WO2016197554A1 - 动态特性可调宏微一体化复合平台 - Google Patents

动态特性可调宏微一体化复合平台 Download PDF

Info

Publication number
WO2016197554A1
WO2016197554A1 PCT/CN2015/095410 CN2015095410W WO2016197554A1 WO 2016197554 A1 WO2016197554 A1 WO 2016197554A1 CN 2015095410 W CN2015095410 W CN 2015095410W WO 2016197554 A1 WO2016197554 A1 WO 2016197554A1
Authority
WO
WIPO (PCT)
Prior art keywords
macro
platform
motion
micro
outer frame
Prior art date
Application number
PCT/CN2015/095410
Other languages
English (en)
French (fr)
Inventor
杨志军
白有盾
陈新
高健
陈新度
贺云波
陈云
李瑞奇
陈超然
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2016197554A1 publication Critical patent/WO2016197554A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/34Relative movement obtained by use of deformable elements, e.g. piezoelectric, magnetostrictive, elastic or thermally-dilatable elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/0032Arrangements for preventing or isolating vibrations in parts of the machine
    • B23Q11/0039Arrangements for preventing or isolating vibrations in parts of the machine by changing the natural frequency of the system or by continuously changing the frequency of the force which causes the vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25HWORKSHOP EQUIPMENT, e.g. FOR MARKING-OUT WORK; STORAGE MEANS FOR WORKSHOPS
    • B25H1/00Work benches; Portable stands or supports for positioning portable tools or work to be operated on thereby
    • B25H1/02Work benches; Portable stands or supports for positioning portable tools or work to be operated on thereby of table type

Definitions

  • the invention relates to a precision motion platform, in particular to a macro-integrated composite platform with adjustable dynamic characteristics.
  • a one-dimensional micro-motion platform with adjustable stiffness frequency based on the principle of stress stiffening (Invention Application No.: 201410214605.0) Invented a pre-stressed film with adjustable frequency, which can be used according to different working conditions and driving frequencies. Adjusting the natural frequency of the micro-motion platform before or during the work, eliminating the flexible hinge amplification mechanism, and replacing the piezoelectric ceramic driver with a voice coil motor, and determining the load condition in real time through non-contact drive and displacement measurement, and according to The change of the load condition and the dynamic adjustment of the frequency of the drive mechanism enable intelligent matching of dynamic characteristics.
  • the mechanism may realize an uncontrollable amplitude in the resonance region, so that the micro-motion platform cannot operate at any frequency point, and it is necessary to adjust the avoidance resonance point to define the working frequency range.
  • the invention adds an anti-resonance structure, so that the micro-motion platform can work at any frequency point without generating infinite amplitude, without avoiding the resonance point, can work in any frequency band, and realize large stroke height of one-dimensional macro-micro motion. Accuracy and feed at any operating frequency.
  • the object of the present invention is to propose an adjustable dynamic micro-integration that can work at any frequency point.
  • the composite platform can realize high-speed precision motion through combined motion control.
  • a variable damper is provided to enable the micro-motion platform to transmit macro-motion platform motion and isolate vibration at any frequency, and achieve high-precision displacement compensation.
  • the damping size of the variable damper is matched with the stiffness frequency parameter to achieve controllable amplitude of the resonance region and improve the operating frequency range.
  • Dynamically adjustable macro-micro integrated platform including pedestal, macro-motion outer frame and micro-motion platform;
  • the micro-motion platform is disposed inside a frame of the macro-motion outer frame, and the micro-motion platform includes a core platform for placing a workpiece, and is used for a limited set of shrapnel, a variable damper for anti-resonance, and a displacement sensor for detecting the one-dimensional micro-displacement of the core platform, the core platform being connected to the macro-motion outer frame by the shrapnel set
  • the displacement sensor is disposed on the core platform, the displacement measurement direction is consistent with the feed direction of the core platform, and the variable damper is disposed between the macro-motion platform outer frame and the micro-motion platform, and Connected to the macro motion outer frame and the micro-motion platform respectively;
  • the base is provided with a guide rail, a slider and a U-shaped linear motor, the slider is slidable to the guide rail, and the U-shaped linear motor comprises a stator, a macro-motion outer frame mover, a micro-motion platform mover and The connecting member, the macro motion and the micro motion share the same stator;
  • the macro-moving outer frame is fixedly mounted on the slider, and is connected to the macro-moving outer frame mover through the connecting member, and the macro-moving outer frame mover, the micro-motion platform mover and the The stator controls its sliding on the guide rail to realize macro motion;
  • the core platform is fixed to the micro-motion platform mover by the connecting member, and the micro-movement of the stator is controlled by the micro-motion platform mover.
  • variable damper is an extruded damper or an electric/magnetic rheological damper.
  • variable damper is a shear damper.
  • shrapnel group, the core platform and the macro-motion outer frame are of a unitary structure.
  • the two sides of the core platform are connected to the inner wall of the macro-motion outer frame by the elastic piece group, the elastic piece groups are arranged in parallel, and the longitudinal direction of the elastic piece is perpendicular to the moving direction of the core platform. .
  • the macro-motion outer frame is provided with a groove at the joint of the elastic piece group, so that a thin deformable elastic member is formed inside the macro-motion outer frame, and the macro-motion outer frame is provided with the adjustment The frequency adjustment mechanism of the degree of deformation of the elastic member.
  • the frequency adjusting mechanism is a bolt passing through the slot, and two ends thereof are respectively connected to both sides of the slot.
  • the frequency adjustment mechanism includes a connecting rod passing through the slot and a piezoelectric ceramic driver for adjusting the dynamics of the pre-tightening force, and the linear motion direction of the piezoelectric ceramic driver is a pre-deformation of the elastic group direction. It is used to dynamically adjust the preload of the shrapnel group and thereby adjust the dynamic characteristics of the micro-motion platform.
  • the displacement sensor is a differential capacitance sensor or a photoelectric sensor.
  • the invention provides a macro-integrated composite platform with dynamic characteristics.
  • the macro-micro platform mover is driven at the same time, a large-scale high-speed motion can be realized as a whole; when the motion deviation occurs, the micro-motion platform has small inertia, no friction, and elastic deformation. Achieve precision displacement output, which can be driven separately to achieve high frequency motion deviation compensation.
  • high-speed precision motion can be realized.
  • the installation and use mode is consistent with the traditional platform, which is convenient for popularization and application.
  • the stiffness, frequency adjustment and variable damper are set, so that the micro-motion platform can transmit the macro-motion platform motion at any frequency. However, the vibration is blocked and the displacement compensation is realized with high precision.
  • the damping size of the variable damper is matched with the stiffness frequency parameter to realize the controllable amplitude of the resonance region and improve the working frequency range.
  • Figure 1 is a schematic view showing the structure of an embodiment of the present invention
  • Figure 2 is a schematic structural view of an embodiment of the present invention.
  • Figure 3 is a plan view of an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of an integrated platform according to an embodiment of the present invention.
  • base 1 macro-moving outer frame 2, micro-motion platform 3, core platform 31, shrapnel group 32, guide rail 11, slider 12, U-shaped linear motor 13, stator 131, macro-motion outer frame mover 132, micro The movable platform mover 133, the connecting member 134, the groove 33, the displacement sensor 34, the variable damper 35, the elastic member 21, the frequency adjusting mechanism 22, the bolt/connecting rod 221, and the piezoelectric ceramic driver 222.
  • the damped macro-micro integrated platform comprises a base 1, a macro-motion outer frame 2 and a micro-motion platform 3;
  • the macro motion outer frame 2 forms an integrated platform with the micro-motion platform 3, the micro-motion platform 3 is disposed inside the frame of the macro-motion outer frame 2, and the micro-motion platform 3 includes a workpiece for placing a workpiece.
  • the group 32 is coupled to the macro-motion outer frame 2, and the variable damper 34 is disposed between the macro-motion outer frame 2 and the core platform 31, and respectively respectively with the macro-motion outer frame 2 and the micro-motion
  • the core platform 31 in the platform 3 is connected to generate a damping force acting on the core platform 31; the displacement sensor 35 is disposed inside the variable damper 34,
  • the base 1 is provided with a guide rail 11, a slider 12 and a U-shaped linear motor 13, the slider 12 is slidable to the guide rail 11, and the U-shaped linear motor 13 includes a stator 131 and a macro-motion outer frame.
  • Child 132, The micro-motion platform mover 133 and the connecting member 134, the macro motion and the micro motion share the same stator 131;
  • the macro-motion outer frame 2 is fixedly mounted on the slider 13 and connected to the macro-motion outer frame mover 132 through the connecting member 134, and the macro-motion outer frame mover 132 and the micro-motion
  • the platform mover 133 and the stator 121 control the sliding of the guide rail 11 to realize macro motion
  • the core platform 31 is fixed to the fine movement platform mover 133 by the connecting member 134, and the micro motion of the stator 131 is controlled by the fine movement platform mover 133.
  • the U-shaped linear motor 12 realizes one-dimensional macro-micro motion, which can move the range of large stroke, small inertia and fast response speed, including the adjustment of the macro motion large stroke of the macro motion outer frame 2, and also includes the micro-motion platform. 3
  • the precise positioning is realized on the micro motion, so that the dynamic characteristic adjustable macro-micro integrated composite platform of the invention can realize large-scale and precise mobile positioning.
  • a displacement damper 35 is disposed on the displacement sensor 34 for connecting the macro-motion outer frame 2 and the core platform 31, and the variable damper 35 functions to avoid infinite frequency when resonance occurs.
  • the operation of the micro-motion platform 3 is in any frequency range, and it is not necessary to adjust to avoid the resonance point, thereby improving the operating frequency range.
  • the variable damper 35 is supported by the displacement sensor 34 connected between the macro motion outer frame 2 and the core platform 31, thereby reducing the independent connection structure of the entire dynamic characteristic adjustable micro motion platform and reducing the fretting frequency. The range is reduced by the increase of the connection structure, ensuring the maximum operating frequency range, and the damping size of the variable damper 35 is matched with the stiffness frequency parameter to function as a vibration isolation and a low-pass filter.
  • variable damper 35 is an extruded damper or an electric/magnetic rheological damper. Extrusion type damping is large, it can be fixed in package, no leakage, and easy to implement.
  • variable damper 35 is a shear type damper.
  • the shear damper has good linearity and is easy to control.
  • the shrapnel group 32, the core platform 31 and the macro motion outer frame 2 are one Body structure.
  • the integrated design of the macro-motion outer frame 2 and the micro-motion platform 3 is compact in structure, and is obtained by milling, electric spark machining, etc. of the whole piece of material, thereby avoiding the assembly error of the parts and improving the movement precision of the platform.
  • the two sides of the core platform 31 are connected to the inner wall of the macro-motion outer frame 2 through the elastic group 32, the elastic group 32 is arranged in parallel, and the length direction of the elastic piece is perpendicular to the core.
  • the parallel arrangement of the shrapnel groups 32 effectively moves the limit core platform 31 in one dimension, and the movement of the core platform 31 in the non-feeding direction is suppressed under the formation of the shrapnel group 32.
  • a groove 33 is formed at a joint of the macro-motion outer frame 2 and the elastic piece group 32, so that a thin deformable elastic member 21 is formed inside the macro-motion outer frame 2, and the macro-motion outer frame 2 is provided with the frequency adjustment mechanism 22 that adjusts the degree of deformation of the elastic member 21.
  • the frequency adjusting mechanism 22 is a bolt 221 passing through the groove 33, and two ends thereof are respectively connected to both sides of the groove 33.
  • the bolt 221 can manually adjust the displacement in the longitudinal direction, change the deformation degree of the elastic member 21, and then change the elastic tension of the elastic piece group 32, thereby realizing dynamic adjustment of the natural frequency of the structure of the platform.
  • the frequency adjustment mechanism 22 includes a connecting rod 221 passing through the slot 33 and a piezoelectric ceramic driver 222 for adjusting the dynamics of the preload force, and the linear motion direction of the piezoelectric ceramic driver 222 is the The pre-deformation direction of the shrapnel group 32.
  • the piezoelectric ceramic driver 222 can be displaced in the longitudinal direction of the connecting rod 221 under the applied voltage, and the deformation degree of the elastic member 21 is changed, thereby changing the tension of the elastic piece of the elastic piece group 32, thereby realizing the platform. Dynamic adjustment of the natural frequency of the structure.
  • the displacement sensor 34 is a differential capacitance sensor or a photoelectric sensor. Differential The capacitive sensor has less mechanical displacement, high precision and better anti-interference. The photoelectric sensor has the advantages of high precision, fast response, non-contact, etc. The structure is simple and the volume is small, and it can be used as the choice of displacement sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

动态特性可调宏微一体化复合平台,当宏微平台动子同时驱动时,可实现整体大范围的高速运动;当出现运动偏差时,微动平台由于惯量小、无摩擦、通过弹性变形实现精密位移输出,可以单独驱动实现高频运动偏差补偿。通过复合运动控制,可以实现高速精密运动,安装使用方式与传统平台一致,方便推广应用,同时设置有刚度、频率调节机构和可变阻尼器,使微动平台在任意频率下能传递宏动平台运动且隔离振动,并实现高精度的位移补偿,同时可变阻尼器的阻尼大小与刚度频率参数配合,保证任意频率下的高精度位移补偿,提高工作频率范围。

Description

动态特性可调宏微一体化复合平台 技术领域
本发明涉及精密运动平台,尤其涉及动态特性可调宏微一体化复合平台。
背景技术
随着科技的进步,人们对产品的要求越来越高,促使生产商对产品的加工精度要求也越来越高,现有设备中高精度进给运动平台的行程普遍较短,而大行程的普通宏运动设备的精度又无法满足实际需求,如果采用专用的大行程高精度运动设备,产品的制造成本将大幅增加。针对上述现状,一种能将大行程一般精度的宏运动和高精度小行程的微运动相复合的可以实现大行程高精度进给,且具有多方向的运动平台越来越受到行业的青睐。
在先技术:基于应力刚化原理的刚度频率可调一维微动平台(发明申请号:201410214605.0)发明了一种基于预应力膜,频率可调,能根据不同的工况和驱动频率,可在工作前或工作过程中调节微动平台的固有频率,取消了柔性铰链放大机构,并采用音圈电机替代压电陶瓷驱动器,通过非接触的驱动和位移测量,实时判断载荷工况,并根据载荷工况的变化,动态调节驱动机构的频率,可以实现动态特性的智能匹配。由于没有施加足够的阻尼,该机构在共振区可能会实现振幅不可控的情况,使其微动平台不可工作在任意频率点上,需要通过调节避开共振点,限定了工作频率范围。本发明增设了抗共振结构,使微动平台可工作在任意频率点上而不产生无穷的振幅,无需避开共振点,可在任意频带上工作,同时实现一维宏微运动的大行程高精度且在任意工作频率上的进给。
发明内容
本发明的目的在于提出可在任意频率点上工作的动态特性可调宏微一体化 复合平台,通过复合运动控制,可以实现高速精密运动,同时设置有可变阻尼器,使微动平台在任意频率下能传递宏动平台运动且隔离振动,并实现高精度的位移补偿,同时可变阻尼器的阻尼大小与刚度频率参数配合,实现共振区振幅可控,提高工作频率范围。
为达此目的,本发明采用以下技术方案:
动态特性可调宏微一体化复合平台,包括基座、宏动外框架和微动平台;
所述宏动外框架与所述微动平台形成一体化平台,所述微动平台设置在所述宏动外框架的框架内部,所述微动平台包括用于放置工件的核心平台、用于限位的弹片组、用于抗共振的可变阻尼器和用于所述检测所述核心平台一维微位移的位移传感器,所述核心平台通过所述弹片组连接于所述宏动外框架;所述位移传感器设置于所述核心平台上,位移测量方向与所述核心平台的进给方向一致,所述可变阻尼器设置于宏动平台外框架和所述微动平台之间,并分别与所述宏运动外框架及所述微动平台相连接;
所述基座上设置有导轨、滑块和U型直线电机,所述滑块可滑动于所述导轨,所述U型直线电机包括定子、宏动外框架动子、微动平台动子和连接件,宏运动和微运动共用同一个所述定子;
所述宏动外框架固定安装于所述滑块,并通过所述连接件连接于所述宏动外框架动子,由所述宏动外框架动子、所述微动平台动子和所述定子控制其滑动于所述导轨实现宏运动;
所述核心平台通过所述连接件固定于所述微动平台动子,并由所述微动平台动子控制其在所述定子的微运动。
更进一步说明,所述可变阻尼器为挤压型阻尼器或电/磁流变阻尼器。
更进一步说明,所述可变阻尼器为剪切型阻尼器。
更进一步说明,所述弹片组、所述核心平台和所述宏动外框架为一体式结构。
更进一步说明,所述核心平台的两侧通过所述弹片组与所述宏动外框架内壁连接,所述弹片组为平行布置,且所述弹片的长度方向垂直于所述核心平台的运动方向。
更进一步说明,所述宏动外框架与所述弹片组连接处设有槽,使所述宏动外框架内侧形成较薄的可变形的弹性件,所述宏动外框架设有调节所述弹性件变形度的所述频率调节机构。
更进一步说明,所述频率调节机构为穿过所述槽的螺栓,其两端分别连接于所述槽的两侧。
更进一步说明,所述频率调节机构包括穿过所述槽的连接杆和用于调节预紧力动态的压电陶瓷驱动器,所述压电陶瓷驱动器的直线运动方向为所述弹片组的预变形方向。用于动态调节所述弹片组的预紧力并进而调整微动平台的动力学特性。
更进一步说明,所述位移传感器为差动电容传感器或光电传感器。
本发明提出动态特性宏微一体化复合平台,当宏微平台动子同时驱动时,可实现整体大范围的高速运动;当出现运动偏差时,微动平台由于惯量小、无摩擦、通过弹性变形实现精密位移输出,可以单独驱动实现高频运动偏差补偿。通过复合运动控制,可以实现高速精密运动,安装使用方式与传统平台一致,方便推广应用,同时设置有刚度、频率调节和可变阻尼器,使微动平台在任意频率下能传递宏动平台运动但阻隔振动,并实现高精度的位移补偿,同时可变阻尼器的阻尼大小与刚度频率参数配合,实现共振区振幅可控,提高工作频率范围。
附图说明
图1是本发明的一个实施例的结构示意图;
图2是本发明的一个实施例的结构示意图;
图3是本发明的一个实施例的俯视图;
图4是本发明的一个实施例的一体化平台的结构示意图。
其中:基座1、宏动外框架2、微动平台3、核心平台31、弹片组32、导轨11、滑块12、U型直线电机13、定子131、宏动外框架动子132、微动平台动子133、连接件134、槽33、位移传感器34、可变阻尼器35、弹性件21、频率调节机构22、螺栓/连接杆221、压电陶瓷驱动器222。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
如图1或图2或图3所示,阻尼式宏微一体化复合平台,包括基座1、宏动外框架2和微动平台3;
所述宏动外框架2与所述微动平台3形成一体化平台,所述微动平台3设置在所述宏动外框架2的框架内部,所述微动平台3包括用于放置工件的核心平台31、用于限位的弹片组32、用于抗共振的可变阻尼器34和用于所述检测所述核心平台31微位移的位移传感器35,所述核心平台31通过所述弹片组32连接于所述宏动外框架2,所述可变阻尼器34设置于所述宏动外框架2和核心平台31之间,并分别与所述宏运动外框架2及所述微动平台3中的核心平台31相连接,产生作用在核心平台31上的阻尼力;所述位移传感器35设于所述可变阻尼器34内部,
所述基座1上设置有导轨11、滑块12和U型直线电机13,所述滑块12可滑动于所述导轨11,所述U型直线电机13包括定子131、宏动外框架动子132、 微动平台动子133和连接件134,宏运动和微运动共用同一个所述定子131;
所述宏动外框架2固定安装于所述滑块13,并通过所述连接件134连接于所述宏动外框架动子132,由所述宏动外框架动子132、所述微动平台动子133和所述定子121控制其滑动于所述导轨11实现宏运动;
所述核心平台31通过所述连接件134固定于所述微动平台动子133,并由所述微动平台动子133控制其在所述定子131的微运动。
基于U型直线电机12实现一维宏微运动,可大行程的运动范围,惯量小,响应速度快,其中包括对宏动外框架2的宏运动大行程的调节,同时也包括对微动平台3在微运动上实现精密定位,使本发明动态特性可调宏微一体化复合平台可实现大范围且精准的移动定位。
如图4所示,用于连接所述宏动外框架2与所述核心平台31的位移传感器34上设置有可变阻尼器35,可变阻尼器35的作用是避免产生共振时频率无穷大,使微动平台3的工作在任意频率范围,无需通过调节来避开共振点,提高了工作频率范围。此外,可变阻尼器35以连接于所述宏动外框架2与所述核心平台31之间的位移传感器34为载体,减少整个动态特性可调微运动平台的独立连接结构,减少微动频率范围因连接结构的增多而降低的影响,确保最大的工作频率范围,同时可变阻尼器35的阻尼大小与刚度频率参数配合,起隔振和低通滤波器作用。
更进一步说明,所述可变阻尼器35为挤压型阻尼器或电/磁流变阻尼器。挤压型阻尼大,可以固定封装,无泄露,容易实现。
更进一步说明,所述可变阻尼器35为剪切型阻尼器。剪切型阻尼器线性度好,容易控制。
更进一步说明,所述弹片组32、所述核心平台31和所述宏动外框架2为一 体式结构。宏动外框架2与微动平台3的一体化设计,结构紧凑,是由整块材料经过铣削、电火花加工等方式获取,避免了零件的装配误差,可以提高平台运动精度。
更进一步说明,所述核心平台31的两侧通过所述弹片组32与所述宏动外框架2内壁连接,所述弹片组32为平行布置,且所述弹片的长度方向垂直于所述核心平台31的运动方向。平行布置的弹片组32有效的限位核心平台31在一维上的运动,在所述弹片组32的牵制作用下,所述核心平台31在非进给方向的运动被抑制。
更进一步说明,所述宏动外框架2与所述弹片组32连接处设有槽33,使所述宏动外框架2内侧形成较薄的可变形的弹性件21,所述宏动外框架2设有调节所述弹性件21变形度的所述频率调节机构22。通过所述频率调节机构22改变弹片组32的松紧程度可以改变上述微运动中的机构固有频率,从而改变核心平台31的运动特性。
更进一步说明,所述频率调节机构22为穿过所述槽33的螺栓221,其两端分别连接于所述槽33的两侧。所述螺栓221可手动调节长度方向产生位移,改变所述弹性件21的变形度,进而改变弹片组32的弹片张紧力,实现对平台的结构固有频率的动态调整。
更进一步说明,所述频率调节机构22包括穿过所述槽33的连接杆221和用于调节预紧力动态的压电陶瓷驱动器222,所述压电陶瓷驱动器222的直线运动方向为所述弹片组32的预变形方向。所述压电陶瓷驱动器222在外加电压作用下可在连接杆221的长度方向产生位移,改变所述弹性件21的变形度,进而改变所述弹片组32的弹片张紧力,实现对平台的结构固有频率的动态调整。
更进一步说明,所述位移传感器34为差动电容传感器或光电传感器。差动 电容传感器机械位移少,精度高,抗干扰性更好,光电传感器具有精度高、反应快、非接触等优点,结构简单,体积小,都可作为位移传感器的选择。
以上结合具体实施例描述了本发明的技术原理。这些描述只是为了解释本发明的原理,而不能以任何方式解释为对本发明保护范围的限制。基于此处的解释,本领域的技术人员不需要付出创造性的劳动即可联想到本发明的其它具体实施方式,这些方式都将落入本发明的保护范围之内。

Claims (9)

  1. 一种动态特性可调宏微一体化复合平台,其特征在于:包括基座、宏动外框架和微动平台;
    所述宏动外框架与所述微动平台形成一体化平台,所述微动平台设置在所述宏动外框架的框架内部,所述微动平台包括用于放置工件的核心平台、用于支撑和位移输出的弹片组、用于抗共振的可变阻尼器和用于所述检测所述核心平台微位移的位移传感器,所述核心平台通过所述弹片组连接于所述宏动外框架;所述位移传感器设置于所述核心平台上,其位移测量方向与所述核心平台的进给方向一致,所述可变阻尼器设置于所述宏动平台外框架和所述微动平台之间,并分别与所述宏运动外框架及所述微动平台相连接;
    所述基座上设置有导轨、滑块和U型直线电机,所述滑块可滑动于所述导轨,所述U型直线电机包括定子、宏动外框架动子、微动平台动子和连接件,宏运动和微运动共用同一个所述定子;
    所述宏动外框架固定安装于所述滑块,并通过所述连接件连接于所述宏动外框架动子,由所述宏动外框架动子、所述微动平台动子和所述定子控制其滑动于所述导轨实现宏运动;
    所述核心平台通过所述连接件固定于所述微动平台动子,并由所述微动平台动子控制其在所述定子的微运动。
  2. 根据权利要求1所述的动态特性可调宏微一体化复合平台,其特征在于:所述可变阻尼器为挤压型阻尼器或电/磁流变阻尼器。
  3. 根据权利要求1所述的动态特性可调宏微一体化复合平台,其特征在于:所述可变阻尼器为剪切型阻尼器。
  4. 根据权利要求1所述的动态特性可调宏微一体化复合平台,其特征在于:所述弹片组、所述核心平台和所述宏动外框架为一体式结构。
  5. 根据权利要求1所述的动态特性可调宏微一体化复合平台,其特征在于:所述核心平台的两侧通过所述弹片组与所述宏动外框架内壁连接,所述弹片组为平行布置,且所述弹片的长度方向垂直于所述核心平台的运动方向。
  6. 根据权利要求5所述的动态特性可调宏微一体化复合平台,其特征在于:所述宏动外框架与所述弹片组连接处设有槽,使所述宏动外框架内侧形成较薄的可变形的弹性件,所述宏动外框架设有调节所述弹性件变形度的所述频率调节机构。
  7. 根据权利要求6所述的动态特性可调宏微一体化复合平台,其特征在于:所述频率调节机构为穿过所述槽的螺栓,其两端分别连接于所述槽的两侧。
  8. 根据权利要求6所述的动态特性可调宏微一体化复合平台,其特征在于:所述频率调节机构包括穿过所述槽的连接杆和用于调节预紧力动态的压电陶瓷驱动器,所述压电陶瓷驱动器的直线运动方向为所述弹片组的预变形方向。
  9. 根据权利要求1所述的动态特性可调宏微一体化复合平台,其特征在于:所述位移传感器为差动电容传感器或光电传感器。
PCT/CN2015/095410 2015-06-08 2015-11-24 动态特性可调宏微一体化复合平台 WO2016197554A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510312682.4A CN104889951A (zh) 2015-06-08 2015-06-08 动态特性可调宏微一体化复合平台
CN201510312682.4 2015-06-08

Publications (1)

Publication Number Publication Date
WO2016197554A1 true WO2016197554A1 (zh) 2016-12-15

Family

ID=54023124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095410 WO2016197554A1 (zh) 2015-06-08 2015-11-24 动态特性可调宏微一体化复合平台

Country Status (3)

Country Link
US (1) US10232477B2 (zh)
CN (1) CN104889951A (zh)
WO (1) WO2016197554A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110189791A (zh) * 2019-05-31 2019-08-30 中国工程物理研究院机械制造工艺研究所 基于双向预紧的初始转角误差可调节的微纳平台
CN111272535A (zh) * 2020-02-11 2020-06-12 武汉科技大学 一种微动滑动复合摩擦磨损试验系统及其操作方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104440343B (zh) * 2014-11-26 2017-05-10 广东工业大学 直线电机共定子双驱动宏微一体化高速精密运动一维平台
CN104889950A (zh) * 2015-06-08 2015-09-09 广东工业大学 动态特性可调微运动平台
CN104889951A (zh) * 2015-06-08 2015-09-09 广东工业大学 动态特性可调宏微一体化复合平台
CN106002312B (zh) * 2016-06-29 2018-01-23 广东工业大学 一种单驱动刚柔耦合精密运动平台及其实现方法及应用
CN108500744B (zh) * 2018-04-26 2019-06-18 上海工程技术大学 一种超声振动磨床
CN108742847B (zh) * 2018-06-12 2021-04-27 天津大学 一种宏动和微动结合的四自由度柔性针穿刺平台
CN109194190A (zh) * 2018-10-09 2019-01-11 浙江师范大学 一种利用永磁电磁混合调摩擦的悬臂式压电直线驱动器
CN109243520B (zh) * 2018-10-23 2024-04-12 安徽理工大学 一种宏微双驱动精密定位平台及其控制方法
CN111435094A (zh) * 2019-01-15 2020-07-21 大银微系统股份有限公司 挠性机构
CN110722523B (zh) * 2019-08-29 2023-01-20 广东工业大学 一种基于压电陶瓷量测及补偿的宏微复合运动平台及应用
CN110434835A (zh) * 2019-08-29 2019-11-12 华南理工大学 一种二自由度宏微精密定位平台装置及控制方法
CN111504687B (zh) * 2020-04-27 2021-12-21 华中科技大学 参数可实时调节的振动切削装置及方法
CN111865140A (zh) * 2020-08-24 2020-10-30 广东工业大学 一种基于微驱动单元的电机跟踪误差减小方法及实现装置
CN113059537B (zh) * 2021-02-26 2022-07-15 佛山市华道超精科技有限公司 柔性铰链机构、超精密直线运动平台及双工件工作台
CN113416628A (zh) * 2021-08-12 2021-09-21 天津大学 一种基于模块化的宏微结合细胞夹持平台
CN115055984B (zh) * 2022-08-16 2022-11-25 山东大学 一种电液微位移平台、微位移系统、精度补偿系统及方法
CN115208124B (zh) * 2022-09-16 2022-12-20 中国科学院宁波材料技术与工程研究所 一种集成主动阻尼的精密运动平台及其控制架构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2245975A (en) * 1990-04-27 1992-01-15 Ntn Toyo Bearing Co Ltd Movable table
CN1528559A (zh) * 2003-10-16 2004-09-15 上海大学 工业应用型主动磁悬浮机床导轨直线电机进给平台
CN104889951A (zh) * 2015-06-08 2015-09-09 广东工业大学 动态特性可调宏微一体化复合平台
CN204700849U (zh) * 2015-06-08 2015-10-14 广东工业大学 动态特性可调宏微一体化复合平台

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139119A (en) * 1988-08-13 1992-08-18 Robert Bosch Gmbh Apparatus for damping resilient vehicle wheel suspension systems
JP3709896B2 (ja) * 1995-06-15 2005-10-26 株式会社ニコン ステージ装置
DE19628974C1 (de) * 1996-07-18 1997-11-20 Leica Mikroskopie & Syst Einrichtung zur Schwingungsisolierung
JP3548353B2 (ja) * 1996-10-15 2004-07-28 キヤノン株式会社 ステージ装置およびこれを用いた露光装置ならびにデバイス製造方法
US6408045B1 (en) * 1997-11-11 2002-06-18 Canon Kabushiki Kaisha Stage system and exposure apparatus with the same
JP4146952B2 (ja) * 1999-01-11 2008-09-10 キヤノン株式会社 露光装置およびデバイス製造方法
US7221433B2 (en) * 2004-01-28 2007-05-22 Nikon Corporation Stage assembly including a reaction assembly having a connector assembly
CN201283758Y (zh) * 2008-10-23 2009-08-05 天津工程师范学院 新型磁控悬架
JP5651035B2 (ja) * 2011-02-09 2015-01-07 株式会社ソディック 移動装置
CN103244603B (zh) * 2013-05-09 2015-02-18 青岛理工大学 板梁结构振动的主动电磁控制系统
CN103867634B (zh) * 2014-03-25 2015-09-09 长安大学 一种变阻尼动力吸振器的控制方法
WO2015189600A2 (en) * 2014-06-09 2015-12-17 Ex Scintilla Ltd Material processing methods and related apparatus
CN104455139B (zh) * 2014-11-07 2016-08-17 浙江大学 基于自适应电磁阻尼的弹簧隔振装置及隔振方法
CN104440343B (zh) * 2014-11-26 2017-05-10 广东工业大学 直线电机共定子双驱动宏微一体化高速精密运动一维平台
CN106002312B (zh) * 2016-06-29 2018-01-23 广东工业大学 一种单驱动刚柔耦合精密运动平台及其实现方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2245975A (en) * 1990-04-27 1992-01-15 Ntn Toyo Bearing Co Ltd Movable table
CN1528559A (zh) * 2003-10-16 2004-09-15 上海大学 工业应用型主动磁悬浮机床导轨直线电机进给平台
CN104889951A (zh) * 2015-06-08 2015-09-09 广东工业大学 动态特性可调宏微一体化复合平台
CN204700849U (zh) * 2015-06-08 2015-10-14 广东工业大学 动态特性可调宏微一体化复合平台

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110189791A (zh) * 2019-05-31 2019-08-30 中国工程物理研究院机械制造工艺研究所 基于双向预紧的初始转角误差可调节的微纳平台
CN110189791B (zh) * 2019-05-31 2024-01-30 中国工程物理研究院机械制造工艺研究所 基于双向预紧的初始转角误差可调节的微纳平台
CN111272535A (zh) * 2020-02-11 2020-06-12 武汉科技大学 一种微动滑动复合摩擦磨损试验系统及其操作方法
CN111272535B (zh) * 2020-02-11 2022-08-16 武汉科技大学 一种微动滑动复合摩擦磨损试验系统及其操作方法

Also Published As

Publication number Publication date
CN104889951A (zh) 2015-09-09
US10232477B2 (en) 2019-03-19
US20170087677A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
WO2016197554A1 (zh) 动态特性可调宏微一体化复合平台
WO2016082741A1 (zh) 直线电机共定子双驱动宏微一体化高速精密运动一维平台
CN104440344B (zh) 直线电机共定子多驱动宏微一体化高速精密运动二维平台
CN204700849U (zh) 动态特性可调宏微一体化复合平台
US10239167B2 (en) Stiffness-frequency adjustable XY micromotion stage based on stress stiffening
WO2016197553A1 (zh) 动态特性可调微运动平台
CN103963033B (zh) 基于应力刚化原理的刚度频率可调一维微动平台
CN108512457B (zh) 具有位移感知功能的直线式惯性压电作动器及作动方法
CN104440345B (zh) 异构电机共定子多驱动宏微一体化高速精密运动二维平台
CN104467525A (zh) 可调预紧力式惯性粘滑驱动跨尺度精密定位平台
CN107834895B (zh) 压电-电磁混合驱动的XYθz三自由度柔性作动器及方法
CN107393599B (zh) 集传感单元和约束元件于一体的二维快速偏转台及方法
CN204248537U (zh) 异构电机共定子多驱动宏微一体化高速精密运动二维平台
CN104900573B (zh) 一种对称式差动杠杆微位移放大装置
JP2018158434A (ja) 受動的コンプライアンス機構
CN204725204U (zh) 可变阻尼式移动支撑与张紧力复合调节微动平台
CN104889793A (zh) 阻尼弹片式刚度频率可调宏微一体化复合平台
CN204221489U (zh) 直线电机共定子多驱动宏微一体化高速精密运动二维平台
CN204748155U (zh) 阻尼弹片式刚度频率可调宏微一体化复合平台
CN109525142B (zh) 一种利用相向摩擦减阻力的二维压电马达及其控制方法
CN109465650B (zh) 气缸式刚度切换装置及使用其的刚柔耦合运动平台和方法
CN110722523B (zh) 一种基于压电陶瓷量测及补偿的宏微复合运动平台及应用
CN109465651B (zh) 摩擦式刚度切换装置及使用其的刚柔耦合运动平台和方法
CN201185090Y (zh) 微米级平台微调机构及制造硬盘弹性臂的工作平台
CN209503528U (zh) 基于二自由度压电作动器的精密工作台及对应压电作动器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15894809

Country of ref document: EP

Kind code of ref document: A1