WO2016192347A1 - 一种轻载除湿制冷的方法及装置 - Google Patents

一种轻载除湿制冷的方法及装置 Download PDF

Info

Publication number
WO2016192347A1
WO2016192347A1 PCT/CN2015/096510 CN2015096510W WO2016192347A1 WO 2016192347 A1 WO2016192347 A1 WO 2016192347A1 CN 2015096510 W CN2015096510 W CN 2015096510W WO 2016192347 A1 WO2016192347 A1 WO 2016192347A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
refrigerant
temperature
liquid
output
Prior art date
Application number
PCT/CN2015/096510
Other languages
English (en)
French (fr)
Inventor
韩义
赵垚澎
褚玉刚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15893991.8A priority Critical patent/EP3293467A4/en
Priority to BR112017025830A priority patent/BR112017025830A2/pt
Publication of WO2016192347A1 publication Critical patent/WO2016192347A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1405Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification in which the humidity of the air is exclusively affected by contact with the evaporator of a closed-circuit cooling system or heat pump circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/144Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only

Definitions

  • the present invention relates to the field of electronic communication technologies, and in particular, to a light load dehumidification refrigeration method and apparatus.
  • Precision air conditioners are precision air conditioners for computer rooms that can fully meet the environmental requirements of the equipment room. They are a new type of machine that has been gradually developed in the past 30 years. Computer equipment and program-controlled switch products are placed in the computer room, which is composed of a large number of dense electronic components. To improve the stability and reliability of the use of these devices, the temperature and humidity of the environment must be strictly controlled to a specific range. When the comfort air conditioner was used in the early computer room, the equipment room equipment was unstable due to improper control of the ambient temperature and humidity parameters, data transmission was disturbed, and static electricity appeared.
  • the precision air conditioner in the computer room is a special air conditioner designed for the modern electronic equipment room. Its work accuracy and reliability are much higher than ordinary air conditioners.
  • the humidity is mainly adjusted by two parts. First, when air passes through the surface of the evaporator, the water vapor in the air will liquefy because the temperature is lower than the dew point of the water vapor, thereby reducing the humidity in the air; Second, when the humidity in the refrigeration process is lower than the set value, the humidifier will be turned on to humidify to ensure the humidity is within the set range. Therefore, the dehumidification process must be accompanied by a decrease in the ambient temperature, and the precision air conditioner has a large amount of refrigeration. Currently, it is impossible to control the constant temperature and low temperature in the precision air conditioning system to achieve constant temperature dehumidification.
  • the embodiment of the invention provides a method and a device for light-load dehumidification and refrigeration, and the invention has the advantages of the existing refrigeration and dehumidification function, and can realize the constant temperature dehumidification with simple and low-cost control.
  • the first aspect provides a light-load dehumidification refrigeration device, comprising a compressor (1), a condenser (2) and an evaporator (3), and an electronic expansion valve (8), the input end of the compressor (1) Connected to the output of the evaporator (3), the output of the compressor (1) is connected to the input of the condenser (2), the output of the condenser (2) and the evaporator (3) The input ends are connected, the electronic expansion valve A (8) is connected in series between the condenser (2) and the evaporator (3), and the ends are connected by a refrigerant pipe (4),
  • a light-load dehumidification refrigeration device comprising a compressor (1), a condenser (2) and an evaporator (3), and an electronic expansion valve (8), the input end of the compressor (1) Connected to the output of the evaporator (3), the output of the compressor (1) is connected to the input of the condenser (2), the output of the condenser (2) and the evaporator (3) The input ends
  • the compressor (1) for compressing a gaseous refrigerant entering the compressor (1) to increase the pressure and temperature of the gaseous refrigerant, and to increase the temperature and pressure
  • the gaseous refrigerant is output to the condenser (2);
  • the condenser (2) is configured to cool the gas refrigerant after the temperature and pressure is raised, so that the gaseous refrigerant is condensed into a liquid refrigerant and then output to the evaporator (3);
  • the evaporator (3) is divided into an evaporator 1 part (5) and an evaporator 2 part (7), and a section is connected in series between the evaporator 1 part (5) and the evaporator 2 part (7) Flow device (6);
  • the electronic expansion valve A (8) closes a portion, and throttles the liquid refrigerant input from the condenser (2) to reduce the pressure of the liquid refrigerant and After the temperature and the formation of a gas-liquid two-phase refrigerant, output to the evaporator (3);
  • the evaporator 1 part (5) and the evaporator 2 part (7) exchange heat with the environment of the gas-liquid two-phase refrigerant output by the electronic expansion valve A (8), the throttling device ( 6) without throttling, the temperature of the gas-liquid two-phase refrigerant is increased to become a gaseous refrigerant, used to reduce the ambient temperature to dehumidify the environment, and output to the compressor (1);
  • the electronic expansion valve A (8) is fully open to prevent throttling, and the evaporator 1 (5) is used for heat exchange between the liquid refrigerant and the environment to reduce After the temperature of the liquid refrigerant is raised and the ambient temperature is raised, the liquid refrigerant after the temperature is lowered is output to the throttling device (6);
  • the throttling device (6) throttles the liquid refrigerant outputted by the evaporator 1 (5) to reduce the pressure and temperature of the liquid refrigerant and form a gas-liquid two-phase refrigerant After that, output to the evaporator 2 (7);
  • the evaporator 2 (7) exchanges the gas-liquid two-phase refrigerant outputted by the throttling device (6) with an ambient temperature to increase the temperature of the gas-liquid two-phase refrigerant
  • the gas is changed to a gaseous refrigerant, and the ambient temperature is lowered to dehumidify the environment, and then output to the compressor (1).
  • the evaporator (3) is divided into an evaporator 1 (5) and an evaporator 2 (7), the evaporator 1 (5)
  • a throttling device (6) connected in series with the evaporator 2 (7), specifically for the refrigerant pipe inside the evaporator (3) (11) at the inlet of the evaporator (9) a predetermined break between the outlet port (10) of the evaporator to form a 2-part refrigerant pipe, the refrigerant pipe of the evaporator interior (11) being connected to the intake of the evaporator
  • a refrigerant pipe (21) inside the evaporator (3) connected to the inlet (9) of the evaporator (21) Is the evaporator 1 part (5)
  • the refrigerant pipe (31) inside the evaporator (3) connected to the air outlet (10) of the evaporator is the evaporator 2 part (7)
  • the refrigerant conduit inside the evaporator (3) is at the air inlet of the evaporator (9) and
  • the outlet of the evaporator (10) is pre-set to open to form a 2-part refrigerant pipe, in particular for using the pipe inside the evaporator to be larger than the evaporator inlet (9) Any one of 1/3 to less than or equal to 2/3 is broken to form a 2-part pipe.
  • the pipe used in the interior of the evaporator is specifically greater than or equal to 1/1 from the evaporator inlet (9) 3 to less than or equal to 2/3 of any one of the disconnection to form a 2-part pipe, specifically for using the refrigerant pipe inside the evaporator (3) at a distance from the evaporator inlet (9) Break at /2 to form a 2-part pipe.
  • the liquid separator (81), one end of the liquid separator (81) is connected to the throttling device (6), The other end is connected to the evaporator 2 for, when the refrigerant pipe inside the evaporator (3) has two or more inlets and outlets, for each group of the inlets and The evaporator 2 between the gas outlets transfers the refrigerant.
  • the throttling device (6) is connected in series with the evaporator 1 (5) and the evaporator 2 (7) Between the two, the temperature and the pressure of the liquid refrigerant outputted by the evaporator 1 are reduced, and then output to the evaporator 2, specifically comprising:
  • the throttling device is an electronic expansion valve connected in series between the evaporator 1 and the evaporator 2 for reducing the temperature and pressure of the liquid refrigerant output from the evaporator 1 Output to the evaporator 2 section.
  • the throttle device further includes a solenoid valve, the solenoid valve being connected in parallel with the electronic expansion valve At the time of constant temperature dehumidification, the solenoid valve is closed, and the electronic expansion valve is used for throttling.
  • the throttling device comprises a solenoid valve and a capillary parallel connection for closing the electromagnetic valve in the middle of the evaporator when the temperature is dehumidified, and throttling by the parallel capillary.
  • the second aspect provides a light-load dehumidification refrigeration method, which comprises:
  • the compressor will increase the pressure and temperature of the gaseous refrigerant entering the compressor, and output the gaseous refrigerant with increased temperature and pressure to the condenser;
  • the condenser cools the gaseous refrigerant after the temperature and pressure are raised to condense into a liquid refrigerant, and then outputs it to the evaporator;
  • the electronic expansion valve A closes a part, and throttles the liquid refrigerant input from the condenser to reduce the pressure and temperature of the liquid refrigerant and form a gas-liquid two-phase After the refrigerant, output to the evaporator;
  • the evaporator 1 and the evaporator 2 exchange heat between the gas-liquid two-phase refrigerant output from the electronic expansion valve A and the environment, and the throttling device does not perform throttling, so that the gas and liquid
  • the temperature of the two-phase refrigerant is increased to become a gaseous refrigerant for reducing the ambient temperature to dehumidify the environment, and output to the compressor;
  • the electronic expansion valve A is fully opened to prevent throttling, and the evaporator 1 is configured to exchange heat between the liquid refrigerant and the environment to reduce the liquid refrigerant.
  • the liquid refrigerant after the temperature is lowered is output to the throttling device;
  • the throttling device throttles the liquid refrigerant outputted by the evaporator 1 to reduce The pressure and temperature of the liquid refrigerant form a gas-liquid two-phase refrigerant, and then output to the evaporator 2;
  • the evaporator 2 exchanges heat between the gas-liquid two-phase refrigerant outputted by the throttling device and an ambient temperature, so that the temperature of the gas-liquid two-phase refrigerant rises to become a gaseous refrigerant.
  • the ambient temperature is lowered to dehumidify the environment and output to the compressor.
  • the refrigerant pipe inside the evaporator is divided into two parts to divide the evaporator into an evaporator 1 and an evaporator 2, specifically
  • the method comprises: disconnecting a refrigerant pipe inside the evaporator between a gas inlet of the evaporator and an air outlet of the evaporator to form a 2-part refrigerant pipe, and the inside of the evaporator a refrigerant pipe is connected between an inlet of the evaporator and an outlet of the evaporator, and a refrigerant pipe connected to an inlet of the evaporator is an evaporator 1 and the evaporator
  • the refrigerant pipe connected to the air outlet is an evaporator 2
  • one end of the throttle device is connected to the evaporator 1 and the other end is connected to the evaporator 2 portion.
  • the refrigerant pipeline inside the evaporator is at the air inlet of the evaporator and the evaporator
  • the preset between the ports is broken to form a 2-part refrigerant pipe, specifically including:
  • the refrigerant pipe inside the evaporator is disconnected at any distance from 1/3 or more to 2/3 of the evaporator inlet to form a 2-part refrigerant pipe.
  • the refrigerant pipeline inside the evaporator is greater than or equal to 1/3 to less than the air inlet of the evaporator Equivalent to any two places between 2/3 to form a 2-part refrigerant pipe, specifically including:
  • the liquid separator is A group of evaporators 2 between the intake port and the gas outlet port transmit refrigerant, one end of the liquid separator connected to the throttling device and the other end connected to the evaporator 2 portion.
  • the refrigerant pipeline inside the evaporator is at the air inlet of the evaporator and the evaporator
  • the preset between the ports is broken to form a 2-part refrigerant pipe, specifically including:
  • the refrigerant pipe inside the evaporator is disconnected at any distance from 1/3 or more to 2/3 of the evaporator inlet to form a 2-part refrigerant pipe.
  • the refrigerant pipeline inside the evaporator is greater than or equal to 1/3 to less than the air inlet of the evaporator Equivalent to any two places between 2/3 to form a 2-part refrigerant pipe, specifically including:
  • the refrigerant pipe inside the evaporator is disconnected from the evaporator inlet 1/2 to form a 2-part refrigerant pipe.
  • the liquid separator when there are two groups of air inlets and air outlets in the refrigerant pipeline inside the evaporator, the liquid separator is A group of evaporators 2 between the intake port and the gas outlet port transmit refrigerant, one end of the liquid separator connected to the throttling device and the other end connected to the evaporator 2 portion.
  • a third aspect provides a data center, including a communication device, characterized by further comprising: the light-load dehumidification device according to any one of claims 1-8, configured to perform cooling and dehumidification or constant temperature dehumidification on the communication device.
  • FIG. 1 is a schematic diagram of an internal implementation of a light-load dehumidification and refrigeration device according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an internal implementation of a conventional evaporator according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an internal implementation of an improved evaporator according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an internal implementation of a light-load dehumidification and refrigeration device according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of an internal implementation of another light-load dehumidification and refrigeration device according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an internal implementation of another light-load dehumidification refrigeration device according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a light load dehumidification refrigeration method according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an implementation of a data center according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing the internal implementation of a light-load dehumidification and refrigeration device according to an embodiment of the present invention
  • Precision air conditioners are widely used in computer rooms, program-controlled switch rooms, satellite mobile communication stations, data containers and other high-precision environments. Such environments have high requirements for air temperature, humidity, air distribution and other indicators. 365 days, 24 hours a day, safe and reliable operation of the dedicated computer room precision air conditioning equipment to protect.
  • a constant temperature dehumidifying apparatus comprises a compressor, a condenser located downstream of the compressor outside the chamber, an evaporator upstream of the compressor located inside the chamber, an electronic expansion valve, and a throttle mechanism intermediate the evaporator.
  • the invention is widely applicable to a high-precision environment such as a computer room, a program-controlled switch room, a satellite mobile communication station, a data container, and the like, and is also applicable to the home field.
  • the light-load dehumidification refrigeration device includes a compressor (1), a condenser (2) and an evaporator (3), and an electronic expansion valve (8), the compressor (1) An input is connected to the output of the evaporator (3), an output of the compressor (1) is connected to an input of the condenser (2), and an output of the condenser (2) is connected to the evaporator ( 3)
  • the input ends are connected
  • the electronic expansion valve A (8) is connected in series between the condenser (2) and the evaporator (3), and the ends are connected by a refrigerant pipe (4) , which is characterized by:
  • the compressor (1) for compressing a gaseous refrigerant entering the compressor (1) to increase the pressure and temperature of the gaseous refrigerant, and to increase the temperature and pressure
  • the gaseous refrigerant is output to the condenser (2);
  • the condenser (2) is configured to cool the gas refrigerant after the temperature and pressure is raised, so that the gaseous refrigerant is condensed into a liquid refrigerant and then output to the evaporator (3);
  • the evaporator (3) is divided into an evaporator 1 part (5) and an evaporator 2 part (7), and a section is connected in series between the evaporator 1 part (5) and the evaporator 2 part (7) Flow device (6);
  • the electronic expansion valve A (8) closes a portion, and throttles the liquid refrigerant input from the condenser (2) to reduce the pressure of the liquid refrigerant. And the temperature and the formation of a gas-liquid two-phase refrigerant, and output to the evaporator (3);
  • the evaporator 1 part (5) and the evaporator 2 part (7) exchange heat with the environment of the gas-liquid two-phase refrigerant output by the electronic expansion valve A (8), the throttling device ( 6) without throttling, the temperature of the gas-liquid two-phase refrigerant is increased to become a gaseous refrigerant, used to reduce the ambient temperature to dehumidify the environment, and output to the compressor (1);
  • the electronic expansion valve A (8) is fully open to prevent throttling, and the evaporator 1 (5) is used for heat exchange between the liquid refrigerant and the environment to reduce
  • the liquid refrigerant after the temperature is lowered is output to the throttle device (6); specifically, the liquid cooled after the temperature is lowered at this time.
  • Still a high pressure liquid
  • the throttling device (6) throttles the liquid refrigerant outputted by the evaporator 1 (5) to reduce the pressure and temperature of the liquid refrigerant and form a gas-liquid two-phase refrigerant After that, output to the evaporator 2 (7);
  • the evaporator 2 (7) exchanges the gas-liquid two-phase refrigerant outputted by the throttling device (6) with an ambient temperature to increase the temperature of the gas-liquid two-phase refrigerant
  • the gas is changed to a gaseous refrigerant, and the ambient temperature is lowered to dehumidify the environment, and then output to the compressor (1).
  • the refrigerant When constant temperature dehumidification is required, the refrigerant is discharged from the condenser into the evaporator 1 and is higher than the ambient temperature, and the heat is released to lower the temperature. At this time, the refrigerant is still a high pressure liquid; then the liquid refrigerant flow After passing through the throttling mechanism in the middle of the evaporator, it becomes a low-pressure low-temperature refrigerant liquid, flows into the evaporator 2, the temperature is lower than the ambient temperature, absorbs heat, the temperature rises, becomes a gas, and then flows back to the compressor for circulation. . Therefore, for the refrigerant, when passing through the evaporator 1 and the evaporator 2, the temperature is first lowered and then raised;
  • the temperature of the air first passes through the evaporator 2, and then the temperature of the evaporator 1 rises, and the overall temperature of the indoor air through the air conditioner remains substantially unchanged.
  • the evaporator 2 can continuously perform dehumidification and continuously reduce the indoor humidity, thereby realizing the function of constant temperature dehumidification.
  • FIG. 2 is a schematic diagram of an internal implementation of a conventional evaporator according to an embodiment of the present invention
  • the pipe inside the evaporator 11 includes upper and lower portions, and N portions are included in the existing evaporator, and N takes values within a range of positive integers as needed.
  • the evaporator divides the pipe into a pipe 21 and a pipe 31 at a place inside the pipe of the evaporator according to the arrangement of the internal pipe. Accordingly, the evaporator is divided into settings.
  • the evaporator 1 having the duct 21 and the evaporator 2 provided with the duct 31 are provided.
  • FIG. 3 is a schematic diagram of an internal implementation of an improved evaporator according to an embodiment of the present invention.
  • the refrigerant pipe inside the evaporator 11 includes upper and lower portions, and in the actual case, the evaporator includes N portions, and N takes values within a range of positive integers as needed.
  • the above half is taken as an example. As shown in the above half, the evaporator divides the pipe into a pipe 21 and a pipe 31 at a portion of the refrigerant pipe inside the evaporator according to the length of the internal refrigerant pipe. Correspondingly, the evaporation The device is divided into an evaporator 1 portion provided with a duct 21 and an evaporator 2 portion provided with a duct 31.
  • the refrigerant flows out of the evaporator 1 provided with the duct 21, flows through a throttle device including a capillary 61 and an electronic expansion valve 71, flows through the flow divider 81, and enters the evaporator 2 provided with the duct 31. And then flow out from the evaporator outlet port 51.
  • a throttle device including a capillary 61 and an electronic expansion valve 71
  • the flow divider 81 flows through the flow divider 81, and enters the evaporator 2 provided with the duct 31. And then flow out from the evaporator outlet port 51.
  • the capillary 61 and the electronic expansion valve 71 in the throttling device may be replaced by various throttling devices in the prior art.
  • FIG. 4 is a light-load dehumidification and refrigeration device according to an embodiment of the present invention, the device includes:
  • a compressor (1) a condenser (2) and an evaporator (3), and an electronic expansion valve (8)
  • the compressor (1) The inlet is connected to the output of the evaporator (3), the output of the compressor (1) is connected to the input of the condenser (2), and the output of the condenser (2) is connected to the evaporator ( 3)
  • the input ends are connected
  • the electronic expansion valve A (8) is connected in series between the condenser (2) and the evaporator (3), and the ends are connected by a refrigerant pipe (4) , which is characterized by:
  • the compressor (1) for compressing a gaseous refrigerant entering the compressor (1) to increase the pressure and temperature of the gaseous refrigerant, and to increase the temperature and pressure
  • the gaseous refrigerant is output to the condenser (2);
  • the condenser (2) is configured to cool the gas refrigerant after the temperature and pressure is raised, so that the gaseous refrigerant is condensed into a liquid refrigerant and then output to the evaporator (3);
  • the evaporator (3) is divided into an evaporator 1 part (5) and an evaporator 2 part (7), and a section is connected in series between the evaporator 1 part (5) and the evaporator 2 part (7) Flow device (6);
  • the electronic expansion valve A (8) closes a portion, and throttles the liquid refrigerant input from the condenser (2) to reduce the pressure of the liquid refrigerant and After the temperature and the formation of a gas-liquid two-phase refrigerant, output to the evaporator (3);
  • the evaporator 1 part (5) and the evaporator 2 part (7) exchange heat with the environment of the gas-liquid two-phase refrigerant output by the electronic expansion valve A (8), the throttling device ( 6) without throttling, the temperature of the gas-liquid two-phase refrigerant is increased to become a gaseous refrigerant, used to reduce the ambient temperature to dehumidify the environment, and output to the compressor (1);
  • the electronic expansion valve A (8) is fully open to prevent throttling, and the evaporator 1 (5) is used for heat exchange between the liquid refrigerant and the environment to reduce After the temperature of the liquid refrigerant is raised and the ambient temperature is raised, the liquid refrigerant after the temperature is lowered is output to the throttling device (6);
  • the throttling device (6) throttles the liquid refrigerant outputted by the evaporator 1 (5) to reduce the pressure and temperature of the liquid refrigerant and form a gas-liquid two-phase refrigerant After that, output to the evaporator 2 (7);
  • the evaporator 2 (7) exchanges the gas-liquid two-phase refrigerant outputted by the throttling device (6) with an ambient temperature to increase the temperature of the gas-liquid two-phase refrigerant
  • the gas is changed to a gaseous refrigerant, and the ambient temperature is lowered to dehumidify the environment, and then output to the compressor (1).
  • the device further includes an electronic expansion valve A.
  • the electronic expansion valve A When constant temperature dehumidification is required, the electronic expansion valve A is fully opened without throttling, and the throttling device in the middle of the evaporator performs throttling; when cooling, the electronic expansion valve A is not fully opened for throttling.
  • the refrigerant pipe inside the evaporator is divided into two parts to divide the evaporator into an evaporator 1 and an evaporator 2, the evaporator being specifically used for the evaporator
  • An internal pipe is disconnected at a predetermined position between an inlet of the evaporator and an outlet of the evaporator to form a 2-part pipe, and a pipe inside the evaporator is connected to an inlet of the evaporator between the air outlet of the evaporator, a pipe connected to the air inlet of the evaporator is an evaporator 1 , and a pipe connected to an air outlet of the evaporator is an evaporator 2 One end of the throttle device is connected to the evaporator 1 and the other end is connected to the evaporator 2 portion.
  • the preset portion is located between the inlet of the evaporator and the air outlet of the evaporator, and the position of the preset is set to conform to the evaporator 1 and the Each of the
  • the evaporator is specific
  • the pipe for internalizing the evaporator is disconnected at any distance from 1/3 or more to 2/3 of the evaporator inlet to form a 2-part pipe.
  • the evaporator is specifically configured to disconnect the pipe inside the evaporator at any distance between 1/3 or more and 2/3 of the inlet of the evaporator to form 2 parts.
  • the evaporator is specifically configured to disconnect a pipe inside the evaporator at a distance of 1/2 from the evaporator inlet to form a 2-part pipe.
  • the light-load dehumidification refrigeration device further includes: a liquid separator, one end of the liquid separator is connected to the throttling device, and the other end is connected to the evaporator 2 for When the inner pipe of the evaporator has two or more inlets and outlets, the refrigerant is transferred to the evaporator 2 between each of the inlets and the outlets.
  • the throttling device is connected in series between the evaporator 1 and the evaporator 2 for reducing the temperature and pressure of the liquid refrigerant output from the evaporator 1 and outputting
  • the evaporator 2 part specifically includes:
  • the throttling device is an electronic expansion valve connected in series between the evaporator 1 and the evaporator 2 for reducing the temperature and pressure of the liquid refrigerant output from the evaporator 1 Output to the evaporator 2 section.
  • the throttle device further includes a solenoid valve, and the electromagnetic valve is connected in parallel with the electronic expansion valve. When the temperature is dehumidified, the electromagnetic valve is closed, and the electronic expansion valve is connected in parallel. Throttling.
  • the electronic expansion valve A When the normal cooling is performed without dehumidification, the electronic expansion valve A performs throttling, the throttling device in the middle of the evaporator is completely opened, and the throttling effect is not obtained, and the refrigerant discharged from the compressor is a high temperature and high pressure gas state.
  • the outdoor air When passing through the condenser, the outdoor air is released to heat, and becomes a high-pressure high-temperature refrigerant liquid.
  • the electronic expansion valve A After passing through the electronic expansion valve A, it becomes a low-pressure low-temperature refrigerant liquid, and the temperature is lower than the indoor temperature, thereby performing heat absorption.
  • the temperature of the indoor air passing through the evaporator is lowered, and the function of cooling is realized.
  • the refrigerant absorbs heat, it becomes a gaseous state in which the low-pressure temperature rises, and flows back to the compressor for the next cycle.
  • the electronic expansion valve A When constant temperature dehumidification is required, the electronic expansion valve A is fully opened without throttling, and the throttling device in the middle of the evaporator is throttled.
  • the liquid refrigerant After flowing into the evaporator 1 from the condenser, it is higher than the ambient temperature, and the heat is released to lower the temperature; then the liquid refrigerant flows through the throttle mechanism in the middle of the evaporator, and becomes a low-pressure low-temperature refrigerant.
  • the liquid flows into the evaporator 2, the temperature is lower than the ambient temperature, the heat is absorbed, the temperature rises, and the gas is turned into a gas and then flows back to the compressor for circulation. Therefore, for the refrigerant, when passing through the evaporator 1 and the evaporator 2, the temperature is first lowered and then raised.
  • FIG. 6 is a light-load dehumidification and refrigeration device according to an embodiment of the present invention. As shown in FIG. 6, the device includes:
  • a compressor (1) a condenser (2) and an evaporator (3), and an electronic expansion valve (8)
  • the input end of the compressor (1) being connected to an output end of the evaporator (3)
  • the output of the machine (1) is connected to the input end of the condenser (2)
  • the output end of the condenser (2) is connected to the input end of the evaporator (3)
  • the electronic expansion valve A (8) is connected in series
  • the ends are connected by a refrigerant pipe (4), which is characterized by:
  • the compressor (1) for compressing a gaseous refrigerant entering the compressor (1) to increase the pressure and temperature of the gaseous refrigerant, and to increase the temperature and pressure
  • the gaseous refrigerant is output to the condenser (2);
  • the condenser (2) is configured to cool the gas refrigerant after the temperature and pressure is raised, so that the gaseous refrigerant is condensed into a liquid refrigerant and then output to the evaporator (3);
  • the evaporator (3) is divided into an evaporator 1 part (5) and an evaporator 2 part (7), and a section is connected in series between the evaporator 1 part (5) and the evaporator 2 part (7) Flow device (6);
  • the electronic expansion valve A (8) closes a portion, and throttles the liquid refrigerant input from the condenser (2) to reduce the pressure of the liquid refrigerant. And the temperature and the formation of a gas-liquid two-phase refrigerant, and output to the evaporator (3);
  • the evaporator 1 part (5) and the evaporator 2 part (7) exchange heat with the environment of the gas-liquid two-phase refrigerant output by the electronic expansion valve A (8), the throttling device ( 6) without throttling, the temperature of the gas-liquid two-phase refrigerant is increased to become a gaseous refrigerant, used to reduce the ambient temperature to dehumidify the environment, and output to the compressor (1);
  • the electronic expansion valve A (8) is fully open to prevent throttling, and the evaporator 1 (5) is used for heat exchange between the liquid refrigerant and the environment to reduce After the temperature of the liquid refrigerant is raised and the ambient temperature is raised, the liquid refrigerant after the temperature is lowered is output to the throttling device (6);
  • the throttling device (6) throttles the liquid refrigerant outputted by the evaporator 1 (5) to reduce the pressure and temperature of the liquid refrigerant and form a gas-liquid two-phase refrigerant After that, output to the evaporator 2 (7);
  • the evaporator 2 (7) exchanges the gas-liquid two-phase refrigerant outputted by the throttling device (6) with an ambient temperature to increase the temperature of the gas-liquid two-phase refrigerant
  • the gas is changed to a gaseous refrigerant, and the ambient temperature is lowered to dehumidify the environment, and then output to the compressor (1).
  • the refrigerant pipe inside the evaporator is divided into two parts to divide the evaporator into an evaporator 1 and an evaporator 2, the evaporator being specifically used for the evaporator
  • An internal pipe is disconnected at a predetermined position between an inlet of the evaporator and an outlet of the evaporator to form a 2-part pipe, and a pipe inside the evaporator is connected to an inlet of the evaporator between the air outlet of the evaporator, a pipe connected to the air inlet of the evaporator is an evaporator 1 , and a pipe connected to an air outlet of the evaporator is an evaporator 2 One end of the throttle device is connected to the evaporator 1 and the other end is connected to the evaporator 2 portion.
  • the preset is located in the evaporation a conduit between the air inlet of the evaporator and the air outlet of the evaporator, the position of the predetermined position must be set to match that the evaporator 1 and the evaporator 2 can each function in this embodiment.
  • the evaporator is specific
  • the pipe for internalizing the evaporator is disconnected at any distance from 1/3 or more to 2/3 of the evaporator inlet to form a 2-part pipe.
  • the evaporator is specifically configured to disconnect the pipe inside the evaporator at any distance between 1/3 or more and 2/3 of the inlet of the evaporator to form 2 parts.
  • the evaporator is specifically configured to disconnect a pipe inside the evaporator at a distance of 1/2 from the evaporator inlet to form a 2-part pipe.
  • the light-load dehumidification refrigeration device further includes: a liquid separator, one end of the liquid separator is connected to the throttling device, and the other end is connected to the evaporator 2 for When the inner pipe of the evaporator has two or more inlets and outlets, the refrigerant is transferred to the evaporator 2 between each of the inlets and the outlets.
  • the throttling device is connected in series between the evaporator 1 and the evaporator 2 for reducing the temperature and pressure of the liquid refrigerant output from the evaporator 1 and outputting
  • the evaporator 2 part specifically includes:
  • the throttling device comprises a solenoid valve and a capillary parallel connection for closing the electromagnetic valve in the middle of the evaporator when the temperature is dehumidified, and throttling by the parallel capillary.
  • the temperature of the air first passes through the evaporator 2, and then the temperature of the evaporator 1 rises, and the overall temperature of the indoor air through the air conditioner remains substantially unchanged.
  • the evaporator 2 can continuously perform dehumidification and continuously reduce the indoor humidity, thereby realizing the function of constant temperature dehumidification.
  • FIG. 7 is a light-load dehumidification and cooling method according to an embodiment of the present invention. As shown in FIG. 8 , the steps in this embodiment are as follows:
  • the compressor increases the pressure and temperature of the gaseous refrigerant entering the compressor, and outputs the gaseous refrigerant with the increased temperature and pressure to the condenser;
  • the condenser cools the temperature and pressure after the gaseous refrigerant is cooled to be condensed into a liquid refrigerant, and then output to the evaporator;
  • the electronic expansion valve A closes a part, and throttles the liquid refrigerant input from the condenser to reduce the pressure and temperature of the liquid refrigerant and form a gas-liquid two-phase After the refrigerant, output to the evaporator;
  • the evaporator 1 and the evaporator 2 exchange heat between the gas-liquid two-phase refrigerant output from the electronic expansion valve A and the environment, and the throttling device does not perform throttling, so that the The temperature of the gas-liquid two-phase refrigerant rises to become a gaseous refrigerant for lowering the ambient temperature to perform the environment After dehumidification, output to the compressor;
  • the evaporator 2 exchanges heat between the gas-liquid two-phase refrigerant outputted by the throttling device and an ambient temperature, so that the temperature of the gas-liquid two-phase refrigerant rises to become a gaseous state.
  • the refrigerant which reduces the ambient temperature to dehumidify the environment, is output to the compressor.
  • Beneficial effect When the normal cooling is performed without dehumidification, the electronic expansion valve A performs throttling, the throttling device in the middle of the evaporator is completely opened, and the throttling effect is not obtained, and the refrigerant discharged from the compressor is a high temperature and high pressure gas state.
  • the outdoor air When passing through the condenser, the outdoor air is released to heat, and becomes a high-pressure high-temperature refrigerant liquid. After passing through the electronic expansion valve A, it becomes a low-pressure low-temperature refrigerant liquid, and the temperature is lower than the indoor temperature, thereby performing heat absorption. The temperature of the indoor air passing through the evaporator is lowered, and the function of cooling is realized. After the refrigerant absorbs heat, it becomes a gaseous state in which the low-pressure temperature rises, and flows back to the compressor for the next cycle.
  • the electronic expansion valve A When constant temperature dehumidification is required, the electronic expansion valve A is fully opened without throttling, and the throttling device in the middle of the evaporator is throttled.
  • the liquid refrigerant After flowing into the evaporator 1 from the condenser, it is higher than the ambient temperature, and the heat is released to lower the temperature; then the liquid refrigerant flows through the throttle mechanism in the middle of the evaporator, and becomes a low-pressure low-temperature refrigerant.
  • the liquid flows into the evaporator 2, the temperature is lower than the ambient temperature, the heat is absorbed, the temperature rises, and the gas is turned into a gas and then flows back to the compressor for circulation. Therefore, for the refrigerant, through the evaporator When 1 and evaporator 2, the temperature is lowered first and then increased.
  • the light-load dehumidification refrigeration method further includes: dividing the refrigerant pipe inside the evaporator into two parts to divide the evaporator into an evaporator 1 and an evaporator Part 2, specifically comprising: disconnecting a pipe inside the evaporator between a predetermined inlet of the evaporator and an outlet of the evaporator to form a 2-part pipe, the inside of the evaporator a pipe is connected between the inlet of the evaporator and an outlet of the evaporator, and a pipe connected to the inlet of the evaporator is an evaporator 1 and is connected to an outlet of the evaporator.
  • the connected pipe is an evaporator 2, one end of which is connected to the evaporator 1 and the other end to which the evaporator 2 is connected.
  • the method further includes: presetting the pipeline inside the evaporator between the air inlet of the evaporator and the air outlet of the evaporator Opening to form a 2-part pipe, specifically comprising: disconnecting a pipe inside the evaporator at any distance from 1/3 or more to 2/3 of the evaporator inlet to form a 2-part pipe .
  • the method further includes: the evaporator is specifically configured to: the pipeline inside the evaporator is greater than or equal to 1/3 to less than or equal to 2 from an inlet of the evaporator. Any one of the 3/3 disconnects to form a 2-part pipe, including:
  • the evaporator is specifically configured to disconnect a pipe inside the evaporator at a distance of 1/2 from the evaporator inlet to form a 2-part pipe.
  • the light load dehumidification refrigeration method further includes:
  • the dispenser transmits refrigerant for each of the evaporators and the outlets between the outlets, the points One end of the liquid device is connected to the throttling device, and the other end is connected to the evaporator 2 portion.
  • the electronic expansion valve A performs throttling and evaporation
  • the throttling device in the middle of the device is completely open, and does not have the throttling effect.
  • the refrigerant discharged from the compressor is a high-temperature and high-pressure gas state.
  • the outdoor air is released into heat and becomes a high-pressure high-temperature refrigerant liquid.
  • the electronic expansion valve A After passing through the electronic expansion valve A, it becomes a low-pressure low-temperature refrigerant liquid, and the temperature is lower than the indoor temperature, and heat absorption is performed, thereby reducing the indoor air temperature passing through the evaporator, thereby realizing the function of refrigeration, and the refrigerant absorbs heat and changes. It becomes a gaseous state with a low pressure rise and flows back to the compressor for the next cycle.
  • the electronic expansion valve A When constant temperature dehumidification is required, the electronic expansion valve A is fully opened without throttling, and the throttling device in the middle of the evaporator is throttled.
  • the liquid refrigerant After flowing into the evaporator 1 from the condenser, it is higher than the ambient temperature, and the heat is released to lower the temperature; then the liquid refrigerant flows through the throttle mechanism in the middle of the evaporator, and becomes a low-pressure low-temperature refrigerant.
  • the liquid flows into the evaporator 2, the temperature is lower than the ambient temperature, the heat is absorbed, the temperature rises, and the gas is turned into a gas and then flows back to the compressor for circulation. Therefore, for the refrigerant, when passing through the evaporator 1 and the evaporator 2, the temperature is first lowered and then raised.
  • a data center characterized by comprising a communication device, characterized by further comprising: a light-load dehumidification device according to claims 1-8, for performing refrigeration and dehumidification on the communication device Or constant temperature dehumidification.
  • the light load dehumidification refrigeration device comprises:
  • a compressor (1) a condenser (2) and an evaporator (3), and an electronic expansion valve (8)
  • the input end of the compressor (1) being connected to an output end of the evaporator (3)
  • the output of the machine (1) is connected to the input end of the condenser (2)
  • the output end of the condenser (2) is connected to the input end of the evaporator (3)
  • the electronic expansion valve A (8) is connected in series
  • the ends are connected by a refrigerant pipe (4), which is characterized by:
  • the compressor (1) for compressing a gaseous refrigerant entering the compressor (1) to increase the pressure and temperature of the gaseous refrigerant, and to increase the temperature and pressure Gaseous refrigerant output Give condenser (2);
  • the condenser (2) is configured to cool the gas refrigerant after the temperature and pressure is raised, so that the gaseous refrigerant is condensed into a liquid refrigerant and then output to the evaporator (3);
  • the evaporator (3) is divided into an evaporator 1 part (5) and an evaporator 2 part (7), and a section is connected in series between the evaporator 1 part (5) and the evaporator 2 part (7) Flow device (6);
  • the electronic expansion valve A (8) closes a portion, and throttles the liquid refrigerant input from the condenser (2) to reduce the pressure of the liquid refrigerant and After the temperature and the formation of a gas-liquid two-phase refrigerant, output to the evaporator (3);
  • the evaporator 1 part (5) and the evaporator 2 part (7) exchange heat with the environment of the gas-liquid two-phase refrigerant output by the electronic expansion valve A (8), the throttling device ( 6) without throttling, the temperature of the gas-liquid two-phase refrigerant is increased to become a gaseous refrigerant, used to reduce the ambient temperature to dehumidify the environment, and output to the compressor (1);
  • the electronic expansion valve A (8) is fully open to prevent throttling, and the evaporator 1 (5) is used for heat exchange between the liquid refrigerant and the environment to reduce After the temperature of the liquid refrigerant is raised and the ambient temperature is raised, the liquid refrigerant after the temperature is lowered is output to the throttling device (6);
  • the throttling device (6) throttles the liquid refrigerant outputted by the evaporator 1 (5) to reduce the pressure and temperature of the liquid refrigerant and form a gas-liquid two-phase refrigerant After that, output to the evaporator 2 (7);
  • the evaporator 2 (7) exchanges the gas-liquid two-phase refrigerant outputted by the throttling device (6) with an ambient temperature to increase the temperature of the gas-liquid two-phase refrigerant
  • the gas is changed to a gaseous refrigerant, and the ambient temperature is lowered to dehumidify the environment, and then output to the compressor (1).
  • the device further includes an electronic expansion valve A.
  • the electronic expansion valve A When constant temperature dehumidification is required, the electronic expansion valve A is fully opened without throttling, and the throttling device in the middle of the evaporator performs throttling; when cooling, the electronic expansion valve A is not fully opened for throttling.
  • the refrigerant pipe inside the evaporator is divided into two parts to divide the evaporator into an evaporator 1 and an evaporator 2, the evaporator being specifically used for the evaporator
  • An internal pipe is disconnected at a predetermined position between an inlet of the evaporator and an outlet of the evaporator to form a 2-part pipe, and a pipe inside the evaporator is connected to an inlet of the evaporator between the air outlet of the evaporator, a pipe connected to the air inlet of the evaporator is an evaporator 1 , and a pipe connected to an air outlet of the evaporator is an evaporator 2 One end of the throttle device is connected to the evaporator 1 and the other end is connected to the evaporator 2 portion.
  • the preset portion is located between the inlet of the evaporator and the air outlet of the evaporator, and the position of the preset is set to conform to the evaporator 1 and the Each of the
  • the evaporator is specific
  • the pipe for internalizing the evaporator is disconnected at any distance from 1/3 or more to 2/3 of the evaporator inlet to form a 2-part pipe.
  • the evaporator is specifically configured to disconnect the pipe inside the evaporator at any distance between 1/3 or more and 2/3 of the inlet of the evaporator to form 2 parts.
  • the evaporator is specifically configured to disconnect a pipe inside the evaporator at a distance of 1/2 from the evaporator inlet to form a 2-part pipe.
  • the light-load dehumidification refrigeration device further includes: a liquid separator, one end of the liquid separator is connected to the throttling device, and the other end is connected to the evaporator 2 for Inside the evaporator When there are two or more inlets and outlets in the pipe of the section, the refrigerant is transferred to the evaporator 2 between each of the inlets and the outlets.
  • the throttling device is connected in series between the evaporator 1 and the evaporator 2 for reducing the temperature and pressure of the liquid refrigerant output from the evaporator 1 and outputting
  • the evaporator 2 part specifically includes:
  • the throttling device is an electronic expansion valve connected in series between the evaporator 1 and the evaporator 2 for reducing the temperature and pressure of the liquid refrigerant output from the evaporator 1 Output to the evaporator 2 section.
  • the throttle device further includes a solenoid valve, and the electromagnetic valve is connected in parallel with the electronic expansion valve. When the temperature is dehumidified, the electromagnetic valve is closed, and the electronic expansion valve is connected in parallel. Throttling.
  • the electronic expansion valve A When the normal cooling is performed without dehumidification, the electronic expansion valve A performs throttling, the throttling device in the middle of the evaporator is completely opened, and the throttling effect is not obtained, and the refrigerant discharged from the compressor is a high temperature and high pressure gas state.
  • the outdoor air When passing through the condenser, the outdoor air is released to heat, and becomes a high-pressure high-temperature refrigerant liquid.
  • the electronic expansion valve A After passing through the electronic expansion valve A, it becomes a low-pressure low-temperature refrigerant liquid, and the temperature is lower than the indoor temperature, thereby performing heat absorption.
  • the temperature of the indoor air passing through the evaporator is lowered, and the function of cooling is realized.
  • the refrigerant absorbs heat, it becomes a gaseous state in which the low-pressure temperature rises, and flows back to the compressor for the next cycle.
  • the electronic expansion valve A When constant temperature dehumidification is required, the electronic expansion valve A is fully opened without throttling, and the throttling device in the middle of the evaporator is throttled.
  • the liquid refrigerant After flowing into the evaporator 1 from the condenser, it is higher than the ambient temperature, and the heat is released to lower the temperature; then the liquid refrigerant flows through the throttle mechanism in the middle of the evaporator, and becomes a low-pressure low-temperature refrigerant.
  • the liquid flows into the evaporator 2, the temperature is lower than the ambient temperature, the heat is absorbed, the temperature rises, and the gas is turned into a gas and then flows back to the compressor for circulation. Therefore, for the refrigerant, when passing through the evaporator 1 and the evaporator 2, the temperature is first lowered and then raised.
  • the present invention can be implemented by various embodiments, and the embodiments of the present invention can be implemented by specific software and hardware components, and those skilled in the art can think that various software or hardware combinations can also be applied to implement the embodiments of the present invention.
  • the above specific operations performed by hardware can also be implemented by software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Drying Of Gases (AREA)
  • Air Conditioning Control Device (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种轻载除湿制冷装置,包括压缩机(1)、冷凝器(2)、蒸发器(3)及电子膨胀阀(8),压缩机(1)输入端与蒸发器(3)输出端相连,压缩机(1)输出端与冷凝器(2)输入端相连,冷凝器(2)输出端与蒸发器(3)输入端相连,电子膨胀阀(8)串联于冷凝器(2)及蒸发器(3)之间,各端之间均使用制冷剂管道(4)相连,蒸发器(3)分为蒸发器1部(5)和蒸发器2部(7),蒸发器1部(5)和蒸发器2部(7)之间串联有节流装置(6);在制冷并除湿的情况下,电子膨胀阀(8)对从冷凝器(2)输入的液态制冷剂进行节流,蒸发器1部(5)和蒸发器2部(7)将气液两相制冷剂的温度升高以变为气态制冷剂,降低环境温度进行除湿;在恒温除湿的情况下,电子膨胀阀(8)不进行节流,蒸发器1部(5)降低液态制冷剂的温度,节流装置(6)对液态制冷剂进行节流,蒸发器2部(7)将气液两相制冷剂升温变为气态制冷剂,降低环境温度以进行除湿。

Description

一种轻载除湿制冷的方法及装置
本申请要求于2015年5月30日提交中国专利局、申请号为201510298623.6、发明名称为“一种轻载除湿制冷的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电子通讯技术领域,尤其涉及一种轻载除湿制冷的方法及装置。
背景技术
精密空调是指能够充分满足机房环境条件要求的机房专用精密空调机,是在近30年中逐渐发展起来的一个新机种。计算机机房中摆放计算机设备及程控交换机产品等,由大量密集电子元件组成。要提高这些设备使用的稳定及可靠性,需将环境的温度湿度严格控制在特定范围。早期的机房使用舒适性空调机时,常常出现由于环境温湿度参数控制不当而造成机房设备运行不稳定,数据传输受干扰,出现静电等问题。机房精密空调则是针对现代电子设备机房设计的专用空调,它的工作精度和可靠性都要比普通空调高得多。
在精密空调里,对于湿度主要是通过两个部分进行调节,一是空气通过蒸发器表面时,由于温度低于水蒸气的露点,空气中的水蒸气会液化,从而降低了空气中的湿度;二是当制冷过程中湿度低于设定值后,会开启加湿器进行加湿,保证湿度在设定范围内。因此除湿的过程必定会伴随着环境温度的降低,而且精密空调制冷量大,目前在精密空调系统里无法操控简单且低成本的实现恒温除湿。
发明内容
本发明实施例提供一种轻载除湿制冷的方法及装置,在具备现有制冷除湿功能的基础上,还能够操控简单且低成本的实现恒温除湿。
第一方面提供一种一种轻载除湿制冷装置,包括压缩机(1)、冷凝器(2)及蒸发器(3)、及电子膨胀阀(8),所述压缩机(1)输入端与所述蒸发器(3)输出端相连,所述压缩机(1)输出端与所述冷凝器(2)输入端相连,所述冷凝器(2)输出端与所述蒸发器(3)输入端相连,所述电子膨胀阀A(8)串联于所述冷凝器(2)及所述蒸发器(3)之间,所述各端之间均使用制冷剂管道(4)相连,其特征在于:
所述压缩机(1),用于将进入所述压缩机(1)的气态制冷剂进行压缩,以使所述气态制冷剂的压强和温度升高,且将升高了温度和压强后的气态制冷剂输出给冷凝器(2);
所述冷凝器(2),用于将所述升高了温度和压强后的气态制冷剂进行降温,以使所述气态制冷剂凝结为液态制冷剂后输出给蒸发器(3);
所述蒸发器(3),分为蒸发器1部(5)和蒸发器2部(7),所述蒸发器1部(5)与所述蒸发器2部(7)之间串联有节流装置(6);
在制冷并除湿的情况下,所述电子膨胀阀A(8)关闭一部分,对从所述冷凝器(2)输入的所述液态制冷剂进行节流,以降低所述液态制冷剂的压强和温度并形成气液两相的制冷剂后,输出给所述蒸发器(3);
所述蒸发器1部(5)和蒸发器2部(7)将所述电子膨胀阀A(8)输出的所述气液两相的制冷剂与环境进行热量交换,所述节流装置(6)不进行节流,使所述气液两相的制冷剂的温度升高以变为气态制冷剂,用于降低环境温度以对所述环境进行除湿后,输出给压缩机(1);
在恒温除湿的情况下,所述电子膨胀阀A(8)全开以不进行节流,所述蒸发器1部(5),用于将所述液态制冷剂与环境进行热量交换,以降低所述液态制冷剂的温度并使环境温度升高后,并将降低温度后的液态制冷剂输出给节流装置(6);
所述节流装置(6),将所述蒸发器1部(5)输出的所述液态制冷剂进行节流,以降低所述液态制冷剂的压强和温度并形成气液两相的制冷剂后,输出到蒸发器2部(7);
所述蒸发器2部(7),将所述节流装置(6)输出的所述气液两相的制冷剂与环境温度进行热量交换,使所述气液两相的制冷剂的温度升高以变为气态制冷剂,降低环境温度以对所述环境进行除湿后,输出给压缩机(1)。
在第一方面第一种可能的实现方式中,在将所述蒸发器(3),分为蒸发器1部(5)和蒸发器2部(7),所述蒸发器1部(5)与所述蒸发器2部(7)之间串联有节流装置(6)方面,具体用于将所述蒸发器(3)内部(11)的制冷剂管道在所述蒸发器的进气口(9)与所述蒸发器的出气口(10)之间预设处断开以形成2部分制冷剂管道,所述蒸发器内部(11)的制冷剂管道连接在所述蒸发器的进气口(9)与所述蒸发器的出气口(10)之间,与所述蒸发器的进气口(9)相连接的所述蒸发器(3)内部(11)的制冷剂管道(21)为蒸发器1部(5),与所述蒸发器的出气口(10)相连接的所述蒸发器(3)内部(11)的制冷剂管道(31)为蒸发器2部(7),所述节流装置(6)一端与所述蒸发器1部(5)相连接,另一端与所述蒸发器2部(7)相连接。
结合第一方面第一种可能的实现方式,在第二种可能的实现方式中,在所述将所述蒸发器(3)内部(11)的制冷剂管道在所述蒸发器的进气口(9)与 所述蒸发器的出气口(10)之间预设处断开以形成2部分制冷剂管道方面,具体用于将所述蒸发器内部的管道在距离所述蒸发器进气口(9)大于等于1/3至小于等于2/3之间任意一处断开以形成2部分管道。
结合第一方面第二种可能的实现方式,在第三种可能的实现方式中,在具体用于将所述蒸发器内部的管道在距离所述蒸发器进气口(9)大于等于1/3至小于等于2/3之间任意一处断开以形成2部分管道方面,具体用于将所述蒸发器(3)内部的制冷剂管道在距离所述蒸发器进气口(9)1/2处断开以形成2部分管道。
结合第一方面第三种可能的实现方式,在第四种可能的实现方式中,分液器(81),所述分液器(81)一端与所述节流装置(6)相连接,另一端与所述蒸发器2部相连接,用于当所述蒸发器(3)内部的制冷剂管道存在大于等于2组进气口和出气口时,为每一组所述进气口和出气口之间的蒸发器2部传输制冷剂。
结合第一方面四种可能的实现方式,在第五种可能的实现方式中,所述节流装置(6),串联在所述蒸发器1部(5)和所述蒸发器2部(7)之间,用于将所述蒸发器1部输出的所述液态制冷剂的温度和压强降低后,输出到蒸发器2部,具体包括:
所述节流装置为一个电子膨胀阀,串联在所述蒸发器1部和蒸发器2部之间,用于将所述蒸发器1部输出的所述液态制冷剂的温度和压强降低后,输出到蒸发器2部。
结合第一方面五种可能的实现方式,在第六种可能的实现方式中,
所述节流装置,还包括一个电磁阀,所述电磁阀与所述电子膨胀阀并联, 恒温除湿时,所述电磁阀关闭,所述电子膨胀阀用于节流。
结合第一方面六种可能的实现方式,在第七种可能的实现方式中,
所述节流装置,包括一个电磁阀和毛细管并联,用于当恒温除湿时,由蒸发器中间的电磁阀关闭,由并联的毛细管进行节流。
第二方面提供一种轻载除湿制冷方法,其特征在于,包括:
压缩机将进入所述压缩机的气态制冷剂的压强和温度升高,且将升高了温度和压强后的气态制冷剂输出给冷凝器;
所述冷凝器将所述升高了温度和压强后的气态制冷剂降温以凝结为液态制冷剂后,输出给蒸发器;
将所述蒸发器内部的制冷剂管道分为两部分,以将所述蒸发器分为蒸发器1部和蒸发器2部;
在制冷并除湿的情况下,电子膨胀阀A关闭一部分,对从所述冷凝器输入的所述液态制冷剂进行节流,以降低所述液态制冷剂的压强和温度并形成气液两相的制冷剂后,输出给所述蒸发器;
所述蒸发器1部和蒸发器2部将所述电子膨胀阀A输出的所述气液两相的制冷剂与环境进行热量交换,所述节流装置不进行节流,使所述气液两相的制冷剂的温度升高以变为气态制冷剂,用于降低环境温度以对所述环境进行除湿后,输出给压缩机;
在恒温除湿的情况下,所述电子膨胀阀A全开以不进行节流,所述蒸发器1部,用于将所述液态制冷剂与环境进行热量交换,以降低所述液态制冷剂的温度并使环境温度升高后,并将降低温度后的液态制冷剂输出给节流装置;
所述节流装置将所述蒸发器1部输出的所述液态制冷剂进行节流,以降低 所述液态制冷剂的压强和温度并形成气液两相的制冷剂后,输出到蒸发器2部;
所述蒸发器2部将所述节流装置输出的所述气液两相的制冷剂与环境温度进行热量交换,使所述气液两相的制冷剂的温度升高以变为气态制冷剂,降低环境温度以对所述环境进行除湿后,输出给压缩机。
在第二方面第一种可能的实现方式中,所述在将所述蒸发器内部的制冷剂管道分为两部分,以将所述蒸发器分为蒸发器1部和蒸发器2部,具体包括:将所述蒸发器内部的制冷剂管道在所述蒸发器的进气口与所述蒸发器的出气口之间预设处断开以形成2部分制冷剂管道,所述蒸发器内部的制冷剂管道连接在所述蒸发器的进气口与所述蒸发器的出气口之间,与所述蒸发器的进气口相连接的制冷剂管道为蒸发器1部,与所述蒸发器的出气口相连接的制冷剂管道为蒸发器2部,所述节流装置一端与所述蒸发器1部相连接,另一端与所述蒸发器2部相连接。
结合第二方面第一种可能的实现方式,在第二种可能的实现方式中,所述将所述蒸发器内部的制冷剂管道在所述蒸发器的进气口与所述蒸发器的出气口之间预设处断开以形成2部分制冷剂管道,具体包括:
将所述蒸发器内部的制冷剂管道在距离所述蒸发器进气口大于等于1/3至小于等于2/3之间任意一处断开以形成2部分制冷剂管道。
结合第二方面第二种可能的实现方式,在第三种可能的实现方式中,所述将所述蒸发器内部的制冷剂管道在距离所述蒸发器进气口大于等于1/3至小于等于2/3之间任意一处断开以形成2部分制冷剂管道,具体包括:
将所述蒸发器内部的制冷剂管道在距离所述蒸发器进气口1/2处断开以 形成2部分制冷剂管道。
结合第二方面第三种可能的实现方式,在第四种可能的实现方式中,当所述蒸发器内部的制冷剂管道存在大于等于2组进气口和出气口时,分液器为每一组所述进气口和出气口之间的蒸发器2部传输制冷剂,所述分液器一端与所述节流装置相连接,另一端与所述蒸发器2部相连接。
结合第二方面第四种可能的实现方式,在第五种可能的实现方式中,所述将所述蒸发器内部的制冷剂管道在所述蒸发器的进气口与所述蒸发器的出气口之间预设处断开以形成2部分制冷剂管道,具体包括:
将所述蒸发器内部的制冷剂管道在距离所述蒸发器进气口大于等于1/3至小于等于2/3之间任意一处断开以形成2部分制冷剂管道。
结合第二方面第五种可能的实现方式,在第六种可能的实现方式中,所述将所述蒸发器内部的制冷剂管道在距离所述蒸发器进气口大于等于1/3至小于等于2/3之间任意一处断开以形成2部分制冷剂管道,具体包括:
将所述蒸发器内部的制冷剂管道在距离所述蒸发器进气口1/2处断开以形成2部分制冷剂管道。
结合第二方面第六种可能的实现方式,在第七种可能的实现方式中,当所述蒸发器内部的制冷剂管道存在大于等于2组进气口和出气口时,分液器为每一组所述进气口和出气口之间的蒸发器2部传输制冷剂,所述分液器一端与所述节流装置相连接,另一端与所述蒸发器2部相连接。
第三方面提供一种数据中心,包括通信设备,其特征在于,还包括:如权利要求1-8所述的轻载除湿装置,用于对所述通信设备进行制冷除湿或恒温除湿。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种轻载除湿制冷装置的内部实现原理图;
图2为本发明实施例提供的一种现有蒸发器的内部实现原理图;
图3为本发明实施例提供的一种改进后的蒸发器的内部实现原理图;
图4为本发明实施例提供的一种轻载除湿制冷装置的内部实现原理图;
图5为本发明实施例提供的另一种轻载除湿制冷装置的内部实现原理图;
图6为本发明实施例提供的另一种轻载除湿制冷装置的内部实现原理图;
图7为本发明实施例提供的一种轻载除湿制冷方法的流程图;
图8为本发明实施例提供的一种数据中心的实现原理图;
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明实施例提供的一种轻载除湿制冷装置的内部实现原理图;
精密空调机广泛适用于计算机机房、程控交换机机房、卫星移动通讯站、数据集装箱等高精密环境,这样的环境对空气的温度、湿度、气流分布等各项指标有很高的要求,必须由每年365天、每天24小时安全可靠运行的专用机房精密空调设备来保障。
本发明的一种恒温除湿装置由压缩机、位于室外的压缩机下游的冷凝器、及位于室内的压缩机上游的蒸发器、及电子膨胀阀、及蒸发器中间的节流机构连接构成。本发明广泛适用于计算机机房、程控交换机机房、卫星移动通讯站、数据集装箱等高精密环境,当然,也适用于家用领域。本实施例所提供的所述一种轻载除湿制冷装置,包括压缩机(1)、冷凝器(2)及蒸发器(3)、及电子膨胀阀(8),所述压缩机(1)输入端与所述蒸发器(3)输出端相连,所述压缩机(1)输出端与所述冷凝器(2)输入端相连,所述冷凝器(2)输出端与所述蒸发器(3)输入端相连,所述电子膨胀阀A(8)串联于所述冷凝器(2)及所述蒸发器(3)之间,所述各端之间均使用制冷剂管道(4)相连,其特征在于:
所述压缩机(1),用于将进入所述压缩机(1)的气态制冷剂进行压缩,以使所述气态制冷剂的压强和温度升高,且将升高了温度和压强后的气态制冷剂输出给冷凝器(2);
所述冷凝器(2),用于将所述升高了温度和压强后的气态制冷剂进行降温,以使所述气态制冷剂凝结为液态制冷剂后输出给蒸发器(3);
所述蒸发器(3),分为蒸发器1部(5)和蒸发器2部(7),所述蒸发器1部(5)与所述蒸发器2部(7)之间串联有节流装置(6);
在制冷并除湿的情况下,所述电子膨胀阀A(8)关闭一部分,对从所述冷凝器(2)输入的所述液态制冷剂进行节流,以降低所述液态制冷剂的压强 和温度并形成气液两相的制冷剂后,输出给所述蒸发器(3);
所述蒸发器1部(5)和蒸发器2部(7)将所述电子膨胀阀A(8)输出的所述气液两相的制冷剂与环境进行热量交换,所述节流装置(6)不进行节流,使所述气液两相的制冷剂的温度升高以变为气态制冷剂,用于降低环境温度以对所述环境进行除湿后,输出给压缩机(1);
在恒温除湿的情况下,所述电子膨胀阀A(8)全开以不进行节流,所述蒸发器1部(5),用于将所述液态制冷剂与环境进行热量交换,以降低所述液态制冷剂的温度并使环境温度升高后,并将降低温度后的液态制冷剂输出给节流装置(6);具体地,此时输出的所述降低温度后的液态这冷机任然是高压的液体;
所述节流装置(6),将所述蒸发器1部(5)输出的所述液态制冷剂进行节流,以降低所述液态制冷剂的压强和温度并形成气液两相的制冷剂后,输出到蒸发器2部(7);
所述蒸发器2部(7),将所述节流装置(6)输出的所述气液两相的制冷剂与环境温度进行热量交换,使所述气液两相的制冷剂的温度升高以变为气态制冷剂,降低环境温度以对所述环境进行除湿后,输出给压缩机(1)。
有益效果:当需要恒温除湿时,对于制冷剂,从冷凝器里流进蒸发器1之后高于环境温度,进行放热,降低了温度,此时制冷剂仍为高压液态;然后液态制冷剂流过蒸发器中间的节流机构后,变成了低压低温的制冷剂液体,流进蒸发器2,温度低于环境温度,进行吸热,温度升高,变为气体后流回压缩机进行循环。因此,对于制冷剂,在通过蒸发器1和蒸发器2时,温度先降低后升高;
而对于室内空气,空气先经过蒸发器2温度降低,再经过蒸发器1温度升高,室内空气经过空调整体温度基本上保持不变。此时,蒸发器2可以持续进行除湿,不断降低室内湿度,就实现了恒温除湿的功能。
当需要制冷时,所述电子膨胀阀A不完全打开,以进行节流。
图2为本发明实施例提供的一种现有蒸发器的内部实现原理图;
如图2所示,蒸发器11内部的管道包括上下两部分,在现有的蒸发器中会包括N个部分,N按照需要在正整数的范围内取值。如图中上半部分所示,所述蒸发器根据内部管道的设置,在蒸发器内部管道的一处将所述管道分为管道21与管道31,相应的,所述蒸发器被分为设置有管道21的蒸发器1部与设置有管道31的蒸发器2部。
图3为本发明实施例提供的一种改进后的蒸发器的内部实现原理图;
如图3所示,所述蒸发器11内部的制冷剂管道包括上下两部分,在现实情况中的蒸发器中会包括N个部分,N按照需要在正整数的范围内取值。以上半部分为例,如上半部分所示,所述蒸发器按照内部制冷剂管道的长度,在蒸发器内部制冷剂管道的一处将管道分为管道21与管道31,相应的,所述蒸发器被分为设置有管道21的蒸发器1部与设置有管道31的蒸发器2部。制冷剂由设置有所述管道21的所述蒸发器1部流出,流经包括毛细管61与电子膨胀阀71的节流装置,流经分流器81后,进入设置有管道31的蒸发器2部,再由蒸发器出气口51流出。可选的,所述节流装置中的毛细管61与电子膨胀阀71可以被现有技术中的各种节流装置所代替。
图4为本发明实施例提供的一种轻载除湿制冷装置,所述装置包括:
压缩机(1)、冷凝器(2)及蒸发器(3)、及电子膨胀阀(8),所述压缩机(1)输 入端与所述蒸发器(3)输出端相连,所述压缩机(1)输出端与所述冷凝器(2)输入端相连,所述冷凝器(2)输出端与所述蒸发器(3)输入端相连,所述电子膨胀阀A(8)串联于所述冷凝器(2)及所述蒸发器(3)之间,所述各端之间均使用制冷剂管道(4)相连,其特征在于:
所述压缩机(1),用于将进入所述压缩机(1)的气态制冷剂进行压缩,以使所述气态制冷剂的压强和温度升高,且将升高了温度和压强后的气态制冷剂输出给冷凝器(2);
所述冷凝器(2),用于将所述升高了温度和压强后的气态制冷剂进行降温,以使所述气态制冷剂凝结为液态制冷剂后输出给蒸发器(3);
所述蒸发器(3),分为蒸发器1部(5)和蒸发器2部(7),所述蒸发器1部(5)与所述蒸发器2部(7)之间串联有节流装置(6);
在制冷并除湿的情况下,所述电子膨胀阀A(8)关闭一部分,对从所述冷凝器(2)输入的所述液态制冷剂进行节流,以降低所述液态制冷剂的压强和温度并形成气液两相的制冷剂后,输出给所述蒸发器(3);
所述蒸发器1部(5)和蒸发器2部(7)将所述电子膨胀阀A(8)输出的所述气液两相的制冷剂与环境进行热量交换,所述节流装置(6)不进行节流,使所述气液两相的制冷剂的温度升高以变为气态制冷剂,用于降低环境温度以对所述环境进行除湿后,输出给压缩机(1);
在恒温除湿的情况下,所述电子膨胀阀A(8)全开以不进行节流,所述蒸发器1部(5),用于将所述液态制冷剂与环境进行热量交换,以降低所述液态制冷剂的温度并使环境温度升高后,并将降低温度后的液态制冷剂输出给节流装置(6);
所述节流装置(6),将所述蒸发器1部(5)输出的所述液态制冷剂进行节流,以降低所述液态制冷剂的压强和温度并形成气液两相的制冷剂后,输出到蒸发器2部(7);
所述蒸发器2部(7),将所述节流装置(6)输出的所述气液两相的制冷剂与环境温度进行热量交换,使所述气液两相的制冷剂的温度升高以变为气态制冷剂,降低环境温度以对所述环境进行除湿后,输出给压缩机(1)。
进一步地,所述装置还包括电子膨胀阀A。当需要恒温除湿时,电子膨胀阀A完全打开不进行节流,蒸发器中间的节流装置进行节流;制冷时,所述电子膨胀阀A不完全打开,以进行节流。
进一步地,在将所述蒸发器内部的制冷剂管道分为两部分,以将所述蒸发器分为蒸发器1部和蒸发器2部方面,所述蒸发器具体用于将所述蒸发器内部的管道在所述蒸发器的进气口与所述蒸发器的出气口之间预设处断开以形成2部分管道,所述蒸发器内部的管道连接在所述蒸发器的进气口与所述蒸发器的出气口之间,与所述蒸发器的进气口相连接的管道为蒸发器1部,与所述蒸发器的出气口相连接的管道为蒸发器2部,所述节流装置一端与所述蒸发器1部相连接,另一端与所述蒸发器2部相连接。所述预设处,位于所述所述蒸发器的进气口与所述蒸发器的出气口之间的管道,所述预设处的位置的设置须符合所述蒸发器1部与所述蒸发器2部能够各自发挥在本实施例中的作用。
进一步地,在所述将所述蒸发器内部的管道在所述蒸发器的进气口与所述蒸发器的出气口之间预设处断开以形成2部分管道方面,所述蒸发器具体用于将所述蒸发器内部的管道在距离所述蒸发器进气口大于等于1/3至小于等于2/3之间任意一处断开以形成2部分管道。
进一步地,在所述蒸发器具体用于将所述蒸发器内部的管道在距离所述蒸发器进气口大于等于1/3至小于等于2/3之间任意一处断开以形成2部分管道方面,所述蒸发器具体用于将所述蒸发器内部的管道在距离所述蒸发器进气口1/2处断开以形成2部分管道。
进一步地,所述的轻载除湿制冷装置还包括:分液器,所述分液器一端与所述节流装置相连接,另一端与所述蒸发器2部相连接,用于当所述蒸发器内部的管道存在大于等于2组进气口和出气口时,为每一组所述进气口和出气口之间的蒸发器2部传输制冷剂。
进一步地,所述节流装置,串联在所述蒸发器1部和蒸发器2部之间,用于将所述蒸发器1部输出的所述液态制冷剂的温度和压强降低后,输出到蒸发器2部,具体包括:
所述节流装置为一个电子膨胀阀,串联在所述蒸发器1部和蒸发器2部之间,用于将所述蒸发器1部输出的所述液态制冷剂的温度和压强降低后,输出到蒸发器2部。可选地,如图5所示,所述节流装置,还包括一个电磁阀,所述电磁阀与所述电子膨胀阀并联,恒温除湿时,所述电磁阀关闭,由并联的电子膨胀阀进行节流。
有益效果:当正常制冷而不进行除湿时,由电子膨胀阀A进行节流,蒸发器中间的节流装置完全打开,不起节流作用,从压缩机里排出的制冷剂为高温高压的气态,经过冷凝器时,对室外空气放热,变成了高压高温的制冷剂液体,通过电子膨胀阀A之后,变成了低压低温的制冷剂液体,温度低于室内温度,进行吸热,从而降低了通过蒸发器的室内空气温度,实现了制冷的功能,制冷剂吸热后变成了低压温度升高的气态,流回压缩机进行下一个循环。
当需要恒温除湿时,电子膨胀阀A完全打开不进行节流,蒸发器中间的节流装置进行节流。对于制冷剂,从冷凝器里流进蒸发器1之后高于环境温度,进行放热,降低了温度;然后液态制冷剂流过蒸发器中间的节流机构后,变成了低压低温的制冷剂液体,流进蒸发器2,温度低于环境温度,进行吸热,温度升高,变为气体后流回压缩机进行循环。因此,对于制冷剂,在通过蒸发器1和蒸发器2时,温度先降低后升高。
图6为本发明实施例提供的一种轻载除湿制冷装置,如图6所示,所述装置包括:
压缩机(1)、冷凝器(2)及蒸发器(3)、及电子膨胀阀(8),所述压缩机(1)输入端与所述蒸发器(3)输出端相连,所述压缩机(1)输出端与所述冷凝器(2)输入端相连,所述冷凝器(2)输出端与所述蒸发器(3)输入端相连,所述电子膨胀阀A(8)串联于所述冷凝器(2)及所述蒸发器(3)之间,所述各端之间均使用制冷剂管道(4)相连,其特征在于:
所述压缩机(1),用于将进入所述压缩机(1)的气态制冷剂进行压缩,以使所述气态制冷剂的压强和温度升高,且将升高了温度和压强后的气态制冷剂输出给冷凝器(2);
所述冷凝器(2),用于将所述升高了温度和压强后的气态制冷剂进行降温,以使所述气态制冷剂凝结为液态制冷剂后输出给蒸发器(3);
所述蒸发器(3),分为蒸发器1部(5)和蒸发器2部(7),所述蒸发器1部(5)与所述蒸发器2部(7)之间串联有节流装置(6);
在制冷并除湿的情况下,所述电子膨胀阀A(8)关闭一部分,对从所述冷凝器(2)输入的所述液态制冷剂进行节流,以降低所述液态制冷剂的压强 和温度并形成气液两相的制冷剂后,输出给所述蒸发器(3);
所述蒸发器1部(5)和蒸发器2部(7)将所述电子膨胀阀A(8)输出的所述气液两相的制冷剂与环境进行热量交换,所述节流装置(6)不进行节流,使所述气液两相的制冷剂的温度升高以变为气态制冷剂,用于降低环境温度以对所述环境进行除湿后,输出给压缩机(1);
在恒温除湿的情况下,所述电子膨胀阀A(8)全开以不进行节流,所述蒸发器1部(5),用于将所述液态制冷剂与环境进行热量交换,以降低所述液态制冷剂的温度并使环境温度升高后,并将降低温度后的液态制冷剂输出给节流装置(6);
所述节流装置(6),将所述蒸发器1部(5)输出的所述液态制冷剂进行节流,以降低所述液态制冷剂的压强和温度并形成气液两相的制冷剂后,输出到蒸发器2部(7);
所述蒸发器2部(7),将所述节流装置(6)输出的所述气液两相的制冷剂与环境温度进行热量交换,使所述气液两相的制冷剂的温度升高以变为气态制冷剂,降低环境温度以对所述环境进行除湿后,输出给压缩机(1)。
进一步地,在将所述蒸发器内部的制冷剂管道分为两部分,以将所述蒸发器分为蒸发器1部和蒸发器2部方面,所述蒸发器具体用于将所述蒸发器内部的管道在所述蒸发器的进气口与所述蒸发器的出气口之间预设处断开以形成2部分管道,所述蒸发器内部的管道连接在所述蒸发器的进气口与所述蒸发器的出气口之间,与所述蒸发器的进气口相连接的管道为蒸发器1部,与所述蒸发器的出气口相连接的管道为蒸发器2部,所述节流装置一端与所述蒸发器1部相连接,另一端与所述蒸发器2部相连接。所述预设处,位于所述所述蒸发 器的进气口与所述蒸发器的出气口之间的管道,所述预设处的位置的设置须符合所述蒸发器1部与所述蒸发器2部能够各自发挥在本实施例中的作用。
进一步地,在所述将所述蒸发器内部的管道在所述蒸发器的进气口与所述蒸发器的出气口之间预设处断开以形成2部分管道方面,所述蒸发器具体用于将所述蒸发器内部的管道在距离所述蒸发器进气口大于等于1/3至小于等于2/3之间任意一处断开以形成2部分管道。
进一步地,在所述蒸发器具体用于将所述蒸发器内部的管道在距离所述蒸发器进气口大于等于1/3至小于等于2/3之间任意一处断开以形成2部分管道方面,所述蒸发器具体用于将所述蒸发器内部的管道在距离所述蒸发器进气口1/2处断开以形成2部分管道。
进一步地,所述的轻载除湿制冷装置还包括:分液器,所述分液器一端与所述节流装置相连接,另一端与所述蒸发器2部相连接,用于当所述蒸发器内部的管道存在大于等于2组进气口和出气口时,为每一组所述进气口和出气口之间的蒸发器2部传输制冷剂。
进一步地,所述节流装置,串联在所述蒸发器1部和蒸发器2部之间,用于将所述蒸发器1部输出的所述液态制冷剂的温度和压强降低后,输出到蒸发器2部,具体包括:
所述节流装置,包括一个电磁阀和毛细管并联,用于当恒温除湿时,由蒸发器中间的电磁阀关闭,由并联的毛细管进行节流。
有益效果:当需要恒温除湿时,对于制冷剂,从冷凝器里流进蒸发器1之后高于环境温度,进行放热,降低了温度;然后液态制冷剂流过蒸发器中间的节流机构后,变成了低压低温的制冷剂液体,流进蒸发器2,温度低于环境温 度,进行吸热,温度升高,变为气体后流回压缩机进行循环。因此,对于制冷剂,在通过蒸发器1和蒸发器2时,温度先降低后升高;
而对于室内空气,空气先经过蒸发器2温度降低,再经过蒸发器1温度升高,室内空气经过空调整体温度基本上保持不变。此时,蒸发器2可以持续进行除湿,不断降低室内湿度,就实现了恒温除湿的功能。
图7为本发明实施例提供的一种轻载除湿制冷方法;如图8所示,本实施例步骤如下:
S701:压缩机将进入所述压缩机的气态制冷剂的压强和温度升高,且将升高了温度和压强后的气态制冷剂输出给冷凝器;
S702:所述冷凝器将所述升高了温度和压强后的气态制冷剂降温以凝结为液态制冷剂后,输出给蒸发器;
S703:将所述蒸发器内部的制冷剂管道分为两部分,以将所述蒸发器分为蒸发器1部和蒸发器2部;
S704
在制冷并除湿的情况下,电子膨胀阀A关闭一部分,对从所述冷凝器输入的所述液态制冷剂进行节流,以降低所述液态制冷剂的压强和温度并形成气液两相的制冷剂后,输出给所述蒸发器;
S705:所述蒸发器1部和蒸发器2部将所述电子膨胀阀A输出的所述气液两相的制冷剂与环境进行热量交换,所述节流装置不进行节流,使所述气液两相的制冷剂的温度升高以变为气态制冷剂,用于降低环境温度以对所述环境进行 除湿后,输出给压缩机;
S706:在恒温除湿的情况下,所述电子膨胀阀A全开以不进行节流,所述蒸发器1部,用于将所述液态制冷剂与环境进行热量交换,以降低所述液态制冷剂的温度并使环境温度升高后,并将降低温度后的液态制冷剂输出给节流装置;进一步地,S707:所述节流装置将所述蒸发器1部输出的所述液态制冷剂进行节流,以降低所述液态制冷剂的压强和温度并形成气液两相的制冷剂后,输出到蒸发器2部;
S708:所述蒸发器2部将所述节流装置输出的所述气液两相的制冷剂与环境温度进行热量交换,使所述气液两相的制冷剂的温度升高以变为气态制冷剂,降低环境温度以对所述环境进行除湿后,输出给压缩机。有益效果:当正常制冷而不进行除湿时,由电子膨胀阀A进行节流,蒸发器中间的节流装置完全打开,不起节流作用,从压缩机里排出的制冷剂为高温高压的气态,经过冷凝器时,对室外空气放热,变成了高压高温的制冷剂液体,通过电子膨胀阀A之后,变成了低压低温的制冷剂液体,温度低于室内温度,进行吸热,从而降低了通过蒸发器的室内空气温度,实现了制冷的功能,制冷剂吸热后变成了低压温度升高的气态,流回压缩机进行下一个循环。
当需要恒温除湿时,电子膨胀阀A完全打开不进行节流,蒸发器中间的节流装置进行节流。对于制冷剂,从冷凝器里流进蒸发器1之后高于环境温度,进行放热,降低了温度;然后液态制冷剂流过蒸发器中间的节流机构后,变成了低压低温的制冷剂液体,流进蒸发器2,温度低于环境温度,进行吸热,温度升高,变为气体后流回压缩机进行循环。因此,对于制冷剂,在通过蒸发器 1和蒸发器2时,温度先降低后升高。
进一步地,S709:所述的轻载除湿制冷方法,还包括:所述在将所述蒸发器内部的制冷剂管道分为两部分,以将所述蒸发器分为蒸发器1部和蒸发器2部,具体包括:将所述蒸发器内部的管道在所述蒸发器的进气口与所述蒸发器的出气口之间预设处断开以形成2部分管道,所述蒸发器内部的管道连接在所述蒸发器的进气口与所述蒸发器的出气口之间,与所述蒸发器的进气口相连接的管道为蒸发器1部,与所述蒸发器的出气口相连接的管道为蒸发器2部,所述节流装置一端与所述蒸发器1部相连接,另一端与所述蒸发器2部相连接。
进一步地,S710:所述的轻载除湿制冷方法,还包括:所述将所述蒸发器内部的管道在所述蒸发器的进气口与所述蒸发器的出气口之间预设处断开以形成2部分管道,具体包括:将所述蒸发器内部的管道在距离所述蒸发器进气口大于等于1/3至小于等于2/3之间任意一处断开以形成2部分管道。
进一步地,S711:所述的轻载除湿制冷方法,还包括:所述蒸发器具体用于将所述蒸发器内部的管道在距离所述蒸发器进气口大于等于1/3至小于等于2/3之间任意一处断开以形成2部分管道,具体包括:
所述蒸发器具体用于将所述蒸发器内部的管道在距离所述蒸发器进气口1/2处断开以形成2部分管道。
进一步地,S712:所述的轻载除湿制冷方法,还包括:
当所述蒸发器内部的管道存在大于等于2组进气口和出气口时,分液器为每一组所述进气口和出气口之间的蒸发器2部传输制冷剂,所述分液器一端与所述节流装置相连接,另一端与所述蒸发器2部相连接。
有益效果:当正常制冷而不进行除湿时,由电子膨胀阀A进行节流,蒸发 器中间的节流装置完全打开,不起节流作用,从压缩机里排出的制冷剂为高温高压的气态,经过冷凝器时,对室外空气放热,变成了高压高温的制冷剂液体,通过电子膨胀阀A之后,变成了低压低温的制冷剂液体,温度低于室内温度,进行吸热,从而降低了通过蒸发器的室内空气温度,实现了制冷的功能,制冷剂吸热后变成了低压温度升高的气态,流回压缩机进行下一个循环。
当需要恒温除湿时,电子膨胀阀A完全打开不进行节流,蒸发器中间的节流装置进行节流。对于制冷剂,从冷凝器里流进蒸发器1之后高于环境温度,进行放热,降低了温度;然后液态制冷剂流过蒸发器中间的节流机构后,变成了低压低温的制冷剂液体,流进蒸发器2,温度低于环境温度,进行吸热,温度升高,变为气体后流回压缩机进行循环。因此,对于制冷剂,在通过蒸发器1和蒸发器2时,温度先降低后升高。
如图8所述的一种数据中心,其特征在于,包括通信设备,其特征在于,还包括:如权利要求1-8所述的轻载除湿装置,用于对所述通信设备进行制冷除湿或恒温除湿。
所述一种轻载除湿制冷装置包括:
压缩机(1)、冷凝器(2)及蒸发器(3)、及电子膨胀阀(8),所述压缩机(1)输入端与所述蒸发器(3)输出端相连,所述压缩机(1)输出端与所述冷凝器(2)输入端相连,所述冷凝器(2)输出端与所述蒸发器(3)输入端相连,所述电子膨胀阀A(8)串联于所述冷凝器(2)及所述蒸发器(3)之间,所述各端之间均使用制冷剂管道(4)相连,其特征在于:
所述压缩机(1),用于将进入所述压缩机(1)的气态制冷剂进行压缩,以使所述气态制冷剂的压强和温度升高,且将升高了温度和压强后的气态制冷剂输出 给冷凝器(2);
所述冷凝器(2),用于将所述升高了温度和压强后的气态制冷剂进行降温,以使所述气态制冷剂凝结为液态制冷剂后输出给蒸发器(3);
所述蒸发器(3),分为蒸发器1部(5)和蒸发器2部(7),所述蒸发器1部(5)与所述蒸发器2部(7)之间串联有节流装置(6);
在制冷并除湿的情况下,所述电子膨胀阀A(8)关闭一部分,对从所述冷凝器(2)输入的所述液态制冷剂进行节流,以降低所述液态制冷剂的压强和温度并形成气液两相的制冷剂后,输出给所述蒸发器(3);
所述蒸发器1部(5)和蒸发器2部(7)将所述电子膨胀阀A(8)输出的所述气液两相的制冷剂与环境进行热量交换,所述节流装置(6)不进行节流,使所述气液两相的制冷剂的温度升高以变为气态制冷剂,用于降低环境温度以对所述环境进行除湿后,输出给压缩机(1);
在恒温除湿的情况下,所述电子膨胀阀A(8)全开以不进行节流,所述蒸发器1部(5),用于将所述液态制冷剂与环境进行热量交换,以降低所述液态制冷剂的温度并使环境温度升高后,并将降低温度后的液态制冷剂输出给节流装置(6);
所述节流装置(6),将所述蒸发器1部(5)输出的所述液态制冷剂进行节流,以降低所述液态制冷剂的压强和温度并形成气液两相的制冷剂后,输出到蒸发器2部(7);
所述蒸发器2部(7),将所述节流装置(6)输出的所述气液两相的制冷剂与环境温度进行热量交换,使所述气液两相的制冷剂的温度升高以变为气态制冷剂,降低环境温度以对所述环境进行除湿后,输出给压缩机(1)。
进一步地,所述装置还包括电子膨胀阀A。当需要恒温除湿时,电子膨胀阀A完全打开不进行节流,蒸发器中间的节流装置进行节流;制冷时,所述电子膨胀阀A不完全打开,以进行节流。
进一步地,在将所述蒸发器内部的制冷剂管道分为两部分,以将所述蒸发器分为蒸发器1部和蒸发器2部方面,所述蒸发器具体用于将所述蒸发器内部的管道在所述蒸发器的进气口与所述蒸发器的出气口之间预设处断开以形成2部分管道,所述蒸发器内部的管道连接在所述蒸发器的进气口与所述蒸发器的出气口之间,与所述蒸发器的进气口相连接的管道为蒸发器1部,与所述蒸发器的出气口相连接的管道为蒸发器2部,所述节流装置一端与所述蒸发器1部相连接,另一端与所述蒸发器2部相连接。所述预设处,位于所述所述蒸发器的进气口与所述蒸发器的出气口之间的管道,所述预设处的位置的设置须符合所述蒸发器1部与所述蒸发器2部能够各自发挥在本实施例中的作用。
进一步地,在所述将所述蒸发器内部的管道在所述蒸发器的进气口与所述蒸发器的出气口之间预设处断开以形成2部分管道方面,所述蒸发器具体用于将所述蒸发器内部的管道在距离所述蒸发器进气口大于等于1/3至小于等于2/3之间任意一处断开以形成2部分管道。
进一步地,在所述蒸发器具体用于将所述蒸发器内部的管道在距离所述蒸发器进气口大于等于1/3至小于等于2/3之间任意一处断开以形成2部分管道方面,所述蒸发器具体用于将所述蒸发器内部的管道在距离所述蒸发器进气口1/2处断开以形成2部分管道。
进一步地,所述的轻载除湿制冷装置还包括:分液器,所述分液器一端与所述节流装置相连接,另一端与所述蒸发器2部相连接,用于当所述蒸发器内 部的管道存在大于等于2组进气口和出气口时,为每一组所述进气口和出气口之间的蒸发器2部传输制冷剂。
进一步地,所述节流装置,串联在所述蒸发器1部和蒸发器2部之间,用于将所述蒸发器1部输出的所述液态制冷剂的温度和压强降低后,输出到蒸发器2部,具体包括:
所述节流装置为一个电子膨胀阀,串联在所述蒸发器1部和蒸发器2部之间,用于将所述蒸发器1部输出的所述液态制冷剂的温度和压强降低后,输出到蒸发器2部。可选地,如图5所示,所述节流装置,还包括一个电磁阀,所述电磁阀与所述电子膨胀阀并联,恒温除湿时,所述电磁阀关闭,由并联的电子膨胀阀进行节流。
有益效果:当正常制冷而不进行除湿时,由电子膨胀阀A进行节流,蒸发器中间的节流装置完全打开,不起节流作用,从压缩机里排出的制冷剂为高温高压的气态,经过冷凝器时,对室外空气放热,变成了高压高温的制冷剂液体,通过电子膨胀阀A之后,变成了低压低温的制冷剂液体,温度低于室内温度,进行吸热,从而降低了通过蒸发器的室内空气温度,实现了制冷的功能,制冷剂吸热后变成了低压温度升高的气态,流回压缩机进行下一个循环。
当需要恒温除湿时,电子膨胀阀A完全打开不进行节流,蒸发器中间的节流装置进行节流。对于制冷剂,从冷凝器里流进蒸发器1之后高于环境温度,进行放热,降低了温度;然后液态制冷剂流过蒸发器中间的节流机构后,变成了低压低温的制冷剂液体,流进蒸发器2,温度低于环境温度,进行吸热,温度升高,变为气体后流回压缩机进行循环。因此,对于制冷剂,在通过蒸发器1和蒸发器2时,温度先降低后升高。
本发明可以通过多种实施方式来实现,本发明实施例可以由特定软硬件组件进行执行,那些本领域技术人员认为各种不同的软件或硬件的组合也可以被应用来执行本发明实施例,上述被硬件执行的特定操作也可以被软件来实施。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (14)

  1. 一种轻载除湿制冷装置,包括压缩机(1)、冷凝器(2)及蒸发器(3)、及电子膨胀阀(8),所述压缩机(1)输入端与所述蒸发器(3)输出端相连,所述压缩机(1)输出端与所述冷凝器(2)输入端相连,所述冷凝器(2)输出端与所述蒸发器(3)输入端相连,所述电子膨胀阀A(8)串联于所述冷凝器(2)及所述蒸发器(3)之间,所述各端之间均使用制冷剂管道(4)相连,其特征在于:
    所述压缩机(1),用于将进入所述压缩机(1)的气态制冷剂进行压缩,以使所述气态制冷剂的压强和温度升高,且将升高了温度和压强后的气态制冷剂输出给冷凝器(2);
    所述冷凝器(2),用于将所述升高了温度和压强后的气态制冷剂进行降温,以使所述气态制冷剂凝结为液态制冷剂后输出给蒸发器(3);
    所述蒸发器(3),分为蒸发器1部(5)和蒸发器2部(7),所述蒸发器1部(5)与所述蒸发器2部(7)之间串联有节流装置(6);
    在制冷并除湿的情况下,所述电子膨胀阀A(8)关闭一部分,对从所述冷凝器(2)输入的所述液态制冷剂进行节流,以降低所述液态制冷剂的压强和温度并形成气液两相的制冷剂后,输出给所述蒸发器(3);
    所述蒸发器1部(5)和蒸发器2部(7)将所述电子膨胀阀A(8)输出的所述气液两相的制冷剂与环境进行热量交换,所述节流装置(6)不进行节流,使所述气液两相的制冷剂的温度升高以变为气态制冷剂,用于降低环境温度以对所述环境进行除湿后,输出给压缩机(1);
    在恒温除湿的情况下,所述电子膨胀阀A(8)全开以不进行节流,所述蒸发器1部(5),用于将所述液态制冷剂与环境进行热量交换,以降低所述液 态制冷剂的温度并使环境温度升高后,并将降低温度后的液态制冷剂输出给节流装置(6);
    所述节流装置(6),将所述蒸发器1部(5)输出的所述液态制冷剂进行节流,以降低所述液态制冷剂的压强和温度并形成气液两相的制冷剂后,输出到蒸发器2部(7);
    所述蒸发器2部(7),将所述节流装置(6)输出的所述气液两相的制冷剂与环境温度进行热量交换,使所述气液两相的制冷剂的温度升高以变为气态制冷剂,降低环境温度以对所述环境进行除湿后,输出给压缩机(1)。
  2. 根据权利要求1所述的轻载除湿制冷装置,其特征在于,
    在将所述蒸发器(3),分为蒸发器1部(5)和蒸发器2部(7),所述蒸发器1部(5)与所述蒸发器2部(7)之间串联有节流装置(6)方面,具体用于将所述蒸发器(3)内部(11)的制冷剂管道在所述蒸发器的进气口(9)与所述蒸发器的出气口(10)之间预设处断开以形成2部分制冷剂管道,所述蒸发器内部(11)的制冷剂管道连接在所述蒸发器的进气口(9)与所述蒸发器的出气口(10)之间,与所述蒸发器的进气口(9)相连接的所述蒸发器(3)内部(11)的制冷剂管道(21)为蒸发器1部(5),与所述蒸发器的出气口(10)相连接的所述蒸发器(3)内部(11)的制冷剂管道(31)为蒸发器2部(7),所述节流装置(6)一端与所述蒸发器1部(5)相连接,另一端与所述蒸发器2部(7)相连接。
  3. 根据权利要求2所述的轻载除湿制冷装置,其特征在于,
    在所述将所述蒸发器(3)内部(11)的制冷剂管道在所述蒸发器的进气口(9)与所述蒸发器的出气口(10)之间预设处断开以形成2部分制冷剂管 道方面,具体用于将所述蒸发器内部的管道在距离所述蒸发器进气口(9)大于等于1/3至小于等于2/3之间任意一处断开以形成2部分管道。
  4. 根据权利要求3所述的轻载除湿制冷装置,其特征在于,
    在具体用于将所述蒸发器内部的管道在距离所述蒸发器进气口(9)大于等于1/3至小于等于2/3之间任意一处断开以形成2部分管道方面,具体用于将所述蒸发器(3)内部的制冷剂管道在距离所述蒸发器进气口(9)1/2处断开以形成2部分管道。
  5. 根据权利要求4所述的轻载除湿制冷装置,其特征在于,还包括:
    分液器(81),所述分液器(81)一端与所述节流装置(6)相连接,另一端与所述蒸发器2部相连接,用于当所述蒸发器(3)内部的制冷剂管道存在大于等于2组进气口和出气口时,为每一组所述进气口和出气口之间的蒸发器2部传输制冷剂。
  6. 根据权利要求1至5任一所述的轻载除湿制冷装置,其特征在于,
    所述节流装置(6),串联在所述蒸发器1部(5)和所述蒸发器2部(7)之间,用于将所述蒸发器1部输出的所述液态制冷剂的温度和压强降低后,输出到蒸发器2部,具体包括:
    所述节流装置为一个电子膨胀阀,串联在所述蒸发器1部和蒸发器2部之间,用于将所述蒸发器1部输出的所述液态制冷剂的温度和压强降低后,输出到蒸发器2部。
  7. 根据权利要求6所述的轻载除湿制冷装置,其特征在于,所述节流装置,还包括一个电磁阀,所述电磁阀与所述电子膨胀阀并联,恒温除湿时,所述电磁阀关闭,所述电子膨胀阀用于节流。
  8. 根据权利要求1至5任一所述的轻载除湿制冷装置,其特征在于,所述节流装置,包括一个电磁阀和毛细管并联,用于当恒温除湿时,由蒸发器中间的电磁阀关闭,由并联的毛细管进行节流。
  9. 一种轻载除湿制冷方法,其特征在于,包括:
    压缩机将进入所述压缩机的气态制冷剂的压强和温度升高,且将升高了温度和压强后的气态制冷剂输出给冷凝器;
    所述冷凝器将所述升高了温度和压强后的气态制冷剂降温以凝结为液态制冷剂后,输出给蒸发器;
    将所述蒸发器内部的制冷剂管道分为两部分,以将所述蒸发器分为蒸发器1部和蒸发器2部;
    在制冷并除湿的情况下,电子膨胀阀A关闭一部分,对从所述冷凝器输入的所述液态制冷剂进行节流,以降低所述液态制冷剂的压强和温度并形成气液两相的制冷剂后,输出给所述蒸发器;
    所述蒸发器1部和蒸发器2部将所述电子膨胀阀A输出的所述气液两相的制冷剂与环境进行热量交换,所述节流装置不进行节流,使所述气液两相的制冷剂的温度升高以变为气态制冷剂,用于降低环境温度以对所述环境进行除湿后,输出给压缩机;
    在恒温除湿的情况下,所述电子膨胀阀A全开以不进行节流,所述蒸发器1部,用于将所述液态制冷剂与环境进行热量交换,以降低所述液态制冷剂的温度并使环境温度升高后,并将降低温度后的液态制冷剂输出给节流装置;
    所述节流装置将所述蒸发器1部输出的所述液态制冷剂进行节流,以降低所述液态制冷剂的压强和温度并形成气液两相的制冷剂后,输出到蒸发器2 部;
    所述蒸发器2部将所述节流装置输出的所述气液两相的制冷剂与环境温度进行热量交换,使所述气液两相的制冷剂的温度升高以变为气态制冷剂,降低环境温度以对所述环境进行除湿后,输出给压缩机。
  10. 根据权利要求9所述的轻载除湿制冷方法,其特征在于,
    所述在将所述蒸发器内部的制冷剂管道分为两部分,以将所述蒸发器分为蒸发器1部和蒸发器2部,具体包括:将所述蒸发器内部的制冷剂管道在所述蒸发器的进气口与所述蒸发器的出气口之间预设处断开以形成2部分制冷剂管道,所述蒸发器内部的制冷剂管道连接在所述蒸发器的进气口与所述蒸发器的出气口之间,与所述蒸发器的进气口相连接的制冷剂管道为蒸发器1部,与所述蒸发器的出气口相连接的制冷剂管道为蒸发器2部,所述节流装置一端与所述蒸发器1部相连接,另一端与所述蒸发器2部相连接。
  11. 根据权利要求10所述的轻载除湿制冷方法,其特征在于,
    所述将所述蒸发器内部的制冷剂管道在所述蒸发器的进气口与所述蒸发器的出气口之间预设处断开以形成2部分制冷剂管道,具体包括:
    将所述蒸发器内部的制冷剂管道在距离所述蒸发器进气口大于等于1/3至小于等于2/3之间任意一处断开以形成2部分制冷剂管道。
  12. 根据权利要求11所述的轻载除湿制冷方法,其特征在于,
    所述将所述蒸发器内部的制冷剂管道在距离所述蒸发器进气口大于等于1/3至小于等于2/3之间任意一处断开以形成2部分制冷剂管道,具体包括:
    将所述蒸发器内部的制冷剂管道在距离所述蒸发器进气口1/2处断开以形成2部分制冷剂管道。
  13. 根据权利要求12所述的轻载除湿制冷方法,其特征在于,还包括:
    当所述蒸发器内部的制冷剂管道存在大于等于2组进气口和出气口时,分液器为每一组所述进气口和出气口之间的蒸发器2部传输制冷剂,所述分液器一端与所述节流装置相连接,另一端与所述蒸发器2部相连接。
  14. 一种数据中心,包括通信设备,其特征在于,还包括:如权利要求1-8所述的轻载除湿装置,用于对所述通信设备进行制冷除湿或恒温除湿。
PCT/CN2015/096510 2015-05-30 2015-12-06 一种轻载除湿制冷的方法及装置 WO2016192347A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15893991.8A EP3293467A4 (en) 2015-05-30 2015-12-06 Light-load dehumidification and refrigeration method and device
BR112017025830A BR112017025830A2 (pt) 2015-05-30 2015-12-06 método e aparelho de desumidificação e refrigeração sob carregamento

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510298623.6 2015-05-30
CN201510298623.6A CN104896637A (zh) 2015-05-30 2015-05-30 一种轻载除湿制冷方法及装置

Publications (1)

Publication Number Publication Date
WO2016192347A1 true WO2016192347A1 (zh) 2016-12-08

Family

ID=54029462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096510 WO2016192347A1 (zh) 2015-05-30 2015-12-06 一种轻载除湿制冷的方法及装置

Country Status (4)

Country Link
EP (1) EP3293467A4 (zh)
CN (1) CN104896637A (zh)
BR (1) BR112017025830A2 (zh)
WO (1) WO2016192347A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106731534A (zh) * 2016-12-21 2017-05-31 上海神开石油化工装备股份有限公司 一种空气湿度调节装置
CN112181015A (zh) * 2020-09-02 2021-01-05 重庆邮电大学 一种微型快速温变系统
CN114719351A (zh) * 2022-04-08 2022-07-08 珠海市金品创业共享平台科技有限公司 一种热泵型三管式空调系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104896637A (zh) * 2015-05-30 2015-09-09 华为技术有限公司 一种轻载除湿制冷方法及装置
CN107120746B (zh) * 2016-02-25 2020-06-02 维谛技术有限公司 一种复合型制冷除湿方法与制冷除湿复合系统
CN105864920B (zh) * 2016-03-31 2019-02-19 华为技术有限公司 一种轻载除湿方法及空调
CN106247655B (zh) * 2016-07-25 2019-03-08 华为技术有限公司 一种轻载除湿制冷方法及装置
CN108106034A (zh) * 2017-11-10 2018-06-01 华为数字技术(苏州)有限公司 制冷装置及其控制方法、装置、制冷系统
CN111059630B (zh) * 2019-12-31 2021-02-19 珠海格力电器股份有限公司 空调室内机和空调系统
CN112413916B (zh) * 2020-11-16 2022-01-07 中科赛凌(北京)科技有限公司 一种冷热气喷射装置
CN112923450B (zh) * 2021-03-02 2022-07-12 宁波奥克斯电气股份有限公司 一种空调器及除雾方法
WO2023154461A1 (en) * 2022-02-11 2023-08-17 Honeywell International Inc. Method of forming refrigerant systems

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1101412A (zh) * 1993-06-01 1995-04-12 株式会社日立制作所 空调设备
CN2305631Y (zh) * 1997-07-31 1999-01-27 四川省档案学会 可控温湿度的收储柜
JPH1183125A (ja) * 1997-09-16 1999-03-26 Hitachi Ltd 空気調和機
JP2004132573A (ja) * 2002-10-09 2004-04-30 Daikin Ind Ltd 空気調和機
CN101149169A (zh) * 2006-09-21 2008-03-26 海尔集团公司 健康除湿空调器
WO2010015123A1 (en) * 2008-08-06 2010-02-11 Electrolux (Hangzhou) Home Appliances Co., Ltd. Constant temperature dehumidifying air-conditioner
CN202066256U (zh) * 2010-12-20 2011-12-07 广东美的制冷设备有限公司 一种风冷空调系统
CN104515326A (zh) * 2013-09-29 2015-04-15 广东美的制冷设备有限公司 空调器及空调器的除湿方法
CN104896637A (zh) * 2015-05-30 2015-09-09 华为技术有限公司 一种轻载除湿制冷方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1130494A (ja) * 1997-05-16 1999-02-02 Hitachi Ltd 熱交換装置およびこれを用いた空気調和機
CN2447676Y (zh) * 2000-10-09 2001-09-12 高英发 可恒温的除湿装置
CN1254648C (zh) * 2003-12-05 2006-05-03 清华大学 一种并联型热泵调温调湿机组
CN100504252C (zh) * 2006-06-27 2009-06-24 海尔集团公司 不降温除湿空调器
CN201448954U (zh) * 2009-06-11 2010-05-05 珠海天济能源科技有限公司 除湿机
CN102486322B (zh) * 2010-12-06 2014-11-05 中国科学院理化技术研究所 调温除湿系统和方法
CN102425828B (zh) * 2011-09-15 2013-08-07 上海交通大学 一种适用于机房精密控制空调的节能装置
JP5949648B2 (ja) * 2013-04-18 2016-07-13 株式会社デンソー 冷凍サイクル装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1101412A (zh) * 1993-06-01 1995-04-12 株式会社日立制作所 空调设备
CN2305631Y (zh) * 1997-07-31 1999-01-27 四川省档案学会 可控温湿度的收储柜
JPH1183125A (ja) * 1997-09-16 1999-03-26 Hitachi Ltd 空気調和機
JP2004132573A (ja) * 2002-10-09 2004-04-30 Daikin Ind Ltd 空気調和機
CN101149169A (zh) * 2006-09-21 2008-03-26 海尔集团公司 健康除湿空调器
WO2010015123A1 (en) * 2008-08-06 2010-02-11 Electrolux (Hangzhou) Home Appliances Co., Ltd. Constant temperature dehumidifying air-conditioner
CN202066256U (zh) * 2010-12-20 2011-12-07 广东美的制冷设备有限公司 一种风冷空调系统
CN104515326A (zh) * 2013-09-29 2015-04-15 广东美的制冷设备有限公司 空调器及空调器的除湿方法
CN104896637A (zh) * 2015-05-30 2015-09-09 华为技术有限公司 一种轻载除湿制冷方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3293467A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106731534A (zh) * 2016-12-21 2017-05-31 上海神开石油化工装备股份有限公司 一种空气湿度调节装置
CN112181015A (zh) * 2020-09-02 2021-01-05 重庆邮电大学 一种微型快速温变系统
CN114719351A (zh) * 2022-04-08 2022-07-08 珠海市金品创业共享平台科技有限公司 一种热泵型三管式空调系统

Also Published As

Publication number Publication date
CN104896637A (zh) 2015-09-09
EP3293467A1 (en) 2018-03-14
EP3293467A4 (en) 2018-05-02
BR112017025830A2 (pt) 2018-09-04

Similar Documents

Publication Publication Date Title
WO2016192347A1 (zh) 一种轻载除湿制冷的方法及装置
US9206994B2 (en) Heat source system
CN114838531B (zh) 用于调节换热器内的冷媒温度的方法、装置、空调器
CN107228455B (zh) 一种空调器及控制方法
US9915454B2 (en) Air-conditioning apparatus including heat exchanger with controlled heat exchange amount
US20130213077A1 (en) Multi-split air conditioner capable of refrigerating and heating simultaneously
CN107178833B (zh) 热回收外机系统和空调系统
WO2019134509A1 (zh) 室外机、空调系统及控制方法
CN105588356B (zh) 一种制冷系统及其控制方法
WO2015109653A1 (zh) 热回收变频多联式热泵系统及其控制方法
CN107763889A (zh) 一种多联机空调系统及其控制方法
CN107860151A (zh) 热泵系统及具有其的空调器
US20240102700A1 (en) Heating, Ventilation, and Air-Conditioning Systems and Methods
CN104764241A (zh) 一种空调
CN205619615U (zh) 一种多联机空调系统
CN207471687U (zh) 空调系统及具有该空调系统的空调器
CN104879950A (zh) 空调一体机系统及其控制方法
CN208653007U (zh) 制冷设备
CN106885388B (zh) 一种空调系统
CN106247655B (zh) 一种轻载除湿制冷方法及装置
CN105674623A (zh) 一种适用于超低温环境下的复叠式空气源热泵系统
KR102337394B1 (ko) 공기조화기
CN109915952A (zh) 具有0~100%输出负荷调节能力中央空气调节机组
CN105627613A (zh) 空调器的室外机及空调器
CN109237645B (zh) 空调系统及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015893991

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017025830

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017025830

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171130