WO2016192616A1 - 一种光伏电池组件的监测方法及装置 - Google Patents

一种光伏电池组件的监测方法及装置 Download PDF

Info

Publication number
WO2016192616A1
WO2016192616A1 PCT/CN2016/084143 CN2016084143W WO2016192616A1 WO 2016192616 A1 WO2016192616 A1 WO 2016192616A1 CN 2016084143 W CN2016084143 W CN 2016084143W WO 2016192616 A1 WO2016192616 A1 WO 2016192616A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
voltage
monitoring device
components
relative
Prior art date
Application number
PCT/CN2016/084143
Other languages
English (en)
French (fr)
Inventor
徐运燕
高拥兵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16802539.3A priority Critical patent/EP3188362B1/en
Publication of WO2016192616A1 publication Critical patent/WO2016192616A1/zh
Priority to US15/484,702 priority patent/US10171028B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the technical field of photovoltaic cells, and in particular relates to a monitoring method and device for a photovoltaic cell assembly.
  • the Photo Voltaic String is a series of Photo Voltaic Modules that are used to absorb solar energy and convert solar energy into electrical energy, making it an effective input to the inverter. Due to the long-term installation of photovoltaic panel strings in outdoor environments, affected by high temperature, high humidity, hot spots and mechanical damage, shadow blocking, dust accumulation and snow accumulation may occur, which may reduce the efficiency of converting component light energy into electrical energy. Causes some components to fail to be abnormal. In order to ensure the normal operation of the photovoltaic panel string, in the actual application, the component is monitored in real time through the monitoring center. During the monitoring process, each component data is sampled in real time, and the sampling data of the component is obtained by wireless or wired communication for abnormal analysis. Once the component is determined to be abnormal, the component is located for exception elimination.
  • each component is equipped with a component voltage monitoring device when the photovoltaic power generation system is set up and debugged, and the monitoring center is connected to the component voltage monitoring device through wireless or wired communication, wherein the communication of each component voltage monitoring device The address is different.
  • the components are numbered according to the position sequence of the components in the photovoltaic panel string, and then the location number and the communication address used by the component voltage monitoring device corresponding to the component are in a one-to-one correspondence, and the correspondence is entered into the monitoring device.
  • Embodiments of the present invention provide a method and a device for monitoring a photovoltaic cell assembly, which are used to reduce The commissioning workload of the initial stage of photovoltaic power generation system construction and the reduction of debugging complexity.
  • a first aspect of the present invention provides a method for monitoring a photovoltaic cell assembly, which is applied to a component voltage monitoring system
  • the component voltage monitoring system includes a main monitoring device and a plurality of component voltage monitoring devices, and each of the component voltage monitoring devices is assigned a communication address, the main monitoring device establishes a connection with a corresponding component voltage monitoring device through the communication address, and each of the component voltage monitoring devices corresponds to a component of the photovoltaic panel string, and the component voltage monitoring device And sampling the relative voltage of the corresponding component relative to the voltage reference point, the method may include:
  • the main monitoring device acquires a communication address of all the component voltage monitoring devices, establishes a connection with a corresponding component voltage monitoring device through the communication address, and acquires a corresponding component relative to the voltage reference point from the component voltage monitoring device that establishes the connection.
  • the main monitoring device determines a physical position of a component corresponding to each of the component voltage monitoring devices in the photovoltaic panel string according to a relative voltage obtained from all of the component voltage monitoring devices;
  • the main monitoring device establishes an information table according to the communication address of each of the component voltage monitoring devices and the physical location of its corresponding component, and then performs abnormal component detection according to the information table, the information table including at least each of the The correspondence between the communication address of the component voltage monitoring device and the physical location of its corresponding component.
  • the component voltage monitoring device is further configured to sample an output voltage of the corresponding component, and the detecting the abnormal component according to the information table includes:
  • the main monitoring device establishes a connection with a corresponding component voltage monitoring device through each of the communication addresses, and acquires an output voltage of a corresponding component from a component voltage monitoring device that establishes connection; the main monitoring device according to voltages from all of the components Detecting an output voltage obtained by the device, determining whether a component corresponding to each of the component voltage monitoring devices is abnormal; and when determining that a component corresponding to any one of the component voltage monitoring devices is abnormal, the primary monitoring device is configured according to any one of the And a communication address of the component voltage monitoring device, and determining, according to the information table, a physical location of the component corresponding to any one of the component voltage monitoring devices in the photovoltaic panel string.
  • the component voltage monitoring device has a one-to-one correspondence with components in the photovoltaic panel string; or When the number of components in the photovoltaic panel string is an odd number, the components of the odd physical positions in the photovoltaic panel string are in one-to-one correspondence with the component voltage monitoring device; Alternatively, when the number of components in the photovoltaic panel string is an even number, the first component of the photovoltaic panel string positive end and the components of the even physical location are in one-to-one correspondence with the component voltage monitoring device.
  • the detecting the abnormal component according to the information table further includes:
  • the main monitoring device establishes a connection with a corresponding component voltage monitoring device through each of the communication addresses, and acquires an output voltage and a positive terminal of components of the odd physical positions in the photovoltaic panel string from the connected component voltage monitoring device.
  • Relative voltage and negative terminal relative voltage the positive terminal relative voltage is a relative voltage of a positive end of the component relative to the voltage reference point
  • the negative terminal relative voltage is a relative voltage of a negative terminal of the component relative to the voltage reference point
  • the main monitoring device calculates an output voltage of a component of an even physical position intermediate the components of the two odd physical positions according to a positive end relative voltage and a negative end relative voltage of the components of the two odd physical positions of the information table interval
  • the primary monitoring device determines, based on the output voltage, whether components of even physical locations intermediate the components of the two odd physical locations are abnormal; components that determine even physical locations intermediate the components of the two odd physical locations When abnormal, the main monitoring device is based on the physicals of the components of the two odd physical locations in the information
  • the photovoltaic panel string positive end is first
  • the component and the component of the even physical location are in one-to-one correspondence with the component voltage monitoring device, and the detecting the abnormal component according to the information table further includes:
  • the main monitoring device establishes a connection with a corresponding component voltage monitoring device through each of the communication addresses, and acquires a component of the first component and an even physical position of the front end of the photovoltaic panel string from the component voltage monitoring device that establishes the connection.
  • the main monitoring device calculates an odd physical intermediate between the components of the two even physical positions according to a positive end relative voltage and a negative end relative voltage of the components of the two even physical positions of the information table interval An output voltage of the component of the position; the primary monitoring device determines the two couples based on the output voltage Whether the components of the odd physical locations in the middle of the components of the physical location are abnormal; when it is determined that the components of the odd physical locations between the components of the two even physical locations are abnormal, the primary monitoring device according to the two even numbers in the information table The physical location of the component of the physical location determines the physical location of the component of the odd physical location intermediate the components of the two even physical locations.
  • the main monitoring device determines, according to a relative voltage obtained from all the component voltage monitoring devices, a component corresponding to each of the component voltage monitoring devices Determining a physical location in the string of photovoltaic panels, comprising: said primary monitoring device determining, according to a magnitude of a relative voltage obtained from all of said component voltage monitoring devices, a component corresponding to each of said component voltage monitoring devices The physical location in the string of photovoltaic panels.
  • the voltage reference point is any one of the following: a positive end of the photovoltaic panel string, the photovoltaic panel The negative end of the string, the ground, and the positive or negative end of any of the components of the photovoltaic panel string.
  • a second aspect of the present invention provides a monitoring device for a photovoltaic cell assembly, which is applied to a component voltage monitoring system, the component voltage monitoring system comprising a plurality of component voltage monitoring devices and a monitoring device of the photovoltaic cell assembly, each of the components
  • the voltage monitoring device is assigned a communication address, and the monitoring device of the photovoltaic cell assembly establishes a connection with the corresponding component voltage monitoring device through the communication address, and each of the component voltage monitoring devices corresponds to a component of the photovoltaic panel string
  • the component voltage monitoring device is configured to sample a relative voltage of a corresponding component relative to a voltage reference point, and the monitoring device of the photovoltaic cell component includes:
  • a communication module configured to acquire a communication address of all the component voltage monitoring devices, establish communication with the corresponding component voltage monitoring device through the communication address, and acquire a corresponding component relative to the voltage reference point from the component voltage monitoring device that establishes communication Relative voltage
  • a processing module configured to determine, according to a relative voltage obtained from all of the component voltage monitoring devices, a physical location of a component corresponding to each of the component voltage monitoring devices in the string of photovoltaic panels, according to each of the components Establishing an information table of a communication address of the voltage monitoring device and a physical location of the corresponding component, and performing abnormal component detection according to the information table, the information table including at least a communication address of each of the component voltage monitoring devices and a corresponding component thereof Object The correspondence of the location.
  • the component voltage monitoring device is further configured to sample an output voltage of a corresponding component;
  • the communication module is further configured to pass each of the communication addresses and corresponding components The voltage monitoring device establishes a connection, and acquires an output voltage of the corresponding component from the component voltage monitoring device that establishes the connection;
  • the processing module is further configured to determine each of the components according to an output voltage obtained from all of the component voltage monitoring devices Whether the component corresponding to the voltage monitoring device is abnormal, and when determining that the component corresponding to any one of the component voltage monitoring devices is abnormal, determining any one of the ones according to the information table according to the communication address of any one of the component voltage monitoring devices The physical position of the component corresponding to the component voltage monitoring device in the string of photovoltaic panels.
  • the component voltage monitoring device has a one-to-one correspondence with components in the photovoltaic panel string; or When the number of components in the photovoltaic panel string is an odd number, components of the odd physical positions in the photovoltaic panel string are in one-to-one correspondence with the component voltage monitoring device; or, when the photovoltaic panel When the number of components in the string is an even number, the first component of the photovoltaic panel string positive end and the components of the even physical location are in one-to-one correspondence with the component voltage monitoring device.
  • the communication module is specifically configured to establish a connection with a corresponding component voltage monitoring device through each of the communication addresses, and obtain the An output voltage, a positive terminal relative voltage, and a negative terminal relative voltage of a component of an odd physical position in a string of photovoltaic panels, the positive terminal relative voltage being a relative voltage of a positive terminal of the component relative to the voltage reference point, the negative terminal The relative voltage is the relative voltage of the negative terminal of the component relative to the voltage reference point;
  • the processing module is specifically configured to calculate a component of an even physical position intermediate the components of the two odd physical positions according to a positive end relative voltage and a negative end relative voltage of the components of the two odd physical positions separated by the information table.
  • An output voltage determining, based on the output voltage, whether a component of an even physical location intermediate the components of the two odd physical locations is abnormal; when determining a component of an even physical location intermediate the components of the two odd physical locations is abnormal Determining the two odd physical locations based on the physical locations of the components of the two odd physical locations described in the information table The physical location of the component in the even physical location of the middle of the component.
  • the photovoltaic panel string positive end is first
  • the component and the component of the even physical position are in one-to-one correspondence with the component voltage monitoring device;
  • the communication module is specifically configured to establish a connection with the corresponding component voltage monitoring device through each of the communication addresses, and establish a connected component voltage
  • the monitoring device acquires an output voltage, a positive terminal relative voltage, and a negative terminal relative voltage of the first component of the photovoltaic panel string and the component of the even physical position, the positive terminal relative voltage being the positive end of the component relative to the a relative voltage of the voltage reference point, the negative terminal relative voltage being a relative voltage of the negative terminal of the component relative to the voltage reference point;
  • the processing module is specifically configured to calculate a component of an odd physical position intermediate the components of the two even physical locations according to a positive end relative voltage and a negative end relative voltage of the components of the two even physical locations separated by the information table.
  • An output voltage determining, based on the output voltage, whether a component of an odd physical location intermediate the components of the two even physical locations is abnormal; when determining a component of an odd physical location intermediate the components of the two even physical locations
  • the physical location of the component of the odd physical location intermediate the components of the two even physical locations is determined according to the physical location of the components of the two even physical locations in the information table.
  • the processing module is specifically configured to determine, according to the magnitude of the relative voltages obtained from all the component voltage monitoring devices, each of the component voltage monitoring The physical location of the components corresponding to the device in the string of photovoltaic panels.
  • the voltage reference point is any one of the following: a positive end of the photovoltaic panel string, the photovoltaic panel The negative end of the string, the ground, and the positive or negative end of any of the components of the photovoltaic panel string.
  • the main monitoring device first obtains the communication address of all component voltage monitoring devices, and then establishes a connection with the corresponding component voltage monitoring device through the communication address, and can obtain the component voltage monitoring device.
  • the relative voltage of the corresponding component relative to the voltage reference point determining the physical position of the component corresponding to the component voltage monitoring device in the photovoltaic panel string according to the relative voltage obtained from each component voltage monitoring device, and finally
  • An information table is established according to the communication address of each component voltage monitoring device and the physical location of its corresponding component, after which the abnormal component detection can be performed according to the information table, and the communication of each component voltage monitoring device is saved in the information table.
  • the correspondence between the address and the physical location of its corresponding component When the system is debugged in the initial stage of the establishment of the photovoltaic power generation system, the traditional manual input information is discarded, the communication address of the component voltage monitoring device corresponding to the component is automatically acquired, the connection address is established with the component voltage monitoring device, and then the component voltage is obtained.
  • the monitoring device automatically collects the relative voltage of the component, and determines the component corresponding to each component voltage monitoring device in the photovoltaic panel string by the relative voltage according to the variation characteristic of the relative voltage of the relative voltage reference point of the component in the photovoltaic panel string.
  • the physical location in the middle can reduce the workload at the beginning of debugging and reduce the debugging complexity.
  • FIG. 1 is a schematic diagram of application of a component voltage monitoring system according to some embodiments of the present invention.
  • FIG. 2 is a schematic diagram of application of a component voltage monitoring system according to other embodiments of the present invention.
  • FIG. 3 is a schematic flow chart of a method for monitoring a photovoltaic cell module according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a monitoring device for a photovoltaic cell module according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a monitoring device for a photovoltaic cell module according to another embodiment of the present invention.
  • Embodiments of the present invention provide a monitoring method for a photovoltaic cell assembly, which is used to reduce the debugging workload in the initial stage of construction of the photovoltaic power generation system and reduce the debugging complexity. Embodiments of the present invention also provide a monitoring device for a photovoltaic cell assembly.
  • the invention is applicable to a photovoltaic power generation system.
  • a component voltage monitoring system In the initial stage of establishing a photovoltaic power generation system, a component voltage monitoring system is established.
  • the component voltage monitoring system includes a main monitoring device and a plurality of component voltage monitoring devices, wherein the main monitoring device and the component voltage monitoring device are wireless or Wired communication is used to establish a connection.
  • Each photovoltaic panel string is formed by a series of components, wherein each component voltage monitoring device corresponds to one of the photovoltaic panel strings. It should be noted that since a plurality of photovoltaic panel strings are disposed in the photovoltaic power generation system, each component voltage monitoring device corresponds to one component of any one of the photovoltaic panel strings.
  • the component voltage monitoring device can sample the output voltage of the corresponding component and the relative voltage with respect to a certain voltage reference point, and then send the sampled output voltage or relative voltage to the main monitoring device, so that the main monitoring device completes operations such as debugging and setting. .
  • the voltage reference point may be any one of the following voltage reference points: a negative end of the photovoltaic panel string, a positive end of the photovoltaic panel string, a ground or a component of any one of the photovoltaic panel strings End or negative end.
  • the relative voltage of the component relative to a voltage reference point may be the relative voltage of the negative terminal of the component relative to a voltage reference point, or may be the relative voltage of the positive terminal of the component relative to a voltage reference point, for example, if the earth is taken As the voltage reference point of the components in the photovoltaic panel string, the relative voltage of any one of the components of the photovoltaic panel string relative to the ground includes: the negative terminal-to-ground voltage of the component and the positive-to-ground voltage of the component.
  • FIG. 1 is a schematic diagram of application of a component voltage monitoring system according to some embodiments of the present invention
  • each component in a string of photovoltaic panel strings is correspondingly provided with a component voltage monitoring device
  • each The component voltage monitoring device is connected to the main monitoring device, and the main monitoring device assigns a communication address to each component voltage monitoring device, and the component voltage monitoring device has a one-to-one correspondence with the communication address. Therefore, in FIG. 1, the component voltage monitoring device can sample the output voltage of the component and the relative voltage with respect to a certain voltage reference point, and then the main monitoring device establishes a connection with the component voltage monitoring device through the communication address, and obtains the component voltage monitoring device. The output voltage of the corresponding component or the relative voltage of a certain voltage reference point.
  • FIG. 2 is a schematic diagram of application of a component voltage monitoring system according to another embodiment of the present invention.
  • some components in a string of photovoltaic panel are correspondingly provided with component voltage monitoring devices, specifically including the following: Two settings:
  • Case 1 When the total number of components of the photovoltaic panel string is an odd number, the component corresponding to the odd physical position sets the component voltage monitoring device;
  • Case 2 When the total number of components of the photovoltaic panel string is even, the first component of the positive end of the photovoltaic panel string and the component corresponding to the even physical location are set component voltage monitoring devices.
  • the component voltage monitoring device samples the output voltage of the corresponding component and the relative voltage with respect to a certain voltage reference point, and then the main monitoring device acquires the output voltage of the corresponding component or the relative voltage of a certain voltage reference point from the component voltage monitoring device.
  • the output voltage of the component that is not provided with the component voltage monitoring device or the relative voltage of a certain voltage reference point may be calculated by spacing the relative voltage of a component of the component voltage monitoring device relative to a certain voltage reference point. The specific calculation method will be described in detail later, and will not be described here.
  • the component voltage monitoring system shown in FIG. 2 can reduce the number of component voltage monitoring devices, thereby reducing the construction cost of the photovoltaic power generation system.
  • FIG. 1 and FIG. 2 are only schematic diagrams of application of some component voltage monitoring systems according to embodiments of the present invention, and other application schematics obtained by deformation or other means based on FIG. 1 and FIG. 2 can achieve the technical purpose of the present invention.
  • the invention achieves the beneficial effects of the present invention, which are not limited thereto.
  • an embodiment of the present invention provides a method for monitoring a photovoltaic cell assembly, which is applied to a component voltage monitoring system, wherein the component voltage monitoring system includes a main monitoring device and a plurality of component voltage monitoring devices, and each of the component voltage monitoring devices is allocated.
  • the main monitoring device establishes a connection with the corresponding component voltage monitoring device through the above communication address, and each of the component voltage monitoring devices corresponds to a component of the photovoltaic panel string, and the component voltage monitoring device is used for sampling corresponding The relative voltage of the component relative to the voltage reference point, the method comprising: the main monitoring device acquiring the communication address of all the component voltage monitoring devices, establishing a connection with the corresponding component voltage monitoring device through the communication address, and establishing a connected component voltage monitoring device Obtaining a relative voltage of the corresponding component relative to the voltage reference point; the main monitoring device determines, according to a relative voltage obtained from all the component voltage monitoring devices, a component corresponding to each of the component voltage monitoring devices in the light a physical position in the battery string; the main monitoring device establishes an information table according to the communication address of each of the component voltage monitoring devices and the physical location of the corresponding component, and then performs abnormal component detection according to the information table, and the information table is at least The correspondence between the communication address of
  • FIG. 3 is a schematic flowchart diagram of a method for monitoring a photovoltaic cell assembly according to some embodiments of the present invention.
  • a method for monitoring a photovoltaic cell assembly is applied to a component
  • the voltage monitoring system the component voltage monitoring system comprises a main monitoring device and a plurality of component voltage monitoring devices, each of the component voltage monitoring devices is assigned a communication address, and the main monitoring device establishes a connection with the corresponding component voltage monitoring device through the communication address
  • Each of the component voltage monitoring devices corresponds to a component of the photovoltaic panel string.
  • the component voltage monitoring device is configured to sample the relative voltage of the corresponding component relative to the voltage reference point, and may include:
  • the main monitoring device obtains the communication address of all the component voltage monitoring devices, establishes a connection with the corresponding component voltage monitoring device through the above communication address, and obtains a relative voltage of the corresponding component from the voltage reference point from the connected component voltage monitoring device;
  • the main monitoring device automatically searches for the communication address of the component voltage monitoring device, and then establishes a connection with the corresponding component voltage monitoring device based on the searched communication address, and then directly obtains the corresponding component from the component voltage monitoring device that establishes the connection.
  • Relative voltage reference point relative voltage if some components do not have corresponding component voltage monitoring devices, and then calculated according to the relative voltage of the relative voltage reference points of other components, thereby obtaining the same voltage of all components in the photovoltaic panel string. The relative voltage of the reference point.
  • the voltage reference point in the embodiment of the present invention and the subsequent embodiments may be any one of the voltage reference points described above, wherein the relative voltage of the component relative to the voltage reference point specifically includes: the positive end of the component is opposite to the positive end of the voltage reference point.
  • the negative terminal of the voltage or component is relative to the negative terminal of the voltage reference point.
  • the negative terminal relative voltage of the negative terminal of the component is the negative voltage of the component to ground.
  • the main monitoring device determines, according to a relative voltage obtained from all the component voltage monitoring devices, a physical position of a component corresponding to each component voltage monitoring device in the photovoltaic panel string;
  • the main monitoring device determines, according to the magnitude of the relative voltages obtained from all of the component voltage monitoring devices, the components corresponding to each of the component voltage monitoring devices in the photovoltaic panel group. The physical location in the string.
  • the physical position of the component in the photovoltaic panel string is determined according to the positive terminal relative voltage of the positive terminal relative to the voltage reference point of the component, or the negative terminal relative voltage of the negative terminal of the component relative to the voltage reference point. It can be understood that since the photovoltaic panel string is formed by connecting the front end and the negative end of the component in series, the characteristics of the photovoltaic panel string based on the series are assumed, from the negative end of the photovoltaic panel string to The positive-end sorting component, the relative voltage of the positive/negative end of the component The relative voltage of the test site rises linearly.
  • the relative voltage of the positive/negative terminal of the component decreases linearly with respect to the same voltage reference point. Therefore, it can be based on the component.
  • the relative voltage of the positive/negative terminal determines its physical position. Specifically, it can be numbered from the negative end of the PV panel string to the positive end, or it can be numbered from the positive end of the PV panel string to the negative end. .
  • the main monitoring device establishes an information table according to a communication address of each of the component voltage monitoring devices and a physical location of the corresponding component, and then performs abnormal component detection according to the information table, where the information table includes at least voltage monitoring of each of the components.
  • the main monitoring device first obtains the communication address of all component voltage monitoring devices, and then establishes a connection with the corresponding component voltage monitoring device through the communication address, and the corresponding component can be obtained from the component voltage monitoring device. Relative to the relative voltage of the voltage reference point, according to the relative voltage obtained from each component voltage monitoring device, determining the physical position of the component corresponding to the voltage monitoring device of the component in the photovoltaic panel string, and finally according to the voltage monitoring device of each component The information address and the physical location of its corresponding component establish an information table, after which the abnormal component detection can be performed according to the information table, and the communication address of each component voltage monitoring device and the physical location of the corresponding component are saved in the information table.
  • the traditional manual input information is discarded, the communication address of the component voltage monitoring device corresponding to the component is automatically acquired, the connection address is established with the component voltage monitoring device, and then the component voltage is obtained.
  • the monitoring device automatically collects the relative voltage of the component, and determines the component corresponding to each component voltage monitoring device in the photovoltaic panel string by the relative voltage according to the variation characteristic of the relative voltage of the relative voltage reference point of the component in the photovoltaic panel string.
  • the physical location in the middle can reduce the workload at the beginning of debugging and reduce the debugging complexity.
  • each component of the photovoltaic panel string is provided with a corresponding component voltage monitoring device, for example, a component voltage monitoring system as shown in FIG. 1, and a photovoltaic panel string.
  • a component voltage monitoring device for example, a component voltage monitoring system as shown in FIG. 1, and a photovoltaic panel string.
  • Each component in the corresponding component is provided with a component voltage monitoring device, and the component is grounded through the outer casing.
  • the main monitoring device automatically searches the component voltage monitoring device to obtain the communication address of the component voltage monitoring device corresponding to each component, and the main monitoring device establishes a connection with the component voltage monitoring device through the searched communication address.
  • the component voltage monitoring device samples the output voltage U PV of the corresponding component, the negative terminal-to-ground voltage U PV-/PE of the component, and the positive-to-ground voltage of the component (not shown in FIG. 1 ), etc., wherein the output voltage U PV is a component.
  • the main monitoring device obtains the negative-to-ground voltage U PV-/PE of the component from the component voltage monitoring device, and then determines the physical position of the component in the photovoltaic panel string according to the negative-to-ground voltage U PV-/PE , and then The information table of the physical location of the component and the corresponding component monitoring device is established, and the information table is stored in the memory. When the component is abnormally detected, the information table can be accurately located to the physical location of the abnormal component. As shown in Table 1, the main monitoring device obtains the negative terminal-to-ground voltage 360 from the component voltage monitoring device with the communication address of 100, and obtains the negative terminal-to-ground voltage 324 from the component voltage monitoring device with the communication address of 101, and so on.
  • the physical components of the components corresponding to each communication address in the photovoltaic panel string are sequentially determined. position.
  • the main monitoring device can also obtain the output voltage U PV of the component, the negative-to-ground voltage U PV-/PE and the positive-to-ground voltage from the component voltage monitoring device, and then can be grounded according to the negative end of the component.
  • the voltage or positive-to-ground voltage determines the physical location of the component in the string of photovoltaic panels:
  • the component voltage monitoring device at odd physical locations then samples the output voltage U PV of the corresponding component, the negative-to-ground voltage U PV-/PE, and the positive-to-ground voltage (not labeled in Figure 2).
  • the main monitoring device actively searches for the communication address of the component voltage monitoring device.
  • only the communication address of the component voltage monitoring device corresponding to the component corresponding to the odd physical location can be searched, and the component corresponding to the even physical location does not.
  • the component voltage monitoring transpose is set, and then the main monitoring device establishes a connection with the component voltage monitoring device through the communication address, and obtains the output voltage U PV of the component corresponding to the odd physical position from the component voltage monitoring device, and the negative terminal voltage to the ground U PV-/ PE and positive-to-ground voltage, according to the negative-to-ground voltage U PV-/PE or positive-to-ground voltage of the component corresponding to the odd physical position, the physical position of the components of the odd physical position in the photovoltaic panel string is determined.
  • the first column and the second column information shown in Table 4 below can be obtained, and then the corresponding physical position corresponding to the ground voltage U PV-/PE and the positive terminal voltage to ground corresponding to the component corresponding to the odd physical position is calculated.
  • the negative-to-ground voltage or positive-to-ground voltage of the component determines the physical location of all components in the PV panel string.
  • the negative-to-ground voltage of the component with physical position 2 is the positive-to-ground voltage of the component with the physical position of 3, and therefore, the positive end of the component according to the odd physical position is grounded.
  • the voltage can be used to derive the negative-to-ground voltage of the component at even physical locations.
  • the output voltage of the component at even physical locations is determined by the negative-to-ground voltage of the component corresponding to its odd physical location and the next odd physical location.
  • the first component of the photovoltaic panel string and the component corresponding to the even physical location are provided with corresponding component voltage monitoring devices, which are adopted by the component voltage monitoring device.
  • the output voltage of the first component of the positive terminal of the photovoltaic panel string, the voltage of the negative terminal to ground and the voltage of the positive terminal to ground, and the output voltage of the component corresponding to the even physical position, the voltage of the negative terminal to ground and the voltage of the positive terminal to ground, Then, according to the negative-to-ground voltage and the positive-to-ground voltage of the components of the two even physical positions of the interval, the negative-to-ground voltage and the positive-to-ground voltage of the components corresponding to the odd physical positions are respectively obtained.
  • the negative-to-ground voltage of a component with a physical location of 3 is the positive-to-ground voltage of a component with a physical location of 4
  • the output voltage of a component with a physical location of 3 the output voltage of a component with a physical location of 2 - a physical location Is the output voltage of 4
  • the positive-to-ground voltage of the component according to the even physical position can be used to derive the negative-to-ground voltage of the component of the last odd-physical position, and then the output voltage of the component of the odd-numbered physical location is An even-numbered physical position corresponding component's negative-to-ground voltage is subtracted from the positive-to-ground voltage of the component corresponding to the next even physical position.
  • performing abnormal component detection according to the information table in the foregoing step 303 includes: the main monitoring device establishes a connection with a corresponding component voltage monitoring device through each of the communication addresses, and establishes a connected component voltage monitoring device. Obtaining an output voltage of the corresponding component; the main monitoring device determines, according to an output voltage obtained from all of the component voltage monitoring devices, whether a component corresponding to each of the component voltage monitoring devices is abnormal; when determining any one of the component voltages When the component corresponding to the monitoring device is abnormal, the main monitoring device determines the any one according to the information table according to the communication address of any one of the component voltage monitoring devices. The physical location of the components of the component voltage monitoring device in the string of photovoltaic panels.
  • Performing the abnormal component detection according to the above information table further includes: the main monitoring device establishes a connection with the corresponding component voltage monitoring device through each of the above communication addresses, and acquires an odd physical position in the photovoltaic panel string from the connected component voltage monitoring device.
  • the output voltage of the component, the positive terminal relative voltage and the negative terminal relative voltage, the positive terminal relative voltage is the relative voltage of the positive terminal of the component relative to the voltage reference point
  • the negative terminal relative voltage is the negative terminal of the component relative to the voltage reference point Relative voltage
  • the main monitoring device calculates the output of the component of the even physical position between the components of the two odd physical positions according to the positive end relative voltage and the negative terminal relative voltage of the components of the two odd physical positions separated by the information table.
  • the above main monitoring device determines according to the above output voltage Whether the components of the even physical positions in the middle of the components of the two odd physical positions are abnormal; when it is determined that the components of the even physical positions in the middle of the components of the two odd physical positions are abnormal, the main monitoring device according to the above two odd numbers in the information table
  • the physical location of the component of the physical location determines the physical location of the component of the even physical location intermediate the components of the two odd physical locations.
  • the detecting, by the step 303, the abnormal component detection according to the information table further comprises: the main monitoring device establishes a connection with the corresponding component voltage monitoring device through each of the communication addresses, and acquires the photovoltaic panel from the component voltage monitoring device that establishes the connection.
  • the output voltage of the component in the odd physical position in the middle of the component; the above main The measuring device determines, according to the output voltage, whether the component of the odd physical position between the components of the two even physical positions is abnormal; when determining that the component of the odd physical position between the components of the two even physical positions is abnormal, the main monitoring device
  • the physical location of the components of the odd physical locations intermediate the components of the two even physical locations is determined based on the physical locations of the components of the two even physical locations in the information table.
  • the output voltage of the sampling component is used to judge the output voltage.
  • the output voltage of the component deviates greatly from the output voltage under normal operation. Therefore, it is possible to compare the output voltage of the sampled component with the output voltage under normal operation to determine whether it is abnormal.
  • the output voltage of the component under normal operation may be sampled multiple times, and then the output voltage of the multiple samples is averaged, and the average value may be used as a reference value, and the reference value is included in Table 3 above. In the information table shown, it is judged whether the component is abnormal by comparing the real-time output voltage with the reference value.
  • the physical location of the component can be found based on the communication address and then in the information table to accurately locate the physical location of the component.
  • FIG. 4 is a schematic structural diagram of a monitoring device for a photovoltaic cell assembly according to an embodiment of the present invention.
  • the component voltage monitoring system includes a component voltage monitoring device.
  • the monitoring device for the photovoltaic cell assembly each of the component voltage monitoring devices is assigned a communication address, and the monitoring device of the photovoltaic cell assembly is connected to the corresponding component voltage monitoring device through the communication address, and each of the component voltage monitoring devices
  • the component voltage monitoring device is configured to sample the relative voltage of the corresponding component relative to the voltage reference point
  • the monitoring device of the photovoltaic cell component comprises:
  • the communication module 410 is configured to obtain a communication address of all the component voltage monitoring devices, establish communication with the corresponding component voltage monitoring device through the communication address, and obtain a relative voltage of the corresponding component relative to the voltage reference point from the component voltage monitoring device that establishes communication. ;
  • the processing module 420 is configured to determine, according to a relative voltage obtained from all the component voltage monitoring devices, a physical position of each component of the component voltage monitoring device in the photovoltaic panel string, according to each of the component voltage monitoring devices.
  • the communication address and the physical location of the corresponding component establish an information table, and then perform abnormal component detection according to the information table.
  • the information table includes at least a correspondence between the communication address of each of the component voltage monitoring devices and the physical location of the corresponding component. .
  • the communication module 410 obtains the communication address of the component voltage monitoring device, and then bases Establishing a connection with the corresponding component voltage monitoring device at the communication address, and obtaining a relative voltage of the component of the photovoltaic panel string relative to the voltage reference point from the component voltage monitoring device. Since the photovoltaic panel string is formed by connecting the components in series, the processing module 420 Depending on the variation in the relative voltage of the component relative to the voltage reference point in the string of photovoltaic panels, the physical location of the component in the string of photovoltaic panels can be determined, and then the physical location of each component can be monitored with the component corresponding to the component.
  • the communication address of the device establishes an information table, and when the component is abnormally detected, the physical location of the component can be accurately located based on the information table.
  • the present invention can reduce the photovoltaic power generation system in debugging, in order to realize the automatic collection of component information and the establishment of the component physical location and the communication address information table, compared with the corresponding correspondence between the manual physical location and the communication address in the prior art.
  • the initial workload reduces the complexity of debugging.
  • the component voltage monitoring device is further configured to sample an output voltage of the corresponding component;
  • the communication module 410 is further configured to establish a connection with the corresponding component voltage monitoring device through each of the communication addresses, and establish a connected component voltage monitoring device. Obtaining the output voltage of the corresponding component;
  • the processing module 420 is further configured to: determine, according to an output voltage obtained from all the component voltage monitoring devices, whether a component corresponding to each component voltage monitoring device is abnormal, and when determining that a component corresponding to any one of the component voltage monitoring devices is abnormal, And determining, according to the information table, the physical position of the component corresponding to any one of the component voltage monitoring devices in the photovoltaic panel string according to the communication address of any one of the component voltage monitoring devices.
  • the component and component voltage monitoring device in the photovoltaic panel string may include the following relationship: the component voltage monitoring device has a one-to-one correspondence with the components in the photovoltaic panel string; or, when the photovoltaic panel is in the string When the number of components is an odd number, the components of the odd physical positions in the photovoltaic panel string are respectively corresponding to the component voltage monitoring device; or, when the number of components in the photovoltaic panel string is even, the photovoltaic cell
  • the first component of the positive string of the string string and the components of the even physical position correspond one-to-one with the component voltage monitoring device.
  • the modules 410 is specifically configured to establish a connection with a corresponding component voltage monitoring device through each of the foregoing communication addresses, and obtain an output voltage of the component of the odd physical position in the photovoltaic panel string from the component voltage monitoring device that establishes the connection, and the positive terminal is relatively Voltage and negative terminal relative voltage, the positive terminal relative voltage is the positive terminal of the component relative to the above voltage reference point The relative voltage of the negative terminal is the relative voltage of the negative terminal of the component relative to the voltage reference point;
  • the processing module 420 is specifically configured to calculate an output voltage of a component of an even physical position intermediate the components of the two odd physical positions according to a positive end relative voltage and a negative end relative voltage of the components of the two odd physical positions separated by the information table. Determining, according to the output voltage, whether the component of the even physical position between the components of the two odd physical positions is abnormal; when determining that the component of the even physical position between the components of the two odd physical positions is abnormal, according to the above information table The physical location of the components of the two odd physical locations determines the physical location of the components of the even physical locations intermediate the components of the two odd physical locations.
  • the communication module 410 is specifically configured to establish a connection with a corresponding component voltage monitoring device through each of the above communication addresses, and obtain the first front end of the photovoltaic panel string from the component voltage monitoring device that establishes the connection.
  • the output voltage of the component and the even physical position of the component, the positive terminal relative voltage and the negative terminal relative voltage, the positive terminal relative voltage is the relative voltage of the positive terminal of the component relative to the voltage reference point
  • the negative terminal relative voltage is the negative terminal of the component Relative voltage relative to the above voltage reference point
  • the processing module 420 is specifically configured to calculate an output of a component of an odd physical position intermediate the components of the two even physical positions according to a positive end relative voltage and a negative end relative voltage of the components of the two even physical positions separated by the information table. a voltage; determining, according to the output voltage, whether the component of the odd physical position between the components of the two even physical positions is abnormal; when determining that the component of the odd physical position between the components of the two even physical positions is abnormal, according to the information table
  • the physical location of the components of the two even physical locations described above determines the physical location of the components of the odd physical locations intermediate the components of the two even physical locations.
  • the processing module 420 is specifically configured to determine, according to the magnitude sequence of the relative voltages obtained from all the component voltage monitoring devices, components corresponding to each of the component voltage monitoring devices in the photovoltaic cell. The physical location in the board string.
  • the above voltage reference point is any one of the following: a positive end of the photovoltaic panel string, a negative end of the photovoltaic panel string, a ground, and any one of the photovoltaic panel strings. Positive or negative.
  • the monitoring device of the photovoltaic cell assembly provided in FIG. 4 is the above method embodiment.
  • the main monitoring device introduced in the method for details, refer to the detailed description of the main monitoring device in the method embodiment.
  • FIG. 5 is another schematic structural diagram of a monitoring device for a photovoltaic cell module according to an embodiment of the present invention, which may include at least one processor 501 (eg, CPU, Central Processing Unit), at least one network interface or other communication. An interface, a memory 502, and at least one communication bus are used to effect connection communication between the devices.
  • the processor 501 described above is for executing an executable module, such as a computer program, stored in a memory.
  • the above memory 502 may include a high speed random access memory (RAM), and may also include a non-volatile memory such as at least one disk memory.
  • the communication connection between the system gateway and at least one other network element is implemented by at least one network interface (which may be wired or wireless), and an Internet, a wide area network, a local network, a metropolitan area network, etc. may be used.
  • the memory 502 stores program instructions, and the program instructions may be executed by the processor 501.
  • the processor 501 specifically performs the following steps: acquiring the communication addresses of all the component voltage monitoring devices. Establishing a connection with the corresponding component voltage monitoring device through the above communication address, and obtaining a relative voltage of the corresponding component from the voltage reference point from the component voltage monitoring device that establishes the connection; determining each of the relative voltages obtained from all of the component voltage monitoring devices The physical position of the component corresponding to the component voltage monitoring device in the photovoltaic panel string; the information table is established according to the communication address of each of the component voltage monitoring devices and the physical location of the corresponding component, and then the abnormality is performed according to the information table.
  • the above information table includes at least a correspondence between the communication address of each of the component voltage monitoring devices and the physical location of the corresponding component.
  • the processor 501 can perform the following steps:
  • the processor 501 can perform the following steps:
  • the processor 501 may also be Perform the following steps:
  • the positive terminal relative voltage is a relative voltage of the positive terminal of the component with respect to the voltage reference point
  • the negative terminal relative voltage is a relative voltage of the negative terminal of the component with respect to the voltage reference point
  • two odd physical positions according to the information table interval
  • the positive terminal relative voltage and the negative terminal relative voltage of the component, the output voltage of the component of the even physical position intermediate the components of the two odd physical positions is calculated; and the even number between the components of the two odd physical positions is determined according to the output voltage Whether the component of the physical location is abnormal; when it is determined that the component of the even physical location in the middle of the component of the two odd physical locations is abnormal, the two odd physical locations are determined according to the physical location of the component of the two odd physical locations in the information table. Even physical location in the middle of the component The physical location of the member.
  • the processor 501 can also perform the following steps:
  • the voltage and the negative terminal relative voltage, the positive terminal relative voltage is the relative voltage of the positive end of the component relative to the voltage reference point, and the negative terminal relative voltage is the relative voltage of the negative terminal of the component relative to the voltage reference point; Calculating an output voltage of a component of an odd physical position intermediate the components of the two even physical positions of the two opposite physical positions of the component with respect to the voltage and the negative terminal relative voltage; determining the two even physics according to the output voltage Whether the component of the odd physical position in the middle of the component of the position is abnormal; when determining the component abnormality of the odd physical position in the middle of the component of the two even physical positions, the physical position of the component of the two even physical positions in the information table is determined. On The physical location of the component of the odd physical location intermediate the components of the two even physical locations.
  • the processor 501 can perform the following steps:
  • the physical position of the component corresponding to each of the above component voltage monitoring devices in the above-mentioned photovoltaic panel string is determined according to the order of magnitude of the relative voltages obtained from all of the above component voltage monitoring devices.
  • the memory 502 is configured to store a communication address of the component voltage monitoring device, and an information table.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product, which is stored in the form of a software product.
  • instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photovoltaic Devices (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

一种光伏电池组件的监测方法及装置,用于减少调试工作量以及降低调试复杂度。该方法包括:获取所有组件电压监测装置的通讯地址,通过通讯地址与对应的组件电压监测装置建立连接,从建立连接的组件电压监测装置获取对应组件相对电压参考点的相对电压;根据从所有组件电压监测装置获取的相对电压,确定每一个组件电压监测装置对应的组件在光伏电池板组串中的物理位置;根据每一个组件电压监测装置的通讯地址和其对应的组件的物理位置建立信息表,再根据信息表进行异常组件检测,信息表至少包括每一个组件电压监测装置的通讯地址与其对应的组件的物理位置的对应关系。

Description

一种光伏电池组件的监测方法及装置 技术领域
本发明涉及光伏电池技术领域,具体涉及一种光伏电池组件的监测方法及装置。
背景技术
光伏电池板组串(Photo Voltaic String)由若干光伏电池组件(Photo Voltaic Module)串联而成,用于吸收太阳光能并将太阳光能转化成电能,成为逆变器的有效输入。由于光伏电池板组串长期安装在室外环境中,受到高温、高湿度、热斑和机械损伤等影响,还可能存在阴影遮挡、积灰和积雪等,使得组件光能转化成电能的效率下降,导致一些组件失效以致异常。为了确保光伏电池板组串正常工作,在实际应用中通过监控中心实时对组件进行监控,在监控过程中,实时采样各个组件数据,并通过无线或有线通讯方式获取组件的采样数据以进行异常分析,一旦确定组件异常,就定位到组件进行异常排除。
为了准确定位到异常组件,在光伏发电系统建立调试时,每个组件配备一个组件电压监测装置,而监控中心通过无线或有线通讯方式连接组件电压监测装置,其中,每个组件电压监测装置的通讯地址不同。并且按照组件在光伏电池板组串中的位置顺序对组件进行位置编号,然后将位置编号和组件对应的组件电压监测装置所采用的通讯地址建立一一对应关系,将该对应关系录入监控设备。在确定某个组件异常时,先获取该组件对应的组件电压监测装置的通讯地址,然后根据对应关系查找到异常组件的位置编号,以确定该异常组件在光伏电池板组串中的位置。可以看出,上述组件位置编号与通信地址的对应关系采用人工记录的方式,而在电池板的总数较多时,采用人工记录会导致工作量非常大,增加初期安装调试的复杂性,使得安装调试难以实施。
发明内容
本发明实施例提供了一种光伏电池组件的监测方法及装置,用以减少 光伏发电系统建设初期的调试工作量以及降低调试复杂度。
本发明第一方面提供了一种光伏电池组件的监测方法,应用于组件电压监测系统,所述组件电压监测系统包括主监测装置和若干组件电压监测装置,每一个所述组件电压监测装置分配有一个通讯地址,所述主监测装置通过所述通讯地址与对应的组件电压监测装置建立连接,每一个所述组件电压监测装置与光伏电池板组串的一个组件对应,所述组件电压监测装置用于采样对应组件相对电压参考点的相对电压,所述方法可包括:
所述主监测装置获取所有所述组件电压监测装置的通讯地址,通过所述通讯地址与对应的组件电压监测装置建立连接,从建立连接的组件电压监测装置获取对应组件相对所述电压参考点的相对电压;
所述主监测装置根据从所有所述组件电压监测装置获取的相对电压,确定每一个所述组件电压监测装置对应的组件在所述光伏电池板组串中的物理位置;
所述主监测装置根据每一个所述组件电压监测装置的通讯地址和其对应的组件的物理位置建立信息表,再根据所述信息表进行异常组件检测,所述信息表至少包括每一个所述组件电压监测装置的通讯地址与其对应的组件的物理位置的对应关系。
结合第一方面,在第一种可能的实现方式中,,所述组件电压监测装置还用于采样对应组件的输出电压,所述根据所述信息表进行异常组件检测包括:
所述主监测装置通过每一个所述通讯地址与对应的组件电压监测装置建立连接,从建立连接的组件电压监测装置获取对应的组件的输出电压;所述主监测装置根据从所有所述组件电压监测装置获取的输出电压,确定每一个所述组件电压监测装置对应的组件是否异常;当确定任意一个所述组件电压监测装置对应的组件异常时,所述主监测装置根据所述任意一个所述组件电压监测装置的通讯地址,根据所述信息表确定所述任意一个所述组件电压监测装置对应的组件在所述光伏电池板组串中的物理位置。
结合第一方面,或者第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述组件电压监测装置与所述光伏电池板组串中的组件一一对应;或者,当所述光伏电池板组串中的组件数量为奇数时,所述光伏电池板组串中的奇数物理位置的组件与所述组件电压监测装置一一对应; 或者,当所述光伏电池板组串中的组件数量为偶数时,所述光伏电池板组串正端第一个组件和偶数物理位置的组件与所述组件电压监测装置一一对应。
结合第一方面的第二种可能的实现方式,在第三种可能的实现方式中,当所述光伏电池板组串中的组件数量为奇数时,所述光伏电池板组串中的奇数物理位置的组件与所述组件电压监测装置一一对应,所述根据所述信息表进行异常组件检测还包括:
所述主监测装置通过每一个所述通讯地址与对应的组件电压监测装置建立连接,从建立连接的组件电压监测装置获取所述光伏电池板组串中奇数物理位置的组件的输出电压、正端相对电压和负端相对电压,所述正端相对电压为组件的正端相对所述电压参考点的相对电压,所述负端相对电压为组件的负端相对所述电压参考点的相对电压;所述主监测装置根据所述信息表间隔的两个奇数物理位置的组件的正端相对电压和负端相对电压,计算所述两个奇数物理位置的组件中间的偶数物理位置的组件的输出电压;所述主监测装置根据所述输出电压,确定所述两个奇数物理位置的组件中间的偶数物理位置的组件是否异常;当确定所述两个奇数物理位置的组件中间的偶数物理位置的组件异常时,所述主监测装置根据信息表中所述两个奇数物理位置的组件的物理位置,确定所述两个奇数物理位置的组件中间的偶数物理位置的组件的物理位置。
结合第一方面的第二种可能的实现方式,在第四种可能的实现方式中,当所述光伏电池板组串中的组件数量为偶数时,所述光伏电池板组串正端第一个组件和偶数物理位置的组件与所述组件电压监测装置一一对应,所述根据所述信息表进行异常组件检测还包括:
所述主监测装置通过每一个所述通讯地址与对应的组件电压监测装置建立连接,从建立连接的组件电压监测装置获取所述光伏电池板组串正端第一个组件和偶数物理位置的组件的输出电压、正端相对电压和负端相对电压,所述正端相对电压为组件的正端相对所述电压参考点的相对电压,所述负端相对电压为组件的负端相对所述电压参考点的相对电压;所述主监测装置根据所述信息表间隔的两个偶数物理位置的组件的正端相对电压和负端相对电压,计算所述两个偶数物理位置的组件中间的奇数物理位置的组件的输出电压;所述主监测装置根据所述输出电压,确定所述两个偶 数物理位置的组件中间的奇数物理位置的组件是否异常;当确定所述两个偶数物理位置的组件中间的奇数物理位置的组件异常时,所述主监测装置根据信息表中所述两个偶数物理位置的组件的物理位置,确定所述两个偶数物理位置的组件中间的奇数物理位置的组件的物理位置。
结合第一方面,或者第一方面的第一种可能的实现方式,或者第一方面的第二种可能的实现方式,或者第一方面的第三种可能的实现方式,或者第一方面的第四种可能的实现方式,在第五种可能的实现方式中,所述主监测装置根据从所有所述组件电压监测装置获取的相对电压,确定每一个所述组件电压监测装置对应的组件在所述光伏电池板组串中的物理位置,包括:所述主监测装置根据从所有所述组件电压监测装置获取的相对电压的大小顺序,确定每一个所述组件电压监测装置对应的组件在所述光伏电池板组串中的物理位置。
结合第一方面的第五种可能的实现方式,在第六种可能的实现方式中,所述电压参考点为以下任意一种:所述光伏电池板组串的正端、所述光伏电池板组串的负端、大地和所述光伏电池板组串中任意一个组件的正端或负端。
本发明第二方面提供了一种光伏电池组件的监测装置,应用于组件电压监测系统,所述组件电压监测系统包括若干组件电压监测装置和所述光伏电池组件的监测装置,每一个所述组件电压监测装置分配有一个通讯地址,所述光伏电池组件的监测装置通过所述通讯地址与对应的组件电压监测装置建立连接,每一个所述组件电压监测装置与光伏电池板组串的一个组件对应,所述组件电压监测装置用于采样对应组件相对电压参考点的相对电压,所述光伏电池组件的监测装置包括:
通讯模块,用于获取所有所述组件电压监测装置的通讯地址,通过所述通讯地址与对应的组件电压监测装置建立通讯,从建立通讯的组件电压监测装置获取对应组件相对所述电压参考点的相对电压;
处理模块,用于根据从所有所述组件电压监测装置获取的相对电压,确定每一个所述组件电压监测装置对应的组件在所述光伏电池板组串中的物理位置,根据每一个所述组件电压监测装置的通讯地址和其对应的组件的物理位置建立信息表,再根据所述信息表进行异常组件检测,所述信息表至少包括每一个所述组件电压监测装置的通讯地址与其对应的组件的物 理位置的对应关系。
结合第二方面,在第一种可能的实现方式中,所述组件电压监测装置还用于采样对应组件的输出电压;所述通讯模块还用于,通过每一个所述通讯地址与对应的组件电压监测装置建立连接,从建立连接的组件电压监测装置获取对应的组件的输出电压;所述处理模块还用于,根据从所有所述组件电压监测装置获取的输出电压,确定每一个所述组件电压监测装置对应的组件是否异常,当确定任意一个所述组件电压监测装置对应的组件异常时,根据所述任意一个所述组件电压监测装置的通讯地址,根据所述信息表确定所述任意一个所述组件电压监测装置对应的组件在所述光伏电池板组串中的物理位置。
结合第二方面,或者第二方面的第一种可能的实现方式,在第二种可能的实现方式中,所述组件电压监测装置与所述光伏电池板组串中的组件一一对应;或者,当所述光伏电池板组串中的组件数量为奇数时,所述光伏电池板组串中的奇数物理位置的组件与所述组件电压监测装置一一对应;或者,当所述光伏电池板组串中的组件数量为偶数时,所述光伏电池板组串正端第一个组件和偶数物理位置的组件与所述组件电压监测装置一一对应。
结合第二方面的第二种可能的实现方式,在第三种可能的实现方式中,当所述光伏电池板组串中的组件数量为奇数时,所述光伏电池板组串中的奇数物理位置的组件与所述组件电压监测装置一一对应,所述通讯模块具体用于,通过每一个所述通讯地址与对应的组件电压监测装置建立连接,从建立连接的组件电压监测装置获取所述光伏电池板组串中奇数物理位置的组件的输出电压、正端相对电压和负端相对电压,所述正端相对电压为组件的正端相对所述电压参考点的相对电压,所述负端相对电压为组件的负端相对所述电压参考点的相对电压;
所述处理模块具体用于,根据所述信息表间隔的两个奇数物理位置的组件的正端相对电压和负端相对电压,计算所述两个奇数物理位置的组件中间的偶数物理位置的组件的输出电压;根据所述输出电压,确定所述两个奇数物理位置的组件中间的偶数物理位置的组件是否异常;当确定所述两个奇数物理位置的组件中间的偶数物理位置的组件异常时,根据信息表中所述两个奇数物理位置的组件的物理位置,确定所述两个奇数物理位置 的组件中间的偶数物理位置的组件的物理位置。
结合第二方面的第二种可能的实现方式,在第四种可能的实现方式中,当所述光伏电池板组串中的组件数量为偶数时,所述光伏电池板组串正端第一个组件和偶数物理位置的组件与所述组件电压监测装置一一对应;所述通讯模块具体用于,通过每一个所述通讯地址与对应的组件电压监测装置建立连接,从建立连接的组件电压监测装置获取所述光伏电池板组串正端第一个组件和偶数物理位置的组件的输出电压、正端相对电压和负端相对电压,所述正端相对电压为组件的正端相对所述电压参考点的相对电压,所述负端相对电压为组件的负端相对所述电压参考点的相对电压;
所述处理模块具体用于,根据所述信息表间隔的两个偶数物理位置的组件的正端相对电压和负端相对电压,计算所述两个偶数物理位置的组件中间的奇数物理位置的组件的输出电压;根据所述输出电压,确定所述两个偶数物理位置的组件中间的奇数物理位置的组件是否异常;当确定所述两个偶数物理位置的组件中间的奇数物理位置的组件异常时,根据信息表中所述两个偶数物理位置的组件的物理位置,确定所述两个偶数物理位置的组件中间的奇数物理位置的组件的物理位置。
结合第二方面,或者第二方面的第一种可能的实现方式,或者第二方面的第二种可能的实现方式,或者第二方面的第三种可能的实现方式,或者第二方面的第四种可能的实现方式,在第五种可能的实现方式中,所述处理模块具体用于,根据从所有所述组件电压监测装置获取的相对电压的大小顺序,确定每一个所述组件电压监测装置对应的组件在所述光伏电池板组串中的物理位置。
结合第二方面的第五种可能的实现方式,在第六种可能的实现方式中,所述电压参考点为以下任意一种:所述光伏电池板组串的正端、所述光伏电池板组串的负端、大地和所述光伏电池板组串中任意一个组件的正端或负端。
从以上技术方案可以看出,本发明实施例中主监测装置先获取所有组件电压监测装置的通讯地址,然后通过该通讯地址与对应的组件电压监测装置建立连接,则可以从组件电压监测装置获取到对应的组件相对电压参考点的相对电压,根据每一个从组件电压监测装置获取的相对电压,确定该组件电压监测装置对应的组件在光伏电池板组串中的物理位置,最后根 据每一个组件电压监测装置的通讯地址和其对应的组件的物理位置建立信息表,之后则可以根据该信息表进行异常组件检测,而在信息表中则保存了每一个组件电压监测装置的通讯地址与其对应的组件的物理位置的对应关系。本发明在光伏发电系统建立初期进行系统调试时,摒弃传统手工录入信息,采取自动获取组件对应的组件电压监测装置的通讯地址,通过获取的通讯地址与组件电压监测装置建立连接,然后从组件电压监测装置自动收集组件的相对电压,并根据组件在光伏电池板组串中相对电压参考点的相对电压的变化特性,通过相对电压来确定每一个组件电压监测装置对应的组件在光伏电池板组串中的物理位置,能够减少调试初期时的工作量,降低调试复杂度。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一些实施例提供的组件电压监测系统的应用示意图;
图2为本发明另一些实施例提供的组件电压监测系统的应用示意图;
图3为本发明实施例提供的光伏电池组件的监测方法的流程示意图;
图4为本发明实施例提供的光伏电池组件的监测装置的结构示意图;
图5为本发明另一实施例提供的光伏电池组件的监测装置的结构示意图。
具体实施方式
本发明实施例提供了一种光伏电池组件的监测方法,用以减少光伏发电系统建设初期的调试工作量以及降低调试复杂度。本发明实施例还相应地提供了一种光伏电池组件的监测装置。
下面将结合本发明实施例的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的 范围。
本发明适用于光伏发电系统,在光伏发电系统建立初期,建立组件电压监测系统,该组件电压监测系统包括主监测装置和若干组件电压监测装置,其中,主监测装置与组件电压监测装置以无线或有线通讯方式建立连接。每一个光伏电池板组串由若干组件串联而成,其中,每一个组件电压监测装置与光伏电池板组串中的一个组件对应。需要说明,由于光伏发电系统中设置有若干光伏电池板组串,因此,每一个组件电压监测装置与任意一个光伏电池板组串中的一个组件对应。该组件电压监测装置能够采样对应组件的输出电压以及相对某一个电压参考点的相对电压等,然后将采样到的输出电压或相对电压发送给主监测装置,以便主监测装置完成调试和设置等操作。
其中,上述电压参考点可以为以下电压参考点中的任意一种:光伏电池板组串的负端、光伏电池板组串的正端、大地或者光伏电池板组串中的任意一个组件的正端或负端。而组件相对某一个电压参考点的相对电压,可以是组件的负端相对某一个电压参考点的相对电压,也可以是组件的正端相对某一个电压参考点的相对电压,例如,若取大地作为光伏电池板组串中组件的电压参考点,则该光伏电池板组串中任意一个组件相对大地的相对电压包括:组件负端对地电压和组件正端对地电压。
如图1所示,图1为本发明一些实施例提供的组件电压监测系统的应用示意图;在图1中,光伏电池板组串中的每个组件都对应设置有组件电压监测装置,每个组件电压监测装置与主监测装置连接,主监测装置给每个组件电压监测装置分配一个通讯地址,且该组件电压监测装置与通讯地址一一对应。因此,在图1中,组件电压监测装置能够采样组件的输出电压以及相对某一个电压参考点的相对电压,然后主监测装置通过通讯地址与组件电压监测装置建立连接,从组件电压监测装置中获取对应组件的输出电压或者相对某一个电压参考点的相对电压。
如图2所示,图2为本发明另一些实施例提供的组件电压监测系统的应用示意图;在图2中,光伏电池板组串中的部分组件对应设置有组件电压监测装置,具体包括如下两种设置方式:
情况一、当光伏电池板组串的组件的总数为奇数时,奇数物理位置对应的组件设置组件电压监测装置;
情况二、当光伏电池板组串的组件的总数为偶数时,光伏电池板组串正端的第一个组件和偶数物理位置对应的组件设置组件电压监测装置。
基于图2,组件电压监测装置采样对应组件的输出电压以及相对某一个电压参考点的相对电压,然后主监测装置从组件电压监测装置获取对应组件的输出电压或者相对某一个电压参考点的相对电压,而其它没有设置组件电压监测装置的组件的输出电压或相对某一个电压参考点的相对电压,则可以通过间隔设置有组件电压监测装置的组件的相对某一个电压参考点的相对电压来计算,具体计算方法在后续进行详细说明,在此不再赘述。
其中,采用图2所示的组件电压监测系统,可以减少组件电压监测装置的数量,从而减少光伏发电系统的建设成本。
上述图1和图2仅为本发明实施例给出的一些组件电压监测系统的应用示意图,在图1和图2基础上经过变形或者其它手段得到的其它应用示意图,能够实现本发明技术目的、达到本发明有益效果的均属于本发明保护范围,在此不作限定。
基于上述介绍,本发明实施例提供了一种光伏电池组件的监测方法,应用于组件电压监测系统,上述组件电压监测系统包括主监测装置和若干组件电压监测装置,每一个上述组件电压监测装置分配有一个通讯地址,上述主监测装置通过上述通讯地址与对应的组件电压监测装置建立连接,每一个上述组件电压监测装置与光伏电池板组串的一个组件对应,上述组件电压监测装置用于采样对应组件相对电压参考点的相对电压,该方法包括:上述主监测装置获取所有上述组件电压监测装置的通讯地址,通过上述通讯地址与对应的组件电压监测装置建立连接,从建立连接的组件电压监测装置获取对应组件相对上述电压参考点的相对电压;上述主监测装置根据从所有上述组件电压监测装置获取的相对电压,确定每一个上述组件电压监测装置对应的组件在上述光伏电池板组串中的物理位置;上述主监测装置根据每一个上述组件电压监测装置的通讯地址和其对应的组件的物理位置建立信息表,再根据上述信息表进行异常组件检测,上述信息表至少包括每一个上述组件电压监测装置的通讯地址与其对应的组件的物理位置的对应关系。
请参阅图3,图3为本发明一些实施例提供的光伏电池组件的监测方法的流程示意图;如图3所示,一种光伏电池组件的监测方法,应用于组件 电压监测系统,上述组件电压监测系统包括主监测装置和若干组件电压监测装置,每一个上述组件电压监测装置分配有一个通讯地址,上述主监测装置通过上述通讯地址与对应的组件电压监测装置建立连接,每一个上述组件电压监测装置与光伏电池板组串的一个组件对应,上述组件电压监测装置用于采样对应组件相对电压参考点的相对电压,可包括:
301、主监测装置获取所有上述组件电压监测装置的通讯地址,通过上述通讯地址与对应的组件电压监测装置建立连接,从建立连接的组件电压监测装置获取对应组件相对上述电压参考点的相对电压;
结合图1或图2,主监测装置自动搜索组件电压监测装置的通讯地址,然后基于搜索到的通讯地址与对应的组件电压监测装置建立连接,然后从建立连接的组件电压监测装置直接获取对应组件相对电压参考点的相对电压,若存在部分组件没有对应的组件电压监测装置,再根据其它组件的相对电压参考点的相对电压计算得到,从而得到该光伏电池板组串中所有组件相对同一个电压参考点的相对电压。
本发明实施例以及后续实施例中的电压参考点可以是上述介绍的任意一个电压参考点,其中,组件相对电压参考点的相对电压具体包括:组件的正端相对上述电压参考点的正端相对电压或者组件的负端相对上述电压参考点的负端相对电压。
举例来说,当电压参考点为大地,则组件的负端相对大地的负端相对电压即为组件负端对地电压。
302、上述主监测装置根据从所有上述组件电压监测装置获取的相对电压,确定每一个上述组件电压监测装置对应的组件在上述光伏电池板组串中的物理位置;
优选地,在实施步骤302的过程中,主监测装置根据从所有所述组件电压监测装置获取的相对电压的大小顺序,确定每一个所述组件电压监测装置对应的组件在所述光伏电池板组串中的物理位置。
具体地,具体是根据组件的正端相对电压参考点的正端相对电压,或者组件的负端相对电压参考点的负端相对电压确定组件在光伏电池板组串中的物理位置。可以理解的是,由于光伏电池板组串是由组件的正端/负端首尾串联而成,基于串联而成的光伏电池板组串所具有的特性,假设从光伏电池板组串负端到正端排序组件,则组件的正端/负端的相对同一电压参 考点的相对电压呈线性上升,反之,从伏电池板组串正端到负端排序组件,则组件的正端/负端的相对同一电压参考点的相对电压呈线性下降,因此,可以根据组件的正端/负端的相对电压确定其物理位置,具体可以从光伏电池板组串负端到正端开始位置编号,也可以从光伏电池板组串正端到负端开始位置编号,在此不作限定。
303、上述主监测装置根据每一个上述组件电压监测装置的通讯地址和其对应的组件的物理位置建立信息表,再根据上述信息表进行异常组件检测,上述信息表至少包括每一个上述组件电压监测装置的通讯地址与其对应的组件的物理位置的对应关系。
可以看出,本发明实施例中主监测装置先获取所有组件电压监测装置的通讯地址,然后通过该通讯地址与对应的组件电压监测装置建立连接,则可以从组件电压监测装置获取到对应的组件相对电压参考点的相对电压,根据每一个从组件电压监测装置获取的相对电压,确定该组件电压监测装置对应的组件在光伏电池板组串中的物理位置,最后根据每一个组件电压监测装置的通讯地址和其对应的组件的物理位置建立信息表,之后则可以根据该信息表进行异常组件检测,而在信息表中则保存了每一个组件电压监测装置的通讯地址与其对应的组件的物理位置的对应关系。本发明在光伏发电系统建立初期进行系统调试时,摒弃传统手工录入信息,采取自动获取组件对应的组件电压监测装置的通讯地址,通过获取的通讯地址与组件电压监测装置建立连接,然后从组件电压监测装置自动收集组件的相对电压,并根据组件在光伏电池板组串中相对电压参考点的相对电压的变化特性,通过相对电压来确定每一个组件电压监测装置对应的组件在光伏电池板组串中的物理位置,能够减少调试初期时的工作量,降低调试复杂度。
在本发明一些实施例中,结合图1,光伏电池板组串中每个组件设置对应的组件电压监测装置,举例来说,如图1所示的组件电压监测系统,对光伏电池板组串中的每个组件对应设置一个组件电压监测装置,组件通过外壳接地。在光伏发电系统建立初期,主监测装置自动进行组件电压监测装置搜索,获取每个组件对应的组件电压监测装置的通讯地址,主监测装置通过搜索到的通讯地址与组件电压监测装置建立连接。组件电压监测装置采样对应组件的输出电压UPV、组件的负端对地电压UPV-/PE和组件的正端对地电压(图1中未标示)等,其中,输出电压UPV为组件负端与正端之间 的电压。
主监测装置从组件电压监测装置中获取到组件的负端对地电压UPV-/PE,然后根据负端对地电压UPV-/PE确定组件在光伏电池板组串中的物理位置,然后将组件的物理位置与其对应的组件监测装置的通讯地址建立信息表,该信息表保存在内存中,在后续组件异常检测时,则可以通过该信息表准确定位到异常组件的物理位置上。如表1所示,主监测装置从通讯地址为100的组件电压监测装置获取到负端对地电压360,从通讯地址为101的组件电压监测装置获取到负端对地电压324,依次类推,直到从通讯地址为119的组件电压监测装置获取到负端对地电压-324,然后根据负端对地电压的大小顺序,依次确定每个通讯地址对应的组件在光伏电池板组串中的物理位置。
物理位置 通讯地址 负端对地电压
1 100 360
2 101 324
3 102 288
4 103 252
5 104 216
6 105 180
7 106 144
8 107 108
9 108 72
10 117 36
11 116 0
12 115 -36
13 114 -72
14 113 -108
15 112 -144
16 111 -180
17 110 -216
18 109 -252
19 118 -288
20 119 -324
表1
如表2所示,主监测装置还可以从组件电压监测装置中获取组件的输出电压UPV、负端对地电压UPV-/PE和正端对地电压,然后可以根据组件的负端对地电压或者正端对地电压确定组件在光伏电池板组串中的物理位置:
Figure PCTCN2016084143-appb-000001
表2
根据上述表1或表2确定组件的物理位置,然后将组件的物理位置与 通讯地址建立信息表,该信息表如表3所示:
物理位置 通讯地址
1 100
2 101
3 102
4 103
5 104
6 105
7 106
8 107
9 108
10 117
11 116
12 115
13 114
14 113
15 112
16 111
17 110
18 109
19 118
20 119
表3
再举例来说,结合图2,假设图2所示的组件电压监测系统中,某一个光伏电池板组串中的组件的总数为奇数=21,奇数物理位置对应的组件设置组件电压监测装置,然后奇数物理位置上的组件电压监测装置采样对应的组件的输出电压UPV、负端对地电压UPV-/PE和正端对地电压(图2中未标注)。主监测装置主动搜索组件电压监测装置的通讯地址,当然,在本发明实施例中,只能搜索到奇数物理位置对应的组件对应的组件电压监测装置的通讯地址,而偶数物理位置对应的组件没有设置组件电压监测转置,然后主 监测装置通过通讯地址与组件电压监测装置建立连接,从组件电压监测装置中获取奇数物理位置对应的组件的输出电压UPV、负端对地电压UPV-/PE和正端对地电压,根据奇数物理位置对应的组件的负端对地电压UPV-/PE或者正端对地电压,确定了奇数物理位置的组件在光伏电池板组串中的物理位置,即可以得到如下表4所示的第一列和第二列信息,然后再根据奇数物理位置对应的组件的负端对地电压UPV-/PE和正端对地电压,计算偶数物理位置对应的组件的负端对地电压或者正端对地电压,从而确定所有组件在光伏电池板组串中的物理位置。
表4所示如下:
Figure PCTCN2016084143-appb-000002
Figure PCTCN2016084143-appb-000003
表4
根据表4中的组件的负端对地电压UPV-/PE或正端对地电压确定光伏电池板组串中所有组件在该光伏电池板组串中的物理位置,然后根据物理位置和通讯地址建立如表5所示的信息表:
物理位置 通讯地址
1 100
2  
3 102
4  
5 104
6  
7 106
8  
9 108
10  
11 116
12  
13 114
14  
15 112
16  
17 110
18  
19 118
20  
21 120
表5
结合图2和表4,可以看出,物理位置为2的组件的负端对地电压为物理位置为3的组件的正端对地电压,因此,根据奇数物理位置的组件的正端对地电压可以得出偶数物理位置的组件的负端对地电压,然后,偶数物理位置的组件的输出电压由其上一个奇数物理位置对应的组件的负端对地电压与下一个奇数物理位置对应的组件的正端对地电压相减得到,例如,物理位置为2的组件的输出电压=物理位置为1的组件的负端对地电压-物理位置为3的组件的正端对地电压。
反之,当光伏电池板组串的组件的总数为偶数时,光伏电池板组串的正端第一个组件和偶数物理位置对应的组件设置有对应的组件电压监测装置,通过组件电压监测装置采用了光伏电池板组串的正端第一个组件的输出电压、负端对地电压和正端对地电压,以及偶数物理位置对应的组件的输出电压、负端对地电压和正端对地电压,然后根据间隔的两个偶数物理位置的组件的负端对地电压和正端对地电压,分别得到奇数物理位置对应的组件的负端对地电压和正端对地电压。比如,物理位置为3的组件的负端对地电压为物理位置为4的组件的正端对地电压,物理位置为3的组件的输出电压=物理位置为2的组件的输出电压-物理位置为4的输出电压,因此,根据偶数物理位置的组件的正端对地电压可以得出上一个奇数物理位置的组件的负端对地电压,然后,奇数物理位置的组件的输出电压由其上一个偶数物理位置对应组件的负端对地电压与下一个偶数物理位置对应的组件的正端对地电压相减得到。
基于上述说明,上述步骤303中的根据所述信息表进行异常组件检测包括:所述主监测装置通过每一个所述通讯地址与对应的组件电压监测装置建立连接,从建立连接的组件电压监测装置获取对应的组件的输出电压;所述主监测装置根据从所有所述组件电压监测装置获取的输出电压,确定每一个所述组件电压监测装置对应的组件是否异常;当确定任意一个所述组件电压监测装置对应的组件异常时,所述主监测装置根据所述任意一个所述组件电压监测装置的通讯地址,根据所述信息表确定所述任意一个所 述组件电压监测装置对应的组件在所述光伏电池板组串中的物理位置。
在本发明一个可实施的方式中,当光伏电池板组串中的组件数量为奇数时,上述光伏电池板组串中的奇数物理位置的组件与上述组件电压监测装置一一对应,步骤303中的根据上述信息表进行异常组件检测还包括:主监测装置通过每一个上述通讯地址与对应的组件电压监测装置建立连接,从建立连接的组件电压监测装置获取上述光伏电池板组串中奇数物理位置的组件的输出电压、正端相对电压和负端相对电压,上述正端相对电压为组件的正端相对上述电压参考点的相对电压,上述负端相对电压为组件的负端相对上述电压参考点的相对电压;上述主监测装置根据上述信息表间隔的两个奇数物理位置的组件的正端相对电压和负端相对电压,计算上述两个奇数物理位置的组件中间的偶数物理位置的组件的输出电压;上述主监测装置根据上述输出电压,确定上述两个奇数物理位置的组件中间的偶数物理位置的组件是否异常;当确定上述两个奇数物理位置的组件中间的偶数物理位置的组件异常时,上述主监测装置根据信息表中上述两个奇数物理位置的组件的物理位置,确定上述两个奇数物理位置的组件中间的偶数物理位置的组件的物理位置。
在本发明另一个可实施的方式中,当光伏电池板组串中的组件数量为偶数时,上述光伏电池板组串正端第一个组件和偶数物理位置的组件与上述组件电压监测装置一一对应,上述步骤303的根据上述信息表进行异常组件检测还包括:主监测装置通过每一个上述通讯地址与对应的组件电压监测装置建立连接,从建立连接的组件电压监测装置获取上述光伏电池板组串正端第一个组件和偶数物理位置的组件的输出电压、正端相对电压和负端相对电压,上述正端相对电压为组件的正端相对上述电压参考点的相对电压,上述负端相对电压为组件的负端相对上述电压参考点的相对电压;上述主监测装置根据上述信息表间隔的两个偶数物理位置的组件的正端相对电压和负端相对电压,计算上述两个偶数物理位置的组件中间的奇数物理位置的组件的输出电压;上述主监测装置根据上述输出电压,确定上述两个偶数物理位置的组件中间的奇数物理位置的组件是否异常;当确定上述两个偶数物理位置的组件中间的奇数物理位置的组件异常时,上述主监测装置根据信息表中上述两个偶数物理位置的组件的物理位置,确定上述两个偶数物理位置的组件中间的奇数物理位置的组件的物理位置。
可以理解的是,最常见的组件异常是组件电压异常,因此,采样组件的输出电压,对输出电压进行判断。一般而言,在组件电压异常时,组件的输出电压较之正常工作下的输出电压偏差较大,因此,可以通过将采样的组件的输出电压与正常工作下的输出电压进行比较以确定其是否异常。可选地,还可以通过多次采样组件正常工作下的输出电压,然后对多次采样的输出电压求平均值,该平均值可以作为一个参考值,并将该参考值包括在上述表3所示的信息表中,通过比较实时输出电压与参考值来判断组件是否异常。
当然,组件异常还可能导致通讯地址不存在,因此,基于图1所示的应用中,可以通过通讯地址确认组件是否异常。
在确定组件异常后,可以根据通讯地址,然后在信息表中查找到组件的物理位置,从而准确定位到组件的物理位置上。
请参阅图4,图4为本发明实施例提供的一种光伏电池组件的监测装置的结构示意图,如图4所示,应用于组件电压监测系统,上述组件电压监测系统包括若干组件电压监测装置和上述光伏电池组件的监测装置,每一个上述组件电压监测装置分配有一个通讯地址,上述光伏电池组件的监测装置通过上述通讯地址与对应的组件电压监测装置建立连接,每一个上述组件电压监测装置与光伏电池板组串的一个组件对应,上述组件电压监测装置用于采样对应组件相对电压参考点的相对电压,该光伏电池组件的监测装置包括:
通讯模块410,用于获取所有上述组件电压监测装置的通讯地址,通过上述通讯地址与对应的组件电压监测装置建立通讯,从建立通讯的组件电压监测装置获取对应组件相对上述电压参考点的相对电压;
处理模块420,用于根据从所有上述组件电压监测装置获取的相对电压,确定每一个上述组件电压监测装置对应的组件在上述光伏电池板组串中的物理位置,根据每一个上述组件电压监测装置的通讯地址和其对应的组件的物理位置建立信息表,再根据上述信息表进行异常组件检测,上述信息表至少包括每一个上述组件电压监测装置的通讯地址与其对应的组件的物理位置的对应关系。
可以看出,通讯模块410获取组件电压监测装置的通讯地址,然后基 于通讯地址与对应的组件电压监测装置建立连接,从组件电压监测装置获取光伏电池板组串的组件相对电压参考点的相对电压,由于光伏电池板组串由组件串联而成,那么处理模块420根据组件在光伏电池板组串中相对电压参考点的相对电压的变化特性,则可以确定组件在光伏电池板组串中的物理位置,然后将每一个组件的物理位置与该组件对应的组件监测装置的通讯地址建立信息表,进而在组件异常检测时,则可以基于该信息表准确地定位到组件的物理位置上。在本发明中,以实现自动收集组件信息和建立组件物理位置与通讯地址的信息表,与现有技术中手动录入物理位置与通讯地址的对应关系相比,本发明能够减少光伏发电系统在调试初期时的工作量,降低调试复杂度。
进一步地,上述组件电压监测装置还用于采样对应组件的输出电压;上述通讯模块410还用于,通过每一个上述通讯地址与对应的组件电压监测装置建立连接,从建立连接的组件电压监测装置获取对应的组件的输出电压;
上述处理模块420还用于,根据从所有上述组件电压监测装置获取的输出电压,确定每一个上述组件电压监测装置对应的组件是否异常,当确定任意一个上述组件电压监测装置对应的组件异常时,根据上述任意一个上述组件电压监测装置的通讯地址,根据上述信息表确定上述任意一个上述组件电压监测装置对应的组件在上述光伏电池板组串中的物理位置。
其中,在光伏电池板组串中组件与组件电压监测装置可以包括如下对应关系:上述组件电压监测装置与上述光伏电池板组串中的组件一一对应;或者,当上述光伏电池板组串中的组件数量为奇数时,上述光伏电池板组串中的奇数物理位置的组件与上述组件电压监测装置一一对应;或者,当上述光伏电池板组串中的组件数量为偶数时,上述光伏电池板组串正端第一个组件和偶数物理位置的组件与上述组件电压监测装置一一对应。
在本发明一些可实施的方式中,当上述光伏电池板组串中的组件数量为奇数时,上述光伏电池板组串中的奇数物理位置的组件与上述组件电压监测装置一一对应,上述通讯模块410具体用于,通过每一个上述通讯地址与对应的组件电压监测装置建立连接,从建立连接的组件电压监测装置获取上述光伏电池板组串中奇数物理位置的组件的输出电压、正端相对电压和负端相对电压,上述正端相对电压为组件的正端相对上述电压参考点 的相对电压,上述负端相对电压为组件的负端相对上述电压参考点的相对电压;
处理模块420具体用于,根据上述信息表间隔的两个奇数物理位置的组件的正端相对电压和负端相对电压,计算上述两个奇数物理位置的组件中间的偶数物理位置的组件的输出电压;根据上述输出电压,确定上述两个奇数物理位置的组件中间的偶数物理位置的组件是否异常;当确定上述两个奇数物理位置的组件中间的偶数物理位置的组件异常时,根据信息表中上述两个奇数物理位置的组件的物理位置,确定上述两个奇数物理位置的组件中间的偶数物理位置的组件的物理位置。
在本发明另一些可实施的方式中,当上述光伏电池板组串中的组件数量为偶数时,上述光伏电池板组串正端第一个组件和偶数物理位置的组件与上述组件电压监测装置一一对应,因此,上述通讯模块410具体用于,通过每一个上述通讯地址与对应的组件电压监测装置建立连接,从建立连接的组件电压监测装置获取上述光伏电池板组串正端第一个组件和偶数物理位置的组件的输出电压、正端相对电压和负端相对电压,上述正端相对电压为组件的正端相对上述电压参考点的相对电压,上述负端相对电压为组件的负端相对上述电压参考点的相对电压;
上述处理模块420具体用于,根据上述信息表间隔的两个偶数物理位置的组件的正端相对电压和负端相对电压,计算上述两个偶数物理位置的组件中间的奇数物理位置的组件的输出电压;根据上述输出电压,确定上述两个偶数物理位置的组件中间的奇数物理位置的组件是否异常;当确定上述两个偶数物理位置的组件中间的奇数物理位置的组件异常时,根据信息表中上述两个偶数物理位置的组件的物理位置,确定上述两个偶数物理位置的组件中间的奇数物理位置的组件的物理位置。
在本发明另一些可实施的方式中,上述处理模块420具体用于,根据从所有上述组件电压监测装置获取的相对电压的大小顺序,确定每一个上述组件电压监测装置对应的组件在上述光伏电池板组串中的物理位置。
可以理解的是,上述电压参考点为以下任意一种:所述光伏电池板组串的正端、所述光伏电池板组串的负端、大地和所述光伏电池板组串中任意一个组件的正端或负端。
需要说明,附图4提供的光伏电池组件的监测装置为上述方法实施例 中介绍的主监测装置,具体可以参阅方法实施例中对主监测装置的详细说明。
请参考图5,图5为本发明实施例提供的光伏电池组件的监测装置另一结构示意图,其中,可包括至少一个处理器501(例如CPU,Central Processing Unit),至少一个网络接口或者其它通信接口,存储器502,和至少一个通信总线,用于实现这些装置之间的连接通信。上述处理器501用于执行存储器中存储的可执行模块,例如计算机程序。上述存储器502可能包含高速随机存取存储器(RAM,Random Access Memory),也可能还包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。通过至少一个网络接口(可以是有线或者无线)实现该系统网关与至少一个其它网元之间的通信连接,可以使用互联网,广域网,本地网,城域网等。
如图5所示,在一些实施方式中,上述存储器502中存储了程序指令,程序指令可以被处理器501执行,上述处理器501具体执行以下步骤:获取所有上述组件电压监测装置的通讯地址,通过上述通讯地址与对应的组件电压监测装置建立连接,从建立连接的组件电压监测装置获取对应组件相对上述电压参考点的相对电压;根据从所有上述组件电压监测装置获取的相对电压,确定每一个上述组件电压监测装置对应的组件在上述光伏电池板组串中的物理位置;根据每一个上述组件电压监测装置的通讯地址和其对应的组件的物理位置建立信息表,再根据上述信息表进行异常组件检测,上述信息表至少包括每一个上述组件电压监测装置的通讯地址与其对应的组件的物理位置的对应关系。
在一些实施方式中,上述处理器501还可以执行以下步骤:
通过上述通讯地址获取上述光伏电池板组串的组件的正端相对上述电压参考点的正端相对电压,或者通过上述通讯地址获取上述光伏电池板组串的组件的负端相对上述电压参考点的负端相对电压。
在一些实施方式中,上述处理器501还可以执行以下步骤:
通过每一个上述通讯地址与对应的组件电压监测装置建立连接,从建立连接的组件电压监测装置获取对应的组件的输出电压;根据从所有上述组件电压监测装置获取的输出电压,确定每一个上述组件电压监测装置对 应的组件是否异常;当确定任意一个上述组件电压监测装置对应的组件异常时,根据上述任意一个上述组件电压监测装置的通讯地址,根据上述信息表确定上述任意一个上述组件电压监测装置对应的组件在上述光伏电池板组串中的物理位置。
在一些实施方式中,当上述光伏电池板组串中的组件数量为奇数时,上述光伏电池板组串中的奇数物理位置的组件与上述组件电压监测装置一一对应,上述处理器501还可以执行以下步骤:
通过每一个上述通讯地址与对应的组件电压监测装置建立连接,从建立连接的组件电压监测装置获取上述光伏电池板组串中奇数物理位置的组件的输出电压、正端相对电压和负端相对电压,上述正端相对电压为组件的正端相对上述电压参考点的相对电压,上述负端相对电压为组件的负端相对上述电压参考点的相对电压;根据上述信息表间隔的两个奇数物理位置的组件的正端相对电压和负端相对电压,计算上述两个奇数物理位置的组件中间的偶数物理位置的组件的输出电压;根据上述输出电压,确定上述两个奇数物理位置的组件中间的偶数物理位置的组件是否异常;当确定上述两个奇数物理位置的组件中间的偶数物理位置的组件异常时,根据信息表中上述两个奇数物理位置的组件的物理位置,确定上述两个奇数物理位置的组件中间的偶数物理位置的组件的物理位置。
在一些实施方式中,当上述光伏电池板组串中的组件数量为偶数时,上述光伏电池板组串正端第一个组件和偶数物理位置的组件与上述组件电压监测装置一一对应,上述处理器501还可以执行以下步骤:
通过每一个上述通讯地址与对应的组件电压监测装置建立连接,从建立连接的组件电压监测装置获取上述光伏电池板组串正端第一个组件和偶数物理位置的组件的输出电压、正端相对电压和负端相对电压,上述正端相对电压为组件的正端相对上述电压参考点的相对电压,上述负端相对电压为组件的负端相对上述电压参考点的相对电压;根据上述信息表间隔的两个偶数物理位置的组件的正端相对电压和负端相对电压,计算上述两个偶数物理位置的组件中间的奇数物理位置的组件的输出电压;根据上述输出电压,确定上述两个偶数物理位置的组件中间的奇数物理位置的组件是否异常;当确定上述两个偶数物理位置的组件中间的奇数物理位置的组件异常时,根据信息表中上述两个偶数物理位置的组件的物理位置,确定上 述两个偶数物理位置的组件中间的奇数物理位置的组件的物理位置。
在一些实施方式中,上述处理器501还可以执行以下步骤:
根据从所有上述组件电压监测装置获取的相对电压的大小顺序,确定每一个上述组件电压监测装置对应的组件在上述光伏电池板组串中的物理位置。
在一些实施方式中,上述存储器502用于存储组件电压监测装置的通讯地址、以及信息表。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储 在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上对本发明所提供的一种光伏电池组件的监测方法及装置进行了详细介绍,对于本领域的一般技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (14)

  1. 一种光伏电池组件的监测方法,其特征在于,应用于组件电压监测系统,所述组件电压监测系统包括主监测装置和若干组件电压监测装置,每一个所述组件电压监测装置分配有一个通讯地址,所述主监测装置通过所述通讯地址与对应的组件电压监测装置建立连接,每一个所述组件电压监测装置与光伏电池板组串的一个组件对应,所述组件电压监测装置用于采样对应组件相对电压参考点的相对电压,所述方法包括:
    所述主监测装置获取所有所述组件电压监测装置的通讯地址,通过所述通讯地址与对应的组件电压监测装置建立连接,从建立连接的组件电压监测装置获取对应组件相对所述电压参考点的相对电压;
    所述主监测装置根据从所有所述组件电压监测装置获取的相对电压,确定每一个所述组件电压监测装置对应的组件在所述光伏电池板组串中的物理位置;
    所述主监测装置根据每一个所述组件电压监测装置的通讯地址和其对应的组件的物理位置建立信息表,再根据所述信息表进行异常组件检测,所述信息表至少包括每一个所述组件电压监测装置的通讯地址与其对应的组件的物理位置的对应关系。
  2. 根据权利要求1所述的方法,其特征在于,所述组件电压监测装置还用于采样对应组件的输出电压,所述根据所述信息表进行异常组件检测包括:
    所述主监测装置通过每一个所述通讯地址与对应的组件电压监测装置建立连接,从建立连接的组件电压监测装置获取对应的组件的输出电压;
    所述主监测装置根据从所有所述组件电压监测装置获取的输出电压,确定每一个所述组件电压监测装置对应的组件是否异常;
    当确定任意一个所述组件电压监测装置对应的组件异常时,所述主监测装置根据所述任意一个所述组件电压监测装置的通讯地址,根据所述信息 表确定所述任意一个所述组件电压监测装置对应的组件在所述光伏电池板组串中的物理位置。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述组件电压监测装置与所述光伏电池板组串中的组件一一对应;
    或者,当所述光伏电池板组串中的组件数量为奇数时,所述光伏电池板组串中的奇数物理位置的组件与所述组件电压监测装置一一对应;
    或者,当所述光伏电池板组串中的组件数量为偶数时,所述光伏电池板组串正端第一个组件和偶数物理位置的组件与所述组件电压监测装置一一对应。
  4. 根据权利要求3所述的方法,其特征在于,当所述光伏电池板组串中的组件数量为奇数时,所述光伏电池板组串中的奇数物理位置的组件与所述组件电压监测装置一一对应,所述根据所述信息表进行异常组件检测还包括:
    所述主监测装置通过每一个所述通讯地址与对应的组件电压监测装置建立连接,从建立连接的组件电压监测装置获取所述光伏电池板组串中奇数物理位置的组件的输出电压、正端相对电压和负端相对电压,所述正端相对电压为组件的正端相对所述电压参考点的相对电压,所述负端相对电压为组件的负端相对所述电压参考点的相对电压;
    所述主监测装置根据所述信息表间隔的两个奇数物理位置的组件的正端相对电压和负端相对电压,计算所述两个奇数物理位置的组件中间的偶数物理位置的组件的输出电压;
    所述主监测装置根据所述输出电压,确定所述两个奇数物理位置的组件中间的偶数物理位置的组件是否异常;
    当确定所述两个奇数物理位置的组件中间的偶数物理位置的组件异常时,所述主监测装置根据信息表中所述两个奇数物理位置的组件的物理位置,确定所述两个奇数物理位置的组件中间的偶数物理位置的组件的物理 位置。
  5. 根据权利要求3所述的方法,其特征在于,当所述光伏电池板组串中的组件数量为偶数时,所述光伏电池板组串正端第一个组件和偶数物理位置的组件与所述组件电压监测装置一一对应,所述根据所述信息表进行异常组件检测还包括:
    所述主监测装置通过每一个所述通讯地址与对应的组件电压监测装置建立连接,从建立连接的组件电压监测装置获取所述光伏电池板组串正端第一个组件和偶数物理位置的组件的输出电压、正端相对电压和负端相对电压,所述正端相对电压为组件的正端相对所述电压参考点的相对电压,所述负端相对电压为组件的负端相对所述电压参考点的相对电压;
    所述主监测装置根据所述信息表间隔的两个偶数物理位置的组件的正端相对电压和负端相对电压,计算所述两个偶数物理位置的组件中间的奇数物理位置的组件的输出电压;
    所述主监测装置根据所述输出电压,确定所述两个偶数物理位置的组件中间的奇数物理位置的组件是否异常;
    当确定所述两个偶数物理位置的组件中间的奇数物理位置的组件异常时,所述主监测装置根据信息表中所述两个偶数物理位置的组件的物理位置,确定所述两个偶数物理位置的组件中间的奇数物理位置的组件的物理位置。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述主监测装置根据从所有所述组件电压监测装置获取的相对电压,确定每一个所述组件电压监测装置对应的组件在所述光伏电池板组串中的物理位置,包括:
    所述主监测装置根据从所有所述组件电压监测装置获取的相对电压的大小顺序,确定每一个所述组件电压监测装置对应的组件在所述光伏电池板组串中的物理位置。
  7. 根据权利要求6所述的方法,其特征在于,
    所述电压参考点为以下任意一种:所述光伏电池板组串的正端、所述光伏电池板组串的负端、大地和所述光伏电池板组串中任意一个组件的正端或负端。
  8. 一种光伏电池组件的监测装置,其特征在于,应用于组件电压监测系统,所述组件电压监测系统包括若干组件电压监测装置和所述光伏电池组件的监测装置,每一个所述组件电压监测装置分配有一个通讯地址,所述光伏电池组件的监测装置通过所述通讯地址与对应的组件电压监测装置建立连接,每一个所述组件电压监测装置与光伏电池板组串的一个组件对应,所述组件电压监测装置用于采样对应组件相对电压参考点的相对电压,所述光伏电池组件的监测装置包括:
    通讯模块,用于获取所有所述组件电压监测装置的通讯地址,通过所述通讯地址与对应的组件电压监测装置建立通讯,从建立通讯的组件电压监测装置获取对应组件相对所述电压参考点的相对电压;
    处理模块,用于根据从所有所述组件电压监测装置获取的相对电压,确定每一个所述组件电压监测装置对应的组件在所述光伏电池板组串中的物理位置,根据每一个所述组件电压监测装置的通讯地址和其对应的组件的物理位置建立信息表,再根据所述信息表进行异常组件检测,所述信息表至少包括每一个所述组件电压监测装置的通讯地址与其对应的组件的物理位置的对应关系。
  9. 根据权利要求8所述的光伏电池组件的监测装置,其特征在于,所述组件电压监测装置还用于采样对应组件的输出电压;
    所述通讯模块还用于,通过每一个所述通讯地址与对应的组件电压监测装置建立连接,从建立连接的组件电压监测装置获取对应的组件的输出电压;
    所述处理模块还用于,根据从所有所述组件电压监测装置获取的输出电压,确定每一个所述组件电压监测装置对应的组件是否异常,当确定任意 一个所述组件电压监测装置对应的组件异常时,根据所述任意一个所述组件电压监测装置的通讯地址,根据所述信息表确定所述任意一个所述组件电压监测装置对应的组件在所述光伏电池板组串中的物理位置。
  10. 根据权利要求8或9所述的光伏电池组件的监测装置,其特征在于,
    所述组件电压监测装置与所述光伏电池板组串中的组件一一对应;
    或者,当所述光伏电池板组串中的组件数量为奇数时,所述光伏电池板组串中的奇数物理位置的组件与所述组件电压监测装置一一对应;
    或者,当所述光伏电池板组串中的组件数量为偶数时,所述光伏电池板组串正端第一个组件和偶数物理位置的组件与所述组件电压监测装置一一对应。
  11. 根据权利要求10所述的光伏电池组件的监测装置,其特征在于,
    当所述光伏电池板组串中的组件数量为奇数时,所述光伏电池板组串中的奇数物理位置的组件与所述组件电压监测装置一一对应;
    所述通讯模块具体用于,通过每一个所述通讯地址与对应的组件电压监测装置建立连接,从建立连接的组件电压监测装置获取所述光伏电池板组串中奇数物理位置的组件的输出电压、正端相对电压和负端相对电压,所述正端相对电压为组件的正端相对所述电压参考点的相对电压,所述负端相对电压为组件的负端相对所述电压参考点的相对电压;
    所述处理模块具体用于,根据所述信息表间隔的两个奇数物理位置的组件的正端相对电压和负端相对电压,计算所述两个奇数物理位置的组件中间的偶数物理位置的组件的输出电压;根据所述输出电压,确定所述两个奇数物理位置的组件中间的偶数物理位置的组件是否异常;当确定所述两个奇数物理位置的组件中间的偶数物理位置的组件异常时,根据信息表中所述两个奇数物理位置的组件的物理位置,确定所述两个奇数物理位置的组件中间的偶数物理位置的组件的物理位置。
  12. 根据权利要求10所述的光伏电池组件的监测装置,其特征在于,
    当所述光伏电池板组串中的组件数量为偶数时,所述光伏电池板组串正端第一个组件和偶数物理位置的组件与所述组件电压监测装置一一对应;
    所述通讯模块具体用于,通过每一个所述通讯地址与对应的组件电压监测装置建立连接,从建立连接的组件电压监测装置获取所述光伏电池板组串正端第一个组件和偶数物理位置的组件的输出电压、正端相对电压和负端相对电压,所述正端相对电压为组件的正端相对所述电压参考点的相对电压,所述负端相对电压为组件的负端相对所述电压参考点的相对电压;
    所述处理模块具体用于,根据所述信息表间隔的两个偶数物理位置的组件的正端相对电压和负端相对电压,计算所述两个偶数物理位置的组件中间的奇数物理位置的组件的输出电压;根据所述输出电压,确定所述两个偶数物理位置的组件中间的奇数物理位置的组件是否异常;当确定所述两个偶数物理位置的组件中间的奇数物理位置的组件异常时,根据信息表中所述两个偶数物理位置的组件的物理位置,确定所述两个偶数物理位置的组件中间的奇数物理位置的组件的物理位置。
  13. 根据权利要求8-12任一项所述的光伏电池组件的监测装置,其特征在于,所述处理模块具体用于,根据从所有所述组件电压监测装置获取的相对电压的大小顺序,确定每一个所述组件电压监测装置对应的组件在所述光伏电池板组串中的物理位置。
  14. 根据权利要求13所述的光伏电池组件的监测装置,其特征在于,
    所述电压参考点为以下任意一种:所述光伏电池板组串的正端、所述光伏电池板组串的负端、大地和所述光伏电池板组串中任意一个组件的正端或负端。
PCT/CN2016/084143 2015-06-03 2016-05-31 一种光伏电池组件的监测方法及装置 WO2016192616A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16802539.3A EP3188362B1 (en) 2015-06-03 2016-05-31 Method and apparatus for monitoring photovoltaic modules
US15/484,702 US10171028B2 (en) 2015-06-03 2017-04-11 Method and apparatus for monitoring photovoltaic module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510298854.7A CN104917460B (zh) 2015-06-03 2015-06-03 一种光伏电池组件的监测方法及装置
CN201510298854.7 2015-06-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/484,702 Continuation US10171028B2 (en) 2015-06-03 2017-04-11 Method and apparatus for monitoring photovoltaic module

Publications (1)

Publication Number Publication Date
WO2016192616A1 true WO2016192616A1 (zh) 2016-12-08

Family

ID=54086229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084143 WO2016192616A1 (zh) 2015-06-03 2016-05-31 一种光伏电池组件的监测方法及装置

Country Status (4)

Country Link
US (1) US10171028B2 (zh)
EP (1) EP3188362B1 (zh)
CN (1) CN104917460B (zh)
WO (1) WO2016192616A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021197061A1 (zh) * 2020-03-25 2021-10-07 江苏中信博新能源科技股份有限公司 一种混合组网通信系统和方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104917460B (zh) * 2015-06-03 2017-06-06 华为技术有限公司 一种光伏电池组件的监测方法及装置
CN105657079B (zh) * 2015-12-30 2019-02-12 华为技术有限公司 地址信息设置设备及方法
CN107769250B (zh) 2017-11-07 2019-12-17 华为数字技术(苏州)有限公司 物理地址确定方法、装置、设备及存储介质
CN109241923B (zh) * 2018-09-18 2020-11-03 甘肃启远智能科技有限责任公司 光伏组件热斑定位方法及装置
CN109765493A (zh) * 2018-12-21 2019-05-17 北京双登慧峰聚能科技有限公司 电池储能系统监控方法与系统
CN110867846B (zh) * 2019-10-25 2021-12-17 中国科学院电工研究所 具有功率平衡器的大型光伏直流串联升压并网系统
CN113157830B (zh) * 2020-01-22 2024-05-17 华为数字能源技术有限公司 一种光伏组串的位置更新方法和装置
WO2021232257A1 (zh) * 2020-05-19 2021-11-25 华为数字能源技术有限公司 一种光伏系统
CN111865216B (zh) * 2020-07-22 2022-07-15 阳光新能源开发股份有限公司 一种光伏组件物理位置的识别方法、装置及系统
CN114899927B (zh) * 2022-07-14 2022-10-14 广东首航智慧新能源科技有限公司 电池端口的识别方法、逆变器与储能系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2500738A1 (en) * 2011-03-17 2012-09-19 Kabushiki Kaisha Toshiba Abnormality diagnosis for photovoltaic power generation system
CN104038154A (zh) * 2014-06-12 2014-09-10 北方民族大学 太阳能光伏阵列故障自动检测系统及其检测方法
CN104505939A (zh) * 2014-12-17 2015-04-08 张远海 带有光伏电池自损检测监控的光伏电池防雷器
CN104579166A (zh) * 2015-02-10 2015-04-29 河海大学常州校区 分布式光伏电站监控系统及其故障诊断方法
CN104917460A (zh) * 2015-06-03 2015-09-16 华为技术有限公司 一种光伏电池组件的监测方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100085670A1 (en) * 2008-10-07 2010-04-08 Krishnan Palaniswami Photovoltaic module monitoring system
JP2010262555A (ja) * 2009-05-11 2010-11-18 Sony Corp 情報処理装置および方法
US8102074B2 (en) * 2009-07-30 2012-01-24 Tigo Energy, Inc. Systems and method for limiting maximum voltage in solar photovoltaic power generation systems
US8773156B2 (en) * 2011-03-04 2014-07-08 Applied Core Technologies, Inc. Measurement of insulation resistance of configurable photovoltaic panels in a photovoltaic array
US20120256584A1 (en) * 2011-04-05 2012-10-11 Crites David E PV monitoring system with combiner switching and charge controller switching
FR2974419B1 (fr) * 2011-04-22 2013-05-10 Commissariat Energie Atomique Procédé et dispositif de contrôle et de localisation de défauts dans une chaine de panneaux photovoltaïques
FR3010260B1 (fr) * 2013-08-29 2015-10-02 Commissariat Energie Atomique Detection d'arcs electriques dans les installations photovoltaiques
CN103889022B (zh) * 2014-04-15 2018-06-19 河海大学 一种光伏发电系统状态监测网络路由构建方法
CN104601086B (zh) * 2015-01-29 2016-11-30 湖北民族学院 光伏发电系统及其故障检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2500738A1 (en) * 2011-03-17 2012-09-19 Kabushiki Kaisha Toshiba Abnormality diagnosis for photovoltaic power generation system
CN104038154A (zh) * 2014-06-12 2014-09-10 北方民族大学 太阳能光伏阵列故障自动检测系统及其检测方法
CN104505939A (zh) * 2014-12-17 2015-04-08 张远海 带有光伏电池自损检测监控的光伏电池防雷器
CN104579166A (zh) * 2015-02-10 2015-04-29 河海大学常州校区 分布式光伏电站监控系统及其故障诊断方法
CN104917460A (zh) * 2015-06-03 2015-09-16 华为技术有限公司 一种光伏电池组件的监测方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021197061A1 (zh) * 2020-03-25 2021-10-07 江苏中信博新能源科技股份有限公司 一种混合组网通信系统和方法

Also Published As

Publication number Publication date
EP3188362A4 (en) 2017-08-16
US20170222601A1 (en) 2017-08-03
CN104917460B (zh) 2017-06-06
CN104917460A (zh) 2015-09-16
US10171028B2 (en) 2019-01-01
EP3188362A1 (en) 2017-07-05
EP3188362B1 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
WO2016192616A1 (zh) 一种光伏电池组件的监测方法及装置
JP6278912B2 (ja) 太陽光発電システム、及びその故障診断方法
Bouraiou et al. Analysis and evaluation of the impact of climatic conditions on the photovoltaic modules performance in the desert environment
JP6075997B2 (ja) 太陽光発電システムの故障診断方法
WO2017148336A1 (zh) 光电系统中电池组串故障的识别方法、装置和设备
JP7289995B2 (ja) 太陽光発電ストリングの動作状態を認識する方法および装置ならびに記憶媒体
Dhimish et al. Effect of micro cracks on photovoltaic output power: case study based on real time long term data measurements
Dhimish et al. Evaluating power loss and performance ratio of hot-spotted photovoltaic modules
WO2011101916A1 (ja) 太陽光発電システムの故障検出方法
Dubey et al. Performance degradation in field-aged crystalline silicon PV modules in different Indian climatic conditions
US10742166B2 (en) Method for the electrical characterization of a photovoltaic cell
Davis et al. Multi‐pronged analysis of degradation rates of photovoltaic modules and arrays deployed in Florida
JP2017184472A (ja) 太陽光発電システムの発電診断方法、及び発電診断装置
El Basri et al. A proposed graphical electrical signatures supervision method to study PV module failures
Sayyad et al. Design and development of low cost, portable, on-field IV curve tracer based on capacitor loading for high power rated solar photovoltaic modules
JPWO2015118608A1 (ja) 太陽電池検査システムおよび太陽電池検査方法
CN104485889A (zh) 用于多个相同安装倾角的光伏发电单元的故障检测方法
CN108306615B (zh) 一种用于光伏阵列故障类型诊断的方法及系统
JP6403717B2 (ja) 太陽電池モジュールの発電出力取得方法及び発電出力取得装置
CN111027723A (zh) 一种光伏与建筑一体化系统及方法
Leloux et al. Automatic fault detection on BIPV systems without solar irradiation data
Cova et al. Photovoltaic plant maintainability optimization and degradation detection: Modelling and characterization
KR102412304B1 (ko) 태양광 발전 시스템의 리파워링 측정 장치 및 그 방법과, 이를 적용한 태양광 발전 시스템
JP6631239B2 (ja) 測定装置、プログラムおよび測定方法
Xu et al. Review on fault characterization and diagnosis technique in photovoltaic systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16802539

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016802539

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016802539

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE