WO2016192361A1 - 准差分电容式mems压力传感器及其制造方法 - Google Patents

准差分电容式mems压力传感器及其制造方法 Download PDF

Info

Publication number
WO2016192361A1
WO2016192361A1 PCT/CN2015/096917 CN2015096917W WO2016192361A1 WO 2016192361 A1 WO2016192361 A1 WO 2016192361A1 CN 2015096917 W CN2015096917 W CN 2015096917W WO 2016192361 A1 WO2016192361 A1 WO 2016192361A1
Authority
WO
WIPO (PCT)
Prior art keywords
lower electrode
upper electrode
pressure sensitive
electrode
pressure sensor
Prior art date
Application number
PCT/CN2015/096917
Other languages
English (en)
French (fr)
Inventor
郑国光
Original Assignee
歌尔声学股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔声学股份有限公司 filed Critical 歌尔声学股份有限公司
Priority to US15/559,311 priority Critical patent/US10295422B2/en
Publication of WO2016192361A1 publication Critical patent/WO2016192361A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values
    • G01L13/02Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements
    • G01L13/025Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements using diaphragms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • G01L19/0618Overload protection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
    • G01L9/0045Diaphragm associated with a buried cavity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/12Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor

Definitions

  • the present invention relates to the field of sensors, and more particularly to a quasi-differential capacitive MEMS pressure sensor and a method of fabricating the same.
  • a capacitive MEMS pressure sensor is a sensor that utilizes the capacitance between the pressure sensitive layer and the lower electrode as the upper electrode to characterize the pressure value acting on the pressure sensitive layer.
  • the existing capacitive MEMS pressure sensor usually uses a single capacitor for pressure detection, as shown in FIG. 1, which includes a substrate 1', and an insulating layer 2' formed on the substrate 1', which is formed on the insulating layer 2'.
  • the electrode 3', and a pressure sensitive film supported on the lower electrode 3' via the support portion 7', the lower electrode 3' is electrically connected to the lower electrode pad 5', and the pressure sensitive film is used as the upper electrode 4' and the upper electrode
  • the pad 6' is electrically connected.
  • the principle of pressure detection using the capacitive MEMS pressure sensor is that the upper electrode 4' will be deformed correspondingly when subjected to external air pressure, thereby causing the upper electrode 4' and the lower electrode 3 to be deformed.
  • the capacitance of the parallel plate capacitor is changed accordingly, so that the output signal of the pressure sensor can be collected by the interface circuit to obtain the corresponding air pressure value, thereby realizing the external air pressure detection.
  • the capacitive MEMS pressure sensor uses a single capacitor for external air pressure detection, it is susceptible to common mode interference such as electromagnetic interference, which causes the output signal of the pressure sensor to be unstable and the resolution to be lowered, thereby causing the performance of the chip to be degraded.
  • a quasi-differential capacitive MEMS pressure sensor comprising a substrate, an insulating layer formed on the substrate, each formed on the insulating layer a lower electrode and a second lower electrode, a first upper electrode supported above the first lower electrode, and a second upper electrode supported above the second lower electrode;
  • the first upper electrode is a pressure sensitive film
  • the cavity between the first upper electrode and the first lower electrode is a closed cavity, so that the first upper electrode and the first lower electrode constitute a gas pressure sensitive capacitor
  • the electrode and the second lower electrode constitute a reference capacitor whose capacitance does not vary with the outside air pressure.
  • the closed cavity is a vacuum chamber.
  • the air pressure sensitive type capacitor further includes an anti-collision protrusion formed on the first lower electrode and/or an anti-collision formed on the insulating layer and protruding upward through the first lower electrode A bump is formed, and the bump protrusion has a gap with the first upper electrode.
  • the second upper electrode is also a pressure sensitive film
  • the reference capacitor further includes a limiting structure for restricting deformation of the second upper electrode by external air pressure.
  • the first upper electrode and the second upper electrode are of a unitary structure.
  • the reference capacitor is provided with a support post for supporting the second upper electrode to form the limit structure.
  • the reference capacitor is provided with a pressure balance hole, and a cavity of the reference capacitor between the second upper electrode and the second lower electrode communicates with the outside through the pressure balance hole to form The limit structure.
  • the air pressure sensitive capacitor and the reference capacitor have the same structure except for the limit structure.
  • Another object of the present invention is to provide a method of fabricating two quasi-differential capacitive MEMS pressure sensors that enable the quasi-differential capacitive MEMS pressure sensor to at least partially filter out common mode interference, such as electromagnetic interference, in the output signal. Signal to improve the stability and resolution of the output signal.
  • a method of fabricating a quasi-differential capacitive MEMS pressure sensor comprising the steps of:
  • the upper electrode and the first lower electrode constitute a gas pressure sensitive capacitor, and a second upper electrode supported by the support column is formed, so that the second upper electrode and the second lower electrode form a capacitance without an external air pressure Varying reference capacitor.
  • the second oxide layer is etched in the step c), and further forms an anti-collision protrusion corresponding to the first lower electrode, wherein a top surface of the anti-collision protrusion is lower than the support The top of the department.
  • the quasi-differential capacitive MEMS pressure sensor of the present invention has a gas pressure sensitive type capacitor and a reference capacitor, and since the application environment of the two is the same, it can generate a substantially uniform response to external common mode interference, and thus, the reference capacitor is utilized.
  • the output signal can at least partially filter out the common mode interference signal in the output signal of the air pressure sensitive capacitor, thereby achieving the purpose of improving the stability and resolution of the output signal of the air pressure sensitive capacitor.
  • the present invention also provides two processes that can be substantially the same as those of existing capacitive MEMS pressure sensors.
  • a capacitive MEMS pressure sensor has a problem that the output signal has poor anti-common mode interference capability due to pressure detection using a single capacitor. Therefore, the technical task to be achieved by the present invention or the technical problem to be solved is not thought of or expected by those skilled in the art, so the present invention is a new technical solution.
  • FIG. 1 is a schematic cross-sectional view of a conventional capacitive pressure sensor
  • FIG. 2 is a cross-sectional view showing an embodiment of a quasi-differential capacitive MEMS pressure sensor according to the present invention
  • FIG. 3 is a cross-sectional view showing another embodiment of a quasi-differential capacitive MEMS pressure sensor according to the present invention.
  • FIGS. 4 through 11 are process flow diagrams of a method of fabricating a quasi-differential capacitive MEMS pressure sensor in accordance with the present invention.
  • the present invention provides a quasi-differential capacitive MEMS pressure sensor.
  • the pressure sensor of the present invention includes a substrate 1, an insulating layer 2 formed on the substrate 1, a first lower electrode 3a and a second lower electrode 3b both formed on the insulating layer 2, and a first upper electrode 4a supported over the first lower electrode 3a And a second upper electrode 4b supported on the second lower electrode 3b;
  • the first upper electrode 4a is a pressure sensitive film, and the cavity between the first upper electrode 4a and the first lower electrode 3a is a closed cavity 9a
  • the first upper electrode 4a and the first lower electrode 3a constitute a gas pressure sensitive type capacitor.
  • the sealed cavity 9a is particularly a vacuum chamber; and the second upper electrode 4b and the second lower electrode 3b constitute a reference capacitor whose capacitance does not vary with the outside air pressure. Since the air pressure sensitive capacitor is in the same application environment as the reference capacitor, it can generate a substantially uniform response to external common mode interference, so that the output signal of the reference capacitor can at least partially filter out the output signal of the air pressure sensitive capacitor.
  • the common mode interference signal in turn, achieves the purpose of improving the stability and resolution of the output signal of the air pressure sensitive capacitor.
  • the change of the external air pressure may exceed the detection range of the pressure sensor, and the first upper electrode 4a exceeds the detection upper limit of the pressure sensor when the external air pressure exceeds the upper limit of the detection of the pressure sensor, it is likely to be caused by a large concave deformation and the first lower The electrodes 3a are touched together to cause blocking or short-circuit discharge, so that the pressure sensor is likely to fail or be burned in this case.
  • the first upper electrode 3a can be formed on the first lower electrode 3a for preventing the first upper electrode.
  • the anti-collision protrusion 8a is a collision preventing protrusion 8a that is in contact with the first lower electrode 3a, and a gap is left between the collision preventing protrusion 8a and the first upper electrode 4a to be in the collision preventing protrusion 8a and the first upper electrode 4a. A space is formed between the first upper electrode 4a to be deformed downward.
  • the anti-collision protrusion 8a should be an insulator, it can be formed of the same material as the insulating layer 2, and therefore, in order to improve the connection strength of the anti-collision protrusion 8a, as shown in FIGS.
  • the anti-collision protrusion 8a may also be formed on the insulating layer 2, which requires a through hole for the anti-collision protrusion 8a to pass through the first lower electrode 3a so that the anti-collision protrusion 8a passes through the corresponding The through hole protrudes upward.
  • the second upper electrode 4b may also adopt pressure.
  • a sensitive film wherein the first upper electrode 4a and the second upper electrode 4b may be independent of each other, or may be an integral structure (ie, the first upper electrode 4a and the second upper electrode 4b are a pressure sensitive film), thus, The second upper electrode 4b is prevented from being deformed correspondingly to the change of the external air pressure, and the reference capacitor should further include a limiting structure for restricting the deformation of the second upper electrode 4b under the action of the external air pressure.
  • the second upper electrode 4b may also be made of a material that does not deform within the detection range of the pressure sensor of the present invention, and the material is preferably such that the second upper electrode 4b and the first upper electrode 4a are non-air pressure for temperature or the like.
  • the response difference of the change in the factor is within the allowable error of the pressure sensor.
  • the above-mentioned limiting structure can be realized by providing the support column 13 to provide support for the second upper electrode 4b.
  • the support post 13 can be disposed on the second lower electrode 3b, but since the support post 13 should It is an insulator, so in order to increase the connection strength of the support post 13, the support post 13 can also be disposed on the insulating layer 2, which requires a through hole for the support post 13 to pass through the second lower electrode 3b to make the support post 13 extends upward through the corresponding through hole to a position of the second upper electrode 4b.
  • the above-mentioned limiting structure can also pass the pressure equalization hole 12 for the reference capacitor, so that the cavity 9b' of the reference capacitor between the second upper electrode 4b and the second lower electrode 3b passes through the pressure balance hole 12.
  • the form communicated with the outside world, so that the air pressure in the cavity 9b' will undergo the same change according to the external air pressure, and the purpose of limiting the deformation of the second upper electrode 4b under the external air pressure through the pressure balance hole 12 is achieved.
  • the effect of the position of each of the two upper electrodes 4b is constant.
  • the pressure balance hole 12 may be disposed on the second upper electrode 4b to simplify the manufacturing process of the pressure sensor.
  • the gas pressure sensitive capacitor has the same structure except for the reference capacitor except for the limit structure, which can make the air pressure sensitive capacitor have substantially the same initial capacitance as the reference capacitor, and the same structure includes the corresponding The material, shape, size, and relative positional relationship between the parts are the same. For this reason, in combination with the embodiment in which the limiting structure is realized by the pressure balance hole 12, as shown in FIG.
  • the reference capacitor should also be provided with the protrusion 8b corresponding to the anti-collision protrusion 8a; and the limiting structure is realized by the support column 13
  • the protrusion 8b should continue to extend upward to the second upper electrode 4b to form the support post 13 as shown in FIG. 2, and the cavity 8b should also be a closed cavity or even a vacuum. Cavity.
  • the pressure sensor In order to connect the pressure sensor of the present invention to an external circuit, as shown in FIGS. 2 and 3, the pressure sensor should have a first lower electrode pad 5a electrically connected to the first lower electrode 3a, and a second lower electrode 3b. a second lower electrode pad 5b electrically connected to the first upper electrode pad electrically connected to the first upper electrode 4a, and a second upper electrode pad electrically connected to the second upper electrode 4b, wherein When the first upper electrode 4a and the second upper electrode 4b are of a unitary structure, the first upper electrode pad and the second upper electrode pad may be combined to form the upper electrode pad 6.
  • the substrate 1 may include two mutually independent sub-substrates corresponding to the gas pressure sensitive capacitor and the reference capacitor, respectively, or may be a substrate having an integral structure;
  • the insulating layer 2 may also include a gas pressure sensitive capacitor and
  • the two mutually independent sub-insulation layers of the reference capacitor may also be an integral structure of the insulating layer;
  • the support portion 7 may also include two independent sub-support portions corresponding to the air pressure sensitive type capacitor and the reference capacitor, respectively. It can also be a support portion of a unitary structure.
  • the quasi-differential capacitive MEMS pressure sensor of the MEMS pressure sensor also provides two manufacturing methods capable of obtaining the pressure sensor of the present invention, and FIGS. 4 to 11 show the ability to process the pressure sensor shown in FIG. A process step of a manufacturing method, specifically:
  • the substrate 1 is prepared, and then a first oxide layer as the insulating layer 2 is deposited on the substrate 1 as shown in FIG.
  • the pressure sensitive film 4 is bonded to the support portion 7 and the support post 13, forming a closed cavity 9a between the pressure sensitive film 4 and the first lower electrode 3a, so that the pressure sensitive film 4
  • the first upper electrode 4a and the first lower electrode 3a constitute a gas pressure sensitive type capacitor
  • the second upper electrode 4b supported by the support post 13 is formed so that the pressure sensitive film 4 serves as the second upper electrode 4b and the second lower electrode 3b.
  • a reference capacitor constituting a capacitance that does not vary with the outside air pressure; here, in order to improve the structural symmetry of the air pressure sensitive capacitor and the reference capacitor, the pressure sensitive film 4 is bonded to the support portion 7 and the support post 13, and the pressure sensitive film 4 can also be formed.
  • Another closed cavity 9b between the membrane 4 and the second lower electrode 3b in the embodiment where the closed cavity 9a and the closed cavity 9b are required to be vacuum chambers, the above bonding operation can be performed in a vacuum chamber.
  • the pressure sensitive film 4 is etched to form a first connection via 10a leading to the first lower electrode 3a and a second connection via 10b leading to the second lower electrode 3b.
  • the first connection via 10a and the second connection via 10b are filled with a conductive material 11.
  • a second metal layer is deposited and etched on the pressure sensitive film 4 to form a first lower electrode pad 5a electrically connected to the first lower electrode 3a through the conductive material 11, through the conductive material 11 a second lower electrode pad 5b electrically connected to the second lower electrode 3b, and an upper electrode pad 6 electrically connected to the pressure sensitive film 4.
  • the pressure sensitive film 4 is etched to insulate the first lower electrode pad 5a, the second lower electrode pad 5b, and the upper electrode pad 6 from each other to form a pressure sensor as shown in FIG.
  • a manufacturing method capable of processing to form a pressure sensor as shown in FIG. 3 includes:
  • the substrate 1 is prepared, and then a first oxide layer as the insulating layer 2 is deposited on the substrate 1 as shown in FIG.
  • the first metal layer is deposited and etched on the insulating layer 2 to form the first lower electrode 3a and the second lower electrode 3b which are independent of each other.
  • the second oxide layer is deposited and etched on the first lower electrode 3a and the second lower electrode 3b to form the support portion 7.
  • the electrode 3a constitutes a gas pressure sensitive type capacitor and forms another closed cavity between the pressure sensitive film 4 and the second lower electrode 3b.
  • a first connection via 10a leading to the first lower electrode 3a and a second connection via 10b leading to the second lower electrode 3b are also formed when the pressure sensitive film 4 is etched.
  • the pressure sensitive film 4 is etched to insulate the first lower electrode pad 5a, the second lower electrode pad 5b, and the upper electrode pad 6 from each other to form a pressure sensor as shown in FIG.
  • the second oxide layer is etched in the step c) of the above two manufacturing methods, and the anti-collision protrusion 8a corresponding to the first lower electrode 3a can be directly formed.
  • the top surface of the anti-collision protrusion 8a should be lower than the top surface of the support portion 7.
  • the second oxide layer is etched in the step c) of the second manufacturing method described above, and the bump 8b corresponding to the second lower electrode 3b may be directly formed.
  • the insulating layer 2 is divided into gas pressure sensitive type capacitors and Two mutually independent sub-insulation layers of the reference capacitor divide the support portion 7 into two mutually independent sub-support portions corresponding to the air pressure sensitive type capacitor and the reference capacitor, respectively, and/or divide the air pressure sensitive film 4 into independent ones.
  • the first upper electrode 4a and the second upper electrode 4b, the above manufacturing method may further include the step of etching the substrate 1, the insulating layer 1, the second oxide layer, and/or the gas pressure sensitive film 4 to form the above-described split structure.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

一种准差分电容式MEMS压力传感器,包括第一下电极(3a)和第二下电极(3b),及对应支撑在第一下电极(3a)上方和第二下电极(3b)上方的第一上电极(4a)和第二上电极(4b);第一上电极(4a)为压力敏感膜,且第一上电极(4a)与第一下电极(3a)之间的腔体为密闭腔体(9a),以使第一上电极(4a)与第一下电极(3a)构成气压敏感型电容器;第二上电极(4b)与第二下电极(3b)构成电容量不随外界气压变化的基准电容器。该压力传感器利用基准电容器可以至少部分地滤除气压敏感型电容器的输出信号中的共模干扰信号,进而提高气压敏感型电容器的输出信号的稳定性及分辨率。还公开了一种准差分电容式MEMS压力传感器的制造方法。

Description

准差分电容式MEMS压力传感器及其制造方法 技术领域
本发明涉及传感器领域,更具体地,涉及一种准差分电容式MEMS压力传感器及其制造方法。
背景技术
电容式MEMS压力传感器是利用作为上电极的压力敏感层与下电极间的电容量表征作用于该压力敏感层上的压力值的传感器。现有电容式MEMS压力传感器通常采用单个电容器进行压力检测,如图1所示,其包括衬底1′,形成于衬底1′上的绝缘层2′,形成于绝缘层2′上的下电极3′,及通过支撑部7′支撑在下电极3′上方的压力敏感膜,该下电极3′与下电极焊盘5′电性连接,而压力敏感膜作为上电极4′则与上电极焊盘6′电性连接,利用该种电容式MEMS压力传感器进行压力检测的原理为:上电极4′在受到外界气压作用时将发生相应的变形,进而使得由上电极4′与下电极3′构成的平行板电容器的电容量发生相应的变化,这样便可通过接口电路采集压力传感器的输出信号获得对应的气压值,进而实现外界气压检测。该种电容式MEMS压力传感器由于采用单个电容器进行外界气压检测,所以很容易受到电磁干扰等共模干扰,这将导致压力传感器的输出信号不稳定及分辨率降低,进而导致芯片的性能降低。
发明内容
本发明的一个目的是提供一种准差分电容式MEMS压力传感器的新技术方案,以至少部分滤除输出信号中的例如由电磁干扰产生的共模干扰信号,提高输出信号的稳定性及分辨率。
根据本发明的第一方面,提供了一种准差分电容式MEMS压力传感器,其包括衬底,形成于所述衬底上的绝缘层,均形成于所述绝缘层上的第一 下电极和第二下电极,支撑在所述第一下电极上方的第一上电极,及支撑在所述第二下电极上方的第二上电极;所述第一上电极为压力敏感膜,且所述第一上电极与所述第一下电极之间的腔体为密闭腔体,以使所述第一上电极与所述第一下电极构成气压敏感型电容器;所述第二上电极与所述第二下电极构成电容量不随外界气压变化的基准电容器。
优选的是,所述密闭腔体为真空腔体。
优选的是,所述气压敏感型电容器还包括形成于所述第一下电极上的防撞凸起及/或形成于所述绝缘层上、且穿过所述第一下电极向上突出的防撞凸起,所述防撞凸起与所述第一上电极之间具有间隙。
优选的是,所述第二上电极也为压力敏感膜,所述基准电容器还包括用于限制所述第二上电极在外界气压作用下发生变形的限位结构。
优选的是,所述第一上电极与所述第二上电极为一体结构。
优选的是,所述基准电容器设置有用于支撑所述第二上电极的支撑柱,以形成所述限位结构。
优选的是,所述基准电容器设置有压力平衡孔,所述基准电容器的位于所述第二上电极与所述第二下电极之间的腔体通过所述压力平衡孔与外界相通,以形成所述限位结构。
优选的是,所述气压敏感型电容器与所述基准电容器除所述限位结构外具有相同的结构。
本发明的另一个目的是提供两种准差分电容式MEMS压力传感器的制造方法,以使该种准差分电容式MEMS压力传感器能够至少部分滤除输出信号中的例如由电磁干扰产生的共模干扰信号,提高输出信号的稳定性及分辨率。
根据本发明的第二方面,提供了一种准差分电容式MEMS压力传感器的制造方法,其包括如下步骤:
a)在衬底上沉积作为绝缘层的第一氧化层;
b)在所述绝缘层上沉积并刻蚀所述第一金属层,形成相互独立的第一下电极和第二下电极;
c)在所述第一下电极和所述第二下电极上沉积并刻蚀第二氧化层, 形成支撑部及对应所述第二下电极的支撑柱;
d)在所述支撑部和所述支撑柱上键合压力敏感膜,形成位于所述压力敏感膜与所述第一下电极之间的密闭腔体,以使所述压力敏感膜作为第一上电极与所述第一下电极构成气压敏感型电容器,及形成由所述支撑柱支撑的第二上电极,以使所述第二上电极与所述第二下电极构成电容量不随外界气压变化的基准电容器。
根据本发明的第二方面,提供了另一种准差分电容式MEMS压力传感器的制造方法,其包括如下步骤:
a)在衬底上沉积作为绝缘层的第一氧化层;
b)在所述绝缘层上沉积并刻蚀第一金属层,形成相互独立的第一下电极和第二下电极;
c)在所述第一下电极和所述第二下电极上沉积并刻蚀第二氧化层,形成支撑部;
d)在所述支撑部上键合压力敏感膜,形成位于所述压力敏感膜与所述第一下电极之间的密闭腔体,以使所述压力敏感膜作为第一上电极与所述第二下电极构成气压敏感型电容器,及形成位于所述压力敏感膜与所述第二下电极之间的另一密闭腔体;
e)刻蚀所述压力敏感膜,使所述另一密闭腔体成为与外界相通的腔体,以使所述压力敏感膜作为第二上电极与所述第二下电极构成电容量不随外界气压变化的基准电容器。
优选地,所述步骤c)中刻蚀所述第二氧化层,还进一步形成对应所述第一下电极的防撞凸起,其中,所述防撞凸起的顶面低于所述支撑部的顶面。
本发明的准差分电容式MEMS压力传感器具有一个气压敏感型电容器和一个基准电容器,由于二者所处的应用环境相同,因此能够对外界共模干扰产生基本一致的响应,这样,利用基准电容器的输出信号便可以至少部分地滤除气压敏感型电容器的输出信号中的共模干扰信号,进而实现提高气压敏感型电容器的输出信号的稳定性及分辨率的目的。另外,本发明还提供了两种能够以与加工现有电容式MEMS压力传感器基本相同的工艺 步骤获得满足本发明准差分电容式MEMS压力传感器的结构要求的芯片的制造方法,因此,本发明的制造方法能够以相差很少的生产成本获得本发明的性能明显优于现有电容式MEMS压力传感器的准差分电容式MEMS压力传感器。
本发明的发明人发现,在现有技术中,电容式MEMS压力传感器因采用单个电容器进行压力检测而存在输出信号抗共模干扰能力差的问题。因此,本发明所要实现的技术任务或者所要解决的技术问题是本领域技术人员从未想到的或者没有预期到的,故本发明是一种新的技术方案。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1是现有电容式压力传感器的剖视示意图;
图2是根据本发明的准差分电容式MEMS压力传感器的一种实施结构的剖视示意图;
图3是根据本发明的准差分电容式MEMS压力传感器的另一种实施结构的剖视示意图;
图4至图11是根据本发明的准差分电容式MEMS压力传感器的制造方法的工艺流程图。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
本发明为了解决现有电容式MEMS压力传感器存在的抗共模干扰能力较差的问题,提供了一种准差分电容式MEMS压力传感器,如图2和图3所示,本发明的压力传感器包括衬底1,形成于衬底1上的绝缘层2,均形成于绝缘层2上的第一下电极3a和第二下电极3b,及支撑在第一下电极3a上方的第一上电极4a和支撑在第二下电极3b上方的第二上电极4b;该第一上电极4a为压力敏感膜,且第一上电极4a与第一下电极3a之间的腔体为密闭腔体9a,以使第一上电极4a与第一下电极3a构成气压敏感型电容器,在此,为了消除密闭腔体9a的温度变化等对气压敏感型电容器的检测精度的影响,及为了便于获得绝对气压,该密闭腔体9a特别是真空腔体;而第二上电极4b则与第二下电极3b构成电容量不随外界气压变化的基准电容器。由于气压敏感型电容器与基准电容器所处的应用环境相同,因此能够对外界共模干扰产生基本一致的响应,这样,利用基准电容器的输出信号便可以至少部分地滤除气压敏感型电容器的输出信号中的共模干扰信号,进而实现提高气压敏感型电容器的输出信号的稳定性及分辨率的目的。
由于在实际应用中,外界气压变化可能会超出压力传感器的检测范围,而第一上电极4a在外界气压超出压力传感器的检测上限时,很可能因发生较大的下凹变形而与第一下电极3a触碰在一起,进而发生粘连或短路放电,所以压力传感器很可能在该种情况下失效或被烧毁,为了解决该问题,可在第一下电极3a上形成用于防止第一上电极4a与第一下电极3a触碰在一起的防撞凸起8a,且在防撞凸起8a与第一上电极4a之间留出间隙,以在防撞凸起8a与第一上电极4a之间形成供第一上电极4a向下发生变形的空间。另外,由于防撞凸起8a应该为绝缘体,因此,其可以采用与绝缘层2相同的材料形成,因此,为了提高防撞凸起8a的连接强度,如图2和图3 所示,也可以在绝缘层2上形成该防撞凸起8a,这需要在第一下电极3a上设置供防撞凸起8a穿过的通孔,以使防撞凸起8a穿过对应通孔向上突出。
为了能够通过基本相同的工艺步骤并行制造形成上述气压敏感型电容器和基准电容器,及为了提高气压敏感型电容器和基准电容器对外界共模干扰的响应一致性,该第二上电极4b也可以采用压力敏感膜,在此,第一上电极4a与第二上电极4b可以相互独立,也可以为一体结构(即第一上电极4a和第二上电极4b为一张压力敏感膜),这样,为了避免第二上电极4b跟随外界气压变化而发生相应的变形,该基准电容器还应该包括用于限制第二上电极4b在外界气压作用下发生变形的限位结构。另外,该第二上电极4b也可以采用在本发明压力传感器的检测范围内不会发生变形的材料制成,该材料优选是使得第二上电极4b与第一上电极4a对于温度等非气压因素的变化的响应差异在压力传感器的允许误差范围内。
如图2所示,上述限位结构可以通过设置支撑柱13,以为第二上电极4b提供支撑的形式实现,该支撑柱13可以设置在第二下电极3b上,但由于该支撑柱13应该为绝缘体,因此为了提高支撑柱13的连接强度,该支撑柱13也可以设置在绝缘层2上,这需要在第二下电极3b上设置供支撑柱13穿过的通孔,以使支撑柱13穿过对应通孔向上延伸至第二上电极4b的位置。
如图3所示,上述限位结构也可以通过为基准电容器设置压力平衡孔12,使基准电容器的位于第二上电极4b与第二下电极3b之间的腔体9b′通过压力平衡孔12与外界相通的形式实现,这样,腔体9b′内的气压将根据外界气压发生相同的变化,实现通过压力平衡孔12限制第二上电极4b在外界气压作用下发生变形的目的,获得保持第二上电极4b各点的位置不变的效果。在此,该压力平衡孔12可以设置在第二上电极4b上,以简化压力传感器的制造工艺。
为了使气压敏感型电容器和基准电容器对外界共模干扰的响应基本一致,以最大程度地滤除气压敏感型电容器的输出信号中的共模干扰信号,并消除基准电容器的输出信号对气压敏感型电容器的输出信号中的有效信 号的影响,该气压敏感型电容器特别是与基准电容器除限位结构外具有相同的结构,这可以使气压敏感型电容器与基准电容器具有基本相同的初始电容量,该相同的结构包括二者对应部分的材料、形状、尺寸、与其他部分间的相对位置关系等相同。为此,结合通过压力平衡孔12实现限位结构的实施例,如图3所示,该基准电容器还应该设置对应防撞凸起8a的凸起8b;而结合通过支撑柱13实现限位结构的实施例,应该在图3所示的基础上,使凸起8b继续向上延伸至第二上电极4b形成如图2所示的支撑柱13,而腔体8b应该同样为密闭腔体甚至真空腔体。
为了将本发明的压力传感器接入外部电路,如图2和图3所示,该压力传感器应该具有与第一下电极3a电性连接的第一下电极焊盘5a,与第二下电极3b电性连接的第二下电极焊盘5b,与第一上电极4a电性连接的第一上电极焊盘,及与第二上电极4b电性连接的第二上电极焊盘,其中,在第一上电极4a和第二上电极4b为一体结构时,该第一上电极焊盘与第二上电极焊盘可以为结合在一起形成上电极焊盘6。
另外,上述衬底1可包括分别对应气压敏感型电容器和基准电容器的两个相互独立的子衬底,也可以为一体结构的衬底;上述绝缘层2也可以包括分别对应气压敏感型电容器和基准电容器的两个相互独立的子绝缘层,也可以为一体结构的绝缘层;同理,上述支撑部7也可以包括分别对应气压敏感型电容器和基准电容器的两个相互独立的子支撑部,也可以为一体结构的支撑部。
为了能够以与加工现有电容式MEMS压力传感器基本相同的工艺步骤获得满足本发明准差分电容式MEMS压力传感器的结构要求的芯片,进而以很小的生产成本差异获得性能明显优于现有电容式MEMS压力传感器的准差分电容式MEMS压力传感器,本发明还提供了能够获得本发明压力传感器的两种制造方法,图4至图11示出了能够加工形成如图2所示的压力传感器的一种制造方法的工艺步骤,具体为:
a)如图4所示,准备衬底1,之后如图5所示在衬底1上沉积作为绝缘层2的第一氧化层。
b)如图6所示,在绝缘层2上沉积并刻蚀第一金属层,形成相互独 立的第一下电极3a和第二下电极3b。
c)如图7所示,在第一下电极3a和第二下电极3b上沉积并刻蚀第二氧化层,形成支撑部7及对应第二下电极3b的支撑柱13,该支撑柱13的顶面应该与支撑部7的顶面平齐。
d)如图8所示,在支撑部7和支撑柱13上键合压力敏感膜4,形成位于压力敏感膜4与第一下电极3a之间的密闭腔体9a,以使压力敏感膜4作为第一上电极4a与第一下电极3a构成气压敏感型电容器,及形成由支撑柱13支撑的第二上电极4b,以使压力敏感膜4作为第二上电极4b与第二下电极3b构成电容量不随外界气压变化的基准电容器;在此,为了提高气压敏感型电容器与基准电容器的结构对称性,在支撑部7和支撑柱13上键合压力敏感膜4,还可以形成位于压力敏感膜4与第二下电极3b之间的另一密闭腔体9b;在要求密闭腔体9a和密闭腔体9b为真空腔体的实施例中,可在真空室中完成上述键合操作。
之后还应该包括常规的将第一下电极3a、第二下电极3b及压力敏感膜4对外引出的步骤,具体为:
e)如图9所示,刻蚀压力敏感膜4,形成通向第一下电极3a的第一连接通孔10a和通向第二下电极3b的第二连接通孔10b。
f)如图10所示,利用导电材料11填充第一连接通孔10a和第二连接通孔10b。
g)如图11所示,在压力敏感膜4上沉积并刻蚀第二金属层,形成通过导电材料11与第一下电极3a电性连接的第一下电极焊盘5a,通过导电材料11与第二下电极3b电性连接的第二下电极焊盘5b,及与压力敏感膜4电性连接的上电极焊盘6。
h)刻蚀压力敏感膜4,使第一下电极焊盘5a、第二下电极焊盘5b及上电极焊盘6相互绝缘,形成如图2所示的压力传感器。
参照图4至图11,能够加工形成如图3所示的压力传感器的一种制造方法包括:
a)如图4所示,准备衬底1,之后如图5所示在衬底1上沉积作为绝缘层2的第一氧化层。
b)如图6所示,在绝缘层2上沉积并刻蚀第一金属层,形成相互独立的第一下电极3a和第二下电极3b。
c)如图7所示,在第一下电极3a和第二下电极3b上沉积并刻蚀第二氧化层,形成支撑部7。
d)在支撑部7上键合压力敏感膜4,形成位于压力敏感膜4与第一下电极3a之间的密闭腔体9a,以使压力敏感膜4作为第一上电极4a与第一下电极3a构成气压敏感型电容器,及形成位于压力敏感膜4与第二下电极3b之间的另一密闭腔体。
e)刻蚀压力敏感膜4,使另一密闭腔体成为与外界相通的腔体9b′,进而使压力敏感膜4作为第二上电极4b与第二下电极3b构成电容量不随外界气压变化的基准电容器。
之后还应该包括常规的将第一下电极3a、第二下电极3b及压力敏感膜4对外引出的步骤,具体为:
e)在刻蚀压力敏感膜4时还形成通向第一下电极3a的第一连接通孔10a和通向第二下电极3b的第二连接通孔10b。
f)利用导电材料11填充第一连接通孔10a和第二连接通孔10b。
g)在压力敏感膜4上沉积并刻蚀第二金属层,形成通过导电材料11与第一下电极3a电性连接的第一下电极焊盘5a,通过导电材料11与第二下电极3b电性连接的第二下电极焊盘5b,及与压力敏感膜4电性连接的上电极焊盘6。
h)刻蚀压力敏感膜4,使第一下电极焊盘5a、第二下电极焊盘5b及上电极焊盘6相互绝缘,形成如图3所示的压力传感器。
对应为气压敏感型电容器设置防撞凸起8a的实施例,上述两种制造方法的步骤c)中刻蚀第二氧化层,还可直接进一步形成对应第一下电极3a的防撞凸起8a,其中,该防撞凸起8a的顶面应该低于支撑部7的顶面。对于为基准电容器设置凸起8b的实施例,上述第二种制造方法的步骤c)中刻蚀第二氧化层,还可直接进一步形成对应第二下电极3b的凸起8b。
另外,如果要将衬底1分为分别对应气压敏感型电容器和基准电容器的两个相互独立的子衬底,将绝缘层2分为分别对应气压敏感型电容器和 基准电容器的两个相互独立的子绝缘层,将支撑部7分为分别对应气压敏感型电容器和基准电容器的两个相互独立的子支撑部,及/或将气压敏感膜4分为相互独立的第一上电极4a和第二上电极4b,上述制造方法还可以包括刻蚀衬底1、绝缘层1、第二氧化层及/或气压敏感膜4,以形成上述分体结构的步骤。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (10)

  1. 一种准差分电容式MEMS压力传感器,其特征在于,包括衬底(1),形成于所述衬底(1)上的绝缘层(2),均形成于所述绝缘层(2)上的第一下电极(3a)和第二下电极(3b),及支撑在所述第一下电极(3a)上方的第一上电极(4a)和支撑在所述第二下电极(3b)上方的第二上电极(4b);所述第一上电极(4a)为压力敏感膜,且所述第一上电极(4a)与所述第一下电极(3a)之间的腔体为密闭腔体(9a),以使所述第一上电极(4a)与所述第一下电极(3a)构成气压敏感型电容器;所述第二上电极(4b)与所述第二下电极(3b)构成电容量不随外界气压变化的基准电容器。
  2. 根据权利要求1所述的准差分电容式MEMS压力传感器,其特征在于,所述密闭腔体(9a)为真空腔体。
  3. 根据权利要求1或2所述的准差分电容式MEMS压力传感器,其特征在于,所述气压敏感型电容器还包括形成于所述第一下电极(3a)上的防撞凸起(8a)及/或形成于所述绝缘层(2)上、且穿过所述第一下电极(3a)向上突出的防撞凸起(8a),所述防撞凸起(8a)与所述第一上电极(4a)之间具有间隙。
  4. 根据权利要求1所述的准差分电容式MEMS压力传感器,其特征在于,所述第二上电极(4b)也为压力敏感膜,所述基准电容器还包括用于限制所述第二上电极(4b)在外界气压作用下发生变形的限位结构。
  5. 根据权利要求4所述的准差分电容式MEMS压力传感器,其特征在于,所述第一上电极(4a)与所述第二上电极(4b)为一体结构。
  6. 根据权利要求4所述的准差分电容式MEMS压力传感器,其特征在于,所述基准电容器设置有用于支撑所述第二上电极(4b)的支撑柱(13),以形成所述限位结构。
  7. 根据权利要求4所述的准差分电容式MEMS压力传感器,其特征在于,所述基准电容器设置有压力平衡孔(12),所述基准电容器的位于所述第二上电极(4b)与所述第二下电极(3b)之间的腔体(9b′)通过所 述压力平衡孔(12)与外界相通,以形成所述限位结构。
  8. 根据权利要求4至7中任一项所述的准差分电容式MEMS压力传感器,其特征在于,所述气压敏感型电容器与所述基准电容器除所述限位结构外具有相同的结构。
  9. 一种准差分电容式MEMS压力传感器的制造方法,其特征在于,包括如下步骤:
    a)在衬底(1)上沉积作为绝缘层(2)的第一氧化层;
    b)在所述绝缘层(2)上沉积并刻蚀第一金属层,形成相互独立的第一下电极(3a)和第二下电极(3b);
    c)在所述第一下电极(3a)和所述第二下电极(3b)上沉积并刻蚀第二氧化层,形成支撑部(7)及对应所述第二下电极(3b)的支撑柱(13);
    d)在所述支撑部(7)和所述支撑柱(13)上键合压力敏感膜(4),形成位于所述压力敏感膜(4)与所述第一下电极(3a)之间的密闭腔体(9a),以使所述压力敏感膜(4)作为第一上电极(4a)与所述第一下电极(3a)构成气压敏感型电容器,及形成由所述支撑柱(13)支撑的第二上电极(4b),以使所述第二上电极(4b)与所述第二下电极(3b)构成电容量不随外界气压变化的基准电容器。
  10. 一种准差分电容式MEMS压力传感器的制造方法,其特征在于,包括如下步骤:
    a)在衬底(1)上沉积作为绝缘层(2)的第一氧化层;
    b)在所述绝缘层(2)上沉积并刻蚀第一金属层,形成相互独立的第一下电极(3a)和第二下电极(3b);
    c)在所述第一下电极(3a)和所述第二下电极(3b)上沉积并刻蚀第二氧化层,形成支撑部(7);
    d)在所述支撑部(7)上键合压力敏感膜(4),形成位于所述压力敏感膜(4)与所述第一下电极(3a)之间的密闭腔体(9a),以使所述压力敏感膜(4)作为第一上电极(4a)与所述第二下电极(3a)构成气压敏感型电容器,及形成位于所述压力敏感膜(4)与所述第二下电极(3b)之间的另一密闭腔体;
    e)刻蚀所述压力敏感膜(4),使所述另一密闭腔体成为与外界相通的腔体(9b′),以使所述压力敏感膜(4)作为第二上电极(4b)与所述第二下电极(3b)构成电容量不随外界气压变化的基准电容器。
PCT/CN2015/096917 2015-05-29 2015-12-10 准差分电容式mems压力传感器及其制造方法 WO2016192361A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/559,311 US10295422B2 (en) 2015-05-29 2015-12-10 Quasi-differential capacitive MEMS pressure sensor and manufacturing methods thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510290391.XA CN104848982B (zh) 2015-05-29 2015-05-29 准差分电容式mems压力传感器及其制造方法
CN201510290391.X 2015-05-29

Publications (1)

Publication Number Publication Date
WO2016192361A1 true WO2016192361A1 (zh) 2016-12-08

Family

ID=53848796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096917 WO2016192361A1 (zh) 2015-05-29 2015-12-10 准差分电容式mems压力传感器及其制造方法

Country Status (3)

Country Link
US (1) US10295422B2 (zh)
CN (1) CN104848982B (zh)
WO (1) WO2016192361A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110567636A (zh) * 2019-09-29 2019-12-13 川北真空科技(北京)有限公司 压差探测集成块及其制造方法
US11940345B2 (en) 2018-12-21 2024-03-26 Robert Bosch Gmbh Micromechanical component for a capacitive pressure sensor device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104848982B (zh) 2015-05-29 2018-01-19 歌尔股份有限公司 准差分电容式mems压力传感器及其制造方法
CN106698328A (zh) * 2015-11-12 2017-05-24 上海丽恒光微电子科技有限公司 压力传感器及其制备方法
CN106092153B (zh) * 2016-07-28 2018-05-01 歌尔股份有限公司 一种环境传感器及其制造方法
JP6325639B1 (ja) * 2016-11-22 2018-05-16 Nissha株式会社 圧力センサ
CN111190126B (zh) * 2017-06-09 2022-06-07 温州大学 采用折合梁结构的mems磁场传感器的制备方法
CN108362408B (zh) * 2018-03-08 2021-07-02 苏州敏芯微电子技术股份有限公司 压力传感器及其制造方法
CN110366083B (zh) * 2018-04-11 2021-02-12 中芯国际集成电路制造(上海)有限公司 Mems器件及其制备方法
CN113167667B (zh) * 2018-12-13 2023-04-18 三菱电机株式会社 牵引检测装置及具备该牵引检测装置的移动体系统
DE102018222770A1 (de) 2018-12-21 2020-06-25 Robert Bosch Gmbh Mikromechanische Sensoreinrichtung und Verfahren zum Herstellen einer mikromechanischen Sensoreinrichtung
CN113125069A (zh) * 2021-03-10 2021-07-16 潍坊歌尔微电子有限公司 气压传感器芯片及其制备方法
GR1010410B (el) * 2021-07-30 2023-02-20 Ευρωπαϊκα Συστηματα Αισθητηρων Α.Ε., Μικροηλεκτρομηχανικο συστημα (microelectromechanical system-mems) διαφορικου χωρητικου αισθητηρα πιεσης με σταθερο πυκνωτη αναφορας και μεθοδος κατασκευης του
CN115655534A (zh) * 2022-10-31 2023-01-31 歌尔微电子股份有限公司 压力传感器及压力传感器的制作方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2274945A (en) * 1993-02-05 1994-08-10 Ford Motor Co Capacitive micromachined differential pressure sensor
JP2000214035A (ja) * 1998-11-16 2000-08-04 Toyota Central Res & Dev Lab Inc 静電容量型圧力センサおよびその製造方法
CN101476960A (zh) * 2009-01-21 2009-07-08 沈阳仪表科学研究院 硅电容压力传感器提高过载能力的方法
CN102075839A (zh) * 2009-11-20 2011-05-25 歌尔声学股份有限公司 Mems传声器芯片以及采用这种芯片的mems传声器
CN103837290A (zh) * 2013-12-03 2014-06-04 江苏物联网研究发展中心 高精度的电容式压力传感器
CN104142206A (zh) * 2013-05-07 2014-11-12 上海丽恒光微电子科技有限公司 一种mems电容式压力传感器及其制作方法
CN104848982A (zh) * 2015-05-29 2015-08-19 歌尔声学股份有限公司 准差分电容式mems压力传感器及其制造方法
CN104891418A (zh) * 2015-05-29 2015-09-09 歌尔声学股份有限公司 Mems压力传感器、mems惯性传感器集成结构
CN204675826U (zh) * 2015-05-29 2015-09-30 歌尔声学股份有限公司 Mems压力传感器、mems惯性传感器集成结构
CN204881958U (zh) * 2015-05-29 2015-12-16 歌尔声学股份有限公司 准差分电容式mems压力传感器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316619A (en) * 1993-02-05 1994-05-31 Ford Motor Company Capacitive surface micromachine absolute pressure sensor and method for processing
US7089790B2 (en) * 2004-10-18 2006-08-15 Silverbrook Research Pty Ltd Pressure sensor with laminated membrane
CN103994854A (zh) * 2014-04-22 2014-08-20 江苏森博传感技术有限公司 一种基于微机电系统技术的硅电容真空传感器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2274945A (en) * 1993-02-05 1994-08-10 Ford Motor Co Capacitive micromachined differential pressure sensor
JP2000214035A (ja) * 1998-11-16 2000-08-04 Toyota Central Res & Dev Lab Inc 静電容量型圧力センサおよびその製造方法
CN101476960A (zh) * 2009-01-21 2009-07-08 沈阳仪表科学研究院 硅电容压力传感器提高过载能力的方法
CN102075839A (zh) * 2009-11-20 2011-05-25 歌尔声学股份有限公司 Mems传声器芯片以及采用这种芯片的mems传声器
CN104142206A (zh) * 2013-05-07 2014-11-12 上海丽恒光微电子科技有限公司 一种mems电容式压力传感器及其制作方法
CN103837290A (zh) * 2013-12-03 2014-06-04 江苏物联网研究发展中心 高精度的电容式压力传感器
CN104848982A (zh) * 2015-05-29 2015-08-19 歌尔声学股份有限公司 准差分电容式mems压力传感器及其制造方法
CN104891418A (zh) * 2015-05-29 2015-09-09 歌尔声学股份有限公司 Mems压力传感器、mems惯性传感器集成结构
CN204675826U (zh) * 2015-05-29 2015-09-30 歌尔声学股份有限公司 Mems压力传感器、mems惯性传感器集成结构
CN204881958U (zh) * 2015-05-29 2015-12-16 歌尔声学股份有限公司 准差分电容式mems压力传感器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11940345B2 (en) 2018-12-21 2024-03-26 Robert Bosch Gmbh Micromechanical component for a capacitive pressure sensor device
CN110567636A (zh) * 2019-09-29 2019-12-13 川北真空科技(北京)有限公司 压差探测集成块及其制造方法

Also Published As

Publication number Publication date
US20180113040A1 (en) 2018-04-26
US10295422B2 (en) 2019-05-21
CN104848982B (zh) 2018-01-19
CN104848982A (zh) 2015-08-19

Similar Documents

Publication Publication Date Title
WO2016192361A1 (zh) 准差分电容式mems压力传感器及其制造方法
US10407300B2 (en) Integrated structure of mems pressure sensor and mems inertia sensor
US20180335358A1 (en) Mems pressure sensing element
US10495535B2 (en) Differential capacitive MEMS pressure sensor and manufacturing method thereof
TWI550261B (zh) 微機電壓力計以及其製作方法
JP2009139202A (ja) 静電容量型センサ及びその製造方法
CN204881958U (zh) 准差分电容式mems压力传感器
CN105181186A (zh) 一种压力传感元件及其制造方法
US9464950B2 (en) Capacitive pressure sensors for high temperature applications
JPH05340832A (ja) 圧力マイクロセンサ
WO2024041638A1 (zh) 一种差分电容式mems压力传感器及其制造方法
JP2000074768A (ja) 静電容量型圧力センサ及びその製造方法
CN204675826U (zh) Mems压力传感器、mems惯性传感器集成结构
JP4798605B2 (ja) 静電容量型圧力センサ
CN204881934U (zh) 一种压力传感元件
JP2007304019A (ja) 静電容量型力学量センサ
JP2005321257A (ja) 静電容量型圧力センサ
US7398694B2 (en) Pressure sensor and method for manufacturing pressure sensor
JP5783222B2 (ja) 加速度センサ
TW202108997A (zh) 電容式壓力感測器設備的微機械組件
JPH07198516A (ja) 静電容量型圧力センサ及びその製造方法並びに圧力検出方法
JP2005300400A (ja) 静電容量型圧力センサ及びその製造方法
JP2015114108A (ja) 共振センサ
JPH11241966A (ja) 静電容量式圧力検出器
JP2001194253A (ja) 静電容量型センサ及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894005

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15559311

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 16/05/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15894005

Country of ref document: EP

Kind code of ref document: A1