WO2021232257A1 - 一种光伏系统 - Google Patents

一种光伏系统 Download PDF

Info

Publication number
WO2021232257A1
WO2021232257A1 PCT/CN2020/091118 CN2020091118W WO2021232257A1 WO 2021232257 A1 WO2021232257 A1 WO 2021232257A1 CN 2020091118 W CN2020091118 W CN 2020091118W WO 2021232257 A1 WO2021232257 A1 WO 2021232257A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic
support
angle
strings
photovoltaic support
Prior art date
Application number
PCT/CN2020/091118
Other languages
English (en)
French (fr)
Inventor
万松
孙务本
孟元东
王志刚
张彦忠
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to CN202080009738.8A priority Critical patent/CN113348623B/zh
Priority to EP20922466.6A priority patent/EP3940950B1/en
Priority to PCT/CN2020/091118 priority patent/WO2021232257A1/zh
Publication of WO2021232257A1 publication Critical patent/WO2021232257A1/zh
Priority to US17/696,555 priority patent/US20220209710A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/425Horizontal axis
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/10Supporting structures directly fixed to the ground
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S2020/10Solar modules layout; Modular arrangements
    • F24S2020/16Preventing shading effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • This application relates to the field of power electronics technology, and in particular to a photovoltaic system.
  • Photovoltaic power generation As a clean renewable energy source, photovoltaic power generation is widely used.
  • Photovoltaic systems can convert light energy into electrical energy and supply power to the grid.
  • photovoltaic power generation often adopts a tracking bracket system to improve the utilization of light resources.
  • the photovoltaic modules installed on the tracking mounts can rotate with the tracking axis and track the sun’s trajectory within a day according to the astronomical algorithm, reducing the angle of incidence of light and improving the surface acceptance of the photovoltaic modules.
  • the utilization rate of solar energy can increase the power generation of the photovoltaic system.
  • photovoltaic tracking systems generally have anti-tracking. Specifically, a triangular geometric model is established to calculate the tracking angle of the module according to the distance between the photovoltaic supports, the length of the module and the sun altitude angle, and the rotation of multiple tracking supports in the photovoltaic system is controlled according to the calculated tracking angle.
  • the spacing and height between multiple tracking brackets are different.
  • the tracking angle calculated based on the anti-tracking When the rotation of the tracking support is controlled, the photovoltaic modules connected to one or more photovoltaic supports may be blocked, which reduces the power generation of the photovoltaic system.
  • This application provides a photovoltaic system for increasing the power generation of the photovoltaic system.
  • the embodiment of the present application provides a photovoltaic system.
  • the photovoltaic system may include: a plurality of photovoltaic supports, a plurality of photovoltaic strings connected to the plurality of photovoltaic supports, a detector, and a controller. Wherein, each of the multiple photovoltaic strings is connected to the inverter.
  • the controller is connected with a plurality of photovoltaic supports.
  • the detection module is respectively connected with the controller and a plurality of photovoltaic strings.
  • each of the multiple photovoltaic supports is used to rotate the angle under the control of the controller to adjust the illumination angle of the multiple connected photovoltaic strings.
  • Each of the plurality of photovoltaic strings is used to convert light energy into electrical energy.
  • the detection module can be used to detect the shading parameters of multiple photovoltaic strings and send the shading parameters of the multiple photovoltaic strings to the controller.
  • the controller can be used to control the rotation angles of multiple photovoltaic supports according to the light angle; and to determine the shielding relationship of the photovoltaic support according to the shielding parameters of the multiple photovoltaic strings, and to determine the photovoltaic support or the second photovoltaic support according to the shielding relationship of the photovoltaic support. Turn the angle to adjust.
  • the occlusion relationship of the photovoltaic support is used to characterize that the second photovoltaic support is shielded by the first photovoltaic support.
  • the shielding situation of the photovoltaic string during the rotation of the photovoltaic support detected by the detection module can be used to determine the shielding relationship of the photovoltaic support in the photovoltaic system, and the rotation of the photovoltaic support with the shielding relationship of the photovoltaic support according to the shielding relationship of the photovoltaic support
  • the angle is adjusted to eliminate the shading between the photovoltaic brackets and increase the power generation of the photovoltaic strings connected to the shaded photovoltaic brackets, thereby increasing the power generation of the entire photovoltaic system.
  • the detection module includes a plurality of photoelectric sensors arranged on each of the plurality of photovoltaic strings.
  • each photoelectric sensor of the multiple photoelectric sensors can be used to detect the illumination parameters of each photovoltaic string.
  • the shading parameters of the multiple photovoltaic strings may include: the illumination parameters of the multiple photovoltaic strings.
  • the lighting parameters of the photovoltaic string can be determined according to the parameters output by the photoelectric sensor set in the photovoltaic string, and the lighting parameters output by the photovoltaic string can be sent to the controller.
  • the parameters determine the shielding relationship of the photovoltaic string, and determine the shielding relationship of the photovoltaic support through the shielding relationship of the photovoltaic string and eliminate the shielding relationship of the photovoltaic support to increase the power generation of the photovoltaic system.
  • adjusting the rotation angle of the photovoltaic support according to the shielding relationship of the photovoltaic support sent by the detection module includes:
  • Send a first control signal to the first photovoltaic support the first control signal is used to control the first photovoltaic support to tilt a first angle in the target direction; or send a second control signal to the second photovoltaic support, the second control signal is used to control the first
  • the second photovoltaic support is inclined to the target direction by a second angle.
  • the first photovoltaic support or the second photovoltaic support with the shielding relationship of the photovoltaic support can be controlled to rotate in the target direction to eliminate the shielding relationship between the first photovoltaic support and the second photovoltaic support, thereby increasing the power generation of the photovoltaic system.
  • the detection module is used to detect the output power parameters of the multiple photovoltaic strings connected to each of the multiple photovoltaic supports.
  • the shading parameters of the multiple photovoltaic strings include power parameters output by the multiple photovoltaic strings.
  • the output power parameters of the multiple photovoltaic strings connected to each photovoltaic support are similar.
  • the bracket is shaded, some photovoltaic strings on the shaded photovoltaic system cannot receive light, and the output power parameters of the shaded photovoltaic strings change (the output power parameters are reduced), so they can be connected through the photovoltaic bracket
  • the power parameters of the series of multiple photovoltaic groups accurately determine whether there is a shielding relationship between the photovoltaic supports.
  • the second controller is also used to: according to the output power parameters of the multiple photovoltaic strings connected to each of the multiple photovoltaic supports, the established photovoltaic support shielding relationship and the corresponding target time Model.
  • the power parameters of the photovoltaic support output at each moment during the rotation of the photovoltaic support can be established to establish the corresponding model of the photovoltaic support shielding relationship and the target time, and store the established photovoltaic support shielding relationship and the corresponding model of the target time
  • the operation in order to directly compensate the shielding angle of the shielded bracket at the shielding moment, the operation is simple and quick, so that it is not necessary to perform detection at every moment, and the energy loss of the photovoltaic system is reduced.
  • the corresponding model of the occlusion relationship of the photovoltaic support and the target time can be established according to the following steps:
  • control the first photovoltaic bracket to incline to the target direction by a third angle; receive the output power parameters of the multiple photovoltaic strings connected to the photovoltaic brackets other than the first photovoltaic bracket output by the detection module; when determining the second photovoltaic bracket
  • the output power parameter of at least one photovoltaic string connected to the support changes, determine the shielding relationship of the photovoltaic support; record the corresponding model of the shielding relationship of the photovoltaic support and the target time.
  • the photovoltaic string can be connected to the photovoltaic support through a slot provided on the photovoltaic support.
  • the first photovoltaic bracket can be controlled to rotate in different directions at different times (for example, in the morning and afternoon, the direction of the sun is different, and the photovoltaic bracket needs to rotate in the direction of the sun), and other photovoltaic systems in the rotation process
  • the output power parameters of the multiple photovoltaic strings connected to the support for example, in the morning and afternoon, the direction of the sun is different, and the photovoltaic bracket needs to rotate in the direction of the sun
  • the output power parameters of the multiple photovoltaic strings connected to the multiple photovoltaic supports except the first photovoltaic support are close to If it is detected that the output power parameter value of at least one photovoltaic string connected to the second photovoltaic support has changed, it can be determined that the second photovoltaic support and the first photovoltaic support have a shielding relationship, and the target time can be recorded. The whole can be obtained by the above method.
  • the corresponding model of the photovoltaic support shielding relationship and the target time is established based on the obtained photovoltaic support shielding relationship, so that the shielding angle of the photovoltaic support with the shielding relationship can be compensated at the target time.
  • the second controller before establishing the corresponding model of the photovoltaic support occlusion relationship and the target moment, the second controller also needs to determine the multiple photovoltaic strings connected to the first photovoltaic support in order to detect the photovoltaic support connected to the photovoltaic support.
  • the power parameter output by the photovoltaic string changes it may specifically include: controlling the first photovoltaic support to rotate a fourth angle in the target direction; receiving the power parameters output by the multiple photovoltaic strings output by the detection module; determining at least one photovoltaic string When the output power parameter changes, it is determined that at least one photovoltaic string with the changed power parameter is connected to the first photovoltaic support.
  • the fourth angle is less than the preset angle threshold.
  • the connection relationship between multiple photovoltaic strings and multiple photovoltaic brackets in the photovoltaic system is determined.
  • the first photovoltaic support when controlling the rotation of the first photovoltaic support, the power parameters of the photovoltaic strings in the photovoltaic system are detected. If the power parameters of multiple photovoltaic strings are detected to change, it can be determined that the power parameters have changed. A plurality of photovoltaic strings are connected to the first photovoltaic bracket. Sampling the above methods to determine the connection relationship between the multiple photovoltaic supports of the photovoltaic system and the multi-sub photovoltaic string.
  • determining the change in the output power parameter of at least one photovoltaic string includes:
  • the illumination angle of the multiple photovoltaic strings connected to the first photovoltaic bracket changes, and the output power parameters change, while the rotation angle of other photovoltaic brackets does not change.
  • the output power parameters of multiple photovoltaic strings connected to other photovoltaic supports are the same. Therefore, the detection can be performed by detecting whether the power parameter output by the photovoltaic string in the optical system before and after the rotation of the first photovoltaic support has changed, and the detection is convenient and highly accurate.
  • the second is determined The output power parameters of the multiple photovoltaic strings connected to the photovoltaic bracket change.
  • the output power parameters of the multiple photovoltaic strings connected on multiple photovoltaic supports will also have certain parameters.
  • the output power parameters of the multiple photovoltaic strings connected to the second photovoltaic support can be different from the output power parameters of multiple photovoltaic strings connected to other photovoltaic supports, when the difference is greater than
  • the threshold is preset, it can be determined that the second photovoltaic support and the first photovoltaic support have a shielding relationship, which improves the accuracy of the determination result.
  • the detection of the power parameters of multiple photovoltaic supports in the photovoltaic system includes:
  • the output power parameters of the multiple photovoltaic strings connected to the two photovoltaic supports adjacent to the first photovoltaic support are detected.
  • the controller can also determine the second angle according to the following steps:
  • the second angle can be accurately calculated through the area covered by the second photovoltaic support by the first photovoltaic support.
  • determining the second angle according to the blocking area includes:
  • the shielding area accounts for the total area of the multiple photovoltaic strings connected to the second photovoltaic support according to the total area of the multiple photovoltaic strings connected to the second photovoltaic support and the area shielded by the first photovoltaic support.
  • the ratio of the area, and according to the calculated ratio, accurately calculate the size of the second angle.
  • the controller can also determine the second angle according to the following steps:
  • the second angle is determined by determining the inclination angle of the second photovoltaic support, the output power parameters of the multiple photovoltaic strings connected to the first photovoltaic support, and the output power parameters of the multiple photovoltaic strings connected to the second photovoltaic support.
  • the current solar altitude angle can be accurately determined by the inclination angle of the second photovoltaic bracket, and the calculated altitude angle and the stored distance between the first photovoltaic bracket and the second photovoltaic bracket are calculated.
  • the output target power parameter of the occlusion condition is compared with the actual detected value according to the target parameter, and the occlusion reason is determined according to the comparison result, and the size of the second angle is determined according to the occlusion reason.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the application
  • Fig. 2 is a structural schematic diagram 1 of a photovoltaic system according to an embodiment of the application
  • Fig. 3 is a second structural diagram of a photovoltaic system according to an embodiment of the application.
  • Fig. 4 is a schematic structural diagram of a photovoltaic system according to an embodiment of the application.
  • FIG. 5 is a first schematic diagram of occlusion angle compensation according to an embodiment of the application.
  • FIG. 6 is a second schematic diagram of occlusion angle compensation according to an embodiment of the application.
  • FIG. 7 is a schematic flowchart of a corresponding model of a photovoltaic support shielding relationship and a target time according to an embodiment of the application;
  • FIG. 8 is a schematic flowchart of a connection relationship between a photovoltaic support and a photovoltaic string according to an embodiment of the application.
  • multiple refers to two or more.
  • At least one means one or more than one.
  • Or describes the association relationship of the associated object, indicating that there can be two relationships, for example, A or B, which can mean: A alone exists, and B alone exists, where A and B can be singular or plural.
  • the photovoltaic system 100 may include: photovoltaic brackets 1 to M1, and photovoltaic bracket control corresponding to the photovoltaic brackets 1 to M. K1 to KM and inverter Z.
  • each photovoltaic bracket is connected with multiple photovoltaic strings (not shown).
  • the photovoltaic strings can be used to convert solar energy into electric energy and output to electrical equipment.
  • the photovoltaic bracket can be used to tilt itself by rotating The angle realizes that the multiple photovoltaic modules connected to the photovoltaic bracket are at the optimal illumination angle, thereby ensuring the power generation of the photovoltaic system.
  • the current control method of the photovoltaic support is shown in Figure 2.
  • the controller passes through the distance D between the front and rear rows of the photovoltaic support, the width L of the photovoltaic support, the height H of the photovoltaic support, and the height angle of the sun.
  • the rotation angle of the photovoltaic support is controlled to realize that the multiple photovoltaic strings connected to each photovoltaic support are at the optimal illumination angle, and the power generation of the photovoltaic system is increased.
  • the actual distance between two adjacent photovoltaic supports may be different, or the heights of two adjacent photovoltaic strings may be different.
  • some photovoltaic brackets will be blocked by other photovoltaic brackets.
  • part of the photovoltaic strings connected to the shaded photovoltaic bracket cannot receive sunlight, so the output power is reduced, affecting the whole The amount of electricity generated by the photovoltaic system.
  • part of the photovoltaic bracket in the photovoltaic system will be blocked, which reduces the power generation of the photovoltaic system.
  • the embodiments of the present application provide a photovoltaic system, which can adjust the rotation angle of the photovoltaic support that exists in the photovoltaic support shielding relationship during the operation of the photovoltaic system, so as to eliminate the shielding problem of the photovoltaic support and improve the shielding problem.
  • the power generation capacity of the photovoltaic support thereby increasing the power generation capacity of the photovoltaic system.
  • the photovoltaic bracket 400 may include: a plurality of photovoltaic brackets 401, and a plurality of photovoltaic strings 402 (not shown) connected to the plurality of photovoltaic brackets 401. ⁇ ), a detection module 403, and a controller 404.
  • the detection module 403 can be connected to the controller 404 and a plurality of photovoltaic strings 402 respectively.
  • the controller 404 can be connected to a plurality of photovoltaic supports 401.
  • each of the plurality of photovoltaic brackets 401 is used to rotate the angle under the control of the first controller 404 to adjust the illumination angle of the plurality of connected photovoltaic strings.
  • Each of the plurality of photovoltaic strings 402 is used to convert light energy into electrical energy.
  • the voltage of the electric energy output by the multiple photovoltaic strings is the first voltage.
  • the photovoltaic system 400 may also include an inverter for performing DC/AC conversion on the first voltage output by the multiple photovoltaic strings 402 to output a second voltage ,
  • the second voltage is an AC voltage and is used to supply power to electrical equipment.
  • the detection module 404 may be used to detect the shading parameters of multiple photovoltaic strings, and send the shading parameters of the multiple photovoltaic strings to the controller.
  • the controller 404 can be used to control the rotation angle of multiple photovoltaic supports according to the illumination angle, and to determine the shielding relationship of the photovoltaic support according to the shielding parameters of the multiple photovoltaic strings, and to control the first photovoltaic support or the second photovoltaic support according to the shielding relationship of the photovoltaic support.
  • the angle of rotation is adjusted.
  • the shielding relationship of the photovoltaic support can be used to characterize that the second photovoltaic support is shielded by the first photovoltaic support.
  • the first controller 404 may issue an upper computer instruction to the plurality of photovoltaic supports 401 to instruct to adjust the rotation angle of the plurality of photovoltaic supports.
  • the photovoltaic system 400 may include multiple sub-controllers corresponding to the multiple photovoltaic brackets 401, and each sub-controller is connected to the corresponding photovoltaic bracket.
  • the first controller 404 may send the upper-level controller to the multiple sub-controllers. Machine instructions, through the sub-controller to control the adjustment and rotation of each photovoltaic support.
  • the controller 404 may send a first control signal to the first photovoltaic support.
  • the second control signal is used to control the second photovoltaic bracket to tilt a second angle in the target direction, that is, through the first angle Or the second angle compensates for the shielding angle between the first photovoltaic support and the second photovoltaic support that have a shielding relationship between the photovoltaic support, so as to eliminate the shielding relationship between the first photovoltaic support and the second photovoltaic support.
  • the controller 404 can compensate for the shielding angle by adjusting the first photovoltaic bracket tilting the first angle a1 to eliminate the shielding relationship between the first photovoltaic bracket and the second photovoltaic bracket, thereby achieving Increase the output power of the multiple photovoltaic strings connected to the shaded second photovoltaic support, and increase the power generation of the photovoltaic system.
  • the controller 404 can compensate for the shielding angle by controlling the second photovoltaic bracket to tilt a second angle a2 to eliminate the shielding relationship between the first photovoltaic bracket and the second photovoltaic bracket, thereby
  • the output power of the multiple photovoltaic strings connected to the second photovoltaic bracket that is shaded can be increased, and the power generation of the photovoltaic system can be increased.
  • the shielding relationship of the photovoltaic support may be caused by the distance or the height of the photovoltaic support equivalent to the horizontal plane. Therefore, when the first photovoltaic support and the second photovoltaic support with the shielding relationship of the photovoltaic support are rotated at the same angle, the difference between the photovoltaic support The occlusion situation is different. Therefore, the first angle and the second angle used for occlusion angle compensation may be different angle values, which are not described in detail here in this application.
  • the controller in the process of sending the first control signal to the first photovoltaic support or the second control signal to the second photovoltaic support to compensate the shading angle, sends the first photovoltaic support or the second photovoltaic support There may be a data transmission time delay between the first time of the control signal and the second time when the first photovoltaic support or the second photovoltaic support receives the control signal.
  • a preset value can be set before the target time. The duration sends the first control signal to the first photovoltaic support or the second control signal to the second photovoltaic support to realize the shielding angle compensation of the photovoltaic support at the shielding moment.
  • the preset duration may be determined according to the transmission delay of the photovoltaic support and the controller in the photovoltaic system and the duration of detecting the occlusion relationship of the photovoltaic support from the corresponding model, which is not limited in detail in the embodiment of the present application.
  • the occlusion angle compensation can be performed by controlling the first photovoltaic bracket to tilt toward the target by a first angle or controlling the second photovoltaic bracket to tilt toward the target direction by a second angle.
  • the occlusion angle compensation through the second angle is taken as an example to describe the determination process of the second angle.
  • the second angle used for shading compensation for the first photovoltaic bracket can be determined based on the following two methods:
  • the second angle can be determined by the shielding area of the second photovoltaic support by the first photovoltaic support.
  • the multiple photovoltaic brackets included in the photovoltaic system are determined by the distance between the front and rear photovoltaic brackets calculated when the photovoltaic bracket is installed, the height of the photovoltaic bracket relative to the ground, the width of the photovoltaic bracket, and the height angle of the sun.
  • the output power parameters of the multiple photovoltaic strings connected to each photovoltaic support are similar.
  • the second photovoltaic support is shielded by the first photovoltaic support, some of the photovoltaic strings connected to the second photovoltaic support cannot receive solar light and cannot output electrical energy, and the output power parameters of the multiple photovoltaic strings connected to the second photovoltaic support
  • the reduction can be based on the difference between the output power parameters of the multiple photovoltaic strings connected to the second photovoltaic support and the output power parameters of the multiple photovoltaic strings connected to other photovoltaic supports except the first photovoltaic support at the target time, and
  • the output power parameter of each photovoltaic string determines the area of the second photovoltaic support that is shielded by the first photovoltaic support.
  • each photovoltaic string on the multiple photovoltaic strings connected to the photovoltaic support has the same area and the same illumination angle
  • the output power of each photovoltaic string is the same.
  • the output power of each photovoltaic string can be determined according to the output power parameters of the multiple photovoltaic strings connected to the photovoltaic support other than the first photovoltaic support and the number of multiple photovoltaic strings connected to the photovoltaic support.
  • the shielding area of the second photovoltaic support by the first photovoltaic support can be determined according to the difference obtained above and the power parameter output by each photovoltaic string.
  • the shielding area is determined, the total area of the multiple photovoltaic strings connected to the second photovoltaic string is calculated, and the ratio of the shielding area to the total area is calculated, and the second angle is determined according to the ratio.
  • the second angle can be determined by the inclination angle of the second photovoltaic bracket, the output power parameters of the multiple photovoltaic strings connected to the first photovoltaic bracket, and the power parameters output of the multiple photovoltaic strings connected to the second photovoltaic bracket .
  • the first power output of the multiple photovoltaic strings connected to the first photovoltaic string in the unobstructed state is calculated Parameters (if the first photovoltaic support and the second photovoltaic support are unobstructed, the output power parameters of the multiple photovoltaic strings connected to the second photovoltaic support are equal to the first power parameter), and the The output power parameters of one photovoltaic string and the output power parameters of multiple photovoltaic strings connected to the second photovoltaic support are respectively compared with the first power parameter, and the cause of the shielding (height or distance) is determined according to the comparison result, and the shielding reason (height or distance) is determined according to the shielding The reason determines the size of the second angle for occlusion compensation.
  • the detection module 403 can detect the photovoltaic support shielding relationship during the rotation of the photovoltaic support, and according to the photovoltaic support shielding relationship, the photovoltaic support The angle of rotation is adjusted to eliminate the shielding relationship of the photovoltaic support and increase the power generation of the photovoltaic strings connected to the shielded photovoltaic support, thereby increasing the power generation of the entire photovoltaic system.
  • the detection module 403 used to determine the shielding relationship of the photovoltaic support in the photovoltaic system 400 can be divided into two specific structures according to the difference of the detection device and the connection position of the device.
  • the following is an implementation of this application in conjunction with the embodiments.
  • the structure of the detection module 403 provided in the example is described. Specifically, it can include the following two solutions:
  • the detection module 403 may include a plurality of photoelectric sensors arranged on each of the plurality of photovoltaic strings.
  • each photoelectric sensor in the multiple photoelectric sensors is used to detect the illumination parameters of each photovoltaic string.
  • the output parameters of each photovoltaic string constitute the photovoltaic parameters of multiple photovoltaic strings.
  • the shading parameters of the multiple photovoltaic strings may include: the illumination parameters of the multiple photovoltaic strings.
  • the shading parameters of the multiple photovoltaic strings in the embodiment of the present application may include one or more of the following: output currents, voltages, or resistances of multiple photoelectric sensors.
  • the detection module 403 can be used to detect the output power parameters of the multiple photovoltaic strings connected to each of the multiple photovoltaic supports. Wherein, the shading parameters of the multiple photovoltaic strings include power parameters output by the multiple photovoltaic strings.
  • the detection module 403 can directly obtain the power parameters output by the multiple photovoltaic strings 402 by connecting to the multiple photovoltaic strings 402.
  • the detection module 403 may be an inverter connected to a plurality of photovoltaic strings 402.
  • the controller 404 can establish The corresponding model of the photovoltaic support shielding relationship and the target time. This model records the photovoltaic support shielding relationship and the shielding time (target time).
  • the photovoltaic support that has the photovoltaic support shielding relationship at the target time will be used for shielding. Angle compensation, thus avoiding repeated detection, speeds up the compensation speed of the photovoltaic support, and increases the power generation of the photovoltaic system.
  • Step 701 The controller controls the first photovoltaic bracket to incline to the target direction by a third angle at the target time.
  • the photovoltaic system Since the purpose of the photovoltaic system is to convert sunlight into electrical energy and then connect to the grid to supply power to users, and the sunlight has different directions in the morning and afternoon, the following takes the first photovoltaic bracket and the morning sunlight is in the first direction as an example. Detailed description.
  • the first photovoltaic bracket is controlled to incline to the first direction by a third angle at the target moment.
  • the third angle can be calculated by referring to the method of determining the rotation angle of the photovoltaic support in FIG.
  • Step 702 The controller receives the output power parameters of the multiple photovoltaic strings connected to other photovoltaic supports except the first photovoltaic support output by the detection module.
  • the distance between two adjacent photovoltaic supports is relatively large in the photovoltaic system, when the photovoltaic supports are blocked due to terrain or distance, generally only the adjacent photovoltaic supports will be shielded. For other supports There will be no impact. Therefore, in order to speed up the calculation and reduce the amount of calculation, when detecting the power parameters of the multiple photovoltaic strings connected to the first photovoltaic support, you can only detect the two adjacent supports. The output power parameters of multiple connected PV strings.
  • the output power parameters of multiple photovoltaic strings connected to the first photovoltaic support adjacent to the first photovoltaic support in the first direction are detected.
  • the photovoltaic system except the first photovoltaic support can be detected.
  • Step 703 When determining that the output power parameter of the at least one photovoltaic string connected to the second photovoltaic support has changed, the controller determines the shielding relationship of the photovoltaic support.
  • the shielding relationship of the photovoltaic support means that the second photovoltaic support is shielded by the first photovoltaic support.
  • the output power parameters of the photovoltaic support are determined according to the sunlight and the weather conditions of the day. Due to the difference in the production of photovoltaic support and photovoltaic string devices and the different data transmission distances, the output power parameters of the multiple photovoltaics connected to each support have certain error. In an example, in order to ensure the accuracy of detection, the output power parameters of the multiple photovoltaic strings connected to the second photovoltaic support and the output power parameters of the multiple photovoltaic strings connected to other supports outside the first photovoltaic support are determined. Only when the difference between is greater than the preset threshold can it be determined that the output power parameters of the multiple photovoltaic strings connected to the second photovoltaic support have changed. Among them, the preset threshold is not described in detail here in this application.
  • Step 704 The controller records the corresponding model of the occlusion relationship of the photovoltaic support and the target moment.
  • the shielding relationship of the photovoltaic bracket when the sun is in the first direction in the morning similarly, the shielding relationship of the photovoltaic bracket when the sun is in the second direction in the afternoon can be detected, so as to obtain the photovoltaic support related to the first photovoltaic bracket.
  • the occlusion relationship and occlusion time can be detected, so as to obtain the photovoltaic support related to the first photovoltaic bracket.
  • the controller can use the above-mentioned method of determining the shielding relationship of the first photovoltaic support to determine the photovoltaic support shielding relationship and shielding time of other photovoltaic supports in the photovoltaic system except between the first photovoltaic, and the obtained shielding relationship and shielding time of the photovoltaic support Compose the corresponding model of the occlusion relationship of the photovoltaic support and the target moment.
  • the shielding time of the photovoltaic support may be different.
  • the bracket performs shielding angle compensation to increase the power generation of the photovoltaic system.
  • the data of the corresponding model of the photovoltaic support shielding relationship and the target time can be updated in real time as needed.
  • the calculation of the shielding compensation angle and the establishment of the corresponding model between the shielding relationship of the photovoltaic support and the target time all involve the step of detecting the power parameters output by the multiple photovoltaic strings connected to the photovoltaic support.
  • the first photovoltaic support as an example, the determination process of the first photovoltaic support and the multiple photovoltaic strings connected to the photovoltaic support will be described in detail with reference to FIG. 8.
  • Step 801 The controller controls the first photovoltaic bracket to rotate a fourth angle in the target direction. Wherein, the fourth angle is less than the preset angle threshold.
  • Step 802 The controller receives the output power parameters of the multiple photovoltaic strings output by the detection module.
  • Step 803 When the controller determines that the output power parameter of the at least one photovoltaic string has changed, it determines that the at least one photovoltaic string whose power parameter has changed is connected to the first photovoltaic support.
  • the illumination angles of the multiple photovoltaic strings connected to the first photovoltaic bracket will change ,
  • the illumination angle of multiple photovoltaic strings connected to other photovoltaic supports has not changed. Therefore, it can be determined whether the photovoltaic string is connected to the first photovoltaic support by detecting whether the output power parameters of the multiple photovoltaic strings of the photovoltaic system have changed.
  • the illumination angle of the multiple photovoltaic strings connected to the first photovoltaic bracket changes, and the output power parameter changes, while the rotation angle of other photovoltaic brackets does not change .
  • the output power parameters of multiple photovoltaic strings connected to other photovoltaic supports are similar.
  • the power parameters output by the multiple photovoltaic strings can be compared with the power parameters output by the multiple photovoltaic strings before the first photovoltaic support rotates the fourth angle, and the photovoltaic string whose power parameter value changes is determined as PV strings whose output power parameters have changed.
  • the first photovoltaic support shielding the second photovoltaic support as an example.
  • the first photovoltaic support rotates a fourth angle in the target direction
  • the first photovoltaic support The light angles of the connected photovoltaic groups change, the output power parameters of the photovoltaic strings connected to the first photovoltaic bracket change, and some of the photovoltaic strings connected to the second photovoltaic bracket are changed. Therefore, the output power parameters of at least one photovoltaic string connected to the second photovoltaic bracket will also change.
  • the fourth The angle needs to be smaller than the preset angle threshold.
  • the photovoltaic stent when the sun is in the first direction (for example, 8-12 o'clock), when the photovoltaic stent is controlled to rotate based on the photovoltaic stent control method shown in FIG.
  • the target difference between the inclination angle) and the final inclination angle for example, the inclination angle of the photovoltaic support at 12 o'clock
  • the target difference is divided into n parts, and the size of the preset threshold can be less than or equal to one of them The value of the portion.
  • the inclination angle of the first photovoltaic bracket is less than the preset angle threshold, there is usually no shielding by the photovoltaic bracket between the photovoltaic brackets.
  • n is a natural number.
  • the fourth angle can be adjusted according to the on-site installation conditions (for example: radiation conditions, latitude and longitude, distance of the photovoltaic support, etc.).

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

一种光伏系统(400),包括:多个光伏支架(401)、连接在多个光伏支架(401)中每一个光伏支架上的多个光伏组串(402)、检测模块(403)以及第一控制器(404);多个光伏支架(401)中的每一个光伏支架用于在第一控制器(404)的控制下转动角度;多个光伏组串(402)中的每一个光伏组串用于将光能转换为电能;检测模块(403)分别与第一控制器(404)和多个光伏组串(402)连接,用于检测多个光伏组串(402)的遮挡参数;第一控制器(404)与多个光伏支架(401)连接,第一控制器(404)用于根据光照角度控制多个光伏支架(401)转动角度;以及根据多个光伏组串(402)的遮挡参数确定光伏支架遮挡关系,并根据所述光伏支架遮挡关系对第一光伏支架或者第二光伏支架的转动角度进行调整;光伏支架遮挡关系用于表征第二光伏支架被第一光伏支架遮挡。

Description

一种光伏系统 技术领域
本申请涉及电力电子技术领域,尤其涉及了一种光伏系统。
背景技术
光伏发电作为清洁型可再生能源,被广泛的应用。光伏系统能够将光能转化为电能,并为电网供电。一般,光伏发电常采用跟踪支架系统来提升光照资源的利用率。相比于传统固定式支架,安装在跟踪支架上的光伏组件可以随着跟踪轴旋转,在一天时间内根据天文算法跟踪太阳的运动轨迹,减小光线的入射夹角,进而提升光伏组件表面接受太阳光的能量的利用率,从而实现提升光伏系统的发电量。
目前,光伏跟踪系统,一般都有反跟踪。具体根据光伏支架之间的间距、组件长度和太阳高度角建立三角几何模型计算组件的跟踪角度,并根据计算得到跟踪角度控制光伏系统中的多个跟踪支架转动。
在实际使用中,由于光伏系统的安装环境的特殊性,在一些应用场景中(例如地势不平),造成多个跟踪支架之间的间距和高度均不一样,在基于反跟踪计算得到的跟踪角度控制跟踪支架转动时,可能会造成连接在一个或者多个光伏支架的光伏组件出现遮挡的情况,降低了光伏系统的发电量。
发明内容
本申请提供了一种光伏系统,用于提高光伏系统的发电量。
本申请实施例提供了一种光伏系统,该光伏系统可以包括:多个光伏支架、连接在多个光伏支架上的多个光伏组串、检测器以及控制器。其中,多个光伏组串中的每一个光伏组串与逆变器连接。控制器与多个光伏支架连接。检测模块分别与控制器和多个光伏组串连接。
其中,多个光伏支架中的每一个光伏支架用于在控制器的控制下转动角度,以调整连接的多个光伏组串的光照角度。多个光伏组串中的每一个光伏组串用于将光能转换为电能。检测模块可以用于检测多个光伏组串的遮挡参数,并将多个光伏组串的遮挡参数发送给控制器。控制器可以用于根据光照角度控制多个光伏支架转动角度;以及用于根据多个光伏组串的遮挡参数确定光伏支架遮挡关系,并根据光伏支架遮挡关系对一光伏支架或者第二光伏支架的转动角度进行调整。其中,光伏支架遮挡关系用于表征第二光伏支架被第一光伏支架遮挡。
采用上述系统框架,可以通过检测模块检测的光伏支架转动过程中的光伏组串的遮挡情况,确定光伏系统中光伏支架遮挡关系,并根据光伏支架遮挡关系对存在光伏支架遮挡关系的光伏支架的转动角度进行调整,以实现消除光伏支架之间的遮挡,提高被遮挡的光伏支架上连接的光伏组串的发电量,从而提高整个光伏系统发电量。
在一种可能的设计中,检测模块包括安置在多个光伏组串中每一个光伏组串上多个光电传感器。其中,多个光电传感器中每一个光电传感器可以用于:检测每一个光伏组串的光照参数。其中,多个光伏组串的遮挡参数可以包括:多个光伏组串的光照参数。
采用上述系统框架,可以根据设置在光伏组串的光电传感器输出的参数,确定该光伏组串的光照参数,并将光伏组串输出的光照参数发送给控制器,控制器可以根据收到的光照参数确定光伏组串的遮挡关系,并通过光伏组串的遮挡关系确定光伏支架遮挡关系并消除光伏支架遮挡关系,提高光伏系统的发电量。
在一种可能的设计中,根据检测模块发送的光伏支架遮挡关系对光伏支架的转动角度进行调整,包括:
向第一光伏支架发送第一控制信号,第一控制信号用于控制第一光伏支架向目标方向倾斜第一角度;或者向第二光伏支架发送第二控制信号,第二控制信号用于控制第二光伏支架向目标方向倾斜第二角度。
采用上述系统框架,可以通过控制存在光伏支架遮挡关系的第一光伏支架或者第二光伏支架向目标方向转动以消除第一光伏支架和第二光伏支架的遮挡关系,提高光伏系统的发电量。
在一种可能的设计中,检测模块用于检测多个光伏支架中每一个光伏支架上连接的多个光伏组串输出的功率参数。其中,多个光伏组串的遮挡参数包括多个光伏组串输出的功率参数。
采用上述系统框架,由于光伏系统中多个光伏支架处于同一光照条件下,若光伏支架之间不存在遮挡关系,则每一个光伏支架上连接的多个光伏组串输出的功率参数相近,当光伏支架存在遮挡时,则被遮挡的光伏系统上部分光伏组串无法收到光照,则被遮挡的光伏组串输出的功率参数发生变化(输出的功率参数减小),因此可以通过光伏支架上连接的多个光伏组串输的功率参数准确的判定光伏支架之间是否存在遮挡关系。
在一种可能的设计中,第二控制器还用于:根据多个光伏支架中每一个光伏支架上连接的多个光伏组串输出的功率参数,建立的光伏支架遮挡关系和目标时刻的对应模型。
采用上述系统框架,可以在光伏支架转动过程中每一个时刻的光伏支架输出的功率参数,建立光伏支架遮挡关系和目标时刻的对应模型,并将建立的光伏支架遮挡关系和目标时刻的对应模型存储至第二控制器中,以便直接在遮挡时刻对存在遮挡的支架进行遮挡角度补偿,操作简便快捷,从而无需每一时刻均进行检测,减少了光伏系统的能源损耗。
在一种可能的设计中,可以根据以下步骤建立光伏支架遮挡关系和目标时刻的对应模型:
在目标时刻控制第一光伏支架向目标方向倾斜第三角度;接收检测模块输出的除第一光伏支架之外的其他光伏支架上连接的多个光伏组串输出的功率参数;在确定第二光伏支架上连接的至少一个光伏组串输出的功率参数发生变化时,确定光伏支架遮挡关系;记录光伏支架的遮挡关系与目标时刻的对应模型。其中,光伏组串可以通过设置在光伏支架上的卡槽连接在光伏支架上。
采用上述系统框架,可以在不同的时刻控制第一光伏支架向不同的方向转动((例如上午和下午,太阳的方向不同,光伏支架需要跟随太阳的方向转动),并转动过程中光伏系统其他光伏支架上连接的多个光伏组串输出的功率参数,若光伏支架之间不存在遮挡,则除第一光伏支架之外的其他多个光伏支架上连接的多个光伏组串输出的功率参数接近,若检测到第二光伏支架上连接的至少一个光伏组串输出的功率参数数值发生变化,可以确定第二光伏支架与第一光伏支架存在遮挡关系,并记录目标时刻。通过上述方式可以得到整个光伏系统不同时刻下的光伏支架遮挡关系,并依据得到的光伏支架遮挡关系建立光伏 支架遮挡关系和目标时刻的对应模型,以便目标时刻对存在遮挡关系的光伏支架进行遮挡角度补偿。
在一种可能的设计中,在建立光伏支架遮挡关系和目标时刻的对应模型之前,第二控制器还需要确定第一光伏支架上连接的多个光伏组串,以便后期检测光伏支架上连接的光伏组串输出的功率参数是否发生变化,具体可以包括:控制第一光伏支架向目标方向转动第四角度;接收检测模块输出的多个光伏组串输出的功率参数;在确定至少一个光伏组串输出的功率参数的发生变化时,确定功率参数发生变化的至少一个光伏组串连接在第一光伏支架上。其中,第四角度小于预设角度阈值。
采用上述系统框架,由于光伏组串受到的太阳光照角度不同,光伏组串输出的功率参数不同,基于这一概念,确定光伏系统中多个光伏组串与多个光伏支架的连接的关系。以第一光伏支架为例,控制第一光伏支架转动时检测光伏系统中光伏组串输出的功率参数,若检测到多个光伏组串输出的功率参数发生变化,则可以确定功率参数发生变化的多个光伏组串连接在第一光伏支架上。采样上述方法分别对光伏系统的多个光伏支架与多分光伏组串的连接关系进行确定。
在一种可能的设计中,确定至少一个光伏组串输出的功率参数的发生变化,包括:
将多个光伏组串输出的功率参数分别与多个光伏组串在第一光伏支架转动第四角度之前输出的功率参数进行比较,将功率参数数值发生变化的光伏组串确定为输出功率参数发生变化的光伏组串。
采用上述系统框架,在控制第一光伏支架转动时,第一光伏支架上连接的多个光伏组串的光照角度发生变化,则输出的功率参数发生变化,而其他光伏支架的转动角度未发生改变,其他光伏支架上连接的多个光伏组串输出的功率参数相同。因此,可以通过检测第一光伏支架转动前后光系统中光伏组串输出的功率参数是否发生变化进行检测,检测方便且准确度高。
在一种可能的设计中,确定第二光伏支架上连接的多个光伏组串输出的功率参数发生变化,包括:
在确定第二光伏支架上连接的多个光伏组串输出功率参数与第一光伏支架外的其他支架上连接的多个光伏组串输出的功率参数的差值大于预设阈值时,确定第二光伏支架上连接的多个光伏组串输出的功率参数发生变化。
采用上述系统框架,由于光伏支架和光伏组串器件生产差异以及数据传输距离不同,在不存在光伏支架遮挡关系时,多个光伏支架上连接的多个光伏组串输出的功率参数也会存在一定的差值,为了避免误检测,第二光伏支架上连接的多个光伏组串输出的功率参数可以与其他光伏支架上连接的多个光伏组串输出的功率参数有差值,当差值大于预设阈值时,才能确定第二光伏支架与第一光伏支架存在遮挡关系,提高了确定结果的准确性。
在一种可能的设计中,检测光伏系统中多个光伏支架输出的功率参数,包括:
检测与第一光伏支架相邻的两个光伏支架上连接的多个光伏组串输出的功率参数。
采用上述系统框架,由于在光伏系统中,相邻两个光伏支架的距离较大,当由于地势或者距离等原因造成光伏支架遮挡时,一般只会遮挡相邻的光伏支架,对于其他的支架并不会造成影响,因此可以只检测相邻两个支架上连接的多个光伏组串输出的功率参数即可确定光伏支架是否存在遮挡关系,加快了光伏支架遮挡关系的计算速度、且节约了计算量。
在一种可能的设计中,控制器还可以根据以下步骤确定第二角度:
确定第二光伏支架的遮挡面积;根据遮挡面积确定第二角度。
采用上述系统框架,通过第二光伏支架被第一光伏支架的遮挡面积,准确的计算第二角度的大小。
在一种可能的设计中,根据遮挡面积确定第二角度,包括:
确定第二光伏支架上连接的多个光伏组串的面积以及被第一光伏支架遮挡的面积;根据多个光伏组串的面积和遮挡面积,确定第二角度。
采用上述系统框架,可以根据第二光伏支架上连接的多个光伏组串的总面积以及被第一光伏支架遮挡的面积,确定遮挡面积占第二光伏支架上连接的多个光伏组串的总面积的比值,并根据计算的比值,准确的计算第二角度的大小。
在一种可能的设计中,控制器还可以根据以下步骤确定第二角度:
确定二光伏支架的倾斜角度、第一光伏支架上连接的多个光伏组串输出的功率参数和第二光伏支架上连接的多个光伏组串输出的功率参数确定第二角度。
采用上述系统框架,通过第二光伏支架的倾斜角度可以准确的确定当前的太阳高度角,通过计算得到的高度角和存储的第一光伏支架和第二光伏支架的距离,计算两个光伏支架无遮挡情况的输出的目标功率参数,并根据目标参数与实际检测的数值进行比较,并根据比较结果确定遮挡原因,并根据遮挡原因确定第二角度的大小。
附图说明
图1为本申请实施例一种应用场景的示意图;
图2为本申请实施例的一种光伏系统的结构示意图一;
图3为本申请实施例的一种光伏系统的结构示意图二;
图4为本申请实施例的一种光伏系统的结构示意图;
图5为本申请实施例的一种遮挡角度补偿示意图一;
图6为本申请实施例的一种遮挡角度补偿示意图二;
图7为本申请实施例的一种光伏支架遮挡关系与目标时刻的对应模型的流程示意图;
图8为本申请实施例的一种光伏支架与光伏组串连接关系的流程示意图。
具体实施方式
本申请实施例中“多个”是指两个或两个以上。“至少一个”是指一个或一个以上。“或”,描述关联对象的关联关系,表示可以存在两种关系,例如,A或B,可以表示:单独存在A,单独存在B的情况,其中A、B可以是单数或者复数。
在本申请实施例中,“示例的”“在一些实施例中”“在另一实施例中”等用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
需要指出的是,本申请实施例中涉及的“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。本申请实施例中涉及的等于可以与大于连用,适用于大于时所采用的技术方案,也可以与小于连用,适用于与小于时所采用的技术方案,需要说明的是,当等于与大于连用时,不与小于连用; 当等于与小于连用时,不与大于连用。
下面,对本申请实施例的应用场景进行介绍。
如图1所示,为光伏系统的一种可能的结构示意图,如图1所示,该光伏系统100中可以包括:光伏支架1至M1、与光伏支架1至M一一对应的光伏支架控制器K1至KM以及逆变器Z。其中,每一个光伏支架上均连接有多个光伏组串(未示出),光伏组串可以用于将太阳能转换为电能,并输出给用电设备,光伏支架可以用于通过转动自身的倾斜角度实现连接在光伏支架上的多个光伏组件处于最优光照角度,从而保证光伏系统的发电量。
对于图1所示的应用场景,目前光伏支架的控制方式如图2所示,控制器通过光伏支架前后排之间的距离D、光伏支架的宽度L、光伏支架的高度H、太阳的高度角对光伏支架的转动角度进行控制,实现每一个光伏支架上连接的多个光伏组串处于最优光照角度,提高光伏系统的发电量。
但是实际实施时,由于地形、安装误差等原因,可能会造成相邻两个光伏支架之间的实际距离不同,或者相邻两个光伏组串的高度不同,在基于上述方式对光伏支架的转动角度进行控制时,将会出现部分光伏支架被其他光伏支架遮挡的情况,如图3所示,被遮挡的光伏支架上连接的部分光伏组串无法受到太阳光照,从而输出功率降低,影响了整个光伏系统的发电量。
因此,目前的光伏支架的控制方式在一些应用场景下,光伏系统中的部分光伏支架会出现被遮挡的情况,降低了光伏系统的发电量。
针对上述问题,本申请实施例提供了一种光伏系统,可以对光伏系统运行过程中存在的光伏支架遮挡关系的光伏支架的转动角度进行调整,以实现消除光伏支架的遮挡问题,提高被遮挡的光伏支架的发电量,从而提高光伏系统的发电量。
参见图4,为本申请实施例提供的一种光伏系统的结构示意图,该光伏支架400可以包括:多个光伏支架401、连接在多个光伏支架401上的多个光伏组串402(未示出)、检测模块403以及控制器404。
其中,检测模块403可以分别与控制器404和多个光伏组串402连接。控制器404可以与多个光伏支架401连接。
其中,多个光伏支架401中的每一个光伏支架用于在第一控制器404的控制下转动角度,以调整连接的多个光伏组串的光照角度。多个光伏组串402中的每一个光伏组串用于将光能转换为电能。其中,多个光伏组串输出的电能的电压为第一电压。
若多个光伏组串输出的第一电压为直流电压,则光伏系统400还可以包括逆变器,用于对多个光伏组串402输出的第一电压进行DC/AC转换,输出第二电压,第二电压为交流电压,并用于用电设备供电。
其中,检测模块404可以用于检测多个光伏组串的遮挡参数,并将多个光伏组串的遮挡参数发送给控制器。控制器404可用于根据光照角度控制多个光伏支架转动角度,以及用于根据多个光伏组串的遮挡参数确定光伏支架遮挡关系,并根据光伏支架遮挡关系对第一光伏支架或者第二光伏支架的转动角度进行调整。其中,光伏支架遮挡关系可以用于表征第二光伏支架被第一光伏支架遮挡。
本申请实施例中,第一控制器404可以向多个光伏支架401下发上位机指令,以指示调整多个光伏支架转动角度。
在一示例中,光伏系统400中可以包括与多个光伏支架401对应的多个子控制器,每 一个子控制器分别与对应的光伏支架连接,第一控制器404可以向多个子控制器发送上位机指令,通过子控制器控制每一个光伏支架调整转动。
具体地,控制器404在确定光伏系统400中第一光伏支架和第二光伏支架之间存在光伏支架遮挡关系时,控制器404可以向第一光伏支架发送第一控制信号,第一控制信号用于控制第一光伏支架向目标方向倾斜第一角度;或者向第二光伏支架发送第二控制信号,第二控制信号用于控制第二光伏支架向目标方向倾斜第二角度,即通过第一角度或者第二角度对存在光伏支架遮挡关系的第一光伏支架和第二光伏支架进行遮挡角度补偿,以消除第一光伏支架和第二光伏支架之间的遮挡关系。
在一示例中,如图5所示,控制器404可以通过调整第一光伏支架倾斜第一角度a1进行遮挡角度补偿,实现消除第一光伏支架和第二光伏支架之间的遮挡关系,从而实现提高被遮挡的第二光伏支架上连接的多个光伏组串输出的功率,提高光伏系统的发电量。
在另一示例中,如图6所示,控制器404可以通过控制第二光伏支架倾斜第二角度a2进行遮挡角度补偿,实现消除第一光伏支架和第二光伏支架之间的遮挡关系,从而实现提高被遮挡的第二光伏支架上连接的多个光伏组串输出的功率,提高光伏系统的发电量。
其中,由于光伏支架遮挡关系可能是由于距离或者光伏支架相当于水平面的高度造成的,因此控制存在光伏支架遮挡关系的第一光伏支架和第二光伏支架转动相同的角度时,光伏支架之间的遮挡情况不同。因此,用于进行遮挡角度补偿的第一角度和第二角度可以是不同的角度值,本申请这里不做详细介绍。
在一示例中,在向第一光伏支架发送第一控制信号或者向第二光伏支架发送第二控制信号进行遮挡角度补偿的过程中,由于控制器向第一光伏支架或向第二光伏支架发送控制信号的第一时刻至第一光伏支架或者第二光伏支架接收控制信号的第二时刻之间可能存在数据传输时延,为了实现对遮挡角度补偿的准确控制,可以在目标时刻之前的预设时长向第一光伏支架发送第一控制信号,或者向第二光伏支架发送第二控制信号,实现遮挡时刻对光伏支架进行遮挡角度补偿。其中,预设时长可以根据光伏系统中光伏支架和控制器的传输延时以及从对应模型中检测光伏支架者遮挡关系的时长确定,本申请实施例对此不作详细限定。
本申请实施例中,可以通过控制第一光伏支架的向目标倾斜第一角度或控制第二光伏支架的向目标方向倾斜第二角度进行遮挡角度补偿。下面以通过第二角度进行遮挡角度补偿为例,对第二角度的确定过程进行说明。
具体地,用于对第一光伏支架进行遮挡补偿的第二角度可以基于以下两种方式确定:
方式一:可以通过第二光伏支架被第一光伏支架的遮挡面积确定第二角度。其中,由于光伏系统中包含的多个光伏支架均通过安装光伏支架时计算得到的前后排光伏支架之间的距离、光伏支架相对于地面的高度、光伏支架的宽度以及太阳的高度角确定光伏支架的转动角度,在忽略遮挡和计算误差的情况下,则每一个光伏支架上连接的多个光伏组串输出的功率参数相近。若第二光伏支架被第一光伏支架遮挡,则第二光伏支架上连接的部分光伏组串无法受到太阳光照而无法输出的电能,第二光伏支架上连接的多个光伏组串输出的功率参数减小,可以根据目标时刻第二光伏支架上连接的多个光伏组串输出的功率参数与除第一光伏支架外的其他光伏支架上连接的多个光伏组串输出的功率参数的差值以及每一个光伏组串输出的功率参数确定第二光伏支架被第一光伏支架的遮挡面积。
具体地,在检测上述差值之后,由于连接在光伏支架上的多个光伏组串上的每一个光 伏组串的面积相同、且光照角度相同、则每一个光伏组串输出的功率相等。可以根据除第一光伏支架外的其他光伏支架上连接的多个光伏组串输出的功率参数以及该光伏支架上连接的多个光伏组串的数量,从而确定每一个光伏组串的输出功率,可以根据上述得到的该差值以及每一个光伏组串输出的功率参数确定第二光伏支架被第一光伏支架的遮挡面积。
在一示例中,在确定遮挡面积之后,计算第二光伏组串连接的多个光伏组串的总面积,并计算遮挡面积占总面积的比值,并根据该比值确定第二角度。
方式二、可以通过第二光伏支架的倾斜角度、第一光伏支架上连接的多个光伏组串输出的功率参数和第二光伏支架上连接的多个光伏组串输出的功率参数确定第二角度。
具体地,通过当前太阳的高度角,第二支架的倾斜角度以及存储的光伏组串的不同时刻功率参数,计算无遮挡状态下第一光伏支架上连接的多个光伏组串输出的第一功率参数(若第一光伏支架和第二光伏支架无遮挡,则第二光伏支架上连接的多个光伏组串输出的功率参数与第一功率参数相等),并将第一光伏支架上连接的多个光伏组串输出的功率参数以及第二光伏支架上连接的多个光伏组串输出的功率参数分别与第一功率参数进行比较,并根据比较结果确定遮挡原因(高度或者距离),并根据遮挡原因确定进行遮挡补偿的第二角度的大小。
应理解,上述确定第二角度的两种方式均基于图2所示的光伏支架控制方式计算得到,本申请实施例可以采用其他的控制方式控制光伏支架的转动角度,其遮挡补偿角度的计算原理相同,本申请实施例对此不作限定。
采用本申请实施例提供的光伏系统400向用电设备供电时,可以通过检测模块403检测光伏支架转动过程中的光伏支架遮挡关系,并根据光伏支架遮挡关系对存在光伏支架遮挡关系的光伏支架的转动角度进行调整,以实现消除光伏支架的遮挡关系,提高被遮挡的光伏支架上连接的光伏组串的发电量,从而提高整个光伏系统发电量。
在本申请实施例中,用于确定光伏系统400中的光伏支架遮挡关系的检测模块403,根据检测器件以及器件的连接位置的不同,可以分为两种具体结构,下面结合实施例对本申请实施例提供的检测模块403的结构进行说明,具体可以包括以下两种方案:
方案一、检测模块403可以包括安置在多个光伏组串中每一个光伏组串上多个光电传感器。
其中,多个光电传感器中每一个光电传感器用于:检测每一个光伏组串的光照参数。其中,每一个光伏组串输出的参数构成多个光伏组串的光伏参数。
其中,多个光伏组串的遮挡参数可以包括:多个光伏组串的光照参数。
具体地,当连接在第二光伏支架的至少一个光伏组串出现遮挡时,则该至少一个光伏组串上设置的多个光电传感器受到的光照发生改变,则光电传感器上的电流、电阻或电压也随之发生变化,本申请实施例中多个光伏组串的遮挡参数可以包括以下一个或多个:多个光电传感器的输出电流、电压或电阻。
方案二、检测模块403可以用于检测多个光伏支架中每一个光伏支架上连接的多个光伏组串输出的功率参数。其中,多个光伏组串的遮挡参数包括多个光伏组串输出的功率参数。
应理解,多个光伏支架处于同一光照条件下,若光伏系统400中的多个光伏支架之间无遮挡,则多个光伏支架上连接的多个光伏组串输出的功率参数相近,若光伏支架之间存 在遮挡,则被遮挡的光伏支架上来连接的部分光伏组串无法收到光照,输出的功率参数减少,当检测到光伏支架上连接的多个光伏组串输出的功率参数大于预设阈值时,则可以确定该光伏支架被遮挡。
示例的,检测模块403可以通过与多个光伏组串402连接,直接获取多个光伏组串402输出的功率参数。其中,检测模块403可以为与多个光伏组串402连接的逆变器。
在一种可能的设计中,由于光伏系统中太阳的光照角度短期内不会发生改变,在通过控制器404确定光伏系统400中多个光伏支架401确定光伏支架遮挡关系时,控制器404可以建立光伏支架遮挡关系和目标时刻的对应模型,该模型中记录了光伏支架遮挡关系以及遮挡时间(目标时间),并在下次光伏系统运行时,直接在目标时刻存在光伏支架遮挡关系的光伏支架进行遮挡角度补偿,从而避免重复检测,尽快了光伏支架补偿速度,提高了光伏系统的发电量。
在本申请实施例提供的光伏支架遮挡关系和目标时刻的对应模型,如图7所示,以对应模型中的第一光伏支架的遮挡关系的建立过程为例,具体包括以下步骤。需要说明的是,可以采用以下步骤,建立每个时刻每个光伏支架的光伏支架遮挡对应模型。
步骤701:控制器在目标时刻控制第一光伏支架向目标方向倾斜第三角度。
由于光伏系统的目的在于将太阳光转换为电能后并网为用户供电,而太阳光在上午和下午的光照方向不同,下面以第一光伏支架、且上午太阳光处于第一方向为例,进行详细说明。
示例的,在目标时刻控制第一光伏支架向第一方向倾斜第三角度。
具体地,在忽略遮挡关系的情况下,可以参见图2光伏支架转动角度的确定方式计算得到第三角度,当然也可以采用其他方式确定,本申请对此不作详细介绍。
步骤702:控制器接收检测模块输出的除第一光伏支架之外的其他光伏支架上连接的多个光伏组串输出的功率参数。
在一些实施例中,由于在光伏系统中,相邻两个光伏支架的距离较大,当由于地势或者距离等原因造成光伏支架遮挡时,一般只会遮挡相邻的光伏支架,对于其他的支架并不会造成影响,因此,为了加快计算速度以及减小计算量,在检测除第一光伏支架之外上连接的多个光伏组串输出的功率参数时,可以只检测相邻两个支架上连接的多个光伏组串输出的功率参数。
示例的,检测第一光伏支架第一方向相邻的第一个光伏支架上连接的多个光伏组串输出的功率参数。
在另一实施例中,为了检测结果的准确性,在检测除第一光伏支架之外的其他光伏支架上连接的多个光伏组串输出的功率参数时,可以检测光伏系统中除第一光伏支架之外的全部光伏支架上连接的多个光伏组串输出的功率参数。
步骤703:控制器在确定第二光伏支架上连接的至少一个光伏组串输出的功率参数发生变化时,确定光伏支架遮挡关系。其中,光伏支架遮挡关系为第二光伏支架被第一光伏支架遮挡。
光伏支架输出的功率参数根据太阳光以及当天的天气情况确定,由于光伏支架和光伏组串器件生产差异以及数据传输距离不同,每一个支架上连接的多个光伏之间输出的功率参数存在一定的误差。在一示例中,为了保证检测的准确度,在确定第二光伏支架上连接的多个光伏组串输出功率参数与第一光伏支架外的其他支架上连接的多个光伏组串输出 的功率参数的差值大于预设阈值时,才可确定第二光伏支架上连接的多个光伏组串输出的功率参数发生变化。其中,预设阈值本申请这里不做详细介绍。
在一示例中,在确定在除第一光伏支架外的其他光伏支架上连接的多个光伏组串输出功率参数未发生变化时,确定该目标时刻不存在光伏支架遮挡关系。
步骤704:控制器记录光伏支架的遮挡关系与目标时刻的对应模型。
采用上述上午太阳光处于第一方向时,第一光伏支架的遮挡关系的确定方式,类似的可以检测下午太阳光处于第二方向时光伏支架遮挡关系,从而得到与第一光伏支架有关的光伏支架的遮挡关系和遮挡时间。
控制器可以采用上述第一光伏支架的遮挡关系的确定方式,确定光伏系统中除第一光伏之间外的其他光伏支架的光伏支架遮挡关系与遮挡时间,得到的光伏支架的遮挡关系和遮挡时间组成光伏支架的遮挡关系与目标时刻的对应模型。
需要说明,由于不同季节和不同天气状态下,太阳光照情况不同,相应的光伏支架遮挡关系和目标时刻的对应模型中,光伏支架的遮挡时刻可能不同,为了保证在正确的时间对被遮挡的光伏支架进行遮挡角度补偿,提高光伏系统的发电量,可以根据需要对光伏支架遮挡关系和目标时刻的对应模型的数据(遮挡时刻、光伏支架遮挡关系、补偿角度等)实时进行更新。
需要说明的是,上述计算遮挡补偿角度以及光伏支架遮挡关系与目标时刻的对应模型的建立过程中均涉及了检测光伏支架上连接的多个光伏组串输出的功率参数这一步骤。下面以第一光伏支架为例,结合图8,对第一光伏支架与连接在该光伏支架上的多个光伏组串的确定过程进行详细说明。
步骤801:控制器控制第一光伏支架向目标方向转动第四角度。其中,第四角度小于预设角度阈值。
步骤802:控制器接收检测模块输出的多个光伏组串输出的功率参数。
步骤803:控制器在确定至少一个光伏组串输出的功率参数的发生变化时,确定功率参数发生变化的至少一个光伏组串连接在第一光伏支架上。
在一示例中,若第一光伏支架不被其他光伏支架遮挡,则当控制第一光伏支架向目标方向转动第四角度时,第一光伏支架上连接的多个光伏组串的光照角度发生变化,其他光伏支架上连接的多个光伏组串的光照角度未发生变化。因此,可以通过检测光伏系统多个光伏组串输出的功率参数是否发生变化确定光伏组串是否连接在第一光伏支架上。
其中,在控制第一光伏支架转动第四角度时,第一光伏支架上连接的多个光伏组串的光照角度发生变化,则输出的功率参数发生变化,而其他光伏支架的转动角度未发生改变,其他光伏支架上连接的多个光伏组串输出的功率参数相近。
具体地,可以将多个光伏组串输出的功率参数分别与多个光伏组串在第一光伏支架转动第四角度之前输出的功率参数进行比较,将功率参数数值发生变化的光伏组串确定为输出功率参数发生变化的光伏组串。
在一示例中,由于光伏系统中的部分光伏支架可能存在遮挡关系,以第一光伏支架遮挡第二光伏支架为例,当第一光伏支架向目标方向转动第四角度时,第一光伏支架上连接的多个光伏组的光照角度发生变化,第一光伏支架上连接的多个光伏组串输出的功率参数发生变化,而第二光伏支架上连接的多个光伏组串中的部分组串被遮挡无法受到光照,因 此,第二光伏支架上连接的至少一个光伏组串输出的功率参数也会发生变化,为了避免第二光伏支架上连接的光伏组串默认连接在第一光伏上,第四角度需要小于预设角度阈值。
示例的,可以将太阳处于第一方向时(例如8-12点),基于上述图2所示的光伏支架控制方式控制光伏支架转动时,计算光伏支架初始倾斜角度(例如8点时刻光伏支架的倾斜角度)到最终倾斜角度(例如12点时刻光伏支架的倾斜角度)之间的目标差值,并将该目标差值平均拆分为n份,而预设阈值的大小可以小于或者等于其中一份的数值。当第一光伏支架倾斜角度小于预设角度阈值时,光伏支架之间通常不存在光伏支架遮挡情况。其中,n为自然数。其中,第四角度与之可以根据现场安装情况(例如:辐射情况、经纬度、光伏支架的距离等差异)进行调整。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (13)

  1. 一种光伏系统,其特征在于,包括:多个光伏支架、连接在所述多个光伏支架上的多个光伏组串、检测模块以及控制器;
    所述多个光伏支架中的每一个光伏支架用于在所述第一控制器的控制下转动角度,以调整连接的多个光伏组串的光照角度;
    所述多个光伏组串中的每一个光伏组串用于将光能转换为电能;
    所述检测模块分别与所述控制器和所述多个光伏组串连接,所述检测模块用于检测所述多个光伏组串的遮挡参数,并将所述多个光伏组串的遮挡参数发送给所述控制器;
    所述控制器与所述多个光伏支架连接,所述控制器用于根据所述光照角度控制所述多个光伏支架转动角度;以及根据所述多个光伏组串的遮挡参数确定光伏支架遮挡关系,并根据所述光伏支架遮挡关系对所述光伏第一光伏支架或者所述第二光伏支架的转动角度进行调整;所述光伏支架遮挡关系用于表征第二光伏支架被第一光伏支架遮挡。
  2. 如权利要求1所述的系统,其特征在于,所述检测模块包括安置在所述多个光伏组串中每一个光伏组串上多个光电传感器;
    所述多个光电传感器中每一个光电传感器用于:检测每一个光伏组串的光照参数;
    其中,所述多个光伏组串的遮挡参数包括:多个光伏组串的光照参数。
  3. 如权利要求1所述的系统,其特征在于,所述根据所述检测模块发送的光伏支架遮挡关系对所述光伏支架的转动角度进行调整,包括:
    向所述第一光伏支架发送第一控制信号,所述第一控制信号用于控制所述第一光伏支架向目标方向倾斜第一角度;或者向所述第二光伏支架发送第二控制信号,所述第二控制信号用于控制所述第二光伏支架向所述目标方向倾斜第二角度。
  4. 如权利要求1或3所述的系统,其特征在于,所述检测模块用于:检测所述多个光伏支架中每一个光伏支架上连接的多个光伏组串输出的功率参数;
    其中,所述多个光伏组串的遮挡参数包括:所述多个光伏组串输出的功率参数。
  5. 如权利要求4所述的系统,其特征在于,所述控制器还用于:根据多个光伏支架中每一个光伏支架上连接的多个光伏组串输出的功率参数,建立光伏支架遮挡关系和目标时刻的对应模型。
  6. 如权利要求5所述的系统,其特征在于,所述光伏支架遮挡关系和目标时刻的对应模型采用以下步骤建立:
    在所述目标时刻控制所述第一光伏支架向所述目标方向倾斜第三角度;
    接收检测模块输出的除所述第一光伏支架之外的其他光伏支架上连接的多个光伏组串输出的功率参数;
    在确定所述第二光伏支架上连接的至少一个光伏组串输出的功率参数发生变化时,确定所述光伏支架遮挡关系;
    记录所述光伏支架的遮挡关系与所述目标时刻的对应模型。
  7. 如权利要求6所述的系统,其特征在于,所述在第一预设时间内,控制所述第一光伏支架向所述目标方向倾斜第三角度之前,控制器还用于:
    控制所述第一光伏支架向所述目标方向转动第四角度;
    接收所述检测模块输出的多个光伏组串输出的功率参数;
    在确定至少一个光伏组串输出的功率参数的发生变化时,确定功率参数发生变化的所述至少一个光伏组串连接在所述第一光伏支架上;
    所述第四角度小于预设角度阈值。
  8. 如权利要求6所述的系统,其特征在于,所述确定至少一个光伏组串输出的功率参数的发生变化,包括:
    将所述多个光伏组串输出的功率参数分别与所述多个光伏组串在所述第一光伏支架转动所述第四角度之前输出的功率参数进行比较,将功率参数数值发生变化的光伏组串确定为输出功率参数发生变化的光伏组串。
  9. 如权利要求6-8中任一项所述的系统,其特征在于,所述确定所述第二光伏支架上连接的多个光伏组串输出的功率参数发生变化,包括:
    在确定所述第二光伏支架上连接的多个光伏组串输出功率参数与所述第一光伏支架外的其他支架上连接的多个光伏组串输出的功率参数的差值大于预设阈值时,确定所述第二光伏支架上连接的多个光伏组串输出的功率参数发生变化。
  10. 如权利要求6-9中任一项所述的系统,其特征在于,所述接收检测模块输出的光伏系统中多个光伏支架输出的功率参数,包括:
    接收所述检测模块输出的与所述第一光伏支架相邻的两个光伏支架上连接的多个光伏组串输出的功率参数。
  11. 如权利要求3-10中任一项所述的系统,其特征在于,控制器用于根据以下步骤确定所述第二角度:
    确定所述第二光伏支架的遮挡面积;
    根据所述遮挡面积确定所述第二角度。
  12. 如权利要求11所述的系统,其特征在于,所述根据所述遮挡面积确定所述第二角度,包括:
    确定所述第二光伏支架上连接的多个光伏组串的面积以及被所述第一光伏支架遮挡的面积;
    根据所述多个光伏组串的面积和所述遮挡面积,确定所述第二角度。
  13. 如权利要求3-12中任一项所述的系统,其特征在于,控制器用于根据以下步骤确定所述第二角度:
    确定所述第二光伏支架的倾斜角度、所述第一光伏支架上连接的多个光伏组串输出的功率参数和所述第二光伏支架上连接的多个光伏组串输出的功率参数确定所述第一角度。
PCT/CN2020/091118 2020-05-19 2020-05-19 一种光伏系统 WO2021232257A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080009738.8A CN113348623B (zh) 2020-05-19 2020-05-19 一种光伏系统
EP20922466.6A EP3940950B1 (en) 2020-05-19 2020-05-19 Photovoltaic system
PCT/CN2020/091118 WO2021232257A1 (zh) 2020-05-19 2020-05-19 一种光伏系统
US17/696,555 US20220209710A1 (en) 2020-05-19 2022-03-16 Photovoltaic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/091118 WO2021232257A1 (zh) 2020-05-19 2020-05-19 一种光伏系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/696,555 Continuation US20220209710A1 (en) 2020-05-19 2022-03-16 Photovoltaic system

Publications (1)

Publication Number Publication Date
WO2021232257A1 true WO2021232257A1 (zh) 2021-11-25

Family

ID=77468520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091118 WO2021232257A1 (zh) 2020-05-19 2020-05-19 一种光伏系统

Country Status (4)

Country Link
US (1) US20220209710A1 (zh)
EP (1) EP3940950B1 (zh)
CN (1) CN113348623B (zh)
WO (1) WO2021232257A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116582084A (zh) * 2023-07-11 2023-08-11 南通玖方新材料科技有限公司 一种太阳能光伏载具的安装监测方法及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114326915B (zh) * 2021-11-03 2023-04-21 中国华能集团清洁能源技术研究院有限公司 最大功率点追踪mppt控制器的安装方法和光伏系统
CN115237168B (zh) * 2022-09-21 2023-01-13 浙江大学 一种基于反向光线追踪的光伏板传动角度控制方法
CN117955431B (zh) * 2024-03-26 2024-06-04 厦门晶晟能源科技有限公司 一种光伏发电智能管理系统与管理方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102340264A (zh) * 2010-07-20 2012-02-01 威升开发股份有限公司 太阳能追日面板倾角自动补偿方法及其装置
CN103944510A (zh) * 2014-05-06 2014-07-23 河海大学常州校区 一种光伏组件输出特性的判断方法
CN105119559A (zh) * 2015-08-31 2015-12-02 北京视域四维城市导向系统规划设计有限公司 一种感应自动调整太阳能集电装置
CN105141232A (zh) * 2015-08-28 2015-12-09 北京视域空间公共艺术设计有限公司 一种时控自动调整太阳能集电装置
CN106059492A (zh) * 2016-05-05 2016-10-26 江苏方天电力技术有限公司 基于功率预测的光伏组件阴影故障类型判定方法
JP2017199885A (ja) * 2016-04-28 2017-11-02 積水化学工業株式会社 太陽光発電ユニット
CN108233870A (zh) * 2018-01-31 2018-06-29 华南师范大学 Ctct结构的光伏系统热斑故障检测设备及方法
CN110620551A (zh) * 2018-06-20 2019-12-27 北京金风慧能技术有限公司 光伏阵列的热斑检测方法和设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8076625B2 (en) * 2009-02-25 2011-12-13 Solfocus, Inc. Field level tracker controller
WO2015113445A1 (zh) * 2014-01-30 2015-08-06 浙江同景新能源集团有限公司 一种改进型光伏跟踪控制系统
CN104917460B (zh) * 2015-06-03 2017-06-06 华为技术有限公司 一种光伏电池组件的监测方法及装置
KR102610440B1 (ko) * 2016-08-08 2023-12-06 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 태양광 모듈, 및 이를 구비하는 태양광 시스템
IL260112B (en) * 2018-06-18 2019-08-29 Rochman Tsur Solar panel system and maintenance method
CN109274332A (zh) * 2018-10-29 2019-01-25 西交利物浦大学 一种串联型光伏电板遮挡自动检测系统及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102340264A (zh) * 2010-07-20 2012-02-01 威升开发股份有限公司 太阳能追日面板倾角自动补偿方法及其装置
CN103944510A (zh) * 2014-05-06 2014-07-23 河海大学常州校区 一种光伏组件输出特性的判断方法
CN105141232A (zh) * 2015-08-28 2015-12-09 北京视域空间公共艺术设计有限公司 一种时控自动调整太阳能集电装置
CN105119559A (zh) * 2015-08-31 2015-12-02 北京视域四维城市导向系统规划设计有限公司 一种感应自动调整太阳能集电装置
JP2017199885A (ja) * 2016-04-28 2017-11-02 積水化学工業株式会社 太陽光発電ユニット
CN106059492A (zh) * 2016-05-05 2016-10-26 江苏方天电力技术有限公司 基于功率预测的光伏组件阴影故障类型判定方法
CN108233870A (zh) * 2018-01-31 2018-06-29 华南师范大学 Ctct结构的光伏系统热斑故障检测设备及方法
CN110620551A (zh) * 2018-06-20 2019-12-27 北京金风慧能技术有限公司 光伏阵列的热斑检测方法和设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116582084A (zh) * 2023-07-11 2023-08-11 南通玖方新材料科技有限公司 一种太阳能光伏载具的安装监测方法及系统
CN116582084B (zh) * 2023-07-11 2023-11-17 南通玖方新材料股份有限公司 一种太阳能光伏载具的安装监测方法及系统

Also Published As

Publication number Publication date
US20220209710A1 (en) 2022-06-30
EP3940950A1 (en) 2022-01-19
CN113348623A (zh) 2021-09-03
CN113348623B (zh) 2023-06-20
EP3940950A4 (en) 2022-05-04
EP3940950B1 (en) 2023-10-04

Similar Documents

Publication Publication Date Title
WO2021232257A1 (zh) 一种光伏系统
US8076625B2 (en) Field level tracker controller
US8297273B2 (en) Controlling apparatus for a concentration photovoltaic system
KR100914273B1 (ko) 음영방지기능을 갖춘 태양광 모듈의 태양광 추적 장치 및 그 제어방법
US9568218B2 (en) Solar array power output maximization through corrected sun tracking methods
US20160056754A1 (en) Solar tracking-type photovoltaic power generation system control device and solar tracking-type photovoltaic power generation system
CN213717907U (zh) 一种智能光伏组件的单轴角度跟踪系统
KR20080013481A (ko) 추적식 태양광 발전장치
WO2022105446A1 (zh) 一种智能光伏组件的单轴角度跟踪方法和系统
CN102354222A (zh) 一种双轴太阳能光伏阵列发电系统的无阴影跟踪方法
AU2021229456B2 (en) Systems and methods for split-cell and multi-panel photovoltaic tracking control
CN106712682A (zh) 一种聚光光伏发电精确追日跟踪装置
KR100732616B1 (ko) 태양전지판 출력전압 미분 특성을 이용한 태양광 추적장치및 그 제어방법
WO2023109531A1 (zh) 一种跟踪控制方法及装置
CN113419567B (zh) 一种跟踪支架的跟踪角度优化方法及系统
KR101983453B1 (ko) 군집 태양광 트래커들의 제어 방법 및 시스템
KR20130092020A (ko) 발전 효율을 향상시키는 태양광 발전 시스템의 제어 방법
CN205353781U (zh) 一种全天候自适应单轴太阳能跟踪系统
US11996694B2 (en) Control system for a power plant
CN111796609B (zh) 一种自动跟踪式太阳能光伏发电系统及方法
CN114020049A (zh) 一种单轴追踪式光伏系统
CN106843288A (zh) 光伏跟踪支架视日运动控制系统及方法
CN113364405A (zh) 基于双电池板差分检测的单轴光伏跟踪支架反阴影系统
TWI776414B (zh) 簡化型太陽能板調整操作方法及其系統
CN116594432B (zh) 一种光伏发电追光系统的无传感控制方法、设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020922466

Country of ref document: EP

Effective date: 20210906

NENP Non-entry into the national phase

Ref country code: DE