WO2016194950A1 - プリント配線板、プリント配線板用補強部材、及びプリント基板 - Google Patents

プリント配線板、プリント配線板用補強部材、及びプリント基板 Download PDF

Info

Publication number
WO2016194950A1
WO2016194950A1 PCT/JP2016/066190 JP2016066190W WO2016194950A1 WO 2016194950 A1 WO2016194950 A1 WO 2016194950A1 JP 2016066190 W JP2016066190 W JP 2016066190W WO 2016194950 A1 WO2016194950 A1 WO 2016194950A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
printed wiring
reinforcing member
wiring board
nickel
Prior art date
Application number
PCT/JP2016/066190
Other languages
English (en)
French (fr)
Inventor
裕介 春名
宏 田島
渡辺 正博
友香理 小林
清治 関口
佳弘 細谷
Original Assignee
タツタ電線株式会社
株式会社特殊金属エクセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タツタ電線株式会社, 株式会社特殊金属エクセル filed Critical タツタ電線株式会社
Priority to CN201680032254.9A priority Critical patent/CN107683633B/zh
Priority to KR1020177035650A priority patent/KR102082559B1/ko
Priority to US15/578,701 priority patent/US10159142B2/en
Publication of WO2016194950A1 publication Critical patent/WO2016194950A1/ja
Priority to HK18110065.9A priority patent/HK1250871A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0215Grounding of printed circuits by connection to external grounding means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/002Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • B23K20/023Thermo-compression bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/16Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating with interposition of special material to facilitate connection of the parts, e.g. material for absorbing or producing gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/227Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded with ferrous layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/24Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/002Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of light metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/028Bending or folding regions of flexible printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/028Bending or folding regions of flexible printed circuits
    • H05K1/0281Reinforcement details thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/189Printed circuits structurally associated with non-printed electric components characterised by the use of a flexible or folded printed circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/118Printed elements for providing electric connections to or between printed circuits specially for flexible printed circuits, e.g. using folded portions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/20Details of printed circuits not provided for in H05K2201/01 - H05K2201/10
    • H05K2201/2009Reinforced areas, e.g. for a specific part of a flexible printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Definitions

  • the present invention relates to a printed wiring board, a printed wiring board reinforcing member, and a printed board used for a mobile phone, a computer, and the like.
  • Patent Document 1 a stainless steel plate with a nickel-plated thin metal reinforcing member attached to an electronic component mounting site is known (Patent Document 1).
  • Patent Document 1 a stainless steel plate with a nickel-plated thin metal reinforcing member attached to an electronic component mounting site is known (Patent Document 1).
  • the printed wiring board can reinforce the mounting part of the electronic component with the metal reinforcing member while maintaining the ground effect by the nickel functioning as a heat and humidity protective layer in the stainless steel plate.
  • the ground effect and the reinforcing function of the printed wiring board are directly linked to the performance of the electronic device on which the printed wiring board is mounted, the ground effect and the reinforcing function should be exhibited with high reliability over a long period of time. Is desired.
  • the present invention has been made in view of the above problems, and can provide a printed wiring board, a printed wiring board reinforcing member, and a printed circuit board that can maintain the ground effect and the function of reinforcement with high reliability over a long period of time.
  • the purpose is to provide.
  • the present invention has a base member provided with a ground wiring pattern, and a printed wiring board reinforcing member joined to the ground wiring pattern in a conductive state, and the printed wiring board reinforcing member is a metal substrate. And a nickel layer bonded to the surface of the metal base layer opposite to the side bonded to the ground wiring pattern by a diffusion layer.
  • the electronic component is mounted on the printed wiring board while maintaining a high ground effect by the nickel layer, which makes the ground wiring pattern conductive to the external ground potential via the printed wiring board reinforcing member.
  • the portion thus formed can be reinforced with the strength of the metal substrate layer.
  • the nickel layer is firmly joined by the diffusion layer.
  • nickel atoms in a nickel layer and metal atoms in a metal substrate layer diffuse to each other, thereby forming a diffusion layer in which nickel atoms and metal atoms are mixed with a concentration gradient.
  • This is joining by metal bonding in which the nickel layer and the metal base layer are naturally integrated.
  • the adhesiveness (joining strength) of the nickel layer with respect to the metal base material layer is remarkably superior to the state where the nickel layer is deposited on the surface of the metal base material layer by the plating process and chemically bonded.
  • the nickel layer is difficult to peel off, so the printed wiring board is manufactured to the specifications as designed. , Its performance is more likely to be maintained.
  • the function of a ground effect and a reinforcement can be maintained with high reliability over a long period of time.
  • the diffusion layer may have a thickness of 4.5 ⁇ m or less.
  • the relationship between the thickness tD of the diffusion layer and the distance tNi from the center position of the diffusion layer to the surface of the nickel layer is (tD / 2) / ⁇ tNi + (tD / 2) ⁇ ⁇ 0.86.
  • the nickel layer is secured even when a large external force is applied to the printed wiring board reinforcing member while ensuring the above bonding strength when the nickel layer is formed on the metal base layer by plating. It is possible to manufacture a printed wiring board reinforcing member that is difficult to peel off.
  • the metal substrate layer in the printed wiring board of the present invention may be made of stainless steel, aluminum, or aluminum alloy.
  • the thickness of the printed wiring board reinforcing member can be reduced while maintaining the strength of the printed wiring board reinforcing member at a high level.
  • the printed wiring board is disposed opposite to the ground wiring pattern, and one opposing surface is joined to the ground wiring pattern in a conductive state, and the other surface is electrically connected to an external ground member having a ground potential.
  • the printed wiring board reinforcing member includes a metal base layer and a nickel layer joined to at least one surface of the metal base layer by a diffusion layer.
  • the reinforcing member for printed wiring boards is a metal base material rather than the case where the nickel layer is formed by plating.
  • the adhesion of the nickel layer to the layer is excellent. Therefore, even when a large external force is applied to the printed wiring board reinforcing member during manufacturing or handling of the printed wiring board reinforcing member, the nickel layer is difficult to peel off. As a result, the ground effect and the reinforcing function when the printed wiring board reinforcing member is provided in the printed wiring board can be maintained with high reliability over a long period of time.
  • the thickness of the diffusion layer may be 4.5 ⁇ m or less.
  • the relationship between the thickness tD of the diffusion layer and the distance tNi from the center position of the diffusion layer to the surface of the nickel layer is (tD / 2) / ⁇ tNi + It may be (tD / 2) ⁇ ⁇ 0.86.
  • the nickel layer is secured even when a large external force is applied to the reinforcing member for a printed wiring board, while ensuring the above bonding strength when the nickel layer is formed on the metal base layer by plating.
  • a printed wiring board reinforcing member that is difficult to peel can be manufactured.
  • the metal substrate layer in the printed wiring board reinforcing member of the present invention may be made of stainless steel, aluminum, or aluminum alloy.
  • the thickness of the printed wiring board reinforcing member can be reduced while maintaining the strength of the printed wiring board reinforcing member at a high level.
  • the printed wiring board reinforcing member of the present invention may include a conductive adhesive layer on one surface of the metal substrate layer.
  • the printed wiring board reinforcing member can be easily joined in a conductive state to the ground wiring pattern of the printed wiring board.
  • the present invention is a printed circuit board, wherein a base member having a ground wiring pattern on at least one surface is disposed opposite to the ground wiring pattern, and at least on the side opposite to the ground wiring pattern side
  • the reinforcing member for a printed wiring board made of a nickel layer firmly bonded to the surface of the metal base layer by the diffusion layer, and the ground wiring pattern of the base member and the reinforcing member for the printed wiring board are joined in a conductive state.
  • an electronic component arranged at a position corresponding to the printed wiring board reinforcing member on the other surface of the base member.
  • the printed wiring board reinforcing member has a nickel layer formed on at least the surface of the metal base layer opposite to the ground wiring pattern side, regardless of the type of the metal base layer. High heat resistance and moisture resistance are realized on the surface side on which is formed. Thereby, even if the surface side in which the nickel layer was formed is exposed to the environment of high humidity, the reinforcement member for printed wiring boards can reduce the deterioration rate by which a resistance value becomes high with a nickel layer.
  • the grounding effect of conducting the grounding wiring pattern to the external ground potential via the conductive adhesive layer and the printed wiring board reinforcing member is printed with the strength of the metal base layer while maintaining a high state by the nickel layer.
  • the substrate can be reinforced.
  • the printed wiring board reinforcing member since the nickel layer is firmly bonded by the diffusion layer, the printed wiring board reinforcing member has better adhesion of the nickel layer to the metal base layer than when the nickel layer is formed by plating. Therefore, even when a large external force is applied to the printed wiring board reinforcing member during the manufacturing or handling of the printed wiring board, the nickel layer is difficult to peel off, and the printed wiring board is manufactured to the specifications as designed. The possibility of being maintained with increases. As a result, according to said structure, the function of a ground effect and a reinforcement can be maintained with high reliability over a long period of time.
  • the ground effect and the function of reinforcement can be maintained with high reliability over a long period of time.
  • the printed wiring board 1 includes a printed wiring board main body 110 and a printed wiring board reinforcing member 135 (hereinafter referred to as a reinforcing member 135) joined to one surface of the printed wiring board main body 110. have.
  • the printed wiring board main body 110 has a ground wiring pattern 115 to which the conductive adhesive layer 130 of the reinforcing member 135 is bonded.
  • the printed wiring board 1 is configured as a printed circuit board 10 by providing an electronic component 150 at a mounting portion on the other surface of the printed wiring board main body 110 corresponding to the joint portion of the reinforcing member 135.
  • the printed circuit board 10 reinforces the mounting part of the electronic component 150 by the reinforcing member 135 reinforcing the joint part with the printed wiring board main body 110.
  • the printed circuit board 10 is connected to the external ground member 151 with the ground potential by connecting the reinforcing member 135 to the external ground member 151 with the ground potential. Is done.
  • the external ground member 151 is, for example, a casing of an electronic device. Thereby, when the printed circuit board 10 is incorporated in an electronic device, the ground wiring pattern 115 is electrically connected to the external ground member 151 via the reinforcing member 135, so that a high ground effect can be obtained.
  • a printed wiring board body 110 includes a base member 112 on which a plurality of wiring patterns such as a signal wiring pattern and a ground wiring pattern 115 are formed, and an adhesive layer provided on the base member 112. 113 and an insulating film 111 bonded to the adhesive layer 113.
  • the signal wiring pattern and the ground wiring pattern 115 are formed on the upper surface of the base member 112. These wiring patterns are formed by etching a conductive material. Of these, the ground wiring pattern 115 indicates a pattern in which the ground potential is maintained.
  • the adhesive layer 113 is an adhesive interposed between the signal wiring pattern or the ground wiring pattern 115 and the insulating film 111, and has a role of maintaining the insulating property and bonding the insulating film 111 to the base member 112. .
  • the thickness of the adhesive layer 113 is 10 ⁇ m to 40 ⁇ m, but is not particularly limited and can be set as appropriate.
  • the base member 112 and the insulating film 111 are both made of engineering plastic. Examples thereof include resins such as polyethylene terephthalate, polypropylene, cross-linked polyethylene, polyester, polybenzimidazole, polyimide, polyimide amide, polyether imide, and polyphenylene sulfide. When heat resistance is not required, an inexpensive polyester film is preferable. When flame resistance is required, polyphenylene sulfide film is used. When heat resistance is required, polyimide film, polyamide film, glass epoxy film is used. Is preferred.
  • the thickness of the base member 112 is 10 ⁇ m to 40 ⁇ m, and the thickness of the insulating film 111 is 10 ⁇ m to 30 ⁇ m, but is not particularly limited and can be set as appropriate.
  • a hole 160 is formed in the insulating film 111 and the adhesive layer 113 by a mold or the like.
  • the hole 160 exposes a partial region of a wiring pattern selected from a plurality of signal wiring patterns and ground wiring patterns.
  • a hole 160 is formed in the stacking direction of the insulating film 111 and the adhesive layer 113 so that a partial region of the ground wiring pattern 115 is exposed to the outside.
  • the hole 160 has a hole diameter appropriately set so as not to expose other adjacent wiring patterns.
  • the flexible printed wiring board body 110 may include a film for shielding electromagnetic waves on the upper surface of the insulating film 111.
  • This film has a conductive material, a conductive layer bonded to the conductive material in a contact state, and an insulating layer provided on the conductive layer.
  • a conductive adhesive can be used for this film as a conductive material and a conductive layer.
  • the reinforcing member 135 is formed in a thin plate shape, and has a bonding surface (lower surface) bonded to the ground wiring pattern 115, an open surface (upper surface) electrically connected to an external ground having a ground potential, and a bonding surface. And a side surface sandwiched between the open surfaces.
  • the reinforcing member 135 has a metal base layer 135a that constitutes a bonding surface (lower surface) and a nickel layer 135b that constitutes an open surface (upper surface).
  • the reinforcing member 135 is disposed opposite to the ground wiring pattern 115 in the flexible printed wiring board 1, and the opposite one surface (joint surface) is joined to the ground wiring pattern 115 in a conductive state and the other surface (open surface). Is connected to an external ground member (not shown) having a ground potential in a conductive state.
  • joining in a conductive state includes a state where they are joined by direct contact or contact, and also includes a state where they are joined indirectly via the conductive adhesive layer 130 or the like.
  • the nickel layer 135b may be formed on the open surface and the joint surface of the reinforcing member 135, or may be formed on the entire surface of the reinforcing member 135 including the joint surface, the open surface, and the side surface. Details will be described later.
  • the metal base layer 135a is formed of stainless steel so as to reinforce the joint part (mounting part of the electronic component 150) of the printed wiring board 1. Thereby, the metal base material layer 135a makes it possible to reduce the thickness of the reinforcing member 135 while maintaining the strength of the reinforcing member 135 in a high state.
  • the metal base layer 135a is preferably stainless steel in terms of corrosion resistance and strength, but is not limited to this, and may be other types of metals.
  • the metal base layer 135a is formed of aluminum, nickel, copper, silver, tin, gold, palladium, chromium, titanium, zinc, and an alloy containing any one or more of these materials. Also good.
  • the lower limit of the thickness of the metal substrate layer 135a is preferably 0.05 mm, and more preferably 0.1 mm. Further, the upper limit value of the thickness of the metal base layer 135a is preferably 1.0 mm, and more preferably 0.3 mm. The thickness is not particularly limited and can be set as appropriate.
  • the nickel layer 135b is bonded to the surface of the metal base layer 135a opposite to the side bonded to the ground wiring pattern 115. As a result, the nickel layer 135b allows the ground wiring pattern 115 to conduct to the external ground potential via the reinforcing member 135, thereby maintaining a high ground effect.
  • the thickness of the nickel layer 135b is set to 1 ⁇ m or more and 4 ⁇ m or less. Thereby, while realizing desired heat resistance and moisture resistance, the material cost of nickel can be reduced, and the yield at the time of punching or cutting for processing the reinforcing member 135 to a desired size can be increased. .
  • the lower limit value of the thickness of the nickel layer 135b is preferably 1 ⁇ m and more preferably 2 ⁇ m in order to sufficiently secure the corrosion resistance, moisture resistance and heat resistance of the reinforcing member 135.
  • the upper limit value of the thickness of the nickel layer 135b is preferably 4 ⁇ m, and more preferably 3 ⁇ m, in view of cost.
  • the nickel layer 135b is firmly bonded to the surface of the metal base layer 135a by a diffusion layer.
  • the diffusion bonding causes the nickel atoms of the nickel layer 135b and the metal atoms of the metal base layer 135a to diffuse to each other to form a diffusion layer in which the nickel atoms and the metal atoms are mixed while having a concentration gradient,
  • the nickel layer 135b and the metal substrate layer 135a are joined together by metal bonding.
  • the adhesion (bonding strength) of the nickel layer 135b to the metal substrate layer 135a is superior to the case where the nickel layer 135b is deposited on the surface of the metal substrate layer 135a by plating and chemically bonded. .
  • the nickel layer 135 b is difficult to peel off, and the printed wiring board 1 is manufactured with specifications as designed. At the same time, the possibility that the performance is maintained increases. As a result, the printed wiring board 1 can maintain high reliability over a long period of time with respect to the ground effect and the reinforcing function.
  • the thickness of the diffusion layer formed by diffusion bonding is set to 4.5 ⁇ m or less. This is because the nickel layer 135b is ensured to have a bonding strength higher than that when the nickel layer 135b is formed on the metal base layer by plating, and even when a large external force is applied to the printed wiring board reinforcing member, the nickel layer is difficult to peel off. This is because a printed wiring board reinforcing member can be manufactured.
  • the upper limit value of the thickness of the diffusion layer is preferably 4.5 ⁇ m, and more preferably 4.2 ⁇ m.
  • the relationship between the thickness tD of the diffusion layer and the distance tNi from the center position of the diffusion layer to the surface of the nickel layer is set to (tD / 2) / ⁇ tNi + (tD / 2) ⁇ ⁇ 0.86.
  • the nickel layer 135b is formed on the metal base layer 135a by plating, the above-described bonding strength is ensured, and even when a large external force is applied to the printed wiring board reinforcing member, the nickel layer is peeled off. This is because it is possible to manufacture a reinforcing member for a printed wiring board which is difficult.
  • the upper limit value of the diffusion layer ratio is preferably 0.86, more preferably the upper limit value is 0.80, and the upper limit value is 0.75. More preferably.
  • the nickel layer 135b is preferably pure nickel in order to ensure excellent electrical conductivity and flexibility of the curved portion, but even if it is a nickel alloy, the effect of the present invention is not lost.
  • electroless plating, etc. a high-hardness and dense amorphous plating layer made of nickel and phosphorus is formed, so high moisture resistance and high surface hardness can be obtained compared to pure nickel plating. Since cracking becomes a problem, the plating layer cannot be made thick.
  • the diffusion-bonded nickel layer is excellent in corrosion resistance because the metal base layer is completely covered with a predetermined thickness by rolling, and excellent conductivity can be obtained by bonding a high-purity nickel layer.
  • the Young's modulus (GPa) relative to the plate thickness (mm) is a longitudinal elastic modulus (Young's modulus) calculated based on the resonance frequency obtained by the cantilever resonance method (JIS Z 2280).
  • the reason for obtaining the longitudinal elastic modulus (Young's modulus) according to JIS Z 2280 is that the Young's modulus (GPa) should be measured by the transverse vibration method, but if the sample of the reinforcing member for printed wiring board is thin This is because the deflection of the sample occurs and the sample cannot be measured by the lateral vibration method because the sample dances during measurement, and it is necessary to obtain the resonance frequency by vibrating the sample in a cantilever state.
  • the reinforcing member for printed wiring board (Ni plating) has a Young's modulus of 229.9 GPa when the plate thickness is 0.05 mm, and 229.9 GPa when the plate thickness is 0.10 mm.
  • the printed wiring board reinforcing member (Ni / SUS / Ni) has a Young's modulus of 193.6 GPa when the plate thickness is 0.05 mm, and a Young's modulus of 190.7 GPa when the plate thickness is 0.10 mm. It is.
  • the printed wiring board reinforcing member (Ni / SUS / Ni) has a lower Young's modulus than the amorphous plated layer of the printed wiring board reinforcing member (Ni plating) because the nickel layer is crystalline.
  • the printed wiring board reinforcing member Ni / SUS / Ni
  • Ni plating amorphous plated layer of the printed wiring board reinforcing member
  • the nickel layer 135b is diffusion bonded to one surface of the metal base layer 135a
  • the present invention is not limited to this. That is, as shown in FIG. 3, the nickel layers 135b and 135c may be diffusion bonded to one surface and the other surface of the metal base layer 135a.
  • nickel layers 135b and 135c are formed on both surfaces of the metal substrate layer 135a, it is not necessary to consider the upper and lower sides of the metal substrate layer 135a when bonding the conductive adhesive layer 130, improving workability. Can be made.
  • the nickel layers 135b and 135c may have the same surface state, or may differ depending on the material to be contacted.
  • the surface of the nickel layers 135b and 135c can be made into a surface having an arbitrary concavo-convex shape or depth by processing the surface of a rolling roll described later.
  • one nickel layer 135b has a surface state suitable for the material and shape of the external ground member 151 to be contacted
  • the nickel layer 135c has a material and the like for the conductive adhesive layer 130 to be contacted. It is possible to obtain a surface state suitable for the above.
  • the surface state of the nickel layers 135b and 135c will be described in detail.
  • a standard roughness type a dull type having a roughness larger than the standard roughness
  • It is possible to appropriately select from a plurality of types of roughness such as a bright type having a roughness smaller than the standard roughness.
  • FIG. 4A is a diagram showing a surface state when the surface of the nickel layer is observed at a magnification of 3000 times using a scanning microscope. That is, “Ni plating-SUS”, in which the base material (SUS304H) is nickel-plated with a layer thickness of 2 ⁇ m, and the base foil (SUS301-3 / 4H) is made of nickel foil with a standard thickness of 2 ⁇ m.
  • Ni plating-SUS in which the base material (SUS304H) is nickel-plated with a layer thickness of 2 ⁇ m, and the base foil (SUS301-3 / 4H) is made of nickel foil with a standard thickness of 2 ⁇ m.
  • FIG. 4B is a view showing a result of observing a bending top portion with a scanning electron microscope when (A) and (B) in the drawing are subjected to 180 ° contact bending deformation.
  • Ni plating-SUS innumerable cracks are observed on the plating surface
  • clad Ni-SUS in which the nickel layer is diffusion-bonded, no cracks are observed. It is deformed following the deformation. Further, it was confirmed from the EDS analysis result of the nickel element that the surface of the base material was covered without breaking the nickel layer, thereby ensuring excellent conductivity and corrosion resistance even in a curved portion.
  • FIG. 5 and 6 are diagrams showing the result of element mapping of the metal base layer and the nickel layer in the cross sections (A) and (B) in FIG. 4B.
  • Ni plating-SUS interference of signals from both layers is observed at the interface between the nickel layer and the stainless steel layer, but no region in which atoms are diffused is observed.
  • clad Ni-SUS in which a nickel layer is diffusion-bonded, a clear diffusion layer is formed, and the presence of this layer enhances the adhesion between the metal substrate layer and the nickel layer.
  • the manufacturing method of the reinforcing member 135 is not particularly limited, for example, when the metal base material is stainless steel, it can be manufactured by the following rolling method.
  • the assembled slab is vacuum-stretched so that the interface is in a vacuum state by pasting together a Ni plate with a predetermined thickness on both sides of a stainless steel slab that will be a metal substrate Is heated to 1100 ° C. or higher and then hot rolled to a thickness of 2.0 mm or less by hot rolling.
  • the hot-rolled steel strip is annealed and pickled, and after being cold rolled to a predetermined intermediate thickness, bright annealing is performed again at 900 ° C. or higher, and cold rolling is further performed to obtain a predetermined thickness.
  • the method for producing a hot-rolled steel strip having a three-layer structure of Ni / SUS / Ni is not particularly limited, but may be a method in which Ni, SUS, Ni coils are rolled and then diffusion-annealed.
  • the reinforcing member 135 for printed wiring board may include the conductive adhesive layer 130.
  • the conductive adhesive layer 130 is disposed on the lower surface side of the metal substrate 135a.
  • the conductive adhesive layer 130 is laminated on the lower surface of the metal substrate 135a.
  • the reinforcing member 135 includes the conductive adhesive layer 130, so that the step of attaching the conductive adhesive layer 130 to the reinforcing member 135 can be omitted when the reinforcing member 135 is attached to the flexible printed wiring board main body 110. Therefore, it can be easily joined to the ground wiring pattern 115 of the flexible printed wiring board 1 in a conductive state.
  • the conductive adhesive layer 130 is formed of an adhesive of isotropic conductivity or anisotropic conductivity.
  • An isotropic conductive adhesive has the same electrical properties as conventional solder. Therefore, when the conductive adhesive layer 130 is formed of an isotropic conductive adhesive, an electrically conductive state can be ensured in all three directions including the thickness direction, the width direction, and the longitudinal direction. . On the other hand, when the conductive adhesive layer 130 is formed of an anisotropic conductive adhesive, an electrically conductive state can be ensured only in a two-dimensional direction consisting of the thickness direction.
  • the conductive adhesive layer 130 may be formed of a conductive adhesive in which conductive particles mainly composed of a soft magnetic material and an adhesive are mixed.
  • Examples of the adhesive contained in the conductive adhesive layer 130 include acrylic resins, epoxy resins, silicon resins, thermoplastic elastomer resins, rubber resins, polyester resins, and urethane resins.
  • the adhesive may be a single substance or a mixture of the above resins.
  • the adhesive may further contain a tackifier.
  • Examples of the tackifier include fatty acid hydrocarbon resins, C5 / C9 mixed resins, rosin, rosin derivatives, terpene resins, aromatic hydrocarbon resins, and thermally reactive resins.
  • the conductive adhesive layer 130 is laminated on the metal base material layer 135a.
  • the present invention is not limited to this. That is, the conductive adhesive layer 130 may be laminated via the nickel layer 135c.
  • the reinforcing member 135 may be provided with the conductive adhesive layer 130 as necessary. That is, the reinforcing member 135 may be configured to include the metal base material 135a and the nickel layer 135b, or may be configured to include the metal base material 135a, the nickel layer 135b, and the conductive adhesive layer 130. May be.
  • a metal thin plate having a predetermined thickness and a predetermined width made of stainless steel or the like to be the metal base layer 135a is prepared.
  • a nickel thin plate having a predetermined thickness and a predetermined width made of nickel to be the nickel layer 135b is prepared. Thereafter, the metal thin plate and the nickel thin plate are brought into close contact with each other, and heated and pressurized in an atmosphere such as a vacuum or an inert gas.
  • the heating temperature is a temperature condition below the melting point of stainless steel and nickel, and the applied pressure is set so as not to cause plastic deformation.
  • an aggregate of reinforcing members 135 in which the nickel layer 135b is diffusion bonded to the metal base layer 135a is formed.
  • the uncured conductive adhesive layer 130 is attached or coated on the lower surface of the assembly of reinforcing members 135.
  • assembly of the reinforcement member 135 provided with the electroconductive contact bonding layer 130 is formed.
  • a plurality of reinforcing members 135 are produced by cutting or punching a single plate made of an assembly of reinforcing members 135 with predetermined dimensions in the vertical direction and the horizontal direction, respectively.
  • the metal base layer 135a and the nickel layer 135b are joined by the diffusion layer formed by diffusion joining, problems such as peeling of the nickel layer 135b from the metal base layer 135a are unlikely to occur. This makes it possible to maintain a high yield even if the cycle time for cutting and punching is shortened.
  • nickel layers 135b and 135c are diffusion bonded on both surfaces of the metal base layer 135a, and the surface state of the nickel layer 135c is set to a shape that increases the adhesion of the conductive adhesive layer 130. In such a case, it is possible to make it difficult for the conductive adhesive layer 130 to peel off from the nickel layer 135c.
  • the reinforcing member 135 is disposed on the printed wiring board main body 110 so that the conductive adhesive layer 130 faces the hole 160. Then, the reinforcing member 135 and the printed wiring board main body 110 are sandwiched from above and below using two heating plates having a first temperature (eg, 120 ° C.), and the first pressure (0.5 MPa) is used for a first time (eg, 5 MPa). Press for seconds). Thereby, the reinforcing member 135 is temporarily fixed to the printed wiring board main body 110.
  • a first temperature eg, 120 ° C.
  • the first pressure 0.5 MPa
  • a first time eg, 5 MPa
  • the two heating plates are heated to a second temperature (170 ° C.) that is higher than that at the time of temporary fixing.
  • the reinforcing member 135 and the printed wiring board main body 110 are sandwiched from above and below using a heating plate having a second temperature, and pressurized for a second time (for example, 30 minutes) at a second pressure (3 MPa). Accordingly, the reinforcing member 135 can be fixedly attached to the printed wiring board main body 110 in a state where the conductive adhesive layer 130 is filled in the hole 160.
  • the printed wiring board 1 in this embodiment may include a film on the insulating film 111.
  • the film has a conductive material provided on the insulating film 111, a conductive layer bonded to the conductive material in contact, and an insulating layer provided on the conductive layer.
  • the film has a function of shielding electromagnetic waves by having a conductive layer.
  • test pieces were prepared by the following method.
  • a nickel plate having a thickness of 1 mm is clad rolled onto a stainless steel plate having a thickness of 150 mm (SUS304) so that the pure Ni layer thickness tNi and the diffusion layer thickness TD have the values shown in Table 2.
  • a reinforcing member was produced.
  • a reinforcing member having a pure Ni layer thickness tNi of 1.6 ⁇ m and a diffusion layer thickness TD of 1.6 ⁇ m is defined as Example 1, and a diffusion of 1.1 ⁇ m pure Ni layer thickness tNi and 1.8 ⁇ m is used.
  • a reinforcing member having a layer thickness TD is defined as Example 2
  • a reinforcing member having a pure Ni layer thickness tNi of 2.2 ⁇ m and a diffusion layer thickness TD of 2.2 ⁇ m is defined as Example 3, and a pure Ni layer thickness of 1.2 ⁇ m.
  • a reinforcing member having a thickness tNi and a diffusion layer thickness TD of 1.1 ⁇ m is referred to as Example 4, and a reinforcing member having a pure Ni layer thickness tNi of 1.7 ⁇ m and a diffusion layer thickness TD of 3.2 ⁇ m is referred to as Example 5.
  • a reinforcing member having a pure Ni layer thickness tNi of 0.9 ⁇ m and a diffusion layer thickness TD of 3.0 ⁇ m is taken as Example 6, and a pure Ni layer thickness tNi of 0.7 ⁇ m and a diffusion layer thickness TD of 4.2 ⁇ m are used.
  • the reinforcing member was made as Example 7, and the reinforcing member having a pure Ni layer thickness tNi of 0.4 ⁇ m and a diffusion layer thickness TD of 5.0 ⁇ m was made as Example 8. .
  • a reinforcing member having a nickel plating layer is produced by plating the stainless steel plate (SUS304) using a nickel sulfamate bath so that the thickness of the nickel plating layer becomes the value shown in Table 2. did. Specifically, a reinforcing member having a pure Ni layer thickness tNi of 2.1 ⁇ m is set as Comparative Example 1, and a reinforcing member having a pure Ni layer thickness tNi of 3.5 ⁇ m is set as Comparative Example 2, and a pure Ni layer of 1.9 ⁇ m is used. A reinforcing member having a thickness tNi was made as Comparative Example 3, and a reinforcing member having a pure Ni layer thickness tNi of 2.4 ⁇ m was made as Comparative Example 4.
  • each reinforcing member is processed into a JIS 13-B test piece, and a tensile test is performed with a tensile tester (Instron, 5569A) at a tensile speed of 10 mm / min. The test piece was pulled until it broke. The surface in the vicinity of the fracture portion of the fractured specimen was observed with an EDS (energy dispersive X-ray spectrometer) to evaluate the interfacial adhesion.
  • EDS energy dispersive X-ray spectrometer
  • contact resistance value Next, contact resistance values (M ⁇ ) of the reinforcing members of Examples 1 to 8 and Comparative Examples 1 to 4 were measured. Specifically, using a “load variation contact resistance measuring device” manufactured by Yamazaki Seiki Laboratory Co., Ltd., the load is fixed at 0.5 N, and as shown in FIG. 12, between the reinforcing member and the base layer. The electrical resistance value was measured.
  • Example 1 is 5.9 m ⁇
  • Example 2 is 6.1 m ⁇
  • Example 3 is 5.6 m ⁇
  • Example 4 is 6 m ⁇
  • Example 5 is 5.6 m ⁇
  • Example 6 is 6 m ⁇
  • Example 7 was 5.8 m ⁇
  • Example 8 was 6.7 m ⁇
  • Comparative Example 1 was 7.1 m ⁇
  • Comparative Example 2 was 7.2 m ⁇
  • Comparative Example 3 was 7.2 m ⁇
  • Comparative Example 4 was 6.9 m ⁇ .
  • the interfacial adhesion of Examples 1 to 3 is “ ⁇ ” and the interfacial adhesion of Examples 4 to 8 is “ ⁇ ”, whereas the interfacial adhesion of Comparative Examples 1 to 4 is “x”.
  • the diffusion-bonded reinforcing members (Examples 1 to 7) are superior in interfacial adhesion to the plating-bonded reinforcing members (Comparative Examples 1 to 4).
  • the thickness of the diffusion layer was in the range of 1.6 ⁇ m to 5 ⁇ m (the diffusion layer ratio was 0.33 to 0.86).
  • the outer reinforcing member could not be created, it can be easily estimated based on the test result that the same test result is obtained even with the reinforcing member outside this range.
  • Examples 1 to 8 show a range of 5.6 m ⁇ to 6.7 m ⁇
  • Comparative Examples 1 to 4 show 6.9 m ⁇ to 7.2 m ⁇ .
  • the contact resistance value was smaller than that of the reinforcing member (Comparative Examples 1 to 4) that was plated and bonded.
  • the thickness of the diffusion layer was in the range of 1.6 ⁇ m to 5 ⁇ m (the diffusion layer ratio was 0.33 to 0.86).
  • the outer reinforcing member could not be created, it can be easily estimated based on the test result that the same test result is obtained even with the reinforcing member outside this range.
  • the diffusion bonded reinforcement member is superior in surface crack resistance, interfacial adhesion and contact resistance value during close bending than the nickel plated reinforcement member.
  • the effect and the function of reinforcement can be maintained with high reliability over a long period of time.
  • the thickness tD of the diffusion layer in the diffusion-bonded reinforcing member is 4.5 ⁇ m or less (diffusion layer ratio (tD / 2) / ⁇ tNi + (tD / 2) ⁇ ⁇ 0.86) is preferred. Further, when expressed by the diffusion layer ratio (tD / 2) / ⁇ tNi + (tD / 2) ⁇ , the thickness tD of the diffusion layer in the diffusion-bonded reinforcing member and the center position of the diffusion layer to the surface layer surface of the nickel layer The relationship (diffusion layer ratio) with the distance tNi is preferably (tD / 2) / ⁇ tNi + (tD / 2) ⁇ ⁇ 0.86.
  • a reinforcing member having a diffusion layer thickness tD of 2.2 ⁇ m to 4.2 ⁇ m is more preferable in terms of obtaining better interface adhesion.
  • the reinforcing member satisfying 0.48 ⁇ (tD / 2) / ⁇ tNi + (tD / 2) ⁇ ⁇ 0.86 has better interface adhesion. It is more preferable in that
  • a reinforcing member having a diffusion layer thickness tD of 4.2 ⁇ m or less is more preferable in terms of obtaining good bending workability in addition to interfacial adhesion and contact resistance. That is, a reinforcing member having a diffusion layer thickness tD of 2.2 ⁇ m to 4.2 ⁇ m is more preferable from the viewpoint of obtaining good interface adhesion, contact resistance value, and interface adhesion.
  • the reinforcing member having (tD / 2) / ⁇ tNi + (tD / 2) ⁇ ⁇ 0.75 has interfacial adhesion.
  • the reinforcing member satisfying 0.48 ⁇ (tD / 2) / ⁇ tNi + (tD / 2) ⁇ ⁇ 0.75 is further improved in terms of obtaining good interface adhesion, contact resistance value, and interface adhesion. preferable.
  • connection resistance of the reinforcing member 135 provided with the conductive adhesive layer 130 Various samples in which the conductive adhesive layer 130 was bonded to various metal substrate layers and nickel layers were prepared. Then, the connection resistance between the reinforcing member 135 and the ground wiring pattern 115 was measured at the initial stage, after reflowing, and after 250 hours of the environmental test (temperature: 85 degrees, humidity: 85%). Specifically, the load is fixed at 0.5 N using a “load fluctuation type contact resistance measuring device” manufactured by Yamazaki Seiki Laboratory Co., Ltd., and as shown in FIG. 12, the reinforcing member 135 and the base layer 117 The electrical resistance value was measured. The measurement results are shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Structure Of Printed Boards (AREA)
  • Laminated Bodies (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

グランド効果及び補強の機能を長期に亘って高い信頼性で維持することができる。グランド用配線パターン115を備えたベース部材112と、グランド用配線パターン115に導通状態で接合されたプリント配線板用補強部材135とを有し、プリント配線板用補強部材135は、金属基材層135aと、少なくともグランド用配線パターン115に接合される側とは反対側の金属基材層135aの表面に拡散接合により接合されたニッケル層135bとを備えている。

Description

プリント配線板、プリント配線板用補強部材、及びプリント基板
 本発明は、携帯電話やコンピュータ等に使用されるプリント配線板、プリント配線板用補強部材、及びプリント基板に関する。
 従来、プリント配線板として、ステンレス板の表面をニッケルメッキした薄板の金属補強部材を電子部品の実装部位に取り付けたものが知られている(特許文献1)。これにより、プリント配線板は、ニッケルがステンレス板における熱及び湿度の保護層として機能することによりグランド効果を維持しつつ、電子部品の実装部位を金属補強部材により補強することが可能になっている。
国際公開第2014/132951号
 ところで、プリント配線板が有するグランド効果及び補強の機能は、プリント配線板が搭載された電子機器の性能に直結するため、グランド効果及び補強の機能を更に長期に亘って高い信頼性で発揮させることが望まれている。
 本発明は、上記の課題を鑑みてなされたものであり、グランド効果及び補強の機能を長期に亘って高い信頼性で維持することができるプリント配線板、プリント配線板用補強部材、及びプリント基板を提供することを目的とする。
 本発明は、グランド用配線パターンを備えたベース部材と、前記グランド用配線パターンに導通状態で接合されたプリント配線板用補強部材とを有し、前記プリント配線板用補強部材は、金属基材層と、少なくとも前記グランド用配線パターンに接合される側とは反対側の前記金属基材層の表面に拡散層によって接合されたニッケル層と、を備えている。
 上記の構成によれば、グランド用配線パターンをプリント配線板用補強部材を介して外部のグランド電位に導通させるグランド効果を、ニッケル層によって高い状態を維持しつつ、プリント配線板に電子部品を実装した部位を金属基材層の強度で補強することができる。
 また、プリント配線板用補強部材は、ニッケル層が拡散層によって強固に接合されている。拡散接合は、ニッケル層のニッケル原子と金属基材層の金属原子とが相互に拡散することによって、ニッケル原子と金属原子とが濃度勾配を持って混ざり合った拡散層を形成し、この拡散層によりニッケル層と金属基材層とを渾然一体化させた金属結合による接合である。これにより、金属基材層の表面にニッケル層をメッキ処理によって析出させて化学結合させた状態よりも、金属基材層に対するニッケル層の密着性(接合強度)が格段に優れている。そのため、プリント配線板の製造時や取扱い時において、プリント配線板用補強部材に大きな外力が付与された場合などにおいても、ニッケル層が剥離し難いため、プリント配線板が設計通りの仕様で作製され、その性能が維持される可能性が高くなる。この結果、上記の構成によれば、グランド効果及び補強の機能を長期に亘って高い信頼性で維持することができる。
 本発明のプリント配線板における前記プリント配線板用補強部材は、前記拡散層の厚みが、4.5μm以下であってもよい。また、本発明のプリント配線板における前記プリント配線板用補強部材は、前記拡散層の厚みtDと、該拡散層の中心位置からニッケル層の表層面までの距離tNiとの関係が、(tD/2)/{tNi+(tD/2)}≦0.86であってもよい。
 上記の構成によれば、ニッケル層がメッキにより金属基材層に形成された場合以上の接合強度を確保するとともに、プリント配線板用補強部材に大きな外力が付与された場合などにおいても、ニッケル層が剥離し難いプリント配線板用補強部材を製造することができる。
 本発明のプリント配線板における前記金属基材層は、ステンレス製、アルミニウム製及びアルミニウム合金製の何れであってもよい。
 上記の構成によれば、プリント配線板用補強部材の強度を高い状態に維持しながら、プリント配線板用補強部材の厚みを薄くすることができる。
 本発明は、プリント配線板におけるグランド用配線パターンに対向配置され、対向する一方の面が前記グランド用配線パターンに導通状態で接合されると共に、他方の面がグランド電位の外部グランド部材に導通されるプリント配線板用補強部材であって、金属基材層と、該金属基材層の少なくとも一方の面に拡散層によって接合されたニッケル層とを備えている。
 上記の構成によれば、プリント配線板用補強部材のニッケル層が拡散層によって強固に接合されているため、プリント配線板用補強部材は、メッキによりニッケル層を形成した場合よりも、金属基材層に対するニッケル層の密着性が優れている。そのため、プリント配線板用補強部材の製造時や取扱い時において、プリント配線板用補強部材に大きな外力が付与された場合などにおいても、ニッケル層が剥離し難い。この結果、プリント配線板用補強部材がプリント配線板に備えられた場合におけるグランド効果及び補強の機能を長期に亘って高い信頼性で維持することができる。
 本発明のプリント配線板用補強部材は、前記拡散層の厚みが、4.5μm以下であってもよい。また、本発明のプリント配線板用補強部材は、前記拡散層の厚みtDと、前記拡散層の中心位置からニッケル層の表層面までの距離tNiとの関係が、(tD/2)/{tNi+(tD/2)}≦0.86であってもよい。
 上記の構成によれば、ニッケル層がメッキにより金属基材層に形成された場合以上の接合強度を確保するとともに、プリント配線板用補強部材に大きな外力が付与された場合などでも、ニッケル層が剥離し難いプリント配線板用補強部材を製造することができる。
 本発明のプリント配線板用補強部材における前記金属基材層は、ステンレス製、アルミニウム製及びアルミニウム合金製の何れであってもよい。
 上記の構成によれば、プリント配線板用補強部材の強度を高い状態に維持しながら、プリント配線板用補強部材の厚みを薄くすることができる。
 本発明のプリント配線板用補強部材は、前記金属基材層の一方の面に導電性接着層を備えていてもよい。
 上記の構成によれば、導電性接着層を備えることによって、プリント配線板のグランド用配線パターンに対してプリント配線板用補強部材を容易に導通状態で接合することができる。
 本発明は、プリント基板であって、グランド用配線パターンを少なくとも一方の面に備えたベース部材と、前記グランド用配線パターンに対向配置されており、少なくとも該グランド用配線パターン側とは反対側の金属基材層の表面に拡散層によって強固に接合されたニッケル層からなるプリント配線板用補強部材と、前記ベース部材の前記グランド用配線パターンと前記プリント配線板用補強部材とを導通状態で接合する導電性接着層と、前記ベース部材の他方の面における該プリント配線板用補強部材に対応する位置に配置された電子部品とを有している。
 上記の構成によれば、プリント基板が繰り返して湾曲された場合でも、プリント配線板用補強部材が接合された部位においては、湾曲し難い状態になるため、プリント配線板用補強部材に対応する位置に配置された電子部品がプリント基板から脱落する等の不具合が防止される。また、プリント配線板用補強部材は、少なくともグランド用配線パターン側とは反対側の金属基材層の表面にニッケル層が形成されていることによって、金属基材層の種類に拘わらず、ニッケル層が形成された表面側において高い耐熱性及び耐湿性が実現されている。これにより、プリント配線板用補強部材は、ニッケル層が形成された表面側が高湿度の環境に曝されていても、抵抗値が高くなる劣化速度をニッケル層により低減することができる。この結果、グランド用配線パターンを導電性接着層及びプリント配線板用補強部材を介して外部のグランド電位に導通させるグランド効果を、ニッケル層によって高い状態に維持しつつ金属基材層の強度でプリント基板を補強することができる。
 また、プリント配線板用補強部材は、ニッケル層が拡散層によって強固に接合されているため、メッキによってニッケル層を形成した場合よりも、金属基材層に対するニッケル層の密着性が優れている。そのため、プリント配線板の製造時や取扱い時において、プリント配線板用補強部材に大きな外力が付与された場合などでも、ニッケル層が剥離し難くなり、プリント配線板が設計通りの仕様で作製されると共に維持される可能性が高くなる。この結果、上記の構成によれば、グランド効果及び補強の機能を長期に亘って高い信頼性で維持することができる。
 グランド効果及び補強の機能を長期に亘って高い信頼性で維持することができる。
プリント配線板及びプリント基板の製造過程を示す説明図である。 プリント基板が外部グランド部材に接続された状態を示す説明図である。 プリント基板が外部グランド部材に接続された状態を示す説明図である。 ニッケル層の表面状態を示す説明図である。 ニッケル層の表面状態を示す説明図である。 金属基材層及びニッケル層間における拡散層の説明図である。 金属基材層及びニッケル層間における界面の説明図である。 導電性接着層の剥離強度を示すグラフである。 プリント配線板用補強部材の接続抵抗を示すグラフである。 プリント配線板用補強部材の接触抵抗を示すグラフである。 金属基材層及びニッケル層間における拡散層の説明図である。 引張試験を示す説明図である。 引張試験の破断端部の状態を示す説明図である。 補強部材とベース層との間の電気抵抗値の測定方法を示す説明図である。
 以下、本発明の好適な実施の形態について、図面を参照しつつ説明する。
(プリント配線板1)
 図1に示すように、プリント配線板1は、プリント配線板本体110と、プリント配線板本体110の一方面に接合されたプリント配線板用補強部材135(以下、補強部材135と称する。)とを有している。プリント配線板本体110は、グランド用配線パターン115を有しており、グランド用配線パターン115は、補強部材135の導電性接着層130が接着される。プリント配線板1は、補強部材135の接合部位に対応されたプリント配線板本体110の他方面の実装部位に電子部品150が設けられることによって、プリント基板10とされるようになっている。
 プリント基板10は、補強部材135がプリント配線板本体110との接合部位を補強することによって、電子部品150の実装部位を補強している。また、図2に示すように、プリント基板10は、補強部材135がグランド電位の外部グランド部材151に接続されることによって、グランド用配線パターン115が補強部材135を介して外部グランド部材151に接地される。外部グランド部材151とは、例えば、電子機器の筐体等である。これにより、プリント基板10が電子機器に組み込まれたときに、グランド用配線パターン115が補強部材135を介して外部グランド部材151に導通されるため、高いグランド効果を得ることができる。
(プリント配線板1:プリント配線板本体110)
 図1に示すように、プリント配線板本体110は、信号用配線パターンやグランド用配線パターン115等の複数の配線パターンが形成されたベース部材112と、ベース部材112上に設けられた接着剤層113と、接着剤層113に接着された絶縁フィルム111とを有している。
 信号用配線パターンやグランド用配線パターン115は、ベース部材112の上面に形成されている。これらの配線パターンは、導電性材料をエッチング処理することにより形成される。また、そのうち、グランド用配線パターン115は、グランド電位を保ったパターンのことを指す。
 接着剤層113は、信号用配線パターンやグランド用配線パターン115と絶縁フィルム111との間に介在する接着剤であり、絶縁性を保つと共に、絶縁フィルム111をベース部材112に接着させる役割を有する。尚、接着剤層113の厚みは、10μm~40μmであるが、特に限定される必要はなく適宜設定可能である。
 ベース部材112と絶縁フィルム111は、いずれもエンジニアリングプラスチックからなる。例えば、ポリエチレンテレフタレート、ポリプロピレン、架橋ポリエチレン、ポリエステル、ポリベンズイミダゾール、ポリイミド、ポリイミドアミド、ポリエーテルイミド、ポリフェニレンサルファイドなどの樹脂が挙げられる。あまり耐熱性を要求されない場合は、安価なポリエステルフィルムが好ましく、難燃性が要求される場合においては、ポリフェニレンサルファイドフィルム、さらに耐熱性が要求される場合にはポリイミドフィルム、ポリアミドフィルム、ガラスエポキシフィルムが好ましい。尚、ベース部材112の厚みは、10μm~40μmであり、絶縁フィルム111の厚みは、10μm~30μmであるが、特に限定される必要はなく適宜設定可能である。
 また、上記の絶縁フィルム111および接着剤層113には、金型などによって、穴部160が形成されている。穴部160は、複数の信号用配線パターンやグランド用配線パターンの中から選択された配線パターンの一部領域を露出させるものである。本実施形態の場合、グランド用配線パターン115の一部領域が、外部に露出するように、絶縁フィルム111および接着剤層113における積層方向に穴部160が形成されている。尚、穴部160は、隣接する他の配線パターンを露出させないように適宜穴径が設定されている。
 尚、フレキシブルプリント配線板本体110は、電磁波をシールドするフィルムを絶縁フィルム111の上面に備えていてもよい。このフィルムは、導電材と、この導電材に接触状態に接着された導電層と、導電層上に設けられた絶縁層とを有している。なお、このフィルムは、導電材及び導電層として導電性接着剤を用いることができる。
(プリント配線板用補強部材135)
 補強部材135は、薄板状に形成されており、グランド用配線パターン115に接合される接合面(下面)と、グランド電位の外部グランドに電気的に接続される開放面(上面)と、接合面及び開放面に挟まれた側面とを有している。補強部材135は、接合面(下面)を構成する金属基材層135aと、開放面(上面)を構成するニッケル層135bとを有している。補強部材135は、フレキシブルプリント配線板1におけるグランド用配線パターン115に対向配置され、対向する一方面(接合面)がグランド用配線パターン115に導通状態で接合されると共に、他方面(開放面)がグランド電位の図示しない外部グランド部材に導通状態で接合されるようになっている。
 尚、『導通状態で接合』は、直接的に接触や当接することにより接合された状態を含むと共に、導電性接着層130等を介して間接的に接合された状態を含む。また、ニッケル層135bは、補強部材135の開放面及び接合面に形成されていてもよいし、接合面、開放面及び側面からなる補強部材135の全面に形成されていてもよい。詳細は後述する。
(プリント配線板用補強部材135:金属基材層135a)
 金属基材層135aは、プリント配線板1の接合部位(電子部品150の実装部位)を補強するように、ステンレス鋼により形成されている。これにより、金属基材層135aは、補強部材135の強度を高い状態に維持しながら、補強部材135の厚みを薄くすることを可能にしている。
 尚、金属基材層135aは、ステンレス鋼であることが耐食性や強度等の点で好ましいが、これに限定されるものではなく、その他の種類の金属であってもよい。例えば、金属基材層135aは、アルミニウム、ニッケル、銅、銀、錫、金、パラジウム、クロム、チタン、亜鉛、及び、これらの材料の何れか、または2つ以上を含む合金により形成されていてもよい。
 金属基材層135aの厚みの下限値は、0.05mmであることが好ましく、0.1mmであることがさらに好ましい。また、金属基材層135aの厚みの上限値は、1.0mmであることが好ましく、0.3mmであることがさらに好ましい。尚、厚みは特に限定される必要はなく適宜設定可能である。
(プリント配線板用補強部材135:ニッケル層135b)
 ニッケル層135bは、グランド用配線パターン115に接合される側とは反対側の金属基材層135aの表面に接合されている。これにより、ニッケル層135bは、補強部材135を介してグランド用配線パターン115を外部のグランド電位に導通させ、グランド効果を高い状態に維持可能にしている。
 ニッケル層135bの厚みは、1μm以上、4μm以下に設定されている。これにより、所望の耐熱性及び耐湿性を実現しながら、ニッケルの材料コストを低減できると共に、補強部材135を所望のサイズに加工するための打抜き加工時や切断加工時の歩留まりを高めることができる。尚、ニッケル層135bの厚みの下限値は、補強部材135の耐食性、耐湿性及び耐熱性を十分に確保するために、1μmであることが好ましく、2μmであることがさらに好ましい。また、ニッケル層135bの厚みの上限値は、コストを考慮すると、4μmであることが好ましく、3μmであることがさらに好ましい。
 ニッケル層135bは、金属基材層135aの表面に拡散層によって強固に接合されている。ここで、拡散接合は、ニッケル層135bのニッケル原子と金属基材層135aの金属原子とを相互に拡散させ、ニッケル原子と金属原子とが濃度勾配を持ちながら混ざり合った拡散層を形成し、この拡散層によりニッケル層135bと金属基材層135aとを渾然一体化させた金属結合による接合である。これにより、メッキにより金属基材層135aの表面にニッケル層135bを析出させて化学的に接合させた場合よりも、金属基材層135aに対するニッケル層135bの密着性(接合強度)が優れている。そのため、プリント配線板1の製造時や取扱い時などにおいて、補強部材135に大きな外力が付与された場合でも、ニッケル層135bが剥離し難くなり、プリント配線板1が設計通りの仕様で作製されると共に、性能が維持される可能性が高くなる。この結果、プリント配線板1は、グランド効果及び補強の機能を長期に亘って高い信頼性を維持できるようになっている。
 拡散接合により形成された拡散層の厚みは、4.5μm以下に設定される。これは、ニッケル層135bがメッキにより金属基材層に形成された場合以上の接合強度を確保するとともに、プリント配線板用補強部材に大きな外力が付与された場合などでも、ニッケル層が剥離し難いプリント配線板用補強部材を製造することができるからである。尚、拡散層の厚みの上限値は、4.5μmであることが好ましく、4.2μmであることがより好ましい。
 また、拡散層の厚みtDと、拡散層の中心位置からニッケル層の表層面までの距離tNiとの関係が、(tD/2)/{tNi+(tD/2)}≦0.86に設定される。この場合は、ニッケル層135bがメッキにより金属基材層135aに形成された場合以上の接合強度を確保するとともに、プリント配線板用補強部材に大きな外力が付与された場合でも、ニッケル層が剥離し難いプリント配線板用補強部材を製造することができるからである。尚、拡散層の厚みtDと距離tNiとの関係について、拡散層比率の上限値が0.86であることが好ましく、上限値が0.80であることがより好ましく、上限値が0.75であることが更に好ましい。
 ニッケル層135bは、優れた導電性と湾曲部のフレキシビリティーを担保するためには純ニッケルが好ましいが、ニッケル合金であっても本発明の効果を棄損する事は無い。無電解メッキなどではニッケルとリンからなる高硬度かつ緻密な非晶質メッキ層が形成されるため、純ニッケルメッキに比べて高い耐湿性と高い表面硬度が得られるが、湾曲部などでは表面の割れが問題となるためメッキ層を厚くすることが出来ない。これに対して拡散接合したニッケル層は、圧延によって金属基材層を所定の厚さで完全に覆うため耐食性に優れ、且つ高純度のニッケル層を接合することで優れた導電性が得られる。
 また、ニッケルメッキしたプリント配線板用補強部材(Niメッキ)と拡散層を備えたプリント配線板用補強部材(Ni/SUS/Ni)とにおいて、板厚(mm)に対するヤング率(GPa)の関係を求めたところ、表1の測定結果が得られた。尚、板厚(mm)に対するヤング率(GPa)は、片持ち共振法(JIS Z 2280)で求めた共振周波数に基づいて算出した縦弾性係数(ヤング率)である。ここで、JIS Z 2280により縦弾性係数(ヤング率)を求めた理由は、本来は横振動法でヤング率(GPa)を測定すべきであるが、プリント配線板用補強部材のサンプルが薄いと、サンプルの撓みが生じると共に、測定中にサンプルが踊ることにより横振動法では測定できないため、片持ち状態でサンプルを振動させることにより共振周波数を求めることが必要になったからである。
 表1において、プリント配線板用補強部材(Niメッキ)は、板厚が0.05mmのときにヤング率が229.9GPa、板厚が0.10mmのときにヤング率が229.9GPaである。これに対し、プリント配線板用補強部材(Ni/SUS/Ni)は、板厚が0.05mmのときにヤング率が193.6GPa、板厚が0.10mmのときにヤング率が190.7GPaである。この結果、プリント配線板用補強部材(Ni/SUS/Ni)は、ニッケル層が結晶質であるため、プリント配線板用補強部材(Niメッキ)の非晶質メッキ層に比べてヤング率が低く、フレキシブルプリント配線に貼着した時などは容易に湾曲する性質を有する。
Figure JPOXMLDOC01-appb-T000001
 本実施形態においては、金属基材層135aの一方面にニッケル層135bが拡散接合された場合について説明しているが、これに限定されるものではない。即ち、図3に示すように、金属基材層135aの一方の面及び他方の面にニッケル層135b・135cが拡散接合されていてもよい。金属基材層135aの両面にニッケル層135b・135cが形成された場合は、導電性接着層130を接着する際に、金属基材層135aの上下を考慮する必要がなくなるため、作業性を向上させることができる。
 また、ニッケル層135b・135cは、表面状態が同一であってもよいし、接触対象の材質等に応じて異なっていてもよい。ニッケル層135b・135cの表面は、後述する圧延ロールの表面を加工することにより、任意の凹凸形状や深さを有する表面とすることができる。これにより、例えば、一方のニッケル層135bについては、接触対象の外部グランド部材151の材質や形状等に好適な表面状態とし、ニッケル層135cについては、接触対象となる導電性接着層130の材質等に好適な表面状態にすることができる。
 ニッケル層135b・135cの表面状態を詳細に説明すると、図4Aに示すように、後述する圧延ロールのロール表面を加工することによって、標準粗さタイプと、標準粗さより大きな粗さのダルタイプと、標準粗さよりも小さな粗さのブライトタイプとの3種類等の複数種類の粗さから適宜に選択することができる。
 尚、図4Aは、走査型顕微鏡を用いてニッケル層の表面を倍率3000倍で観察した時の表面状態を示す図である。即ち、基材(SUS304H)に2μmの層厚でニッケルメッキを施した“Niメッキ-SUS”と、基材(SUS301-3/4H)に2μmの層厚でニッケル箔を標準粗さの圧延ロールで拡散接合した“クラッドNi-SUS”と、基材(SUS304)に2μmの層厚でニッケル箔をダル粗さの圧延ロールで拡散接合した“Ni-SUSダル”ダル粗さタイプと、基材(SUS304)に2μmの層厚でニッケル箔をブライト粗さの圧延ロールで拡散接合した“Ni-SUSブライト”との表面状態を示している。このように、拡散接合によりニッケル層135b・135cを形成した場合は、圧延ロールにより所望の表面状態とすることができる。
 図4Bは、図中の(A)と(B)を180°密着曲げ変形した時における曲げ頭頂部を走査電子顕微鏡で観察した結果を示す図である。“Niメッキ-SUS”ではメッキ表面に無数の割れが観察されるのに対して、ニッケル層を拡散接合した“クラッドNi-SUS”では割れは全く観察されず、ニッケル層は金属基材層の変形に追従して変形している。またニッケル元素のEDS分析結果からニッケル層が破れることなく基材表面を覆っており、これによって、湾曲部などでも優れた導電性と耐食性を担保出来ることを確認した。
 図5及び図6は、図4B中の(A)と(B)の断面について、金属基材層とニッケル層を元素マッピングした結果の図である。“Niメッキ-SUS”ではニッケル層とステンレス層の界面には両層からのシグナルの干渉は認められるが、相互に原子が拡散した領域は観察されない。これに対してニッケル層を拡散接合した“クラッドNi-SUS”では、明瞭な拡散層が形成されており、この層の存在が金属基材層とニッケル層の密着性を高めている。
 補強部材135の製造方法は特に限定されないが、例えば金属基材がステンレスの場合、以下の圧延法により製造することができる。圧延法で製造する場合は、予め金属基材となるステンレスのスラブの両面に所定の厚さのNi板を貼り合わせて周囲を溶接し、その界面が真空状態になるように真空引きした組み立てスラブを、1100℃以上に加熱した後熱間圧延によって2.0mm以下とした熱延鋼帯を使用する。該熱延鋼帯を焼鈍酸洗後、冷間圧延によって所定の中間厚にした後、再度900℃以上で光輝焼鈍を行って更に冷間圧延を行って所定の厚さに仕上げる。Ni/SUS/Niの3層構造を有する熱延鋼帯の製造法に関してはとくに限定するものでは無いが、Ni,SUS,Niのコイルを重ね圧延した後に拡散焼鈍する方法でも構わない。
(プリント配線板用補強部材135:導電性接着層130)
 上記のように構成された補強部材135は、導電性接着層130を備えていてもよい。導電性接着層130は、金属基材135aの下面側に配置されている。具体的には、導電性接着層130が金属基材135aの下面に積層されている。これにより、補強部材135は、導電性接着層130を備えることによって、補強部材135をフレキシブルプリント配線板本体110に取り付ける際に、補強部材135に導電性接着層130を取り付ける工程を省略することができるため、フレキシブルプリント配線板1のグランド用配線パターン115に対して容易に導通状態で接合することが可能になっている。
 導電性接着層130は、等方導電性および異方導電性の何れかの接着剤により形成されている。等方導電性接着剤は、従来のはんだと同様の電気的性質を有している。従って、等方導電性接着剤で導電性接着層130が形成されている場合には、厚み方向および幅方向、長手方向からなる三次元の全方向に電気的な導電状態を確保することができる。一方、異方導電性接着剤で導電性接着層130が形成されている場合には、厚み方向からなる二次元の方向にだけ電気的な導電状態を確保することができる。尚、導電性接着層130は、軟磁性材料を主成分とする導電性粒子と接着剤とを混合した導電性接着剤により形成されていてもよい。
 導電性接着層130に含まれる接着剤は、アクリル系樹脂、エポキシ系樹脂、シリコン系樹脂、熱可塑性エラストマ系樹脂、ゴム系樹脂、ポリエステル系樹脂、ウレタン系樹脂などが挙げられる。尚、接着剤は、上記樹脂の単体でも混合体でもよい。また、接着剤は、粘着性付与剤をさらに含んでいてもよい。粘着性付与剤としては、脂肪酸炭化水素樹脂、C5/C9混合樹脂、ロジン、ロジン誘導体、テルペン樹脂、芳香族系炭化水素樹脂、熱反応性樹脂などが挙げられる。
 尚、本実施形態においては、導電性接着層130が金属基材層135aに積層されているが、これに限定されることはない。即ち、導電性接着層130は、ニッケル層135cを介して積層されていてもよい。また、補強部材135は、導電性接着層130を必要に応じて備えていればよい。即ち、補強部材135は、金属基材135aとニッケル層135bとを有した構成にされていてもよいし、金属基材135aとニッケル層135bと導電性接着層130とを有した構成にされていてもよい。
(プリント基板10の製造方法:補強部材135の製造)
 先ず、金属基材層135aとなるステンレス等からなる所定厚み及び所定幅の金属薄板が準備される。また、ニッケル層135bとなるニッケルからなる所定厚み及び所定幅のニッケル薄板が準備される。この後、金属薄板とニッケル薄板とが密着され、真空や不活性ガス等の雰囲気中において加熱及び加圧される。
 加熱温度はステンレス及びニッケルの融点以下の温度条件とされ、加圧力は塑性変形を生じない程度とされる。この結果、金属基材層135aにニッケル層135bが拡散接合された補強部材135の集合体が形成される。この後、補強部材135の集合体の下方面に未硬化の導電性接着層130が貼着またはコーティングされる。これにより、導電性接着層130を備えた補強部材135の集合体が形成される。
 次に、補強部材135の集合体からなる一枚板が縦方向及び横方向にそれぞれ所定の寸法で切断加工されたり、或いは、打抜き加工されることによって、複数個の補強部材135が作製される。この際、金属基材層135aとニッケル層135bとが拡散接合による拡散層により接合されていることによって、金属基材層135aからニッケル層135bが剥離する等の不具合が発生し難い。これにより、切断加工や打抜き加工のサイクルタイムを短くしても、高い歩留りを維持することが可能になっている。
 尚、図3に示すように、金属基材層135aの両面にニッケル層135b・135cが拡散接合され、ニッケル層135cの表面状態が導電性接着層130の密着性を高くする形状に設定されていた場合は、導電性接着層130がニッケル層135cから剥離する等の不具合も発生し難くすることができる。
(プリント基板10の製造方法:補強部材135の取り付け)
 次に、図1に示すように、導電性接着層130が穴部160に対向するように、補強部材135がプリント配線板本体110上に配置される。そして、第1温度(例えば120℃)の2枚の加熱板を用いて補強部材135とプリント配線板本体110とを上下方向から挟み込み、第1圧力(0.5MPa)で第1時間(例えば5秒間)押圧する。これにより、補強部材135がプリント配線板本体110に仮止めされる。
 次に、2枚の加熱板が仮止め時よりも高温の第2温度(170℃)に加熱される。そして、第2温度の加熱板を用いて補強部材135とプリント配線板本体110とを上下方向から挟んで第2圧力(3MPa)で第2時間(例えば30分)加圧する。これにより、穴部160内に導電性接着層130を充填させた状態で、補強部材135をプリント配線板本体110に固定的に取り付けることができる。
 補強部材135をプリント配線板本体110に取り付ける際に熱処理を施すため、補強部材135がステンレスの場合、補強部材135の表面に強固な酸化皮膜が形成されて電気抵抗が高くなる。しかしながら、本実施形態では、補強部材135の金属基材層135aの表面にニッケル層135bが形成されているため、プリント配線板1の製造工程における熱処理を原因とした酸化皮膜の形成を防止することができる。
 以上の詳細な説明では、本発明をより容易に理解できるように、特徴的部分を中心に説明したが、本発明は、以上の詳細な説明に記載する実施形態に限定されず、その他の実施形態にも適用することができる。また、本明細書において用いた用語及び語法は、本発明を的確に説明するために用いたものであり、本発明の解釈を制限するために用いたものではない。また、当業者であれば、本明細書に記載された発明の概念から、本発明の概念に含まれる他の構成、システム、方法等を推考することは容易であると思われる。従って、請求の範囲の記載は、本発明の技術的思想を逸脱しない範囲で均等な構成を含むものであるとみなされるべきである。また、本発明の目的及び本発明の効果を充分に理解するために、すでに開示されている文献等を充分に参酌することが望まれる。
 例えば、本実施形態におけるプリント配線板1は、絶縁フィルム111上にフィルムを備えていてもよい。フィルムは、絶縁フィルム111上に設けられた導電材と、この導電材に接触状態に接着された導電層と、導電層上に設けられた絶縁層とを有している。フィルムは、導電層を有することによって、電磁波をシールドする機能を備えている。
 拡散接合によりニッケル層を形成した補強部材(プリント配線板用補強部材)と、メッキによりニッケル層を形成した補強部材(プリント配線板用補強部材)との曲げ加工性、界面密着性及び接触抵抗値を比較するため、下記の方法により試験片を作製した。
(拡散接合による補強部材の作製)
 純Ni層厚さtNi及び拡散層厚さTDが表2に示す値となるように、厚さ150mmのステンレス板(SUS304)に厚さ1mmのニッケル板をクラッド圧延することで、拡散層を有する補強部材を作製した。
 具体的には、1.6μmの純Ni層厚さtNi及び1.6μmの拡散層厚さTDの補強部材を実施例1とし、1.1μmの純Ni層厚さtNi及び1.8μmの拡散層厚さTDの補強部材を実施例2とし、2.2μmの純Ni層厚さtNi及び2.2μmの拡散層厚さTDの補強部材を実施例3とし、1.2μmの純Ni層厚さtNi及び1.1μmの拡散層厚さTDの補強部材を実施例4とし、1.7μmの純Ni層厚さtNi及び3.2μmの拡散層厚さTDの補強部材を実施例5とし、0.9μmの純Ni層厚さtNi及び3.0μmの拡散層厚さTDの補強部材を実施例6とし、0.7μmの純Ni層厚さtNi及び4.2μmの拡散層厚さTDの補強部材を実施例7とし、0.4μmの純Ni層厚さtNi及び5.0μmの拡散層厚さTDの補強部材を実施例8として作成した。
(メッキによる補強部材の作製)
 ニッケルメッキ層の厚さが表2に示す値となるように、ステンレス板(SUS304)に対して、スルファミン酸ニッケル浴を使用してメッキ処理を行うことで、ニッケルメッキ層を有する補強部材を作製した。具体的には、2.1μmの純Ni層厚さtNiの補強部材を比較例1とし、3.5μmの純Ni層厚さtNiの補強部材を比較例2とし、1.9μmの純Ni層厚さtNiの補強部材を比較例3とし、2.4μmの純Ni層厚さtNiの補強部材を比較例4として作成した。
(曲げ加工性)
 拡散接合によりニッケル層を形成した補強部材と、メッキによりニッケル層を形成した補強部材との曲げ加工性を比較することによって、接合強度の比較結果とした。その理由は、図5に示したように、ニッケル層を金属基材に拡散接合した場合は両層が拡散層を介して強固に結合して界面が存在せず、金属基材とニッケル層との間で剥離が生じないためである。そこで、金属基材層とニッケル層を同時に塑性変形させ、両層の変形状態を観察することで接合強度の良否を判定した。具体的には、以下の試験方法により評価を行った。
(曲げ加工性:試験方法)
 実施例1~8及び比較例1~4の補強部材について、長さ:50mm、幅:20mmのサンプルをそれぞれ採取し、長手方向に圧縮してU字形に曲げた後、内面側が密着するまで180°曲げた。尚、実施例1~8については、金属基材の圧延方向をサンプルの長さ方向とした。その後、走査電子顕微鏡で曲げ部の頭頂部の破壊状態およびニッケル層の界面剥離の有無を観察することによりニッケル層の状態を測定した。尚、測定結果は、図4Bの(A)のように界面剥離が有れば『×』とし、図4Bの(B)のように界面剥離が無ければ『○』とした。
(界面密着性)
 次に、実施例1~8及び比較例1~4の補強部材について、界面密着性をそれぞれ評価した。具体的には、図11Aに示すように、それぞれの補強部材をJIS 13-B試験片に加工し、引張試験機(インストロン社製、5569A)で引張速度10mm/minの条件で引張試験を行い、試験片が破断するまで引張った。破断した試験片の破断部近辺の表面をEDS(energy dispersive X-ray spectrometer)で観察し、界面密着性を評価した。尚、図11Bに示すように、評価結果は、基材であるFeが検出されなかった場合を『○』、若干検出された場合を『△』、明瞭に検出された場合を『×』とした。
(接触抵抗値)
 次に、実施例1~8及び比較例1~4の補強部材について、接触抵抗値(MΩ)をそれぞれ測定した。具体的には、株式会社山崎精機研究所社製「荷重変動式接触抵抗測定器」を用いて、荷重を0.5Nに固定し、図12で示すように補強部材とベース層との間の電気抵抗値の測定を行った。
(曲げ加工性、界面密着性、接触抵抗値:試験結果)
 表2に示すように、曲げ加工性について、実施例1~7が『○』、実施例8及び比較例1~4が『×』であった。界面密着性について、実施例1~3が『△』、実施例4~8が『○』、比較例1~4が『×』であった。接触抵抗値について、実施例1が5.9mΩ、実施例2が6.1mΩ、実施例3が5.6mΩ、実施例4が6mΩ、実施例5が5.6mΩ、実施例6が6mΩ、実施例7が5.8mΩ、実施例8が6.7mΩ、比較例1が7.1mΩ、比較例2が7.2mΩ、比較例3が7.2mΩ、比較例4が6.9mΩであった。
Figure JPOXMLDOC01-appb-T000002
 これにより、実施例1~3の界面密着性が『△』及び実施例4~8の界面密着性が『○』であるのに対し、比較例1~4の界面密着性が『×』であることから、拡散接合された補強部材(実施例1~7)は、メッキ接合された補強部材(比較例1~4)に対して界面密着性が優れていることが明らかになった。尚、試験片を作成することが技術的や時間的、経済的に困難であったことから、拡散層の厚みが1.6μm~5μm(拡散層比率が0.33~0.86)の範囲外となる補強部材を作成することができなかったが、この範囲外の補強部材においても同一の試験結果を得ることは試験結果に基づいて容易に推測できる。
 さらに、実施例1~3の界面密着性が『△』であるのに対し、実施例4~8の界面密着性が『○』であることから、拡散接合された補強部材(実施例1~7)の中でも、実施例4~8の界面密着性が優れていることが明らかになった。これにより、拡散層の厚みが2.2μm~5μm(拡散層比率が0.48~0.86)である補強部材が良好な界面密着性を得る点で、より好ましいことが明らかになった。
 また、接触抵抗値について、実施例1~8が5.6mΩ~6.7mΩの範囲を示し、比較例1~4が6.9mΩ~7.2mΩを示すことから、拡散接合された補強部材(実施例1~7)は、メッキ接合された補強部材(比較例1~4)に対して接触抵抗値が小さいことが明らかになった。尚、試験片を作成することが技術的や時間的、経済的に困難であったことから、拡散層の厚みが1.6μm~5μm(拡散層比率が0.33~0.86)の範囲外となる補強部材を作成することができなかったが、この範囲外の補強部材においても同一の試験結果を得ることは試験結果に基づいて容易に推測できる。
 また、実施例1~7の曲げ加工性が『○』、実施例8及び比較例1~4の曲げ加工性が『×』であることから、曲げ加工性及び界面密着性の点においては、拡散層の厚みが1.6μm~4.2μm(拡散層比率が0.33~0.75)である補強部材が良好な界面密着性を得る点で好ましいことが明らかになった。尚、試験片を作成することが技術的や時間的、経済的に困難であったことから、拡散層の厚みが1.6μm(拡散層比率が0.33)未満となる補強部材を作成することができなかったが、この数値未満の補強部材においても同一の試験結果を得ることは試験結果に基づいて容易に推測できる。
 以上の三種類の試験結果から、拡散接合された補強部材は、ニッケルメッキされた補強部材よりも、密着曲げ時の耐表面割れ性、界面密着性及び接触抵抗値が優れていることから、グランド効果及び補強の機能を長期に亘って高い信頼性で維持することができる。
 具体的には、図10に示す層構成より、拡散接合された補強部材における拡散層の厚みtDは、4.5μm以下(拡散層比率(tD/2)/{tNi+(tD/2)}≦0.86)であることが好ましい。また、拡散層比率(tD/2)/{tNi+(tD/2)}で表現すると、拡散接合された補強部材における前記拡散層の厚みtDと、拡散層の中心位置からニッケル層の表層面までの距離tNiとの関係(拡散層比率)は、(tD/2)/{tNi+(tD/2)}≦0.86であることが好ましい。
 さらに、拡散層の厚みtDが2.2μm~4.2μm(拡散層比率が0.48~0.75)である補強部材は、より良好な界面密着性を得る点で、より好ましい。また、拡散層比率(tD/2)/tNiで表現すると、0.48≦(tD/2)/{tNi+(tD/2)}≦0.86である補強部材は、より良好な界面密着性を得る点で、より好ましい。
 さらに、拡散層の厚みtDが4.2μm以下である補強部材は、界面密着性及び接触抵抗値に加えて、良好な曲げ加工性を得る点で、より一層好ましい。即ち、拡散層の厚みtDが2.2μm~4.2μmとなる補強部材は、良好な界面密着性、接触抵抗値及び界面密着性を得る点で、より一層好ましい。また、拡散層比率(tD/2)/{tNi+(tD/2)}で表現すると、(tD/2)/{tNi+(tD/2)}≦0.75である補強部材は、界面密着性及び接触抵抗値に加えて、良好な曲げ加工性を得る点で、より一層好ましい。即ち、0.48≦(tD/2)/{tNi+(tD/2)}≦0.75である補強部材は、良好な界面密着性、接触抵抗値及び界面密着性を得る点で、より一層好ましい。
(導電性接着層130の接合力)
 各種の金属基材層やニッケル層に導電性接着層130を接合した各種のサンプルを作製した。そして、環境試験(温度:85度、湿度:85%)における剥離強度を、初期時、250時間経過時、500時間経過時、750時間経過時、及び1050時間経過時について測定した。尚、接合力の測定は、JIS C 6471(1995年)の機械的性能試験・銅箔の引きはがし強さ・方法A(90°方向引き剥がし)準拠で行った。測定結果を図7に示す。測定結果から、ニッケル層135cの表面状態(標準粗さタイプ、ダルタイプ、ブライトタイプ)により導電性接着層130に対する接合力が異なることが判明した。
(導電性接着層130を備えた補強部材135の接続抵抗)
 各種の金属基材層やニッケル層に導電性接着層130を接合した各種のサンプルを作製した。そして、補強部材135とグランド用配線パターン115との接続抵抗を、初期時、リフロー後、環境試験(温度:85度、湿度:85%)の250時間経過時について測定した。具体的には、株式会社山崎精機研究所社製「荷重変動式接触抵抗測定器」を用いて、荷重を0.5Nに固定し、図12で示すように、補強部材135とベース層117との間の電気抵抗値の測定を行った。測定結果を図8に示す。
(導電性接着層130を備えた補強部材135の接触抵抗)
 各種の金属基材層やニッケル層に導電性接着層130を接合した各種のサンプルを作製した。そして、補強部材135のニッケル層135bにおける接触抵抗を、初期時、リフロー後、環境試験(温度:85度、湿度:85%)の250時間経過時、500時間経過時、750時間経過時について測定した。尚、接触抵抗の測定には、株式会社山崎精機研究所社製「荷重変動式接触抵抗測定器」を用いて、荷重を0.5Nに固定し、補強部材の両面の表面電気抵抗値の測定を行った。測定結果を図9に示す。
 本国際出願は、2015年6月2日に出願された日本国特許出願である特願2015-112296号に基づく優先権を主張するものであり、当該日本国特許出願である特願2015-112296号の全内容は、本国際出願に援用される。
 本発明の特定の実施の形態についての上記説明は、例示を目的として提示したものである。それらは、網羅的であったり、記載した形態そのままに本発明を制限したりすることを意図したものではない。数多くの変形や変更が、上記の記載内容に照らして可能であることは当業者に自明である。
1 プリント配線板
10 プリント基板
110 プリント配線板本体
111 絶縁フィルム
112 ベース部材
113 接着剤層
115 グランド用配線パターン
130 導電性接着層
135 プリント配線板用補強部材
135a 金属基材層
135b・135c ニッケル層
160 穴部
 

Claims (12)

  1.  グランド用配線パターンを備えたベース部材と、
     前記グランド用配線パターンに導通状態で接合されたプリント配線板用補強部材とを有し、
     前記プリント配線板用補強部材は、
     金属基材層と、
     少なくとも前記グランド用配線パターンに接合される側とは反対側の前記金属基材層の表面に拡散層によって接合されたニッケル層と、を備えたことを特徴とするプリント配線板。
  2.  前記拡散層の厚みが、4.5μm以下であることを特徴とする請求項1に記載のプリント配線板。
  3.  前記拡散層の厚みtDと、前記拡散層の中心位置からニッケル層の表層面までの距離tNiとの関係が、
    (tD/2)/{tNi+(tD/2)}≦0.86であることを特徴とする請求項1に記載のプリント配線板。
  4.  前記拡散層の厚みが、4.5μm以下で、且つ、前記拡散層の厚みtDと、前記拡散層の中心位置からニッケル層の表層面までの距離tNiとの関係が、
    (tD/2)/{tNi+(tD/2)}≦0.86であることを特徴とする請求項1に記載のプリント配線板。
  5.  前記金属基材層は、ステンレス製、アルミニウム製及びアルミニウム合金製の何れかであることを特徴とする請求項1乃至4の何れか1項に記載のプリント配線板。
  6.  プリント配線板におけるグランド用配線パターンに対向配置され、対向する一方の面が前記グランド用配線パターンに導通状態で接合されると共に、他方の面がグランド電位の外部グランド部材に導通されるプリント配線板用補強部材であって、
     金属基材層と、
     前記金属基材層の少なくとも前記他方の面に拡散層によって接合されたニッケル層とを備えたことを特徴とするプリント配線板用補強部材。
  7.  前記拡散層の厚みが、4.5μm以下であることを特徴とする請求項6に記載のプリント配線板用補強部材。
  8.  前記拡散層の厚みtDと、前記拡散層の中心位置からニッケル層の表層面までの距離tNiとの関係が、
     (tD/2)/{tNi+(tD/2)}≦0.86
    であることを特徴とする請求項6に記載のプリント配線板用補強部材。
  9.  前記拡散層の厚みが、4.5μm以下で、且つ、前記拡散層の厚みtDと、前記拡散層の中心位置からニッケル層の表層面までの距離tNiとの関係が、
    (tD/2)/{tNi+(tD/2)}≦0.86
    であることを特徴とする請求項6に記載のプリント配線板用補強部材。
  10.  前記金属基材層は、ステンレス製、アルミニウム製及びアルミニウム合金製の何れかであることを特徴とする請求項6乃至9の何れか1項に記載のプリント配線板用補強部材。
  11.  前記金属基材層の一方の面側に設けられた導電性接着層を備えたことを特徴とする請求項6乃至10の何れか1項に記載のプリント配線板用補強部材。
  12.  グランド用配線パターンを少なくとも一方面に備えたベース部材と、
     前記グランド用配線パターンに対向配置されており、少なくとも前記グランド用配線パターン側とは反対側の金属基材層の表面に拡散層によって接合されたニッケル層が形成されたプリント配線板用補強部材と、
     前記ベース部材の前記グランド用配線パターンと前記プリント配線板用補強部材とを導通状態で接合する導電性接着層と、
     前記ベース部材の他方面における前記プリント配線板用補強部材に対応する位置に配置された電子部品とを有することを特徴とするプリント基板。
PCT/JP2016/066190 2015-06-02 2016-06-01 プリント配線板、プリント配線板用補強部材、及びプリント基板 WO2016194950A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680032254.9A CN107683633B (zh) 2015-06-02 2016-06-01 印制布线板、印制布线板用补强件及印制基板
KR1020177035650A KR102082559B1 (ko) 2015-06-02 2016-06-01 프린트 배선판, 프린트 배선판용 보강 부재, 및 프린트 기판
US15/578,701 US10159142B2 (en) 2015-06-02 2016-06-01 Printed wiring board with a reinforcing member having a diffusion-bonded nickel layer
HK18110065.9A HK1250871A1 (zh) 2015-06-02 2018-08-06 印製佈線板、印製佈線板用補強件及印製基板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-112296 2015-06-02
JP2015112296A JP6499925B2 (ja) 2015-06-02 2015-06-02 フレキシブルプリント配線板、フレキシブルプリント配線板用補強部材、及びフレキシブルプリント基板

Publications (1)

Publication Number Publication Date
WO2016194950A1 true WO2016194950A1 (ja) 2016-12-08

Family

ID=57440250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066190 WO2016194950A1 (ja) 2015-06-02 2016-06-01 プリント配線板、プリント配線板用補強部材、及びプリント基板

Country Status (7)

Country Link
US (1) US10159142B2 (ja)
JP (1) JP6499925B2 (ja)
KR (1) KR102082559B1 (ja)
CN (1) CN107683633B (ja)
HK (1) HK1250871A1 (ja)
TW (1) TWI658758B (ja)
WO (1) WO2016194950A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10159142B2 (en) 2015-06-02 2018-12-18 Tatsuta Electric Wire & Cable Co., Ltd. Printed wiring board with a reinforcing member having a diffusion-bonded nickel layer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6407395B1 (ja) * 2017-12-01 2018-10-17 タツタ電線株式会社 電磁波シールドフィルム
JP6371460B1 (ja) * 2017-12-06 2018-08-08 タツタ電線株式会社 配線基板用補強板
KR102364739B1 (ko) * 2019-07-26 2022-02-21 인하대학교 산학협력단 응력 감소를 위한 기판
CN111465175B (zh) * 2020-04-23 2022-08-12 京东方科技集团股份有限公司 电路板及其制备方法、电子设备
KR20220042655A (ko) * 2020-09-28 2022-04-05 엘지이노텍 주식회사 카메라 모듈

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004351460A (ja) * 2003-05-29 2004-12-16 Neomax Co Ltd アルミニウム・ニッケル・ステンレス鋼クラッド材、その製造方法および電池用ケース
JP2005194571A (ja) * 2004-01-07 2005-07-21 Neomax Material:Kk Ni−Co合金並びにクラッド材およびその製造方法
JP2009218443A (ja) * 2008-03-11 2009-09-24 Sumitomo Electric Ind Ltd 金属補強板を備えたフレキシブルプリント配線板
WO2011052517A1 (ja) * 2009-10-26 2011-05-05 株式会社Neomaxマテリアル アルミニウム接合合金、その合金で形成された接合合金層を有するクラッド材及びアルミニウム接合複合材
JP2013041869A (ja) * 2011-08-11 2013-02-28 Tatsuta Electric Wire & Cable Co Ltd プリント配線板及びプリント配線板の製造方法
WO2014132951A1 (ja) * 2013-02-26 2014-09-04 タツタ電線株式会社 フレキシブルプリント配線板用補強部材、フレキシブルプリント配線板、及び、シールドプリント配線板

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252446A (ja) * 2001-02-23 2002-09-06 Sony Chem Corp フレキシブル配線基板の製造方法
JP2006147827A (ja) * 2004-11-19 2006-06-08 Seiko Epson Corp 配線パターンの形成方法、デバイスの製造方法、デバイス、及び電気光学装置、並びに電子機器
JP4704957B2 (ja) * 2006-05-26 2011-06-22 日本特殊陶業株式会社 ガスセンサシステムの異常診断方法、及び、ガスセンサシステム
JP2009283574A (ja) * 2008-05-20 2009-12-03 Nitto Denko Corp 配線回路基板およびその製造方法
JP5581805B2 (ja) * 2010-05-24 2014-09-03 トヨタ自動車株式会社 ステンレス鋼材へのめっき方法及びそのめっき材
US9820376B2 (en) * 2013-05-28 2017-11-14 Tatsuta Electric Wire & Cable Co., Ltd. Shape-retaining film, and shape-retaining-type flexible circuit board provided with same shape-retaining film
JP6350064B2 (ja) * 2013-10-09 2018-07-04 日立化成株式会社 多層配線基板の製造方法
CN103715586A (zh) * 2014-01-14 2014-04-09 深圳市中金岭南科技有限公司 制备与pcb板连接的金属导电连接件的方法及连接件
JP6781631B2 (ja) * 2014-08-29 2020-11-04 タツタ電線株式会社 フレキシブルプリント配線板用補強部材、及びそれを備えたフレキシブルプリント配線板
JP6499925B2 (ja) * 2015-06-02 2019-04-10 タツタ電線株式会社 フレキシブルプリント配線板、フレキシブルプリント配線板用補強部材、及びフレキシブルプリント基板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004351460A (ja) * 2003-05-29 2004-12-16 Neomax Co Ltd アルミニウム・ニッケル・ステンレス鋼クラッド材、その製造方法および電池用ケース
JP2005194571A (ja) * 2004-01-07 2005-07-21 Neomax Material:Kk Ni−Co合金並びにクラッド材およびその製造方法
JP2009218443A (ja) * 2008-03-11 2009-09-24 Sumitomo Electric Ind Ltd 金属補強板を備えたフレキシブルプリント配線板
WO2011052517A1 (ja) * 2009-10-26 2011-05-05 株式会社Neomaxマテリアル アルミニウム接合合金、その合金で形成された接合合金層を有するクラッド材及びアルミニウム接合複合材
JP2013041869A (ja) * 2011-08-11 2013-02-28 Tatsuta Electric Wire & Cable Co Ltd プリント配線板及びプリント配線板の製造方法
WO2014132951A1 (ja) * 2013-02-26 2014-09-04 タツタ電線株式会社 フレキシブルプリント配線板用補強部材、フレキシブルプリント配線板、及び、シールドプリント配線板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10159142B2 (en) 2015-06-02 2018-12-18 Tatsuta Electric Wire & Cable Co., Ltd. Printed wiring board with a reinforcing member having a diffusion-bonded nickel layer

Also Published As

Publication number Publication date
TW201707527A (zh) 2017-02-16
JP6499925B2 (ja) 2019-04-10
JP2016225532A (ja) 2016-12-28
KR20180006421A (ko) 2018-01-17
US10159142B2 (en) 2018-12-18
CN107683633B (zh) 2020-03-17
CN107683633A (zh) 2018-02-09
HK1250871A1 (zh) 2019-01-11
US20180103540A1 (en) 2018-04-12
KR102082559B1 (ko) 2020-02-27
TWI658758B (zh) 2019-05-01

Similar Documents

Publication Publication Date Title
WO2016194950A1 (ja) プリント配線板、プリント配線板用補強部材、及びプリント基板
KR102083251B1 (ko) 플렉시블 프린트 배선판용 보강 부재, 및 이것을 포함한 플렉시블 프린트 배선판
KR101528995B1 (ko) 금속박 복합체 및 그것을 사용한 플렉시블 프린트 기판, 그리고 성형체 및 그 제조 방법
KR100939550B1 (ko) 연성 필름
JP4397941B2 (ja) シールドフィルム、シールドプリント配線板、シールドフレキシブルプリント配線板、シールドフィルムの製造方法及びシールドプリント配線板の製造方法
WO2018147429A1 (ja) グランド部材、シールドプリント配線板及びシールドプリント配線板の製造方法
KR101739809B1 (ko) 프린트 배선판, 프린트 배선판의 제조방법 및 전자기기
JP4569399B2 (ja) 回路基板
KR101626691B1 (ko) 동박 복합체, 그리고 성형체 및 그 제조 방법
WO2018147423A1 (ja) グランド部材、シールドプリント配線板及びシールドプリント配線板の製造方法
JP6135815B1 (ja) プリント配線板および電子機器
JP6772567B2 (ja) プリント配線板および電子機器
JP2007305936A (ja) 両面可撓性回路基板
JP5189683B2 (ja) 圧延銅合金箔
JP5940010B2 (ja) 表面粗化処理銅箔及びその製造方法、並びに回路基板
JP2015206616A (ja) 圧延銅箔及び圧延銅箔の製造方法
CN110178181B (zh) 布线电路基板及其制造方法
JP2018056542A (ja) プリント配線板および電子機器
CN116546724A (zh) 接合结构
WO2012070471A1 (ja) フレキシブルプリント配線板用圧延銅箔、銅張積層板、フレキシブルプリント配線板及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803384

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15578701

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177035650

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16803384

Country of ref document: EP

Kind code of ref document: A1