WO2016199353A1 - 二次電池負極用スラリー組成物、二次電池用負極および二次電池 - Google Patents

二次電池負極用スラリー組成物、二次電池用負極および二次電池 Download PDF

Info

Publication number
WO2016199353A1
WO2016199353A1 PCT/JP2016/002367 JP2016002367W WO2016199353A1 WO 2016199353 A1 WO2016199353 A1 WO 2016199353A1 JP 2016002367 W JP2016002367 W JP 2016002367W WO 2016199353 A1 WO2016199353 A1 WO 2016199353A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
slurry composition
active material
electrode active
Prior art date
Application number
PCT/JP2016/002367
Other languages
English (en)
French (fr)
Inventor
徳一 山本
茂 周藤
ジュリアン デルマス
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201680027006.5A priority Critical patent/CN107534131B/zh
Priority to KR1020177032433A priority patent/KR20180015125A/ko
Priority to JP2017523094A priority patent/JP6809454B2/ja
Priority to PL16807070T priority patent/PL3306709T3/pl
Priority to EP16807070.4A priority patent/EP3306709B1/en
Priority to US15/574,836 priority patent/US10784502B2/en
Publication of WO2016199353A1 publication Critical patent/WO2016199353A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery negative electrode slurry composition, a secondary battery negative electrode and a secondary battery.
  • Secondary batteries such as lithium ion secondary batteries are small and light, have high energy density, and can be repeatedly charged and discharged, and are used in a wide range of applications. Therefore, in recent years, improvement of battery members such as electrodes (positive electrode and negative electrode) has been studied for the purpose of further improving the performance of secondary batteries.
  • a negative electrode used in a secondary battery such as a lithium ion secondary battery usually includes a current collector and an electrode mixture layer (negative electrode mixture layer) formed on the current collector. And this negative electrode compound-material layer is formed using the slurry composition formed by disperse
  • a negative electrode active material composed of a composite carbon material having a surface functional group amount of 1.0% or less obtained by X-ray photoelectron spectroscopy (XPS), and a predetermined weight average molecular weight
  • XPS X-ray photoelectron spectroscopy
  • the present inventor has conceived of suppressing decomposition of the electrolytic solution by reducing the specific surface area of the negative electrode active material to reduce the contact interface between the negative electrode active material and the electrolytic solution.
  • the present inventor tried to reduce the specific surface area of the negative electrode active material used in the above-described prior art, but the problem that the preparation of the slurry composition becomes difficult due to excessive thickening, and the charge carrier ( Clearly, the internal resistance of the secondary battery increases due to a decrease in the number of lithium ion secondary battery accepting sites, resulting in a problem that sufficient rate characteristics cannot be obtained. became. That is, the conventional technology described above still has room for improvement in terms of suppressing the swelling of the cells of the secondary battery and the increase in internal resistance while ensuring the productivity of the slurry composition for the secondary battery negative electrode. there were.
  • an object of this invention is to provide the slurry composition for secondary battery negative electrodes which is excellent in productivity and can suppress the swelling of the cell of a secondary battery, and the raise of internal resistance.
  • Another object of the present invention is to provide a negative electrode for a secondary battery that can suppress the swelling of the cells of the secondary battery and the increase in internal resistance.
  • An object of the present invention is to provide a secondary battery in which cell swelling is suppressed and the rate characteristics are excellent.
  • the present inventor has intensively studied for the purpose of solving the above problems. And this inventor adds the particulate polymer which has a predetermined
  • the secondary battery negative electrode slurry composition of the present invention is a secondary battery containing a negative electrode active material, a particulate polymer and water.
  • a negative electrode slurry composition wherein the negative electrode active material has a surface functional group content of 0.9% to 1.5% and a BET specific surface area of 2.5 m 2 / g or less.
  • An active material is included, and the particulate polymer has a surface acid amount of 0.2 mmol / g or more and 2.0 mmol / g or less.
  • the slurry composition is prepared without excessively thickening. It is also possible to suppress the swelling of the secondary battery cell and the increase in internal resistance.
  • the “surface functional group amount” is a value represented by the ratio of the carbon atom (C) concentration and the oxygen atom (O) concentration on the surface of the carbon-based negative electrode active material determined by X-ray photoelectron spectroscopy. And is also referred to as an O / C value.
  • the “surface functional group amount” can be derived using the method described in the examples of the present specification.
  • the “BET specific surface area” refers to a BET specific surface area by a nitrogen adsorption method, and can be measured in accordance with ASTM D3037-81.
  • the “surface acid amount” is the amount of acid present on the surface portion of the particulate polymer, and refers to the acid amount per 1 g of the solid content of the particulate polymer.
  • the “surface acid amount” can be derived using the method described in this specification.
  • S represents the surface functional group amount (%) of the carbon-based negative electrode active material, and BET specific surface area (m 2 / g) of the carbon-based negative electrode active material.
  • the slurry composition for secondary battery negative electrodes of this invention WHEREIN: It is preferable that the BET specific surface area of the said carbon-type negative electrode active material is 1.0 m ⁇ 2 > / g or more. This is because if the BET specific surface area of the carbon-based negative electrode active material is 1.0 m 2 / g or more, an increase in the internal resistance of the secondary battery can be further suppressed.
  • the volume average particle diameter D50 of the particulate polymer is preferably 120 nm or more and 500 nm or less. If the volume average particle diameter D50 of the particulate polymer is within the above-mentioned range, the swelling of the secondary battery cell is further suppressed and the peel strength of the negative electrode is improved while further improving the productivity of the slurry composition. Because you can.
  • the “volume average particle diameter D50” refers to the particle diameter at which the cumulative volume calculated from the small diameter side is 50% in the particle size distribution (volume basis) measured by the laser diffraction method.
  • the conductive material having a BET specific surface area of 30 m 2 / g or more is further 0.2 parts by mass or more and 2 parts by mass or less per 100 parts by mass of the negative electrode active material. It is preferable to include. If the slurry composition includes a conductive material having a BET specific surface area of 30 m 2 / g or more in a blending amount within the above range, it is possible to further suppress the expansion of the secondary battery cells and the increase in internal resistance. It is.
  • the slurry composition for secondary battery negative electrodes of this invention contains the water-soluble polymer whose 1 mass% aqueous solution viscosity is 150 mPa * s or more and 2000 mPa * s or less further. This is because if the slurry composition contains the above-described water-soluble polymer having a 1% by mass aqueous solution viscosity, the increase in internal resistance of the secondary battery can be further suppressed.
  • aqueous solution viscosity is measured using a B-type viscometer under the conditions of a temperature of 25 ° C., a pH of 8, a rotor M4, and a rotational speed of 60 rpm in accordance with JIS K7117-1. be able to.
  • the negative electrode for secondary batteries of this invention is obtained using one of the slurry compositions for secondary battery negative electrodes mentioned above. It has a negative electrode mixture layer.
  • the negative electrode obtained by using any of the slurry compositions for secondary battery negative electrodes described above is used, it is possible to sufficiently suppress the swelling of the cells of the secondary battery and the increase in internal resistance.
  • the secondary battery of this invention is equipped with a positive electrode, a negative electrode, a separator, and electrolyte solution,
  • the said negative electrode is for secondary batteries mentioned above. It is a negative electrode.
  • a secondary battery including the above-described negative electrode for a secondary battery has suppressed cell swelling and is excellent in battery characteristics such as rate characteristics.
  • ADVANTAGE OF THE INVENTION According to this invention, it is excellent in productivity and can provide the slurry composition for secondary battery negative electrodes which can suppress the swelling of the cell of a secondary battery, and the raise of internal resistance.
  • ADVANTAGE OF THE INVENTION According to this invention, the negative electrode for secondary batteries which can suppress the swelling of the cell of a secondary battery and the raise of internal resistance can be provided. According to the present invention, it is possible to provide a secondary battery in which cell swelling is suppressed and the rate characteristics are excellent.
  • FIG. 3 is a graph showing a hydrochloric acid addition amount-electric conductivity curve created when calculating the surface acid amount of a particulate polymer.
  • the slurry composition for secondary battery negative electrode of this invention is used for formation of the negative electrode of a secondary battery.
  • the negative electrode for secondary batteries of this invention is equipped with the negative mix layer formed from the slurry composition for secondary battery negative electrodes of this invention, It is characterized by the above-mentioned.
  • the secondary battery of the present invention is characterized by using the negative electrode for a secondary battery of the present invention.
  • the secondary battery negative electrode slurry composition of the present invention is a composition in which a negative electrode active material and a binder are dispersed in an aqueous medium as a dispersion medium.
  • the slurry composition for secondary battery negative electrode of the present invention has a surface functional group amount of 0.9% to 1.5% and a BET specific surface area of 2.5 m 2 / g or less as a negative electrode active material. It includes a carbon-based negative electrode active material, and includes a particulate polymer having a surface acid amount of 0.2 mmol / g or more and 2.0 mmol / g or less as a binder.
  • the slurry composition for secondary battery negative electrodes of this invention uses together the carbon-type negative electrode active material mentioned above and the particulate polymer mentioned above, it suppresses the excessive thickening at the time of slurry composition preparation. be able to. And if the said slurry composition is used, the negative electrode which can suppress the swelling of the cell of a secondary battery and the raise of internal resistance can be produced.
  • the negative electrode active material is a material that transfers electrons in the negative electrode of the secondary battery.
  • a negative electrode active material of a lithium ion secondary battery a material that can occlude and release lithium is usually used.
  • the substance capable of inserting and extracting lithium include a carbon-based negative electrode active material, a non-carbon-based negative electrode active material, and an active material obtained by combining these materials.
  • the negative electrode active material at least the surface functional group amount is 0.9% to 1.5% and the BET specific surface area is 2.5 m 2 / It is necessary to use a carbon-based negative electrode active material that is g or less.
  • the carbon-based negative electrode active material refers to an active material having carbon as a main skeleton, into which lithium can be inserted (also referred to as “dope”).
  • the carbon-based negative electrode active material having the above-described predetermined properties will be described in detail.
  • the slurry composition for secondary battery negative electrode of the present invention has the above-described carbon-based negative electrode active material having no predetermined properties. May be included.
  • the carbon-based negative electrode active material needs to have a surface functional group amount (O / C value) of 0.9% or more and 1.5% or less, preferably 1.0% or more, % Is more preferable, 1.1% or more is further preferable, 1.4% or less is preferable, and 1.3% or less is more preferable.
  • a surface functional group amount of the carbon-based negative electrode active material is less than 0.9%, the internal resistance of the secondary battery increases, and the rate characteristics cannot be ensured.
  • the amount of surface functional groups of the carbon-based negative electrode active material can be adjusted by changing the strength of the mechanochemical treatment described later. Specifically, the amount of surface functional groups can be increased by increasing the rotational speed at the time of crushing of the apparatus used for mechanochemical treatment.
  • the carbon-based negative electrode active material needs to have a BET specific surface area of 2.5 m 2 / g or less, preferably 2.3 m 2 / g or less, and 2.2 m 2 / g or less. More preferably, it is 2.0 m 2 / g or less, more preferably 1.0 m 2 / g or more, more preferably 1.1 m 2 / g or more, and 1.2 m More preferably, it is 2 / g or more.
  • the BET specific surface area of the carbon-based negative electrode active material is more than 2.5 m 2 / g, the contact interface between the negative electrode active material and the electrolytic solution increases, and the swelling of the cells due to the decomposition of the electrolytic solution cannot be sufficiently suppressed.
  • the BET specific surface area of the carbon-based negative electrode active material is 1.0 m 2 / g or more, the rate characteristic can be further enhanced by suppressing the increase in the internal resistance of the secondary battery.
  • the adjustment method of the BET specific surface area of a carbon-type negative electrode active material is not specifically limited, It can adjust by a well-known method.
  • the BET specific surface area can be increased by increasing the rotational speed at the time of crushing of the apparatus used for the mechanochemical treatment, similarly to the above-described surface functional group amount.
  • prescribed property mentioned above is not specifically limited, For example, it can obtain by performing a mechanochemical process to a well-known carbon type negative electrode active material.
  • Examples of known carbon-based negative electrode active materials include carbonaceous materials and graphite materials.
  • the carbonaceous material is a material having a low degree of graphitization (ie, low crystallinity) obtained by carbonizing a carbon precursor by heat treatment at 2000 ° C. or lower.
  • the minimum of the heat processing temperature at the time of carbonizing is not specifically limited, For example, it can be 500 degreeC or more.
  • Examples of the carbonaceous material include graphitizable carbon that easily changes the carbon structure depending on the heat treatment temperature, and non-graphitizable carbon having a structure close to an amorphous structure typified by glassy carbon. .
  • the graphitizable carbon for example, a carbon material using tar pitch obtained from petroleum or coal as a raw material can be mentioned. Specific examples include coke, mesocarbon microbeads (MCMB), mesophase pitch carbon fibers, pyrolytic vapor grown carbon fibers, and the like.
  • examples of the non-graphitizable carbon include a phenol resin fired body, polyacrylonitrile-based carbon fiber, pseudo-isotropic carbon, furfuryl alcohol resin fired body (PFA), and hard carbon.
  • the graphite material is a material having high crystallinity close to that of graphite obtained by heat-treating graphitizable carbon at 2000 ° C. or higher.
  • the upper limit of heat processing temperature is not specifically limited, For example, it can be 5000 degrees C or less.
  • the graphite material include natural graphite and artificial graphite.
  • the artificial graphite for example, artificial graphite obtained by heat-treating carbon containing graphitizable carbon mainly at 2800 ° C. or higher, graphitized MCMB heat-treated at 2000 ° C. or higher, and mesophase pitch-based carbon fiber at 2000 ° C. Examples thereof include graphitized mesophase pitch-based carbon fibers that have been heat-treated.
  • a composite carbon material obtained by forming a low crystalline carbon film on the surface of core particles made of high crystalline carbon described in JP 2013-45714 A is also available. Can be mentioned.
  • the mechanochemical treatment is a pulverization treatment of a solid substance by mechanical energy such as friction and compression, and the high energy generated locally in the process is used to crystallize the solid substance to be treated.
  • This refers to a treatment that causes a chemical reaction such as a chemical reaction, a solid solution reaction, or a phase transition reaction.
  • mechanochemical treatment of the above-mentioned known carbon-based negative electrode active material many functional groups (typically, functional groups having oxygen atoms) can be generated on the surface of the carbon-based negative electrode active material. .
  • the conditions of a mechanochemical process can be suitably set according to a desired surface functional group amount and a BET specific surface area.
  • the non-carbon-based negative electrode active material is an active material excluding the carbon-based negative electrode active material, and examples of the non-carbon-based negative electrode active material include a metal-based negative electrode active material.
  • the metal-based negative electrode active material is an active material containing a metal, and usually contains an element capable of inserting lithium in the structure, and the theoretical electric capacity per unit mass when lithium is inserted is 500 mAh / g or more. Is an active material.
  • the metal-based negative electrode active material for example, lithium metal, a single metal capable of forming a lithium alloy (for example, Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si, Sn, Sr, Zn, Ti, etc.) and alloys thereof, and oxides, sulfides, nitrides, silicides, carbides, phosphides, and the like thereof are used.
  • silicon-based negative electrode active material an active material containing silicon (silicon-based negative electrode active material) is preferable. This is because the capacity of the lithium ion secondary battery can be increased by using the silicon-based negative electrode active material.
  • silicon-based negative electrode active materials include silicon (Si), alloys containing silicon, SiO, SiO x , and a composite of a Si-containing material obtained by coating or combining a Si-containing material with conductive carbon and conductive carbon. Etc.
  • these silicon type negative electrode active materials may be used individually by 1 type, and may be used in combination of 2 types.
  • the alloy containing silicon examples include an alloy composition containing silicon and at least one element selected from the group consisting of titanium, iron, cobalt, nickel, and copper.
  • the alloy containing silicon examples include an alloy composition containing silicon, aluminum, and a transition metal such as iron, and further containing a rare earth element such as tin and yttrium.
  • SiO x is a compound containing at least one of SiO and SiO 2 and Si, and x is usually 0.01 or more and less than 2. Then, SiO x, for example, can be formed by using a disproportionation reaction of silicon monoxide (SiO). Specifically, SiO x can be prepared by heat-treating SiO, optionally in the presence of a polymer such as polyvinyl alcohol, to produce silicon and silicon dioxide. The heat treatment can be performed at a temperature of 900 ° C. or higher, preferably 1000 ° C. or higher, in an atmosphere containing an organic gas and / or vapor after grinding and mixing SiO and optionally a polymer.
  • SiO x can be prepared by heat-treating SiO, optionally in the presence of a polymer such as polyvinyl alcohol, to produce silicon and silicon dioxide. The heat treatment can be performed at a temperature of 900 ° C. or higher, preferably 1000 ° C. or higher, in an atmosphere containing an organic gas and / or
  • a composite of Si-containing material and conductive carbon for example, a pulverized mixture of SiO, a polymer such as polyvinyl alcohol, and optionally a carbon material is heat-treated in an atmosphere containing, for example, an organic gas and / or steam.
  • the composite material is a method of coating the surface of SiO particles by chemical vapor deposition using an organic gas, etc., or composite particles (granulated) by mechanochemical treatment of SiO particles and graphite or artificial graphite. ) Can also be obtained by a known method such as a method.
  • the negative electrode active material used in the slurry composition of the present invention preferably has a non-carbon-based negative electrode active material content of less than 30% by mass, more preferably less than 15% by mass, and less than 10% by mass. More preferably, it is more preferably less than 5% by mass, and most preferably 0% by mass. If the content ratio of the non-carbon-based negative electrode active material in the negative electrode active material is less than 30% by mass, the effect of the combined use of the carbon-based negative electrode active material having a predetermined property and the particulate polymer described later is sufficiently exhibited. Thus, it is possible to achieve a good balance between improving the productivity of the slurry composition, suppressing the expansion of the cells of the secondary battery, and suppressing the increase in internal resistance.
  • the particulate polymer binds each component in the negative electrode mixture layer or each component and the current collector. Put on.
  • a polymer that can be dispersed in an aqueous medium such as water can be used.
  • the particulate polymer needs to have a surface acid amount of 0.2 mmol / g or more and 2.0 mmol / g or less, preferably 0.22 mmol / g or more, and 1.5 mmol / g. g or less, more preferably 1.3 mmol / g or less, still more preferably 1.0 mmol / g or less, and particularly preferably 0.8 mmol / g or less.
  • the surface acid amount of the particulate polymer is less than 0.2 mmol / g, the carbon-based negative electrode active material having the predetermined properties described above cannot sufficiently interact with the particulate polymer.
  • the “surface acid amount” can be calculated by the following method. First, an aqueous dispersion containing a particulate polymer is prepared. An aqueous dispersion containing the particulate polymer is placed in a glass container washed with distilled water, and a solution conductivity meter is set and stirred. Stirring is continued until addition of hydrochloric acid described later is completed. A 0.1 N aqueous sodium hydroxide solution is added to the aqueous dispersion containing the particulate polymer so that the electrical conductivity of the aqueous dispersion containing the particulate polymer is 2.5 to 3.0 mS. Thereafter, after 6 minutes, the electrical conductivity is measured.
  • This value is the electrical conductivity at the start of measurement. Further, 0.5 mL of 0.1 N hydrochloric acid is added to the aqueous dispersion containing the particulate polymer, and the electrical conductivity is measured after 30 seconds. Thereafter, 0.5 mL of 0.1 N hydrochloric acid is added again, and the electrical conductivity is measured after 30 seconds. This operation is repeated at intervals of 30 seconds until the electrical conductivity of the aqueous dispersion containing the particulate polymer becomes equal to or higher than the electrical conductivity at the start of measurement.
  • the obtained electrical conductivity data is plotted with the electrical conductivity (unit “mS”) on the vertical axis (Y coordinate axis) and the cumulative amount of added hydrochloric acid (unit “mmol”) on the horizontal axis (X coordinate axis). Plot to.
  • a hydrochloric acid addition amount-electric conductivity curve having three inflection points is obtained as shown in FIG.
  • the X coordinate of the three inflection points and the X coordinate at the end of the addition of hydrochloric acid are P1, P2, P3, and P4 in order from the smallest value.
  • the approximate straight line L1 For the data in the four sections of the X coordinate from zero to the coordinate P1, from the coordinate P1 to the coordinate P2, from the coordinate P2 to the coordinate P3, and from the coordinate P3 to the coordinate P4, the approximate straight line L1 by the least square method, respectively. , L2, L3, and L4.
  • the X coordinate of the intersection of the approximate line L1 and the approximate line L2 is A1 (mmol)
  • the X coordinate of the intersection of the approximate line L2 and the approximate line L3 is A2 (mmol)
  • the X point of the intersection of the approximate line L3 and the approximate line L4 The coordinates are A3 (mmol).
  • the surface acid amount per 1 g of the particulate polymer is given as a value (mmol / g) in terms of hydrochloric acid from the following formula (a).
  • the amount of acid in the aqueous phase per gram of the particulate polymer (the amount of acid present in the aqueous phase in the aqueous dispersion containing the particulate polymer and the amount of acid per gram of the solid content of the particulate polymer) , “The amount of acid in the aqueous phase of the particulate polymer” is given as a value (mmol / g) in terms of hydrochloric acid from the following formula (b).
  • the total acid amount per 1 g of the particulate polymer dispersed in water is the sum of the formula (a) and the formula (b) as represented by the following formula (c).
  • (A) Surface acid amount per gram of particulate polymer (A2-A1) / Solid content of particulate polymer in aqueous dispersion
  • (b) Acid amount in aqueous phase per gram of particulate polymer ( A3-A2) / Solid content of particulate polymer in aqueous dispersion
  • Total acid group amount per gram of particulate polymer dispersed in water (A3-A1) / Particulate weight in aqueous dispersion Solid content of coalescence
  • the surface acid amount of the particulate polymer can be adjusted by changing the type and amount of the monomer used for producing the polymer used as the particulate polymer. Specifically, for example, the amount of surface acid can be increased by increasing the amount of an acidic group-containing monomer such as a monomer containing a carboxylic acid group.
  • the particulate polymer used in the slurry composition for secondary battery negative electrode of the present invention has a volume average particle diameter D50 of preferably 120 nm or more, more preferably 130 nm or more, and 500 nm or less. Is preferable, and it is more preferable that it is 250 nm or less.
  • the volume average particle diameter D50 of the particulate polymer is 120 nm or more, the carbon-based negative electrode active material having the predetermined properties described above and the particulate polymer can be suitably interacted with each other. Therefore, the productivity of the slurry composition can be further increased by suppressing the thickening due to the aggregation of the carbon-based negative electrode active materials.
  • the particulate polymer can ensure suitable dispersibility in the slurry composition, and the application density of the slurry composition to the current collector is increased to further suppress cell swelling and increase the peel strength of the negative electrode. Can be increased. On the other hand, if the volume average particle diameter D50 of the particulate polymer is 500 nm or less, the contact area between the particulate polymer and the component or current collector bound via the particulate polymer is reduced. And the peel strength of the negative electrode can be increased.
  • the volume average particle diameter D50 of the particulate polymer can be adjusted by changing the production conditions of the polymer used as the particulate polymer. Specifically, for example, when a polymer used as a particulate polymer is prepared by seed polymerization, the volume average particle diameter of the particulate polymer is adjusted by adjusting the number and particle diameter of seed particles used for the polymerization. D50 can be controlled.
  • examples of the particulate polymer include known polymers such as a diene polymer, an acrylic polymer, a fluorine polymer, and a silicon polymer. These polymers may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • a diene polymer particularly a copolymer having an aliphatic conjugated diene monomer unit and an aromatic vinyl monomer unit, or a hydrogenated product thereof as the particulate polymer.
  • An aliphatic conjugated diene monomer unit that is a low-rigidity and flexible repeating unit that can enhance the binding property, and the solubility of the polymer in the electrolytic solution is reduced to form particles in the electrolytic solution. This is because the particulate polymer composed of a copolymer having an aromatic vinyl monomer unit capable of enhancing the stability of the polymer can satisfactorily function as a binder.
  • the monomer is not particularly limited, and 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, Substituted linear conjugated pentadienes, substituted and side chain conjugated hexadienes, and the like can be used.
  • an aliphatic conjugated diene monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the content of the aliphatic conjugated diene monomer unit is preferably 20% by mass or more, more preferably 30% by mass or more, preferably 70% by mass or less, more preferably 60%. It is below mass%. If the content rate of an aliphatic conjugated diene monomer unit is 20 mass% or more, the softness
  • aromatic vinyl monomer that can form an aromatic vinyl monomer unit is not particularly limited, and styrene, ⁇ -methylstyrene, vinyl toluene, divinylbenzene, and the like can be used.
  • an aromatic vinyl monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the content of the aromatic vinyl monomer unit is preferably 30% by mass or more, more preferably 40% by mass or more, preferably 80% by mass or less, more preferably 70% by mass. % Or less. If the content rate of an aromatic vinyl monomer unit is 30 mass% or more, the electrolyte solution resistance of the negative electrode formed using a binder composition can be improved. Moreover, if the content ratio of the aromatic vinyl monomer unit is 80% by mass or less, the binding force of the particulate polymer made of the copolymer is sufficiently high, and the components constituting the negative electrode mixture layer and the negative electrode It is because the peel strength of the negative electrode can be increased by favorably binding the composite material layer and the current collector.
  • the copolymer having an aliphatic conjugated diene monomer unit and an aromatic vinyl monomer unit includes a 1,3-butadiene unit as the aliphatic conjugated diene monomer unit, and the aromatic vinyl monomer unit. It preferably contains a styrene unit (that is, a styrene-butadiene copolymer or a hydrogenated styrene-butadiene copolymer).
  • a copolymer (particulate polymer) having an aliphatic conjugated diene monomer unit and an aromatic vinyl monomer unit is used.
  • the coalesced) preferably contains an acidic group-containing monomer unit.
  • the acidic group-containing monomer unit include an ethylenically unsaturated carboxylic acid monomer unit and an unsaturated monomer unit having a sulfonic acid group.
  • a particulate polymer contains an ethylenically unsaturated carboxylic acid monomer unit.
  • the ethylenically unsaturated carboxylic acid monomer capable of forming an ethylenically unsaturated carboxylic acid monomer unit includes ethylenically unsaturated monocarboxylic acid and derivatives thereof, ethylenically unsaturated dicarboxylic acid and acid anhydrides thereof. Products and derivatives thereof.
  • the ethylenically unsaturated monocarboxylic acid include acrylic acid, methacrylic acid, crotonic acid and the like.
  • Examples of the ethylenically unsaturated monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic. Acid, ⁇ -diaminoacrylic acid and the like.
  • Examples of the ethylenically unsaturated dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
  • Examples of acid anhydrides of ethylenically unsaturated dicarboxylic acids include maleic anhydride, diacrylic anhydride, methyl maleic anhydride, dimethyl maleic anhydride, and the like.
  • examples of ethylenically unsaturated dicarboxylic acid derivatives include methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, diphenyl maleate, nonyl maleate, decyl maleate , Dodecyl maleate, octadecyl maleate, fluoroalkyl maleate and the like.
  • ethylenically unsaturated monocarboxylic acid is preferable, and acrylic acid is particularly preferable.
  • acrylic acid is particularly preferable.
  • One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • Examples of the unsaturated monomer having a sulfonic acid group capable of forming an unsaturated monomer unit having a sulfonic acid group include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) acryl sulfonic acid, and styrene sulfone.
  • Examples include acids, ethyl (meth) acrylic acid-2-sulfonate, 2-acrylamido-2-methylpropanesulfonic acid, 3-allyloxy-2-hydroxypropanesulfonic acid, and the like. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • “(meth) acryl” means acrylic and / or methacrylic.
  • the content ratio of the acidic group-containing monomer unit is preferably 1% by mass or more, more preferably 2% by mass or more, particularly preferably 3% by mass or more, and preferably 15%. It is at most 10% by mass, more preferably at most 13% by mass, particularly preferably at most 10% by mass.
  • the content ratio of the acidic group-containing monomer unit is 1% by mass or more, the surface acid amount of the particulate polymer can be easily increased to the desired range of the present application, and the lithium ion secondary can be suppressed while suppressing the swelling of the negative electrode.
  • the battery characteristics of the battery can be made excellent.
  • preparation of a particulate polymer becomes easy because the content rate of an acidic group containing monomer unit is 15 mass% or less.
  • the copolymer (particulate polymer) having the above-described aliphatic conjugated diene monomer unit and aromatic vinyl monomer unit preferably contains a hydroxyl group-containing (meth) acrylate monomer unit.
  • examples of the hydroxyl group-containing (meth) acrylate monomer that can form a hydroxyl group-containing (meth) acrylate monomer unit include 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, and hydroxypropyl acrylate. , Hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, 3-chloro-2-hydroxypropyl methacrylate, and the like. Of these, 2-hydroxyethyl acrylate is preferred. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • the content rate of a hydroxyl-containing (meth) acrylic acid ester monomer unit becomes like this.
  • it is 0.5 mass% or more, More preferably, it is 0.7 mass% or more, Most preferably, it is 0.00.
  • It is 8 mass% or more, preferably 5 mass% or less, more preferably 4 mass% or less, and particularly preferably 3 mass% or less.
  • Acid group-containing monomers such as ethylenically unsaturated carboxylic acid monomers and other monomers because the content ratio of the hydroxyl group-containing (meth) acrylic acid ester monomer unit is 0.5% by mass or more The copolymerizability with can be enhanced.
  • the content ratio of the hydroxyl group-containing (meth) acrylate monomer unit is 5% by mass or less
  • the hydroxyl group-containing (meth) acrylate monomer is polymerized to form a polymer.
  • the copolymerization of the ethylenically unsaturated carboxylic acid monomer to the particulate polymer is improved, so that the copolymerization of the above-described monomer can proceed well.
  • the copolymer having the aliphatic conjugated diene monomer unit and the aromatic vinyl monomer unit described above includes any other repeating unit other than those described above as long as the effects of the present invention are not significantly impaired. You may go out.
  • the content of other repeating units is not particularly limited, but the upper limit is preferably 6% by mass or less, more preferably 4% by mass or less, and particularly preferably 2% by mass or less in total.
  • the particulate polymer can be prepared by polymerizing a monomer composition containing the above-described monomer in an aqueous solvent.
  • the content ratio of each monomer in the monomer composition can be determined according to the content ratio of the monomer units (repeating units) in the particulate polymer.
  • the aqueous solvent is not particularly limited as long as the particulate polymer can be dispersed in a particulate state, but water is not flammable and a dispersion of particulate polymer particles is easily obtained. Particularly preferable from the viewpoint. It should be noted that water may be used as the main solvent, and a solvent other than water may be mixed and used as long as the dispersed state of the particulate polymer particles can be secured.
  • the polymerization mode is not particularly limited, and any mode such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
  • the polymerization method any method such as ionic polymerization, radical polymerization, and living radical polymerization can be used.
  • the binder composition of the present invention or the slurry composition of the present invention is used as it is.
  • the emulsion polymerization method is particularly preferred.
  • the emulsion polymerization can be performed according to a conventional method. In emulsion polymerization, seed polymerization using seed particles may be employed.
  • emulsifiers used for polymerization can be used, and the amount used is also generally used.
  • batch polymerization and semi-batch polymerization can be used, but it is preferable to use semi-batch polymerization in which a monomer is continuously or intermittently added to the reaction system. .
  • semi-batch polymerization compared with the case of using batch polymerization in which acidic group-containing monomers such as ethylenically unsaturated carboxylic acid monomers are added to the reaction system from the beginning, the particulate polymer The amount of surface acid can be easily controlled.
  • a method for preparing a particulate polymer using semi-batch polymerization for example, when the particulate polymer is a copolymer having the above-described aliphatic conjugated diene monomer unit and aromatic vinyl monomer unit, A primary monomer composition containing an aromatic conjugated diene monomer, an aromatic vinyl monomer and an acidic group-containing monomer is continuously or intermittently added to the reaction system, and the addition rate of the monomer composition Is 70% or more, a method of starting addition of a secondary monomer composition containing a hydroxyl group-containing (meth) acrylic acid monomer to obtain a particulate polymer is preferred. This preferred embodiment will be described in detail below.
  • added continuously or intermittently means that the monomer composition is not added to the reaction system all at once, but added over a certain period of time (for example, 30 minutes or more).
  • addition rate of the monomer composition refers to the ratio (mass%) of the monomer already added to the reaction system in the total monomer composition used for the polymerization.
  • the “primary monomer composition” is a monomer composition added to the reaction system from the initiation stage of polymerization. Of the total monomer composition used for the polymerization, preferably 80 to 99% by mass, more preferably 90 to 99% by mass, is included in the primary monomer composition.
  • the primary monomer composition preferably includes an aromatic vinyl monomer, an aliphatic conjugated diene monomer, an acidic group-containing monomer, and a hydroxyl group-containing (meth) acrylic acid ester monomer. It is preferable not to contain substantially.
  • a mixture obtained by appropriately adding an emulsifier, a chain transfer agent, and water to this primary monomer composition and a separately prepared polymerization initiator are combined.
  • the polymerization reaction is started by adding to one reaction vessel.
  • the reaction conditions at this time are not particularly limited, but the reaction temperature is preferably 60 to 90 ° C.
  • the time from the start of polymerization until the addition rate of the monomer composition reaches 70% is not particularly limited, but is preferably 2 to 6 hours, more preferably 3 to 5 hours.
  • the hydroxyl group content (The addition of the secondary monomer composition containing the (meth) acrylate monomer is started.
  • the time from the start of the addition of the secondary monomer composition to the end of the addition of the secondary monomer composition is not particularly limited, but is preferably 1 to 3 hours.
  • the addition of the primary monomer composition and the secondary monomer composition may be completed separately or may be completed simultaneously.
  • the time from the start of polymerization to the end of the addition of all monomer compositions is not particularly limited, but is preferably 3 to 8 hours, more preferably 4 to 7 hours.
  • the reaction is preferably carried out at 0 to 90 ° C. for 3 to 9 hours.
  • the reaction is stopped by cooling.
  • the obtained aqueous dispersion is, for example, alkali metal (for example, Li, Na, K, Rb, Cs) hydroxide, ammonia, inorganic ammonium compound (for example, NH 4 Cl).
  • a basic aqueous solution containing an organic amine compound for example, ethanolamine, diethylamine, etc.
  • An aqueous dispersion of a polymer may be used.
  • pH adjustment with an alkali metal hydroxide is preferable because it improves the peel strength of the negative electrode.
  • the amount of the particulate polymer in the secondary battery negative electrode slurry composition of the present invention is preferably 0.5 parts by mass or more per 100 parts by mass of the negative electrode active material described above. It is preferable that it is below mass parts.
  • the blending amount of the particulate polymer is 0.5 parts by mass or more per 100 parts by mass of the negative electrode active material, the components constituting the negative electrode mixture layer and the negative electrode mixture layer and the current collector are bound well. The peel strength of the negative electrode can be increased.
  • the compounding quantity of a particulate polymer shall be 5.0 mass parts or less per 100 mass parts of negative electrode active materials, the productivity of a slurry composition and the rate characteristic of a secondary battery are securable.
  • the surface functional group amount (%) of the carbon-based negative electrode active material is S
  • the BET specific surface area (m 2 / g) of the carbon-based negative electrode active material is T
  • the value of the functional group amount / acid amount ratio X calculated in step 1 is preferably 1.51 or more, more preferably 1.80 or more, still more preferably 2.00 or more. It is preferably 50 or less, and more preferably 4.30 or less.
  • the carbon-based negative electrode active material and the particulate polymer interact well, thereby improving the productivity of the slurry composition and suppressing the swelling of the cells of the secondary battery and the inside. It is possible to achieve a well-balanced suppression of resistance rise.
  • the slurry composition for a secondary battery negative electrode of the present invention may contain components such as a conductive material, a water-soluble polymer, a reinforcing material, a leveling agent, and an electrolytic solution additive in addition to the above components.
  • these other components are not particularly limited as long as they do not affect the battery reaction, and known ones such as those described in International Publication Nos. 2012/115096 and 2012-204303 may be used. it can.
  • the conductive material such as acetylene black preferably has a BET specific surface area of 30 m 2 / g or more from the viewpoint of satisfactorily forming a conductive path in the negative electrode mixture layer and enhancing the rate characteristics of the secondary battery.
  • the amount of the conductive material is preferably 0.2 parts by mass or more, more preferably 0.4 parts by mass or more, and preferably 2 parts by mass or less per 100 parts by mass of the negative electrode active material. More preferably, it is 1.5 parts by mass or less.
  • the blending amount of the conductive material is 0.2 parts by mass or more per 100 parts by mass of the negative electrode active material, an increase in the internal resistance of the secondary battery can be suppressed and the rate characteristics can be further enhanced.
  • the coating density of the slurry composition on the current collector is increased, and the swelling of the cell is further suppressed, and the peel strength of the negative electrode is further suppressed. Can be increased.
  • the water-soluble polymer is not particularly limited, and carboxymethyl cellulose or a salt thereof, polyacrylic acid or a salt thereof, and the like can be suitably used.
  • the water-soluble polymer preferably has a 1% by weight aqueous solution viscosity of 150 mPa ⁇ s or more, more preferably 180 mPa ⁇ s or more, preferably 2000 mPa ⁇ s or less, and 1800 mPa ⁇ s or less. More preferably.
  • the viscosity of a 1% by weight aqueous solution of the water-soluble polymer is 150 mPa ⁇ s or more, it can function well as a viscosity modifier, and if it is 2000 mPa ⁇ s or less, the increase in the internal resistance of the secondary battery is suppressed, and the rate The characteristics can be further enhanced.
  • the quantity of a water-soluble polymer can be 0.7 mass part or more and 3.0 mass parts or less per 100 mass parts of negative electrode active materials, for example.
  • the slurry composition for secondary battery negative electrode of the present invention can be prepared by dispersing each of the above components in an aqueous medium as a dispersion medium. Specifically, the above components and the aqueous medium are mixed using a mixer such as a ball mill, a sand mill, a bead mill, a pigment disperser, a grinder, an ultrasonic disperser, a homogenizer, a planetary mixer, or a fill mix. Thus, a slurry composition can be prepared.
  • water is usually used as the aqueous medium, but an aqueous solution of an arbitrary compound or a mixed solution of a small amount of an organic medium and water may be used.
  • the solid content concentration of the slurry composition can be set to a concentration at which each component can be uniformly dispersed, for example, 30% by mass to 90% by mass.
  • the mixing of each of the above components and the aqueous medium can be usually performed at a temperature range of room temperature to 80 ° C. for 10 minutes to several hours.
  • the negative electrode for secondary batteries of this invention can be manufactured using the slurry composition for negative electrodes of secondary batteries of this invention.
  • the negative electrode for a secondary battery of the present invention includes a current collector and a negative electrode mixture layer formed on the current collector, and the negative electrode mixture layer is a slurry composition for a secondary battery negative electrode of the present invention. Obtained from things.
  • each component contained in the negative electrode composite material layer was contained in the slurry composition for secondary battery negative electrode of the present invention, and a suitable abundance ratio of each of these components is the secondary battery. It is the same as the suitable abundance ratio of each component in the slurry composition for negative electrodes.
  • the negative electrode for secondary batteries of this invention can exhibit the rate characteristic excellent in the secondary battery, suppressing the swelling of the cell of a secondary battery.
  • the negative electrode for a secondary battery of the present invention includes, for example, a step of applying the slurry composition for a secondary battery negative electrode described above on a current collector (application step), and a secondary battery negative electrode applied on the current collector.
  • the slurry composition is dried, and a negative electrode mixture layer is formed on the current collector (drying step).
  • a method for applying the slurry composition for secondary battery negative electrode on the current collector is not particularly limited, and a known method can be used. Specifically, as a coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, or the like can be used. At this time, the slurry composition may be applied to only one side of the current collector or may be applied to both sides. The thickness of the slurry film on the current collector after coating and before drying can be appropriately set according to the thickness of the negative electrode mixture layer obtained by drying.
  • an electrically conductive and electrochemically durable material is used as the current collector to which the slurry composition is applied.
  • a current collector for example, a current collector made of iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum, or the like can be used.
  • a copper foil is particularly preferable as the current collector used for the negative electrode.
  • the said material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • a method for drying the slurry composition on the current collector is not particularly limited, and a known method can be used. A drying method is mentioned. By drying the slurry composition on the current collector in this way, a negative electrode mixture layer can be formed on the current collector to obtain a negative electrode for a secondary battery comprising the current collector and the negative electrode mixture layer. it can.
  • the negative electrode mixture layer may be subjected to pressure treatment using a die press or a roll press.
  • the peel strength of the negative electrode can be improved by the pressure treatment.
  • the secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, and uses the negative electrode for a secondary battery of the present invention as the negative electrode. And since the secondary battery of this invention uses the negative electrode for secondary batteries of this invention, the swelling of a cell is suppressed and it is excellent in battery characteristics, such as a rate characteristic.
  • a secondary battery is a lithium ion secondary battery is mentioned as an example and it describes about a positive electrode, electrolyte solution, and a separator, this invention is not limited to these illustrations.
  • a known positive electrode used as a positive electrode for a lithium ion secondary battery can be used.
  • a positive electrode formed by forming a positive electrode mixture layer on a current collector can be used.
  • the current collector one made of a metal material such as aluminum can be used.
  • the positive electrode mixture layer a layer containing a known positive electrode active material, a conductive material, and a binder can be used.
  • an electrolytic solution in which an electrolyte is dissolved in a solvent can be used.
  • the solvent an organic solvent capable of dissolving the electrolyte can be used.
  • the solvent include alkyl carbonate solvents such as ethylene carbonate, propylene carbonate, and ⁇ -butyrolactone, 2,5-dimethyltetrahydrofuran, tetrahydrofuran, diethyl carbonate, ethyl methyl carbonate, dimethyl carbonate, methyl acetate, dimethoxyethane. , Dioxolane, methyl propionate, methyl formate and the like can be used.
  • a lithium salt can be used as the electrolyte.
  • the lithium salt for example, those described in JP 2012-204303 A can be used.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable as the electrolyte because they are easily dissolved in an organic solvent and exhibit a high degree of dissociation.
  • ⁇ Separator> As the separator, for example, those described in JP 2012-204303 A can be used. Among these, the thickness of the separator as a whole can be reduced, thereby increasing the ratio of the electrode active material in the lithium ion secondary battery and increasing the capacity per volume.
  • a microporous film made of a series resin polyethylene, polypropylene, polybutene, polyvinyl chloride is preferred.
  • the secondary battery of the present invention includes, for example, a positive electrode and a negative electrode that are stacked with a separator interposed between them, wound as necessary according to the shape of the battery, folded into a battery container, and electrolyzed in the battery container. It can be manufactured by injecting and sealing the liquid.
  • an overcurrent prevention element such as a fuse and a PTC element, an expanded metal, a lead plate, and the like may be provided as necessary.
  • the shape of the secondary battery may be any of, for example, a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, and a flat shape.
  • ⁇ Surface acid amount> In a glass container having a capacity of 150 mL washed with distilled water, 50 g of the aqueous dispersion containing the prepared particulate polymer (adjusted to a solid content concentration of 2%) was added, and a solution conductivity meter was set and stirred. Stirring was continued until the addition of hydrochloric acid described later was completed. A 0.1 N aqueous sodium hydroxide solution was added to the aqueous dispersion containing the particulate polymer so that the electrical conductivity of the aqueous dispersion containing the particulate polymer was 2.5 to 3.0 mS. Thereafter, after 6 minutes, the electrical conductivity was measured.
  • This value was taken as the electrical conductivity at the start of measurement. Further, 0.5 mL of 0.1 N hydrochloric acid was added to the aqueous dispersion containing the particulate polymer, and the electrical conductivity was measured after 30 seconds. Thereafter, 0.5 mL of 0.1 N hydrochloric acid was added again, and the electrical conductivity was measured after 30 seconds. This operation was repeated at intervals of 30 seconds until the electrical conductivity of the aqueous dispersion containing the particulate polymer was equal to or higher than the electrical conductivity at the start of measurement.
  • the obtained electric conductivity data is plotted on a graph with the electric conductivity (unit “mS”) on the vertical axis (Y coordinate axis) and the cumulative amount of added hydrochloric acid (unit “mmol”) on the horizontal axis (X coordinate axis). Plotted. Thereby, a hydrochloric acid addition amount-electric conductivity curve having three inflection points as shown in FIG. 1 was obtained. The X coordinates of the three inflection points were P1, P2, and P3 in order from the smallest value.
  • Approximate straight lines L1, L2, and L3 were obtained by the least square method for the data in the three sections of the X coordinate from zero to the coordinate P1, from the coordinate P1 to the coordinate P2, and from the coordinate P2 to the coordinate P3, respectively.
  • the X coordinate of the intersection of the approximate straight line L1 and the approximate straight line L2 was A1 (mmol)
  • the X coordinate of the intersection of the approximate straight line L2 and the approximate straight line L3 was A2 (mmol).
  • the surface acid amount per 1 g of the particulate polymer was determined as a value (mmol / g) converted to hydrochloric acid from the following formula.
  • the rate of change in viscosity is an index representing the ease of thickening of the slurry composition by the addition of the particulate polymer. For example, when this value exceeds 110%, the productivity of the slurry composition is poor, and 110% or less. It can be said that the productivity of the slurry composition is good.
  • ⁇ Peel strength> The produced negative electrode was cut into a rectangle having a width of 1.0 cm and a length of 10 cm to obtain a test piece. Then, the negative electrode composite layer side surface of the test piece was fixed upward, and a cellophane tape was attached to the negative electrode composite layer side surface of the test piece. At this time, the cellophane tape defined in JIS Z1522 was used. Thereafter, the stress was measured when the cellophane tape was peeled from the one end of the test piece in the 180 ° direction (the other end side of the test piece) at a speed of 50 mm / min. The measurement was performed 10 times, the average value of the stress was determined, and this was defined as the peel strength (N / m).
  • the lithium ion secondary battery was fully charged at 4.2 V CC-CV charge (Cut-off condition 0.02 C) at 25 ° C., and then ⁇ 10 ° C.
  • CC discharge was performed at 0.2 C to 3.0 V, and a discharge capacity C 1 at that time was obtained. Then, the lithium ion secondary battery is fully charged again with 4.2V CC-CV charge (Cut-off condition 0.02C) at 25 ° C, and then CC is reduced to 3.0V at 1C in an environment of -10 ° C. Discharging was performed to obtain a discharge capacity C2 at that time. The ratio of C2 to C1 (C2 / C1) was calculated. It shows that a lithium ion secondary battery is excellent in rate characteristics, so that this value is large.
  • Example 1 ⁇ Preparation of carbon-based negative electrode active material> Low crystalline carbon film-forming material with respect to 100 parts of spheroidized graphite (volume average particle diameter D50: 15 ⁇ m, tap density: 0.85 g / cm 3 , BET specific surface area: 6.0 m 2 / g) as core particles 30 parts of tar pitch was added and mixed at 200 ° C. for 30 minutes using a Henschel mixer. The obtained mixture was pre-fired at 1000 ° C. in a nitrogen atmosphere, pulverized, and further fired at 2600 ° C. in a nitrogen atmosphere to obtain a composite carbon material.
  • spheroidized graphite volume average particle diameter D50: 15 ⁇ m, tap density: 0.85 g / cm 3 , BET specific surface area: 6.0 m 2 / g
  • the composite carbon material was pulverized (mechanochemical treatment) using a mechanofusion system manufactured by Hosokawa Micron Corporation to obtain a carbon-based negative electrode active material A. Then, the surface functional group amount and the BET specific surface area of the carbon-based negative electrode active material A were measured. The results are shown in Table 1.
  • the unreacted monomer was removed by heating under reduced pressure. Furthermore, it cooled after that and the aqueous dispersion (solid content concentration: 40%) containing the desired particulate polymer was obtained. Using the aqueous dispersion containing the particulate polymer, the surface acid amount and the volume average particle diameter D50 were measured. The results are shown in Table 1.
  • ⁇ Preparation of slurry composition for negative electrode of lithium ion secondary battery> 100 parts of the above-described carbon-based negative electrode active material as a negative electrode active material, and carboxymethyl cellulose (CMC, 1% by mass aqueous solution viscosity: 250 mPa ⁇ s) as a water-soluble polymer in a solid content conversion of 1. 5 parts of acetylene black (BET specific surface area: 68 m 2 / g) as a conductive material was added. These mixtures were adjusted to a solid content concentration of 56% with ion-exchanged water, and then mixed at 25 ° C. for 60 minutes.
  • CMC carboxymethyl cellulose
  • the mixture was further mixed at 25 ° C. for 15 minutes to obtain a mixed solution.
  • the productivity of the slurry composition was evaluated as described above. The results are shown in Table 1.
  • the slurry composition for a negative electrode of a lithium ion secondary battery was applied with a comma coater onto a 15 ⁇ m thick copper foil as a current collector so that the amount applied was 9 to 10 mg / cm 2 .
  • the copper foil coated with the lithium ion secondary battery negative electrode slurry composition was dried at a rate of 0.5 m / min in an oven at a temperature of 60 ° C. over 2 minutes. Thereafter, heat treatment was performed in an oven at a temperature of 120 ° C. for 2 minutes to obtain a negative electrode original fabric.
  • the obtained negative electrode original fabric was pressed with a roll press machine so that the density of the negative electrode mixture layer was 1.6 to 1.7 g / cm 3 , thereby obtaining a negative electrode for a lithium ion secondary battery.
  • the peel strength was evaluated using this negative electrode for a lithium ion secondary battery. The results are shown in Table 1.
  • the obtained slurry composition for a lithium ion secondary battery positive electrode was applied onto an aluminum foil having a thickness of 20 ⁇ m as a current collector with a comma coater.
  • the aluminum foil coated with the lithium ion secondary battery positive electrode slurry composition was dried by transporting it in an oven at a temperature of 60 ° C. for 2 minutes at a speed of 0.5 m / min. Thereafter, heat treatment was performed for 2 minutes in an oven at a temperature of 120 ° C. to obtain a positive electrode raw material.
  • the obtained positive electrode fabric was pressed with a roll press machine so that the density of the positive electrode mixture layer was 3.40 to 3.50 g / cm 3 to obtain a positive electrode for a lithium ion secondary battery.
  • a single-layer polypropylene separator (width 65 mm, length 500 mm, thickness 25 ⁇ m; manufactured by a dry method; porosity 55%) was prepared and cut into 50 mm ⁇ 200 mm. And the produced positive electrode was cut out to 45 mm x 150 mm. Further, the produced negative electrode was cut out to 47 mm ⁇ 155 mm. The cut out positive electrode, separator, and negative electrode were laminated in this order, and then rolled to prepare a wound body, which was then placed in an aluminum packaging exterior.
  • Example 2 A carbon-based negative electrode active material B was obtained in the same manner as in Example 1 except that the amount of tar pitch added was 25 parts per 100 parts of spheroidized graphite. And except having used the obtained carbon-type negative electrode material B instead of the carbon-type negative electrode active material A, it carried out similarly to Example 1, and a particulate polymer, the slurry composition for lithium ion secondary battery negative electrodes, A negative electrode for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were manufactured and subjected to various evaluations. The results are shown in Table 1.
  • Example 3 A carbon-based negative electrode active material C was obtained in the same manner as in Example 1 except that the rotational speed of the above-described apparatus used was increased during the mechanochemical treatment. And except having used the obtained carbon-type negative electrode material C instead of the carbon-type negative electrode active material A, it carried out similarly to Example 1, and a particulate polymer, the slurry composition for lithium ion secondary battery negative electrodes, A negative electrode for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were manufactured and subjected to various evaluations. The results are shown in Table 1.
  • Examples 4, 7, and 13 A carbon-based negative electrode active material, a particulate polymer, and a lithium ion secondary battery negative electrode were prepared in the same manner as in Example 1 except that the monomers used were changed as shown in Table 1 when preparing the particulate polymer. Slurry compositions, negative electrodes for lithium ion secondary batteries, positive electrodes for lithium ion secondary batteries, and lithium ion secondary batteries were manufactured and subjected to various evaluations. The results are shown in Table 1.
  • Example 5 In the preparation of the particulate polymer, the carbon-based negative electrode active material, the particulate polymer, and the like, except that the amount of sodium lauryl sulfate was 0.15 parts and 0.40 parts, respectively.
  • a slurry composition for a negative electrode of a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were manufactured and subjected to various evaluations. The results are shown in Table 1.
  • Example 6 A carbon-based negative electrode active material D was obtained in the same manner as in Example 1 except that the rotational speed of the above-described apparatus used was decreased during the mechanochemical treatment. And except having used the obtained carbon-type negative electrode material D instead of the carbon-type negative electrode active material A, it carried out similarly to Example 1, and a particulate polymer, the slurry composition for lithium ion secondary battery negative electrodes, A negative electrode for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were manufactured and subjected to various evaluations. The results are shown in Table 1.
  • Example 8 When preparing the slurry composition for the negative electrode of the lithium ion secondary battery, CMCs having a 1% by weight aqueous solution viscosity of 1000 mPa ⁇ s and 1900 mPa ⁇ s were used in place of the CMC having a 1% by weight aqueous solution viscosity of 250 mPa ⁇ s, respectively.
  • Example 1 Except for the above, in the same manner as in Example 1, a carbon-based negative electrode active material, a particulate polymer, a slurry composition for a lithium ion secondary battery negative electrode, a negative electrode for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and lithium Ion secondary batteries were manufactured and evaluated in various ways. The results are shown in Table 1.
  • Example 10 When preparing the slurry composition for the negative electrode of the lithium ion secondary battery, the same as in Example 1 except that the amount of the conductive material added was 1.8 parts and 0.3 parts per 100 parts of the negative electrode active material, respectively.
  • Manufacture carbon-based negative electrode active material, particulate polymer, slurry composition for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery for various evaluations I did it. The results are shown in Table 1.
  • the obtained carbon-type negative electrode material E instead of the carbon-type negative electrode active material A, it carried out similarly to Example 1, and a particulate polymer, the slurry composition for lithium ion secondary battery negative electrodes, A negative electrode for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were manufactured and subjected to various evaluations. The results are shown in Table 1.
  • the obtained carbon-type negative electrode material F instead of the carbon-type negative electrode active material A, it carried out similarly to Example 1, and a particulate polymer, the slurry composition for lithium ion secondary battery negative electrodes, A negative electrode for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were manufactured and subjected to various evaluations. The results are shown in Table 1.
  • Example 3 A carbon-based negative electrode active material, a particulate polymer, and a lithium ion secondary battery negative electrode were prepared in the same manner as in Example 1 except that the monomer used was changed as shown in Table 1 when preparing the particulate polymer. Slurry compositions, negative electrodes for lithium ion secondary batteries, positive electrodes for lithium ion secondary batteries, and lithium ion secondary batteries were manufactured and subjected to various evaluations. The results are shown in Table 1.
  • Example 4 A carbon-based negative electrode active material G was obtained in the same manner as in Example 3 except that the rotational speed of the above-described apparatus used was further increased during the mechanochemical treatment. Then, except that the obtained carbon-based negative electrode material G was used in place of the carbon-based negative electrode active material A, an attempt was made to prepare a slurry composition for a lithium ion secondary battery negative electrode in the same manner as in Example 1. The slurry composition could not be prepared due to excessive thickening.
  • the swelling of the secondary battery cell is further improved while further improving the productivity of the slurry composition. It can be seen that it can be suppressed and the peel strength of the negative electrode can be improved.
  • the swelling of the secondary battery cells is further improved while further improving the productivity of the slurry composition. It turns out that it can suppress further and can improve the peel strength of a negative electrode.
  • the rate characteristics of the secondary battery can be further improved by adjusting the viscosity of a 1% by mass aqueous solution of CMC, which is a water-soluble polymer. Then, from Examples 1, 10, and 11 in Table 1, by adjusting the amount of acetylene black as a conductive material, it is possible to further suppress the swelling of the cell while further improving the rate characteristics of the secondary battery. It can be seen that the peel strength can be improved.
  • ADVANTAGE OF THE INVENTION According to this invention, it is excellent in productivity and can provide the slurry composition for secondary battery negative electrodes which can suppress the swelling of the cell of a secondary battery, and the raise of internal resistance. Moreover, according to this invention, the negative electrode for secondary batteries which can suppress the swelling of the cell of a secondary battery and the raise of internal resistance can be provided. And according to this invention, the swelling of a cell is suppressed and the secondary battery which is excellent in a rate characteristic can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、生産性に優れ、また二次電池のセルの膨らみおよび内部抵抗の上昇を抑制しうる二次電池負極用スラリー組成物の提供を目的とする。本発明の二次電池負極用スラリー組成物は、負極活物質、粒子状重合体および水を含む。そして、前記負極活物質は、表面官能基量が0.9%以上1.5%以下であって且つBET比表面積が2.5m2/g以下である炭素系負極活物質を含む、また、前記粒子状重合体は、表面酸量が0.2mmol/g以上2.0mmol/g以下である。

Description

二次電池負極用スラリー組成物、二次電池用負極および二次電池
 本発明は、二次電池負極用スラリー組成物、二次電池用負極および二次電池に関するものである。
 リチウムイオン二次電池などの二次電池は、小型で軽量、且つエネルギー密度が高く、さらに繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そのため、近年では、二次電池の更なる高性能化を目的として、電極(正極、負極)などの電池部材の改良が検討されている。
 ここで、リチウムイオン二次電池などの二次電池に用いられる負極は、通常、集電体と、集電体上に形成された電極合材層(負極合材層)とを備えている。そして、この負極合材層は、例えば、負極活物質と、結着材とを分散媒に分散および/または溶解させてなるスラリー組成物を用いて形成される。
 そこで、近年では、負極合材層の形成に用いられるスラリー組成物を改良することで、二次電池の性能を更に向上させる試みがなされている。
 具体的には、例えば特許文献1では、X線光電子分光法(XPS)によって求められる表面官能基量が1.0%以下である複合炭素材料からなる負極活物質と、所定の重量平均分子量を有するカルボキシメチルセルロースと、スチレンブタジエンゴムとを分散媒中に含むスラリー組成物を用いて、カルボキシメチルセルロースの含有割合が所定の範囲内である負極合材層を作製することで、ハイレート充放電に適した二次電池を提供することが提案されている。
特開2013-45714号公報
 ここで、二次電池内において、負極活物質との接触により電解液が分解されてガスが発生し、セルが膨らんでしまうという問題が従来から知られている。この問題に対し、本発明者は、負極活物質の比表面積を低下させて負極活物質と電解液の接触界面を減らすことで、電解液の分解を抑制することに着想した。その上で本発明者は、上述した従来技術において使用する負極活物質の比表面積の低下を試みたが、過度な増粘によりスラリー組成物の調製が困難となるという問題、また、電荷担体(リチウムイオン二次電池においてはリチウムイオン)の受け入れサイトが減少すること等に起因して二次電池の内部抵抗が上昇してしまい、十分なレート特性が得られないという問題が生じることが明らかになった。
 すなわち、上述した従来の技術には、二次電池負極用スラリー組成物の生産性を確保しつつ、二次電池のセルの膨らみおよび内部抵抗の上昇を抑制するという点において、未だ改善の余地があった。
 そこで、本発明は、生産性に優れ、また二次電池のセルの膨らみおよび内部抵抗の上昇を抑制しうる二次電池負極用スラリー組成物を提供することを目的とする。
 また、本発明は、二次電池のセルの膨らみおよび内部抵抗の上昇を抑制しうる二次電池用負極を提供することを目的とする。
 そして、本発明は、セルの膨らみが抑制され、またレート特性に優れる二次電池を提供することを目的とする。
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、所定の表面官能基量およびBET比表面積を有する炭素系負極活物質を含む負極活物質に対して、結着材として所定の表面酸量を有する粒子状重合体を添加させてスラリー組成物を調製すれば、粒子状重合体添加時の過度な増粘が抑制されること、そして、得られるスラリー組成物を用いて負極を作製すれば、二次電池のセルの膨らみおよび内部抵抗の上昇を抑制して、二次電池にレート特性などの電池特性を良好に発揮させうることを新たに見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の二次電池負極用スラリー組成物は、負極活物質、粒子状重合体および水を含む二次電池負極用スラリー組成物であって、前記負極活物質は、表面官能基量が0.9%以上1.5%以下であって且つBET比表面積が2.5m2/g以下である炭素系負極活物質を含み、前記粒子状重合体は、表面酸量が0.2mmol/g以上2.0mmol/g以下であることを特徴とする。このように所定の表面官能基量およびBET比表面積を有する炭素系負極活物質と、所定の表面酸量を有する粒子状重合体とを用いれば、スラリー組成物を過度に増粘させずに調製することができ、また二次電池のセルの膨らみおよび内部抵抗の上昇を抑制することができる。
 なお、本発明において、「表面官能基量」とは、X線光電子分光法によって決定した炭素系負極活物質表面における炭素原子(C)濃度と酸素原子(O)濃度の比により表される値であり、O/C値とも呼ばれる。そして「表面官能基量」は、本明細書の実施例に記載の方法を用いて導出することができる。
 また、本発明において、「BET比表面積」とは、窒素吸着法によるBET比表面積を指し、ASTM D3037-81に準拠して測定することができる。
 そして、本発明において、「表面酸量」とは、粒子状重合体の表面部分に存在する酸の量であって、粒子状重合体の固形分1g当たりの酸量を指す。そして「表面酸量」は、本明細書に記載の方法を用いて導出することができる。
 ここで、本発明の二次電池負極用スラリー組成物において、前記炭素系負極活物質の表面官能基量(%)をS、前記炭素系負極活物質のBET比表面積(m2/g)をT、および前記粒子状重合体の表面酸量(mmol/g)をUとして下記式(1):
   X=(S/T)/U・・・(1)
で算出される官能基量/酸量比Xの値が、1.51以上4.50以下であることが好ましい。上記官能基量/酸量比Xの値が上述の範囲内であれば、スラリー組成物の生産性を更に高めつつ、二次電池のセルの膨らみおよび内部抵抗の上昇を一層抑制することができるからである。
 そして、本発明の二次電池負極用スラリー組成物において、前記炭素系負極活物質のBET比表面積が、1.0m2/g以上であることが好ましい。炭素系負極活物質のBET比表面積が1.0m2/g以上であれば、二次電池の内部抵抗の上昇を一層抑制することができるからである。
 更に、本発明の二次電池負極用スラリー組成物において、前記粒子状重合体の体積平均粒子径D50が120nm以上500nm以下であることが好ましい。粒子状重合体の体積平均粒子径D50が上述の範囲内であれば、スラリー組成物の生産性を更に高めつつ二次電池のセルの膨らみを一層抑制し、また負極のピール強度を向上させることができるからである。
 なお、本発明において、「体積平均粒子径D50」とは、レーザー回折法で測定された粒度分布(体積基準)において、小径側から計算した累積体積が50%となる粒子径を指す。
 加えて、本発明の二次電池負極用スラリー組成物は、更に、BET比表面積が30m2/g以上である導電材を前記負極活物質100質量部当たり0.2質量部以上2質量部以下含むことが好ましい。スラリー組成物が、BET比表面積が30m2/g以上である導電材を上述の範囲内の配合量で含めば、二次電池のセルの膨らみおよび内部抵抗の上昇を一層抑制することができるからである。
 ここで、本発明の二次電池負極用スラリー組成物は、更に、1質量%水溶液粘度が150mPa・s以上2000mPa・s以下である水溶性重合体を含むことが好ましい。スラリー組成物が、上述した1質量%水溶液粘度を有する水溶性重合体を含めば、二次電池の内部抵抗の上昇を一層抑制することができるからである。
 なお、本発明において、「1質量%水溶液粘度」は、B型粘度計を使用し、JIS K7117-1に準拠して、温度25℃、pH8、ローターM4、回転数60rpmの条件下で測定することができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の二次電池用負極は、上述した何れかの二次電池負極用スラリー組成物を用いて得られる負極合材層を有する。このように、上述した何れかの二次電池負極用スラリー組成物を用いて得られる負極を用いれば、二次電池のセルの膨らみおよび内部抵抗の上昇を十分に抑制することができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の二次電池は、正極、負極、セパレータおよび電解液を備え、前記負極が上述した二次電池用負極である。このように、上述した二次電池用負極を備える二次電池は、セルの膨らみが抑制されており、またレート特性などの電池特性に優れる。
 本発明によれば、生産性に優れ、また二次電池のセルの膨らみおよび内部抵抗の上昇を抑制しうる二次電池負極用スラリー組成物を提供することができる。
 本発明によれば、二次電池のセルの膨らみおよび内部抵抗の上昇を抑制しうる二次電池用負極を提供することができる。
 本発明によれば、セルの膨らみが抑制され、またレート特性に優れる二次電池を提供することができる。
粒子状重合体の表面酸量を算出する際に作成する塩酸添加量-電気伝導度曲線を示すグラフである。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の二次電池負極用スラリー組成物は、二次電池の負極の形成に用いられる。そして、本発明の二次電池用負極は、本発明の二次電池負極用スラリー組成物から形成される負極合材層を備えることを特徴とする。更に、本発明の二次電池は、本発明の二次電池用負極を用いたことを特徴とする
(二次電池負極用スラリー組成物)
 本発明の二次電池負極用スラリー組成物は、負極活物質および結着材が、分散媒としての水系媒体に分散した組成物である。そして、本発明の二次電池負極用スラリー組成物は、負極活物質として、表面官能基量が0.9%以上1.5%以下であり且つBET比表面積が2.5m2/g以下である炭素系負極活物質を含み、結着材として、表面酸量が0.2mmol/g以上2.0mmol/g以下である粒子状重合体を含むことを特徴とする。
 そして、本発明の二次電池負極用スラリー組成物は、上述した炭素系負極活物質と上述した粒子状重合体を併用しているため、スラリー組成物調製の際の過度な増粘を抑制することができる。そして当該スラリー組成物を用いれば、二次電池のセルの膨らみおよび内部抵抗の上昇を抑制しうる負極を作製することができる。
<負極活物質>
 負極活物質は、二次電池の負極において電子の受け渡しをする物質である。例えばリチウムイオン二次電池の負極活物質としては、通常は、リチウムを吸蔵および放出し得る物質を用いる。リチウムを吸蔵および放出し得る物質としては、例えば、炭素系負極活物質、非炭素系負極活物質、および、これらを組み合わせた活物質などが挙げられる。
 そして、本発明の二次電池負極用スラリー組成物では、負極活物質として、少なくとも、表面官能基量が0.9%以上1.5%以下であって且つBET比表面積が2.5m2/g以下である炭素系負極活物質を使用することを必要とする。
[炭素系負極活物質]
 ここで、炭素系負極活物質とは、リチウムを挿入(「ドープ」ともいう。)可能な、炭素を主骨格とする活物質をいう。なお、以下に、上述した所定の性状を有する炭素系負極活物質について詳述するが、本発明の二次電池負極用スラリー組成物は、上述した所定の性状を有さない炭素系負極活物質を含んでいてもよい。
[[表面官能基量]]
 炭素系負極活物質は、表面官能基量(O/C値)が0.9%以上1.5%以下であることが必要であり、1.0%以上であることが好ましく、1.0%超であることがより好ましく、1.1%以上であることが更に好ましく、1.4%以下であることが好ましく、1.3%以下であることがより好ましい。炭素系負極活物質の表面官能基量が0.9%未満であると、二次電池の内部抵抗が上昇するためレート特性を確保することができない。一方、炭素系負極活物質の表面官能基量が1.5%超であると、炭素系負極活物質同士の相互作用が過剰に強まることで炭素系負極活物質の良好な分散が阻害され、スラリー組成物の生産性が低下する。
 なお、炭素系負極活物質の表面官能基量は、後述するメカノケミカル処理の強度を変更することにより調節することができる。具体的には、メカノケミカル処理に用いる装置の解砕時における回転速度を上昇させることで、表面官能基量を高めることができる。
[[BET比表面積]]
 また、炭素系負極活物質は、BET比表面積が2.5m2/g以下であることが必要であり、2.3m2/g以下であることが好ましく、2.2m2/g以下であることがより好ましく、2.0m2/g以下であることが更に好ましく、また1.0m2/g以上であることが好ましく、1.1m2/g以上であることがより好ましく、1.2m2/g以上であることが更に好ましい。炭素系負極活物質のBET比表面積2.5m2/g超であると、負極活物質と電解液の接触界面が増大し、電解液の分解によるセルの膨らみを十分に抑制することができない。一方、炭素系負極活物質のBET比表面積が1.0m2/g以上であれば、二次電池の内部抵抗の上昇を抑制してレート特性を一層高めることができる。
 なお、炭素系負極活物質のBET比表面積の調節方法は特に限定されず、公知の方法で調節することができる。また例えば、上述した表面官能基量同様、メカノケミカル処理に用いる装置の解砕時における回転速度を上昇させることで、BET比表面積を高めることもできる。
[[炭素系負極活物質の調製方法]]
 そして、上述した所定の性状を有する炭素系負極活物質の調製方法は特に限定されないが、例えば、公知の炭素系負極活物質にメカノケミカル処理を施すことで得ることができる。
 公知の炭素系負極活物質としては、例えば炭素質材料と黒鉛質材料とが挙げられる。
 炭素質材料は、炭素前駆体を2000℃以下で熱処理して炭素化させることによって得られる、黒鉛化度の低い(即ち、結晶性の低い)材料である。なお、炭素化させる際の熱処理温度の下限は特に限定されないが、例えば500℃以上とすることができる。
 そして、炭素質材料としては、例えば、熱処理温度によって炭素の構造を容易に変える易黒鉛性炭素や、ガラス状炭素に代表される非晶質構造に近い構造を持つ難黒鉛性炭素などが挙げられる。
 ここで、易黒鉛性炭素としては、例えば、石油または石炭から得られるタールピッチを原料とした炭素材料が挙げられる。具体例を挙げると、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維などが挙げられる。
 また、難黒鉛性炭素としては、例えば、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)、ハードカーボンなどが挙げられる。
 黒鉛質材料は、易黒鉛性炭素を2000℃以上で熱処理することによって得られる、黒鉛に近い高い結晶性を有する材料である。なお、熱処理温度の上限は、特に限定されないが、例えば5000℃以下とすることができる。
 そして、黒鉛質材料としては、例えば、天然黒鉛、人造黒鉛などが挙げられる。
 ここで、人造黒鉛としては、例えば、易黒鉛性炭素を含んだ炭素を主に2800℃以上で熱処理した人造黒鉛、MCMBを2000℃以上で熱処理した黒鉛化MCMB、メソフェーズピッチ系炭素繊維を2000℃以上で熱処理した黒鉛化メソフェーズピッチ系炭素繊維などが挙げられる。
 また、公知の炭素系負極活物質としては、特開2013-45714号公報に記載された、高い結晶性炭素からなる芯粒子の表面に低結晶性炭素の被膜を形成してなる複合炭素材料も挙げられる。
 ここで、メカノケミカル処理とは、摩擦、圧縮等の機械エネルギーにより固体物質の粉砕処理を行うことで、この処理の過程で局部的に生じる高いエネルギーを利用して、処理対象の固体物質に結晶化反応、固溶反応、相転位反応等の化学反応を生じさせる処理をいう。
 上述の公知の炭素系負極活物質をメカノケミカル処理することで、当該炭素系負極活物質の表面に、多くの官能基(典型的には、酸素原子を有する官能基)を生じさせることができる。そして、メカノケミカル処理の条件は、所望の表面官能基量やBET比表面積に応じて適宜設定することができる。
[非炭素系負極活物質]
 非炭素系負極活物質は、炭素系負極活物質を除く活物質であり、非炭素系負極活物質としては、例えば金属系負極活物質を挙げることができる。
 金属系負極活物質とは、金属を含む活物質であり、通常は、リチウムの挿入が可能な元素を構造に含み、リチウムが挿入された場合の単位質量当たりの理論電気容量が500mAh/g以上である活物質をいう。金属系負極活物質としては、例えば、リチウム金属、リチウム合金を形成し得る単体金属(例えば、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn、Tiなど)およびその合金、並びに、それらの酸化物、硫化物、窒化物、ケイ化物、炭化物、燐化物などが用いられる。
 そして、金属系負極活物質の中でも、ケイ素を含む活物質(シリコン系負極活物質)が好ましい。シリコン系負極活物質を用いることにより、リチウムイオン二次電池を高容量化することができるからである。
 シリコン系負極活物質としては、例えば、ケイ素(Si)、ケイ素を含む合金、SiO、SiOx、Si含有材料を導電性カーボンで被覆または複合化してなるSi含有材料と導電性カーボンとの複合化物などが挙げられる。なお、これらのシリコン系負極活物質は、1種類を単独で用いてもよいし、2種類上を組み合わせて用いてもよい。
 ケイ素を含む合金としては、例えば、ケイ素と、チタン、鉄、コバルト、ニッケルおよび銅からなる群より選択される少なくとも一種の元素とを含む合金組成物が挙げられる。
 また、ケイ素を含む合金としては、例えば、ケイ素と、アルミニウムと、鉄などの遷移金属とを含み、さらにスズおよびイットリウム等の希土類元素を含む合金組成物も挙げられる。
 SiOxは、SiOおよびSiO2の少なくとも一方と、Siとを含有する化合物であり、xは、通常、0.01以上2未満である。そして、SiOxは、例えば、一酸化ケイ素(SiO)の不均化反応を利用して形成することができる。具体的には、SiOxは、SiOを、任意にポリビニルアルコールなどのポリマーの存在下で熱処理し、ケイ素と二酸化ケイ素とを生成させることにより、調製することができる。なお、熱処理は、SiOと、任意にポリマーとを粉砕混合した後、有機物ガスおよび/または蒸気を含む雰囲気下、900℃以上、好ましくは1000℃以上の温度で行うことができる。
 Si含有材料と導電性カーボンとの複合化物としては、例えば、SiOと、ポリビニルアルコールなどのポリマーと、任意に炭素材料との粉砕混合物を、例えば有機物ガスおよび/または蒸気を含む雰囲気下で熱処理してなる化合物を挙げることができる。また、複合化物は、SiOの粒子に対して、有機物ガスなどを用いた化学的蒸着法によって表面をコーティングする方法、SiOの粒子と黒鉛または人造黒鉛をメカノケミカル処理によって複合粒子化(造粒化)する方法などの公知の方法でも得ることができる。
 なお、本発明のスラリー組成物に用いる負極活物質は、非炭素系負極活物質の含有割合が30質量%未満であることが好ましく、15質量%未満であることがより好ましく、10質量%未満であることが更に好ましく、5質量%未満であることが特に好ましく、0質量%であることが最も好ましい。負極活物質中の非炭素系負極活物質の含有割合が30質量%未満であれば、所定の性状を有する炭素系負極活物質と、後述する粒子状重合体との併用による効果が十分に発揮され、スラリー組成物の生産性向上、並びに二次電池のセルの膨らみ抑制および内部抵抗の上昇抑制を、バランス良く達成することが可能となる。
<粒子状重合体>
 粒子状重合体は、本発明の二次電池負極用スラリー組成物を用いて形成した負極合材層を備える負極において、負極合材層中の各成分同士または各成分と集電体とを結着させる。なお、粒子状重合体としては、水などの水系媒体に分散可能な重合体を用いることができる。
[表面酸量]
 ここで、粒子状重合体は、表面酸量が、0.2mmol/g以上2.0mmol/g以下であることが必要であり、0.22mmol/g以上であることが好ましく、1.5mmol/g以下であることが好ましく、1.3mmol/g以下であることがより好ましく、1.0mmol/g以下であることが更に好ましく、0.8mmol/g以下であることが特に好ましい。粒子状重合体の表面酸量が0.2mmol/g未満であると、上述した所定の性状を有する炭素系負極活物質と粒子状重合体を十分に相互作用させることができない。そのため、当該炭素系負極活物質同士の凝集による増粘が抑制できず、スラリー組成物の生産性を確保することができない。さらには、粒子状重合体の水中での安定性が低下して水中において粒子状重合体が好適な分散性を確保することができないため、スラリー組成物の集電体への塗布密度が低下し、セルの膨れが悪化する。一方、粒子状重合体の表面酸量が2.0mmol/g超であると、負極のピール強度を十分に確保することができず、二次電池の電池特性(レート特性など)が低下する。
 なお、本発明において「表面酸量」は、以下の方法で算出することができる。
 まず、粒子状重合体を含む水分散液を調製する。蒸留水で洗浄したガラス容器に、前記粒子状重合体を含む水分散液を入れ、溶液電導率計をセットして攪拌する。なお、攪拌は、後述する塩酸の添加が終了するまで継続する。
 粒子状重合体を含む水分散液の電気伝導度が2.5~3.0mSになるように、0.1規定の水酸化ナトリウム水溶液を、粒子状重合体を含む水分散液に添加する。その後、6分経過してから、電気伝導度を測定する。この値を測定開始時の電気伝導度とする。
 さらに、この粒子状重合体を含む水分散液に0.1規定の塩酸を0.5mL添加して、30秒後に電気伝導度を測定する。その後、再び0.1規定の塩酸を0.5mL添加して、30秒後に電気伝導度を測定する。この操作を、30秒間隔で、粒子状重合体を含む水分散液の電気伝導度が測定開始時の電気伝導度以上になるまで繰り返し行う。
 得られた電気伝導度のデータを、電気伝導度(単位「mS」)を縦軸(Y座標軸)、添加した塩酸の累計量(単位「mmol」)を横軸(X座標軸)としたグラフ上にプロットする。これにより、図1のように3つの変曲点を有する塩酸添加量-電気伝導度曲線が得られる。3つの変曲点のX座標および塩酸添加終了時のX座標を、値が小さい方から順にそれぞれP1、P2、P3およびP4とする。X座標が零から座標P1まで、座標P1から座標P2まで、座標P2から座標P3まで、および、座標P3から座標P4まで、の4つの区分内のデータについて、それぞれ、最小二乗法により近似直線L1、L2、L3およびL4を求める。近似直線L1と近似直線L2との交点のX座標をA1(mmol)、近似直線L2と近似直線L3との交点のX座標をA2(mmol)、近似直線L3と近似直線L4との交点のX座標をA3(mmol)とする。
 粒子状重合体1g当たりの表面酸量は、下記の式(a)から、塩酸換算した値(mmol/g)として与えられる。なお、粒子状重合体1g当たりの水相中の酸量(粒子状重合体を含む水分散液における水相中に存在する酸の量であって粒子状重合体の固形分1g当たりの酸量、「粒子状重合体の水相中の酸量」ともいう)は、下記の式(b)から、塩酸換算した値(mmol/g)として与えられる。また、水中に分散した粒子状重合体1g当たりの総酸量は、下記式(c)に表すように、式(a)及び式(b)の合計となる。
 (a) 粒子状重合体1g当たりの表面酸量=(A2-A1)/水分散液中の粒子状重合体の固形分量
 (b) 粒子状重合体1g当たりの水相中の酸量=(A3-A2)/水分散液中の粒子状重合体の固形分量
 (c) 水中に分散した粒子状重合体1g当たりの総酸基量=(A3-A1)/水分散液中の粒子状重合体の固形分量
 そして、粒子状重合体の表面酸量は、粒子状重合体として用いる重合体の製造に使用する単量体の種類および量を変更することにより調整することができる。具体的には、例えば、カルボン酸基を含有する単量体などの酸性基含有単量体の使用量を増加することにより表面酸量を増大させることができる。
[体積平均粒子径D50]
 そして、本発明の二次電池負極用スラリー組成物に用いる粒子状重合体は、体積平均粒子径D50が、120nm以上であることが好ましく、130nm以上であることがより好ましく、500nm以下であることが好ましく、250nm以下であることがより好ましい。粒子状重合体の体積平均粒子径D50が120nm以上であれば、上述した所定の性状を有する炭素系負極活物質と粒子状重合体の好適に相互作用させることができる。そのため、炭素系負極活物質同士の凝集による増粘を抑制することでスラリー組成物の生産性を更に高めることができる。また、スラリー組成物中において粒子状重合体が好適な分散性を確保することができ、スラリー組成物の集電体への塗布密度を高めてセルの膨れを一層抑制すると共に負極のピール強度を高めることができる。一方、粒子状重合体の体積平均粒子径D50が500nm以下であれば、粒子状重合体と、当該粒子状重合体を介して結着される成分や集電体との接触面積が低下するのを抑制して、負極のピール強度を高めることができる。
 そして、粒子状重合体の体積平均粒子径D50は、粒子状重合体として用いる重合体の製造条件を変更することにより調整することができる。具体的には、例えば、粒子状重合体として用いる重合体をシード重合により調製する場合には、重合に使用するシード粒子の数や粒子径を調整することにより粒子状重合体の体積平均粒子径D50を制御することができる。
[粒子状重合体の種類]
 ここで、粒子状重合体としては、既知の重合体、例えば、ジエン重合体、アクリル重合体、フッ素重合体、シリコン重合体などが挙げられる。これらの重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 具体的には、粒子状重合体としては、ジエン重合体、特に脂肪族共役ジエン単量体単位および芳香族ビニル単量体単位を有する共重合体、或いは、その水素添加物を用いることが好ましい。剛性が低くて柔軟な繰り返し単位であり、結着性を高めることが可能な脂肪族共役ジエン単量体単位と、重合体の電解液への溶解性を低下させて電解液中での粒子状重合体の安定性を高めることが可能な芳香族ビニル単量体単位とを有する共重合体よりなる粒子状重合体は、結着材としての機能を良好に発揮し得るからである。
[[脂肪族共役ジエン単量体単位および芳香族ビニル単量体単位を有する共重合体の調製に用いる単量体]]
 ここで、脂肪族共役ジエン単量体単位および芳香族ビニル単量体単位を有する共重合体を粒子状重合体として用いる場合、脂肪族共役ジエン単量体単位を形成し得る脂肪族共役ジエン単量体としては、特に限定されることなく、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン、置換直鎖共役ペンタジエン類、置換および側鎖共役ヘキサジエン類などを用いることができる。なお、脂肪族共役ジエン単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 そして、粒子状重合体中において、脂肪族共役ジエン単量体単位の含有割合は、好ましくは20質量%以上、より好ましくは30質量%以上であり、好ましくは70質量%以下、より好ましくは60質量%以下である。脂肪族共役ジエン単量体単位の含有割合が20質量%以上であれば、スラリー組成物を用いて形成される負極の柔軟性を高めることができる。また、脂肪族共役ジエン単量体単位の含有割合が70質量%以下であれば、粒子状重合体の結着力が十分に高くなり、負極合材層を構成する成分同士および負極合材層と集電体とを良好に結着させて負極のピール強度を高めることができる。
 また、芳香族ビニル単量体単位を形成し得る芳香族ビニル単量体としては、特に限定されることなく、スチレン、α-メチルスチレン、ビニルトルエン、ジビニルベンゼンなどを用いることができる。なお、芳香族ビニル単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 そして、粒子状重合体中において、芳香族ビニル単量体単位の含有割合は、好ましくは30質量%以上、より好ましくは40質量%以上であり、好ましくは80質量%以下、より好ましくは70質量%以下である。芳香族ビニル単量体単位の含有割合が30質量%以上であれば、バインダー組成物を用いて形成される負極の耐電解液性を向上させることができる。また、芳香族ビニル単量体単位の含有割合が80質量%以下であれば、共重合体よりなる粒子状重合体の結着力が十分に高くなり、負極合材層を構成する成分同士および負極合材層と集電体とを良好に結着させて負極のピール強度を高めることができるからである。
 なお、脂肪族共役ジエン単量体単位および芳香族ビニル単量体単位を有する共重合体は、脂肪族共役ジエン単量体単位として1,3-ブタジエン単位を含み、芳香族ビニル単量体単位としてスチレン単位を含む(即ち、スチレン-ブタジエン共重合体または水素化スチレン-ブタジエン共重合体である)ことが好ましい。
 また、本発明で用いる粒子状重合体が上述した表面酸量を有する必要がある観点からは、脂肪族共役ジエン単量体単位および芳香族ビニル単量体単位を有する共重合体(粒子状重合体)は、酸性基含有単量体単位を含むことが好ましい。酸性基含有単量体単位としては、エチレン性不飽和カルボン酸単量体単位、スルホン酸基を有する不飽和単量体単位が挙げられる。中でも、粒子状重合体は、エチレン性不飽和カルボン酸単量体単位を含むことが好ましい。
 ここで、エチレン性不飽和カルボン酸単量体単位を形成し得るエチレン性不飽和カルボン酸単量体としては、エチレン性不飽和モノカルボン酸およびその誘導体、エチレン性不飽和ジカルボン酸およびその酸無水物並びにそれらの誘導体などが挙げられる。
 エチレン性不飽和モノカルボン酸の例としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。そして、エチレン性不飽和モノカルボン酸の誘導体の例としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸、β-ジアミノアクリル酸などが挙げられる。
 エチレン性不飽和ジカルボン酸の例としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。そして、エチレン性不飽和ジカルボン酸の酸無水物の例としては、無水マレイン酸、ジアクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。さらに、エチレン性不飽和ジカルボン酸の誘導体の例としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸、マレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキルなどが挙げられる。中でも、エチレン性不飽和モノカルボン酸が好ましく、アクリル酸が特に好ましい。
 これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 また、スルホン酸基を有する不飽和単量体単位を形成し得るスルホン酸基を有する不飽和単量体としては、例えば、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アクリルスルホン酸、スチレンスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸などが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。本明細書において「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味する。
 そして、粒子状重合体中において、酸性基含有単量体単位の含有割合は、好ましくは1質量%以上、より好ましくは2質量%以上、特に好ましくは3質量%以上であり、また好ましくは15質量%以下、より好ましくは13質量%以下、特に好ましくは10質量%以下である。酸性基含有単量体単位の含有割合が1質量%以上であることで、粒子状重合体の表面酸量を本願の所望の範囲まで上昇させ易く、負極の膨れを抑制しつつリチウムイオン二次電池の電池特性を優れたものとすることができる。一方、酸性基含有単量体単位の含有割合が15質量%以下であることで、粒子状重合体の調製が容易となる。
 また、上述した脂肪族共役ジエン単量体単位および芳香族ビニル単量体単位を有する共重合体(粒子状重合体)は、水酸基含有(メタ)アクリル酸エステル単量体単位を含むことが好ましい。
 ここで、水酸基含有(メタ)アクリル酸エステル単量体単位を形成し得る水酸基含有(メタ)アクリル酸エステル単量体としては、例えば、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、ヒドロキシプロピルアクリレート、ヒドロキシプロピルメタクリレート、ヒドロキシブチルアクリレート、ヒドロキシブチルメタクリレート、3-クロロ-2-ヒドロキシプロピルメタクリレートなどが挙げられる。中でも、2-ヒドロキシエチルアクリレートが好ましい。
 これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 そして、粒子状重合体中において、水酸基含有(メタ)アクリル酸エステル単量体単位の含有割合は、好ましくは0.5質量%以上、より好ましくは0.7質量%以上、特に好ましくは0.8質量%以上であり、好ましくは5質量%以下、より好ましくは4質量%以下、特に好ましくは3質量%以下である。水酸基含有(メタ)アクリル酸エステル単量体単位の含有割合が0.5質量%以上であることで、エチレン性不飽和カルボン酸単量体などの酸性基含有単量体と他の単量体との共重合性を高めることができる。一方、水酸基含有(メタ)アクリル酸エステル単量体単位の含有割合が5質量%以下であることで、水酸基含有(メタ)アクリル酸エステル単量体同士が重合して重合体を形成することを抑制し、粒子状重合体へのエチレン性不飽和カルボン酸単量体の共重合性が向上するため、上述した単量体の共重合を良好に進行させることができる。
 また、上述した脂肪族共役ジエン単量体単位および芳香族ビニル単量体単位を有する共重合体は、本発明の効果を著しく損なわない限り、上述した以外にも任意のその他の繰り返し単位を含んでいてもよい。
 その他の繰り返し単位の含有割合は、特に限定されないが、上限は合計量で6質量%以下が好ましく、4質量%以下がより好ましく、2質量%以下が特に好ましい。
 [粒子状重合体の調製方法]
 粒子状重合体は、上述した単量体を含む単量体組成物を水系溶媒中で重合することにより調製することができる。
 ここで、本発明において単量体組成物中の各単量体の含有割合は、粒子状重合体における単量体単位(繰り返し単位)の含有割合に準じて定めることができる。
 水系溶媒は粒子状重合体が粒子状態で分散可能なものであれば格別限定されることはないが、水は可燃性がなく、粒子状重合体の粒子の分散体が容易に得られやすいという観点から特に好ましい。なお、主溶媒として水を使用して、粒子状重合体の粒子の分散状態が確保可能な範囲において水以外の溶媒を混合して用いてもよい。
 重合様式は、特に限定されず、例えば溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの様式も用いることができる。重合方法としては、例えばイオン重合、ラジカル重合、リビングラジカル重合などいずれの方法も用いることができる。なお、高分子量体が得やすいこと、並びに、重合物がそのまま水に分散した状態で得られるので再分散化の処理が不要であり、そのまま本発明のバインダー組成物や本発明のスラリー組成物の製造に供することができることなど、製造効率の観点からは、乳化重合法が特に好ましい。なお、乳化重合は、常法に従い行うことができる。また、乳化重合においては、シード粒子を用いるシード重合を採用してもよい。
 そして、重合に使用される乳化剤、分散剤、重合開始剤、重合助剤などは、一般に用いられるものを使用することができ、その使用量も、一般に使用される量とする。
 また、本発明で使用する粒子状重合体を製造すべく、バッチ重合、セミバッチ重合を用いることができるが、反応系に単量体を連続的又は断続的に添加するセミバッチ重合を用いることが好ましい。セミバッチ重合を用いることで、エチレン性不飽和カルボン酸単量体などの酸性基含有単量体を反応系に最初から一括で添加するバッチ重合を用いた場合に比して、粒子状重合体の表面酸量を容易に制御することができる。
 セミバッチ重合を用いた粒子状重合体の調製方法としては、例えば、粒子状重合体が上述した脂肪族共役ジエン単量体単位および芳香族ビニル単量体単位を有する共重合体である場合、脂肪族共役ジエン単量体、芳香族ビニル単量体および酸性基含有単量体を含む一次単量体組成物を、反応系に連続的又は断続的に添加し、単量体組成物の添加率が70%以上となってから、水酸基含有(メタ)アクリル酸単量体を含む二次単量体組成物の添加を開始し、粒子状重合体を得る方法が好ましい。この好適な態様について、以下に詳述する。
 なお、「連続的又は断続的に添加」とは、単量体組成物を反応系に一度に添加するのではなく、ある程度の時間(例えば30分以上)をかけて添加することをいう。
 また、「単量体組成物の添加率」とは、重合に用いる全単量体組成物に占める、反応系内に添加済みの単量体の割合(質量%)をいう。
 「一次単量体組成物」は、重合の開始段階から反応系へ添加する単量体組成物である。重合に用いる全単量体組成物のうち、好ましくは80~99質量%、より好ましくは90~99質量%を、一次単量体組成物に含める。そして、一次単量体組成物は、芳香族ビニル単量体、脂肪族共役ジエン単量体、酸性基含有単量体を含むことが好ましく、また、水酸基含有(メタ)アクリル酸エステル単量体を実質的に含有しないことが好ましい。
 セミバッチ重合を用いた粒子状重合体の調製においては、例えば、この一次単量体組成物に、適宜、乳化剤、連鎖移動剤、水を加えてなる混合物と、別途用意した重合開始剤とを一つの反応容器に添加することで重合反応を開始する。この際の反応条件は特に限定されないが、反応温度は、好ましくは60~90℃である。また、重合開始から、単量体組成物の添加率が70%に達するまでの時間は、特に限定されないが好ましくは2~6時間、より好ましくは3~5時間である。
 そして単量体組成物の添加率が70%以上となってから(即ち、重合に用いる全単量体組成物のうち70質量%を反応系に添加し終えた時以降から)、水酸基含有(メタ)アクリル酸エステル単量体を含む二次単量体組成物の添加を開始する。二次単量体組成物の添加開始から、二次単量体組成物の添加が終了するまでの時間は、特に限定されないが好ましくは1~3時間である。このように、水酸基含有(メタ)アクリル酸エステル単量体を後で添加することで、酸性基含有単量体と他の単量体との共重合を良好に進行させ、表面酸量の大きさを容易に制御することができる。
 また、一次単量体組成物と二次単量体組成物の添加は別々に終了してもよいし、同時に終了してもよい。重合開始から全単量体組成物の添加が終了するまでの時間は、特に限定されないが好ましくは3~8時間、より好ましくは4~7時間である。そして全単量体組成物の添加が終了した後、0~90℃で3~9時間反応させることが好ましい。
 その後、重合転化率が十分(例えば95%以上)となった時点で冷却し反応を停止させる。
 ここで、上述した重合の後、得られた水分散液は、例えばアルカリ金属(例えば、Li、Na、K、Rb、Cs)の水酸化物、アンモニア、無機アンモニウム化合物(例えばNH4Clなど)、有機アミン化合物(例えばエタノールアミン、ジエチルアミンなど)などを含む塩基性水溶液を用いて、pHが通常5以上であり、通常10以下、好ましくは9以下の範囲になるように調整して、粒子状重合体の水分散液としてもよい。なかでも、アルカリ金属水酸化物によるpH調整は、負極のピール強度を向上させるので、好ましい。
 また、pH調整後に、加熱減圧蒸留によって、未反応の単量体を除去することが好ましい。
[粒子状重合体の配合量]
 そして、本発明の二次電池負極用スラリー組成物中の粒子状重合体の量は、上述した負極活物質100質量部当たり、0.5質量部以上であることが好ましく、また、5.0質量部以下であることが好ましい。粒子状重合体の配合量を負極活物質100質量部当たり0.5質量部以上とすれば、負極合材層を構成する成分同士および負極合材層と集電体とを良好に結着させることができ、負極のピール強度を高めることができる。また、粒子状重合体の配合量を負極活物質100質量部当たり5.0質量部以下とすれば、スラリー組成物の生産性および二次電池のレート特性を確保することができる。
[官能基量/酸量比X]
 ここで、本発明の二次電池負極用スラリー組成物において、炭素系負極活物質の表面官能基量(%)をS、前記炭素系負極活物質のBET比表面積(m2/g)をT、および粒子状重合体の表面酸量(mmol/g)をUとして下記式(1):
   X=(S/T)/U・・・(1)
で算出される官能基量/酸量比Xの値が、1.51以上であることが好ましく、1.80以上であることがより好ましく、2.00以上であることが更に好ましく、4.50以下であることが好ましく、4.30以下であることがより好ましい。Xの値が上述の範囲内であれば、炭素系負極活物質と粒子状重合体が良好に相互作用することで、スラリー組成物の生産性向上、並びに二次電池のセルの膨らみ抑制および内部抵抗の上昇抑制を、バランス良く達成することが可能となる。
<その他の成分>
 本発明の二次電池負極用スラリー組成物は、上記成分の他に、導電材、水溶性重合体、補強材、レベリング剤、電解液添加剤などの成分を含有していてもよい。これらその他の成分は、電池反応に影響を及ぼさないものであれば特に限られず、公知のもの、例えば国際公開第2012/115096号、特開2012-204303号公報に記載のものを使用することができる。
 ここで、アセチレンブラックなどの導電材は、負極合材層中において導電パスを良好に形成し、二次電池のレート特性を高める観点から、BET比表面積が30m2/g以上であることが好ましい。そして、導電材の量は、負極活物質100質量部当たり、0.2質量部以上であることが好ましく、0.4質量部以上であることがより好ましく、2質量部以下であることが好ましく、1.5質量部以下であることがより好ましい。導電材の配合量を負極活物質100質量部当たり0.2質量部以上とすれば、二次電池の内部抵抗の上昇を抑制し、レート特性を一層高めることができる。また、導電材の配合量を負極活物質100質量部当たり2質量部以下とすれば、スラリー組成物の集電体への塗布密度が高めてセルの膨れを一層抑制しつつ、負極のピール強度を高めることができる。
 また水溶性重合体としては、特に限定されることなく、カルボキシメチルセルロースまたはその塩、ポリアクリル酸またはその塩などを好適に用いることができる。そして、水溶性重合体は、1質量%水溶液粘度が150mPa・s以上であることが好ましく、180mPa・s以上であることがより好ましく、2000mPa・s以下であることが好ましく、1800mPa・s以下であることがより好ましい。水溶性重合体の1質量%水溶液粘度が150mPa・s以上であれば、粘度調整剤として良好に機能しうり、2000mPa・s以下であれば、二次電池の内部抵抗の上昇を抑制し、レート特性を一層高めることができる。そして、水溶性重合体の量は、例えば、負極活物質100質量部当たり0.7質量部以上3.0質量部以下とすることができる。
 <二次電池負極用スラリー組成物の調製>
 本発明の二次電池負極用スラリー組成物の調製は、上記各成分を分散媒としての水系媒体中に分散させることにより調製することができる。具体的には、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどの混合機を用いて上記各成分と水系媒体とを混合することにより、スラリー組成物を調製することができる。
 ここで、水系媒体としては、通常は水を用いるが、任意の化合物の水溶液や、少量の有機媒体と水との混合溶液などを用いてもよい。また、スラリー組成物の固形分濃度は、各成分を均一に分散させることができる濃度、例えば、30質量%以上90質量%以下とすることができる。更に、上記各成分と水系媒体との混合は、通常、室温以上80℃以下の温度範囲で、10分以上数時間以下行うことができる。
(二次電池用負極)
 本発明の二次電池用負極は、本発明の二次電池負極用スラリー組成物を使用して製造することができる。
 ここで、本発明の二次電池用負極は、集電体と、集電体上に形成された負極合材層とを備え、負極合材層は、本発明の二次電池負極用スラリー組成物から得られる。なお、負極合材層中に含まれている各成分は、本発明の二次電池負極用スラリー組成物中に含まれていたものであり、それら各成分の好適な存在比は、二次電池負極用スラリー組成物中の各成分の好適な存在比と同じである。
 そして、本発明の二次電池用負極は、二次電池のセルの膨らみを抑制しつつ、二次電池に優れたレート特性を発揮させることができる。
<二次電池用負極の製造方法>
 本発明の二次電池用負極は、例えば、集電体上に、上述した二次電池負極用スラリー組成物を塗布する工程(塗布工程)と、集電体上に塗布された二次電池負極用スラリー組成物を乾燥し、集電体上に負極合材層を形成する工程(乾燥工程)とを経て製造される。
[塗布工程]
 上記二次電池負極用スラリー組成物を集電体上に塗布する方法としては、特に限定されず公知の方法を用いることができる。具体的には、塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。この際、スラリー組成物を集電体の片面だけに塗布してもよいし、両面に塗布してもよい。塗布後乾燥前の集電体上のスラリー膜の厚みは、乾燥して得られる負極合材層の厚みに応じて適宜に設定しうる。
 ここで、スラリー組成物を塗布する集電体としては、電気導電性を有し、かつ、電気化学的に耐久性のある材料が用いられる。具体的には、集電体としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などからなる集電体を用い得る。中でも、負極に用いる集電体としては銅箔が特に好ましい。なお、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[乾燥工程]
 集電体上のスラリー組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥法が挙げられる。このように集電体上のスラリー組成物を乾燥することで、集電体上に負極合材層を形成し、集電体と負極合材層とを備える二次電池用負極を得ることができる。
 なお、乾燥工程の後、金型プレスまたはロールプレスなどを用い、負極合材層に加圧処理を施してもよい。加圧処理により、負極のピール強度を向上させることができる。
(二次電池)
 本発明の二次電池は、正極と、負極と、電解液と、セパレータとを備え、負極として、本発明の二次電池用負極を用いたものである。そして、本発明の二次電池は、本発明の二次電池用負極を用いているので、セルの膨らみが抑制されており、またレート特性などの電池特性に優れている。以下、二次電池がリチウムイオン二次電池である場合を例に挙げ、正極、電解液、およびセパレータについて記載するが、本発明はこれらの例示に限定されるものではない。
<正極>
 正極としては、リチウムイオン二次電池用正極として用いられる既知の正極を用いることができる。具体的には、正極としては、例えば、正極合材層を集電体上に形成してなる正極を用いることができる。
 なお、集電体としては、アルミニウム等の金属材料からなるものを用いることができる。また、正極合材層としては、既知の正極活物質と、導電材と、結着材とを含む層を用いることができる。
<電解液>
 電解液としては、溶媒に電解質を溶解した電解液を用いることができる。
 ここで、溶媒としては、電解質を溶解可能な有機溶媒を用いることができる。具体的には、溶媒としては、エチレンカーボネート、プロピレンカーボネート、γ-ブチロラクトン等のアルキルカーボネート系溶媒に、2,5-ジメチルテトラヒドロフラン、テトラヒドロフラン、ジエチルカーボネート、エチルメチルカーボネート、ジメチルカーボネート、酢酸メチル、ジメトキシエタン、ジオキソラン、プロピオン酸メチル、ギ酸メチル等の粘度調整溶媒を添加したものを用いることができる。
 電解質としては、リチウム塩を用いることができる。リチウム塩としては、例えば、特開2012-204303号公報に記載のものを用いることができる。これらのリチウム塩の中でも、有機溶媒に溶解しやすく、高い解離度を示すという点より、電解質としてはLiPF6、LiClO4、CF3SO3Liが好ましい。
<セパレータ>
 セパレータとしては、例えば、特開2012-204303号公報に記載のものを用いることができる。これらの中でも、セパレータ全体の膜厚を薄くすることができ、これにより、リチウムイオン二次電池内の電極活物質の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系の樹脂(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)からなる微多孔膜が好ましい。
<二次電池の製造方法>
 本発明の二次電池は、例えば、正極と、負極とを、セパレータを介して重ね合わせ、これを必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる。二次電池の内部の圧力上昇、過充放電などの発生を防止するために、必要に応じて、ヒューズ、PTC素子などの過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
 実施例および比較例において、炭素系負極活物質の表面官能基量、粒子状重合体の表面酸量および体積平均粒子径D50、二次電池負極用スラリー組成物の生産性、二次電池用負極のピール強度、並びに二次電池のセル膨らみ(初期)、セル膨らみ(100サイクル後)およびレート特性は、それぞれ以下の方法を使用して評価した。
<表面官能基量(O/C値)>
 X線光電子分光法分析を行い、C1sとO1sのそれぞれスペクトルのピーク面積を求めた。このピーク面積に基づいて炭素系負極活物質表面における炭素原子(C)濃度に対する酸素原子(O)濃度の比(%)(=O原子濃度/C原子濃度×100)を算出し、この値を表面官能基量(%)とした。なお、X線光電子分光法分析には、Thermo Fisher Scientific社製のVG Theta Probeを用いた。
<表面酸量>
 蒸留水で洗浄した容量150mLのガラス容器に、調製した粒子状重合体を含む水分散液(固形分濃度2%に調整)を50g入れ、溶液電導率計をセットして攪拌した。なお、攪拌は、後述する塩酸の添加が終了するまで継続した。
 粒子状重合体を含む水分散液の電気伝導度が2.5~3.0mSになるように、0.1規定の水酸化ナトリウム水溶液を、粒子状重合体を含む水分散液に添加した。その後、6分経過してから、電気伝導度を測定した。この値を測定開始時の電気伝導度とした。
 さらに、この粒子状重合体を含む水分散液に0.1規定の塩酸を0.5mL添加して、30秒後に電気伝導度を測定した。その後、再び0.1規定の塩酸を0.5mL添加して、30秒後に電気伝導度を測定した。この操作を、30秒間隔で、粒子状重合体を含む水分散液の電気伝導度が測定開始時の電気伝導度以上になるまで繰り返し行った。
 得られた電気伝導度データを、電気伝導度(単位「mS」)を縦軸(Y座標軸)、添加した塩酸の累計量(単位「mmol」)を横軸(X座標軸)としたグラフ上にプロットした。これにより、図1のように3つの変曲点を有する塩酸添加量-電気伝導度曲線が得られた。3つの変曲点のX座標を、値が小さい方から順にそれぞれP1、P2およびP3とした。X座標が零から座標P1まで、座標P1から座標P2まで、および、座標P2から座標P3まで、の3つの区分内のデータについて、それぞれ、最小二乗法により近似直線L1、L2およびL3を求めた。近似直線L1と近似直線L2との交点のX座標をA1(mmol)、近似直線L2と近似直線L3との交点のX座標をA2(mmol)とした。
 粒子状重合体1g当たりの表面酸量は、下記の式から、塩酸換算した値(mmol/g)として求めた。
  粒子状重合体1g当たりの表面酸量=A2-A1
<体積平均粒子径D50>
 粒子状重合体の体積平均粒子径D50は、レーザー回折・散乱式粒度分布測定装置(ベックマン・コールター社製、LS230)を用いて測定した。
<スラリー組成物の生産性>
 リチウムイオン二次電池負極用スラリー組成物の調製に際し、粒子状重合体を含む水分散液の投入前の混合液の粘度η0を、B型粘度計(25℃、回転数60rpm)を用いて測定した。そして、粒子状重合体を含む水分散液を投入して得られるスラリー組成物の粘度η1を上述と同様の条件で測定し、粘度変化率(%)(=η1/η0×100)を算出した。粘度変化率は、粒子状重合体の添加によるスラリー組成物の増粘のし易さを表す指標であり、例えばこの値が110%超であるとスラリー組成物の生産性が悪く、110%以下であるとスラリー組成物の生産性が良好であると言える。
<ピール強度>
 作製した負極を、幅1.0cm×長さ10cmの矩形に切って試験片とした。そして、試験片の負極合材層側の表面を上にして固定し、試験片の負極合材層側の表面にセロハンテープを貼り付けた。この際、セロハンテープはJIS Z1522に規定されるものを用いた。その後、試験片の一端からセロハンテープを50mm/分の速度で180°方向(試験片の他端側)に引き剥がしたときの応力を測定した。測定を10回行い、応力の平均値を求めて、これをピール強度(N/m)とした。ピール強度が大きいほど、集電体に対する負極合材層の結着強度が優れていることを示す。
<セル膨らみ(初期)>
 作成したリチウムイオン二次電池の初期容量を確認後、当該リチウムイオン二次電池を25℃で4.2V CC-CV充電(Cut-off条件0.02C)にて満充電にした。この際のセルの厚みを、厚み測定機を用いて10点で測定し、それらを平均して平均厚みT0を算出した。そして、25℃にて1Cでの充放電を10サイクル(4.2V-3.0V)行った後、満充電の際のセルの平均厚みT1を上述のT0と同様にして測定し、厚み変化率(%)(=(T1-T0)/T0×100)を算出した。厚み変化率が小さいほどセル膨らみ(初期)が抑制されていることを示す。
<セル膨らみ(100サイクル後)>
 作成したリチウムイオン二次電池の初期容量を確認後、当該リチウムイオン二次電池を25℃で4.2V CC-CV充電(Cut-off条件0.02C)にて満充電にした。この際のセルの厚みを、厚み測定機を用いて10点で測定し、それらを平均して平均厚みT0を算出した。そして、25℃にて1Cでの充放電を100サイクル(4.2V-3.0V)行った後、満充電の際のセルの平均厚みT2を上述のT0と同様にして測定し、厚み変化率(%)(=(T2-T0)/T0×100)を算出した。厚み変化率が小さいほどセル膨らみ(100サイクル後)が抑制されていることを示す。
<レート特性>
 作成したリチウムイオン二次電池の初期容量を確認後、当該リチウムイオン二次電池を25℃で4.2V CC-CV充電(Cut-off条件0.02C)にて満充電にし、その後-10℃の環境下において0.2Cで3.0VまでCC放電し、その際の放電容量C1を得た。そして、リチウムイオン二次電池を25℃で4.2V CC-CV充電(Cut-off条件0.02C)にて再び満充電にし、その後-10℃の環境下において1Cにて3.0VまでCC放電し、その際の放電容量C2を得た。C1に対するC2の比(C2/C1)を算出した。この値が大きい程、リチウムイオン二次電池がレート特性に優れていることを示す。
(実施例1)
<炭素系負極活物質の調製>
 芯粒子としての球形化黒鉛(体積平均粒子径D50:15μm、タップ密度:0.85g/cm3、BET比表面積:6.0m2/g)100部に対し、低結晶性炭素の被膜形成材料としてのタールピッチを30部添加し、ヘンシェルミキサーを用いて200℃で30分混合した。得られた混合物を、窒素雰囲気下1000℃でプレ焼成後、粉砕し、更に窒素雰囲気下2600℃で焼成し、複合炭素材料を得た。この複合炭素材料を、ホソカワミクロン社製のメカノフュージョンシステムを用いて解砕し(メカノケミカル処理)、炭素系負極活物質Aを得た。そして、炭素系負極活物質Aの表面官能基量およびBET比表面積を測定した。結果を表1に示す。
<粒子状重合体の調製>
 芳香族ビニル単量体としてスチレン60.5部、脂肪族共役ジエン単量体として1,3-ブタジエン35部、酸性基含有単量体としてイタコン酸3.5部、連鎖移動剤としてtert-ドデシルメルカプタン0.25部、乳化剤としてラウリル硫酸ナトリウム0.35部の混合物を入れた容器Aから、これらの混合物の耐圧容器Bへの添加を開始し、これと同時に、重合開始剤として過硫酸カリウム1部の耐圧容器Bへの添加を開始することで重合を開始した。反応温度は75℃を維持した。
 また、重合開始から4時間後(単量体組成物全体のうち70%添加後)、耐圧容器Bに水酸基含有(メタ)アクリル酸エステル単量体として2-ヒドロキシエチルアクリレートを1部、1時間半に亘って加えた。
 重合開始から5時間半後、これら単量体組成物の全量添加が完了し、その後、さらに85℃に加温して6時間反応させた。
 重合転化率が97%になった時点で冷却し反応を停止して、粒子状重合体を含む混合物を得た。この粒子状重合体を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。さらにその後冷却し、所望の粒子状重合体を含む水分散液(固形分濃度:40%)を得た。この粒子状重合体を含む水分散液を用いて、表面酸量および体積平均粒子径D50を測定した。結果を表1に示す。
<リチウムイオン二次電池負極用スラリー組成物の調製>
 ディスパー付きのプラネタリーミキサーに、負極活物質として上述した炭素系負極活物質を100部、水溶性高分子としてカルボキシメチルセルロース(CMC、1質量%水溶液粘度:250mPa・s)を固形分換算で1.5部、導電材としてのアセチレンブラック(BET比表面積:68m2/g)を1部加えた。これらの混合物をイオン交換水で固形分濃度56%に調整した後、25℃で60分間混合した。次に、イオン交換水で固形分濃度52%に調整した後、さらに25℃で15分間混合し混合液を得た。
 上記の混合液に、粒子状重合体を含む水分散液を、粒子状重合体の固形分換算で1.6部、及びイオン交換水を入れ、最終固形分濃度50%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して、リチウムイオン二次電池負極用スラリー組成物を得た。なおこのリチウムイオン二次電池負極用スラリー組成物の調製に、上述のようにしてスラリー組成物の生産性を評価した。結果を表1に示す。
<リチウムイオン二次電池用負極の製造>
 上記リチウムイオン二次電池負極用スラリー組成物を、コンマコーターで、集電体である厚さ15μmの銅箔の上に塗付量が9~10mg/cm2となるように塗布した。このリチウムイオン二次電池負極用スラリー組成物が塗布された銅箔を、0.5m/分の速度で、温度60℃のオーブン内を2分間かけて搬送することにより、乾燥させた。その後、温度120℃のオーブン内で2分間加熱処理して負極原反を得た。
 得られた負極原反をロールプレス機にて負極合材層の密度が1.6~1.7g/cm3となるようプレスを行い、リチウムイオン二次電池用負極を得た。このリチウムイオン二次電池用負極を用いて、ピール強度を評価した。結果を表1に示す。
<リチウムイオン二次電池用正極の製造>
 プラネタリーミキサーに、正極活物質としてのLiCoO2100部、導電材としてのアセチレンブラック2部(電気化学工業(株)製、HS-100)、結着材としてのPVDF(ポリフッ化ビニリデン、(株)クレハ化学製、KF-1100)2部、さらに全固形分濃度が67%となるように2-メチルピリロドンを加えて混合し、リチウムイオン二次電池正極用スラリー組成物を調製した。
 得られたリチウムイオン二次電池正極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミ箔の上に塗布した。このリチウムイオン二次電池正極用スラリー組成物が塗布されたアルミ箔を、0.5m/分の速度で温度60℃のオーブン内を2分間かけて搬送することにより、乾燥させた。その後、温度120℃のオーブン内で2分間加熱処理して、正極原反を得た。
 得られた正極原反をロールプレス機にて正極合材層の密度が3.40~3.50g/cm3になるようにプレスを行い、リチウムイオン二次電池用正極を得た。
<リチウムイオン二次電池の製造>
 単層のポリプロピレン製セパレータ(幅65mm、長さ500mm、厚さ25μm;乾式法により製造;気孔率55%)を用意し、50mm×200mmに切り出した。
 そして、作製した正極を、45mm×150mmに切り出した。さらに、作製した負極を、47mm×155mmに切り出した。これら切り出した正極、セパレータ、および負極をこの順に積層した後、捲き回して捲回体を作製し、アルミ包材外装に入れた。その後、電解液として濃度1.0MのLiPF6溶液(溶媒はエチレンカーボネート(EC)/エチルメチルカーボネート(EMC)=3/7(体積比)の混合溶媒、添加剤としてビニレンカーボネート2質量%含有)を充填した。さらに、150℃のヒートシールをしてアルミ包材外装の開口を密封閉口し、リチウムイオン二次電池を製造した。得られたリチウムイオン二次電池を用いて、セル膨らみ(初期)、セル膨らみ(100サイクル後)、およびレート特性を評価した。結果を表1に示す。
(実施例2)
 タールピッチの添加量を、球形化黒鉛100部当たり25部とした以外は、実施例1と同様にして炭素系負極活物質Bを得た。
 そして、上記得られた炭素系負極物質Bを炭素系負極活物質Aに替えて使用した以外は、実施例1と同様にして、粒子状重合体、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極およびリチウムイオン二次電池を製造し、各種評価を行なった。結果を表1に示す。
(実施例3)
 メカノケミカル処理の際に、用いる上述の装置の回転速度を上昇させた以外は、実施例1と同様にして炭素系負極活物質Cを得た。
 そして、上記得られた炭素系負極物質Cを炭素系負極活物質Aに替えて使用した以外は、実施例1と同様にして、粒子状重合体、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極およびリチウムイオン二次電池を製造し、各種評価を行なった。結果を表1に示す。
(実施例4、7、13)
 粒子状重合体の調製の際に、用いる単量体をそれぞれ表1のように変更した以外は実施例1と同様にして、炭素系負極活物質、粒子状重合体、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極およびリチウムイオン二次電池を製造し、各種評価を行なった。結果を表1に示す。
(実施例5、12)
 粒子状重合体の調製の際に、ラウリル硫酸ナトリウムの量をそれぞれ0.15部、0.40部とした以外は、実施例1と同様にして、炭素系負極活物質、粒子状重合体、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極およびリチウムイオン二次電池を製造し、各種評価を行なった。結果を表1に示す。
(実施例6)
 メカノケミカル処理の際に、用いる上述の装置の回転速度を低下させた以外は、実施例1と同様にして炭素系負極活物質Dを得た。
 そして、上記得られた炭素系負極物質Dを炭素系負極活物質Aに替えて使用した以外は、実施例1と同様にして、粒子状重合体、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極およびリチウムイオン二次電池を製造し、各種評価を行なった。結果を表1に示す。
(実施例8、9)
 リチウムイオン二次電池負極用スラリー組成物の調製の際に、1質量%水溶液粘度が250mPa・sのCMCに替えて、1質量%水溶液粘度がそれぞれ1000mPa・s、1900mPa・sのCMCを使用した以外は、実施例1と同様にして、炭素系負極活物質、粒子状重合体、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極およびリチウムイオン二次電池を製造し、各種評価を行なった。結果を表1に示す。
(実施例10、11)
 リチウムイオン二次電池負極用スラリー組成物の調製の際に、導電材の添加量を負極活物質100部当たりそれぞれ1.8部、0.3部とした以外は実施例1と同様にして、炭素系負極活物質、粒子状重合体、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極およびリチウムイオン二次電池を製造し、各種評価を行なった。結果を表1に示す。
(比較例1)
 芯粒子としての球形化黒鉛(体積平均粒子径D50:15μm、タップ密度:0.85g/cm3、BET比表面積:6.0m2/g)100部に対し、低結晶性炭素の被膜形成材料としてのタールピッチを15部添加し、ヘンシェルミキサーを用いて200℃で30分混合した。得られた混合物を、窒素雰囲気下1000℃でプレ焼成後、更に窒素雰囲気下2600℃で焼成した後、アーステクニカ社製のクリプトロンを用いて粉砕し、炭素系負極活物質Eを得た。
 そして、上記得られた炭素系負極物質Eを炭素系負極活物質Aに替えて使用した以外は、実施例1と同様にして、粒子状重合体、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極およびリチウムイオン二次電池を製造し、各種評価を行なった。結果を表1に示す。
(比較例2)
 芯粒子としての球形化黒鉛(体積平均粒子径D50:15μm、タップ密度:0.85g/cm3、BET比表面積:6.0m2/g)100部に対し、低結晶性炭素の被膜形成材料としてのタールピッチを30部添加し、ヘンシェルミキサーを用いて200℃で30分混合した。得られた混合物を、窒素雰囲気下1000℃でプレ焼成後、アーステクニカ社製のクリプトロンを用いて粉砕し、更に窒素雰囲気下2600℃で焼成して、炭素系負極活物質Fを得た。
 そして、上記得られた炭素系負極物質Fを炭素系負極活物質Aに替えて使用した以外は、実施例1と同様にして、粒子状重合体、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極およびリチウムイオン二次電池を製造し、各種評価を行なった。結果を表1に示す。
(比較例3)
 粒子状重合体の調製の際に、用いる単量体を表1のように変更した以外は、実施例1と同様にして、炭素系負極活物質、粒子状重合体、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極およびリチウムイオン二次電池を製造し、各種評価を行なった。結果を表1に示す。
(比較例4)
 メカノケミカル処理の際に、用いる上述の装置の回転速度を更に上昇させた以外は、実施例3と同様にして炭素系負極活物質Gを得た。
 そして、上記得られた炭素系負極物質Gを炭素系負極活物質Aに替えて使用した以外は、実施例1と同様にして、リチウムイオン二次電池負極用スラリー組成物の調製を試みたが、過度な増粘によりスラリー組成物を調製することができなかった。
 なお、以下に示す表1中、
「ST」はスチレンを示し、
「BD」は1,3-ブタジエンを示し、
「IA」はイタコン酸を示し、
「AA」はアクリル酸を示し、
「2-HEA」は、2-ヒドロキシエチルアクリレートを示す。
Figure JPOXMLDOC01-appb-T000001
 表1の実施例1~13および比較例1~4から、実施例1~13では、二次電池負極用スラリー組成物の生産性、並びに二次電池のセルの膨らみ抑制およびレート特性を、バランスよく確保できていることがわかる。
 ここで、表1の実施例1、2および6より、炭素系負極活物質の比表面積を調節することで、二次電池のレート特性を更に向上させつつ、セルの膨らみを一層抑制しうることがわかる。
 また、表1の実施例1、3より、炭素系負極活物質の表面官能基量を調節することで、スラリー組成物の生産性を更に向上させうることがわかる。
 そして、表1の実施例1、4、7、13より、粒子状重合体の表面酸量を調節することで、スラリー組成物の生産性を更に向上させつつ二次電池のセルの膨らみを一層抑制しうり、また負極のピール強度を向上させうることがわかる。
 加えて、表1の実施例1、5、12より、粒子状重合体の体積平均粒子径D50を調節することで、スラリー組成物の生産性を更に向上させつつ二次電池のセルの膨らみを一層抑制しうり、また負極のピール強度を向上させうることがわかる。
 また、表1の実施例1、8、9より、水溶性重合体であるCMCの1質量%水溶液粘度を調節することで、二次電池のレート特性を更に向上させうることがわかる。
 そして、表1の実施例1、10、11より、導電材であるアセチレンブラックの量を調節することで、二次電池のレート特性を更に向上させつつセルの膨らみを一層抑制しうり、また負極のピール強度を向上させうることがわかる。
 本発明によれば、生産性に優れ、また二次電池のセルの膨らみおよび内部抵抗の上昇を抑制しうる二次電池負極用スラリー組成物を提供することができる。
 また、本発明によれば、二次電池のセルの膨らみおよび内部抵抗の上昇を抑制しうる二次電池用負極を提供することができる。
 そして、本発明によれば、セルの膨らみが抑制され、またレート特性に優れる二次電池を提供することができる。

Claims (8)

  1.  負極活物質、粒子状重合体および水を含む二次電池負極用スラリー組成物であって、
     前記負極活物質は、表面官能基量が0.9%以上1.5%以下であって且つBET比表面積が2.5m2/g以下である炭素系負極活物質を含み、
     前記粒子状重合体は、表面酸量が0.2mmol/g以上2.0mmol/g以下であることを特徴とする、二次電池負極用スラリー組成物。
  2.  前記炭素系負極活物質の表面官能基量(%)をS、前記炭素系負極活物質のBET比表面積(m2/g)をT、および前記粒子状重合体の表面酸量(mmol/g)をUとして下記式(1):
       X=(S/T)/U・・・(1)
    で算出される官能基量/酸量比Xの値が、1.51以上4.50以下である、請求項1に記載の二次電池負極用スラリー組成物。
  3.  前記炭素系負極活物質のBET比表面積が、1.0m2/g以上である、請求項1または2に記載の二次電池負極用スラリー組成物。
  4.  前記粒子状重合体の体積平均粒子径D50が、120nm以上500nm以下である、請求項1~3の何れかに記載の二次電池負極用スラリー組成物。
  5.  更に、BET比表面積が30m2/g以上である導電材を前記負極活物質100質量部当たり0.2質量部以上2質量部以下含む、請求項1~4の何れかに記載の二次電池負極用スラリー組成物。
  6.  更に、1質量%水溶液粘度が150mPa・s以上2000mPa・s以下である水溶性重合体を含む、請求項1~5の何れかに記載の二次電池負極用スラリー組成物。
  7.  請求項1~6の何れかに記載の二次電池負極用スラリー組成物を用いて得られる負極合材層を有する、二次電池用負極。
  8.  正極、負極、セパレータおよび電解液を備え、
     前記負極が請求項7に記載の二次電池用負極である、二次電池。
PCT/JP2016/002367 2015-06-08 2016-05-13 二次電池負極用スラリー組成物、二次電池用負極および二次電池 WO2016199353A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201680027006.5A CN107534131B (zh) 2015-06-08 2016-05-13 二次电池负极用浆料组合物、二次电池用负极和二次电池
KR1020177032433A KR20180015125A (ko) 2015-06-08 2016-05-13 2차 전지 부극용 슬러리 조성물, 2차 전지용 부극 및 2차 전지
JP2017523094A JP6809454B2 (ja) 2015-06-08 2016-05-13 二次電池負極用スラリー組成物、二次電池用負極および二次電池
PL16807070T PL3306709T3 (pl) 2015-06-08 2016-05-13 Kompozycja zawiesinowa dla elektrody ujemnej baterii akumulatorowej, elektroda ujemna dla baterii akumulatorowej i bateria akumulatorowa
EP16807070.4A EP3306709B1 (en) 2015-06-08 2016-05-13 Slurry composition for secondary battery negative electrode, negative electrode for secondary battery, and secondary battery
US15/574,836 US10784502B2 (en) 2015-06-08 2016-05-13 Slurry composition for secondary battery negative electrode, negative electrode for secondary battery, and secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015115906 2015-06-08
JP2015-115906 2015-06-08

Publications (1)

Publication Number Publication Date
WO2016199353A1 true WO2016199353A1 (ja) 2016-12-15

Family

ID=57503488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002367 WO2016199353A1 (ja) 2015-06-08 2016-05-13 二次電池負極用スラリー組成物、二次電池用負極および二次電池

Country Status (8)

Country Link
US (1) US10784502B2 (ja)
EP (1) EP3306709B1 (ja)
JP (1) JP6809454B2 (ja)
KR (1) KR20180015125A (ja)
CN (1) CN107534131B (ja)
HU (1) HUE053400T2 (ja)
PL (1) PL3306709T3 (ja)
WO (1) WO2016199353A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172049A1 (ja) * 2018-03-07 2019-09-12 日本ゼオン株式会社 非水系二次電池用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用電池部材および非水系二次電池
WO2020196111A1 (ja) 2019-03-28 2020-10-01 日本ゼオン株式会社 非水系二次電池負極用スラリー組成物、非水系二次電池用負極および非水系二次電池
WO2023008100A1 (ja) * 2021-07-27 2023-02-02 日本ゼオン株式会社 非水系二次電池負極用バインダー組成物、非水系二次電池負極用スラリー組成物、非水系二次電池用負極、及び非水系二次電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191239A1 (ja) * 2012-06-20 2013-12-27 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー、リチウムイオン二次電池用電極及びその製造方法、並びにリチウムイオン二次電池
WO2014073647A1 (ja) * 2012-11-09 2014-05-15 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極及びその製造方法、並びにリチウムイオン二次電池
WO2015129257A1 (ja) * 2014-02-27 2015-09-03 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
WO2016084364A1 (ja) * 2014-11-25 2016-06-02 日本ゼオン株式会社 非水系二次電池用バインダー、非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000215896A (ja) * 1999-01-26 2000-08-04 Sumitomo Durez Co Ltd 非水電解質二次電池用電極材組成物
KR100805104B1 (ko) * 2005-08-31 2008-02-21 삼성에스디아이 주식회사 높은 비표면적과 전도성을 갖는 탄소 재료 및 이의 제조방법
US20130330622A1 (en) 2011-02-23 2013-12-12 Zeon Corporation Secondary cell negative electrode, secondary cell slurry composition for negative electrode, and method of producing secondary cell negative electrode
JP5617725B2 (ja) * 2011-03-28 2014-11-05 日本ゼオン株式会社 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池
JP5743150B2 (ja) * 2011-08-25 2015-07-01 トヨタ自動車株式会社 非水二次電池製造方法
JP5783029B2 (ja) * 2011-12-16 2015-09-24 トヨタ自動車株式会社 非水電解質二次電池用の負極とその製造方法、及び非水電解質二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191239A1 (ja) * 2012-06-20 2013-12-27 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー、リチウムイオン二次電池用電極及びその製造方法、並びにリチウムイオン二次電池
WO2014073647A1 (ja) * 2012-11-09 2014-05-15 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極及びその製造方法、並びにリチウムイオン二次電池
WO2015129257A1 (ja) * 2014-02-27 2015-09-03 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
WO2016084364A1 (ja) * 2014-11-25 2016-06-02 日本ゼオン株式会社 非水系二次電池用バインダー、非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172049A1 (ja) * 2018-03-07 2019-09-12 日本ゼオン株式会社 非水系二次電池用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用電池部材および非水系二次電池
JPWO2019172049A1 (ja) * 2018-03-07 2021-03-11 日本ゼオン株式会社 非水系二次電池用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用電池部材および非水系二次電池
JP7405073B2 (ja) 2018-03-07 2023-12-26 日本ゼオン株式会社 非水系二次電池用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用電池部材および非水系二次電池
US11929506B2 (en) 2018-03-07 2024-03-12 Zeon Corporation Binder composition for non-aqueous secondary battery, slurry composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, battery member for non-aqueous secondary battery, and non-aqueous secondary battery
WO2020196111A1 (ja) 2019-03-28 2020-10-01 日本ゼオン株式会社 非水系二次電池負極用スラリー組成物、非水系二次電池用負極および非水系二次電池
KR20210144692A (ko) 2019-03-28 2021-11-30 니폰 제온 가부시키가이샤 비수계 이차 전지 부극용 슬러리 조성물, 비수계 이차 전지용 부극 및 비수계 이차 전지
WO2023008100A1 (ja) * 2021-07-27 2023-02-02 日本ゼオン株式会社 非水系二次電池負極用バインダー組成物、非水系二次電池負極用スラリー組成物、非水系二次電池用負極、及び非水系二次電池

Also Published As

Publication number Publication date
EP3306709A4 (en) 2019-01-09
EP3306709A1 (en) 2018-04-11
US20180151866A1 (en) 2018-05-31
US10784502B2 (en) 2020-09-22
EP3306709B1 (en) 2020-12-16
PL3306709T3 (pl) 2021-05-17
HUE053400T2 (hu) 2021-06-28
JP6809454B2 (ja) 2021-01-06
CN107534131B (zh) 2021-02-26
CN107534131A (zh) 2018-01-02
JPWO2016199353A1 (ja) 2018-03-22
KR20180015125A (ko) 2018-02-12

Similar Documents

Publication Publication Date Title
CN106463732B (zh) 锂离子二次电池电极用粘结剂组合物及浆料组合物、锂离子二次电池及其电极
JP6593320B2 (ja) リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP6007973B2 (ja) 二次電池負極用複合粒子、その用途及び製造方法、並びにバインダー組成物
JP6627763B2 (ja) 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
JP5708301B2 (ja) 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法
JP5987471B2 (ja) 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法
JPWO2017056466A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
WO2014148064A1 (ja) リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP6601413B2 (ja) 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
WO2015098008A1 (ja) リチウムイオン二次電池負極用バインダー組成物、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP6428342B2 (ja) リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
WO2017056467A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
WO2015107896A1 (ja) 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
WO2016170768A1 (ja) リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
JP6477503B2 (ja) リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
WO2015133154A1 (ja) リチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池多孔膜用スラリー組成物、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
WO2019208419A1 (ja) 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー組成物、蓄電デバイス用電極、および蓄電デバイス
KR102369485B1 (ko) 이차전지 전극용 바인더 조성물, 이차전지 전극용 슬러리 조성물, 이차전지용 전극 및 그 제조 방법, 및 이차전지
WO2016199353A1 (ja) 二次電池負極用スラリー組成物、二次電池用負極および二次電池
WO2017110654A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
JP6455015B2 (ja) 二次電池用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
WO2020158626A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807070

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017523094

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177032433

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15574836

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016807070

Country of ref document: EP