィービング位相情報111が汎用変数112に書き込まれるとともに、並行実行プログラム120は、ウィービング位相情報111を汎用変数112から読み出し、溶接機103に対する溶接条件指令121を行うことを繰り返す。これらにより、ウィービング位相情報111に応じて、溶接条件指令121はA条件403→B条件404→A条件403→B条件404の条件のサイクルを繰り返すこととなる。
 このような構成とすることにより、本実施の形態1では作業者がMAG溶接に最適な並行実行プログラム120を作成することにより、ロボットのウィービング動作に同期して、MAG溶接に最適な溶接を行うことができる。
 例えば、TIG溶接であれば、パルスのピーク電流やベース電流、フィラー送給ピーク速度やフィラー送給ベース速度を溶接条件指令121に設定すればよい。
 図6に、TIG溶接のときの並行実行プログラム130(PARA-TIG.prog)の例を示す。
 並行実行プログラム130のSTEP2は、TIG溶接条件を溶接機103に対して指令するARC-SET_TIG命令が登録されており、ピーク電流指令200アンペア、ベース電流指令100アンペア、フィラー送給ピーク速度5.0m/min、フィラー送給ベース速度2.0m/minを指令する。
 STEP4は、TIG溶接条件を溶接機103に対して指令するARC-SET_TIG命令が登録されており、ピーク電流指令150アンペア、ベース電流指令50アンペア、フィラー送給ピーク速度3.0m/min、フィラー送給ベース速度1.0m/minを指令する。
 これにより、TIG溶接に最適な並行実行プログラム120を作成することにより、ロボットのウィービング動作に同期して、TIG溶接に最適なウィービング溶接を行うことができる。その他にも、MIG溶接等の溶接法についても、同様に並行実行プログラムを作成することで、MIG溶接に最適な、ウィービング動作に同期した溶接条件を設定することが可能となる。
 以上のように、溶接法ごとに並行実行プログラムを作成しておくことで、様々な溶接法に対して最適な溶接条件で、ウィービング動作に同期した溶接条件を実現することが可能となる。
 (実施の形態2)
 本実施の形態について、図2~5,7を用いて説明する。なお、実施の形態1と同様の箇所には同一の符号を付して詳細な説明を省略する。図7は、本実施の形態の溶接システム300の概念を示す概略図である。
 実施の形態1の構成では、溶接機103は制御装置104に接続され、制御装置104が溶接機103に対して溶接指令を行っている。本実施の形態では、図7に示すように、溶接機103は制御装置104aに接続されず、汎用のPLC301が溶接機103に対して溶接指令を行うものである。
 図7において、制御装置104aにより、ウィービング位相情報111は出力端子206に出力される。その出力方法について図5を用いて説明する。
 図5は、ウィービング動作を行う場合の時間とともに周期的に変化する溶接トーチの位置を示すウィービング位相情報111を示した図である。STARTは図3におけるPosition03と同等の位置である。ウィービング動作により溶接トーチが、ウィービング位相におけるSTARTに位置したとき、演算部201は出力端子206に対して出力を行う。汎用出力1はONにし、汎用出力2はOFFにする。この出力は、実施の形態1における汎用変数112であるB001にデータ=1がセットされている状態に相当する。
 ウィービング動作により溶接トーチが、ウィービング位相におけるSTARTからA1の区間を動作中においては、汎用出力1はON、汎用出力2はOFFされていることになる。
 ウィービング動作により溶接トーチが、ウィービング位相におけるA1に位置したとき、演算部201は出力端子206に対して出力を行う。汎用出力1はONにし、汎用出力2はONにする。この出力は、実施の形態1における汎用変数112であるB001にデータ=2がセットされている状態に相当する。
 ウィービング動作により溶接トーチが、ウィービング位相におけるA2に位置したとき、演算部201は出力端子206に対して出力を行う。汎用出力1はOFFにし、汎用出力2はONにする。この出力は、実施の形態1における汎用変数112であるB001にデータ=3がセットされている状態に相当する。
 ウィービング動作により溶接トーチが、ウィービング位相におけるA3に位置したとき、演算部201は出力端子206に対して出力を行う。汎用出力1はOFFにし、汎用出力2はOFFにする。この出力は、実施の形態1における汎用変数112であるB001にデータ=0がセットされている状態に相当する。
 ウィービング動作により溶接トーチが、ウィービング位相におけるA4に位置したとき、演算部201は出力端子206に対して出力を行う。汎用出力1はONにし、汎用出力2はOFFにする。この出力は、実施の形態1における汎用変数112であるB001にデータ=1がセットされている状態に相当する。
 以降、同様に、ウィービング動作によって出力端子206の汎用出力1、汎用出力2の出力状態は(汎用出力1がON、汎用出力2がOFF)→(汎用出力1がON、汎用出力2がON)→(汎用出力1がOFF、汎用出力2がON)→(汎用出力1がOFF、汎用出力2がOFF)→(汎用出力1がON、汎用出力2がOFF)と繰り返される。汎用出力1および2へのウィービング位相情報111の出力は、2ビットのパラレル出力となる。
 図7において、制御装置104aは、ウィービング位相情報111を、出力端子206を介して汎用のPLC301に出力する。その出力状態を外部の汎用のPLC301内に組み込まれたラダープログラム605が出力状態をウィービング位相情報111として解析し、溶接機103に対して、溶接条件指令121を行う。
 このような構成とすることにより、本実施の形態では、制御装置104aのロボット動作プログラム110とは別の並行プログラムとして、作業者が汎用のPLC301に、所望のラダープログラムを作成することにより、ロボット102のウィービング動作に応じて、溶接条件指令121を行うという柔軟性のある溶接を行うことができる。
 TIG溶接であれば、パルスのピーク電流やベース電流、フィラー送給ピーク速度やフィラー送給ベース速度となる。この汎用のPLC301の処理は、制御装置104aとは別に汎用的な装置として準備され、溶接機103との接続は汎用的に準備されたものを使用する。
 本開示は、本開示によれば、ウィービング溶接において、溶接法によって異なる様々制御パラメータを自由に制御することができ、非常に柔軟性のある溶接を実現でき、産業上有用である。
 101,300 溶接システム
 102 ロボット
 103 溶接機
 104,104a 制御装置
 110 ロボット動作プログラム
 111 ウィービング位相情報
 112 汎用変数
 120,130 並行実行プログラム
 121 溶接条件指令
 201 演算部
 202 ROM
 203 RAM
 204 ロボット制御部
 205 溶接機制御部
 206 出力端子
 301 PLC
 403 A条件
 404 B条件
 605 ラダープログラム

Claims (4)

  1.  先端に溶接トーチが取り付けられ、溶接トーチの位置を変化させるロボットと、
     前記溶接トーチに接続され、溶接条件を制御する溶接機と、
     前記ロボットおよび前記溶接機に接続され、前記ロボットおよび前記溶接機を制御する制御装置とを備え、
     前記制御装置は、
      前記溶接条件を制御する溶接機制御部と、
      前記ロボットの動作を制御するロボット制御部と、
      前記ロボットの動作および前記溶接条件とを設定する演算部とを有し、
      前記溶接条件は、溶接トーチを溶接線に対して垂直な方向に振るウィービング動作の位相、および、溶接法を含む溶接環境に基づいて決定される溶接システム。
  2.  前記溶接環境は、MAG溶接法、溶接の継手形状、板厚であり、
     前記溶接条件は、溶接電流、溶接電圧、ワイヤ送給速度である請求項1に記載の溶接システム。
  3.  前記溶接環境は、TIG溶接のパルス溶接法、溶接の継手形状、板厚であり、
     前記溶接条件は、パルスのピーク電流、パルスのベース電流、ピークワイヤ送給速度、ベースワイヤ送給速度である請求項1に記載の溶接システム。
  4.  先端に溶接トーチが取り付けられ、溶接トーチの位置を変化させるロボットと、
     前記溶接トーチに接続され、溶接条件を制御する溶接機と、
     前記ロボットおよび前記溶接機に接続され、前記ロボットおよび前記溶接機を制御する制御装置とを備え、
     前記制御装置は、
      前記溶接条件を制御する溶接機制御部と、
      前記ロボットの動作を制御するロボット制御部と、
      前記ロボットの動作および前記溶接条件とを設定する演算部とを有し、
     前記溶接条件は、溶接トーチを溶接線に対して垂直な方向に振るウィービング動作の位相、および、溶接法を含む溶接環境に基づいて決定される工程を備えた溶接方法。
PCT/JP2016/002804 2015-06-11 2016-06-10 溶接システムおよび溶接方法 WO2016199427A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015117974 2015-06-11
JP2015-117974 2015-06-11

Publications (1)

Publication Number Publication Date
WO2016199427A1 true WO2016199427A1 (ja) 2016-12-15

Family

ID=57503211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002804 WO2016199427A1 (ja) 2015-06-11 2016-06-10 溶接システムおよび溶接方法

Country Status (1)

Country Link
WO (1) WO2016199427A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0985443A (ja) * 1995-09-22 1997-03-31 Toyota Autom Loom Works Ltd アーク溶接装置及び溶接条件設定方法
JPH11273854A (ja) * 1998-03-26 1999-10-08 Toshiba Corp 自動溶接方法及びその装置並びに溶接構造物
JP2008279476A (ja) * 2007-05-10 2008-11-20 Daihen Corp アーク溶接の溶接方法及び溶接ロボットの制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0985443A (ja) * 1995-09-22 1997-03-31 Toyota Autom Loom Works Ltd アーク溶接装置及び溶接条件設定方法
JPH11273854A (ja) * 1998-03-26 1999-10-08 Toshiba Corp 自動溶接方法及びその装置並びに溶接構造物
JP2008279476A (ja) * 2007-05-10 2008-11-20 Daihen Corp アーク溶接の溶接方法及び溶接ロボットの制御装置

Similar Documents

Publication Publication Date Title
JP5049916B2 (ja) アーク溶接ロボットの制御装置、その方法及びそのプログラム
US10442027B2 (en) Digital communication based arc control welding system and method
JP5360237B2 (ja) ロボットシステムの制御方法
JPWO2008108014A1 (ja) 溶接装置
KR20180103999A (ko) 용접 장치 및 용접 장치의 제어 방법
JP2009119477A (ja) ステッチパルス溶接装置
JP4995697B2 (ja) ステッチパルス溶接装置
CN110961767B (zh) 焊接装置以及焊接方法
WO2016199427A1 (ja) 溶接システムおよび溶接方法
JP2016043357A (ja) アーク溶接装置、アーク溶接システム、アーク溶接方法および被溶接物の製造方法
US11541478B2 (en) Laser welding device and laser welding method using welding wire
JP2005254242A (ja) 溶接システム
JP2007260757A (ja) アーク溶接ロボット制御装置
CN111918740B (zh) 电弧焊接方法、电弧焊接系统以及焊接电源装置的控制装置
JP5133185B2 (ja) アーク溶接ロボット装置
JP2009083019A (ja) ウィービング動作制御方法
JP4958630B2 (ja) アーク溶接の溶接方法及び溶接ロボットの制御装置
JP2014087818A (ja) アーク溶接方法およびアーク溶接装置
JP2020124719A (ja) 溶接装置および溶接方法
JP5051351B2 (ja) アーク溶接装置
US20220274196A1 (en) Method and Device for Stabilizing a Transition between Various Welding-Process Phases of a Welding Process
JP2007275969A (ja) ロボットの制御装置およびロボットの軌跡制御方法
JP2024062160A (ja) 溶接方法および溶接装置
JP2024059152A (ja) 溶接方法および溶接装置
JP2021045773A (ja) アーク溶接システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP