WO2016198618A1 - Verfahren zur beschichtung der oberfläche eines geschlossenen kühlkanals eines kolbens für einen verbrennungsmotor sowie mittels dieses verfahrens herstellbarer kolben - Google Patents

Verfahren zur beschichtung der oberfläche eines geschlossenen kühlkanals eines kolbens für einen verbrennungsmotor sowie mittels dieses verfahrens herstellbarer kolben Download PDF

Info

Publication number
WO2016198618A1
WO2016198618A1 PCT/EP2016/063324 EP2016063324W WO2016198618A1 WO 2016198618 A1 WO2016198618 A1 WO 2016198618A1 EP 2016063324 W EP2016063324 W EP 2016063324W WO 2016198618 A1 WO2016198618 A1 WO 2016198618A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling channel
piston
coating
coating agent
boron nitride
Prior art date
Application number
PCT/EP2016/063324
Other languages
English (en)
French (fr)
Inventor
Ulrich Bischofberger
Stephan Körner
Original Assignee
Mahle International Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle International Gmbh filed Critical Mahle International Gmbh
Priority to BR112017025644-4A priority Critical patent/BR112017025644A2/pt
Priority to US15/735,464 priority patent/US10252293B2/en
Priority to JP2017560696A priority patent/JP6408722B2/ja
Priority to EP16732963.0A priority patent/EP3307922B1/de
Priority to CN201680033189.1A priority patent/CN107787402B/zh
Publication of WO2016198618A1 publication Critical patent/WO2016198618A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/22Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to internal surfaces, e.g. of tubes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/16Pistons  having cooling means
    • F02F3/20Pistons  having cooling means the means being a fluid flowing through or along piston
    • F02F3/22Pistons  having cooling means the means being a fluid flowing through or along piston the fluid being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/16Pistons  having cooling means
    • F02F3/20Pistons  having cooling means the means being a fluid flowing through or along piston
    • F02F3/22Pistons  having cooling means the means being a fluid flowing through or along piston the fluid being liquid
    • F02F3/225Pistons  having cooling means the means being a fluid flowing through or along piston the fluid being liquid the liquid being directed into blind holes

Definitions

  • the present invention relates to a method for coating the surface of a closed, ⁇ lzulauf ⁇ or oil drain holes having cooling channel of a piston for an internal combustion engine with a hexagonal boron nitride-containing coating agent.
  • the present invention further relates to a producible by means of such a method piston.
  • Cooling channel pistons are preferably used in modern internal combustion engines with high specific engine power, since they can dissipate a larger amount of heat compared to only spray-cooled piston during engine operation, so that their maximum operating temperature can be significantly reduced.
  • EP 2 096 290 A1 discloses a non-stick coating based on
  • This protective coating comprises a polymer-based matrix, in particular a polysiloxane, into which particles, in particular of hexagonal
  • Such coatings have, among other things, excellent non-wetting properties for preventing the deposition of thermally insulating solids such as ashes or slags.
  • the object of the present invention is a generic
  • the solution consists in a process comprising the following process steps: a) introducing a defined amount of a coating agent in the form of a suspension of hexagonal boron nitride with a solution based on at least one thermally curable inorganic binder and at least one solvent in the cooling channel; b) distributing the coating agent on the
  • the inventive method is characterized in that a piston can be produced, wherein the entire surface of the cooling channel with a
  • hexagonal boron nitride coating which has a uniform thickness over the entire surface of the cooling channel, which is preferably between 10 ⁇ and ⁇ ⁇ . This ensures that the Heat transfer from the cooling channel is little or not affected.
  • the size of the surface of the cooling channel is determined before step a) in order to be able to optimally dose the coating agent.
  • Surface of the cooling channel of 190cm 2 is an optimal dosage 7ml, or about 36.84 ⁇ per square centimeter.
  • step a) the surface of the cooling channel with a
  • Cleaning agent cleaned to improve the adhesion of the coating on the surface Suitable cleaning agents are, for example, methanol, ethanol, acetone, 1 - propanol and 2-propanol and other low-chain alcohols.
  • the coating composition used in step a) contains as preferred binder at least one polysiloxane, which is preferably dissolved in ethanol.
  • sodium and / or potassium silicate can be used, thereby enabling the use of a sol-gel method.
  • the piston can, for example, be moved by means of a biaxial mixing device.
  • Biaxialmischtechnik are known per se and are usually used for mixing paints and paints.
  • step c) a laminar flow of air at a speed of 1 to 2 meters per second is used to avoid that
  • Coating agent is distributed by an excessively fast air flow unevenly on the surface of the cooling channel.
  • the drying of the coating agent is expediently carried out at room temperature.
  • the thermal curing may, for example. At a temperature of 180 ° C to 220 ° C are performed.
  • Figure 1 an embodiment of a piston according to the invention in section
  • Figure 2 is a photographic representation of a piston body according to FIG.
  • FIG. 3 shows a further photographic representation of a piston main body with a faulty coating.
  • the piston 10 has a piston head 11 with a piston head 12, a
  • Combustion tray 13 a circumferential land 14 and a circumferential ring portion 15 with annular grooves for receiving piston rings (not shown).
  • the piston 10 further includes a piston shaft 16 which is provided in known manner with piston hubs 17, in which hub bores 18 for
  • Piston hubs 17 are connected to each other via running surfaces 19.
  • the piston 10 is in the embodiment as a one-piece piston from a
  • Piston upper part 22 by welding or soldering inextricably linked.
  • the piston main body 21 and the piston upper part 22 may consist of the same material or different materials.
  • the piston body 21 and the piston upper part 22 together form a circulating in the amount of the ring portion 15 cooling channel 23, the oil inlet or.
  • the surface 24 of the cooling channel 23 is provided with a hexagonal boron nitride (hBN) -containing coating 25.
  • the thickness of the coating 25 is preferably 20 ⁇ to 40 ⁇
  • Thermal conductivity of the coating 25 is preferably 40W / mK to 50W / mK, depending on the degree of purity of the hexagonal boron nitride.
  • the friction coefficient of the coating 25 is constant up to a temperature of 600 ° C and is 0.2.
  • the specific surface area of the coating 25 is dependent on
  • the surface of the cooling channel 23 is determined in cm 2 to the
  • the surface 24 of the cooling channel 23 is thoroughly cleaned with ethanol.
  • 10ml to 30ml of ethanol via one of the oil inlet or oil drain holes 23 ', 23 "introduced into the cooling channel 23 and the bores 23', 23" with plug (preferably made of a rubber elastic
  • the piston 10 is moved to disperse the ethanol in the cooling channel and to ensure that the entire surface 24 is wetted with ethanol.
  • a biaxial mixer can be used.
  • the plugs are removed, so that the remaining ethanol drains from the cooling channel 23.
  • the surface 24 of the cooling channel 23 is dried via one of the bores 23 ', 23 "by means of a laminar air flow at a flow rate of 1 m / s to 2 m / s for five minutes at room temperature.
  • As a coating agent is a suspension of particles of hexagonal
  • Boron nitride used in a dissolved in ethanol polysiloxane is Boron nitride used in a dissolved in ethanol polysiloxane.
  • the content of hexagonal boron nitride in the suspension in the exemplary embodiment is 104 g / l, based on the volume of the pure polysiloxane solution.
  • the content of polysiloxane is in the exemplary embodiment 61 g / l, based on the total volume of
  • the ethanol content of the suspension in the exemplary embodiment is 647 g / l, based on the total volume of the suspension.
  • Coating agent is eg. Under the name HeBoCoat ® 400E with the manufacturer Henze Boron Nitride Products AG, Grundweg 1, 87493 arbors, commercially to purchase. It is essential that the coating agent is free of halogen-containing substances, in particular free of fluorine-containing substances.
  • the dosage is based on the size of the surface 24 of the cooling channel 23 in cm 2 .
  • An optimum dosage of the suspension is 7 ml for a surface 24 of the cooling channel 23 of 190 cm 2 . In the exemplary embodiment, this corresponds to 4.53 g of ethanol, 0.43 g of polysiloxane and 0.73 g of hBN.
  • the coating agent is introduced into the cooling channel 23 via one of the bores 23 ', 23 ", expediently with the aid of a metering device, for example a metering pump
  • the bores 23', 23" are closed with plugs, preferably made of a rubber-elastic material.
  • the piston 10 is moved by at least two spatial axes. These Movement is essential to keep the coating agent even on the
  • a rotation unit for example.
  • a known per se biaxial mixer is used, with which the piston 10 is rotated both about its longitudinal axis and about an axis perpendicular to the longitudinal axis.
  • the coating agent adhering to the surface 24 of the cooling channel 23 is dried via one of the bores 23 ', 23 "by means of a laminar air flow at a flow rate of 1 m / s to 2 m / s for about five minutes at room temperature (about 20 ° C.). In this process, the ethanol is expelled from the coating agent This drying step is essential to ensure a perfect uniform drying of the coating agent The flow velocity of the laminar air flow must not be too great, otherwise the near the holes 23 ', 23 "on the Surface 24 of the cooling channel 23 adhering coating agent would be displaced by the air pressure, so that a coating with uneven thickness would result.
  • the resulting coating 25 has a surface energy of 15-17 mN / m and a layer thickness of 20 ⁇ to 40 ⁇ , which is constant over the entire surface 24 of the cooling channel 23. Due to its small layer thickness has the
  • Coating 25 no thermal insulating effect on the material of the piston 10.
  • the coating 25 is temperature resistant up to 600 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Lubricants (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Beschichtung der Oberfläche (24) eines geschlossenen, Ölzulauf- bzw. Ölablaufbohrungen (23', 23") aufweisenden Kühlkanals (23) eines Kolbens (10) für einen Verbrennungsmotor mit einem hexagonales Bornitrid enthaltenden Beschichtungsmittel, mit den folgenden Verfahrensschritten: a) Einbringen einer definierten Menge eines Beschichtungsmittels in Form einer Suspension von hexagonalem Bornitrid mit einer Lösung auf der Basis mindestens eines thermisch aushärtbaren anorganischen Bindemittels und mindestens eines Lösemittels in den Kühlkanal (23); b) Verteilen des Beschichtungsmittels auf der Oberfläche (24) des Kühlkanals (23) durch Bewegen des Kolbens (10) um mindestens zwei Raumachsen; c) Trocknen des auf der Oberfläche (24) des Kühlkanals (23) verteilten Beschichtungsmittels mittels einer laminaren Luftströmung; d) Thermisches Aushärten des Beschichtungsmittels zum Fertigstellen einer auf der Oberfläche (24) des Kühlkanals (23) haftenden Beschichtung (25).

Description

Verfahren zur Beschichtung der Oberfläche eines geschlossenen Kühlkanals eines Kolbens für einen Verbrennungsmotor sowie mittels dieses Verfahrens herstellbarer Kolben
Die vorliegende Erfindung betrifft ein Verfahren zur Beschichtung der Oberfläche eines geschlossenen, Ölzulauf- bzw. Ölablaufbohrungen aufweisenden Kühlkanals eines Kolbens für einen Verbrennungsmotor mit einem hexagonales Bornitrid enthaltenden Beschichtungsmittel. Die vorliegende Erfindung betrifft ferner einen mittels eines derartigen Verfahrens herstellbaren Kolben.
Derart beschichtete Kolben sind bekannt. Kühlkanalkolben werden bevorzugt in modernen Verbrennungsmotoren mit hoher spezifischer Motorleistung eingesetzt, da sie im Vergleich zu lediglich anspritzgekühlten Kolben im Motorbetrieb eine größere Wärmemenge abführen können, so dass ihre maximale Betriebstemperatur deutlich reduziert werden kann.
Dieses Konzept erweist sich jedoch in neuesten Motorkonstruktionen mit noch höherer spezifischer Motorleistung als problematisch. Schon nach kurzen
Motorlaufzeiten bilden sich in den heißesten Zonen des Kolbens, insbesondere im Kühlkanal, gut haftende Ablagerungen aus Ölkohle. Derartige Ablagerungen weisen zudem wärmeisolierende Eigenschaften auf, so dass das Abfließen der
Wärmemenge behindert wird. Dies hat zur Folge, dass die Temperatur des Kolbens während des Motorbetriebs unverhältnismäßig stark zunimmt. Bei Stahlkolben führt dies darüber hinaus zu verstärkter Zunderbildung. Im Extremfall werden diese Kolben so heiß, dass eine irreversible Degeneration des Stahl Werkstoffs einsetzt. Dies führt im weiteren Motorbetrieb zu Rissen im Stahlwerkstoff und in der weiteren Folge zu einem völligen Versagen der Kolbenfunktion.
Die EP 2 096 290 A1 offenbart eine Antihaft-Beschichtung auf der Basis von
Fluorsilanen.
Aus der DE 10 2008 020 906 A1 ist eine Schutzbeschichtung für Einrichtungen und Industrie bekannt. Diese Schutzbeschichtung umfasst eine polymerbasierte Matrix, insbesondere ein Polysiloxan, in die Partikel, insbesondere aus hexagonalem
Bornitrid, eingelagert sind. Derartige Beschichtungen weisen unter Anderem hervorragende Nichtbenetzungseigenschaften zur Verhinderung der Ablagerung von thermisch isolierenden Feststoffen wie Aschen oder Schlacken auf.
Es hat sich gezeigt, dass die bis jetzt bekannten Beschichtungen entweder sehr aufwändig zu applizieren sind und Beschichtungen mit einer ungleichmäßigen Schichtdicke erzeugen, so dass zumindest stellenweise wärmedämmende Effekte resultieren, die den Wärmeabfluss aus dem Kühlkanal behindern. Insbesondere kann die gesamte Oberfläche eines Kühlkanals nicht mit zufriedenstellenden Ergebnissen beschichtet werden.
Die Aufgabe der vorliegenden Erfindung besteht darin, ein gattungsgemäßes
Verfahren so weiterzuentwickeln, dass eine gleichmäßig dünne Beschichtung über die gesamte Oberfläche des Kühlkanals erhalten werden kann.
Die Lösung besteht in einem Verfahren mit den folgenden Verfahrensschritten: a) Einbringen einer definierten Menge eines Beschichtungsmittels in Form einer Suspension von hexagonalem Bornitrid mit einer Lösung auf der Basis mindestens eines thermisch aushärtbaren anorganischen Bindemittels und mindestens eines Lösemittels in den Kühlkanal; b) Verteilen des Beschichtungsmittels auf der
Oberfläche des Kühlkanals durch Bewegen des Kolbens um mindestens zwei Raumachsen; c) Trocknen des auf der Oberfläche des Kühlkanals verteilten
Beschichtungsmittels mittels einer laminaren Luftströmung; d) Thermisches
Aushärten des Beschichtungsmittels zum Fertigstellen einer auf der Oberfläche des Kühlkanals haftenden Beschichtung.
Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, dass ein Kolben herstellbar ist, bei dem die gesamte Oberfläche des Kühlkanals mit einer
hexagonales Bornitrid enthaltende Beschichtung versehen ist, die über die gesamte Oberfläche des Kühlkanals eine gleichmäßige Dicke aufweist, die vorzugsweise zwischen 10μηη und Ι ΟΌμιτι beträgt. Dadurch wird erreicht, dass der Wärmedurchgang aus dem Kühlkanal wenig bis gar nicht beeinträchtigt wird.
Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen.
Zweckmäßigerweise wird vor Schritt a) die Größe der Oberfläche des Kühlkanals bestimmt, um das Beschichtungsmittel optimal dosieren zu können. Bei einer
Oberfläche des Kühlkanals von 190cm2 beträgt eine optimale Dosierung 7ml, also etwa 36,84μΙ pro Quadratzentimeter.
Vorzugsweise wird vor Schritt a) die Oberfläche des Kühlkanals mit einem
Reinigungsmittel gereinigt, um die Haftung der Beschichtung auf der Oberfläche zu verbessern. Geeignete Reinigungsmittel sind bspw. Methanol, Ethanol, Aceton, 1 - Propanol und 2-Propanol sowie andere niedrig kettige Alkohole.
Das in Schritt a) verwendete Beschichtungsmittel enthält als bevorzugtes Bindemittel mindestens ein Polysiloxan, welches vorzugsweise in Ethanol gelöst wird.
Als weiteres Bindemittel kann Natrium- und/oder Kaliumsilikat verwendet werden, wodurch die Anwendung eines Sol-Gel-Verfahrens ermöglicht wird.
In Schritt b) kann der Kolben bspw. mittels eines Biaxialmischgeräts bewegt werden. Biaxialmischgeräte sind an sich bekannt und werden in der Regel zur Mischung von Lacken und Farben eingesetzt.
Vorzugsweise wird in Schritt c) eine laminare Luftströmung mit einer Geschwindigkeit von 1 bis 2 Metern pro Sekunde angewendet, um zu vermeiden, dass das
Beschichtungsmittel durch eine zu schnelle Luftströmung ungleichmäßig auf der Oberfläche des Kühlkanals verteilt wird. Das Trocknen des Beschichtungsmittels erfolgt zweckmäßigerweise bei Raumtemperatur.
In Schritt d) kann das thermische Aushärten bspw. bei einer Temperatur von 180°C bis 220°C durchgeführt werden. Ein Ausführungsbeispiel der vorliegenden Erfindung wird im Folgenden anhand der beigefügten Zeichnung näher beschrieben. Es zeigen in einer schematischen, nicht maßstabsgetreuen Darstellung:
Figur 1 : ein Ausführungsbeispiel eines erfindungsgemäßen Kolbens im Schnitt;
Figur 2 eine fotografische Darstellung eines Kolbengrundkörpers gemäß Figur
1 mit der nach dem erfindungsgemäßen Verfahren aufgetragenen Beschichtung;
Figur 3 eine weitere fotografische Darstellung eines Kolbengrundkörpers mit einer fehlerhaften Beschichtung.
Der Kolben 10 weist einen Kolbenkopf 11 mit einem Kolbenboden 12, einer
Verbrennungsmulde 13, einem umlaufenden Feuersteg 14 sowie einer umlaufenden Ringpartie 15 mit Ringnuten zur Aufnahme von Kolbenringen (nicht darstellt) auf.
Der Kolben 10 weist ferner einen Kolbenschaft 16 auf, der in an sich bekannter Weise mit Kolbennaben 17 versehen ist, in welche Nabenbohrungen 18 zur
Aufnahme eines Kolbenbolzens (nicht dargestellt) eingebracht sind. Die
Kolbennaben 17 sind über Laufflächen 19 miteinander verbunden.
Der Kolben 10 ist im Ausführungsbeispiel als einstückiger Kolben aus einem
Stahlwerkstoff ausgebildet. Hierbei sind ein Kolbengrundkörper 21 und ein
Kolbenoberteil 22 durch Schweißen oder Löten unlösbar miteinander verbunden. Der Kolbengrundkörper 21 und das Kolbenoberteil 22 können aus demselben Werkstoff oder unterschiedlichen Werkstoffen bestehen.
Der Kolbengrundkörper 21 und das Kolbenoberteil 22 bilden gemeinsam einen in Höhe der Ringpartie 15 umlaufenden Kühlkanal 23, der Ölzulauf-bzw.
Ölablaufbohrungen 23', 23" aufweist. Die Oberfläche 24 des Kühlkanals 23 ist mit einer hexagonales Bornitrid (hBN) enthaltenden Beschichtung 25 versehen. Die Dicke der Beschichtung 25 beträgt vorzugsweise 20μηη bis 40μηη. Die Wärmeleitfähigkeit der Beschichtung 25 beträgt vorzugsweise 40W/mK bis 50W/mK, abhängig vom Reinheitsgrad des hexagonalen Bornitrids. Der Reibungskoeffizient der Beschichtung 25 ist bis zu einer Temperatur von 600°C konstant und beträgt 0,2. Die spezifische Oberfläche der Beschichtung 25 beträgt, abhängig vom
Reinheitsgrad des hexagonalen Bornitrids, 5m2/g bis 15m2/g.
Im Folgenden wird ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens zur Beschichtung des Kühlkanals 23 beschrieben.
Zunächst wird die Oberfläche des Kühlkanals 23 in cm2 bestimmt, um das
Beschichtungsmittel optimal dosieren zu können.
Die Oberfläche 24 des Kühlkanals 23 wird gründlich mit Ethanol gereinigt. Hierzu werden, je nach Größe der Oberfläche 24, 10ml bis 30ml Ethanol über eine der Ölzulauf- bzw. Ölablaufbohrungen 23', 23" in den Kühlkanal 23 eingebracht und die Bohrungen 23', 23" mit Stopfen (vorzugsweise aus einem gummielastischen
Werkstoff) verschlossen. Der Kolben 10 wird bewegt, um das Ethanol im Kühlkanal zu verteilen und sicherzustellen, dass die gesamte Oberfläche 24 mit Ethanol benetzt wird. Hierzu kann bspw. ein Biaxialmischer verwendet werden. Anschließend werden die Stopfen entfernt, so dass das verbleibende Ethanol aus dem Kühlkanal 23 abläuft. Die Oberfläche 24 des Kühlkanals 23 wird über eine der Bohrungen 23', 23" mittels einer laminaren Luftströmung mit einer Fließgeschwindigkeit von 1 m/s bis 2m/s fünf Minuten bei Raumtemperatur getrocknet.
Als Beschichtungsmittel wird eine Suspension von Partikeln aus hexagonalem
Bornitrid in einem in Ethanol gelösten Polysiloxan verwendet. Der Gehalt an hexagonalem Bornitrid in der Suspension beträgt im Ausführungsbeispiel 104g/l, bezogen auf das Volumen der reinen Polysiloxan-Lösung. Der Gehalt an Polysiloxan beträgt im Ausführungsbeispiel 61 g/l, bezogen auf das Gesamtvolumen der
Suspension. Der Ethanolgehalt der Suspension beträgt im Ausführungsbeispiel 647g/l, bezogen auf das Gesamtvolumen der Suspension. Ein derartiges
Beschichtungsmittel ist bspw. unter der Bezeichnung HeBoCoat ®400E bei dem Hersteller Henze Boron Nitride Products AG, Grundweg 1 , 87493 Lauben, käuflich zu erwerben. Wesentlich ist, dass das Beschichtungsmittel frei von halogenhaltigen Stoffen, insbesondere frei von fluorhaltigen Stoffen ist.
Die Dosierung erfolgt bezogen auf die Größe der Oberfläche 24 des Kühlkanals 23 in cm2. Eine optimale Dosierung der Suspension beträgt 7ml für eine Oberfläche 24 des Kühlkanals 23 von 190 cm2. Dies entspricht im Ausführungsbeispiel 4,53g Ethanol, 0,43g Polysiloxan und 0,73g hBN.
Ein Versuch mit verschiedenen Dosierungen des Beschichtungsmittels für einen Kühlkanal 23 mit einer Oberfläche 24 von 190 cm2 erbrachte die folgenden
Ergebnisse, wobei die Ergebnisse der optimalen Dosierung und der zu hohen Dosierung in den Figuren 2 und 3 illustriert sind:
Figure imgf000008_0001
Das Beschichtungsmittel wird über eine der Bohrungen 23', 23" in den Kühlkanal 23 eingebracht, zweckmäßigerweise mit Hilfe einer Dosiervorrichtung, bspw. einer Dosierpumpe. Die Bohrungen 23', 23" werden mit Stopfen, vorzugsweise aus einem gummielastischen Werkstoff, verschlossen.
Anschließend wird der Kolben 10 um mindestens zwei Raumachsen bewegt. Diese Bewegung ist wesentlich, um das Beschichtungsmittel gleichmäßig auf der
Oberfläche 24 des Kühlkanals zu verteilen. Dazu wird zweckmäßigerweise eine Rotationseinheit, bspw. ein an sich bekannter Biaxialmischer verwendet, mit dem der Kolben 10 sowohl um seine Längsachse als auch um eine senkrecht zur Längsachse verlaufende Achse gedreht wird.
Danach werden die Stopfen entfernt. Das auf der Oberfläche 24 des Kühlkanals 23 haftende Beschichtungsmittel wird über eine der Bohrungen 23', 23" mittels einer laminaren Luftströmung mit einer Fließgeschwindigkeit von 1 m/s bis 2m/s etwa fünf Minuten bei Raumtemperatur (ca. 20°C) getrocknet. Dabei wird das Ethanol aus dem Beschichtungsmittel ausgetrieben. Dieser Trocknungsschritt ist wesentlich, um eine fehlerfreie gleichmäßige Trocknung des Beschichtungsmittels zu gewährleisten. Die Fließgeschwindigkeit der laminaren Luftströmung darf nicht zu groß sein, da sonst das in der Nähe der Bohrungen 23', 23" auf der Oberfläche 24 des Kühlkanals 23 haftende Beschichtungsmittel durch den Luftdruck verschoben würde, so dass eine Beschichtung mit ungleichmäßiger Dicke resultieren würde.
Zum Herstellen der fertigen Beschichtung 25 erfolgt eine Aushärtung durch
Wärmebehandlung, wobei der Kolben 10 während einer Dauer von 25min bis 60min auf 180°C bis 220°C erwärmt wird. Hierbei wird in an sich bekannter Weise das Polysiloxan zu einer SiO2-Matrix umgesetzt, in der die Partikel aus hexagonalem Bornitrid eingelagert sind.
Die resultierende Beschichtung 25 weist eine Oberflächenenergie von 15-17 mN/m und eine Schichtdicke von 20μηη bis 40μηη auf, die über die gesamte Oberfläche 24 des Kühlkanals 23 konstant ist. Aufgrund ihrer geringen Schichtdicke hat die
Beschichtung 25 keine thermisch isolierende Wirkung auf den Werkstoff des Kolbens 10. Die Beschichtung 25 ist bis 600°C temperaturbeständig.

Claims

Patentansprüche
1. Verfahren zur Beschichtung der Oberfläche (24) eines geschlossenen,
Ölzulauf- bzw. Ölablaufbohrungen (23', 23") aufweisenden Kühlkanals (23) eines Kolbens (10) für einen Verbrennungsmotor mit einem hexagonales Bornitrid enthaltenden Beschichtungsmitte!, gekennzeichnet durch die folgenden Verfahrensschritte:
a) Einbringen einer definierten Menge eines Beschichtungsmittels in Form einer Suspension von hexagonalem Bornitrid mit einer Lösung auf der Basis mindestens eines thermisch aushärtbaren anorganischen Bindemittels und mindestens eines Lösemittels in den Kühlkanal (23); b) Verteilen des Beschichtungsmittels auf der Oberfläche (24) des
Kühlkanals (23) durch Bewegen des Kolbens (10) um mindestens zwei Raumachsen;
c) Trocknen des auf der Oberfläche (24) des Kühlkanals (23) verteilten
Beschichtungsmittels mittels einer laminaren Luftströmung;
d) Thermisches Aushärten des Beschichtungsmittels zum Fertigstellen einer auf der Oberfläche (24) des Kühlkanals (23) haftenden Beschichtung (25).
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass vor Schritt a) die Größe der Oberfläche (24) des Kühlkanals (23) bestimmt wird.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass vor Schritt a) die Oberfläche (24) des Kühlkanals (23) mit einem Reinigungsmittel gereinigt wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass das
Reinigungsmittel aus der Gruppe umfassend Methanol, Ethanol, Aceton, 1 - Propanol, 2-Propanol ausgewählt wird.
5. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass in Schritt a) als Bindemittel mindestens ein Polysiloxan verwendet wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass als Lösemittel Ethanol verwendet wird.
7. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass als weiteres
Bindemittel Natrium- und/oder Kaliumsilikat verwendet wird.
8. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass in Schritt a) eine Menge von 7ml des Beschichtungsmittels zur Beschichtung einer Oberfläche (24) des Kühlkanals (23) von 190cm2 verwendet wird.
9. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass in Schritt b) der Kolben (10) mittels eines Biaxialmischgeräts bewegt wird.
10. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass in Schritt c) eine laminare Luftströmung mit einer Geschwindigkeit von 1 bis 2 Metern pro Sekunde angewendet wird.
11. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass in Schritt c) das Trocknen bei Raumtemperatur durchgeführt wird.
12. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass in Schritt d) das thermische Aushärten bei einer Temperatur von 180°C bis 220°C durchgeführt wird.
13. Kolben (10) für einen Verbrennungsmotor, mit einem Kolbenkopf (11 ) und
einem Kolbenschaft (16), wobei der Kolben köpf (11 ) eine äußere umlaufende Ringpartie (15) sowie einen in Höhe der Ringpartie (15) umlaufenden, geschlossenen, Ölzulauf- bzw. Ölablaufbohrungen (23', 23") aufweisenden Kühlkanal (23) aufweist, dadurch gekennzeichnet, dass die gesamte Oberfläche (24) des Kühlkanals (23) mit einer hexagonales Bornitrid enthaltenden
Beschichtung (25) versehen ist, die über die gesamte Oberfläche (24) des Kühlkanals (23) eine gleichmäßige Dicke aufweist.
14. Kolben nach Anspruch 13, dadurch gekennzeichnet, dass die Dicke der Beschichtung (25) zwischen 20μηη und 40μηη beträgt.
15. Kolben nach Anspruch 13, dadurch gekennzeichnet, dass er aus einem Stahlwerkstoff hergestellt ist.
PCT/EP2016/063324 2015-06-12 2016-06-10 Verfahren zur beschichtung der oberfläche eines geschlossenen kühlkanals eines kolbens für einen verbrennungsmotor sowie mittels dieses verfahrens herstellbarer kolben WO2016198618A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112017025644-4A BR112017025644A2 (pt) 2015-06-12 2016-06-10 método para revestir uma superfície de um canal de refrigeração fechado de um pistão para um motor de combustão interna e pistão que pode ser produzido pelo dito método
US15/735,464 US10252293B2 (en) 2015-06-12 2016-06-10 Method for coating cooling channel with coating containing hexagonal boron nitride
JP2017560696A JP6408722B2 (ja) 2015-06-12 2016-06-10 内燃エンジン用ピストンの環状クーリングチャンネルの表面を被覆する方法および当該方法によって製造可能なピストン
EP16732963.0A EP3307922B1 (de) 2015-06-12 2016-06-10 Verfahren zur beschichtung der oberfläche eines geschlossenen kühlkanals eines kolbens für einen verbrennungsmotor
CN201680033189.1A CN107787402B (zh) 2015-06-12 2016-06-10 涂覆内燃机活塞的闭合冷却通道的表面的方法及能够由所述方法制造的活塞

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015007334 2015-06-12
DE102015007334.6 2015-06-12

Publications (1)

Publication Number Publication Date
WO2016198618A1 true WO2016198618A1 (de) 2016-12-15

Family

ID=56289464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/063324 WO2016198618A1 (de) 2015-06-12 2016-06-10 Verfahren zur beschichtung der oberfläche eines geschlossenen kühlkanals eines kolbens für einen verbrennungsmotor sowie mittels dieses verfahrens herstellbarer kolben

Country Status (6)

Country Link
US (1) US10252293B2 (de)
EP (1) EP3307922B1 (de)
JP (1) JP6408722B2 (de)
CN (1) CN107787402B (de)
BR (1) BR112017025644A2 (de)
WO (1) WO2016198618A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018202861A1 (de) * 2017-05-05 2018-11-08 Federal-Mogul Nürnberg GmbH Thermische isolierung des mittenkegels eines stahlkolbens
WO2018202858A1 (de) * 2017-05-05 2018-11-08 Federal-Mogul Nürnberg GmbH Thermische isolierung eines stahlkolbens mittels einer versiegelten amorphen phosphat-schicht
WO2018202859A1 (de) * 2017-05-05 2018-11-08 Federal-Mogul Nürnberg GmbH Thermische isolierung eines stahlkolbens mittels einer mangan-phosphat- und einer versiegelungsschicht auf polysilazan-, wasserglas- oder polysiloxan-basis

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020208462A1 (de) * 2020-07-07 2022-01-13 Mahle International Gmbh Verfahren zum Beschichten eines Kolbens

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2096290A1 (de) 2008-02-29 2009-09-02 Caterpillar Motoren GmbH & Co. KG Kolben für Brennkraftmaschinen mit einem Kühlraum mit Antihaftbeschichtung
DE102008020906A1 (de) 2008-04-18 2009-10-22 Ltn Nanovation Ag Schutzbeschichtung für Einrichtungen in Kraftwerken und Industrie
DE102011107659A1 (de) * 2011-07-12 2013-01-17 Mahle International Gmbh Verfahren zur Herstellung eines Kolbens für einen Verbrennungsmotor sowie Kolben für einen Verbrennungsmotor
DE102012025283A1 (de) * 2012-12-21 2014-06-26 Mahle International Gmbh Kolben für einen Verbrennungsmotor und Verfahren zu seiner Herstellung
US20140272188A1 (en) * 2013-03-15 2014-09-18 Mahle International Gmbh Anti-friction coating to piston assembly

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060111665A (ko) * 2004-01-07 2006-10-27 가부시키가이샤 고마쓰 세이사쿠쇼 내연기관용 피스톤
DE102007029668A1 (de) * 2007-06-27 2009-01-08 Epg (Engineered Nanoproducts Germany) Ag Ultraharte Kompositschichten auf Metalloberflächen und Verfahren zu ihrer Herstellung
DE102012211440A1 (de) * 2011-10-21 2013-04-25 Mahle International Gmbh Kolben
US9169800B2 (en) * 2011-11-28 2015-10-27 Federal-Mogul Corporation Piston with anti-carbon deposit coating and method of construction thereof
CN105190000B (zh) * 2013-03-05 2018-11-20 费德罗-莫格尔公司 带有抗积碳涂料的活塞及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2096290A1 (de) 2008-02-29 2009-09-02 Caterpillar Motoren GmbH & Co. KG Kolben für Brennkraftmaschinen mit einem Kühlraum mit Antihaftbeschichtung
DE102008020906A1 (de) 2008-04-18 2009-10-22 Ltn Nanovation Ag Schutzbeschichtung für Einrichtungen in Kraftwerken und Industrie
DE102011107659A1 (de) * 2011-07-12 2013-01-17 Mahle International Gmbh Verfahren zur Herstellung eines Kolbens für einen Verbrennungsmotor sowie Kolben für einen Verbrennungsmotor
DE102012025283A1 (de) * 2012-12-21 2014-06-26 Mahle International Gmbh Kolben für einen Verbrennungsmotor und Verfahren zu seiner Herstellung
US20140272188A1 (en) * 2013-03-15 2014-09-18 Mahle International Gmbh Anti-friction coating to piston assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018202861A1 (de) * 2017-05-05 2018-11-08 Federal-Mogul Nürnberg GmbH Thermische isolierung des mittenkegels eines stahlkolbens
WO2018202858A1 (de) * 2017-05-05 2018-11-08 Federal-Mogul Nürnberg GmbH Thermische isolierung eines stahlkolbens mittels einer versiegelten amorphen phosphat-schicht
WO2018202859A1 (de) * 2017-05-05 2018-11-08 Federal-Mogul Nürnberg GmbH Thermische isolierung eines stahlkolbens mittels einer mangan-phosphat- und einer versiegelungsschicht auf polysilazan-, wasserglas- oder polysiloxan-basis

Also Published As

Publication number Publication date
CN107787402A (zh) 2018-03-09
BR112017025644A2 (pt) 2018-09-11
CN107787402B (zh) 2019-11-19
EP3307922B1 (de) 2019-05-22
JP6408722B2 (ja) 2018-10-17
JP2018514701A (ja) 2018-06-07
US20180163310A1 (en) 2018-06-14
US10252293B2 (en) 2019-04-09
EP3307922A1 (de) 2018-04-18

Similar Documents

Publication Publication Date Title
EP3307922B1 (de) Verfahren zur beschichtung der oberfläche eines geschlossenen kühlkanals eines kolbens für einen verbrennungsmotor
DE3102575C2 (de)
EP0758937B1 (de) Verfahren zum beloten von metallischen strukturen mit einem unterschiedliche zustände aufweisenden haftmaterial
EP1748253B1 (de) Brennkammer und Verfahren zur Herstellung einer Brennkammer
DE2348932A1 (de) Verbundrolle und verfahren zu ihrer herstellung
EP3039169B1 (de) Vorrichtung zum beschichten von zylinderwänden
EP2753821A1 (de) VERSCHLEIßOPTIMIERTE HERSTELLUNG VON KONISCHEN SPRITZLÖCHERN
DE3341205A1 (de) Magnetscheibe und verfahren zu deren herstellung
EP3493937B1 (de) Erntemesser und verfahren zu dessen herstellung
AT403027B (de) Eisenschwamm-brikettierwalze
DE102009009128A1 (de) Lagereinrichtung
DE102014117666B4 (de) Geräuschverringernde Struktur von Drehzahländerungseinrichtung für elektrische kontinuierliche variable Ventilsteuerung
DE2615633B2 (de) Verfahren zur Herstellung eines inhibierten doppelbasigen Treibsatzes
DE2100528C3 (de) Hitzebeständiges und wärmeisolierendes Rohr
DE2902083C3 (de) Verfahren zur Herstellung eines Kolbens für eine Scheibenbremse
DE2420937A1 (de) Verfahren und vorrichtung zum vulkanisieren eines roehrenfoermigen halbfertigerzeugnisses aus unvulkanisiertem kautschuk, insbesondere ein halbfertigerzeugnis fuer kraftfahrzeugradiatorschlaeuche
EP3629450A1 (de) Elektromotor mit flüssigkeitskühlung
DE2540996C2 (de) Verfahren und Vorrichtung zum Aufbringen einer Außenbeschichtung auf einen Gewebeschlauch, insbesondere Feuerlöschschlauch
EP0100876A2 (de) Einspritzkopf, insbesondere zum Aufbringen einer Beschichtung auf flächige Werkstücke
WO2006131457A2 (de) Verfahren zur steuerung der leistung von der röstmaschine zum brennen der eisenerzpellets
DE102017221615B3 (de) Verfahren zum Herstellen eines Wärmetauschers sowie Wärmetauscher
DE10245284A1 (de) Verfahren und Vorrichtung zum Strang- und Strangrohrpressen von Kleinteilen, insbesondere Holzkleinteilen, z.B. für Palettenklötze
DE102017129549A1 (de) Verfahren und Vorrichtung zum induktiven Härten einer Kurbelwelle
DE202014102781U1 (de) Gleitlager für eine Brennkraftmaschine
EP2599895B1 (de) Emaillierung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16732963

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017560696

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15735464

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016732963

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017025644

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017025644

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171129